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Abstract

Human immunodeficiency virus type 1 (HIV-1) continues to be a major cause of disease

and premature death. As with all viruses, HIV-1 exploits a host cell to replicate. Improving

our understanding of the molecular interactions between virus and human host proteins is

crucial for a mechanistic understanding of virus biology, infection and host antiviral activities.

This knowledge will potentially permit the identification of host molecules for targeting by

drugs with antiviral properties. Here, we propose a data-driven approach for the analysis

and prediction of the HIV-1 interacting proteins (VIPs) with a focus on the directionality of

the interaction: host-dependency versus antiviral factors. Using support vector machine

learning models and features encompassing genetic, proteomic and network properties, our

results reveal some significant differences between the VIPs and non-HIV-1 interacting

human proteins (non-VIPs). As assessed by comparison with the HIV-1 infection pathway

data in the Reactome database (sensitivity > 90%, threshold = 0.5), we demonstrate these

models have good generalization properties. We find that the ‘direction’ of the HIV-1-host

molecular interactions is also predictable due to different characteristics of ‘forward’/pro-

viral versus ‘backward’/pro-host proteins. Additionally, we infer the previously unknown

direction of the interactions between HIV-1 and 1351 human host proteins. A web server for

performing predictions is available at http://hivpre.cvr.gla.ac.uk/.

Author summary

Human immunodeficiency virus type 1 (HIV-1) is the cause of acquired immunodefi-

ciency syndrome (AIDS), a disease with no effective cure despite decades of research. A

better understanding of the molecular interactions between HIV-1 and human host pro-

teins can facilitate the discovery of potential host targets which may be of great impor-

tance for the development of antiviral drugs that go beyond mere control of infection. In

this study, we elucidate some host-dependency and antiviral factors that may be helpful to

distinguish HIV-1 interacting human proteins (VIPs) from non-HIV-1 interacting

human proteins (non-VIPs). We also consider the ‘directionality’ in the HIV-1-host pro-

tein-protein interactions, i.e., whether the interaction with the host molecule is in the

interest of the virus or part of the anti-viral response. We design a machine learning

framework to generate models based on the known information and use them for the
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classification of VIPs and non-VIPs. Our predictions have the potential to provide refined

sets of human host targets aiding in the discovery of novel HIV-1 therapeutics.

Introduction

Human immunodeficiency virus type 1 (HIV-1) is the cause of acquired immunodeficiency

syndrome (AIDS) and constitutes a major cause of human disease and associated comorbidi-

ties. Virus infection involves viral molecules exploiting the host cell in order to replicate. The

engagement of the HIV-1 envelope glycoprotein and cell-surface receptors, CD4 and either

the membrane-spanning C-C motif chemokine receptor 5 (CCR5) or C-X-C motif chemokine

receptor 4 (CXCR4), initiates virus attachment and entry into the cell [1–3]. Virus molecules

including the HIV-1 regulatory factors (tat and rev) and accessory proteins (vpr, vif, nef, and

vpu) ensures viral persistence, replication, dissemination and transmission by modulating the

surface and intracellular environment of the infected cell [4–8]. The production of HIV-1 gag/

pol polyproteins is essential for assembly, release and maturation of new virions [9]. Protein-

protein interactions (PPIs) between virus and host molecules enable the virus to infect and

exploit host cell sub-systems to replicate and persist despite the host immune response [1–3,6–

11]. Conversely, there are many human host molecules that function as antiviral factors and

are part of the immune response [12–14]. Improving our understanding of these HIV-1-host

PPIs can provide insights into the molecular mechanisms underlying virus persistence and

pathogenesis. Determining the nature of virus-host interactions [15] is thus of importance for

the discovery of potential host inhibitors or targets for antiviral therapeutics [16] exemplified

by the CCR5 antagonist maraviroc [17]. Intuitively, there are many more possible drug-targets

in the host compared to HIV’s compact genome, which codes for relatively few proteins. To

efficiently direct laboratory experiments and make use of rapidly accumulating data in the

post-genomic era, the development of efficient in silico approaches has become an important

area of research focus.

Over the past few years, several computational studies on HIV-1 have characterised attri-

butes of HIV-1 interacting human proteins based on various data, e.g., gene ontology (GO)

annotations [18], interaction network profiles [19], disease pathways [20] and post-transcrip-

tional modification profiles [21]. A hierarchical biclustering system has been used [15] to des-

ignate HIV-1-host PPIs directionality, polarity and control properties. This research

demonstrates how the HIV-1 interacting human proteins (VIPs) can be grouped by related

virus-associated perturbations and can be distinguished from the non-HIV-1 interacting ones

(non-VIPs). Curation of the extensive experimental literature has permitted an HIV-1-host

PPI dataset to be compiled [18]. This can be used for the purpose of modelling and predictions

via machine learning algorithms. For example, a random forest (RF) model was constructed

by including 35 features for the prediction of HIV-1-host interaction pairs [22]. Further work

integrated semi-supervised learning, multi-task learning and neural networks [23]. Subse-

quently, a biclustering-based approach was applied along with an association rule mining tech-

nique [24,25]. Supervised machine learning methods [26,27] have also been implemented

using the support vector machine (SVM) algorithm and datasets with different positive-to-

negative ratios. Based on the assumption that proteins with similar sequence or structural

properties tend to share common interaction partners, studies have also predicted possible

HIV-1-host interaction pairs by integrating protein short linear motifs (SLiMs) or protein

structure information [28–30].
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Owing to the contribution made by computational approaches [31–34], it is possible to

obtain a list of potential VIPs with high confidence. However, there are still many improve-

ments that can be made. The majority of the published methods [22–30] are highly dependent

on the use of limited types of properties of the interacting HIV-1-host molecules. Some of the

defined non-VIPs could be false negatives relative to different HIV-1 proteins [35]. For exam-

ple, non-env-interacting protein cyclin T1 (CCNT1) interacts with HIV-1 during infection as

it is targeted by gag and tat proteins [4,36,37]. The specific nature of the molecular interaction

is important for understanding pro-viral interactions versus host antiviral activities. Crudely

this can be broken down to the ‘directionality’ of the interaction [15]: ‘forward’/pro-viral ver-

sus ‘backward’/pro-host proteins, a prediction task addressed for the first time in this study.

Additionally, there also exists a group of human host proteins having both pro-viral and pro-

host properties, i.e., are ‘bidirectional’ in nature, for example, CD4 [38,39]. Finally, although

the expansion of feature coverage provides a clearer picture for the classification problem, it

also induces a series of problems such as feature redundancy [40] and overfitting [41–43].

To address these points, we propose a computational approach for the analysis and predic-

tion of HIV-1-host molecular interactions (presented diagrammatically in Fig 1). Contrary to

previous prediction-based studies [22–30], we introduce a broader definition for the HIV-1

interacting proteins. Human proteins targeting or being targeted by one or multiple HIV-1

proteins are all referred to as VIPs. Non-VIPs represent those human proteins without any
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Fig 1. Diagrammatic representation of the project pipeline separated into three procedural layers. The figure is created using images from Wikimedia Commons,

https://commons.wikimedia.org. Abbreviations: HIV-1, human immunodeficiency virus type 1; VIPs, HIV-1 interacting human proteins; non-VIPs, non-HIV-1

interacting human proteins; HGNC, HUGO Gene Nomenclature Committee; HHID, the HIV-1 Human Interaction Database; HIPPIE, Human Integrated Protein-

Protein Interaction rEference; GOC, Gene Ontology Consortium.

https://doi.org/10.1371/journal.pcbi.1009720.g001
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record of being directly involved in an HIV-1 interaction. We designed three procedures to

maximise the set of the non-VIPs and to reduce their chance of being false negatives. Three

tags: ‘forward’ (pro-viral), ‘backward’ (pro-host) and ‘bidirectional’ (pro-viral and pro-host)

were assigned to VIPs to capture the direction of the virus-host interaction during the HIV-1

life cycle [15,44]. In total, we encoded 671 features based on the data retrieved from multiple

databases [44–50] to characterise the human proteins by genetic, transcriptomic, proteomic

and network information. We also measured the contribution of individual features and dif-

ferent feature combinations. We constructed different feature sets via two feature selection

schemes to generate prediction models on the training datasets with the SVM method [51].

