
ll
OPEN ACCESS
iScience

Article
Multi-omics & pathway analysis identify potential
roles for tumor N-acetyl aspartate accumulation in
murine models of castration-resistant prostate
cancer
Mark J. Salji,

Arnaud Blomme,

J. Henry M.
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SUMMARY

Castration-resistant prostate cancer (CRPC) is incurable and remains a significant
worldwide challenge (Oakes and Papa, 2015). Matched untargeted multi-level
omic datasets may reveal biological changes driving CRPC, identifying novel bio-
markers and/or therapeutic targets. Untargeted RNA sequencing, proteomics,
andmetabolomics were performed on xenografts derived from three independent
sets of hormone naive and matched CRPC human cell line models of local, lymph
node, and bone metastasis grown as murine orthografts. Collectively, we tested
the feasibility of muti-omics analysis on models of CRPC in revealing pathways of
interest for future validation investigation. Untargeted metabolomics revealed
NAAandNAAGcommonly accumulating inCRPC across three independentmodels
and proteomics showed upregulation of related enzymes, namely N-acetylated
alpha-linked acidic dipeptidases (FOLH1/NAALADL2). Based on pathway analysis
integrating multiple omic levels, we hypothesize that increased NAA in CRPC
may be due to upregulation of NAAG hydrolysis via NAALADLases providing a
pool of acetyl Co-A for upregulated sphingolipid metabolism and a pool of gluta-
mate and aspartate for nucleotide synthesis during tumor growth.

INTRODUCTION

Prostate cancer (PC) is the most prevalent malignancy among adult men in the developed world, and PC-

associated mortality continues to rise (Oakes and Papa, 2015; Smittenaar et al., 2016). Androgen depriva-

tion therapy (ADT) remains the cornerstone of treatment of advanced prostate cancer but men on ADT will

eventually develop CRPC.

Metabolic alterations have previously been studied in prostate cancer progression (Geng et al., 2018; Ko-

matsu et al., 2012; Meller et al., 2016; Sharifi, 2013; Sreekumar et al., 2009), including CRPC (Geng et al.,

2018). Sarcosine has been implicated in PC progression, with androgen receptor (AR) and the TMPRSS-

ERG fusion gene product regulating components of the sarcosine pathway (Sreekumar et al., 2009). Lipid

and cholesterol metabolism have also been shown to play a key role in prostate cancer progression and

development of CRPC (Komatsu et al., 2012; Patel et al., 2018; Taylor et al., 2015).

Analysis of orthotopic xenografts derived from human PC cell models of local disease (CWR vs 22RV1)

(Sramkoski et al., 1999), lymph node metastasis (LNCAP and LNCAPAI) (Horoszewicz et al., 1980), and

bone metastasis (VCAP and VCAPCR) (Korenchuk et al., 2001) may identify common metabolites and path-

ways in CRPC across major disease stages. The acquisition of matched global untargeted omic datasets in

combination at different omics levels can be a powerful tool to elucidate not only what is changed but also

what is biologically important in CRPC to better inform future therapeutics (Stagljar, 2016).
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RESULTS

Metabolomics identifies increasedN-acetyl aspartate (NAA) andN-Acetyl aspartyl glutamate

(NAAG) in all three models of CRPC

Untargeted metabolomics was performed on the matched hormone naive (HN) and CRPC orthografts to

identify commonly altered small molecule metabolites in CRPC in an unbiased manner. A principal
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Figure 1. Workflow for matched metabolomics, proteomics, and RNA sequencing of three human orthograft

models of CRPC with untargeted and targeted metabolomics of CRPC highlighting N-acetyl aspartate (NAA) and

N-acetyl aspartate glutamate increased in CRPC tumor models

(A) Three pairs of models were used each with a matched hormone naive (HN) and castration-resistant prostate cancer

(CRPC) counterpart representing progressive stages of tumor from their cell line origin. CWR developed from TURP

specimens representing primary disease, LNCAP developed from lymph node metastasis, and VCAP developed from

vertebral bone metastasis. A quarter of each orthograft was cryo-ground and the same sample used for metabolomics,

proteomics, and RNA sequencing in order to address intratumoural heterogeneity.

