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Abstract Tectonic interpretations of arc remnants in the Himalayan orogen remain uncertain, despite their
important implications for the overall convergence history between India and Eurasia. Provenance results from
deep-water volcaniclastic rocks of the Indus Suture Zone in Ladakh provide new constraints on the Mesozoic
tectonic evolution of the Dras and Kohistan-Ladakh arcs. Detrital zircon (DZ) U-Pb ages and whole-rock
geochemistry of the fault-bounded Upper Cretaceous Nindam and Paleocene Jurutze formations present age
patterns and compositions that are consistent with those of the Dras and Kohistan-Ladakh arcs, respectively.
The combination of DZs of the Nindam and Jurutze formations with the igneous zircons of the Dras and
Kohistan-Ladakh arcs shows similar age distributions that support a Late Jurassic to Paleocene tectonic
connection between all these units. We argue that the secular trends in geochemical composition of DZs and
volcaniclastic material are consistent with the magmatic evolution of one convergent margin, which shifted
from a primitive to a mature stage during the Late Cretaceous. The recognition of a single Dras-Kohistan-
Ladakh arc sets the stage for reevaluating competing scenarios of the Mesozoic evolution of the India—Eurasia
convergent system. We find that the most likely scenario is that of a Jurassic arc formed above a south-dipping
intraoceanic subduction zone and accreted to Eurasia during the Early Cretaceous, after which it evolved above
a north-dipping subduction zone.

Plain Language Summary The Himalayan orogen is the result of the collision between India and
Eurasia and the closure of the intervening Neotethys Ocean. The suture zone between India and Eurasia hosts
an incomplete and complex archive of the paleogeography that once existed between them prior to continent-
continent collision. Investigating suture zone rocks may therefore provide valuable information on the building
blocks of the orogen and the overall history of the India-Eurasia convergent system. Disparate remnants
exposed in the Indus Suture Zone (Western Himalaya) suggest that volcanic arcs and sedimentary basins were
formed above intraoceanic subduction zones, but there is no consensus on their original paleogeography. We
discuss new and existing geological data from volcaniclastic rocks related to the Dras and Kohistan-Ladakh
arcs. Our data support the existence of a single Dras-Kohistan-Ladakh arc during the Mesozoic and provide
additional insights into the complexity of the pre-collisional convergence between India and Eurasia.

1. Introduction

Remnants of subduction zones and oceanic basins that composed the once vast Neotethyan Ocean are scattered
along the suture zone between India and Eurasia (e.g., Hébert et al., 2012, Figure 1). The origin and evolu-
tion of these tectonic elements often remain unclear because of data gaps regarding their age, provenance, and
paleo-tectonic settings. The lack of constraints as to how India—Eurasia convergence was accommodated during
the Cretaceous—early Cenozoic impedes the understanding of processes and timescales that govern the evolution
of convergent plate boundaries (Aitchison, Ali, & Davis, 2007; Guillot et al., 2003; Hafkensheid et al., 2006;
Jagoutz et al., 2015; Kapp & DeCelles, 2019; van Hinsbergen et al., 2018).

Whether a Neotethyan intraoceanic arc existed between India and Eurasia and, if it did, whether it collided first with
India or Eurasia represent large uncertainties in constraining the magmatic and tectonic evolution of the India—
Eurasia convergent system (e.g., Aitchison, Ali, & Davis, 2007; Hu, Wang, et al., 2016; Parsons et al., 2020). In
particular, Mesozoic igneous and volcaniclastic rocks in Ladakh have been interpreted as resulting from the activ-
ity of a single Eurasian Andean-style arc (Dras-Kohistan-Ladakh arc; for example, Dietrich et al., 1983; Garzanti
& Van Haver, 1988) or a combination of a Eurasian Kohistan-Ladakh arc and an exotic Spong intraoceanic arc,
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Figure 1. (a) Terrane map of major crustal blocks and tectonic boundaries of the Himalayan orogen (modified after Parsons
et al., 2020). (b) Simplified geological map of the western Himalayan orogen (modified after Parsons et al., 2020). Blocks:
HFT-A = Himalaya Fold-and-Thrust Belt, Sequence A; HFT-B = Himalaya Fold-and-Thrust Belt, Sequence B; KK =
Karakoram; KLA = Kohistan-Ladakh; PA = Pamir. Tectonic structures: ATF = Altyn Tagh Fault; BNSZ = Bangong-Nujiang
Suture Zone; GCT = Great Counter Thrust; ISZ = Indus Suture Zone; JSZ = Jinsha Suture Zone; KF = Karakoram Fault;
KSZ = Kunlun Suture Zone; LMF = Luobadui-Milashan Fault; MCT = Main Central Thrust; MFT = Main Frontal Thrust;
SSZ = Shyok Suture Zone; STD = South Tibetan Detachment; YTSZ = Yarlung Tsangpo Suture Zone.

both of which may have hosted the Dras arc (e.g., Buckman et al., 2018; Corfield et al., 1999; Mahéo et al., 2004;
Reuber, 1989; Robertson & Degnan, 1994; Walsh et al., 2019). In scenarios where two separate magmatic arcs
are invoked, the Neotethyan intraoceanic arc is proposed to either collide first with India (75 Ma in Corfield &
Searle, 2000; 55 Ma in Buckman et al., 2018) or with Eurasia (83.5-93.5 Ma in Clift, Hannigan, et al., 2002;
65 Ma in Mahéo et al., 2006). A subset of studies considers that the Kohistan-Ladakh arc was the prototypical
Neotethyan intraoceanic arc, which collided first with India (61 Ma in Khan et al., 2009; 50 Ma in Bouilhol
et al., 2013; Martin et al., 2020) or with Eurasian Karakoram (Late Cretaceous; Borneman et al., 2015; Clift
et al., 2000; Henderson et al., 2010; Robertson & Degnan, 1994; Rolland, 2002). Moreover, contradicting views
exist as to the nature of the along-strike continuity of the Neotethyan intraoceanic arc during the Mesozoic,

ANDIJIC ET AL.

