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Abstract
We classify rank two vector bundles on a given del Pezzo threefold of degree four whose
projectivizations are weak Fano into seven cases. We also give an example for each of these
seven cases.
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1 Introduction

1.1 Motivation

The motivation of this study comes from the classification of Fano manifolds. Since smooth
Fano 3-folds were classified (see [18] and references therein), many researchers have treated
the classification of Fano 4-fold having projective bundle structures. In 1990, Szurek and
Wiśniewski called a vector bundle whose projectivization is Fano a Fano bundle and gave a
classification of rank 2 Fano bundles on P

3 or a smooth hyperquadric Q
3 [37]. After that, the

classification of rank 2 Fano bundles over smooth Fano 3-folds has been addressed by many
researchers (e.g. [22, 27, 28, 37]). In particular, Muñoz, Occhetta, and Solá Conde classified
rank 2 Fano bundles on Fano 3-folds of Picard rank 1 [27].

On the other hand, after the establishment of the classification of Fano 3-folds, several
papers also started classifying weak Fano 3-folds. In 1989, K. Takeuchi developed his 2-ray
gamemethod by considering not only Fano 3-folds but also weak Fano 3-folds of Picard rank
2 [38]. By this 2-ray game method, he successfully gave a concise proof of the existence of
a line on a Mukai 3-fold, which is a new perspective on the classification of Fano 3-folds.
Since the establishment of the 2-ray game method, classifying weak Fano 3-folds of Picard
rank 2 has been considered to be significant and treated by many researchers (e.g. [8, 19, 22,
38]).

In view of these previous researches, classifying weak Fano 4-folds with Picard rank 2
would be important to investigate Fano 4-folds. Our approach to this problem is to consider
weak Fano 4-folds with P

1-bundle structures, as Szurek–Wiśniewski did [37].

1.2 Known classification of weak Fano bundles

In this paper, we say that a vector bundle E on a smooth projective variety X is weak Fano if
its projectivization PX (E) is a weak Fano manifold. Weak Fano bundles are firstly introduced
by Langer [22] as generalizations of Fano bundles. Until now, rank 2 weak Fano bundles are
classified when the base space is the projective space [22, 30, 39] or a hypercubic in P

4 [16].
We quickly review these known results. On P

2, Langer [22] and Ohno [30] classified weak
Fano bundleswhose 1st Chern class is odd. Yasutake [39] classified rank 2weak Fano bundles
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Classification of rank two weak Fano bundles... 2885

over P
2 whose 1st Chern class is even except for the existence of a weak Fano rank 2 bundle

E with c1(E) = 0 and c2(E) = 6. Meanwhile, Cutrone–Marshburn [8,P.2, L.14] pointed out
that such a weak Fano bundle exists as the Bordiga scroll [32]. Yasutake also classified rank
2 weak Fano bundles on P

n with n ≥ 3. Thus the rank 2 weak Fano bundles over projective
spaces are classified. Rank 2 weak Fano bundles on smooth cubic hypersurfaces in P

4 are
also classified by the 3rd author of this article [16].

1.3 Instanton bundles and Ulrich bundles

Besides, weak Fano bundles have emerged in the study of different contexts. For example,
minimal instanton bundles and special Ulrich bundles are most studied weak Fano (but not
Fano) bundles on del Pezzo 3-folds.

Let X be P
3 or a del Pezzo 3-fold of Picard rank 1, i.e., a smooth Fano 3-fold of Picard

rank 1 whose canonical divisor is divisible by 2. Then an instanton bundle on X is defined
to be a rank 2 slope stable vector bundle E with c1(E) = 0 and H1(E( KX

2 )) = 0 [3, 9, 21].
The moduli space of instanton bundles on P

3 is a significant object for mathematical physics.
Indeed, a certain subset of this moduli space corresponds to self-dual solutions of the SU(2)
Yang-Mills equations on the 4-sphere S4 up to gauge equivalence [2, 3]. After this, Faenzi
[9] and Kuznetsov [21] defined a generalized notion for instanton bundles E on a del Pezzo
3-fold X as above. By the above reason, moduli spaces of instanton bundles on P

3 and del
Pezzo 3-folds have been studied deeply (e.g. [9, 21]).

For an instanton bundle E on X , it is known that −KX .c2(E) ≥ 4 (cf. [21,Corollary 3.2],
[9,Lemma 1.2]). Thus an instanton bundle E is said to be minimal if −KX .c2(E) = 4. When
X is a del Pezzo 3-fold, a vector bundle E is a minimal instanton bundle if and only if E(1) is a
special Ulrich bundle of rank 2 [21,Lemma 3.1], which is defined to be a rank 2 vector bundle
F such that detF � OX (−KX ) � OX (2) and H•(F(− j)) = 0 for every j ∈ {1, 2, 3}.
When d := OX (1)3 ≥ 3, the above definition is equivalent to say that F has the following
linear resolution on P

d+1:

0 → OPd+1(2 − d)⊕bd−2 → OPd+1(3 − d)⊕bd−3 → · · · → O⊕b0
Pd+1 → F → 0,

where bi = 2d
(d−2

i

)
[4]. Moreover, Beauville showed that every special Ulrich bundle F of

rank 2 is isomorphic to a unique non-trivial extension of IC (2) by OX , where C is a normal
elliptic curve in X [4,Remark 6.3]. Since every normal elliptic curveC is defined by quadratic
equations [14], F is globally generated. Since detF � O(−KX ), we conclude that F is a
weak Fano bundle.

In summary, on a del Pezzo 3-fold of degree d ≥ 3, minimal instanton bundles are the
most well-studied examples of weak Fano bundles. In this article, we supplementally show
that every slope stable weak Fano bundle E with rk E = 2 and c1(E) = 0 is an instanton
bundle (see Corollary 4.7).

1.4 Main result

In this article, we classify rank 2 weak Fano bundles over a del Pezzo 3-fold of degree 4,
which is a smooth complete intersections of two hyperquadrics in P

5 [10]. Our classification
is given as follows.
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Theorem 1.1 Let X be a smooth complete intersection of two hyperquadrics in P
5. For a

normalized bundle E of rank 2, E is a weak Fano bundle if and only if E is one of the
following.

(i) OX ⊕ OX (−1).
(ii) OX ⊕ OX .
(iii) OX (1) ⊕ OX (−1).
(iv) A unique non-trivial extension of IL by OX , where L is a line in X.
(v) A unique non-trivial extension of IC by OX (−1), where C is a smooth conic in X.
(vi) A unique non-trivial extension of IC (1) byOX (−1), where C is a non-degenerate smooth

elliptic curve in X of degree 6.
(vii) A unique non-trivial extension of IC (1) byOX (−1), where C is a non-degenerate smooth

elliptic curve in X of degree 7 which is defined by quadratic equations.

In the above statement, a unique non-trivial extension E of F by G means that
dim Ext1(F,G) = 1 and E fits into an exact sequence 0 → G → E → F → 0 such
that the extension class is non-zero in Ext1(F,G).

Furthermore, on an arbitrary smooth complete intersection of two hyperquadrics in P
5,

there exist examples for each case of (i)–(vii).

Remark 1.2 We give some remarks about the above result.

(1) The vector bundles of type (i), (ii) and (v) are Fano bundles [27]. Others are not Fano
bundles but weak Fano bundles.

(2) The vector bundles of type (i–iv) are not slope stable. Others are slope stable.
(3) For every vector bundle E , E is of type (v) if and only if E is the pull-back of the Spinor

bundle on a hyperquadric Q under a finite morphism X → Q (see Theorem 1.4). In
particular, the vector bundles of type (v) are Fano bundles [27].

(4) For every vector bundle E , E is of type (vi) if and only if E(1) is a special Ulrich bundle
[4,Remark 6.3.3], which is equivalent to say that E is an instanton bundle with c2(E) = 2
as in explained in § 1.3.

(5) Every vector bundle E of type (vii) is an instanton bundle with c2(E) = 3 (see Corol-
lary 4.7). Unlike the case (3), there is an instanton bundle E with c2(E) = 3 which is not
a weak Fano bundle (see Remark 5.8).

Our result is essentially different from the classification of rank 2 weak Fano bundles on
a hypercubic in P

4 [16], which was done by the 3rd author of this article. Briefly speak-
ing, he proved that slope stable rank 2 weak Fano bundles are always minimal instanton
[16,Theorem 1.1]. In contrast, on a complete intersection of two hyperquadrics, other stable
bundles appear. Indeed, every weak Fano bundle E of type (vii) in Theorem 1.1 is a non-
minimal instanton bundle. Our result also shows that the zero scheme of a general section
of E(1) is a non-projectively normal elliptic curve C defined by quadratic equations. Hence
E(1) is not 0-regular but globally generated. Note that we can not remove the condition that
C is defined by quadratic equations (cf. Theorem 1.5 and Remark 5.8).