(B) Untargeted metabolomics (n = 1,094 compounds negative ion mode) principal component analysis (PCA) plot of

tumor models of CRPC using Compound Discover (Thermo). Biological tumor triplicates are shown as separate points

and separation of the different tumor models can be seen. VCAPCR model tumors show the best separation between the

CRPC and HN models based on their untargeted metabolite profile using the unsupervised PCA.

(C) Targeted metabolomics (n = 112 compounds) Venn diagram showing NAA identified as significantly increased in all

three CRPC tumors compared to the HN counterpart, fold change (FC) of area under curve (AUC) is shown for metabolites

significantly increased using Welch’s t test p % 0.05 in more than one model. All targeted metabolites AUC, mean, SD,

FC, Welch’s t test p value, and Benjamini Hochberge (BH) adjusted p value (padj) are shown in Data S1.

(D and E) Abundance of NAA (D) and NAAG (E) in HN (CWR, LNCAP, VCAP - blue/green) and CRPC (22RV1, LNCAPAI,

VCAPCR - red) tumor models. Both NAA and NAAG levels are significantly increased in all three tumor models (Welch’s

t test Benjamini Hochberge (BH) adjusted p value (padj). All targeted metabolites AUC, mean, SD, FC, Welch’s t test
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Figure 1. Continued

p value, and Benjamini Hochberge (BH) adjusted p value (padj) are shown in Data S1. Box and whisker plots midline

represents the median Log2 area under curve (AUC) with hinges representing the first and third quartiles and whiskers

extending to 1.53 the IQR with all data points including outliers shown.
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component analysis (PCA) was performed using Compound Discoverer 3.0 (thermofisher) (CD) based on

negative ion mode analysis. Figure 1B shows the PCA plot with replicates from orthograft models clus-

tering together. The VCAP and VCAPCR model showed the greatest separation between HN and CR tu-

mors using this unsupervised analysis. An orthogonal projection to latent structures (OPLS) discriminant

analysis (DA) model was generated using Progenesis QI (Water’s) software, with prior segregation of sam-

ples into either HN or CRPC groups again based on negative ion mode analysis. The OPLS-DA loading

S-plot and OPLS-DA scatterplot (Figures S1A and S1B) show replicates from individual orthografts clus-

tering together and clear separation between HN and CR orthografts. The abundance of individual metab-

olites as discriminators of CR and HN tumors was then investigated. N-acetyl aspartate (NAA) represented

the most increased metabolite among all three CRPC models, seen as the metabolite at top right of the

S-plot (Figure S1A). Untargeted metabolomics data were then further analyzed using CD and MS2 spec-

trum matches for NAA and N-acetyl aspartate glutamate (NAAG) were confirmed with high confidence

(Figures S1C and S1D, detailed data files are available via Mendely data portal).

Targeted metabolomics analysis of 112 compounds (Data S1, with detailed data files are available via

Mendely data portal) validated the observed elevated tumoral NAA and NAAG levels in CRPC along

with the nucleobase guanine increased in 22RV1 and LNCAPAI and FAD, NADP+ and succinyl GSH

increased in LNCAPAI and VCAPCR (Figure 1C). Levels of tumoral NAA and NAAG were upregulated in

all three CRPC orthografts (Figures 1D and 1E) (NAA - 22RV1/CWR, FC = 2.4, padj = 0.02; LNCAP/LNCA-

PAI, FC = 2.4, padj = 0.02; VCAP/VCAPCR, FC = 1.8, padj = 0.0007; NAAG - 22RV1/CWR, FC = 3.0, p = 0.02;

LNCAP/LNCAPAI, FC = 8.7, p = 0.03; VCAP/VCAPCR, FC = 3.2, p = 0.0007; Welch’s T-test Benjamini Hoch-

berge (BH) adjusted p value (padj).

As VCAP and VCAPCRmodels showed the highest levels of NAA and NAAG (Figures 1D and 1E), the VCAP

model was used to test whether the increase in tumoral NAA/NAAG level was associated with correspond-

ing changes in serum NAA/NAAG level. Targeted metabolite analysis for serum NAA and NAAG levels

showed comparable levels across all experimental groups of HNPC and CRPC (Figures S1D and S1E).

