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Specifications table 

Subject Area: Environmental science 

More specific subject area: Social Simulation 

Method name: TRAPSim (Transport-related Air Pollution Simulation specialised for simulating non-exhaust 

emission) 

Name and reference of 

original method: 

N/A 

Resource availability: The data and the codes are stored in the Harvard Dataverse 

( https://doi.org/10.7910/DVN/C93XLZ ) 

The data, codes, bug reports, and wiki pages are written on 

https://github.com/dataandcrowd/SeoultrafficABM/wiki 

NetLogo 6.0.4 was used for the model 

( https://ccl.northwestern.edu/netlogo/download.shtml ) 

R 3.6.1 was used for the HPC works and post-processing analysis 

( https://cran.r-project.org/ ) 

Java 8 was used to run NetLogo on a headless mode 

( https://www.oracle.com/uk/java/technologies/javase/javase8-archive-downloads.html ) 

Introduction 

Non-exhaust emissions (NEEs) are generated from the friction between tyres, the road surface, and 

pavement encrustations in the form of metallic, rubber, carbon black, and other organic substances 

[1,2] . Traffic-related air pollutants (TRAP) that include tyre wear, brake wear, road abrasion, and road

resuspension broadly contribute to the ambient air quality [1,3,4] . Previous findings have shown the

contribution of non-exhaust emissions account for from 11% [5] to 60% [6] and 73% [7] of the roadside

air pollution. Although e-scooters and electric vehicles are likely to reduce exhaust emissions [8,9] ,

individuals who get exposed to NEEs together with background air pollution can result in adverse

health effects from eye irritation to lung and heart impairment [10] . 

To measure population exposure to NEEs at an individual level, we applied agent-based modelling 

(ABM). Unlike statistical approaches that only consider collective exposure levels by demographic or 

boundary groups at a certain time frame, ABM provides the unique characteristics (e.g. daily commute

patterns, health status) of individuals over time and space [11–14] . The recreation of the real world

enables users to raise awareness of more polluted areas, what it has to do with traffic, and unravel the

relationship between exposure and means of transportation. Other agent-based traffic models have 

also simulated the vehicle emissions on a city scale, however, these models were too short to discover

the harms of the different exposures based on people’s and vehicle activity. In addition, since the

models were focused on traffic movement, the exposure levels did not fully account for whether the

individuals were staying indoors or outdoors, which, from the cases of the UK, 95% of the Londoners

spend their time indoors [15] . 

Using the case of Seoul, we developed an agent-based model, named TRAPSim, to examine 

the exposure to NEEs and the consequent health effects by driver and pedestrians groups. To our

knowledge, this is the first model that conjoins the mobility of vehicles and people, the generation of

PM 10 (i.e. particles with diameters that are up to 10 μm) at every grid by vehicles and background

sources, and the cumulative exposure to PM 10 that lead to adverse health effects. 

Amongst various types of social simulation that ranges from the highly detailed version of the real

world to a conceptual model, this paper positions a place as an illustrative model [16] . The illustrative

model aims to communicate or make clear an idea, theory or explanation, thus is less burdened to

support claims. Our expectation is to disseminate the model so that scholars in similar disciplines can

use and redesign our model for their purposes. 

Method details 

This article provides technical documentation of TRAPSim partly based on the ODD protocol 

(Overview, Design Concepts and Details) [17] . The ODD protocol is a standardised method to describe

simulation models, which has the advantage to be less technical and a strong focus on facilitating

communication across disciplines [17] . Since the first ODD protocol was published in 2006 [18] , there

https://doi.org/10.7910/DVN/C93XLZ
https://github.com/dataandcrowd/SeoultrafficABM/wiki
https://ccl.northwestern.edu/netlogo/download.shtml
https://cran.r-project.org/
https://www.oracle.com/uk/java/technologies/javase/javase8-archive-downloads.html
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ere a number of updates to improve clarity and help users to replicate the model. One of the

uggestions were to add codes along with the explanations to avoid the ambiguity of the explanation.

dding more information made openly available can certainly provide a better environment for the

imulation community [19] . Thus, this paper adds code snippets wherever the code can support the

xplanation. 

We outline this document to firstly introduce the model according to the structure of the ODD

rotocol [ 17 ], then describe the model’s sensitivity experiment and calibration in the Sensitivity

xperiment and calibration section that was conducted for the original research (link to preprint) .

hings to try and notice covers the ways to use the model and reports possible artefacts and errors.

inally, Running the model on the HPC is a “how-to-use HPC” section using NetLogo as the main

odelling platform, R as a compiler, and Unix codes to submit the work to the HPC. 

TRAPSim was built in NetLogo 6.0.4 [20] . The data catalogue and codes are stored in the Harvard

ataverse [21] , and the codes, bug reports, and wiki pages are available on the GitHub Wiki . 

odel purpose 

The purpose of this model is to understand commuter’s exposure to non-exhaust PM 10 emissions,

nd to make a preliminary estimate of their health effects. 

This model illustrates the following patterns : (1) the fraction of population at risk by mode of

ransport and (2) the total numbers of traffic and pollution levels by road in a context that is

epresentative of realistic conditions in the Seoul CBD. 

Pattern 1: Population at risk by the mode of transport 

This pattern reflects how an individual’s health might deteriorate from PM 10 exposure depending

on the mode of transport they take, and how much time is spent under extreme PM 10 conditions.

Health decline occurs when PM 10 exceeds the 100 μg/m 

3 level: a nominal health index is used,

starting at 300, and individuals are labelled as “at risk” if the value drops below 100. The population

at risk is a fraction of individuals with a health value less than 100 relative to the total population.

Pattern 2: Traffic load and pollution concentration 

This pattern emphasises the spatial variation of the pollution attempts to understand how one

road is polluted relative to other roads, and how much traffic contributed to that. In other words,

the commuting patterns and traffic flow generate some fraction of the emissions that impact

people’s health. This potentially allows a feedback between pollution and behaviour to be simulated.

Although only a fraction of vehicles is represented, we can use sensitivity studies to test how

important this might be to the realism of the output. 

ata collection 

This section describes the raw data collected for this study. The full description is presented in our

ebsite https://ems- appendix.netlify.app/study- area- and- data- collection.html . 

Administrative boundary : The CBD area (16.7 km 

2 ) comprises two districts of Seoul, namely

ongno and Jung. Jongno has 8 sub-districts 1 and Jung has 7 sub-districts 2 (see Fig. 1 ). . 

Air Pollution : Hourly measured PM 10 was imported from two urban background stations, and

wo roadside stations (see Table 1 ). The background pollution data are used to interpolate the

ackground areas, while the roadside stations are to calibrate the road emission levels. Assuming

ubway commuters travelling from distant origins, PM 10 was also collected from 23 background and

2 roadside stations within the city boundary. 

Roads : The road layer is the most important component to simulate vehicle trips on the road

etwork. Seoul CBD contains a mixture of two lanes, four lanes, eight lanes. The model, however,

implified the type of roads as one road (see Fig. 2 B). 
1 Sajik, Cheongwoonhyoja, Samcheong, Gahoe, Jongno 1-4ga, Jongno 5-6ga, Ewha, and Hyewha. 
2 Sogong, Hoehyeon, Myung, Pil, Jangchoong, Gwanghee, and Euljiro. 

https://www.researchsquare.com/article/rs-1028055/v1
https://github.com/dataandcrowd/SeoultrafficABM/wiki
https://ems-appendix.netlify.app/study-area-and-data-collection.html
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Fig. 1. Study boundary Seoul CBD. 

Table 1 

Monitoring Sites in Seoul CBD. 

Type Name Location Lat Long 

Background Jongno Jongno District Office 127.0 050 05 37.5720356 

Background Jung Seoul Arts Gallery 126.973720 37.5643110 

Road Jongno Jongno Chapel 126.996538 37.5708913 

Road Seoul Station Seoul Station 126.971042 37.5523812 

 

 

 

 

 

 

 

Buildings : Buildings are used as the agent’s office places which are brought in from

OpenStreetMap. Once the model is loaded, all agents have a building ID allocated as their destination

(see the blue polygons in Fig. 2 A). 

Hourly Traffic : Hourly traffic was provided from the Traffic Monitoring Department affiliated with 

Seoul Metropolitan Government. The data is used to feed non-resident cars into the model every

minute. 

Entities, state variables, and scales 

(A) Resident vehicles : 399 resident vehicles were sampled and imported in the model. The vehicles

accounted for 1% of the total vehicles registered in each sub-district that mobilise within the

district. Having tested different sample sizes ranging from 10 to 70%, the results from the

sample size of 70% were not significantly different to the 10% sample size because the vehicles
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Fig. 2. Study area in 2D (A) and 3D (B). 

Fig. 3. Agent types used in the simulation. Type A is a resident vehicle (tied with a driver), Type B is a non-resident vehicle, 

and Type C is a pedestrian commuting by metro. 
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were queueing at the entrances ready to enter into the model environment. During each trip,

the vehicles will keep some distance from other vehicles. Vehicles emit pollution to the local

patches as they travel. During weekdays, trips are made along the shortest path and will not

change throughout the simulation, while the weekend journeys are random. The codes are

available on GitHub to set- resident- cars section. 

(B) Non-Resident vehicles : Unlike resident vehicles, non-resident vehicles do not have any specific

navigation aims, but rather, play a role as pollution-generators inside the study domain. The

vehicles will follow traffic signals and keep their distance from the vehicles in front but will be

removed completely when they reach the end of the road (at the domain boundary, see Fig. 1 ).

The randomness of travel directions is to simulate general movement during the vehicle’s time

in the CBD, in the absence of more detailed data. These vehicles are not present during the

model settings but will appear when the model is executed. The codes are available on GitHub

to add-cars section. 