Performance on the testing datasets demonstrates good prediction quality and generalization

capability of our VIP prediction models. A web server for HIV-1-host molecule prediction is

available at http://hivpre.cvr.gla.ac.uk/.

Methods

Dataset curation

We retrieved 16215 HIV-1-host PPI records from the HIV-1 Human Interaction Database

(HHID) (https://www.ncbi.nlm.nih.gov/genome/viruses/retroviruses/hiv-1/interactions/) [44]

involving 7120 HIV-1-host interaction pairs and 3854 distinct VIPs (S1 Data). Protein

sequences for the VIPs were collected from the NCBI’s RefSeq database [46]. To avoid over-

representation of similar protein sequences in the dataset, we grouped them into 2881 clusters

using CD-HIT [52,53] with a threshold of 40% sequence similarity [52,53], and picked the lon-

gest sequence in each cluster as representative. This was to prevent producing feature vectors

with high similarity, biasing the prediction performance. These 2881 representative VIPs

formed our positives in dataset S1 (Table 1).

Table 1. Breakdown of VIP and non-VIP datasets used.

Dataseta Positives Negatives

Main dataset S1 2881 VIPs 7261 non-VIPs

Training S1’ 2304 VIPs 2304 non-VIPs

Independent testing S1” 577 VIPs 4957 non-VIPs

Main dataset S2 188 backward VIPs 1007 forward VIPs

Training S2’ 150 backward VIPs 150 forward VIPs

Independent testing S2” 38 backward VIPs 857 forward VIPs

Reference dataset S3 335 bidirectional VIPs

Blind testing dataset S4 1351 undefined VIPs

Testing dataset S5 234 VIPs

Testing dataset S6 356 VIPs

aDataset S1 and S2 were constructed for the prediction of VIPs and their directionality in the HIV-1-host PPIs. 80%

of positives and an equal number of negatives were randomly selected for training while the remaining 20% of

proteins were used for testing. Dataset S3 was constructed for prediction of ‘bidirectional’ VIPs while S4 was

constructed for the prediction of putative forward, backward or bidirectional VIPs. Testing datasets S5 and S6 were

retrieved from two resources with high experimental confidence: the HIV-1 infection pathway in Reactome [60],

https://reactome.org/PathwayBrowser/#/R-HSA-162906 and viral host-dependency epistasis map linked to the HIV

function [61]. The lists of proteins sampled for training and independent testing are provided in S2 Data.

Abbreviations: HIV-1, human immunodeficiency virus type 1; VIPs, HIV-1 interacting human proteins; non-VIPs,

non-HIV-1 interacting human proteins.

https://doi.org/10.1371/journal.pcbi.1009720.t001
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Following the methods of MacPherson et al. [15], we assigned the VIPs direction tags: ‘for-

ward’, ‘backward’ or both/‘bidirectional’ (Fig 2). The forward VIPs (e.g., C-X-C motif chemo-

kine ligand 10, CXCL10) are pro-viral proteins. These host molecules are targeted by HIV-1,

so-called host-dependency factors [54] and have no recorded antiviral response to the infec-

tion during the virus life cycle [55]. The backward VIPs (e.g., apolipoprotein L1, APOL1) are

pro-host proteins that are associated with control or inhibition of the viral infection [56]. The

bidirectional VIPs (e.g., CXCR4) are targeted by HIV-1 (forward direction) and can produce

pro-host responses (backward direction) by influencing the same or different HIV-1 proteins

during the viral infection. Some of these are potential therapeutic targets to inhibit virus repli-

cation by making host molecules unavailable to the virus [57,58]. Since the ‘direction’ of some

HIV-1-host molecular interactions have not been clearly defined, these VIPs were not

included in our analysis. Collectively, we obtained 188 (~6.5%) backward, 1007 (~35.0%) for-

ward, 335 bidirectional (~11.6%) and 1351 (~46.9%) undefined VIPs from dataset S1 to con-

struct another three datasets, S2, S3 and S4 for direction-related predictions (Table 1).

We performed three procedures to improve the quality of the non-VIP dataset and reduce

potential false negatives. First, we chose human proteins produced by the canonical transcript

since these proteins are assumed to express the main function of the gene [59]. Second, human

proteins sharing more than 40% sequence similarity with any of the reported 3854 VIPs in the

HHID were excluded to prevent sequences similar to the known VIPs overly influencing the

modelling and predictions. Third, we controlled for the sequence similarity of non-VIPs at a

40% level as we did for VIPs. This is intended to prevent predictions being influenced by simi-

lar combinations of feature vectors. As a result, we obtained 7261 nonredundant non-VIPs to

form the negatives in dataset S1 (Table 1).
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Fig 2. Representation of the characterisation of the types of virus interacting proteins (VIPs). VIPs were tagged as ‘forward’, ‘backward’ or ‘bidirectional’ based on

the key words describing their interaction with HIV-1 proteins [44] and directionality designated by MacPherson et al. (https://doi.org/10.1371/journal.pcbi.1000863.

s004) [15]. The direction was classed as ‘undefined’ if this information is not available. The direction tag for each VIP is provided in S1 Data. The figure is created using

BioRender, https://biorender.com/. Abbreviations: HIV-1, human immunodeficiency virus type 1; VIP, HIV-1 interacting human protein; PPI, protein-protein

interactions.

https://doi.org/10.1371/journal.pcbi.1009720.g002
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As we applied different criteria compared to others to classify our VIPs/non-VIP datasets, it

was hard to make direct comparisons between our predictions and previous studies [22–30].

We introduced two testing datasets consisting of VIPs with high experimental confidence

from Reactome [60] and Gordon et al. [61] in order to assess the generalization capability of

our machine learning models. A breakdown of the VIPs and non-VIPs used in this study is

listed in Table 1 and more detailed information is provided in S2 Data.

Feature generation

In this study, we encoded 671 different features mainly from six online databases: Ensembl

[47], RefSeq [46], TISSUES [48], Human Integrated Protein-Protein Interaction rEference

(HIPPIE) [50], HHID [44] and the Gene Ontology Consortium (GOC) [49]. Among them,

537 features were used to distinguish the VIPs from non-VIPs while 584 features were used to

investigate the directionality of the HIV-1-host molecular interactions. Based on the data

sources, our encoded features could be divided into four groups: (1) genome-based sequence,

(2) proteome-based sequence, (3) annotation-based and (4) interaction profile-based features.

The source code for generating these features is available at: https://github.com/HChai01/

HIVPRE.

Genome-based sequence features. We compiled 107 genome-based sequence features for

each human protein which included alternative splicing, nucleotide composition, codon usage

and a measure of evolutionary conservation. Information in the alternative splicing data was

encoded into four features to represent the evolution of phenotypic complexity in human

genes [62,63]: the number of transcripts, protein-coding transcripts, exons and unit exon in

transcripts (UET). Nucleotide composition represented the distribution of four basic nucleo-

bases and their phosphodiester bonds-combinations, e.g., CpG, in the coding region of genetic

sequences [64]. The usage of the existing 64 codons was calculated in each nucleotide sequence

to reflect the balance between mutational biases and natural selection for translational optimi-

zation in different classes [65]. For evolutionary conservation, we collected the data from Bio-

Mart [47] and calculated the number of paralogues, synonymous substitutions (ds), non-

synonymous substitutions (dN) and the ratio of dN to dS within human paralogues and ortho-

logues in four homininae genomes: chimpanzee, gorilla, orangutan and gibbon. These features

were used to assess the evolutionary selection pressure acting on the protein sequences [66].