20f22



~1
AGU

ADVANCING EARTH
AND SPACE SCIENCE

Geochemistry, Geophysics, Geosystems 10.1029/2021GC010042

34°45' « 34°30' 34°15' Mol units
N~ i X x oy | Xk i Xk, . Xk, . ko, i X x, . Leh\gi‘ [ Jindus Group
X X X X X X X =4 T .
;&&X . s, o X i x o, X x x x + |EEEH Chilling Formation
>

x x x

P Xy x M Arc-related units
x X X | R s
e x xS IRdus River_~-

) ® Tar Group

- Ladakh Batholith
[ ]Nindam Formation
Naktul Unit (Dras Arc)
[ ]Volcano-sedimentary unit
" 1Spongtang Ophiolite
India
Zanskar River [ 1Zanskar Supergroup
[ ]Kong/Chulung La fms.
Other units
I Mélange
25 km A = g’eearrnqiggntto Campanian

00.7€

N Ky
o

Chilling

GP.€€

76°15 76°30 76°45 77°00 77°15
SSW NNE:SW NE &> Detrital zircons
# Point counting

& Whole-rock geochemistry
4000 m

3000 m

Figure 2. (a) Geological map of NW Ladakh, India (modified after Buckman et al., 2018; Clift, Carter, et al., 2002; Corfield
& Searle, 2000; Fuchs, 1986; Henderson et al., 2010, 2011; Steck, 2003). Fms. = formations. (b) Cross-section modified after
Henderson et al. (2010, 2011). ZSG = Zanskar Supergroup.

with proposed connections with Lhasa Block (e.g., Parsons et al., 2020; Rolland et al., 2000), India (e.g., Walsh
et al., 2019), or Australia (Hall, 2012). This large set of mutually exclusive views complicates the correlation of
subduction zone remnants along the Himalayan orogen and thus obscures the location of ancient plate boundaries
and the size of the tectonic elements within the Tethyan realm.

We explore the tectono-stratigraphic links between the fault-bounded middle Cretaceous to lower Cenozoic
Nindam and Jurutze volcaniclastic formations, which are exposed in the Indus Suture Zone in Ladakh (India).
New sedimentary, petrographic, whole-rock geochemical, and zircon geochronological and geochemical data
from marine volcaniclastic rocks provide an opportunity to constrain the depositional ages and provenance of
these units, and their source-to-sink relationships with the Dras and Kohistan-Ladakh arcs.

2. Geological Background

The Indus Suture Zone in NW Ladakh is composed of igneous and sedimentary units (Figures 1-3). Exposed
north of the suture zone are the Upper Jurassic to Eocene intrusive and volcanic units of the Kohistan-Ladakh
arc, which consists mainly of the Uppermost Cretaceous to Eocene Ladakh Batholith in the study area (Bouilhol
et al., 2013; Heri et al., 2015; Jagoutz et al., 2019; Lakhan et al., 2020a, 2020b; Ravikant et al., 2009; Saktura
et al., 2020; Shellnutt et al., 2014; White et al., 2011). The post-lower Eocene Indus Group consists of alluvial and
fluvial deposits that unconformably overlie the southern margin of the Ladakh Batholith (Fuchs, 1979; Garzanti
& Van Haver, 1988; Henderson et al., 2010; Searle et al., 1990; Zhou et al., 2020). Further to the south, the Indus
Group conformably overlies the middle Cretaceous to lower Eocene Tar Group, which consists of the Aptian—
Albian Khalsi Limestone, the upper Albian to lower Eocene deep-water volcaniclastic Jurutze Formation, the
lower Eocene shelfal Sumda Do Formation, the fluvial Chogdo Formation, and the lower Eocene shallow-water
Nummulitic Limestone (Clift, Carter, et al., 2002; Garzanti & Van Haver, 1988; Green et al., 2008; Hender-
son et al., 2010, 2011; Searle et al., 1990). The nature of the contact between the Tar Group and the Ladakh
Batholith is unknown. The Tar Group is generally considered as the forearc basin of the Kohistan-Ladakh arc
(Garzanti & Van Haver, 1988; Henderson et al., 2010; Wu et al., 2007). The Upper Jurassic to Paleocene Dras
intraoceanic arc is tectonically juxtaposed against the Ladakh Batholith, the Tar Group and the Indus Group,
to the north, and thrust over the Indian passive margin, to the south. The western part of the Dras arc is domi-
nated by mafic to intermediate volcanic rocks, which transition eastwards into the deep-water volcaniclastic
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Figure 3. Chronostratigraphic chart of the Spong, Dras and Kohistan-Ladakh
arcs (modified after Garzanti & Van Haver, 1988; Robertson & Degnan, 1994;
Saktura et al., 2020; Upadhyay et al., 2004; Walsh et al., 2019, 2020). Detrital
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Henderson et al., 2010; Nindam, Walsh et al., 2019).

rocks (Diirr, 1996; Zhu et al., 2009). This correlation is based on the similar
age, structural position, and geochemistry of the Late Cretaceous-Cenozoic
batholiths from both areas (Gangdese, Ladakh, Kohistan; Ji et al., 2009;
Raz & Honegger, 1989; Rolland et al., 2000; Wang et al., 2012; Weinberg
et al., 2000). In contrast, the Precambrian and Paleozoic rocks of the Lhasa
Block have no equivalent in the Kohistan-Ladakh and Dras arc remnants.
Alternative connections were proposed between intraoceanic arc remnants
located south of the Lhasa Block (Zedong arc; Aitchison et al., 2000;

Aitchison et al., 2007; McDermid et al., 2002) and either the Kohistan-Ladakh arc (Parsons et al., 2020), the Dras
arc (e.g., Walsh et al., 2020), or the Spong arc (e.g., Hébert et al., 2012).

In summary, existing data from Ladakh define at least three possible sources for the Cretaceous to lower Ceno-
zoic volcaniclastic rocks exposed in the Indus Suture Zone: (a) the Karakoram Block; (b) the Kohistan-Ladakh
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arc; (c) and the Dras arc (Figure 1b). The occurrence of these sources in the Nindam and Jurutze formations is
tested below with the analysis of detrital zircons (DZ) and tuffaceous beds from the Zanskar Gorge (Figure 2).
Whether sources from blocks located farther away (e.g., Tibet) played a role in the provenance of these rocks
needs to be tested and substantiated with additional data.