(C) Resident drivers (tied with resident cars): The drivers are tied with cars but do not move nor

appear on the interface (see Fig. 3 A). This is to improve the model running speed and to prevent

any computational errors between linking and unlinking cars from people. The drivers lose

health when they are instantaneously exposed to the nominal PM 10 threshold of 100 μg/m 

3 . 

D) Subway commuters : To execute the model efficiently, the model populated 1932 persons (1% of

the subway commuters) and gave each agent a destination point (building) within 20 patches

from the subway entrance (see Fig. 3 C). Once the location was assigned, the agents are asked

to walk to their offices based on the local search algorithm (see details in Section ). The codes

are available on GitHub to set- subway- commuters section. 

s mentioned in the previous section, this model consists of three types of mobile agents. 

https://github.com/dataandcrowd/SeoultrafficABM/blob/master/TRAPSim.nlogo
https://github.com/dataandcrowd/SeoultrafficABM/blob/master/TRAPSim.nlogo
https://github.com/dataandcrowd/SeoultrafficABM/blob/master/TRAPSim.nlogo
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Table 2 

Vehicles in the model have state variables related to their trip. 

Code Description Example 

fueltype Type of fuel “Gasoline”

origin One of nodes set as origin (node 1) 

destination Patch set as destination (patch 40 40) 

goal The closest node from destined patch (node 2) 

path-work List of nodes between home and work [(node 1) (node 2)] 

path-home List of nodes between work and home [(node 2) (node 1)] 

nodes-remaining Number of nodes from the list 24 

myroad List of roads between home and work [(link 1 2) (link 2 3)] 

current-link Current road (link 1 2) 

district_name Name of district “Myungdong”

district_code Code of district 1,102,055 

link-counter Cumulative counter to arrival 0 

direction Direction to work (1); to home(-1) 1 

time-at-work Minutes at work 524 

random-car Boolean of random / resident cars True/false 

parked If the vehicle is parked True/false 

Table 3 

People in the model have state variables related to their trip. 

Code Description Example 

origin Subway node set as origin (exit 20) 

origin_patch Patch of origin (patch 20 20) 

goal Patch set as destination (patch 40 40) 

current Current patch (patch 30 30) 

Heuristics Distance between current and goal 0.11 

arrived? Whether they arrived to their workplace or not T / F 

time-at-work Number of ticks spent after arrived? 480 

direction Direction to work (1), stay (0), and home (-1) 1/0/-1 

arrive-tick Ticks spent between exit and arrived? 39 

Health Nominal health level (starts from 300) 275 

Hour Hour when the agent arrives at the subway station 7 

Minute Minute when the agent arrives at the subway station 48 

 

 

 

 

 

 

 

 

 

 

 

 

 

The state variables for the mobile agents, vehicles and people, are documented in Tables 2

and 3 . Resident vehicles have their origin and destination both in patches and nodes, where home
and destination patches are considered as indoor spaces that require PM 10 to be adjusted to

the indoor level [22] . The indoor/outdoor ratio is further explained in Section . path-work and

path-home provide links between home and the destination node, and the positive direction 
guides vehicles to follow the links of path-work , whereas the negative direction guides

vehicles to follow that of path-home . Link-counter answers the question, “How many links 

before the vehicle stops?” Incrementing by 1, the link-counter will stop when it meets the 

nodes-remaining value, and then parked changes from FALSE to TRUE. After spending time-at- 

work for 480+ α minutes ( α < 60), the cars will start the journey back home. 

For subway commuters, their tentative origin is their subway entrance. They walk to their goal

patch using the shortest distance when the awareness scenarios are not activated. If the awareness

scenario is activated, the individual moves to one of the three patches in the direction that has

the lowest PM 10 . Heuristics is the distance between the origin and goal, which will decrease

as the individual moves towards the goal patch. If the agent reaches the goal, the arrival? the

status will change from FALSE to TRUE. Note that some agents whose Heuristics is less than 1

and less than the walking speed will be stuck at that location. To avoid the error, the individuals

whose Heuristics is less than 1 will automatically move to the office location and will convert

their arrival? to TRUE and start working. As with resident drivers, time-at-work shows the 

remainder of the working time. 
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Table 4 

Variables of a traffic signal . 

Code Description Example 

Dong_code Code of admin (provided by Census) 1,102,055 

Intersection Boolean of road intersections T/F 

Auto? A timer to change signals 15 

Green-light? Boolean of green lights T/F 

Table 5 

Variables of a traffic signal . 

Code Description Example 

Line Line number of Seoul Metro 1 
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For example, if an individual arrived at the working place indicating 500 min of time-at-work ,
he minutes will decrease every minute. As soon as the time-at-work indicates zero, the individual

ill return to its origin (home patch). For visual purposes, this model temporarily removes the

orkers whose arrive-tick is over 80 so that the display is less cluttered but makes them re-

ppear after work (visit this link for a short movie ). 

Traffic signals are arbitrarily created at junctions that consist of three roads or more (see Table 4 ).

ore traffic lights are installed between road segments in the real world, but the intention here is to

rticulate the traffic and the resuspension of dust. The emitted PM 10 will remain near the junctions

hen the vehicles are idling in front of the traffic signal. Intersection is a Boolean variable that

etermines whether they have three roads to become qualified. The duration of red and green signals

re determined by a timer variable termed Auto? . The Green-light? is a Boolean variable that

ill allow vehicles to move when TRUE and stop when FALSE. 

Subway entrances are set as an origin for subway commuters (see Table 5 ). There are 26 subway

tations in the study area with line numbers 1, 2, 3, 4, and 5, and coded as s_entrance . 
Regarding the scale of the model, TRAPSim is simulated on a two-dimensional, continuous space

f the CBD of Seoul (16.7km 

2 ). The spatial extent of the real world converts to 155 horizontal and

92 vertical patches (i.e. grid-cells) in which each patch has spatial dimensions of 30 m by 30 m.

he model runs at a one-minute time step , and variables are collectively updated until the simulation

erminates. The total run time of the model is 127,740 min which is an equivalent of 3 months. 

rocess overview and scheduling: developing algorithms for autonomous trips 

The simulation starts at 7:00am on January 1st, and ends at 23:59 on March 31st 2018 (see Fig. 4 ).

he diagram shows the journey of vehicles and humans, and where the vehicles produce pollution

see Fig. 4 process a and Fig. 5 ), the agents who are exposed to over 100μg/m 

3 of ambient PM 10 in the

tudy area are expected to have their health decreased (see Fig. 4 process b and Fig. 6 ). Although the

ull journey to the CBD is not simulated in this study, subway commuters are assumed to be exposed

o the ambient level PM 10 between early morning and late in the evening even if they do not appear

n the interface. The cumulative updates of the risk population and the PM 10 concentration by roads

re exported to a single spreadsheet at the end of the simulation. 

ehicles’ routing algorithm 

Vehicles are divided into two groups: (1) resident vehicles or (2) vehicles with random movement.

he driver’s health loss will be explained in the later section. 

Vehicles in general: 

Both vehicle profiles maintain a safety distance of 1 patch ( ≈ 30m) between themselves and the

vehicle in front. During the journey, vehicles will pollute and disperse non-exhaust PM 10 , regardless

of fuel types. Vehicles are asked to stop in front of the "Red” traffic signal. More information

https://github.com/dataandcrowd/SeoultrafficABM/blob/master/seoulsimulation.gif
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Fig. 4. A nested flow diagram describing the behaviour of agents and their landscape. During the setup period, buildings, 

pollution and roads are created. Registered vehicles are also created with their allocated destinations. The model starts at 

6:00am on January 1st, and ends at 23:59 on March 31st 2018. Each tick will count as one minute. If the agent is a vehicle, 

then it follows the behaviour of a vehicle (see Fig. 5 for details); otherwise, it follows the behaviour of an individual (see 

Fig. 6 for details). If the simulation stops, then it will print the population at risk and pollution levels by road. 

Fig. 5. Flow chart for resident and incoming vehicles. If the vehicle’s owner is a CBD resident, the vehicles will move to their 

assigned destination. The vehicle will emit pollution until it ends the journey. As the vehicle parks at the destination, the timer 

will start to countdown from 480+ α ( α < 60 min) to 0 mins and will head back home once the timer reaches zero. If the 

vehicle is non-resident, it will move generally and disperse non-exhaust pollution until it leaves the domain. 
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Fig. 6. Flow chart of a subway commuter’s journey. While the person is walking, it’s health will degrade when the PM 10 is 

above 100. If arrived, the person will stay until the timer ends and head back to the station. 

Listing 1. NetLogo: Assigning the speed to each vehicle. 

 

•
 

•
 

 

 

•
 

 

 

 

 

•

regarding the pathfinding algorithm and PM 10 pollution will be introduced in the Sub-Model

section. 

To make the vehicles move, the code asks each vehicle to accelerate up to 5 per tick, and slow down

when a vehicle is heading in the same direction (see Listing 1 ). 

Resident vehicles: 

Vehicles will move across road networks to their destination node, stop during office hours, and

head back to the origin (node) again using the same route during weekdays, but will move away

from the study area over the weekends for non-working activities, e.g. shopping, weekend journeys,

or places to worship. 

During weekdays, each vehicle will stop the journey if the vehicle has arrived at its destination

node. After its arrival, the state variable, timer, counts down from ≥480 min (up to 540 min). As

soon as the timer reaches zero, the vehicle will head back home. Extra time from 0 to 59 min is

given to all agents assuming agents walking to car parks or spending additional time to wrap up

their work. Each vehicle has a driver whose health will decline if the PM 10 inside the vehicle is over

100 μg/m 

3 . 