Proteome-based sequence features. We encoded 251 features from proteome-based

sequence data for the prediction of VIPs and their directionality. Discrete sequence informa-

tion was calculated as amino acid compositions, while linear information was analysed from

the perspective of SLiMs and intrinsic disorder. We generated 37 types of amino acid composi-

tion based on the differences in individual amino acids or their physiochemical attributes [67].

Ambiguous or other types of amino acids, e.g., selenocysteine, pyrrolysine etc. were masked as

‘X’ and ignored in this study. We used MERCI [68] to detect conserved sequence patterns as a

result of strong purifying selection [69], obtaining 206 motifs representing putative SLiMs

overrepresented in the group of VIPs and backward VIPs (Pearson’s Chi-squared test,

P<0.05). The occurrence of these potential SLiMs was then split and encoded into 206 non-

parametric features with a binary system. Four features measuring the overall representation

of VIP- or backward VIP-enriched SLiMs were added as hedges against random error caused

by data imbalance [70]. The disordered regions in human protein sequences were identified

using Espritz [71] and IUPred [72] as such regions have been linked to VIPs [73].

Annotation-based features. We encoded 292 annotation-based features with a binary

system from the collected tissue and gene expression data. Among these, 66 features were gen-

erated by mapping the GO terms to the child term of three main GO root terms: molecular
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function (GO:0003674), cellular component (GO:0005575) and biological process

(GO:0008150) [49]. They characterise the domain in which human proteins may be involved

such as binding (child term of molecular function, GO:0005488), intracellular (child term of

cellular component, GO:0005622) and metabolic process (child term of biological process,

GO:0008152) when interacting or not interacting with HIV-1 molecules [18]. The remaining

226 features were encoded based on the experimentally verified expression data in TISSUES

[48] to reflect the association between tissue tropism and HIV-1 infection at a molecular level

[74].

Interaction profile-based features. Interaction profile-based features were generated

from HIV-1-host PPIs [44] and the human interactome [50]. We used 11 features to represent

the degree to which a known VIP was central to the life cycle of HIV-1 [1–3]. Specifically, one

feature was encoded to count the number of HIV-1 gene-products interacting with human

host molecules and the remaining ten were binary-encoded to capture the interaction relation-

ship between the host molecule and the corresponding HIV-1 gene-product, e.g., gag, tat or

the antisense protein gene asp [75]. We retrieved 332,701 experimentally verified human-

human PPIs with confidence scores higher than 0.63 involving 17,607 human proteins from

HIPPIE [50] to pinpoint proteins with potential pathological or therapeutic relevance [76,77].

NetworkAnalyzer [78] was used to calculate ten different network features including the aver-

age shortest distance, degree, neighbourhood connectivity, betweenness, stress, closeness,

eccentricity, radiality, topological coefficient and clustering coefficient. Human proteins not

involved in the human-human PPI network were assigned zero values for all of the aforemen-

tioned network features.

Supervised machine learning and feature selection

We applied a supervised machine learning method for the prediction tasks. We used the SVM

model with the radial basis function [51] after comparing it with the k-nearest neighbors

(KNN), decision tree (DT) and random forest (RF) algorithms [33]. The SVM algorithm aims

to find an appropriate hyperplane in the feature space for classifying the majority of positive

and negative samples. It can tolerate the existence of some noisy or incorrect data but may be

biased by different feature scales or imbalanced positive-to-negative ratios as it was designed

to calculate the margin of the data [79]. Additionally, although the SVM algorithm can map

the current feature space to a higher dimensional one for better classification [51], it is a sub-

optimal strategy for including too many features for modelling even if they are all instructive.

This can result in overfitting of the machine learning model [42] leading to a loss of robustness

[80]. To address these points, we first used an undersampling strategy [70] to randomly con-

struct balanced training datasets (S2 Data). Second, parametric features were normalised

according to their majority distribution in order to share an equal range with non-parametric

features:

Norm vð Þ ¼

1; v > UBðvÞ

v � LBðvÞ
UBðvÞ � LBðvÞ

0; v < LBðvÞ

;LBðvÞ < v < UBðvÞ ð1Þ

8
>>><

>>>:

where LB(v) and UB(v) are the lower and upper bound representing the 5th and 95th percentile

within the target feature values. Next, we used an SVM-based selection scheme with the evalu-

ation of area under the receiver operating characteristic curve (AUC) to optimise the feature

set for the general case (Fig 3). In this scheme, we introduced the Fisher-Markov Selector [81]

to calculate the importance of an individual feature. We assumed that the usage of better
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performing features are less likely to negatively influence the complementarity of features in

the set, which is crucial to training and modelling [40]. This feature selection scheme produced

two outcomes: the optimum feature set and the lowest number of features.

The complementarity of different features implies information synergies, which can be mea-

sured by calculating the change of system entropy after the introduction of the additional features

[40,82,83]. However, it is hard to discriminate if the combination of several random features can

achieve better complementarity compared to using an equal number of well performing features.

The selection strategy requires reconsideration if the impact of feature synergy has overwhelmed

the usage of ‘important’ features on the prediction performance. Here, we use a second feature

selection scheme which takes into account both feature importance and complementarity (Fig

4). As opposed to the first feature selection scheme (Fig 3), this scheme was processed by focusing

on a set of features with good complementarity. It contained two main branches: the first expands

the coverage of features by introducing well-performing features, while the second reduces the

dimension of the feature sets by removing poorly performing features.

Performance evaluation

In order to assess the performance of different feature subsets, we adopted five-fold cross-vali-

dation on training datasets (dataset S1’ and S2’), in which human proteins were randomly

divided into five nearly equal parts and further generated five different testing (one portion)

and training (the remaining four portions) sets. The overall quality of prediction models con-

structed from the feature subset was then evaluated based on the produced prediction scores

via six criteria including sensitivity, specificity, accuracy, precision, Matthews Correlation

Coefficient (MCC) [84] and AUC on the combination of five separate testing results. The eval-

uation of other independent testing datasets was also processed with the aforementioned six

criteria, except in the case of the reference dataset S3, testing dataset S5 and S6, which only

used sensitivity controlled by the threshold.

Fig 3. The pseudo-code of the feature selection Scheme 1. We used the SVM model [51] as the base machine learning classifier and the Fisher-Markov Selector [81]

to calculate the importance of an individual feature. AUC was chosen as the prime criterion to evaluate the prediction performance on datasets with multiple labels.

Abbreviations: SVM, support vector machine; AUC, area under the receiver operating characteristic curve.

https://doi.org/10.1371/journal.pcbi.1009720.g003
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Results

HIV-1-host interaction pairs

Compared with available benchmark datasets [22–24,27,29], our main dataset S1 includes

more HIV-1-host PPI data than previous studies (Fig 5A). The majority of HIV-1-host molec-

ular interactions are associated with env-mediated membrane fusion [1–3] and tat-mediated

transcellular transport [4,5,85]. In our main dataset S1, there are 996 (~35%) VIPs with inter-

actions with multiple HIV-1 proteins. Some VIPs such as nuclear factor kappa B subunit 1

(NFKB1), interferon gamma (IFNG) and interferon beta 1 (IFNB1) are reported to interact

with products produced by almost all HIV-1 genes [86–92]. Fig 5B illustrates the preference of

co-occurring HIV-1-host PPIs interfering or being induced by the same VIP. It reveals a pic-

ture of host targets shared among HIV-1 gene products of tat, env, gag, nef, gag-pol and vpr,
and the interaction preference underlying HIV-1 invasion, replication and assembly [1,7,9].