1.5 Key results for proving Theorem 1.1

Here we collect the key ingredients for the proof of Theorem 1.1.
Let X be a smooth complete intersection of two hyperquadrics in P

5. Let HX be a
hyperplane section of X and LX a line on X . Then Pic(X) � H2(X , Z) � Z[HX ] and
H4(X , Z) � Z[LX ]. Using the above isomorphisms, we identify the cohomology classes
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with integers. Note that the property to be weak Fano is slope stable under taking tensor
products with line bundles. To classify rank 2 weak Fano bundles E , we may assume that E
is normalized, i.e., c1(E) ∈ {0,−1}.

Firstly, we will characterize normalized rank 2 weak Fano bundles having global sections
as follows.

Theorem 1.3 Let X be a del Pezzo 3-fold of degree 4. Let E be a normalized rank 2 weak
Fano bundle on X. Then we obtain the following assertions.

(1) h0(E) > 0 if and only if E is one of (i), (ii), (iii), or (iv) in Theorem 1.1.
(2) h0(E) = 0 if and only if (c1(E), c2(E)) = (−1, 2), (0, 2), (0, 3).

By this theorem, it suffices to treat weak Fano bundles E with (c1(E), c2(E)) =
(−1, 2), (0, 2), (0, 3).

Secondly, we characterize weak Fano bundles E with (c1(E), c2(E)) = (−1, 2) as follows.

Theorem 1.4 Let X be a del Pezzo 3-fold of degree 4. Let E be a rank 2 vector bundle on X.
Then the following conditions are equivalent.

(1) E is a weak Fano bundle with (c1(E), c2(E)) = (−1, 2).
(2) E is a Fano bundle with (c1(E), c2(E)) = (−1, 2). In particular, by the classification of

Fano bundles on a del Pezzo 3-fold of degree 4 [27], E is the restriction of the Spinor
bundle [31] on a smooth hyperquadric in P

5 containing X, or the pull-back of the Spinor
bundle on the 3-dimensional smooth hyperquadricQ

3 under a double covering X → Q
3.

(3) E is (v) in Theorem 1.1.

In particular, there exist examples for (v) in Theorem 1.1.

Thirdly, we characterize weak Fano bundles E with (c1(E), c2(E)) = (0, 2) or (0, 3) as
follows.

Theorem 1.5 Let X be a del Pezzo 3-fold of degree 4. Let E be a rank 2 vector bundle on X.
Then the following assertions are equivalent.

(1) E is weak Fano with (c1(E), c2(E)) = (0, 2) (resp. (0, 3)).
(2) E is (vi) (resp. (vii)) in Theorem 1.1.

Then by Theorems 1.3, 1.4, and 1.5, we obtain the characterization part of Theorem 1.1.
Finally, we show the existence of E for each condition in Theorem 1.1, which is namely

the following theorem.

Theorem 1.6 For an arbitrary del Pezzo 3-fold of degree 4, there exist examples for each one
of (i)–(vii) in Theorem 1.1.

Then Theorem 1.1 follows from Theorems 1.3, 1.4, 1.5, and 1.6.

1.6 Outline of proof of our results

1.6.1 Outline for Theorem 1.3

Let X be a del Pezzo 3-fold of degree 4. Theorem 1.3 (1) is a characterization of weak Fano
bundles of rank 2 on X which is not slope semi-stable (cf. [16,Lemma 3.2]). For proving
Theorem 1.3 (2), we will bound the second Chern classes of such an E by using the inequality
(−KPX (E))

4 > 0 and the Le Potier vanishing (cf. [23,Theorem 7.3.5]). By this argument, we
characterize slope stable weak Fano bundles of rank 2 in terms of its Chern classes.
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1.6.2 Outline for Theorems 1.4 and 1.5

The most non-trivial part of Theorems 1.4 and 1.5 is to show the global generation of E(1)
for a rank 2 weak Fano bundle E with (c1, c2) ∈ {(−1, 2), (0, 2), (0, 3)}. Once we prove
the global generation, we can produce a smooth curve C as the zero scheme of a general
global section of E(1) and hence E can be written as a unique extension as in (v), (vi), (vii)
in Theorem 1.1.

To show Theorem 1.4, we will use the fact that h0(E(1)) > 0 for every normalized weak
Fano bundle E of rank 2 (=Proposition 2.2 (1)). When (c1, c2) = (−1, 2), the zero scheme
of a global section of E(1) is a conic and hence we can show that E(1) is globally generated.
Moreover, this fact implies that E is a Fano bundle, which is already classified in [27].

To show Theorem 1.5, we will prove the following theorem.

Theorem 1.7 Let X be a smooth Fano 3-fold of Picard rank 1. Let F be a nef vector bundle
with detF = O(−KX ) and c1(F)3 − 2c1c2(F) + c3(F) > 0.

IfF is not globally generated, then X is a del Pezzo 3-fold of degree 1 andF � O⊕ rkF−2
X ⊕

OX (−KX
2 )⊕2.

Applying this result, we see that E(1) is globally generated for every weak Fano bundle E
with c1(E) = 0 on a del Pezzo 3-fold of degree 4, which will imply Theorem 1.5. As another
corollary of Theorem 1.7, we will also see that every weak Fano bundle E with det E = OX

on a del Pezzo 3-fold X of Picard rank 1 is an instanton bundle (=Corollary 4.7).
Our proof of Theorem 1.7 goes as follows. Let X be a Fano 3-fold of Picard rank 1 andF a

vector bundle with c1(F) = c1(X). Let π : M := PX (F) → X be the projectivization and ξ

a tautological divisor. Assume that Bs |ξ | �= ∅ and ξ is nef and big. Since −KM = (rkF)ξ ,
M is a weak Mukai manifold. Then by using some results about ladders of Mukai varieties
[17, 24, 25, 33, 35, 36], we can obtain a smooth K3 surface S ⊂ M by taking general
(rkF) elements of |ξ | (=Theorem 4.1). Since the complete linear system |ξ |S| still has a
non-empty base locus, there is an elliptic curve B and a smooth rational curve � on S such
that ξ |S ∼ gB + �, where g = (1/2)ξ rkF+2 + 1 > 0 [34, 36]. Note that Bs |ξ | = �.

Let us suppose that � is contracted by π : M → X . Then it is easy to see that � is a
line in a fiber of π . As in [17,§ 6], we consider the blowing-up of M along �. Since � is
a line of a π-fiber, we can compute the conormal bundle of � and hence conclude that the
anti-canonical image of Bl� M is the join of P

1 × P
2 and some linear space. This structure

enables us to show X is a del Pezzo 3-fold of degree 1 and F � OX (−KX
2 )⊕2 ⊕ O⊕ rkF−2

X .
The most technical part of this proof is to show that � is contracted by π : M → X . For
more precise, see § 4.3.4.

1.6.3 Outline for Theorem 1.6

Fix an arbitrary smooth complete intersection X of two hyperquadrics in P
5. The existence

of (i), (ii) and (iii) in Theorem 1.1 is obvious. For the existence of (iv), (v), (vi), and (vii) in
Theorem 1.1, it suffices to find a line, a conic, a non-degenerate sextic elliptic curve, and a
non-degenerate septic elliptic curve defined by quadratic equations respectively. Indeed, if
such a curve is found, the Hartshorne–Serre correspondence gives a vector bundle which we
want to find. The existence of lines and conics are obvious since a general hyperplane section,
which is a del Pezzo surface, contains such curves. The existence of a non-degenerate sextic
elliptic curve was already proved by [4,Lemma 6.2]. Note that such a curve is always defined
by quadratic equations (cf. [14]).

123



Classification of rank two weak Fano bundles... 2889

The remaining case is the existence of a septic elliptic curve defined byquadratic equations.
Note that there is a non-degenerate septic elliptic curve in P

5 defined by quadratic equations
(cf. [7,Theorem 3.3], [15,§ 2]). Hence an example of a del Pezzo 3-fold of degree 4 containing
such a curve was already known. In this article, we will slightly improve this known result
by showing that every del Pezzo 3-fold of degree 4 contains such a curve.

To obtain this result, we study a non-degenerate septic elliptic curveC in P
5 and show that

C is defined by quadratic equations if and only if C has no trisecants (=Proposition 5.2). For
this characterization, we will use Mukai’s technique [29], which interprets the property of
being defined by quadratic equations into the vanishing of the 1st cohomologies of a certain
family of vector bundles on C . Then as in [4,Lemma 6.2] and [12], we will produce such a
curve C by smoothing the union of a conic and an elliptic curve of degree 5, which has no
trisecants. For more precise, see § 5.3.

1.7 Organization of this article

In § 2, we give certain numerical conditions for rank 2 weak Fano bundles over del Pezzo
3-folds of degree 4 and prove Theorem 1.3. In § 3, we prove Theorem 1.4. In § 4, we prove
Theorem 1.7 and Theorem 1.5 as its corollary. In § 5, we find a septic elliptic curve C on an
arbitrary del Pezzo 3-fold of degree 4 and prove Theorem 1.6.