Therefore, enhanced accumulation of NAA/NAAG in CRPC is more likely to be a local tumor phenomenon

than a systemic increase due to castration.
Analysis of gene expression at the proteome and transcript levels

Individual genes commonly up- or downregulated at both the proteome and transcriptome level may suggest

steady state changes for the implicated genes in CRPC (Liu et al., 2016). In order to map the global proteome

and transcriptome changes onto downstream metabolite changes in CRPC, both quantitative Stable Isotope

Labeling with Amino acids in Cell culture (SILAC)-based proteomics and RNA sequencing were analyzed on

the matched HN and CRPC tumors in parallel. Analysis of gene expression at the proteome and transcript

levels in the three HN (CWR, LNCAP, and VCAP) and isogenic CRPCmodels (22RV1, LNCAPAI, and VCAPCR)

is shown in Figures 2A and 2B (panel A showing upregulated genes and panel B showing downregulated

genes). 1,107 proteins and 7,894 transcripts were upregulated (Log2FC R 0.5, Padj%0.25) and 994 proteins

and 7,296 transcripts downregulated (Log2FC % �0.5, Padj%0.25) among all models. Comparing conserved

upregulated proteins (n = 9) and transcripts (n = 237) in all three models, three genes were upregulated in

CRPC at both protein and transcript levels (Figure 2C), namely Human Schlafen 5 (SLFN5), Cysteine-Rich Pro-

tein 2 (CRIP2), and Cathepsin H (CTSH). Genes downregulated at both protein and transcript levels in all three

CRPC models (Figure 2D) were ACSL3, AGR2, UAP1, ADIRF, and IQGAP2, encoding proteins with diverse

functions involving fatty acid synthesis, protein folding, and adipogenesis. As only a few genes were consis-

tently altered at both expression levels, an alternativemulti-omic pathway analysis was performedwith overlap

at the pathway level in an attempt to address redundancy between individual gene expression levels.
Gene set enrichment analysis (GSEA) of Reactome Pathways of the CRPC proteome and

transcriptome highlights regulated pathways in CRPC at both omic levels

To identify biologically important pathways dysregulated in CRPC, overlap analysis was performed be-

tween the three tumor models of positively enriched (upregulated) or negatively enriched (downregulated)
iScience 25, 104056, April 15, 2022 3
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Figure 2. Combined SILAC proteomics and RNA sequencing overlap highlights individual increasing or decreasing genes at protein and transcript

level with agreement in all three models of CRPC

(A and B) Venn diagrams showing individual gene overlap at both protein (left) and transcript (right) level in three tumor models and upregulated (A) or

downregulated (B) in CRPC by at least 0.5 Log2 Fold Change (corresponding to 1.43 fold change or 40% increase/decrease in protein abundance or mRNA

reads) and P adjusted value % 0.25. Protein groups were quantified by Log2 SILAC ratio change in CRPC and RNA by Log2 Fold Change normalized reads

(DESeq2). Positive values show the relative increase in the CRPC tumor compared to its HN counterpart (n = 4470 total protein groups R1 unique peptide

identified in at least two of three biological replicates).

(C) SLFN5 (Log2 FC at protein level - CWRvs22RV1 1.04, (padj = 0.2), LNCAPvsLNCAPAI, 1.58 (padj = 0.01), VCAPvsVCAPCR, 1.05 (padj = 0.006). Log2 FC at

RNA level CWRvs22RV1, 5.37 (padj = 7.13 10�36), LNCAPvsLNCAPAI, 1.32 (padj = 6.73 10�31), VCAPvsVCAPCR, 0.93 (padj = 3.33 10�13), CRIP2 (Log2 FC at

protein level - CWRvs22RV1 0.88, (padj = 0.2), LNCAPvsLNCAPAI, 1.16 (padj = 0.01), VCAPvsVCAPCR, 1.33 (padj = 0.006). Log2 FC at RNA level

CWRvs22RV1, 0.96 (padj = 7.1 3 10�36), LNCAPvsLNCAPAI, 1.63 (padj = 6.7 3 10�31), VCAPvsVCAPCR, 1.11 (padj = 3.3 3 10�13) and CTSH (Log2 FC at

protein level - CWRvs22RV1 1.73, (padj = 0.2), LNCAPvsLNCAPAI, 0.90 (padj = 0.01), VCAPvsVCAPCR, 0.71 (padj = 0.006). Log2 FC at RNA level CWRvs22RV1,