3. Sampling Strategy and Methods

We used three complementary methods to constrain the provenance of the Nindam and Jurutze formations
(Figure 2). The Nindam Formation was studied between N34°03'16.0"/E77°12'41.2" and N34°03'35.6"/
E77°12'38.3", whereas the Jurutze Formation was logged and sampled between N34°05'43.2"/E077°12'40.8" and
N34°05'45.3"/EQ077°12'46.1" (see detailed log of the 100 m thick section in Figure S1 in Supporting Informa-
tion S1). The nature and exact location of the contact between the Nindam and Jurutze formations remains poorly
identified, which is due to the faulting and tight folding that commonly affects both formations, as well as to poor
exposure related to scree slopes within the gorge. Moreover, both formations contain greyish thin-bedded, lami-
nated, hemipelagic mudstones and siltstones, further complicating the identification of a clear contact between
them. This uncertainty was already reflected in competing geological maps of the Zanskar Gorge whereby either
(a) stratigraphic continuity (e.g., Clift et al., 2000; Henderson et al., 2011; Searle et al., 1990) or (b) a tectonic
limit (e.g., thrust fault in Clift, Carter, et al., 2002; serpentinite mélange in Steck, 2003; see Figure 2) are inferred
between the Jurutze and Nindam formations. We choose to examine the Nindam Formation close to its fault
bounded southern contact with the Chilling Formation and the Jurutze Formation close to its depositional north-
ern contact with the Sumda Do Formation (see coordinates above). We combine DZ ages and geochemical data,
sandstone modal compositions, and whole-rock geochemistry on tuffaceous beds to constrain the ages and prov-
enance of the Jurutze and Nindam formations.

The modal compositions of four sandstones from the Nindam Formation and three sandstones from the Jurutze
Formation were determined using the point-counting method of Dickinson and Suczek (1979). The counted
grains correspond to monocrystalline quartz, polycrystalline quartz, plagioclase, and K-feldspar. Fragments of
volcanic rocks are the only type of unstable lithic fragment observed in the samples.

We analyzed the major and trace element whole-rock compositions of five tuffaceous rocks from the Jurutze
Formation and three tuffaceous rocks from the Nindam Formation. We analyzed carbonate-free, fine ash-rich
beds (<62.5 pm particles) because they are chiefly composed of volcanic glass, the accumulation of which is
expected to have occurred shortly after eruption events due to its rapid chemical and mechanical weathering
(Schacht et al., 2008). Although possibly biased toward the more silicic explosive volcanic outputs, the geochem-
istry of tuffaceous beds is otherwise expected to mimic that of coeval magmatic rocks (Clift et al., 2000; Robert-
son et al., 2018; Schindlbeck et al., 2018). Coarser rocks were avoided because there are more likely to have incor-
porated a mixture of components from various sources, which could result in ambiguous geochemical signatures.

DZ geochronology was performed using laser ablation ICP-MS on three samples of the Jurutze Formation and
one sample from the Nindam Formation. The analytical procedure presented here is similar to that of Zhou
et al. (2020). We dated 807 grains from four samples at the Centre for Geoanalytical Mass Spectrometry, School
of Earth and Environmental Sciences, The University of Queensland. Trace elements were measured on a subset
of these grains, which includes 110 grains from two samples of the Jurutze Formation and 123 grains from one
sample of the Nindam Formation. Additional details on the analytical methods are included in File S2 in Support-
ing Information S1.

4. Results
4.1. Lithology and Sandstone Petrography

In the Zanskar Gorge, the deep-water Jurutze and Nindam formations are composed of greyish-greenish clay-to
sand-sized volcaniclastic turbidites (Figure 3). The Nindam Formation typically displays decimeter to meter-sized
green sandstone beds, which locally alternate with centimeter-sized green to greyish, laminated, radiolarian-bear-
ing mudstone and siltstone beds. In contrast, the Jurutze Formation is dominated by centimeter-sized greyish,
laminated mudstone and siltstone beds, with subordinate centimeter to decimeter-sized greyish to greenish sand-
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Figure 4. Whole-rock geochemistry of tuffaceous beds from the Jurutze and Nindam formations (Zanskar Gorge, NW Ladakh, India). (a) Primitive mantle-
normalized multielement diagram. The lighter colored green lines of the Nindam Formation are from Walsh et al. (2019). The SiO, average of the Nindam Formation
is based on new (Table S4 in Supporting Information S1) and existing data (File S1 in Supporting Information S1). (b) Primitive mantle-normalized multielement
diagram displaying the Jurutze and Nindam formations in comparison with the average compositions of arc-related units exposed in Ladakh. Data sources are listed
in the Supplementary Materials (File S1 in Supporting Information S1). (c) Zr/Ti versus Nb/Y discrimination diagram from Pearce (1996). (d) Nb/Y versus Th/Yb
discrimination diagram from Pearce (2008). Primitive mantle after McDonough and Sun (1995). Upper continental crust (UCC) after Rudnick and Gao (2003).

stones. Sandstones of both formations are dominated by lithic grains, with minor proportions of feldspars and
quartz (ca. Q6%F17%L77%; Figures S2 and S3, Table S1 in Supporting Information S1). Lithic components
correspond to fragments of vitric tuff displaying glassy to microcrystalline textures, which is typical of sediments
deposited close to active magmatic arcs (Draut & Clift, 2006). Except for a possible slightly higher proportion of
quartz, the sandstones of the Jurutze Formation show no clear petrographic difference with that of the Nindam
Formation in the Zanskar Gorge.