NotationandConvention.Throughout this article,wewillworkover the complexnumber
field. We regard vector bundles as locally free sheaves. For a vector bundle E on a smooth
projective variety X , we define PX (E) := Proj Sym E . In this article, we only deal with
slope stability among the stabilities. For a given ample divisor H , we say that E is H -stable
(resp. H -semi-stable) if c1(F)

rkF .Hdim X−1 < (resp. ≤)
c1(E)
rk E .Hdim X−1 for every subsheaf

0 �= F � E . When X is of Picard rank 1, we abbreviate H -stable (resp. H -semi-stable) to
simply stable (resp. semi-stable).

We say that E is weak Fano if PX (E) is a weak Fano manifold, that is, −KPX (E) is nef and
big. When X is a smooth Fano 3-fold of Picard rank 1, we often identify H2i (X , Z) � Z by
taking an effective generator. We also say a rank 2 vector bundle E on X is normalized when
c1(E) ∈ {0,−1}.

2 Numerical bounds: Proof of Theorem 1.3

In this section, X denotes a smooth del Pezzo 3-fold of degree 4 and HX a class of a hyperplane
section. Let us recall that H2(X , Z) is generated by HX and H4(X , Z) is generated by H2

X/4.
If we naturally identify H2(X , Z) as Z and H4(X , Z) as Z by these generators, we can take
integers c1, c2 as c1(E) = c1 · HX and c2(E) = c2 · H2

X/4 for a given vector bundle E . We
also call this integer ci the i-th Chern class of E for each i ∈ {1, 2}. Let π : PX (E) → X be
the projectivization, ξ the tautological line bundle, and H := π∗HX . In this setting, we have
−KPX (E) = 2ξ + (2 − c1)H , H4 = 0, and ξ.H3 = 4.

The goal of this section is to prove Theorem 1.3. First of all, it is easy to check that the
vector bundle E = OX ⊕OX (a) with a ∈ Z≥0 is weak Fano if and only if a ∈ {0, 1, 2} since
ξ and H generates the nef cone of PX (E) and −KPX (E) = 2ξ + (2 − a)H . This means that,
for a rank 2 normalized bundle E on X , the conditions (i–iii) in Theorem 1.1 are equivalent
to E being a decomposable weak Fano bundle. Thus, to prove Theorem 1.3 for a given rank
2 weak Fano normalized bundle E on X , we will characterize E with global sections as the
condition (iv) in Theorem 1.1, and compute the Chern classes of E with no global sections.
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Lemma 2.1 Let X be a del Pezzo 3-fold of degree 4 and E a rank 2 weak Fano normalized
bundle with Chern classes c1, c2 ∈ Z.

Then we obtain the following assertions.

(1) For any integer j ,

χ(E( j)) =
{

4
3 j

3 + 2 j2 + 16−6c2
6 j − 1

2c2 + 1 if c1 = −1 and
4
3 j

3 + 4 j2 + 14−3c2
3 j − c2 + 2 if c1 = 0.

(2.1)

(2) When c1 = −1, we have ξ2.H2 = −4, ξ3.H = −c2 + 4, and ξ4 = 2c2 − 4. When
c1 = 0, we have ξ2.H2 = 0, ξ3.H = −c2, and ξ4 = 0.

(3) For any i ≥ 2 and j ≥ 0, we have Hi (X , E( j)) = 0.

Proof (1) follows from theHirzebruch–Riemann–Roch formula. (2) follows from the relation
ξ2 − c1ξ.H + c2

4 H2 = 0 (cf. [13,Appendix A]) and the fact that H4 = 0 and ξ.H3 = 4
on PX (E). Let us prove (3). Since −KPX (E) = 2ξ + (2 − c1)H is nef and big, E(2) is
ample. Thus the Le Potier vanishing theorem [23,Theorem 7.3.5] gives Hi (X , E( j)) =
Hi (X , ωX ⊗ E(2 + j)) = 0 for any i ≥ 2 and j ≥ 0. We complete the proof. 
�

Following [28,Section 1.1], we introduce the invariant β := min{n ∈ Z | h0(E(n)) > 0}
for a given vector bundle E . Then E has O(−β) as a subsheaf, which is saturated by the
definition of β. Hence we have the following exact sequence

0 → O(−β) → E → IZ (c1 + β) → 0, (2.2)

where Z is a closed subscheme of X of purely codimension 2 or the empty set. This exact
sequence (2.2) means that c2(E(β)) = [Z ] belongs an effective class.

Now we bound c2 and β for a normalized weak Fano bundle of rank 2 as follows.

Proposition 2.2 Let X be a del Pezzo 3-fold of degree 4. Let E be a rank 2 normalized weak
Fano bundle on X with Chern classes c1 and c2. Set β := min{n ∈ Z | H0(X , E(n)) �= 0}.
Then we obtain the following assertions.

(1) −1 − c1 ≤ β ≤ 1.
(2) If c1 = −1, then c2 ≤ 2. If c1 = 0, then c2 ≤ 3.

Proof We use the same notation as in Lemma 2.1. Note that

c2 ≤ 4 if c1 = −1 and c2 ≤ 3 if c1 = 0 (2.3)

follow from 0 < (−KPX (E))
4 =

{
64(−c2 + 5) if c1 = −1

64(−c2 + 4) if c1 = 0
. Here we use Lemma 2.1 (2.1)

for computing (−KPX (E))
4.

(1) Let us show −1 − c1 ≤ β ≤ 1. Since E∨ � E(−c1), we have 0 = h3(X , E) =
h0(X , E∨(−2)) = h0(X , E(−c1 −2)) by Lemma 2.1 (2.1), which implies β ≥ −1− c1.
On the other hand, by (2.1), we have

χ(E(1)) =
{
7 − 3

2c2 if c1 = −1

12 − 2c2 if c1 = 0.

Then (2.3) implies χ(E(1)) > 0. Hence h0(E(1)) ≥ χ(E(1)) > 0 by Lemma 2.1 (2.1),
which implies β ≤ 1.
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(2) By (2.3), it suffices to show c2 ≤ 2 when c1 = −1. Since h0(E(1)) > 0, we have
0 ≤ (−KPX (E))

3(ξ + H) = 108 − 28c2. Moreover, we have χ(E) = (1/2)(2 − c2) by
Lemma 2.1 (2.1). Hence c2 is an even integer, which implies c2 ≤ 2. 
�

Proof of Theorem 1.3 Let X be a del Pezzo 3-fold of degree 4. Let E be a normalized rank 2
weak Fano bundle on X .

(1) It is easy to see that if E is one of (i–iv) in Theorem 1.1, then h0(E) > 0, which implies
β ≤ 0. Hence it suffices to show the converse direction.
Suppose that β ≤ 0. If β < 0, then by Proposition 2.2 (1), we have c1 = 0 and β = −1.
Since −KPX (E) = 2ξ + 2H is nef, E(1) is nef. Thus IZ in the exact sequence (2.2) is a
quotient sheaf of a nef bundle E(1), which implies Z = ∅. Hence E = OX (1)⊕OX (−1).
Hence we may assume β = 0. Then we have [Z ] ∼ c2(E) for the closed subscheme Z
which appears in (2.2). Hence, if c2 = 0, then Z = ∅, which implies E � O ⊕ O(c1),
i.e., E belongs to (i) or (ii).
Hence we may assume that c2 > 0. Since β = 0, E has a global section, which implies
that ξ is linearly equivalent to an effective divisor. Then by Lemma 2.1 (2.1), we have

0 ≤ ξ.
(−KPX (E)

)3 =
{

−20c2 + 4 if c1 = −1

8 (−3c2 + 4) if c1 = 0
.

Since c2 > 0, we have c1 = 0 and c2 = 1. Hence Z is a line on X . Then the exact
sequence (2.2) gives the description (iv) in Theorem 1.1 (cf. [16,Lemma 3.2]). Hence
E is one of (i–iv) in Theorem 1.1. We complete the proof of (1). Here we note that the
extension 0 → OX → E → IL → 0 for an arbitrary line L on X is uniquely determined
by L since Ext1(IL ,OX ) � H2(IL ⊗ ωX )∨ � H1(ωX |L)∨ � C by the Serre duality
and the exact sequence 0 → IL ⊗ ωX → ωX → ωX |L → 0.

(2) First we show that (c1, c2) ∈ {(−1, 2), (0, 2), (0, 3)} assuming β > 0. In this case,
we have χ(E) ≤ 0 by Lemma 2.1 (2.1). If c1 = −1, then χ(E) = (1/2)(2 − c2) by
Lemma 2.1 (2.1) and hence c2 = 2 by Proposition 2.2. If c1 = 0, then χ(E) = 2−c2 and
hence c2 ∈ {2, 3} by Proposition 2.2. The inverse direction holds by (1). We complete
the proof. 
�

3 Characterization of slope stable weak Fano bundles with c1 = −1:
Proof of Theorem 1.4

We devote this section to the proof of Theorem 1.4.