1.89 (padj = 7.1 3 10�36), LNCAPvsLNCAPAI, 0.73 (padj = 6.7 3 10�31), VCAPvsVCAPCR, 0.61 (padj = 3.3 3 10�13) are the only three genes with increased

expression in all three models by both protein and mRNA quantification, above set cutoff levels, with Log2 FC increase at protein and RNA level shown

increasing from yellow to red in the heatmap. SLFN5 shows marked increase at both protein and RNA level and has been subsequently further investigated

(Martinez et al., 2020).

(D) ACSL3, AGR2, UAP1, ADIRF, and IQGAP2 were the only five genes with decreased expression in all three models by both protein and mRNA

quantification, below set cutoff levels. Log2 Fold Change decrease at protein and RNA level in CRPC is shown as negative values decreasing from green to

blue in the heatmap. These genes encode proteins with diverse functions from fatty acid synthesis to protein folding, protein metabolism, and adipogenesis

and cell adhesion.

ll
OPEN ACCESS

iScience
Article
pathways by normalized enrichment score (NES) at both protein and transcript levels (Figures 3A and 3B,

with panel A showing pathways positively enriched and panel B showing pathways negatively enriched).

Commonly up/downregulated pathways at the protein and transcript levels across the three tumor models

of CRPC are shown as heatmaps of NES for each Reactome pathway. Only five pathways were found to be

increased (Figure 3C), while 34 pathways were decreased in CRPC (Figure 3D; Data S2). Unbiased hierar-

chical clustering of pathways by Euclidean distance across the three tumor models is shown by the tree

diagram to the left of the pathway heatmaps (pathway names with ellipses are listed in full in Data S2).

Collectively, pathway analysis with agreement at both protein and RNA level showed increases in two

metabolic pathways: (1) Sphingolipid metabolism which clusters with ‘‘Transport to the Golgi and Subse-

quent Modification’’, and (2) Purine Metabolism which clusters with mRNA processing and RNA Pol II
4 iScience 25, 104056, April 15, 2022
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Figure 3. Combined gene set enrichment analysis (GSEA) of Reactome Pathways at the protein and RNA level highlights pathways increased or

decreased with agreement in all three models of CRPC

(A and B) Venn diagrams showing overlap of Reactome Pathways increased in CRPC (A) or decreased in CRPC (B) at both protein (left) and transcript level

(right) in the three tumor models. Protein groups were ranked by Log2 SILAC ratio change for GSEA enrichment analysis. Normalized enrichment score (NES)

was either positive (increased) (A) or negative (decreased) (B) in CRPC with P adjusted value % 0.25 (BH) for pathway enrichment.

(C) Heatmap of NES shows five pathways increased (positive NES) (C) at both protein and transcript level in all three CRPC tumor models: Sphingolipid

Metabolism, Transport to the Golgi and subsequent modification [of proteins], Purine metabolism, mRNA processing, and RNA POL II Transcription.

Unbiased clustering by rows of pathways by Euclidean distance is shown by the tree diagram (left) of heatmap. Full titles of pathways with ellipses are listed in

Data S2.

(D) Heatmap of NES of pathways decreased (negative NES) (D) at both protein and transcript level in all three CRPC tumor models shows 34 decreased

pathways showing cell cycle and immune pathways predominantly. Full titles of pathways with ellipses are listed in Data S2.
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transcription (Figure 3C). The Reactome pathway for aspartate/asparaginemetabolism (containing theme-

tabolites NAA/NAAG) was not found to be significantly upregulated. Downregulated pathways comprised

mainly of cell cycle and immune response-associated pathways and no specific downlegulated metabolic
iScience 25, 104056, April 15, 2022 5
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pathways were identified. Hence, it was unclear how and if the upregulated (protein and RNA) pathways

observed related to upregulated metabolites of interest in CRPC (namely NAA/NAAG).