4.2. Major- and Trace-Element Geochemistry

Tuffaceous beds of the Jurutze and Nindam formations show distinct geochemical compositions (Figure 4,
Table S4 in Supporting Information S1). The Nindam Formation ranges from basaltic trachyandesite to andesite
in composition (55%—59% SiO,), whereas the rocks of the Jurutze Formation are mostly dacitic with subordinate
trachyandesite and rhyolite compositions (58%-78% SiO,). In normalized trace element diagrams both forma-
tions have supra-subduction signatures with Nb-Ta and Ti negative anomalies. In a Nb/Yb versus Th/Yb diagram
(Pearce, 2008), the Jurutze and Nindam formations plot in the volcanic arc array and present similar ratios. When
compared to the Nindam Formation, the relatively higher SiO, contents of the Jurutze Formation are consistent
with: (a) higher differentiation index values (Zr/Ti; Pearce, 1996); (b) and significantly higher trace element
contents.
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Figure 5. U-Pb DZ ages from the Jurutze and Nindam formations (Zanskar Gorge, NW Ladakh, India) and selected

bedrock terranes. (a), (b) Kernel density estimates (KDE) of U-Pb DZ ages from the Jurutze (JZ-D06, JZ-35, JZ-D75) and
Nindam (ND-01) formations. New data are compared to composite samples from previous studies discussed in the main text.
YC206(3+) of Dickinson and Gehrels (2009) is used to infer DZ maximum depositional ages (MDA). (c) KDE of selected
bedrock sources terranes. Datasets from the literature are listed in File S1 in Supporting Information S1. (d), (¢) Nonmetric
multidimensional scaling (MDS) plots showing the Kolmogorov-Smirnov distances (d) between individual Nindam and
Jurutze samples and (e) among composite Nindam and Jurutze samples and bedrock source terranes. New samples in (d)
shown by full circles. Statistical similarity represented by closeness of datapoints, where solid lines indicate closest neighbors
and dashed lines indicate near neighbors. Stress, a “goodness-of-fit” parameter for MDS, of less than 10% is considered
“good” for moderate to large datasets (Vermeesch et al., 2016).

4.3. DZ U-Pb Geochronology

New DZ samples (N = 3, n = 503) from the Jurutze Formation show a major peak at 65 Ma and lesser peaks
at 75, 80, 93, 103, 144, and 161 Ma (Figure Sa; detailed geochronology results are provided in Tables S2 and
S3 in Supporting Information S1). Detrital populations are Cenozoic (45.5%), Late Cretaceous (48.3%), Early
Cretaceous (3.8%), Jurassic (1.6%), and Precambrian (0.8%) in age. The single youngest zircon of our data
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set has an age of 55.1 + 1.3 Ma (20, late Thanetian—early Ypresian), similar to the single youngest zircon age
(53.4 + 1.4 Ma) reported from a higher stratigraphic level (Henderson et al., 2010). However, more robust calcu-
lations of the maximum depositional age—expressed as YC20(3+) (mean age of the youngest cluster (n > 3) of
grain ages that overlap in age at 20; Dickinson & Gehrels, 2009)—for each sample consistently provide older ages
at ca. 63 Ma, which supports a Danian age rather than a late Thanetian—early Ypresian age of the studied section.

New DZ (N = 1; n = 264) from the Nindam Formation show major peaks at 89 and 97 Ma and lesser peaks at 153
and 160 Ma (Figure 5b). Detrital populations are Late Cretaceous (82.2%), Early Cretaceous (13.2%), Jurassic
(3.4%), Triassic (0.4%), and Precambrian (0.8%) in age. The single youngest zircon of our new sample has an age
of 84.1 + 1.7 Ma (20, Santonian). A more robust calculation of the maximum depositional age provides a slightly
older age at 86.5 + 0.7 Ma (YC20(3+), late Coniacian—early Santonian). This maximum depositional age is ca.
23 m.y. older than that obtained for the adjacent Jurutze Formation.

4.4. Detrital Zircon Geochemistry

Trace elements were analyzed from a subset of DZ from the Nindam (n = 123) and Jurutze (n = 110) formations
(Figure 6; detailed in-situ geochemistry results are provided in Table S3 in Supporting Information S1). DZ from
both formations share similar low to medium U/Yb, Nb/Yb, and Hf contents, which are compatible with a rela-
tively primitive magmatic arc setting. Trace element ratios such as Yb/Gd, Sc/Yb, Th/U, Nb/Sc, and Lu/Hf show
that DZ compositions of the Jurutze Formation: (a) at ca. 65 Ma overlap partly that of the Nindam Formation at
ca. 90 Ma; (b) define enrichment/depletion trends between ca. 100 and 65 Ma; (c) are similar to those of coeval
DZ of the Nindam Formation in the 100-85 Ma interval. In particular, some Sc/Yb, Th/U and Lu/Hf values of the
Nindam and Jurutze formations in the 100-85 Ma interval do not overlap with those of the post-85 Ma Jurutze
Formation. Moreover, the Nindam and Jurutze formations have a very narrow range of Nb/Sc values in the
100-85 Ma interval, which is not observed in the post-85 Ma Jurutze Formation. Although additional geochemi-
cal data are needed to better characterize this component, it is noteworthy that ca. 160 Ma zircons in the Nindam
and Jurutze formations have a similar composition to that of post-110 Ma zircons.

S. Discussion
5.1. Age and Provenance of the Nindam and Jurutze Formations in the Zanskar Gorge

The results presented here show that, in the Zanskar Gorge, the Paleocene Jurutze and Upper Cretaceous Nindam
formations have dissimilar maximum depositional ages (ca. 63 Ma vs. ca. 86 Ma) and whole-rock geochemical
compositions (Figures 4a and 5d). This agrees with previous field observations that were used to infer a tectonic
separation between these formations along a thrust fault or a serpentinite mélange (Clift, Carter, et al., 2002;
Steck, 2003, Figure 2). Such a tectonic separation was clearly established near Khalsi (e.g., Robertson &
Degnan, 1994; Walsh et al., 2019) and mapped between Khalsi and the Zanskar Gorge (Steck, 2003). This rules
out a depositional contact existing between these formations as previously suggested in several studies (Clift
et al., 2000; Henderson et al., 2011; Searle et al., 1990).