Proof of Theorem 1.4 Let X be a del Pezzo 3-fold of degree 4. We will show the implications
(2) ⇒ (1), (1) ⇒ (3), and (3) ⇒ (2) in Theorem 1.4.

The implication (2) ⇒ (1) is obvious.
We show the implication (1)⇒ (3). Let E be a weak Fano bundle with (c1, c2) = (−1, 2).

Then by Theorem 1.3 and Proposition 2.2, we have h0(E(1)) > 0 and h0(E) = 0. Let
s ∈ H0(X , E(1)) be a non-zero section and C = Z(s) the zero locus of the section s. Then
we have an exact sequence

0 → OX
s−→ E(1) → IC/X (1) → 0. (3.1)

By the Riemann–Roch theorem and the additivity of the Euler character, we have that the
Hilbert polynomial of C is 2t + 1, where t is a variable. Hence C is a conic curve that may
be singular.
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By the above argument, in order to show that E is (v) in Theorem 1.1, it is enough to show
that E(1) is globally generated. Let P be the linear span of C in P

5. Since C is a conic, P is a
plane (i.e. two-dimensional linear subspace). Choose two smooth quadrics Q1 and Q2 such
that X = Q1 ∩ Q2. Then at least one of Q1 and Q2 does not contain P . Indeed, if both of
Q1 and Q2 contain P , then P is a divisor of X , which contradicts that Pic(X) � Z generated
by a hyperplane section HX . Therefore we may assume that the plane P is not a subscheme
of Q1. In this case, the intersection Q1 ∩ P is a conic in P . Since C ⊂ X ∩ P ⊂ Q1 ∩ P ,
we notice that C = X ∩ P . This means that C is defined by linear equations in X , and hence
IC/X (1) is globally generated. Then the exact sequence (3.1) implies that E(1) is globally
generated. We complete the proof of this implication (1) ⇒ (3).

Finally, we show the implication (3) ⇒ (2). Let E be (v) in Theorem 1.1, that is, E
is the non-trivial extension of IC by OX (−1), where C is a smooth conic. As we saw in
the proof of the implication (1) ⇒ (3), IC (1) is globally generated and hence so is E(1).
Since E(1) is globally generated, it is nef and hence ξ + H is a nef divisor on PX (E). Thus
−KPX (E) = 2ξ + 3H is ample, which means that E is a Fano bundle.

Here we note that the extension (3.1) is uniquely determined for a smooth conic C since
Ext1(IC/X (1),OX ) � H2(IC/X (−1))∨ � H1(OX (−1)|C )∨ � C by the Serre duality and
the exact sequence 0 → IC/X (−1) → OX (−1) → OX (−1)|C � OP1(−2) → 0. We
complete the proof of Theorem 1.4. 
�

4 Global generation of nef bundles with c1 = −KX

The main purpose of this section is to prove Theorems 1.7 and 1.5.

4.1 Ladders of weakMukai manifolds

For proving Theorem 1.7, we will use the existence of a smooth ladder on a weak Mukai
manifold, which is nothing but the following theorem.

Theorem 4.1 [24, 35] Let n ≥ 3 and M an n-dimensional weak Mukai manifold, i.e., M is
an n-dimensional weak Fano manifold with a nef big divisor A such that −KM ∼ (n − 2)A.
Then |A| has a smooth member. Moreover, if Bs |A| is not empty, then Bs |A| is a smooth
rational curve.

Proof If |A| is base point free, then Theorem 4.1 follows from Bertini’s theorem. Hence
we may assume that Bs |A| �= ∅. When n = 3, this theorem is proved by Minagawa
[25,Theorem 3.1]. Hence we may assume that n ≥ 4.

Let ψ : M → M be the crepant birational contraction onto the anti-canonical model M
of M , which is given by applying the Kawamata–Shokurov base point free theorem to A.
Let A be an ample Cartier divisor on M such that A = ψ∗A. Then by [24,Theorem 2.3],
a general member D ∈ |A| has only canonical singularities. By the inversion of adjunc-
tion [20,Theorem 5.50], the log pair (M, D) is plt. Then D := ψ∗D is irreducible and
reduced since ψ is birational. Since KM + D = ψ∗(KM + D), (M, D) is also plt. Hence by
[20,Corollary 5.52 and Theorem 5.50], D is normal and has only log terminal singularities.
Since D is Gorenstein, D has only canonical singularities. This argument holds even if M
has Gorenstein canonical singularities.

Thus, by repeating this argument and using Reid’s result [33,Theorem], we have a ladder
Mn−2 ⊂ Mn−3 ⊂ · · · ⊂ M1 ⊂ M0 = M such that each Mi+1 ∈ |A|Mi | has only Gorenstein
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canonical singularities.Wemay assume thatMi is smooth on the outside ofBs |A| byBertini’s
theorem. We set S = Mn−2 and X = Mn−3. Note that X is a weak Fano 3-fold such that
A|X = −KX and Bs |A| = Bs | − KX |. By Shin’s result [35,Theorem 0.5], it is known that
dim Bs | − KX | ∈ {0, 1}.

Now we show dim Bs |A| �= 0. If dim Bs |A| = 0, then it also follows from
[ibid.,Theorem 0.5] that Bs |A| = Bs | − KX | consist of a single point p ∈ M and p is
an ordinary double point of S. Moreover, p must be a singular point of X . Then by the same
argument as [25,Proof of Theorem 3.1], we can show that ψ |S : S → ψ(S) is isomorphic at
p. Since S = ψ−1(ψ(S)), ψ is isomorphic at p. In particular, M is smooth at p := ψ(p).
By the same argument as [24,Proof of Theorem 2.5], there is a member D ∈ |A| which is
smooth at p. Since ψ is isomorphic at p, D := ψ−1(D) ∈ |A| is smooth at p = Bs |A|.
Hence general members of |A| are smooth, which contradicts that X = Mn−3 is singular at
p.

Therefore, dim Bs | − KX | = dim Bs |A| = 1. Again by [35,Theorem 0.5], Bs | − KX | is
a smooth rational curve and |− KX | has a member which is smooth along Bs |− KX |. Hence
a general member of |A| is smooth. We complete the proof. 
�

4.2 Lower bound of the degree of elliptic curves on Fano 3-folds

As another preliminary for proving Theorem 1.7, we give a (non-optimal) lower bound of
the anti-canonical degree of an elliptic curve on a Fano 3-fold as follows.

Lemma 4.2 Let X be a Fano 3-fold of Picard rank 1 and B ⊂ X be an elliptic curve. Let
r(X) := max{r ∈ Z>0 | −KX ∼ r H for some divisor H} be the Fano index of X. Then we
obtain the following assertions.

(1) If r(X) = 1, then (−KX ).B ≥ (1/2)(−KX )3+3
2 .

(2) If r(X) ≤ 2, then (−KX ).B ≥ 1
4 (−KX )3.

(3) If r(X) ≥ 3, then (−KX ).B ≥ 12.

Proof (1) and (2): First we treat the case r(X) ≤ 2. By the Hartshorne-Serre correspondence,
there is a rank 2 vector bundle G fitting into 0 → OX → G → IB(−KX ) → 0. This exact
sequence implies h0(G(KX )) = 0, which implies that G is slope stable (resp. slope semi-
stable) if r(X) = 1 (resp. 2). Then (1) follows from [5,Lemma 3.1] and (2) follows from the
Bogomolov inequality (c1(G)2 − 4c2(G))(−KX ) ≤ 0.

(3): When r(X) ≥ 3, it is known by Kobayashi and Ochiai that X is isomorphic to a
hyperquadric Q

3 in P
4 or the projective 3-space P

3. It is easy to see that the degree of every
elliptic curve B on Q

3 (resp. P3) is greater than or equal to 4 (resp. 3). Thus we obtain (3). 
�

4.3 Proof of Theorem 1.7

Let X be a smooth Fano 3-fold of Picard rank 1 andF a nef bundlewith detF = O(−KX ) and
rkF ≥ 2.Letπ : M := PX (F) → X be thenatural projection and ξ a tautological divisor. Set
n = dim M = 2+rkF . Recall the assumption ξdim M = c1(F)3−2c1(F)c2(F)+c3(F) > 0.

Since−KM ∼ (rkF)ξ , M is a weak Mukai manifold. Then Theorem 4.1 gives the fol-
lowing smooth ladder of |ξ |:

Mn−2 ⊂ Mn−3 ⊂ · · · ⊂ M1 ⊂ M0 = M = PX (F), (4.1)

where Mi is a smooth prime member of |ξ |Mi−1 |.
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Until the end of this proof, we suppose that F is not globally generated. We proceed in 5
steps.

4.3.1 Step 1.

In Step 1 and Step 2, we prepare some facts on the weak Fano 3-foldMn−3 and the K3 surface
Mn−2.