Multi-omic level analysis of NAA/NAAG pathway genes identify upregulation of

N-acetylated alpha-linked acidic dipeptidases (NAALADases)

We hypothesized that increased levels of NAA/NAAG in CRPC may be associated with the observed up-

regulated pathways in CRPC, namely the sphingolipid and purine metabolic pathways, Transport to the

Golgi and subsequent modification, and mRNA processing and RNA Pol II transcription (Figure 3C). The

aspartate/asparagine Reactome metabolic pathway was interrogated at all three omic levels for changes

in metabolite abundance, protein abundance, and transcript reads in CRPC (Figure 4A). We observed

elevated levels of N-acetyl alpha-linked dipeptidases (NAALADLases) in CRPC when compared to the

respective HN tumors, namely FOLH1 andNAALADL2 as upregulated proteins and transcripts in Figure 4A.

NAALADLase (or prostate-specific membrane antigen/PSMA or FOLH1) is a clinically relevant marker for

CRPC. N-acetyl alpha-linked dipeptidases (FOLH1 and NAALADL2) convert NAAG to NAA. Taken

together, elevated levels of FOLH1 and NAALAD2 are consistent with increased levels of NAA and

NAAG in CRPC tumors (Figures 1D and 1E).

NAALADL2 was significantly increased at the protein level in all three CRPCmodels while FOLH1 (or PSMA)

was upregulated at the RNA level in all three CRPCmodels (Figure 4A). The varying patterns of FOLH1 and

NAALADL2 expression at protein and RNA levels among the three sets of CRPC may reflect the overlap-

ping nature of their enzymatic function (Whitaker et al., 2014). Of note, NAT8L transcripts (the synthetic

enzyme of NAA) were also observed as increased in CRPC across all three models, but NAT8L was not de-

tected at the protein level. Collectively, multi-omic analysis based on the observed metabolic alterations in

CRPC demonstrated a range of cellular strategies which may explain increased levels of tumoral NAA in

CRPC.

Accumulated NAA can be metabolized by aminoacylase (ACY1) releasing the N-acetyl group and aspar-

tate. ACY1 is increased in LNCAPAI and VCAPCR at the protein level and across all three models at the

transcript level (Figure 4A). The N-acetyl group can then be converted to acetyl-CoA via mitochondrial

acetyl-CoA synthetase (ACSS1) required for upregulation of the sphingolipid metabolism implicated in

Figure 3C. Aspartate released from NAA via ACY1 can be converted to glutamate via glutamic-oxaloacetic

transaminase ½ (GOT1/2) and transported via SLC25A12/13 exchanging glutamate for aspartate across the

inner mitochondrial membrane. SLC25A12/13 and GOT1/2 are slightly upregulated at both protein and

transcript levels in all three CRPC models (Figure 4A). Aspartate may be further converted to asparagine

via asparagine synthetase (ASNS) also increased at transcript level in 22RV1 and LNCAPAI models of

CRPC in keeping with previous studies on ASNS in CRPC (Sircar et al., 2012). Collectively, our analysis sup-

ports the notion that NAA accumulation may support CRPC-associated pathways as a potential source of

acetyl-CoA and aspartate (Figure 4B) (Bogner-Strauss, 2017).

The combination of genes associated with NAA/NAAG and downstream upregulated pathways were as-

sessed for survival effects in publicly available PC datasets using cbioportal, all prostate cancer (primary

and metastatic) cases with data on overall survival, gene copy number, and amplification status from mul-

tiple clinical cohorts (Grasso et al., 2012; Hieronymus et al., 2014; Taylor et al., 2010). The gene signature of

FOLH1, NAALADL2, ACSS1, ACY1, GOT1/2, and ASNS showed significantly reduced overall survival (Log-

Rank test BH FDR padj = 5.993 10�4, altered n = 12 median overall survival = 70 months, unaltered n = 140

median overall survival = 131 months) in keeping with increased NAA/NAAG metabolic pathways in

CRPC being associated with shorter patient (overall and disease free) survival. The altered group had signif-

icantly greater proportion with ADT (Chi-Squared Test q < 10�10) and metastatic sites (Chi-Squared Test

q = 1.17 3 10�8) along with higher Gleason Grade (Chi-Squared Test q < 10�10).