DZ ages from the Jurutze Formation are consistent with a derivation from the Kohistan-Ladakh arc, which
presents major peaks at 50, 58, 62, and 65 Ma, and lesser peaks between 80 and 159 Ma (Figure 5). The low
proportion of Jurassic zircons in the Jurutze Formation (1.6%) is comparable to that of the Kohistan-Ladakh arc
(2.7%). Major and trace element compositions of the Jurutze Formation overlap that of the 80-50 Ma igneous
rocks of the Kohistan-Ladakh arc (Figure 4). This interpretation is in agreement with previous studies (e.g., Clift,
Carter, et al., 2002; Garzanti & Van Haver, 1988; Henderson et al., 2010) that consider the Jurutze Formation as
the forearc basin to the Kohistan-Ladakh arc.

DZ ages, whole-rock geochemical data and sandstone QFL compositions of the Nindam Formation in the Zanskar
Gorge (this study) are mostly consistent with those of the Nindam Formation in the Yapola Valley near Lamayuru
(Figures 3 and 4; Walsh et al., 2019). The bulk of the Nindam Formation has detrital populations that fit the
igneous zircon ages of the Dras arc (this study; Walsh et al., 2020, Figure 5), with common peaks at ca. 100 and
160 Ma. These affinities are consistent with the maps of Robertson and Degnan (1994) and Steck (2003), where
the Nindam Formation is mapped between the Yapola Valley and the Zanskar Gorge and is regarded as a forearc
succession to the Dras arc. Based on overlapping zircon ages, the Nindam Formation may have also been sourced
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Figure 6. Trace element composition of DZ from the Jurutze and Nindam formations (Zanskar Gorge, NW Ladakh, India).
(a) Nb/YDb versus U/Yb discrimination diagram after Grimes et al. (2015). (b) Hf versus U/Yb diagram modified after
Johnston and Kylander-Clark (2021). The stars represent average values of the reference settings. (c)—(h) DZ age versus
selected trace element ratios. In (c), Hf-corrected U/YDb calculation after Johnston and Kylander-Clark (2021). (a)—(c)
Intraoceanic arc zircon values from: Barth et al. (2017), Grimes et al. (2015), Kay et al. (2019), Schmitt et al. (2018). (b), (c)
Continental arc zircon values from Grimes et al. (2015).

from the Karakoram Block, but such a source is unlikely because its trace element and isotopic compositions are

distinct from those of the Nindam Formation (Clift, Hannigan, et al., 2002, Figure 4).

5.2. Common Features of the Dras and Kohistan-Ladakh Arcs

Our results confirm previous views of a derivation of the Nindam and Jurutze formations from the Dras and
Kohistan-Ladakh arcs, respectively. However, there is still a debate as to whether these units were formed at the
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Figure 7. (a), (c) Kernel density estimations (KDE) and (b), (d) cumulative probability plots of U-Pb zircon ages. (a),

(b) Age distributions of the 80-200 Ma (Jurassic to Late Cretaceous) zircons from the Jurutze and Nindam formations in
combination with those of the Dras and Kohistan-Ladakh (KLA) arcs, respectively. The age distribution of Dras 4+ Nindam
is similar to KLA + Jurutze in that interval. In (c), (d) the age distribution of the Nindam Formation is similar to Lhasa and
Xigaze in the 200-3,500 Ma interval (Paleoproterozoic to Triassic). Datasets same as listed in Figure 5, with the following
units merged here: Dras + Nindam; KL A + Jurutze; Lhasa bulk = Gangdese + Lhasa (central and northern) + Xigaze. In (c)
and (d), the color bands highlight important ages peaks.

same convergent margin (e.g., Buckman et al., 2018; Clift et al., 2000; Garzanti & Van Haver, 1988; Parsons
et al., 2020; Robertson, 2000; Robertson & Degnan, 1994; Walsh et al., 2019, 2020). Placement of these arc
remnants along a single convergent margin has remained speculative because previous studies lacked piercing
lines that could reconnect the arc-related rocks from the Indus Suture Zone with those exposed to the north. Up to
now, the main argument in favor of a single Dras-Kohistan-Ladakh arc has been the 103—101 Ma Kargil intrusive,
which intruded the Dras arc volcanics and may be interpreted as an equivalent of the Ladakh Batholith (Bouilhol
et al., 2013; Honegger et al., 1982; Steck, 2003). In the next sections, we show that striking similarities actually
exist between the Dras and Kohistan-Ladakh arcs when data from the same time interval (i.e., ca. 80-200 Ma)
are compared. Based on new and existing data, we discuss three piercing lines supporting the Dras and Kohistan-
Ladakh arcs having been part of a single convergent margin.

5.2.1. Zircon Age Distributions

Figures 7a and 7b shows a compilation of zircon ages from igneous and detrital rocks where the Nindam and
Jurutze formations are merged with the Dras and Kohistan-Ladakh arcs, respectively. The Dras + Nindam and
Kohistan-Ladakh + Jurutze units share almost identical zircon age distributions in the 80-200 Ma interval, with
a prominent peak at ca. 100 Ma and a smaller peak at ca. 160 Ma. This age distribution is distinct from that of
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all other units used for comparison (Figures 5c, 7a and 7b). Moreover, both zircon age distributions feature a
time interval (150-120 Ma) with very few zircon ages, which is 9 out of 423 zircons (ca. 2.1%; uncertainties not
considered) for the Kohistan-Ladakh + Jurutze unit and 26 out of 1,013 zircons (ca. 2.5%) for the Dras + Nindam
unit. Whether this represents a lull in the volcanic activity of these arcs or undersampling of 150-120 Ma zircons
remains unknown. Although having a different zircon age distribution, the Gangdese belt is characterized by a
similar age gap (Figure 7).

5.2.2. DZ Geochemistry

Our geochemical results on DZ from the Nindam and Jurutze formations provide an additional link between them
and, by extension, between the Dras and Kohistan-Ladakh arcs. Despite a significant difference in depositional
age in the Zanskar Gorge, the Nindam and Jurutze DZ have overlapping low to medium U/Yb, Nb/Yb, and Hf
contents which suggest that they were sourced from a similar magmatic arc setting. These compositions are
compatible with both intraoceanic and continental arc settings, but high U/Yb zircons typical of long-lived conti-
nental arcs are very scarce (Figure 6). Importantly, additional trace element ratios show that DZ from the Jurutze
Formation have temporal enrichment/depletion trends, which overlap DZ compositions of the Nindam Formation
in the 100-85 Ma interval. Moreover, decreasing Yb/Gd and increasing Th/U values through time are consistent
with the magmatic evolution of a single convergent margin (Barth et al., 2013). Increasing chondrite-normalized
Gd/Yb values of igneous rocks of the Kohistan-Ladakh arc from 118 to 60 Ma (Jagoutz et al., 2019) are consistent
with those of the Jurutze and Nindam DZ. Whether these are indicative of an overall crustal thickening through
time remains to be further tested in future studies.