Claim 4.3 Set X̃ := Mn−3, which is a weak Fano 3-fold. Then πX̃ := π |X̃ : X̃ → X is the
blowing-up along a (possibly disconnected) smooth curve C on X. Moreover, the following
assertions hold.

(1) c2(F) ≡ C and c3(F) = −2χ(OC ).
(2) Every connected component of C is of genus g ≥ 1.

Proof Let s1, . . . , srkF−1 ∈ H0(X ,F) � H0(M,O(ξ)) be the sections defining X̃ . Set
s = (s1, . . . , srkF−1) : O⊕ rk F−1 → F and let C := {x ∈ X | rk s(x) < rkF − 1} be
the degeneracy locus of s, which is possibly empty. Since X̃ is a smooth variety, X̃ is the
blowing-up of X along C with dimC ≤ 1 (see [11,Lemma 6.9]). Moreover, we obtain the
following exact sequence:

0 → O⊕ rkF−1 s→F → IC (−KX ) → 0. (4.2)

By the exact sequence (4.2), we have Exti (OC ,OX ) = Exti−1(IC ,OX ) = 0 for i ≥ 3.
Hence C is purely 1-dimensional or empty. If C is empty, then we have F = O⊕ rkF−1 ⊕
O(−KX ), which is globally generated since X is of Picard rank 1 (cf. [18,Corollary 2.4.6]).
Hence we may assume that C is not empty. Moreover, it follows from [26,Theorem (3.3)]
that C is smooth.

(1) The equalityC ≡ c2(F) follows from the exact sequence (4.2).Moreover, since c1(F)3−
2c1(F)c2(F)+c3(F) = ξ rkF+2 = (−KX̃ )3 = (−KX )3+2KX .C−2χ(OC ), we obtain
that c3(F) = −2χ(OC ).

(2) We assume that a connected component Ci of C is a smooth rational curve. Tak-
ing the restriction of the exact sequence (4.2) to Ci , we obtain an exact sequence

O⊕ rkF−1
P1

s|Ci→ F |Ci → N∨
Ci /X (−KX |Ci ) → 0. Since detF = O(−KX ) and

deg(N∨
Ci /X

(−KX |Ci )) = deg(−KCi )−deg(KX |Ci )by the adjunction formula, the degree

of �(s|Ci ) is −2, which contradicts that �(s|Ci ) is a quotient ofO⊕ rkF−1
P1

. We complete
the proof. 
�

4.3.2 Step 2.

Claim 4.4 Set S := Mn−2, which is a K3 surface. Set S = π(S) and πS := π |S : S → S.
Then the following assertions hold.

(1) There is an elliptic fibration fS : S → P
1 and a section � of fS such that ξ |S ∼ gB + �

for a general fiber B of fS . Moreover, it holds that

Bs |ξ | = Bs |ξ |S | = �. (4.3)

(2) It holds that g = 1
2 (−KX )3 + KX .C − χ(OC ) + 1 ∈ Z≥2.

(3) S is normal and contains the curve C defined in Claim 4.3.
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(4) If � is not contracted by πS, then πS is isomorphic along a general fS-fiber B. In
particular, a smooth elliptic curve B := πS(B) is an effective Cartier divisor on S.
Moreover, it holds that

B.C = (−KX |S
)
.B − 1. (4.4)

Proof Sinceweassume thatBs |ξ | is not empty, so isBs |ξ |S |,where ξ |S is a nef andbig divisor
on S. Then (1) is known by [36,Lemma 2.3] and [34,(2.7.3) and (2.7.4)]. (2) immediately
follows from c1(F)3−2c1(F)c2(F)+c3(F) = ξ rkF+2 = (ξ |S)2 = (gB+�)2 = 2g−2 > 0
and Claim 4.3 (1).

(3) Set ES := Exc(πX̃ ) ∩ S where πX̃ is the blowing-up defined in Claim 4.3. Then ES

is a member of some tautological bundle of the P
1-bundle Exc(πX̃ ) → C . Hence S contains

C and every fiber of S → S is connected, which implies S is normal.
(4) Suppose � is not contracted by πS . Then for every exceptional curve l of πS , we have

1 = ξ.l = (gB+�).l ≥ g(B.l). Since g ≥ 2,we have B.l = 0.HenceπS is isomorphic along
B. Thus B is aCartier divisor on S and it holds that B = π∗

S B. Since−KX̃ |S = ξ |S = gB+�,
we have B.C = π∗

S B.ES = B.(π∗
S (−KX |S) − (gB + �)) = (−KX ).B − 1, which implies

the equality (4.4). 
�

4.3.3 Step 3.

In this step, we show the following claim.

Claim 4.5 If � is not contracted by πS, then, for a general fS-fiber B, we have

1

4
(−KX )3 ≤ (−KX ).B, (4.5)

where B = πS(B).

Proof Since� is not contracted byπS , B := πS(B) is a smooth elliptic curve byClaim4.4 (4).
The inequality (−KX ).B ≥ (1/4)(−KX )3 follows fromLemma4.2when r(X) ≤ 2.Assume
that r(X) ≥ 3, that is, X = P

3 orQ
3. Let HX be an ample generator of Pic(X) and r := r(X).

Set H = (π∗
X HX )|S and A := r H ∼ (π∗

X (−KX ))|S . To obtain a contradiction, we assume
(−KX ).B < (1/4)(−KX )3. Then Lemma 4.2 gives (−KX ).B = 12. When X = P

3 (resp.
Q

3), B is a plane cubic curve (resp. a complete intersection of two quadrics in P
3) and

hence H − B is effective. Let C̃ ⊂ S be the proper transform of C ⊂ S. Then C̃ is a
nef divisor on S by Claim 4.3 (2). Hence we have H .C̃ = (H − B + B).C̃ ≥ B.C̃ =
A.B − 1 by the equality (4.4). Since � is not contracted by πS , we have H .� ≥ 1 and
hence gB.H + 1 ≤ (gB + �).H = (A − C̃).H ≤ A.H − A.B + 1. Hence we have
(A + gH).B ≤ A.H . Since A = r H , we have H .B ≤ r

r+g H
2. When X = P

3 (resp. Q
3),

we obtain H .B ≤ 16
4+g < 3 (resp. H .B ≤ 12

3+g < 3) since g ≥ 2, which is a contradiction.

Hence we have (−KX ).B ≥ (1/4)(−KX )3. 
�

4.3.4 Step 4.

In this step, we show the following key claim.

Claim 4.6 The base locus Bs |ξ | = � is contracted by π .
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Proof of Claim 4.6 Wederive a contradictionby assumingπ∗
X (−KX ).� ≥ 1.ByClaim4.4 (1),

we have ξ |S ∼ gB + � on S and hence

g (−KX ) .B + 1 ≤ π∗
S

(−KX |S
)
.(gB + �) = π∗ (−KX ) .ξdim PX (F)−1 (4.6)

= c1(F)3 − c1(F)c2(F) = (−KX )3 − (−KX ) .C

by Claim 4.3 (1). Then Claim 4.4 (2) implies

(−KX )3 − (−KX ) .C = (g − 1) + (−KX )3

2
+ χ (OC ) ≤ (g − 1) + (−KX )3

2
. (4.7)

Then the inequalities (4.5), (4.6), and (4.7) imply g (−KX )3

4 + 1 ≤ (g − 1) + (−KX )3

2 , which
is equivalent to

(g − 2)
(
(−KX )3 − 4

) ≤ 0. (4.8)

Noting that −KX .B ≥ 2 since OX (−KX ) is globally generated (cf. [18,Corollary 2.4.6]).

Hence we also obtain 2g + 1 ≤ (g − 1) + (−KX )3

2 from (4.6) and (4.7), which implies
8 ≤ 2(g + 2) ≤ (−KX )3. Then (4.8) implies g = 2. Hence the inequalities (4.5), (4.6), and
(4.7) are equalities. Thus we have the following assertions:

(a) −KX .B = (−KX )3/4 ≥ 2 and hence (−KX )3 is divisible by 4.
(b) χ(OC ) = 0 and hence 2(−KX .C) = (−KX )3 − 2 by Claim 4.4 (2).

If follows from (a) and Lemma 4.2 (1) that r(X) ≥ 2. It also follows from (a) and (b) that
−KX .C is an oddnumber. In particular, theFano index r(X)of X is 3, i.e., X is a hyperquadric,
which contradicts (a). Hence we obtain a contradiction and conclude that π∗(−KX ).� = 0,
which means that � is contracted by π . 
�

4.3.5 Step 5.

Finally, we prove Theorem 1.7. Let τ : M̃ := Bl� M → M = PX (F) be the blowing-up.
Set D := Exc(τ ) and ξ̃ := τ ∗ξ − D. Since ξ |S ∼ gB + �, |̃ξ | is base point free. Let

 : M̃ → P

g+rkF be the morphism given by |̃ξ | and W its image. Then, for the proper
transform S̃ ⊂ M̃ of S, the morphism S̃ → 
(S̃) is given by |gB|. Since 
(S̃) is a linear
section of W , W is of degree g. In particular, the �-genus of W ⊂ P

g+rkF is 0. Moreover,
D → W is birational.