DISCUSSION

The objective of our study was to test the feasibility of applying a multi-omics approach on an in vivo panel

of paired HN and CRPC tumor models to uncover novel pathways that may otherwise not be identified. The

highlighted pathways can then be formally evaluated in future research. Data presented in our report will

also provide an invaluable comprehensive data rich resource in prostate cancer research. This study incor-

porates an in vivo untargeted multi-omics approach to understanding the metabolomic, proteomic, and

transcriptomic changes occurring in three tumor models of CRPC. N-acetyl aspartate (NAA) and N-acetyl
6 iScience 25, 104056, April 15, 2022
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Figure 4. NAA/NAAG pathwaymetabolites, proteins, and transcripts suggest a role for NAA in the support of CRPC-enriched pathways identified

(A) Heatmaps of metabolites, protein, and transcript (left to right) changes in CRPC for identified and quantified NAA/NAAG-related small molecule

metabolites and genes comprising the Reactome pathway for aspartate/asparagine metabolism with the addition of ACY1 and ACSS1. Heatmap colors

represent the mean Log2 FC in CRPC tumors (22RV1, LNCAPAI, and VCAPCR) compared to the HN counterpart tumors (CWR, LNCAP, and VCAP) (mean

Log2 FC of CRPC model minus mean Log2 FC of HN model with positive value representing an increase in abundance in the CRPC model). Star indicates

significance with Welch’s T-test p value %0.05.

(B) Hypothesis flow diagram linking NAA/NAAG metabolism to enriched pathways identified in CRPC (blue) and metabolic enzymes (red). The position of

NAA metabolizing enzymes (red) identified and quantified above in the heatmaps at protein and transcript level in models of CRPC are shown.

(C) Survival analysis of publicly available clinical PC datasets via cBioPortal (Grasso et al., 2012; Hieronymus et al., 2014; Taylor et al., 2010) showing reduced

overall survival of patients with copy number amplifications in the geneset of enzymes associated with NAA/NAAGmetabolism (FOLH1, NAALADL2, ACSS1,

ACY1, GOT1/2, and ASNS) (Log-Rank test BH padj = 5.99 3 10�4). Altered group n = 12 median overall survival = 70 months, unaltered n = 140 median

overall survival = 131 months. In addition, there was also association with disease-free survival (Log-Rank test BH FDR padj = 4.03 3 10�3, altered n = 4

median disease free survival = 4.11 months, unaltered n = 274 median overall disease free survival = 110.33 months.
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aspartate glutamate (NAAG) were identified as significantly increased in all three models of CRPC suggest-

ing a common feature, highlighting a potential role of these metabolites in CRPC, and the need for future

research in this area. Combined proteomic and transcriptomic analysis identified increased enrichment be-

tween the three CRPC models in sphingolipid and purine metabolic pathways (Figure 3). Sphingolipid

metabolism has not previously been associated with CRPC but has previously been implicated in PC meta-

bolic dysregulation (Meller et al., 2016). Our recent lipidomics analysis also confirms increases in sphingo-

lipid species in CRPC cell line models (Blomme et al., 2020).

In our report, we identified accumulation of NAA in CRPC. NAA has primarily been studied as a neuronal

metabolite and is the most abundant small molecule metabolite in neuronal tissue (Baslow, 2002; Edden

et al., 2007; Moffett et al., 2006). In neurons, NAA is synthesized by aspartate N-acetyltransferases
iScience 25, 104056, April 15, 2022 7
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(NATs) and primarily NAT8L which is mainly expressed in the brain (Wiame et al., 2009). NAT8L was only

detected at the RNA level in our analysis but significantly increased across all CRPC models (Figure 4A).

Whether NAA is synthesized in prostate tumor by NAT8L or accumulated by another mechanism remains

elusive. NAA can also be produced by NAALADLases (FOLH1 and NAALADL2) through hydrolysis of

NAAG releasing NAA and glutamate. NAALADL2 was significantly increased at the protein level in all three

CRPC models while FOLH1 (or PSMA) was upregulated at the RNA level in all three CRPC models (Fig-

ure 4A). Collectively, our data from steady state expression analysis point to upregulated activities for

the pathway involving FOLH1 andNAALADL2 in converting NAAG to NAA and glutamate. The varying pat-

terns of FOLH1 and NAALADL2 expression at protein and RNA levels among the three sets of CRPC may

reflect the overlapping nature of their enzymatic function. NAALADL2 has been shown to be upregulated in

prostate cancer promoting migration and metastasis (Whitaker et al., 2014) and more recently Simpson

et al. showed the genomic location of NAALADL2 (3q26.31–32 locus) as a region with amplifications or

copy number gains found to be more prevalent in aggressive PC and associated with significant reduction

in disease-free survival (Simpson et al., 2020). Applying our geneset associated with NAA/NAAG and

downstream upregulated pathways from proteomics and RNAseq (namely FOLH1, NAALADL2, ACSS1,