Despite the rank being ordered by the number of HIV-1-host interacting pairs (Fig 5A), HIV-

1 tat-interacting proteins were marginally more frequently connected to vpr than gag-pol: 0.16

versus 0.14 per VIP, respectively. Interestingly, tat was less involved in the interactions with

HIV-1 gag-, nef- and gag-pol-interacting proteins than expected. HIV-1 env-interacting pro-

teins showed a preference to interact with nef, which is also involved in the early stage of the

HIV-1 infection [7].

Statistical results indicate an overlap of human host proteins targeted by env, tat and nef.
Forward VIPs targeted by HIV-1 gag-pol, vif and rev were less likely to interact with other

Fig 4. The pseudo-code of the feature selection Scheme 2. We used the SVM model [51] as the base machine learning classifier and the Fisher-Markov Selector [81]

to calculate the importance of an individual feature. AUC was chosen as the prime criterion to evaluate the prediction performance on datasets with multiple labels.

Abbreviations: SVM, support vector machine; AUC, area under the receiver operating characteristic curve.

https://doi.org/10.1371/journal.pcbi.1009720.g004
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HIV-1 proteins. An estimated 61% of forward VIPs targeted by vpu were also influenced by

nef. After checking data with more detailed directionality information, we found that the for-

ward or backward VIPs were generally associated with fewer interactions, while the bidirec-

tional VIPs tended to be associated with higher numbers of interactions (Figs 5B and S1).

Compared with other forward VIPs, nef- or vpu-interacting forward VIPs tended to be tar-

geted by more HIV-1 proteins (Mann–Whitney U test: P = 3.0E-35). Meanwhile, vpu-interact-

ing backward VIPs were more frequently targeted by multiple HIV-1 proteins than other

backward VIPs (P = 4.2E-05). Collectively, it is common to observe human host proteins inter-

acting with multiple HIV-1 proteins [44].

Feature analyses of the compiled data

In this study, we obtained 2881 nonredundant VIPs from 16215 HIV-1-host PPI records and

7261 high-quality non-VIPs from the human proteome. 1530 (~53%) of the VIPs (datasets S2

and S3) showed clear directionality: forward, backward, or bidirectional (Fig 2). In total, 671

features were collected from the genetic sequence, proteomic sequence, annotation and inter-

action profile data. To investigate the predictive signals in our compiled data, we analysed the

feature representation in different human proteins.

Our characterisation using evolutionary-related features revealed a consistent pattern

linked to HIV-1 infection (S1 Appendix). Higher numbers of protein-coding transcripts,
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https://doi.org/10.1371/journal.pcbi.1009720.g005
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duplication rates and evolutionary conservation correlate with the HIV-1-host PPIs. A signifi-

cantly biased distribution of one-transcript or one-protein-coding-transcript human genes in

the VIP versus non-VIP classes provided a strong signal of inhibition associated with the HIV-

1 infection (S1 Appendix, Pearson’s Chi-squared test: M1 = 12.4%, M2 = 29.3%, P = 2.8E-71).

These results suggest that high conservation has a tendency to be associated with pro-viral

interactions, consistent with the documented ancient nature of virus-host interactions [93].

Analyses of the nucleotide and protein sequences were conducted using 354 features. The

results indicated that VIPs and non-VIPs had some significant differences in their sequence

patterns, e.g., in nucleobase composition linked to putative SLiMs (S2 Appendix). For

instance, enrichment of adenine, depletion of cytosine and differential codon usage prefer-

ences of VIP genes influenced the distribution of amino acids in the protein sequence [94],

which also contributed to the signal distinguishing the VIPs from non-VIPs. 85 SLiMs were

detected to be more enriched in VIP sequences than in non-VIP sequences (Pearson’s Chi-

squared test: P<0.05). Co-occurrence of these putative SLiMs showed a cumulative effect

resulting in better classifying of VIPs versus non-VIPs. Pro-viral and pro-host signatures of

the VIPs were also reflected in sequence patterns and by intrinsic disorder status in the protein

sequence. These results demonstrate the differential representation of sequence-based features

provides a useful signal for prediction purposes.

Distinct from the aforementioned evolutionary-related and sequence-based features, anno-

tation-based features are more straightforward with direct functional relevance [95]. Analyses

of GO profiles revealed that the VIPs were more involved in cellular process (GO:0009987),

binding (GO:0005488) and had a stronger association with organelles in the host cell

(GO:0043226) than non-VIPs (Pearson’s Chi-squared test: P = 9.9E-118, 1.0E-84 and 2.0E-70,

respectively) (S3 Appendix). Within the group of VIPs, the bidirectional VIPs were

highlighted for their prevalent response to stimulus (GO:0050896) and frequent involvement

in biological regulation (GO:0065007) (S3 Data). Analyses of tissue tropisms indicated that

the VIPs were more likely to be found in heart- or hematopoietic system-related tissue (S3

Appendix). Compared with the forward VIPs, the backward VIPs were less involved in the

hematopoietic system but were more expressed in brain-related tissues, such as the brain stem

and cerebral lobe (S3 Data). Cells originating from stem cells and differentiating in lymphoid

tissues were favoured by backward VIPs and the relationship between backward VIPs and

CD8+-presenting cells was evident, showing a clear relationship between HIV-1 infection and

the host antiviral immune responses [96,97]. In view of the nature of the HIV-1-host molecu-

lar interactions, these function-related features are anticipated to perform well in the predic-

tion tasks. However, they may not represent an optimum property in machine learning tasks

due to gaps in annotations.

Performance of different feature sets in the training stage

Models for predicting the VIPs. In this study, we encoded 537 features for the prediction

of the VIPs. According to the data source from which they were extracted, we divided these

features into four categories: genome-based, proteome-based, annotation-based and interac-

tion profile-based features. We first tested the performance of features in different categories

on the balanced training datasets and found that annotation-based features performed the

best, achieving the highest AUC value at 0.8090 on dataset S1’ (Table 2). On the same dataset,

the combination of interaction profile-based features produced some good predictions even if

only 10 features were included. However, the performance of proteome-based features was

poor on dataset S1’. By combining all of the encoded 537 features, we found the classifier

could produce a better performance (AUC = 0.8324) than using features by individual
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categories (AUC = 0.7118, 0.6641, 0.8090, 0.7487, respectively) (Table 2). We compared the

SVM with another three machine learning models: KNN, DT and RF [33]. We used the square

root of the size of the training samples as the k-value for the KNN algorithm [98]. We found

this algorithm was biased to the positive class and did not achieve a better prediction perfor-

mance than the SVM model. The DT algorithm was designed with a feature selection scheme,

which helped it to better split the dataset for lower system entropy [82]. It used 278 out of 537

features and had the worst performance among the different machine learning algorithms

compared. We initialised the RF algorithm with 50 trees and repeated the modelling process

ten times to balance bootstrapping of the dataset and selection of features [99]. The prediction

performance of the RF algorithm on S1’ was promising but did not surpass that of the SVM

model. These results suggest that the majority of features encoded for the prediction of the

VIPs are contributing to the signal, but the complete feature set is not optimal for reliable pre-

diction since it includes some poorly performing features.

Table 2. The performance of different feature sets on the training datasets over five-cross validations.