Let us compute g = degW and the normal bundle N�/M . By Claim 4.6, � ⊂ X̃ is
contracted by πX . Then Claim 4.3 implies that � is a line in a fiber of M = PX (F) →
X . Therefore, it holds that N�/M � OP1(1)

⊕ rkF−2 ⊕ O⊕3
P1

. Hence D is isomorphic to

PP1(O⊕ rkF−2⊕O(1)⊕3). Under this identification,O(̃ξ )|D is isomorphic to the tautological
bundle. Since 
|D : D → W is birational, we have g = degW = ξ̃ rkF+1.D = 3. Since
the �-genus of W is 0, D = PP1(O(1)⊕3 ⊕ O⊕ rkF−2) → W is the morphism given by the
complete linear system of the tautological bundle and W is a join of P

rkF−3 and P
1 × P

2 in
P
rkF+3.
Then we let V = Mn−4 ⊂ M = PX (F) be the intersection of general (r −2) members of

|ξ |. V contains � since � is the base locus of |ξ |. Let τV : Ṽ := Bl� V → V be the blowing-
up and DV := Exc(Ṽ → V ). Then |τ ∗

V ξ − DV | induces the morphism ψ : Ṽ → P
1 × P

2.
Note that DV → P

1×P
2 is isomorphic. Let F̃1, F̃2 be two general fibers of pr1 ◦ψ : Ṽ → P

1.
For each i ∈ {1, 2}, we set Fi := τV ∗ F̃i . Since DV � P

1 × P
2 and DV → � coincides with

123



Classification of rank two weak Fano bundles... 2897

the first projection, it holds that F1 ∩ F2 = ∅. Hence |Fi | is base point free and induces a
morphism h : V → P

1. Thus we obtain the following commutative diagram:

DV

�

Ṽ
τV

P
1 × P

2

pr1

� V
h

π |V

P
1

X

Recall that the h-section � is contracted by π |V : V → X , which is an adjunction theoretic
scroll. We set x := π |V (�) and J := π |−1

V (x). Then J is a projective space containing �.
If dim J ≥ 2, then h|J : J → P

1 must contract the whole J , which contradicts that � is
a section of h. Hence J = �. Therefore, the induced morphism (π |V , h) : V → X × P

1

is birational. Since every fiber of π |V : V → X is a projective space, V is isomorphic to
X × P

1.
Let α : O⊕r−2

X → F be the morphism corresponding to (r − 2) members of |ξ | which
define V ⊂ PX (F). Since V � X ×P

1, α is injective and Cok α � L⊕2 for some line bundle
L. Since detF = O(−KX ), −KX is divided by 2 in Pic(X) and L = OX (−KX

2 ). Hence it

holds that F � O⊕r−2
X ⊕ OX (−KX

2 )⊕2. Since F is not globally generated, so is OX (−KX
2 ).

By the classification of del Pezzo 3-folds, X is a del Pezzo 3-fold of degree 1 (cf. [10]). We
complete the proof of Theorem 1.7. 
�

4.4 Proof of Theorem 1.5

In this section,wegive a corollary as consequences of the above results and showTheorem1.5.

Corollary 4.7 Let X be a del Pezzo 3-fold of Picard rank 1. Let E be a rank 2 weak Fano
bundle on X with c1(E) = 0. Then the zero scheme of a general global section of E(1) is a
connected smooth elliptic curve and h1(E(−1)) = 0. Especially, if E is slope stable, then E
is an instanton bundle [9, 21].

Proof First, we treat the case X is of degree 1 and E = O⊕2
X . In this case, it is well-known

that X is a smooth sextic hypersurface of P(1, 1, 1, 2, 3) [10] and hence the zero scheme of
a general section s ∈ H0(E(1)) = H0(OX (1))⊕2, which is a general complete intersection
of two members of |OX (1)|, is a connected smooth elliptic curve. Hence, by Theorem 1.7,
we may assume that F := E(1) is globally generated. Let C be the zero scheme of a general
s ∈ H0(F). Since C is a smooth curve with ωC � OC , C is a disjoint union of smooth
elliptic curves. We show that C is connected. Let d be the degree of X and ξF be the
tautological bundle of PX (F). Since ξ4F = c1(F)3 − 2c1(F)c2(F) = 8d − 4 degC > 0,
we have degC < 2d . By Lemma 4.2 (2), the degree of every connected component of C
is greater than or equal to d . Therefore, C must be connected. Using an exact sequence
0 → O → F → IC (2) → 0, we have H1(E(−1)) = H1(F(−2)) = H1(IC ) = 0 since C
is a smooth connected curve and H1(OX ) = 0. Therefore, if E is slope stable, then E is an
instanton bundle by definition. 
�
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Proof of Theorem 1.5 The implication (1)⇒ (2) follows fromCorollary 4.7 and Theorem 1.7.
The implication (2) ⇒ (1) for (vi) (resp. (vii)) holds since it follows from [14] (resp. our
assumption in (vii)) that the curve C can be defined by quadratic equations. We complete the
proof. 
�

5 Existence: Proof of Theorem 1.6

In this section, we show the existence of vector bundles for each case in Theorem 1.1 on an
arbitrary del Pezzo 3-fold of degree 4. The existence of the cases (i-iii) is clear, and that of
the case (iv) and (v) was proved in Proof of Theorem 1.3 in Sect. 2 and Proof of Theorem 1.4
in Sect. 3 respectively. The existence of the case (vi) is equivalent to the existence of a
special Ulrich bundle of rank 2 (cf. Remark 1.2 (3)), which is proved by [4,Proposition
6.1]. Thus, the remaining case is only (vii). The main purpose of this section is to prove the
existence of a bundle belonging to (vii), which is equivalent to the following theorem by the
Hartshorne–Serre correspondence.

Theorem 5.1 (= Theorem 1.6 for (vii)) Let X ⊂ P
5 be an arbitrary smooth complete inter-

section of two hyperquadrics. Then X contains an elliptic curve C of degree 7 defined by
quadratic equations.

The key proposition is the following.

Proposition 5.2 Let C ⊂ P
5 be an elliptic curve of degree 7. Then the following assertions

are equivalent.

(1) C is defined by quadratic equations.
(2) C has no trisecants.
(3) For every rank 3 subsheaf E of 


P5(1)|C , we have μ(E) < −7/5. In this article, we call
this property the slope stability for rank 3 subsheaves.

By Proposition 5.2, it suffices to show that every smooth complete intersection X of two
hyperquadrics in P

5 contains an elliptic curve C of degree 7 having no trisecants. We will
obtain such a curve by smoothing the union of a conic and an elliptic curve of degree 5.

5.1 Mukai’s technique

Our proof of the implication (3)⇒ (1) in Proposition 5.2 is based onMukai’s technique [29].
We quickly review his technique.

LetC be an elliptic curve of degree 7 in P
5. Let σ : P̃ := BlC P

5 → P
5 be the blowing-up.

Set H := σ ∗O
P5(1), E = Exc(σ ), and e := σ |E . Let i : C ↪→ P

5 and j : E ↪→ P̃ be the
inclusions. Note that |2H − E | is base point free if and only if C is defined by quadratic
equations. Consider the morphism i × σ : C × P̃ → P

5 × P
5. We denote the diagonal in

P
5 × P

5 by � and its pull-back via i × σ by Ẽ . Note that Ẽ is isomorphic to E . On P
5 × P

5,
there is the following natural exact sequence 


P5(1) �O
P5(−1) → I�/P5×P5 → 0. Taking

the pull-back under i × σ , we have 

P5(1)|C � O

P̃
(−H) → IẼ/C×P̃

→ 0. Since Ẽ is of

codimension 2 in C × P̃, the kernel of the above surjection, say E , is locally free. Thus, we
obtain an exact sequence 0 → E → 


P5(1)|C � OBlC P5(−H) → IẼ/C×BlC P5 → 0 on

C × BlC P
5. For each closed point x ∈ BlC P

5, we set

Ex := E|C×{x} (5.1)
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and regard it as a locally free sheaf on C . In this setting, Mukai [29] proved the following
theorem:

Theorem 5.3 [29,Lemma 1 and Lemma 2] Fix x ∈ BlC P
5. If H1(Ex ⊗ ξ) = 0 for a line

bundle ξ on C of degree 2, then the complete linear system |2H − E | is free at x. Moreover,
Ex is a rank 4 subsheaf of 


P5(1)|C such that det Ex = OC (−1).