See Listing 2 and Listing 3 for the NetLogo codes and annotations. 



10 H. Shin / MethodsX 9 (2022) 101673 

Listing 2. NetLogo: Assigning trips for resident vehicles and park during work hours. 

•
 

 

 

 

 

 

 

•

 

Vehicles with random movement: 

Vehicles are assumed to have come from the outside. These incoming vehicles make trips to any

areas inside the CBD, generating vehicles from the hourly traffic data. Since the spatial extent is

restricted to the CBD zone, this model made the outbound cars disappear at any endpoints of the

road network. Since the model had a limited capacity of vehicles ( ∼2500), the traffic count was

further decomposed by 5% on the scenario, as well as 2.5, 10, and 20% on the sensitivity experiment.

Note that if a vehicle checkpoint station had less than 1200 vehicles in an hour, then a 5% sample

would not feed in any vehicles for that hour, but this was not a problem since not a large difference

was seen in between the ratios - details are demonstrated in the Sensitivity section. 

See Listing 4 for the NetLogo codes and annotation. 

The basic code for the vehicle’s movement was based on the Venice model (unpublished and

eliminated, but the source code was shared until 2017 on Professor Andrew Crooks ’ Webpage ). 

https://www.gisagents.org/2009/02/agent-based-models-for-venice.html
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Listing 3. NetLogo: Asking resident cars to move randomly during the weekends. There is a technical difficulty that once the 

vehicle moves randomly there is no obvious way but to coerce the vehicles to move back to the origin. While the code requests 

the vehicles to return to the origin, the model looks as if there are flying cars. 

Listing 4. NetLogo: Assigning random trips for non-resident vehicles. 

S

 

a  

e  

p  

l

 

g  

(

ubway commuters’ routing algorithm 

When the simulation commences, the subway commuters are transported to the subway entrances

t the hour and minute they have on their state variables. Once the agents arrive at their subway

ntrances, they walk to their destination buildings using the shortest distance regardless of the

ollution levels. However, if the awareness scenario is activated, they will navigate following the

owest PM 10 to their destinations. 

The codes (see Listing 5 ) appeared to be similar to the mechanism of the vehicles, where origin,

oal, and direction leads to the mobility of the agents and the duration of the working hours

 time-at-work ) hold the pedestrians at their working places. 
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Listing 5. NetLogo: Asking subway commuters to move to and from the office. The “awareness” is an experimental scenario 

that coerces pedestrians to find the lowest air pollution trajectory when walking to the destination. 
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Listing 6. NetLogo: Setting function for traffic lights and giving rules to vehicles when to stop and go when encountering the 

traffic signal. 

T

 

w  

a  

0

S

 

c

D

B

 

e  

l  

e  

t  

b

 

p  

w  

c  

r  

t  

i

 

P  

d  

b  

E

E

 

b  

a  

p  

s  

t  

c  
raffic signals 

When the simulation starts, each signal will be given a random number between 0 and 11 and

ill count down to 0 (see Listing 6 ). Between 5–10 is the red light that allows the vehicles to pass,

nd 0–4 stops the vehicles. The timer will reset to a random number again once the counter reaches

. Note between 2am and 6am the traffic lights will go green as the night traffic reduces. 

ubway entrances 

As the simulation commences, the model chooses 4 out of 26 random stations to create

ommuters. It will be a returning point for commuters to travel home. 

esign concepts 

asic principles 

This exposure model was developed to illustrate how the population in the CBD zone can be

xposed and possibly lose health in response to non-exhaust PM 10 emissions. There is extensive

iterature on traffic-related exposure, mainly associated with NO x emissions, or with population

xposure to NO x [23–25] , but not with non-exhaust emissions of particles. With increasing awareness

hat non-exhaust emissions are important [1,4] , this study builds a health impact assessment model

ased on non-exhaust PM 10 emissions. 

The rationale is that the particles generated by non-exhaust emissions (i.e. tyre and road wear

articles) have been problematic for many years [22] , but despite new vehicle models that comply

ith the environmental regulation, the percentage of non-exhaust emissions are increasing in many

ountries [4,26] , and population health may be under a serious threat from instantaneous pollution

ise. As experts raise concerns about the potential threat that the non-exhaust particles can bring to

he local atmosphere, there should be a preparation for further regulations to non-exhaust particles

n the near future [4] . 

As a starting point, the model asked resident and non-resident vehicles to generate and disperse

M 10 to the local atmosphere, namely on road and nearby pavements, while subway commuters and

rivers are the susceptible individuals who are exposed to PM 10 emissions. On the other hand, the

ackground PM 10 generated the value from the urban monitoring stations within the study domain.

ach agent group has different behavioural patterns, which was explained in the previous section. 

mergence 

The percentage of the population at risk (i.e. those with health under 100) emerges from a balance

etween exposure to a PM 10 threshold of 100 μg/m 

3 and recovery. In practice, the emergence can be

n acute response to PM 10 exposure before the natural recovery begins to take effect. The emergence

attern will differ by which means of transport the individual is commuting with. This is because

ubway commuters are exposed to the ambient atmosphere during their walk from subway entrances

o offices, while resident drivers spend most of their time indoors or in transit but have a higher

hance of inhaling polluted air from road traffic. Despite the fact that extreme particulates were even
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higher than other transport modes have been investigated [27,28] , this study omitted the journey of

subway commuters because information of the start and end stations are not provided in the OD data,

which is very crucial for microscopic modelling. 

To maintain the execution speed, we requested vehicles that were exposed to over 100 of PM 10 

to reduce their health and then pass the health information to the drivers tied with the vehicle.

In addition, while the vehicle is parked, we did not set further health degradation as the driver is

working in a building. 

Adaptation 

This study has two aspects of adaptation: pathfinding and health recovery. With regard to 

pathfinding, the subway commuters either walk along the shortest path when the awareness scenario 

is deactivated or find the best way to avoid high-polluted locations of PM 10 exceeding over 100μg/m 

3 

when the awareness scenario is activated (see Listing 5 ). Note that the scenario results are not

presented in this paper. 

If the awareness scenario is activated but the agent struggles to find a path below 100μg/m 

3 , the

agent will then find the lowest PM 10 of the possible routes and move to that location. Resident drivers

have their health deteriorate when the patch on the road is at least 144μg/m 

3 because the indoor-

outdoor ratio between inside-vehicle and ambient air is 0.7. If the awareness scenario is activated,

the driver will take a free trip during weekends - at the beginning of Saturday or Sunday - and only

when the driver’s nominal health is over 100. Conversely, if the awareness scenario is not activated,

the drivers will take a trip regardless of their health. Both groups have their health recovered by the

same amount at a nominal value of 10 out of 300 per timestep. 

Sensing 

Subway commuters are exposed to the PM 10 at which they are located. If PM 10 is over 100, the

commuters will lose health according to the health loss equation (see Section - Health Loss ). Subway

commuters also use the shortest distance to their workplace when the awareness scenario is not

activating or find the lowest value of PM 10 amongst the front three patches in the direction they

are moving. Additionally, everyone has its own time of arrival at the subway station. For instance, if

the hour and minute variable of agent X is 8 and 12, agent X will appear at the station at 8:12 am.

Both subway commuters and drivers have fixed working hours with a few minutes of extra time (up

to one hour) to finish the daily work. The extra minutes differ every day. 

The vehicles can sense one radius distance between the vehicles in front and behind and the traffic

signals. As with subway commuters, drivers also have their destination time to work. After departure,

the vehicles travel on the shortest route to their workplace. 

Interaction 

Interactions occur between the PM 10 levels and the agent’s health. That is, subway commuters 

who are exposed to over 100μg/m 

3 of ambient PM 10 on the current patch will lose health, while the

drivers will lose health according to the non-exhaust emissions from vehicles. For subway commuters, 

the NetLogo code is shown here (see Listings 11 ). 

Another interaction occurs between vehicles and traffic signals. The vehicles stop in front of the

red lights and start when the light changes to green (see Listing 6 ). Listing 7 is a code chunk that

reduces the speed of the vehicles to 0 when the vehicles encounter a red traffic light and requests

the vehicles to accelerate when the traffic light turns green. 

Stochasticity 

According to Grimm [17] , stochasticity can happen to individuals, environments, and the parameter. 

Here, we describe the stochastic process of mobile agents (vehicles, subway commuters), immobile 

agents (traffic signals), and a health loss parameter. 

Vehicles 

Vehicles have different origin and destination locations at every setup. 

Resident vehicles park for 480 min (ticks) with a random number of extra numbers (up to 60). 
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Listing 7. NetLogo: Asking vehicles to stop in front of the traffic lights when the green light is FALSE and accelerate when 

the green light is TRUE. (For interpretation of the references to colour in this figure legend, the reader is referred to the web 

version of this article.) 
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A vehicle has a minimum speed of 0.5 patches per tick and a maximum speed of 3.5. In cases of

queueing, the deceleration ranges between 0-0.7 and the acceleration ranges between 0–0.5. 

Non-resident vehicles are fed into the study area according to the traffic monitoring statistics;

however, the direction and time spent are random. Since the model has a limited capacity of vehicle

numbers, a randomly selected 0.1% of the vehicles will disappear every minute between 10pm and

4am and 0.25% during the rest of the hours. This is to assume that the vehicles have driven out of

the CBD 

3 . For example, if there were 20 0 0 vehicles in the study area at 10am, five vehicles 4 will

disappear, and four vehicles in the next minute. 

Resident vehicles will select a random road to travel outside of the CBD. 

Subway commuters 

In the setup process, subway commuters choose a random subway station, then assign one of the

buildings within 10 radii as their workplace. 

raffic signals 

Each traffic light is given a random number of 0–11 (0–4 is red and 5–10 is green). The numbers

automatically count down to 0 when the simulation is activated. 