Dataseta Algorithm Features Features number Thresholde Sensitivity Specificity Accuracy MCC AUC

S1’ SVM Genetic sequences 107 0.51 0.613 0.700 0.656 0.314 0.7118

SVM Proteomic sequences 128 0.51 0.595 0.649 0.622 0.244 0.6641

SVM Annotations 292 0.57 0.663 0.806 0.735 0.475 0.8090

SVM Interaction profiles 10 0.52 0.611 0.777 0.694 0.394 0.7487

SVM Combination 537 0.56 0.690 0.817 0.754 0.512 0.8324

KNNb Combination 537 0.35~0.39 0.766 0.633 0.699 0.402 0.7772

DTc Partial 278 N/A 0.633 0.642 0.637 0.275 N/A

RFd Random Random 0.44~0.52 0.733±0.035 0.752±0.030 0.742±0.004 0.486±0.009 0.8157±0.0031

SVM Top-ranked 33 33 0.54 0.645 0.718 0.681 0.363 0.7468

SVM Top-ranked 193 193 0.48 0.748 0.751 0.750 0.499 0.8261

KNNb Optimum 441 0.43~0.48 0.689 0.720 0.705 0.410 0.7734

SVM Optimum 441 0.52 0.727 0.787 0.757 0.514 0.8344

S2’ SVM Genetic sequences 107 N/Af N/Af N/Af N/Af N/Af N/Af

SVM Proteomic sequences 164 0.40 0.860 0.633 0.747 0.507 0.8023

SVM Annotations 292 0.46 0.767 0.520 0.643 0.296 0.6786

SVM Interaction profiles 21 0.51 0.740 0.633 0.687 0.375 0.7108

SVM Combination 584 0.46 0.807 0.553 0.680 0.372 0.7383

KNNb Combination 584 0.50~0.54 0.400 0.833 0.617 0.259 0.6501

DTc Partial 66 N/A 0.673 0.660 0.667 0.333 N/A

RFd Random Random 0.38~0.58 0.706±0.134 0.710±0.167 0.708±0.030 0.432±0.045 0.7609±0.0270

KNNb Optimum 129 0.27~0.36 0.487 0.873 0.680 0.390 0.7509

SVM Optimum 129 0.44 0.853 0.680 0.767 0.542 0.8260

aDataset S1’ and S2’ were balanced training datasets constructed via an undersampling strategy [70] from dataset S1 and S2, respectively (Table 1). Compositions of

these two datasets are provided in S2 Data.
bk-value here was determined as the square root of the size of the training samples in the five-fold cross validation
cthe DT algorithm selected 278 and 66 features from the original feature sets for the two modelling tasks
dthe RF algorithm used 50 randomly grown trees and the modelling and validation procedures were repeated 10 times
ethreshold was set by maximizing the value of MCC
f‘N/A’ was denoted if the prediction quality of the generated classifier was worse than a random guess.

Abbreviations: SVM, support vector machine; KNN, k-nearest neighbors; DT, decision tree; RF, random forest; MCC, Matthews Correlation Coefficient; AUC, area

under the receiver operating characteristic curve.

https://doi.org/10.1371/journal.pcbi.1009720.t002
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In order to find a better feature subset for the prediction of the VIPs, we first used the

Fisher-Markov Selector [81] to calculate the importance of individual features (Fig 6A). The

results demonstrated the importance of gene ontology (e.g., involvement in metabolic process,

ranked 24th) and tissue tropism features for prediction (e.g., expression in monocyte, ranked

1st), even if they were used individually. Based on this ranking of individual features, we then

used our first feature selection strategy (Fig 3) and five-cross validations to optimise the pre-

diction model. Fig 6 shows that the classifier obtained reasonable prediction with fairly low

numbers of features, e.g., the top 33 features (S2A Fig) are near the first inflection point (Fig

6B), while the subset of 193 features were considered optimal as they achieved decent predic-

tion performance (AUC = 0.8261, S2B Fig) and there will be less issues with missing data or

errors in annotations [100]. The subset of 441 features maximised the prediction performance

and are comprised of 105 genome-based features, 84 proteome-based features, 243 annota-

tion-based features and nine interaction profile-based features. The distribution of prediction

scores for VIPs and non-VIPs was negatively and positively skewed, with most values clustered

around the right and left tails of the distribution, respectively (Fig 6C).

Fig 6. The performance of different features for the prediction of VIPs. (A) The importance of different features. (B) Enhancement the prediction performance

by adding more features. (C) The distribution of prediction scores (for VIPs and non-VIPs) generated by model using the top 441 features. In (A) the importance of

an individual feature was recorded by averaging the results on the balanced training datasets generated by ten-round undersampling procedures [70] on dataset S1.

The ranked list of the encoded 537 features is provided in S4 Data. Abbreviations: HIV-1, human immunodeficiency virus type 1; VIPs, HIV-1 interacting human

proteins; non-VIPs, non-HIV-1 interacting human proteins; AUC, area under the receiver operating characteristic curve.

https://doi.org/10.1371/journal.pcbi.1009720.g006
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Models for predicting the direction of the HIV-1-host PPIs. We encoded 584 features

for the VIPs to predict pro-host versus pro-virus directionality in the HIV-1-host molecular

interactions. Predictions on the training dataset S2’ were different from those on dataset S1’.

The performance of genome-based features was even worse than a random prediction

(Table 2). The combination of proteomic features produced a highly predictive model. The

performance of annotation features was not as good as anticipated and the combination of all

features made the classifier worse than only using proteomic features. This indicates a big dif-

ference between the two prediction tasks highlighted in this study. After checking the impor-

tance of features with the Fisher-Markov Selector [81] we found the difference between the

generated importance scores was not obvious (S3 Fig and S4 Data), which meant the contri-

bution of individual features to the prediction model had not changed appreciably. The com-

parison of results from the different machine learning algorithms demonstrated that the SVM

classifier still worked on dataset S2’ (Table 2). These results suggest that the overall comple-

mentarity of these 584 features is not as good as those used for predicting the VIPs. There may

be a large number of noisy features involved in the complete set, which suppresses the perfor-

mance of some feature combinations when using our first selection strategy (Fig 7A).

Fig 7. The performance of different features for predicting the backward and forward VIPs. (A) AUC values for increasing numbers of features. (B) AUC values

for decreasing numbers of proteome-based features. (C) The counts of prediction scores (for pro-viral/forward VIPs and pro-host/backward VIPs) generated by

model using 129 optimum features. (D) The percentage of forward, backward and bidirectional VIPs within different regions of prediction scores (scale = 0.02).

Abbreviations: HIV-1, human immunodeficiency virus type 1; VIP, HIV-1 interacting human protein; AUC, area under the receiver operating characteristic curve.

https://doi.org/10.1371/journal.pcbi.1009720.g007
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Thus, we applied our second feature selection strategy to optimise the prediction model

(Fig 4). We assumed that the proteomic features might be an ideal set with good complemen-

tarity for the initialization as they were better-performing than features in the other categories

(Table 2). We found performance of the classifier was enhanced, however, it started to

decrease after adding four non-proteomic sequence features. We, thus, removed the poorly-

performing features in the proteomic sequence feature set. We identified an optimum model

generated by 129 features (Fig 7B). In that feature subset, 36 amino acid composition, 85

SLiM, four intrinsic disorder, two gene ontology and two tissue tropism features were included

(S4 Data). Compared with the model generated from the complete feature set, the model

using 129 optimum features enhanced the performance by more than 10% from the perspec-

tive of the AUC (Table 2). Likewise, on the training dataset S2’, the SVM was still superior to

the KNN, DT and RF algorithms. Additionally, the model generated from all proteomic fea-

tures was also recommended as it only required the information from the protein sequence to

make reasonable predictions (S4 Fig).