5.2 Proof of Proposition 5.2

The implication (1) ⇒ (2) is obvious.
We show the implication (2)⇒ (3). Let� : C ↪→ P

6 be the embedding given by |OC (1)|.
Then there is a point p ∈ P

6 \ �(C) such that the image of �(C) by the projection from p
is C ⊂ P

5. Hence we obtain the following exact sequence:

0 → 

P5(1)

∣
∣C → 
P6(1)

∣
∣
C → OC → 0. (5.2)

Assume that 

P5(1)|C has a rank 3 subsheaf F such that μ(F) ≥ −7/5. Since F is also a

subsheaf of a slope stable bundle
P6(1)|C [6,Theorem1.3],we have−7/5 ≤ μ(F) < −7/6,
which implies that degF = −4. Let F̂ ⊂ 


P5(1)|C be the saturation ofF in

P5(1)|C . Since

F̂ is also a rank 3 subsheaf of 
P6(1)|C , we also have deg(F̂) = −4 by the same argument
as above. Hence it follows that F̂ = F , i.e., F is saturated. Let G := 


P5(1)|C/F , which is
locally free. Considering the dual, we obtain an exact sequence 0 → G∨ → T

P5(−1)|C →
F∨ → 0. We set V = C

6 and P
5 := P(V ). Note that there is a surjection V∨ ⊗ OC �

T
P5(−1)|C . Let I := �(V∨ ⊂ H0(T

P5(−1)|C ) → H0(F∨)) and K := Ker(V∨ → I ).
Then we have a surjection I ⊗ OC � F∨. Since rkF∨ = 3 and H0(F∨) = 4, we have

I = H0(F∨). Thus Ker(I ⊗ OC → F∨) is an invertible sheaf O(−η), where deg η = 4.
Taking the duals again, we have the following diagram:

0 0

OC (1) OC (η)

0 K∨ ⊗ OC V ⊗ OC I∨ ⊗ OC 0

0 G 

P5(1)|C F 0

0 0.

Let l be the line corresponding to the injection I∨ → V . Under the natural morphism
ε : V ⊗ OP(V ) � OP(V )(1), the image of I∨ ⊗ OP(V ) is nothing but Il/P(V )(1). Taking the
restriction on C , we obtain surjections I∨ ⊗ OC � Il/P(V )(1)|C � Il∩C/C ⊗ OC (1) �
OC (η). Hence Il∩C/C is isomorphic to OC (−1) ⊗ OC (η), which is of degree −3. Hence l
is a trisecant of C .

Finally, we show the implication (3)⇒ (1). Assume that

P5(1)|C is slope stable for rank

3 subsheaves. Let x ∈ BlC P
5 be a point and set Ex as in (5.1). Then by Theorem 5.3 and
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the exact sequence (5.2), we obtain inclusions Ex ↪→ 

P5(1)|C ↪→ 
P6(1)|C . Note that the

determinant bundles of the above three vector bundles are isomorphic.
It is known (cf. [6,Proposition 1.1], [1]) that there is a unique decomposition Ex :=⊕N
i=1 Ei such that each Ei is indecomposable. Since 
P6(1)|C is slope stable and 


P5(1)|C
is slope stable for rank 3 subsheaves, the following assertions hold for each i :

(a) μ(Ei ) < −7/6.
(b) If rk Ei = 3, then μ(Ei ) < −7/5.

Note that
N∑

i=1

deg(Ei ) = −7. Set ri := rk(Ei ) and di := deg Ei . We may assume that

r1 ≤ r2 ≤ · · · ≤ rN . Then the sequence (ri ) is one of the following: (1, 1, 1, 1), (1, 1, 2),
(1, 3), (2, 2), or (4). By Theorem 5.3, it suffices to show that H1(Ex ⊗ ξ) = 0 for a general
degree 2 line bundle ξ for each case.

(i) If (ri ) = (1, 1, 1, 1), then we have di < −7/6 and hence di ≤ −2, which contradicts

that
4∑

i=1

di = −7.

(ii) If (ri ) = (1, 1, 2), then we have d1, d2 ≤ −2 and d3 ≤ −3. Hence d1 = d2 = −2 and
d3 = −3. Since E3 is slope stable, there is an exact sequence 0 → L−2 → E3 → L−1 →
0, where Li is a line bundle of degree i . Let ξ be a line bundle of degree 2 such that ξ−1

is neither E1, E2, nor L−2. Then we have H1(E ⊗ ξ) = H1(E1 ⊗ ξ) ⊕ H1(E2 ⊗ ξ) ⊕
H1(E3 ⊗ ξ) = 0.

(iii) Assume that (ri ) = (1, 3). By (a), we have d1 ≤ −2. By (b), we have d2 ≤ −5. Hence we
have d1 = −2 and d2 = −5. Let ξ be a line bundle of degree 2 such that ξ−1 �� E1. Then
we have H1(Ex ⊗ ξ) = H1(E1 ⊗ ξ) ⊕ H1(E2 ⊗ ξ) = H0(E∨

1 ⊗ ξ−1)∨ ⊕Hom(ξ, E∨
2 )∨.

Note that H0(E∨
1 ⊗ ξ−1) = 0 since ξ−1 �� E1. Since E2 is slope stable, so is E∨

2 . Since
μ(E∨

2 ) = 5/3, we have Hom(ξ, E∨
2 ) = 0.

(iv) If (ri ) = (2, 2), then di ≤ −3 for each i . Hence deg E1 = −3 and deg E2 = −4. Since E1
is slope stable and E2 is slope semi-stable, there are exact sequences 0 → L−2 → E1 →
L−1 → 0 and 0 → M−2 → E2 → M−2 → 0, where Li is a line bundle of degree i
andM−2 is a line bundle of degree −2. Let ξ be a line bundle of degree 2 such that ξ−1

is not equal to L−2 or M−2. Then It is easy to see H1(E ⊗ ξ) = 0.
(v) If Ex is slope stable, then H1(Ex ⊗ ξ) = Hom(ξ, E∨

x )∨ = 0 for every line bundle ξ of
degree 2.

We complete the proof of Proposition 5.2. 
�

5.3 Proof of Theorem 5.1

Let X ⊂ P
5 be an arbitrary complete intersection of two hyperquadrics. We will construct an

elliptic curve C of degree 7 on X such that C is defined by quadratic equations. We proceed
with 4 steps.

Step 1. First of all, we confirm the following lemma.

Lemma 5.4 For an arbitrary closed point x ∈ X, lines on X passing through x are finitely
many.

Proof Let ψ : Blx X → P
4 be the restriction of Blx P

5 → P
4. Then the Stein factorization

of ψ is a crepant birational contraction. Since the proper transforms of the lines passing
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through x are contracted byψ , if there are infinitely many lines on X passing through x , then
ψ contracts a divisor D, which contradicts the classification of weak Fano 3-folds having
crepant divisorial contractions [19]. 
�

Step 2. In this step, we show the following lemma.

Lemma 5.5 Let � be a smooth conic on X. Then there exists a smooth elliptic curve C of
degree 5 satisfying the following.

(i) The scheme-theoretic intersection C ∩ � is reduced one point.
(ii) C ∪ � has no trisecants on X.

Proof Let � be a smooth conic on X . Since the linear span 〈�〉 ⊂ P
5 is not contained in X ,

we have 〈�〉 ∩ X = �. In particular, for any two points on �, the line passing through them
is not contained in X .

Let x1 ∈ � be a point. Let S0 ⊂ X be a general hyperplane section such that S0 has no lines
on X passing through x1. Set {x1, x2} = S0 ∩ �. Let l := 〈x1, x2〉. Then l ∩ X = {x1, x2}.
Note that � := |OX (1) ⊗ mx1,x2 | is a 3-dimensional linear system whose general members
are smooth. By Lemma 5.4, the lines passing through x1 or x2 on X are finitely many. Hence

a general member S ∈ � does not contain any lines passing through x1 or x2. (5.3)

We note that S ∩ � = {x1, x2} still holds.
Let ε : S → P

2 be the blowing-up of P
2 at 5 points. Let h be the pull-back of a line

and e1, . . . , e5 the exceptional curves. Let σ : S̃ → S be the blowing-up at x1 and e0 the
exceptional curve. Note that S̃ is a del Pezzo surface by (5.3). We take a general member
C̃ ∈ |3h − (e0 + e1 + · · · + e4)|. Set C = σ(C̃), which is smooth and passing through x1.
Note that C is an elliptic curve of degree 5 on S. By taking general C̃ , we may assume that
C does not pass through x2. Since S ∩ � = {x1, x2}, we have C ∩ � = x1, which implies (i).

We show (ii). First of all, there are no bisecants of � on X since 〈�〉 ∩ X = �. Moreover,
C has no trisecants on X . Indeed, since S is a complete intersection of two hyperquadrics in
P
4, if C has a trisecant l, then l is contained in S. Since every line l in S is linear equivalent

to ei for 1 ≤ i ≤ 5, h − (ei + e j ) for 1 ≤ i < j ≤ 5, or 2h − (e1 + · · · + e5), we have
C .l ≤ 2.