When the counter reaches 0, the signal resets to a random number between 0–11. This will give full

randomness to the traffic signals in the study area. 

Health loss and recovery 

When a human agent is exposed to PM 10 over 100 μg/m 

3 , the health loss equation subtracts the

amount of health based on the factor α, where α ranges between 0 and 0.2. The parameters are

tested for sensitivity, but only one parameter is used for scenario forecasting. See Section “Health

Loss and Recovery” for details (p.232). 

Infiltration ratio (indoor/outdoor ratio) varies by the microenvironment and the time spent. This

study estimates the infiltration from the ambient PM 10 of the current patch to indoor spaces such as

houses, workplaces, and transits [22] . Ratios for each microenvironment compared to the outdoors

are described as follows: 

- Houses: 0.2–0.7 [22,29] . The home patch discounts the ambient PM 10 by an index between

0.2 and 0.7. 

- Workplaces: 0.2 [22] . The work patch discounts the ambient PM 10 by 0.2. 

- Vehicle: 0.7 [22] . The patch where the vehicle is stopped decreases by 0.7 of the ambient

PM 10 . 

Health recovery is stochastic at the assumption that one can recover better than another. Any agent

whose health is below 100 and remains at a stable place (home/office) will recover by 10 + ε per

minute ( ε being between 10 and 20), until its health returns to the ’non-risk’ state. 
3 Having tried multiple ways to induce the non-resident vehicles outside, the most effective method was to eliminate a 

andom set of vehicles. 
4 20 0 0 ×.0 025 = 5. 
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Fig. 7. NetLogo interface. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Observation 

As this study examines the variability of health risk by demographic groups, the graphical output

of the model shows the risk rate of subway commuters and resident drivers by time (see Fig. 7 ). Date,

hour, and time are displayed on the interface to inform the current time. The average PM 10 and a few

road points are collectively monitored until the simulation ends. Subway commuters will not appear 

on weekends but will still be exposed to PM 10 . Resident drivers, on the other hand, will travel in

a random direction during weekends, but once they reach the end of the road they will stop until

10 pm and return to their origin. The returning procedure moves cars directly to their origin, which

is intended to simplify the process. 

Subway commuters and resident vehicles do not travel to work on weekends and national holidays.

As such, the interface will look less busy on Saturdays, Sundays, Lunar New Year (February 15–17th

2018), and Independence Movement Day (March 1st 2018). 

Sub-models 

The pathfinding algorithm: A 

∗ and the local search algorithm 

The pathfinding algorithm is a key function to assign the agent’s origins and destinations. In doing

so, the author initially used an Origin-Destination matrix to choose a fraction of the population from

their origins and allocate it to their destinations. The fraction of the population that was allocated

outside the study area was not considered for further measurement. Once the agents have their

origins and destinations assigned in their attributes, the next task is to request each agent to assign

the route. Amongst many methods, we used an A 

∗ algorithm for resident vehicles, and a Local Search

Algorithm (LSA) for pedestrians. 

For resident vehicles, the model used A 

∗ [30] . A 

∗ calculates the lowest cost distance from its origin

and destination and traces the path where the cost is smaller. A 

∗ is one of the most popular path-

finding algorithms together with Dijkstra’s from their vertices and segments, which in real life may

represent road networks. This can be formulated as: 

f (s ) = g(s ) + h (s ) , (1) 

where s is the state, g(s) is the cost from the origin to the current s , and h(s) is the heuristic

estimation between the current state and destination, which adds up to the total cost at f(s) . In
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Fig. 8. (A) is a sample of an agent finding the shortest path from the origin (red patch) to its destination (light green 

patch), and(B) is the application of the shortest distance on link data. (For interpretation of the references to colour in this 

figure legend, the reader is referred to the web version of this article.) 
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his context, an individual’s heuristic measurement is referred to as the shortest Euclidean distance to

ts destination. The A 

∗ algorithm is based upon Dijkstra’s algorithm but uses the heuristic framework

o shorten the calculation time and optimise the shortest path. 

The interface below is an example of an A 

∗ algorithm (see Fig. 8 A,B). Fig. 8 A indicates a gridded

uideway between the vehicle’s origin (red) and destination (green). set-path finds all the steps from

he origin patch to all possible steps inside the virtual world. The code will colour the road green

nd add a step label on the path. During the steps, the shortest-path traces the shortest grids, then

llows the vehicle along the path with the move section. Fig. 8 B is an A 

∗ algorithm based on the road

etwork, which is embedded in the NetLogo network extension, nw [20] (see Listing 8 ). 

For subway commuters’ pathfinding, a Local Search Algorithm (LSA) is used (see Fig. 9 . Also refer to

isting 5 for codes). LSA is an algorithm where the agent knows the goal state and the distance from

he optimised path (termed error of distance) and asks the algorithm to rewrite the path to minimise

urther errors, which makes it memory efficient. A 

∗ was replaced with LSA because the algorithm

hat was asked to find the lowest pollution patch between the current step and the final goal kept

hanging every step, which led to repetitive recalculation on every step, slowing the execution speed.

Amongst the searching functions of LSA, this study uses a “random-walk” or “hill-climbing

earch”, where the agent iteratively searches the maximum value (or minimum value depending

n the setting) within the boundary until it reaches the target. However, the function has a major

rawback as the searching terminates either when it reaches the local maximum instead of the global

aximum, or there is a huge plateau which does not have a higher surrounding value. Nevertheless,

his study applied this method because the commuters in the CBD normally do not have any issues in

etting lost when they are heading to work and back home. This study also created another scenario,

wareness , that asks agents to take an alternative route to avoid high PM 10 . Note that pedestrians

enetrating the buildings is a downside of this method, but this model remained this artefact because

ot much difference was discovered from the exposure outcome between straight line walking and

voiding buildings due to the temporal time step of this model. 

on-exhaust emissions and dispersion 

Recent studies from the UK and Europe equally documented the main sources of non-exhaust

missions such as tyre wear, brake wear, and road surface wear [4,31] . A few papers included

esuspension as a fourth contributor, but this study articulates resuspension in the dispersion

ection below. Fig. 10 illustrates the non-exhaust emissions, dispersion, and dilution. 

According to the European Environment Agency [31] , the total of non-exhaust emissions is

stimated with the following equation. 

N EE total = N EE T yre + N EE Brake + N EE Road (2)

NEE Total : the total non-exhaust PM emissions 

NEE Tyre : PM emissions from tyre wear 
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Listing 8. NetLogo: A ∗ algorithm coded in NetLogo. 

•

•

•

•

•

•

•

•

NEE Brake : PM emissions from brake wear 

NEE Road : PM emissions due to road abrasion 

Each component will be investigated in the following sections. 

Tyre Wear 

NEE T yre = 

n ∑ 

i =1 

N j × M j × EF T yre, j × F s,i × S(V ) (3) 

NEE Tyre : Total emission for the defined time and spatial boundary (g/km) 

N j : Number of vehicles in category j within the defined spatial boundary 

M j : Mileage (km) driven by each vehicle in category j during the defined time ( not used ) 

EF Tyre, j : TSP mass emission factor for vehicles in category j (g/km) 

F s,i : mass fraction of Particles that can be attributed to particle size class i 

S(V): Correction factor for a mean vehicle travelling speed V 
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Fig. 9. The person next to the starting point (green) walks towards the goal point (yellow) following the shortest path, which 

is a straight line. Here, the agent decides to move closer to the goal point, but the route will be created at every step. Hardly 

any difference was identified between the straight line (black) and the avoid-building mode (red). (For interpretation of the 

references to colour in this figure legend, the reader is referred to the web version of this article.) 

Fig. 10. Graphical explanation of non-exhaust emissions, dispersion, and dilution. 

Fig. 11. Speed: tyre wear. 
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m  

g  

3

As this equation was designed to measure the bulk emissions from a number of vehicles (e.g.

0 g/km from 10 vehicles in a 5 km trip between 10:00 and 15:00), it is not appropriate to measure

he emissions of hundreds of vehicles that have separate journeys. To find a solution, this study

anipulates N j at an appropriate number based on sensitivity analysis, converts emission levels from

/km to μg/30 m (equal to a size of one patch in the simulation), and spatial and temporal units at

0m and on a minute by minute basis. 
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Fig. 12. Speed: Brake wear. 

Table 6 

TSP (Total Suspended Particles) emission factors for source category road 

vehicle tyre wear [31] . 

Vehicle class (j) TSP emission factor (g/km) Uncertainty range 

Two-wheel vehicles 0.0046 0.0 042–0.0 053 

Passenger cars 0.0107 0.0067–0.0162 

Light-duty trucks 0.0169 0.0088–0.0217 

Heavy-duty vehicles Separate Equation 0.0227–0.0898 

Table 7 

Size distribution of tyre wear particles [31] . 

Particle size class (i) Mass Fraction of TSP 

TSP 1 

PM 10 0.6 

PM 2.5 0.42 

PM 1 0.06 

PM 0.1 0.048 

Table 8 

Speed Correction [31] . 

Velocity (km/h) Factors (V) 

V < 40 1.39 

40 ≤ V ≤ 90 -0.00974 ∗ V + 1.78 

V > 90 0.902 

 

 

 

 

 

 

•

For example, one passenger car (j) has an emission factor of 0.0107 (.0067–.0162) (g/km) (see

Table 8 ), and to get an estimate of PM 10 , the size distribution F s,i converts the TSP estimate to

PM 10 multiplying by a fraction of 0.6 (see Table 8 ). This can result in 32.1 μg/m 

3 per patch with

an uncertainty range of 20.1–48.6. 