5.2.3. Whole-Rock Geochemistry

As discussed above and shown in Figure 4, the enriched primitive mantle-normalized multielement patterns of
the Paleocene Jurutze Formation are consistent with the average composition of the post-80 Ma Kohistan-Ladakh
arc. In contrast, the more primitive composition of the Upper Cretaceous Nindam Formation is consistent with
that of the 160—80 Ma Dras arc (Clift, Hannigan, et al., 2002; Walsh et al., 2019; this study). Besides being indic-
ative of distinct SiO, contents of source rocks, these contrasting geochemical compositions of tuffaceous rocks
are in reality consistent with the overall geochemical evolution of the Kohistan-Ladakh arc from 160 to 50 Ma.
In other words, the trace element geochemistry of 160-80 Ma igneous and sedimentary rocks of the Dras arc is
indistinguishable from that of the 160—80 Ma igneous rocks of the Kohistan-Ladakh arc. The post-80 Ma change
to more enriched trace element compositions in the Kohistan-Ladakh arc (e.g., Jagoutz et al., 2019) is a feature
commonly described in other intraoceanic arcs shifting from primitive to mature stages (e.g., Costa Rica, Gazel
et al., 2019; Aleutians, Kay et al., 2019; Izu Bonin, Saito & Tani, 2017), although the causes of such a composi-
tional shift may differ from one arc setting to the other.

5.3. DZ Connection Between the Dras Arc and Lhasa?

Walsh et al. (2019) documented significant amounts of pre-Cretaceous DZ in middle to Upper Cretaceous strata
of the Nindam Formation, which they suggested reflected a derivation from the Indian continent. This Gond-
wanan inheritance was used to constrain a model of intraoceanic arc subduction initiation in the vicinity of India,
which explains the inferred development of sedimentary pathways between India and the Dras arc.

In Figures 7c and 7d, the age distribution of the pre-200 Ma DZ from the Nindam Formation shows two major
peaks at 584 Ma and 1,177 Ma. The 584 Ma peak is known from zircon patterns of orogens that formed during
the final amalgamation of NE Gondwana in the late Proterozoic—early Cambrian (e.g., Pinjarra, Kuunga, Pater-
son-Petermann orogens; Cawood & Buchan, 2007; Martin et al., 2017). The 1,177 Ma peak is typical of orogens
and basins of western Australia (Fitzsimons, 2000; Martin et al., 2017), as well as terranes rifted from Australia
and amalgamated to Eurasia during the Phanerozoic (Lhasa, West Burma, East Sumatra; Zhang et al., 2018; Zhu,
Zhao, Niu, Dilek, & Mo, 2011, Zhu et al., 2011). In contrast, it is expected that sediments derived from Indian
Gondwana and related terranes (e.g., Sibusima, south Qiangtang, Tethyan and Greater Himalaya) would yield a
major age peak at ca. 950-1,000 Ma (Gehrels et al., 2011; Jonell et al., 2017; Zhang et al., 2018), which is not the
case for the Nindam Formation. Therefore, new and existing data support a possible eastward connection of the
Dras arc with sources of zircons derived from Australian Gondwana or associated terranes rifted from Australia.
This implies that, by 100 Ma, Australian Gondwana-type DZ were transported to the Dras arc from either western
Australia or an Australian-derived crustal fragment such as the Lhasa Block. Additional geochemical and isotopic
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characterization of igneous and DZs from Ladakh and Tibet would better resolve the nature and timing of Meso-
zoic connections between the arc-related units exposed along the Indus-Yarlung suture zone.

5.4. Scenarios of the Tectonic Evolution of a Single Dras-Kohistan-Ladakh Arc

Remarkably similar igneous rock and DZ peak ages at ca. 160 Ma of the Dras, Ladakh and Kohistan arcs
suggest that these arc remnants were formed at a subduction zone that initiated during the Late Jurassic (Jagoutz
et al., 2019; Saktura et al., 2020; Walsh et al., 2020). However, subduction may have been ongoing from at least
the Early Jurassic, as suggested by: (a) the Triassic to Early Jurassic DZ of the Nindam Formation; and (b) the
Ti/V values (>0.15) of the 177 Ma mafic rocks of the Spongtang ophiolite (Corfield et al., 2001), which are
compatible with a supra-subduction setting (Shervais, 1982). Whether the Spongtang ophiolite originated at
the same convergent margin as the Dras-Kohistan-Ladakh arc remains to be further ascertained (e.g., Parsons
et al., 2020).

Late Jurassic intraoceanic arcs may have formed at north-dipping or south-dipping subduction zones. Exam-
ples of such configurations are depicted in competing models featuring a Neotethyan intraoceanic arc that is
connected along-strike with western Australia (Hall, 2012; Metcalfe, 2021), Lhasa (Parsons et al., 2020; Saktura
etal., 2020), or Burma (Licht et al., 2020). Although testing the kinematic feasibility of these models and assump-
tions is beyond the scope of the present study, we find it unrealistic that a Late Jurassic intraoceanic arc formed
over a northward dipping subduction zone along the southern margin of the Lhasa Block. If Lhasa Block's north-
ward motion was accommodated by southward dipping subduction along its northern margin (e.g., Parsons
et al., 2020), there is no logical mechanism that can account for subduction initiation along its southern margin.
If Lhasa's northward motion was accommodated by northward dipping subduction along its southern margin
(e.g., Kapp & DeCelles, 2019), it is unclear how Lhasa could have rifted away from Australia in the absence
of a southward dipping subduction beneath its northern margin and how this configuration could have allowed
its relatively rapid northward motion (5 cm/yr according to Li et al., 2016). Instead, we assume that northward
dipping subduction initiation, forearc extension, and ophiolite generation along the southern margin of the Lhasa
Block was only possible after its northward motion had significantly decreased following accretion to Eurasia.