Interestingly, testing on the reference dataset S3 suggests that the bidirectional VIPs are

closer in properties to the forward VIPs than to the backward VIPs. The forward VIPs may be

‘responding’ to the HIV-1 infection and target HIV-1, making them ‘bidirectional’ [101]. The

backward VIPs are less likely to be targeted by HIV-1 so their chances of becoming ‘bidirec-

tional’ are relatively low. The recommended direction based on the prediction score generated

by the model using 129 optimum features is listed in S1 Table. We could confidently label 60%

of the generated VIPs based on the prediction scores as backward, forward, or bidirectional.

For prediction scores located in specific ranges, our confidence on the direction of the HIV-

1-host molecular interactions could reach as high as 89%.

Performance on the testing datasets

In this study, we produced three models with the top-33, top-193 and top-441 features on the

whole training dataset S1’ for the prediction of VIPs, namely PreVIP-33, PreVIP-193 and Pre-

VIP-441, respectively. Independent testing datasets prepared to assess the generalization capa-

bility of these three models was derived from our main dataset S1 through an undersampling

strategy [70]. They consist of a random set of 577 VIPs and 4957 non-VIPs. The imbalance

ratio of positives (VIPs) to negatives (non-VIPs) in this testing dataset is close to 1:8. PreVIP-

33 could successfully predict 40.9% of VIPs and 88.1% of non-VIPs under a threshold of 0.73.

The corresponding AUC value of PreVIP-33 was 0.7323. Under the same threshold, the sensi-

tivity and specificity of PreVIP-193 increased to 45.6% and 91.2%, respectively. The optimum

threshold for PreVIP-193 was 0.82, under which 34.7% of the VIPs and more than 95% of the

non-VIPs were correctly predicted. Among the generated three models, PreVIP-441 achieved

the best performance with an AUC value of 0.8079, with the performance of PreVIP-193 close

to this (AUC of 0.8034) (Table 3). In contrast, PreVIP-33 did not perform well on the testing

dataset S1”. When attempting to successfully predict more than half of the VIPs, the ratios of

false positives produced by PreVIP-441, PreVIP-193 and PreVIP-33 were 10%, 11% and 19%,

respectively.

As for predicting the direction of the HIV-1-host molecular interactions, we generated two

models with the optimal 129 features and the overall 164 proteomic sequence features on the

whole training dataset S2’, namely PreDIR-129 and PreDIR-164. An independent testing data-

set prepared to assess the generalization capability of these two models was derived from our

main dataset S2 using an undersampling strategy [70]. It is comprised of a random 38 VIPs

and 857 non-VIPs. The imbalance ratio of positives (backward VIPs) to negatives (forward

VIPs) in this testing dataset is close to 1:22. Compared with PreDIR-129, PreDIR-164 was
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generally a bit more powerful for achieving higher AUC, at 0.7110 (Table 3). The optimum

threshold for PreDIR-129 was 0.70, under which 47.4% of the backward VIPs and 87.3% of the

forward VIPs were successfully predicted. By contrast, to successfully filter the same number

of negatives, PreDIR-164 produced three more false negatives, which showed its drawback in

recognising forward VIPs.

To further assess the quality of PreVIP-193 and PreVIP-441, we introduced two testing

datasets from the HIV-1 infection pathway in Reactome [60] (dataset S5) and an HIV-1 host-

dependency epistasis map [61] (dataset S6). Fig 8 shows that our prediction models performed

well in recognising VIPs confirmed with experimental evidence. On testing dataset S5, Pre-

VIP-441 could recognise 70.1% of VIPs under a threshold of 0.73, about 40% more than its

expected performance (Table 3). It was also capable of successfully predicting more than 90%

of VIPs when using a threshold of 0.5. Under the same threshold, PreVIP-193 achieved a simi-

lar performance as PreVIP-441. The improvement under the threshold of 0.82 reached as high

as 66% when compared with its expected sensitivity (34.7%). Thus, these results demonstrate

good generalization capabilities of our models on predicting VIPs involved in the host sub-sys-

tems hijacked during HIV-1 infection [60]. Their performance on the testing dataset S6 was

also promising with an estimated 20% improvement. The prediction results of PreVIP-193

and PreVIP-441 on testing datasets S5 and S6 are shown in S5 Data.

On the blind testing dataset S4, we used PreDIR-129 to predict the direction tag for 1351

‘Undefined’ VIPs (Fig 2). According to known information about potential direction (S1

Data) and the recommendation stated in S1 Table, 511, 540 and 300 undefined VIPs were pre-

dicted as backward, forward and bidirectional, respectively (S6 Data). The prediction scores

for the putative different VIPs showed significant differences in the majority of regions (S5

Table 3. The performance of features with different categories on the testing datasets.

Dataset Model Feature source Thresholda Sensitivity Specificity Accuracy Precision MCC AUC

S1” PreVIP-33 Annotation 0.73 0.409 0.881 0.832 0.285 0.248 0.7323

PreVIP-193 Multiple 0.82 0.347 0.959 0.895 0.495 0.359 0.8034

PreVIP-441 Multiple 0.73 0.492 0.911 0.867 0.391 0.365 0.8079

S2” PreDIR-164 Proteomic sequence 0.53 0.658 0.762 0.758 0.109 0.194 0.7110

PreDIR-129 Multiple 0.70 0.474 0.873 0.856 0.142 0.200 0.7057

S5b PreVIP-193 Multiple 0.82 Sensitivity = 0.577

PreVIP-193 Multiple 0.50 Sensitivity = 0.906

PreVIP-441 Multiple 0.73 Sensitivity = 0.701

PreVIP-441 Multiple 0.50 Sensitivity = 0.910

S6b PreVIP-193 Multiple 0.82 Sensitivity = 0.416

PreVIP-193 Multiple 0.50 Sensitivity = 0.806

PreVIP-441 Multiple 0.73 Sensitivity = 0.596

PreVIP-441 Multiple 0.50 Sensitivity = 0.817

athresholds on S1” and S2” were set by maximizing the value of MCC. On testing dataset S5 and S6, two thresholds, i.e., 0.82 and 0.73 were set according to the best

performance of PreVIP-193 and PreVIP-441 on testing dataset S1”. In addition, a neutral threshold (0.5) was added for crude assessments.
bprediction results on testing dataset S5 and S6 are provided in S5 Data.

Abbreviations: MCC, Matthews Correlation Coefficient; AUC, area under the receiver operating characteristic curve; HIV-1, human immunodeficiency virus type 1;

VIPs, HIV-1 interacting human proteins; PreVIP-33, machine learning model generated from training dataset S1’ with the top 33 features for the VIP prediction task;

PreVIP-193, machine learning model generated from training dataset S1’ with the top 193 features for the VIP prediction task; PreVIP-441, machine learning model

generated from training dataset S1’ with the optimum 441 features for the VIP prediction task; PreDIR-164, machine learning model generated from training dataset S2’

with 164 proteome-based features for the directionality prediction task; PreDIR-129, machine learning model generated from training dataset S2’ with the optimum 129

features for the directionality prediction task.

https://doi.org/10.1371/journal.pcbi.1009720.t003
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Fig) (Mann–Whitney U test: P = 2.5E-124, 2.0E-43, 4.9E-19, respectively). 66 of the undefined

VIPs had a high probability of being ‘backward’ interactions and in terms of function the

literature shows connections to brain-related diseases such as autosomal recessive neurodeve-

lopmental disorder deficiency [102] and Huntington disease [103] (S2 Table). 63 of the unde-

fined VIPs were very likely to be ‘forward’ interactions and were involved in some immune

system pathways (S2 Table). 50 of the undefined VIPs showed strong signals of being ‘bidirec-

tional’ interactions. Interestingly, they appear to be targets of other viruses like human papillo-

mavirus [104] and hepatitis virus [105] (S2 Table).