In terms of vehicle speed, EEA sets the parameter V at 1.39 below 40 km/h, and declining effect

of (-0.00974 ∗ V + 1.78) between 40-90km/h. It assumes that frequent brakes and accelerations are

expected below 40km/h but less as the vehicle speeds up. 

Brake Wear 

The equation for brake wear is the same as tyre wear, and has only a few differences in parameters.

NEE Brake = 

n ∑ 

i =1 

N j × M j × EF Brake, j × F s,i × S(V ) (4) 

NEE Brake : Total emission for the defined time and spatial boundary (g/km) 
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Table 9 

TSP (Total Suspended Particles) emission factors for source category road 

vehicle brake wear [31] . Here, this study only considers passenger cars. 

Vehicle class (j) TSP emission factor (g/km) Uncertainty range 

Two-wheeled vehicles 0.0037 0.0 022–0.0 050 

Passenger cars 0.0075 0.0 044–0.0 010 

Light-duty trucks 0.0117 0.0088–0.0145 

Heavy-duty vehicles Separate equation 0.0235–0.0420 

•

•

•

•

•
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N j : Number of vehicles in category j within the defined spatial boundary 

M j : Mileage (km) driven by each vehicle in category j during the defined time (not used) 

EF Br, j : TSP mass emission factor from road wear for vehicles in category j (g/km) 

F s,i : mass fraction of Particles that can be attributed to particle size class i 

S(V): Correction factor for a mean vehicle travelling speed V 

As mentioned in the Tyre Wear section, emission factors for passenger cars must fit a unit set in

he virtual environment. Thus, the EF Br,j value of 0.0075 (g/km) converts to 21.5 (μg/patch). The size

istribution of PM 10 is 0.98. The brake wear, particularly from the linings, are worn out quickly when

he driver accelerates and decelerates frequently, and this tends to happen when the traffic volume is

igh. 

Surface Wear (i.e. Road Abrasion) 

Road surface wear is caused by the appearance of wheel marks when the vehicle passes over the

oad or parts of the road are destroyed by heavy vehicles. The formula is as follows. 

NEE Sur face = 

n ∑ 

i =1 

N j × M j × EF SW, j (5)

NEE Surface : Total emissions for the defined time and spatial boundary (g/km) 

N j : Number of vehicles in category j within the defined spatial boundary 

M j : Mileage (km) driven by each vehicle in category j during the defined time ( not used ) 

EF SW,j = TSP mass emission factor from surface wear for vehicles in category j (g/km) 

F s,i = Mass fraction of TSP that can be attributed to particle size class i 

Dispersion and Dilution 

There are many dispersion models applicable for exhaust emissions, but according to early research

23,32] , many things related to non-exhaust dispersion remain unknown. The University of California,

iverside (UCR) team is conducting an on-going project to understand the severity of non-exhaust

missions at nearer roads and is currently testing non-exhaust parameters in their existing dispersion

odel 5 . In line with the UCR project, this study also attempts to disperse pollution with a spread

unction, in-cone in NetLogo, as a surrogate of dust resuspension. 

Dilution with non-combustible dust varies by meteorological or ventilation conditions. Less road

ust would be generated on rainy days due to the additional weight that is deposited by the particle

ubstances on the ground, and during night hours when there is less traffic. Cities like Seoul have

mployed water spraying trucks to spray moisture on the roads on dry days, which adheres the

articles on the ground as well as keeps the resuspension low as possible. Since this study does

ot consider humidity or rain effects, the model will use the case from Nikolova [33] , where it takes

10 seconds to dilute completely. In NetLogo, this is assigned as three random ticks - ranging between

 and 2 minutes. This study further investigates the sensitivity of road PM 10 by controlling both

ispersion ranges and the extension of dilution. 

Application Inside the Simulation 

It is worth mentioning that the units change inside the in silico environment. Since one patch is

quivalent to 30 metres and one car represents 10 vehicles, a car moving from one patch to the next

eans 10 cars moving 30 metres. The vehicle speed inside the simulation is assigned in Table 14 . 
5 https://ww2.arb.ca.gov/resources/documents/brake-tire-wear-emissions 

https://ww2.arb.ca.gov/resources/documents/brake-tire-wear-emissions
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Table 10 

Size distribution of brake wear particles [31] . 

Particle size class (i) Mass fraction of TSP 

TSP 1 

PM 10 0.98 

PM 2.5 0.39 

PM 1 0.1 

PM 0.1 0.08 

Table 11 

Speed Correction [31] . 

Velocity (km/h) Factors (V) 

V < 40 1.67 

40 ≤ V ≤ 90 -0.0270 ∗ V + 2.75 

V > 90 0.185 

Table 12 

TSP emission factors from road surface wear [31] . Here, 

this study only considers passenger cars. 

Vehicle class (j) TSP emission factor (g/km) 

Two-wheeled vehicles 0.006 

Passenger cars 0.015 

Light-duty trucks 0.015 

Heavy-duty vehicles 0.076 

Table 13 

Size distribution of road surface wear particles [31] . 

Particle size class (i) Mass fraction (FR,i) of TSP 

TSP 1 

PM 10 0.5 

PM 2.5 0.27 

Table 14 

Conversion of Vehicle 

Speed in NetLogo. 

Original Simulation 

5km/h 0.25 

10km/h 0.5 

20km/h 1 

40km/h 2 

 

 

 

 

 

 

In previous studies, the emissions are calculated by g/km based on the total distance of which the

car has travelled [34,35] . Smit [36] argued that the atmospheric pollution is combined with emissions,

humidity, wind, temperature, and other uncertain factors, and therefore the calibration process is 

normally tested in places where there are fewer confounding variables, e.g. tunnels. Calibration with 

observational values can be inaccurate, but more than 15 studies have chosen this method due to

restricted conditions [36] . 

For example, if a car travels over a patch, it releases 10μg/m 

3 of tyre wear, 7μg/m 

3 of brake

wear, 10μg/m 

3 of surface wear, and 3μg/m 

3 of resuspension. It will also have a dilution at 5μg. Thus,

the total PM 10 concentration would be the background PM 10 + 25μg/m 

3 (Tyre + Brake + Surface +

Resuspension - Dilution). 

The codes for NEE generation and dispersion are introduced in Listing 9 . 
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Listing 9. NetLogo: Assigning non-exhaust emission from each vehicle. 
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ealth loss and recovery 

The agent’s health will decline on the assumption that it encounters over 100μg/m 

3 at which they

re currently located. According to Shin and Bithell [37] , H max denotes an agent’s health status at the

eginning. H(t) is the current health status. H recov is the recovery rate where the agent’s health is

ecovered to a certain extent when situated indoors. α is an arbitrary weight that picks up a random

niform distribution between 0 and a certain value. As the certain value affects the tipping point of

he at-risk population, the parameter is further tested in the sensitivity analysis section. The codes to

imulate the health loss parameter is introduced in Listing 11 . 

I f P M 10 ≥ 100 , 
dH 

dT 
= −α(H max − H(t)) + H recov (6)

While the equation above is equivalent to that of Shin [37] , there are several measurements from

hich the application differs. First, the infiltration ratio, often termed as the I/O ratio, is used to

stimate indoor exposure of individual agents. Infiltration ratio is applied to studies when only one

as information about outdoor air pollution but less about indoor air pollution. Although the numbers

eem quite simple, the ratio results from the consideration of the air exchange rate, windows opening,

nd type of housing. A few studies that used the I/O ratio also indicate that the ratio can vary by

eason (winter, summer) or types of microenvironments (classroom, house, office). This study chose

he ratio from two studies, where Kreider et al. [22] took into account the I/O ratio from non-

xhaust emissions, and Leung [29] who reviewed a wide variety of households to get a parameter

see Table 15 ). The outdoor PM 10 is assigned at 1, transit at 0.7, and indoors (including house and

ffice spaces) at 0.2–0.7. 

With the equation and infiltration ratio, the health loss for both subway commuters and resident

rivers is applied under the same conditions. However, the difference would be their mode of

ransport and behaviours during weekends. 

Commuters get an equal chance of exposure to the PM 10 threshold, but the degree of health loss

ill depend on how much time is spent outside when the PM 10 is over 100 μg/m 

3 , and how long the

istance is between the subway entrance and the agents office. Moreover, the agents whose office is

djacent to roads might lose more health because the pollution generated from the roadside can affect



24 H. Shin / MethodsX 9 (2022) 101673 

Table 15 

Indoor-outdoor ratio of ambient 

PM 10 . 

Type Ratio 

Outdoor 1 

Transit 0.7 

Indoors (house, office) 0.2-0.7 

Table 16 

Scenario description. 

Scenario Parameters Description 

Restrict inbound vehicles BAU Keep the number of inbound vehicles by minutes 

50% Reduce inbound vehicles by 50% 

90% Reduce inbound vehicles by 90% 

Awareness Yes The agent finds one of the three lowest patches during the direction 

No The agent walks on the shortest route 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

the indoor pollution, e.g. opening and closing windows [22][ 22 ]. Subway commuters spend their time

exposed to ambient air pollution between the subway station and office. It is also considered that

when the commuters travel out of the study area, they take more than an hour to arrive home 6 .

Assuming the commuters stay at home between 11pm–6am, the commuter will be exposed to 0.2

times the ambient PM 10 of the given patch. 

Resident drivers are mostly exposed to 0.7 times the ambient PM 10 of the patch in transits and

0.2–0.7 times of that of PM 10 when the vehicle is parked at the house or office. The vehicles are

expected to be frequently exposed to high PM 10 due to the substantial load of PM 10 generated by

road traffic. 

The health loss function also applies to the pedestrians during night hours 23:0 0–06:0 0 (see

Listing 10 ask patch max-pxcor max-pycor and ask patches with [is-endpoint?] ). 
Although there are hardly any particulates assumed to float in the air during night hours, we assign

this area to make sure that the I/O ratio is applied wherever an agent is regarded to stay indoors.