Hence, if there is a trisecant l ofC∪�, lmust be a bisecant ofC .Note that every bisecant l of
C is contained in S. In fact, since l = 〈C ∩ l〉 ⊂ 〈C〉 ⊂ 〈S〉, we have l = l∩X ⊂ 〈S〉∩X = S.
Then by (5.3), we have∅ = l∩{x1, x2} = l∩�∩ S = l∩�. Therefore, every bisecant l ofC
does not meet �. Hence � ∪C has no trisecants on X . We complete the proof of Lemma 5.5.


�
Step 3. Let C and � be as in Lemma 5.5. We regard C ∪ � as a reduced curve on X . Then

the Hilbert polynomial of C ∪ � is 7t , where t is a variable.
In this step, we prove thatC∪� is strongly smoothable in X in the sense of [12]. Our proof

is essentially the same as [4,Proof ofLemma6.2]. Let x1 = C∩�. By [12,Theorem4.1], it suf-
fices to check that H1(NC/X (−x1)) = 0 and H1(N�/X ) = 0. Note that H1(NC/X (−x1)) =
0 is already proved in [4,Proof of Lemma 6.2]. Let us show that H1(N�/X ) = 0. Take a
smooth hyperquadric Q

4 in P
5 containing X . Then N�/Q4 � OP1(2)

3. From the normal
bundle sequence 0 → N�/X → N�/Q4 � OP1(2)

3 → NX/Q4 |� � OP1(4) → 0, it follows
thatN�/X is spanned, which implies the vanishing H1(N�/X ) = 0. Hence C ∪� is strongly
smoothable.

Step 4. Finally, we prove Theorem 5.1. LetC and� be as in Lemma 5.5. By Step 3, there is
a smooth neighborhood � of Hilb7t (X) at [C ∪�] such that the base change of the universal
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family C → � is a smoothing of C ∪ �. Let C ′ be a general fiber of this smoothing. Since
C ∪ � is connected, so is C ′. Hence C ′ is an elliptic curve of degree 7. Since C ∪ � has no
trisecants on X , general fibers have no trisecants on X also. Hence C ′ has no trisecants on
X . Note that every trisecant l of C ′ in P

5 must be contained in X since C ′ is on X and X is a
complete intersection of two hyperquadrics in P

5. Hence C ′ has no trisecants on P
5, which

implies that C ′ is defined by quadratic equations by Proposition 5.2. We complete the proof
of Theorem 5.1 and that of Theorem 1.6. 
�

5.4 An example of a non-weak Fano instanton bundle

We conclude this paper as showing that every complete intersection of two hyperquadrics
X ⊂ P

5 has an instanton bundle E with c2(E) = 3 such that E is not a weak Fano bundle. To
show the above result, we show the following proposition.

Proposition 5.6 Let X ⊂ P
5 be an arbitrary smooth complete intersection of two hyper-

quadrics. Let l ⊂ X be a general line such that Nl/X � O⊕2
l . Then there exists a

non-degenerate smooth elliptic curve C ⊂ X ⊂ P
5 of degree 7 such that C transversally

meets l at 3 points.

Proof Let σ : X̃ := Bll X → X be the blowing-up. Then the restriction of the projection
morphism Bll P

5 → P
3 is a birational morphism τ : X̃ → P

3. It is known that τ is the
blowing-up along a smooth curve B ⊂ P

3 of genus 2 and degree 5 (cf. [18,Proposition 3.4.1]).
Letting E = Exc(σ ) and Q0 := τ(E), we can show that Q0 ⊂ P

3 is a smooth quadric surface
containing B.

E

� σ |EBlB P
3 = X̃ = Bll X

τ σ

B Q0⊂ P
3⊂ X ⊃ l

(5.4)

From now on, we fix an isomorphism

Q0 � (P1)2 s.t. B ∈ |O(P1)2(2, 3)|. (5.5)

Then pr1 : (P1)2 → P
1 coincides with σ |E : E → l under this identification E � Q0 �

(P1)2.
Let us take a general quadric Q1 ⊂ P

3. Then C01 := Q0 ∩ Q1 is a smooth elliptic curve
and B ∩ Q1 consists of 10 points. Note that C01 contains B ∩ Q1. Take distinct 5 points
p1, . . . , p5 ∈ B ∩ Q1 and set Z = {p1, . . . , p5}.
Claim 5.7 The following assertions hold.

(1) The linear system |IZ/Q1(2)| has smooth members and Bs |IZ/Q1(2)| = Z.
(2) A general smooth member C12 ∈ |IZ/Q1(2)| satisfies the following conditions.
(a) C12 meets B transversally and at 5 points p1, . . . , p5.
(b) C12 meets Q0 transversally at 8 points p1, . . . , p5, q1, q2, q3.
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(c) Under the identification Q0 � (P1)2 as in (5.5), we have pr1(qi ) �= pr1(q j ) for 1 ≤ i <

j ≤ 3.

Proof We show (1). Since C01 contains Z , we have C01 ∈ |IZ/Q1(2)|. Hence general
members of |IZ/Q1(2)| are smooth. Moreover, the proper transform of C01 on BlZ Q1

is an anti-canonical member, which implies that | − KBlZ Q1 | is base point free. Hence
Bs |IZ/Q1(2)| = Z .

We show (2). The condition (a) is general since B ∩ Q1 = {p1, . . . , p10} and
Bs |IZ/Q1(2)| = Z . In order to show the conditions (b) and (c) are general, we recall the
inclusions Z ⊂ C01 = Q0 ∩ Q1 ⊂ Q1 and consider the following exact sequence:

0 → OQ1 → IZ/Q1(2) → IZ/C01(2) → 0.

It follows from the above exact sequence that the restriction morphism H0(IZ/Q1(2)) →
H0(IZ/C01(2)) is surjective. Note that L3 := IZ/C01(2) is an invertible sheaf of degree 3
on the elliptic curve C01. Hence a general member Z3 ∈ |IZ/C01(2)| consists of 3 points
{q1, q2, q3}. Therefore, the condition (b) is general.

Finally, we show the condition (c) is general. Recall the inclusion C01 ⊂ Q0 � (P1)2.
Assume that #(pr1(Z3))red ≤ 2 for a general member Z3 ∈ |IZ/C01(2)| = |L3|. This means
that a general section s ∈ H0(C01,L3) can be divided by a section of L2 := OP1(1, 0)|C01 ,
which is a line bundle of degree 2. Then the linear map H0(L2)⊗ H0(L3 ⊗L∨

2 ) → H0(L3)

is surjective, which is a contradiction. Hence #(pr1(Z3)) = 3 for general member Z3 =
{q1, q2, q3}. Therefore, the condition (c) is general. We complete the proof of Claim 5.7.


�
Let C12 ∈ |IZ/Q1(2)| be a general smooth member. Recall the birational map P

3 ��� X
in the diagram (5.4). We show that the proper transform C12 ⊂ X of C12 is a non-degenerate
septic smooth elliptic curve on X which meets the line l at 3 points transversally.

First, we show C12 ⊂ X is of degree 7. Let C̃12 ⊂ BlB P
3 be the proper transform

of C12 on the blowing-up τ : BlB P
3 → P

3. By the condition Claim 5.7 (2) (a), we have
Exc(τ ).C̃12 = 5. Since σ ∗OX (1) � τ ∗OP3(3) ⊗O(−Exc(τ )), we have σ ∗OX (1).C̃12 = 7.
Hence C12 is of degree 7.

Next, we show C12 is a smooth elliptic curve meeting l transversally at 3 points. By the
condition Claim 5.7 (2) (b), the proper transform E ⊂ BlB P

3 of Q0 meets C̃12 transversally
at 3 points. As we saw in the diagram (5.4), E � Q0 is contracted by σ : BlB P

3 → X
and σ |E : E → l corresponds to the 1st projection pr1 : (P1)2 → P

1 under the isomorphism
(5.5). Then by the condition Claim 5.7 (2) (c), σ |C̃12

: C̃12 → C12 is isomorphic. Moreover,

C12 meets l at the image of the 3 points q1, q2, q3. Therefore, C12 is a smooth elliptic curve
of degree 7 which meets l at 3 points.

Finally, we confirm that the embedding C12 ⊂ X ⊂ P
5 is non-degenerated. Assume that

there is a hyperplane section H of X containing C12. Since l is a trisecant of C12, H must
contain l. Thus the proper transform H of H on P

3 is a hyperplane of P
3. Then H contains

C12, which contradicts thatC12 is of degree 4 inP
3.We complete the proof of Proposition 5.6.


�
Remark 5.8 Let X ⊂ P

5 be an arbitrary smooth complete intersection of two hyperquadrics.
By Proposition 5.6, there is a smooth elliptic curve C of degree 7 having a trisecant. By the
Hartshorne-Serre construction, there is a rank 2 vector bundle E fitting into 0 → OX (−1) →
E → IC/X (1) → 0. This vector bundle E is an instanton since H1(E(−1)) = H1(IC/X ) = 0
and c2(E) = 3. However, E is not a weak Fano bundle since there are surjections E|l �
IC/X (1) � Ol(−2).
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