Discussion

In this study, we propose an in silico approach to investigate HIV-1-host molecular interac-

tions with a focus on prediction of the directionality of the virus-host interaction. We used the

detailed curation of the biological nature of known HIV-1-host interactions in the HHID [44]

to partition interactions as those required by the virus to manipulate the host molecular sub-

systems versus host responses to virus infection. Using this dataset, we design a predictive sys-

tem in which human proteins can be quickly evaluated for their potential to target host

(a host-dependency factor), be targeted (the antiviral response), or both (bidirectional in-

teractions). A web server is available at http://hivpre.cvr.gla.ac.uk/. It supports six different

identifiers for over 80000 human peptides and can carry out 1000 predictions in less than

15 seconds.

In previous studies [22–30], VIPs were usually labeled based on their interacting HIV-1 sta-

tus only. According to the data we retrieved from the HHID [44], 1467 out of 3854 human

proteins, including some key receptors (e.g., CD4 and CCR5), have interactions with protein

products of different HIV-1 genes (S1 Data). Such multi-target issues can be accommodated

Fig 8. Cumulative distribution of prediction probabilities on the testing datasets S5 and S6. Dataset S5 and S6 were retrieved from

Reactome [60] and Gordon et al.’s study [61] for the purpose of predicting VIPs. The composition of dataset S5 and S6 is provided in the S2

Data file. Prediction results on testing dataset S5 and S6 are provided in S5 Data. Abbreviations: VIPs, HIV-1 interacting human proteins;

PreVIP-193, machine learning model generated from training dataset S1’ with the top 193 features for the VIP prediction task; PreVIP-441,

machine learning model generated from training dataset S1’ with the optimum 441 features for the VIP prediction task.

https://doi.org/10.1371/journal.pcbi.1009720.g008
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by integrating information on the molecular interactions between human proteins and the

HIV-1 interaction type. Previously published prediction-based papers [22–24,26–30] have not

accounted for the direction of the HIV-1-host molecular interaction. By contrast, our consid-

eration of the interaction direction contributes to a better understanding of the HIV-1-host

interactions and the discovery of potential drug targets [106].

Analysing evolutionary-related information in the transcriptomic and genomics data (S1

Appendix), we found HIV-1 was more likely to interact with human proteins encoded from

genes with higher numbers of protein-coding transcripts, higher duplication rates and more

evolutionary conserved. Presumably this is at least partly because the evolutionary rates for

duplicate genes have a tendency to be negatively correlated with the number of paralogues

[107], and virus-interacting molecules are often relatively evolutionary ancient [93]. We dis-

covered 85 VIP-enriched putative SLiMs and 121 backward VIP-enriched SliMs from the

proteomic sequence data (S2 Appendix). We hypothesise that there are some motifs in the

sequence of VIPs mediating molecular interactions, making them more likely to target or be

the target of HIV-1. Human proteins with longer sequences have a higher probability of

including some predictive sequence patterns than those with short sequences. For example,

there are over 14000 residues in the sequence of a non-VIP, namely mucin 16 (MUC16), but

only 17 VIP-enriched SliMs were observed. However, this signal needs to be treated with cau-

tion especially when large numbers of VIP-enriched and backward VIP-enriched SliMs are

both detected in the same non-VIP sequence, e.g., midasin (MDN1) (n = 41 and 57). Such

‘non-VIPs’ may potentially be false negatives if some of their SLiM-enriched regions could

interact with HIV-1 [108]. We obtained 225 experimentally verified tissue entries from the

TISSUES database [48] but found some non-independence of features due to the hierarchical

nature of this type of data(S3 Appendix). Nonetheless, the annotation data of tissue tropisms

was sufficient for distinguishing VIPs from non-VIPs (S6 Fig). The later analysis also demon-

strated the practical effectiveness of considering these features individually or in combination

(Fig 6A and Table 2).

After finishing all prediction tasks, we assumed that some false negatives were still included

in our dataset since we found some of the testing non-VIPs obtained very high prediction

scores (S3 Table). Based on the testing result given by PreVIP-441 and PreVIP-193, 16 labelled

non-VIPs might actually interact with HIV-1 proteins. For example, we found that adapter

molecule crk (CRK), TGF-beta-activated kinase 1 and MAP3K7-binding protein 1 (TAB1)

and interleukin-1 receptor-associated kinase 4 (IRAK4) are involved in the HIV-1 infection in

the Kyoto Encyclopedia of Genes and Genomes (KEGG) database [109] but were not included

in the HHID [44]. This provided further support for the predictive value of our machine learn-

ing approach. Some features of these human proteins also hinted at their possible roles as

VIPs. For instance, alpha-synuclein (SNCA) had a high number of polymorphisms, contained

15 VIP-enriched SLiMs within its 140-length proteomic sequence, expressed in many VIP-

preferred tissues and was highly connected with a degree of 168 in our constructed network

[50]. As for the prediction of the interaction directionality, some results in S1 Table might

be ambiguous when being used individually but higher confidence could be obtained when

combining the information on known interaction directionality in S1 Data. For instance,

elongin-B (ELOB) had a prediction score of 0.14 from PreDIR-129 so was initially predicted to

be a forward VIP (S1 Table). However, since we found 18 records on the molecular interac-

tions between ELOB and HIV-1 proteins and some outcomes of the interactions showed the

clear direction of ‘backward’, ELOB is probably ‘bidirectional’ rather than only ‘forward’

acting.

In conclusion, reliably predicting HIV-1-host molecular interactions is a difficult task and

to improve requires a better framework for understanding the nuances of the virus-host
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relationship. Here we have introduced the directionality of the interaction to this task and

demonstrated that there is a predictive signal embedded in the different types of molecules.

Many of the features used, however, are only superficially capturing the information embed-

ded in the molecules involved. We are confident that better training datasets and continued

development of feature representation of molecules, for example, integrating protein structure

and molecular interaction data, will lead to improved predictions in the near future.
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between BST2 and the ILT7 receptor to suppress anti-HIV-1 responses by plasmacytoid dendritic

cells. PLoS Pathog. 2015; 11(7): e1005024. https://doi.org/10.1371/journal.ppat.1005024 PMID:

26172439

93. Enard D, Cai L, Gwennap C, Petrov DA. Viruses are a dominant driver of protein adaptation in mam-

mals. Elife. 2016; 5: e12469. https://doi.org/10.7554/eLife.12469 PMID: 27187613

94. Pearson WR. Finding protein and nucleotide similarities with FASTA. Curr Protoc Bioinformatics.

2016; 53(1): 3–9. https://doi.org/10.1002/0471250953.bi0309s53 PMID: 27010337

95. Maetschke SR, Simonsen M, Davis MJ, Ragan MA. Gene Ontology-driven inference of protein–pro-

tein interactions using inducers. Bioinformatics. 2012; 28(1): 69–75. https://doi.org/10.1093/

bioinformatics/btr610 PMID: 22057159

96. Puntel M, Barrett R, Sanderson NS, Kroeger KM, Bondale N, Wibowo M, et al. Identification and visu-

alization of CD8+ T cell mediated IFN-γ signaling in target cells during an antiviral immune response in

the brain. PLoS One. 2011; 6(8): e23523. https://doi.org/10.1371/journal.pone.0023523 PMID:

21897844

97. Caby F. CD4+/CD8+ ratio restoration in long-term treated HIV-1-infected individuals. AIDS. 2017; 31

(12): 1685–1695. https://doi.org/10.1097/QAD.0000000000001533 PMID: 28700392

98. Mohanapriya M, Lekha J, editors. Comparative study between decision tree and knn of data mining

classification technique. Journal of Physics: Conference Series; 2018: IOP Publishing.