If Lhasa amalgamated with Eurasia after 150 Ma (Latest Jurassic; e.g., Allegre et al., 1984; Dewey et al., 1988;
Laietal., 2019; Li et al., 2016; Li et al., 2019), then 165 Ma supra-subduction ophiolites (e.g., Zedong, Aitchison,
McDermid, et al., 2007) that lie south of it must have formed at a separate margin located to the south within the
Neotethys. In contrast, a less commonly accepted pre-Late Jurassic accretion of Lhasa to Eurasia would allow
episodes of forearc extension and ophiolite generation at its southern margin starting at ca. 165 Ma, which would
not preclude the existence of a coeval Neotethyan intraoceanic arc further to the south. Based on the assumptions
above, we explore tectonic scenarios in the Ladakh transect and in which a single Dras-Kohistan-Ladakh arc:
(a) was laterally continuous with Lhasa above a south-dipping intraoceanic subduction zone south of Eurasia
(scenario 1; Figure 8); (b) formed along a north-dipping intraoceanic subduction zone initiated at a mid-ocean
ridge located south of Eurasia, with which Lhasa was already amalgamated (scenario 2; Figure 9).

5.4.1. Scenario 1: Dras-Kohistan-Ladakh Arc Formed Above a South-Dipping Subduction Zone

Whether the Karakoram Block and the Kohistan-Ladakh arc were welded together along the Shyok suture
zone during the middle Cretaceous (e.g., Borneman et al., 2015; Rolland, 2002) or the Eocene (e.g., Bouilhol
et al., 2013; Martin et al., 2020) has direct implications for evaluating the validity of the competing scenarios.
A Cretaceous age for the Shyok suture implies that it represents a lateral equivalent of the Cretaceous Bangong
suture in Tibet, the logical consequence of which is that these sutures were formed by the closure of an ocean that
was bounded to the south by the Dras-Kohistan-Ladakh arc continuous with Lhasa (scenario 1 in Figure 8). A
Jurassic southward dipping subduction beneath the Dras-Kohistan-Ladakh arc is similarly argued for Lhasa (Li
et al., 2019; Zhu et al., 2009, 2011). The accretion of the Dras-Kohistan-Ladakh arc to Eurasia during the Early
Cretaceous (ca. 140 Ma) is compatible with the apparent lull in magmatic activity of those arcs as suggested by
zircon ages. A similar age gap (ca. 140-120 Ma) is recorded in the Karakoram Block (Borneman et al., 2015;
Heuberger et al., 2007; Searle et al., 1989, 2010). Magmatic activity resumed after reinitiation of northward
dipping subduction, which possibly triggered the extension of the accreted arc and the formation of intra- and
back-arc basins (Robertson & Collins, 2002; Rolland et al., 2000; Rolland, Picard, Pécher, Lapierre, et al., 2002).
In that scenario, the early Late Cretaceous Saltoro Molasse overlying the Shyok volcanics in the Shyok Suture
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Figure 8. Proposed scenario 1 for Mesozoic tectonic evolution of the Dras-Kohistan-Ladakh arc. The Dras-Kohistan-Ladakh
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and was laterally continuous with Lhasa toward to the
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Zone (Figures 3 and 8; Borneman et al., 2015) provides only a minimum age for arc-continent collision and repre-
sents sedimentation within a fossil suture zone controlled by back-arc magmatism and tectonics. Finally, scenario
1 requires that the initiation of southward dipping intraoceanic subduction along the Dras-Kohistan-Ladakh arc
occurred below a Tethyan oceanic crust located away from the northern margin of India, which allowed the
accretion of Upper Permian oceanic intraplate seamounts (Figure 2) to the Spong arc in post-Campanian times
(Corfield et al., 1999; Reuber et al., 1987). This is compatible with the absence of DZ inherited from India in the
Dras arc, as discussed in Section 5.3.
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Figure 9. Proposed scenario 2 for Mesozoic tectonic evolution of the Dras-Kohistan-Ladakh arc. The Dras-Kohistan-Ladakh
formed along a northward dipping intraoceanic subduction zone. Subduction initiation may have occurred as early as the
Early Jurassic along a Neotethyan mid-ocean ridge. Pre-Late Jurassic accretion of Lhasa to Eurasia is assumed in scenario

2. See text for discussion. 180-160 Ma = Early to Late Jurassic; 140 Ma = Early Cretaceous; 125 Ma = Early Cretaceous;
100-80 Ma = Late Cretaceous. KK=Karakoram; LH = Lhasa; SDLK=Spong-Dras-Ladakh-Kohistan.