As the codes are tied with the emission function there are no code headings (starting with to ) or

endings (ending with end ). 
Health recovery activates when the agent’s health is below 100 and the agent is located at an

indoor space (see Listing 11 . For a subway commuter, this will be when they are at home or office,

while drivers recover when the car is parked. The recovery rate is given an arbitrary number of 10 by

each minute but stops working when the health of an individual goes above 100. 

Scenario forecasting 

This section outlines how vehicle prohibition can effectively improve air quality in Seoul CBD, as

well as how people’s information and awareness can prevent exposure to air pollution. The scenario

was designed based on the ‘Green Transport Scheme’ initiated in December 2019, and thus it attempts

to help measure the effectiveness of implementation that is already in place. 

The Green Transport Scheme aims to improve air quality in Seoul by restricting high-emission

vehicles from entering the CBD area. The municipal government restricts Grade 5 vehicles, mostly 

diesel cars, between 06:00 and 21:00, and violators are fined 100USD. This study looks at how the

effects of non-exhaust emissions resulted from barring vehicle entry and illustrated how people’s 

health might improve from the scenario. 

In Table 16 , the first scenario is to restrict extra inbound vehicles . It measures how PM 10 will

improve if vehicles are restricted by 50% or 90%. The second scenario compares the outcome of

the population at risk depending on the awareness of individuals to extreme PM . When the
10 

6 Joong-ang daily article, March 7th 2019, “South Korea’s office workers spend 103 min on average to get to work”
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Listing 10. NetLogo: Generation and dilution of PM 10 . 
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i  
wareness scenario is not activated, the subway commuters will walk on the shortest distance to their

estination and the resident drivers will take free trips within or outside the CBD over the weekend

egardless of their health. When the awareness scenario is activated, the subway commuters either

alk on the path that does not exceed 100μg/m 

3 of PM 10 or on the lowest value of three patches in

ront of their path when all the surrounding patches exceed 100μg/m 

3 . The drivers below the nominal

ealth of 100 will not take a journey. Both scenarios are implemented in combination. The codes and

he output figures are available in the GitHub repository: Scenario.R . 

ensitivity experiment and calibration 

This section experiments with the sensitivity of selected parameters and calibrates the modelled

ollution outcomes with PM 10 observations. Each parameter was analysed from an average of 20

terations that reduced possible stochastic effects. Rather than using the term “Sensitivity Analysis”,

https://github.com/dataandcrowd/SeoultrafficABM/blob/master/Scenario/scenario.R
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Listing 11. NetLogo: Health loss of individuals when encountering PM 10 of 100 μg/m 

3 . 

Table 17 

Summary table of parameters used for the sensitivity experiment. 

Parameter Description Baseline Min Max 

Emission Non-emission weights per vehicle 5 1 20 

Dispersion Range of emission 60 45 90 

Dilution Time until the emission dilutes 3 3 20 

Car sampling Rate of incoming cars 5% 2.5% 20% 

Health loss Parameter ( α) from the health loss equation 0.1 0.03 0.2 

Walking speed Walking speed of subway commuters 0.6-1.0 0.2-0.4 1.6-1.8 

 

 

•

•

•

•

•

•

 

we used the term “Sensitivity Experiment”. This is because each unit parameter was selected over a

large range. 

This study used the one-factor-at-a-time (OFAT) method to examine the sensitivity for each of the

parameters. Having tested six parameters over a selected period (i.e. days when the background PM 10 

exceeded 100μg/m 

3 ), there were no noticeable interaction effects discovered in the outcome. 

This study selected six parameters (see also in Table 17 ): 

(non-) Emission: 1, 5 (base), 10, 20 

Dispersion: 45 ◦, 60 ◦ (base), 90 ◦

Dilution: 3 ticks (base), 5–10 ticks, 10–20 ticks 

Car sampling: 2.5%, 5% (base), 10%, 20% 

Health loss: 0.03, 0.05, 0.1 (base), 0.15, 0.2 

Walking speed: 1) 0.2-0.4, 2) 0.4-0.7, 3) 0.6-1.0 (base), and 3) 1.6-1.8 patches per minute 

All of the codes and the figures for the sensitivity analysis are available on our GitHub

Sensitivity subfolder . 

https://github.com/dataandcrowd/SeoultrafficABM/tree/master/Sensitivity
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Table 18 

PM 10 concentrations in five CBD roads based on emission factors of 1, 5, 10, and 20 

(Unit: μg/mm 

3 ). 

Date Emission factor Jongno Sejong Yulgok Samil Pirun 

Overall 1 43.4 43.2 42.8 42.8 42.9 

5 60.0 60.1 62.0 61.6 61.7 

10 81.4 81.2 85.6 85.3 85.2 

20 123.3 122.6 134.1 132.7 133.4 

Jan 8th 1 49.2 48.6 48.1 47.8 48.4 

5 65.5 66.7 67.8 67.9 66.9 

10 85.3 86.4 90.3 91.9 90.5 

20 129.6 115.3 141.1 150.1 128.7 

Jan 15th 1 58.1 57.6 57.1 56.9 57.5 

5 75.0 75.2 77.0 76.9 75.1 

10 93.8 104.3 100.8 101.6 97.1 

20 136.1 133.3 147.8 154.4 148.6 

Jan 22nd 1 37.7 37.4 37.1 37.0 37.2 

5 53.9 52.5 55.1 57.3 55.4 

10 75.9 78.4 78.5 85.0 76.9 

20 114.6 117.6 127.6 127.6 124.3 

P
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M 10 Levels by emission factors 

This paper tested how the variability of non-emission factors affect the levels of PM 10 in the study

rea. Each line represents 5 sample points of Jongno, Sejong, Yulgok, Samil, and Pirun roads. The

aseline emission factor was 5, and the alternates were 1, 10, and 20. Table 18 and Fig. 13 show how

M 10 results from the emission factors of vehicle agents. As a reminder, the emission parameter is the

umber of cars (N) represented in the equations of Section . It can be interpreted as how many cars

ave polluted PM 10 on this patch. 

The levels of PM 10 increased linearly as the emission factors increased. Table 18 indicated that

he mean PM 10 of Jongno was 43.4 μg/m 

3 , 60 μg/m 

3 , 81.4 μg/m 

3 , and 123 μg/m 

3 in emission factors

, 5, 10, and 20, respectively. The difference between each factor was 16.6 μg/m 

3 , 21.4 μg/m 

3 , and

1.6 μg/m 

3 , which increased proportionally as the factors increased. This linear increase was not

nly was seen in the mean figure but also seen on any of the dates, including the peak value on

anuary the 20th where the levels sat near 150 μg/m 

3 in factor 5, but showed an increase to around

00 μg/m 

3 and 250 μg/m 

3 from factors 10 and 20 (see details in Fig. 13 ). 

PM 10 between roads varied greatly when the emission parameter was high. Although the model

id not give any direction to the vehicles nor the hierarchy of roads, PM 10 levels varied by 12μg/mm 

3

n Emission 20, where the lowest was 122.6μg/mm 

3 at Sejong and the highest was 134.1μg/mm 

3 at

ulgok (see Table 18 ). This implies that although the number of road lanes was not specified, the high

arameter value can measure the variability of PM 10 by roads. 

ispersion and dilution 

This section examines the sensitivity of dispersion and dilution parameters that affect roadside

M 10 . The variables are conceptualised in Fig. 14 . By default, each vehicle disperses non-exhaust PM 10

nto the neighbouring patches by an angle of 60 ◦ which dilute in 0–3 min. Having controlled the

uration of dilution ( < 3 ticks), the first experiment simulated the range of dispersion at 45 ◦ and 90 ◦.

hen, controlling the dispersion to 60 ◦, the next experiment simulated the dilution process by 5+ β
icks (0 <β< 5) and 10+ θ ticks (0 <θ< 10). 

Results showed that dispersion range displayed less sensitivity on roadside PM 10 , except for Jongno,

here the difference of cone width between 45 ◦ and 90 ◦ was around 3 μg/m 

3 in Emission 5 and

mission 10, and further increased to 14μg/m 

3 in Emission 20 (see Table 19 ). This implies that the

ange of dispersion might not be sensitive to the PM 10 on-roads, such as Sejong and Pirun stations,



28 H. Shin / MethodsX 9 (2022) 101673 

Fig. 13. PM 10 levels by emission factors of 1, 5, 10, and 20, each showing the N of vehicles that generate non-exhaust PM 10 

emission. Each line represents 5 sample points of Jongno, Sejong, Yulgok, Samil, and Pirun roads. The variability at any station 

increases as the emission factor is increased. 

Fig. 14. Illustrations of dispersion parameters (left) and dilution parameters (right). 

 

 

 

 

but from the evidence of Jongno, a distant station, it may deliver higher PM 10 to people walking near

roads. 

Unlike the dispersion results, all roads were very sensitive to the dilution period except for

Emission 1 (see Table 20 ). In Emission 5, the default period of less than 3 min indicated an average

figure of 60–62μg/m 

3 , however, extending the period to 10 min increased PM 10 to 67–69μg/m 

3 , which

was 10% higher than the default. 



H. Shin / MethodsX 9 (2022) 101673 29 

Table 19 

PM 10 concentrations by emission factors and dispersion range (cone width) (Unit: 

μg/m 

3 ). 