99. Han S, Kim H, Lee Y-S. Double random forest. Machine Learning. 2020; 109(8): 1569–1586. https://

doi.org/10.1007/s10994-020-05889-1

100. Schnoes AM, Brown SD, Dodevski I, Babbitt PC. Annotation error in public databases: misannotation

of molecular function in enzyme superfamilies. PLoS Comput Biol. 2009; 5(12): e1000605. https://doi.

org/10.1371/journal.pcbi.1000605 PMID: 20011109

101. Churchill MJ, Deeks SG, Margolis DM, Siliciano RF, Swanstrom R. HIV reservoirs: what, where and

how to target them. Nat Rev Microbiol. 2016; 14(1): 55–60. https://doi.org/10.1038/nrmicro.2015.5

PMID: 26616417

102. Harlalka GV, Baple EL, Cross H, Kühnle S, Cubillos-Rojas M, Matentzoglu K, et al. Mutation of

HERC2 causes developmental delay with Angelman-like features. J Med Genet. 2013; 50(2): 65–73.

https://doi.org/10.1136/jmedgenet-2012-101367 PMID: 23243086

103. Sathasivam K, Neueder A, Gipson TA, Landles C, Benjamin AC, Bondulich MK, et al. Aberrant splicing

of HTT generates the pathogenic exon 1 protein in Huntington disease. Proceedings of the National

PLOS COMPUTATIONAL BIOLOGY Predicting molecular interactions between HIV-1 and host

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009720 February 8, 2022 25 / 26

https://doi.org/10.1186/s12864-019-6413-7
https://doi.org/10.1186/s12864-019-6413-7
http://www.ncbi.nlm.nih.gov/pubmed/31898477
https://doi.org/10.1186/1742-4690-6-47
http://www.ncbi.nlm.nih.gov/pubmed/19454010
https://doi.org/10.1093/abbs/gms062
http://www.ncbi.nlm.nih.gov/pubmed/22814248
https://doi.org/10.1371/journal.ppat.1000007
http://www.ncbi.nlm.nih.gov/pubmed/18389079
https://doi.org/10.1126/science.1240933
https://doi.org/10.1126/science.1240933
http://www.ncbi.nlm.nih.gov/pubmed/23929945
https://doi.org/10.1128/JVI.01640-06
https://doi.org/10.1128/JVI.01640-06
http://www.ncbi.nlm.nih.gov/pubmed/17182689
https://doi.org/10.1097/QAD.0b013e32832d7abe
https://doi.org/10.1097/QAD.0b013e32832d7abe
http://www.ncbi.nlm.nih.gov/pubmed/19622906
https://doi.org/10.1128/JVI.00889-15
http://www.ncbi.nlm.nih.gov/pubmed/25855743
https://doi.org/10.1371/journal.ppat.1005024
http://www.ncbi.nlm.nih.gov/pubmed/26172439
https://doi.org/10.7554/eLife.12469
http://www.ncbi.nlm.nih.gov/pubmed/27187613
https://doi.org/10.1002/0471250953.bi0309s53
http://www.ncbi.nlm.nih.gov/pubmed/27010337
https://doi.org/10.1093/bioinformatics/btr610
https://doi.org/10.1093/bioinformatics/btr610
http://www.ncbi.nlm.nih.gov/pubmed/22057159
https://doi.org/10.1371/journal.pone.0023523
http://www.ncbi.nlm.nih.gov/pubmed/21897844
https://doi.org/10.1097/QAD.0000000000001533
http://www.ncbi.nlm.nih.gov/pubmed/28700392
https://doi.org/10.1007/s10994-020-05889-1
https://doi.org/10.1007/s10994-020-05889-1
https://doi.org/10.1371/journal.pcbi.1000605
https://doi.org/10.1371/journal.pcbi.1000605
http://www.ncbi.nlm.nih.gov/pubmed/20011109
https://doi.org/10.1038/nrmicro.2015.5
http://www.ncbi.nlm.nih.gov/pubmed/26616417
https://doi.org/10.1136/jmedgenet-2012-101367
http://www.ncbi.nlm.nih.gov/pubmed/23243086
https://doi.org/10.1371/journal.pcbi.1009720


Academy of Sciences. 2013; 110(6): 2366–2370. https://doi.org/10.1073/pnas.1221891110 PMID:

23341618

104. Rose M, Schubert C, Dierichs L, Gaisa NT, Heer M, Heidenreich A, et al. OASIS/CREB3L1 is epige-

netically silenced in human bladder cancer facilitating tumor cell spreading and migration in vitro. Epi-

genetics. 2014; 9(12): 1626–1640. https://doi.org/10.4161/15592294.2014.988052 PMID: 25625847

105. Khan HA, Margulies CE. The role of mammalian Creb3-like transcription factors in response to nutri-

ents. Front Genet. 2019; 10: 591. https://doi.org/10.3389/fgene.2019.00591 PMID: 31293620

106. Qiu J, Liang T, Wu J, Yu F, He X, Tian Y, et al. N-Substituted Pyrrole Derivative 12m Inhibits HIV-1

Entry by Targeting Gp41 of HIV-1 Envelope Glycoprotein. Front Pharmacol. 2019; 10. https://doi.org/

10.3389/fphar.2019.00859 PMID: 31427969

107. Jordan IK, Wolf YI, Koonin EV. Duplicated genes evolve slower than singletons despite the initial rate

increase. BMC Evol Biol. 2004; 4(1): 1–11. https://doi.org/10.1186/1471-2148-4-22 PMID: 15238160

108. Wibmer CK, Gorman J, Ozorowski G, Bhiman JN, Sheward DJ, Elliott DH, et al. Structure and recogni-

tion of a novel HIV-1 gp120-gp41 interface antibody that caused MPER exposure through viral escape.

PLoS Pathog. 2017; 13(1): e1006074. https://doi.org/10.1371/journal.ppat.1006074 PMID: 28076415

109. Kanehisa M, Furumichi M, Tanabe M, Sato Y, Morishima K. KEGG: new perspectives on genomes,

pathways, diseases and drugs. Nucleic Acids Res. 2017; 45(D1): D353–D361. https://doi.org/10.

1093/nar/gkw1092 PMID: 27899662

PLOS COMPUTATIONAL BIOLOGY Predicting molecular interactions between HIV-1 and host

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009720 February 8, 2022 26 / 26

https://doi.org/10.1073/pnas.1221891110
http://www.ncbi.nlm.nih.gov/pubmed/23341618
https://doi.org/10.4161/15592294.2014.988052
http://www.ncbi.nlm.nih.gov/pubmed/25625847
https://doi.org/10.3389/fgene.2019.00591
http://www.ncbi.nlm.nih.gov/pubmed/31293620
https://doi.org/10.3389/fphar.2019.00859
https://doi.org/10.3389/fphar.2019.00859
http://www.ncbi.nlm.nih.gov/pubmed/31427969
https://doi.org/10.1186/1471-2148-4-22
http://www.ncbi.nlm.nih.gov/pubmed/15238160
https://doi.org/10.1371/journal.ppat.1006074
http://www.ncbi.nlm.nih.gov/pubmed/28076415
https://doi.org/10.1093/nar/gkw1092
https://doi.org/10.1093/nar/gkw1092
http://www.ncbi.nlm.nih.gov/pubmed/27899662
https://doi.org/10.1371/journal.pcbi.1009720