5.4.2. Scenario 2: Dras-Kohistan-Ladakh Arc Formed Above a North-Dipping Subduction Zone

A Cretaceous age of the Shyok suture may be alternatively explained by the accretion of a Dras-Kohistan-Ladakh
remnant arc that drifted northward from an intraoceanic arc located within the Neotethys and accreted to the
Karakoram Block during the Early Cretaceous (scenario 2a in Figure 9). As discussed above, this implies that
Lhasa previously accreted to Eurasia because a northward dipping subduction is needed to allow the remnant arc
to move toward Eurasia. This scenario satisfies the observation that Lhasa-type and Eurasia-type DZ were trans-
ported to the Dras-Kohistan-Ladakh arc by the middle Cretaceous. However, scenario 2a requires an unlikely
correlation between Lhasa and the Karakoram (e.g., Robinson, 2009; Yang et al., 2017) or a reasonable explana-
tion for the absence of an accretion record in the Ladakh transect that is coeval to that of Lhasa in the Tibet tran-
sect. In the latter case, a north-south-oriented transform fault within the Tethyan realm could explain a disparate
kinematic evolution between the Ladakh and Tibet transects, but it is not supported by regional-scale seismic
tomography models, which show seismic mantle anomalies spanning the whole length of the Himalayan orogen
(Hafkenscheid et al., 2006; Parsons et al., 2020; van der Voo et al., 1999).
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A post-Cretaceous age of the Shyok suture, as assumed in scenario 2b (Figure 9), implies that the Dras-Kohistan-
Ladakh arc remained in an intraoceanic arc setting from the Late Jurassic to the Paleocene (e.g., Bouilhol
et al., 2013; Jagoutz et al., 2019). Although intraoceanic arcs are known to incorporate inherited zircons from
continental sources (Buys et al., 2014; Rojas-Agramonte et al., 2017; Tapster et al., 2014), the apparent absence
of connection with a continent or a continental crustal fragment makes scenario 2b the least likely solution to
explain the input of Lhasa-type and Eurasia-type zircons in the Dras-Kohistan-Ladakh arc by the middle Creta-
ceous. A possible mechanism may be arc-parallel transport of old zircons from a source located (a) in Eurasia
or (b) along the same subduction zone. In case (a), we speculate that the Dras-Kohistan-Ladakh arc and the
Eurasian margin were involved in an arc-arc collision comparable to the one currently taking place between
the Izu-Bonin and Honshu arcs (e.g., Draut & Clift, 2013; Underwood & Pickering, 2018). The lower plate
position of the colliding intraoceanic arc relative to Eurasia allows continent-derived detritus to be transferred
to its forearc basin. In the case of the Izu-Bonin and Honshu collision, forearc-parallel sediment transport is
expected over distances of at least 1,000 km because of the downslope between the arc-arc collision zone (ca.
0 m water depth) and the deep-water forearc basin of the colliding intraoceanic arc (ca. 4,000 m water depth). In
case (b), a ca. 1,180 Ma DZ peak-typical of the Nindam Formation (Figure 7c; Walsh et al., 2019)-was reported
from sedimentary rocks of Western Burma (Sevastjanova et al., 2016; Zhang et al., 2018), which may support a
lateral connection between the Dras-Kohistan-Ladakh arc and the Burma Terrane, as recently proposed by Licht
et al. (2020) and Westerweel et al. (2020).

Recent paleomagnetic data from the Ladakh arc have been used to constrain a tectonic model similar to scenario
2b (Martin et al., 2020), whereby the Kohistan-Ladakh arc was part of an intraoceanic subduction zone situated
at a latitude of 8.1 + 5.6°N at ca. 63 Ma (>500 km south of Eurasia). However, the inferred Paleocene latitude
of the Kohistan-Ladakh arc is based on a single paleomagnetic pole. This is regarded as an unreliable approach
to infer the allochthony of displaced terranes relative to larger continents (e.g., Eurasia) because, in this case, the
proposed single paleomagnetic pole from the Ladakh arc is statistically undistinguishable from the individual
poles that compose the paleomagnetic reference frame of continents to which it is compared (Rowley, 2019).
Besides not being unambiguously supported by recent paleomagnetic data, scenario 2b suffers from similar
flawed assumptions as scenario 2a. It would require: either (a) that Lhasa bypassed the Dras-Kohistan-Ladakh
intraoceanic arc during the Late Jurassic before its accretion to Eurasia; or (b) that the Lhasa terrane accreted to
Eurasia before the Late Jurassic; or (c) that the Dras-Kohistan-Ladakh arc split from southern Lhasa during the
Late Jurassic. As discussed above, these tectonic scenarios are unlikely.

5.4.3. Preferred Tectonic Scenario

An Early Cretaceous accretion of the Dras-Kohistan-Ladakh arc to the Karakoram along the Shyok Suture Zone
(scenario 1; Figure 8) and of Lhasa to Qiangtang along the Bangong Suture Zone represents the simplest solution
to reconcile the Late Jurassic—Early Cretaceous geology of Ladakh and Tibet. Moreover, scenarios 1a and 1b are
the most flexible in terms of accommodating the competing models of India—Eurasia collision (sensu lato) at
ca. 55 Ma (e.g., Parsons et al., 2020), because they provide both single and double subduction configurations at
the time of collision. Finally, the Dras-Kohistan-Ladakh arc may be placed at a northward dipping intraoceanic
subduction zone in a variation of scenario 1b, if future geologic and paleomagnetic datasets were to support that
tectonic position.

6. Conclusion

The adjacent Paleocene Jurutze and Upper Cretaceous Nindam formations in the Zanskar Gorge (Ladakh) present
a significant age gap (>20 m.y.) in their DZ maximum depositional ages and dissimilar whole-rock geochemical
affinities. This precludes the Jurutze Formation being in a depositional contact with the Nindam Formation in
the Zanskar Gorge transect. New and existing data are compatible with the Jurutze and Nindam formations being
deposited in distinct parts of the same forearc basin and later tectonically juxtaposed.

The zircon age distributions of the Nindam and Jurutze formations, as well as that of their respective sources (i.e.,
the Dras and Kohistan-Ladakh arcs), share common peaks at ca. 100 and 160 Ma, which suggests that they were
part of the same intraoceanic arc that had been active since at least the Late Jurassic. This is further supported by
overlapping U/Yb, Nb/Yb, and Hf compositions of DZ from the Jurutze and Nindam formations. These results
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imply that the mélange zones locally separating the Nindam and Jurutze formations may not be interpreted as a
suture zone, but rather as intra-arc tectonic contacts.

The Upper Cretaceous Nindam Formation has intermediate major element and depleted trace element whole-
rock contents, whereas the Paleocene Jurutze Formation shows intermediate to felsic major element and enriched
trace element compositions. This apparent shift in geochemical composition is consistent with the evolution from
primitive to mature stages of a single arc, which is also highlighted by decreasing Yb/Gd and increasing Th/U
compositions of DZ from the Jurutze and Nindam formations. These results show that a combination of DZ
geochronology and geochemistry, and whole-rock geochemistry applied to complex tectonic settings can help
correlate sedimentary units of apparently dissimilar age and provenance.

We have explored scenarios for the evolution of a single Dras-Kohistan-Ladakh arc and found that the simplest
solution supported by multiple lines of evidence is that of an intraoceanic arc built over a southward dipping
subduction zone that accreted to Eurasia during the Early Cretaceous. This solution is the most compatible with
the commonly proposed models for Mesozoic evolution of arc-related units exposed in Tibet.
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