Emission Cone Width ( ◦) Jongno Sejong Yulgok Samil Pirun 

1 45 50 49.6 50.5 50.3 50.9 

60 50.3 49.8 50.5 50.4 51.1 

90 50.7 49.9 50.6 50.5 51.1 

5 45 58.4 55.7 58.7 58.9 60.1 

60 59.3 56.3 59 59.5 60.4 

90 60.4 56.6 59.1 59.5 60.8 

10 45 73.2 71.2 77.3 77 80.5 

60 76.6 72.3 77.9 77.4 81 

90 79.6 73.1 78.5 78.1 81.8 

20 45 102 100 112 113 118 

60 109 102 114 115 120 

90 116 104 115 118 120 

Table 20 

PM 10 concentrations by emission factors and (the duration until) dilution 

(Unit: μg/m 

3 ). 

Emission Duration Jongno Sejong Yulgok Samil Pirun 

1 3 45.5 45.8 45.8 46 46.1 

5 46.1 46 46.5 46.2 46.4 

10 46.7 46.5 46.8 46.7 47 

5 3 60 60 62 62 62 

5 66 66 66 66 67 

10 67 67 68 68 69 

10 3 81 81 86 85 85 

5 94 95 96 96 99 

10 99 99 100 100 102 

20 3 123 123 134 133 133 

5 153 150 155 155 159 

10 164 160 165 164 167 

Table 21 

Car Ratio and PM 10 concentration (Unit: μg/m 

3 ). 

Ratio Jongno Sejong Yulgok Samil Pirun 

0% 50.5 49.5 48.0 50.2 47.8 

2.5% 59.5 60.0 60.3 60.9 61.4 

5% 61.9 61.6 62.7 64.2 64.2 

10% 62.3 61.8 63.4 64.4 64.4 

20% 60.8 61.5 63.6 64.0 64.0 

Table 22 

Sum of standardized squared errors (SSSE) on January 

the 8th, 15th, and 22nd. 

Date Emission Model Observation MSE 

Jan 

8th 

1 49.2 56.4 25 

5 65.5 56.4 42 

10 85.3 56.4 419 

20 129.6 56.4 2684 

Jan 

15th 

1 58.1 71.5 90 

5 75 71.5 6 

10 93.8 71.5 248 

20 136.1 71.5 2087 

Jan 

22nd 

1 37.7 44.9 26 

5 53.9 44.9 41 

10 75.9 44.9 482 

20 114.6 44.9 2426 
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Fig. 15. PM 10 levels by car ratios of 0, 2.5, 5, 10, and 20%. The average values (smooth curve) of PM 10 is similar across roads 

but was different between 0% (no extra cars in the CBD) and the rest of the samples. 

 

 

 

 

 

 

 

 

The difference between dilution periods increased proportionately to emission factors where the 

quickest (3 min) was 14–18 μg/m 

3 higher than the slowest (10 min) in Emission 10 and 31–41 μg/m 

3 

in Emission 20. If this analysis was to represent the length of dust resuspension in the real world,

say 3 min of dust floating until dilution, the deterioration of PM 10 can be explained by the floating

particles from the vehicles that mixed well with the atmosphere. A disclaimer is that the dilution is

only affected by the duration of ticks (zero wind), and no other components (e.g. wind, rain) that

change dilution time. 

PM 10 levels by car ratio 

This section investigated how PM 10 can be sensitive to changes in car sampling (see Fig. 15 ).

Resident vehicles were not included in this experiment as short-term journeys from the resident

vehicles hardly contributed emission levels to the result (these were tested but not included in the

thesis). To summarise, car ratios of 0, 2.5, 5, 10, and 20% mean sample rates of traffic counts by each

minute were taken from the traffic monitoring statistics. 
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Fig. 16. Temporal change of risk rates for subway commuters (% of those with health under 100) with inbound cars (left), and 

without inbound cars (right). 
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In the 0% run, assuming no other vehicles, the roadside PM 10 ranged between 47–50 μg/m 

3 (which

s equal to the background level), which was at least 10 μg/m 

3 lower than the concentrations from

ther ratios. However, different sample sizes merely showed a small difference. For exam ple, a 10%

ample in Jongno only contributed 1.8 μg/m 

3 more than that of 2.5%. 

Surprisingly, all roads showed less pollution in the 20% sample because a massive number of

ehicles failed to enter the study area. The queues were particularly long in Samil and Yulgok

oads because Samil had fewer traffic signals at the entrance of the road which enabled vehicles to

ccelerate up to the core area with a few ticks but soon met several junctions, which can be depicted

s a bottleneck effect; Yulgok has a roundabout that reduces the speed. 

ealth loss 

This section investigated the health risk of subway commuters and resident drivers who are

ensitive to the health loss parameters. Here, individuals only lose health when PM 10 exceeds

00 μg/m 

3 , and contribute to the population at risk when one’s health status falls below 100. Output

 of each figure resulted from allowing extra inbound traffic in the CBD, whereas output B of each

gure resulted from no other traffic than the resident vehicles. 

For subway commuters, the population at risk appeared on January 20–22nd, late February, early

arch, and late March (see Fig. 16 A). The maximum risk rate was 10% in 0.03 and proportionately

ncreased to 30% in 0.1 , but suddenly skyrocketed to 100% over 0.15 . Although a lot of uncertainty

rom other parameters has contributed towards the outcomes, the tipping point of the health loss

arameter was somewhere between 0.1 and 0.15 . Several oscillations were also discovered during

he extreme PM 10 events. This was because subway commuters have different commute hours that

ed them to be exposed to ambient PM 10 , and since health recovery activates when the individual

rrives at home or the workplace, the risk rate oscillates frequently. 

With a car-free experiment (see Fig. 16 B), the results did not affect the health risks of subway

ommuters. This is because the trajectories of the commuters between stations and office locations

ere mostly distant from the road. However, the sensitivity between health loss parameters was

omparable to the previous experiment: health risk proportionately rose until the parameter reached

.1 but a sudden upsurge appeared when the parameter was over 0.15 . 
Compared to subway commuters, resident drivers experienced fewer occurrences of health risk, but

igher surges in extreme PM 10 episodes particularly over the parameter value of 0.15 (see Fig. 17 A).
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Fig. 17. Temporal change of risk rates for resident drivers (% of those with health under 100) with inbound cars (left), and 

without inbound cars (right). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Throughout the whole period, the health risk of resident drivers emerged during January 22nd,

February 12th, March 8th, and March 24–25th, where the majority was at risk at the last peak. The

prominent difference by the health-loss adjustment was very clear at the first peak where it started

from less than a percent of risk at 0.03 , then rose to 2.5% and 6% in 0.05 and 0.1 , then surged to

50% and 71% on 0.15 and 0.2 . In line with the subway commuters, a tipping point was also seen

between 0.1 and 0.15 . 
However, the first surge that happened in 0.15 and 0.2 experiments significantly reduced to 

15% and 18% in a car-free condition (see Fig. 17 B). The other parameters only showed a less than 2%

difference. This im plies that the health risk of the drivers was not only sensitive to the health-loss

parameters but also was affected by the emissions generated by non-resident traffic. 

The difference in health risk can differ by the time the individual has spent outdoors when the

ambient PM 10 is over the threshold of 100 μg/m 

3 , and how quickly that person recovered health. Even

if 30% of subway commuters have experienced health risk, the short walking distance allowed them to

recover promptly. By contrast, although drivers had fewer emergences of health risk, traffic congestion 

together with high background pollution had rapidly deteriorated the driver’s health, especially on 

extremely polluted days. 

This study chose one subway commuter and one driver to understand how the nominal health

changed over time (see Fig. 18 A). The light shaded colours shown in the background is the health

status by each minute and the lines of turquoise and red are the moving averages. The health status

of a subway commuter lost health earlier than the driver under the same condition. The driver might

seem healthier than the pedestrian because the driver was never exposed to ambient PM 10 which

prevented multiple threats of major PM 10 episodes. In Fig. 21 B, the selected driver experienced fewer

health risks in the car-free experiment, which can support the result of the population outcomes in

Fig. 17 B where a major fall in risk rate is for drivers in a car-free situation. 

The rolling mean between the two groups converged as the parameters increased (see Fig. 18 ). The

subway commuter’s health was almost the same in different patterns, but for the drivers, the high

parameter settings might have caused higher health loss even from a single pollution episode. The

difference exists between the two on January 23rd because of the indoor factor of 0.7 that benefited

the vehicle drivers. 

In short, signs of deterioration in health appeared continuously in long-distance commuters on 

days when PM 10 was on the rise, while the resident drivers had a relatively short period of commute
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Fig. 18. Health comparison between a randomly chosen subway commuter (e_health) and a resident driver (d_health) with the 

case of (A)traffic and (B) traffic-free. 

Fig. 19. Assessing subway commuters’ health by different walking speed parameters. 
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ime that prevented frequent health risk, but the extreme levels of PM 10 led most of the drivers to an

cute health crisis. 

alking speed 

To test how walking speed affects the change to risk population, this section adjusted various levels

f walking speed for subway commuters. Given the default speed at 0.6–1.0, the section tested (1) 0.2–

.4 patch per minute, (2) 0.4–0.7 patch per minute, and (3) 1.6–1.8 patch per minute. The range was

iven under the assumption that people have different walking speeds. Walking speed over 0.5 might

eem rather unrealistic, but this experiment intended to illustrate how speed affects exposure levels. 

The time series graph clearly showed that the onset and peak levels were very sensitive to

alking speed (see Fig. 19 ). When the pedestrian’s walking speed was “Extremely Slow” (0.2–0.4),

ore than 40% of the population was at risk on five different occasions with the highest peak of

7%. However, the risk rate declined by 10% when the walking speed increased to “Slow” (0.4–0.7)
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and further declined by 30% when the speed increased to 1.6–1.8. This corresponds to the previous

sensitivity analyses because slowing down the walking speed can mean that the person is prolonging

the exposure time, which in turn causes a further health loss. 

Calibration 

This section calibrates emission factors with the observation values measured from Jongno 

roadside station. From the sensitivity analysis, it was found that the emission parameters were

not only sensitive to the increase in the parameter but also to the variation between roads when

the parameter was over 10. Calibration in ABM is very common as it controls the errors and the

uncertainty close to the acceptable level [17] . 

This section did not calibrate PM 10 across the study area because the background PM 10 , which

covers most areas, was already generated by the station data. Simulation results of Jongno were

averaged from 20 iterations to avoid any noise from a particular run, then compared with the

observation value. The simulation ran from the 2nd to the 31st of January 2018. This study used mean

squared errors (MSE) and regression to examine the robustness of the model (see Fig. 20 ). MSE, as it

is known, as the average squared difference between the estimated values and the actual value, can

be used to compare the results in positive numbers, understanding the values closer to zero are more

accurate. R 

2 is useful because it is often easier to interpret since it doesn’t depend on the scale of the

data, and people are familiar with percentages. Note here that each method has its pros and cons and

there is no ground rule in selecting a method. 

On January the 8th, MSE varied largely by 25, 42, 419, and 2684 in parameters 1, 5, 10, and 20;

they varied by 90, 6, 248, and 2087 on the 15th, and 26, 42, 481, and 2426 on the 22nd. Throughout

the whole month, Emission 1 and Emission 5 had the lowest MSE values by 18 days and 12 days,

respectively. The line graph shows that low biases for high values are observed in Emission 1, whereas

high biases for low values are observed in the other parameters, but all modelled parameters could

not replicate the peak values introduced from the observed values. 

Regression results are similar to the MSE results, where the R 

2 appeared to be highest in the lower

two parameters and decreased significantly in the upper two parameters (see Fig. 20 B). In line with

the MSE results, the scatter plot from Emission 1 underestimated the observation values, in which

most of the points were concentrated on the right side of the 1:1 line. Emission 5, on the other

hand, slightly overestimated the results on the lower values but got most of the values, including the

high values closer to the 1:1 line. Hence, although the overall MSE was lower and R 

2 was higher in

Emission 1, the author selected Emission 5 as the correct parameter. The reason being, that Emission

5 effectively expresses the extreme values on a polluted day, while at the same time predicting closer

values to the truth value. Emission 1, even on a minute-by-minute basis, does not articulate the peak

of particulates that have possibly dispersed into the local atmosphere. 

Things to try and notice 

How to use the model 

Once the Netlogo interface is loaded, there are three buttons on the top row setup, go, step. 

Please click on the setup to load the vehicles. The user can tick off the “view updates” tick box

right next to the speed slider for quicker loading. Once the map is loaded, it is time to click go. The

user can also click “step” to investigate each step. Once the simulation is running, the date, hours, and

minutes change accordingly. In Fig. 7 , there are also two yellow screens in the middle displayed as

Unwell% and Unwell.Car , each of which accounts for the at-risk rate of pedestrians and resident

vehicle drivers. This will change over time. 

The health loss slide will change the level of health degrading. Since an individual’s initial health

begins with 300, it would be better to take the maximum of 0.2 to see a fluctuation of at-risk

population throughout the simulation. However, the users have the freedom to toggle the slides.

Medication is the temporary recovery level when an individual arrives indoors. This assumes that 

people take medicine when they feel unwell. The Emission factor is a parameter that can control the
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Fig. 20. Sensitivity output of adjusting the emission factor N from the equation of non-exhaust emissions (A) Jongno: Modelled, 

pm10_rd: Observation); (B) correlates the modelled output against the observation of Jongno roadside station. R 2 of factors 1, 

5, 10, and 20 returns 0.94, 0.91, 0.8, and 0.56. 
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evel of PM 10 . Emission factor 1 refers to no effect while Emission factor 20 is almost 3 times higher

han the ambient level. This has been fully tested through the sensitivity test. car-ratio controls the

evel of incoming vehicles (non-resident) to the CBD. 

ossible artefacts and errors 

The health loss parameter has been tested thoroughly and presented in the sensitivity section.

owever, if the user attempts to toggle beyond 0.2, the at-risk population will appear too early, and

ould never have the opportunity to recover. By contrast, if the parameter goes below 0.01, the agents

ill not have their health decreased irrespective of their exposure to high pollution episodes. 

Likewise, the medication parameter also can cure the health status at the baseline of 10, however,

f the parameter goes beyond 15, the agents who enter their offices or homes would easily recover to
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Fig. 21. Visual artefacts of vehicles queuing to enter the study area. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

their initial health status. This can mean that the population exposed to high pollution episodes can

easily recover with some treatment. However, if the parameter is too low, say below 5, the outbreak

of the at-risk population will appear much earlier. This might mean that the population is seemingly

vulnerable to high pollution episodes. 

This model simulated the resident vehicles to move freely during the weekend by applying

the movement function of non-resident vehicles. However, there was no certain argument to 

spontaneously request these vehicles back to the origin point by the start of the weekday. Thus, the

author set an argument to coerce the vehicles to their original locations. As a result, vehicles fly back

home at midnight on Monday. The vehicles entering from the south have a long queue during the

morning hours (see Fig. 21 ). Due to the lack of spatial extent, the queue entails an unnatural long tail

that appears in the northeastern area. 

Running the model on the HPC 

Due to the intricacy of the rules, assumptions, and the spatial and temporal resolutions of the

model, it took about 1 h and 10 min for a single run on a desktop computer. 

Once the NetLogo code is completed, there are two options in which the users can choose. First

is using the BehaviorSpace embedded in the NetLogo software. However, having simulated the model 

with BehaviorSpace, the model continued to terminate due to memory shortage. The developers from 

StackOverFlow informed that NetLogo itself has memory limits around 1 GB, and the software is not

optimised to remove the caches of the current job, which is stacked in the memory. Using multiple

iterations for an intricate model will thus slow down the execution speed. The obvious reason

was that the rules, assumptions, and spatial and temporal resolutions of the model was intricately

designed, which took 1 h and 10 min for a single run on a desktop computer. 

To speed up the modelling process, the alternative method was to implement the model on the

HPC (High-Performance Computing) cluster. Here, an R package “nlrx” was used as a compiler to run
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Listing 12. R package “nlrx” used as a compiler for the HPC submission. 

t  

o

U

 

n  

J  
he model in headless mode [38] . Here, there are three separate tasks to submit the NetLogo model

n the HPC as a batch process. Codes are available here: GitHub HPC subfolder . 

sing R as a compiler for high performance computing clusters 

Listing 12 depicts the R code for assigning the headless simulation on the HPC using an R package

lrx [38] . Prior to the HPC code, we have fully tested the codes for the desktop machine, where the

AVA_HOME and the.libPaths are directed to their local paths. Note that the package is more friendly

https://github.com/dataandcrowd/SeoultrafficABM/tree/master/HPC


38 H. Shin / MethodsX 9 (2022) 101673 

Fig. 22. Submitting the job to slurm (1) - the basic information. 

 

 

 

 

 

 

 

 

 

 

 

 

 

with Java 8. The binary version of the package can be installed in Windows, Linux, and MacOSX using

the R command install.packages(‘‘nlrx’’) . Once the packages are loaded, the next task 

(Step 1) is to assign the path for the NetLogo software and the output. Note the nlversion has to

be identical to the version coded. NetLogo 6.0.4 was used. 

The experiment section is where the configuration is happening. Since the model reached its 

memory ceiling after more than twice the repetition, we kept the repetition at 1 but submitted

array jobs on the HPC. metrics is a function that exports the outputs. Our model exports 10 variables

as a matrix. There are two variables car_ratio and awareness that were used for the scenario

analysis. Constants are the variables that have the fixed values for the simulation. 

Step 3 checks whether the variables and constants are valid for simulation. 

eval_variables_constants is used as an argument. If there is no problem with the parameters, 

the final job is to submit a simulation design. Since the study intends to evaluate the at-risk

population at every tick, a full factorial simulation design is applied. In the package, there are other

simulation models to test including Latin Hypercube Sampling (LHS), sensitivity analysis (Sobol 

method), and optimisation tools (genetic algorithm). 

The final stage is to execute the simulation by using the run_nl_all(nl = nl) command. A

timer command is written to check the total time spent for the model execution. If the model has

finished its execution, the result is exported to a feather format. This is a form of a data frame based

on Apache Arrow ( https://github.com/wesm/feather ) that allows the users to read and write data

frames remarkably faster than the spreadsheet type extensions e.g. csv, xlsx. Feather is also suitable

to open it from both R and Python. 

Writing a slurm script 

A slurm script was provided to fill in the tasks appropriate for the purpose. The file is named as

“bau_slurm_submit.peta4-skylake_SeoulTraffic”. The prerequisites for writing a slurm script is to ask 

https://github.com/wesm/feather
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Fig. 23. Submitting the job to slurm (2) - detailed configuration for loading and implementing R and NetLogo. 

t  

a  

w  

w  

s

t

S

 

s  

T

D

 

r

R

 

 

 

 

 

 

 

 

he HPC administrator to install the appropriate versions of R, NetLogo, and Java 8. The author made

 renv environment to keep all the packages and dependencies locally. Fig. 22 is the basic information

hen submitting the job. For example, what is the name of the project, which and how many nodes

ill you use (paid or free), how much wallclock time is needed, and so on. Fig. 23 indicates which

oftware to include to run NetLogo and R.Since R works as a compiler, we use the command “Rscript”

o make the compiler run on a bash script. 

ubmitting an array job 

To consider the stochasticity of the model settings (see Section Stochasticity), 20 jobs was

imulataneously submitted as a batch process. The batch process can be seen as a way of iteration.

he code below can be written on the bash script. 
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