ACY1, GOT1/2, and ASNS) identified reduced patient (overall and disease-free) survival, along with asso-

ciated features of aggressive disease with high Gleason scores, metastasis, and fraction of genome altered

(Figure 4C), with patient-related parameters in analyzed clinical cohorts presented in Data S3.

FOLH1/PSMA has been widely studied in prostate cancer as a theranostic target, and its expression is sug-

gested to increase upon ADT (Meller et al., 2015). PSMA or GCPII has also been implicated in the storage

and release of glutamate through hydrolysis of NAAG inmultiple cancer types (Nguyen et al., 2019). Redun-

dancy between FOLH1 and NAALADL2 may be important from our study as primarily NAALADL2 appears

to be commonly increased in CRPC but FOLH1 is markedly upregulated in the 22RV1 vs CWR primary PC

model (Figure 4A). Increased glutamate released by NAAG hydrolysis via NAALADLases or exchanged for

aspartate can also support pathways observed to be increased at protein and transcript level in all three

CRPCmodels (Figure 3C), including purine metabolism, downstream purine nucleotide synthesis, and sub-

sequent RNA Pol II transcription for mRNA synthesis.

Accumulated NAA may act as both a metabolic reservoir of acetyl Co-A and a secreted signaling metab-

olite promoting a pro-inflammatory tumor micro-environment conducive to CRPC (Sciarra et al., 2016).

NAA has been shown to interact with adipocytes promoting a pro-inflammatory niche (Huber et al.,

2019). NAA may also act on tissue-associated macrophages, increased in the periprostatic adipose tissue

of CRPC tumors (Gucalp et al., 2017), increasing inflammatory cytokine release (Davies et al., 2017; Ribeiro

et al., 2012).

The major limitation of this study is the use of a small number of genetically distinct tumors from ortho-

topic xenograft models derived from established human prostate cancer cell lines. Inclusion of additional

pairs of HN and CRPC would better represent tumor heterogeneity of clinical disease. A further limitation

of the model used is the lack of an adaptive immune response due to xenograft tumors. Another key

limitation of this report is the lack of formal validation experiments. As the primary objective of our study

was to evaluate the feasibility of a multi-omics analysis on a panel of paired HN and CRPC tumor models,

we propose that future validation experiments are warranted. Collectively, our analysis supports the

notion that NAA accumulation may support CRPC-associated pathways as a source of acetyl-CoA and

aspartate, akin to NAA metabolism seen in the nervous system (Mehta and Namboodiri, 1995; Moffett

et al., 2006). Based on our hypothesis, increased acetate and aspartate metabolism will be expected

in CRPC. Data on acetate are not available from the analysis performed and will require a separate round

of GC-MS analysis. Available data on aspartate from our dataset were not conclusive (see data on aspar-

tate contained in Data S1). Nonetheless, we did observed a trend (though not reaching statistical signif-

icance) for increased aspartate in LNCaP-AI and VCAP CRPC orthografts when compared to the respec-

tive HNPC orthografts. Formal metabolic tracing experiments will be required to formally test the value

of NAA/NAAG-mediated metabolism in supporting CRPC metabolism via acetyl-CoA and aspartate as

intermediate metabolites.

Based on our multi-omics analysis, we hypothesize that NAA accumulation partly through the action of up-

regulation of NAALADLases may result in a survival advantage in CRPC by providing a source of acetate

and aspartate feeding into both sphingolipid metabolism and purine metabolism, the only increased
8 iScience 25, 104056, April 15, 2022
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metabolic pathways at both protein and RNA level across all the three CRPC models (Figure 4A). This hy-

pothesis may be tested in future studies employing labeled NAA lipidomics to access the fate of NAA ac-

etate in CRPC models. Sphingolipid metabolism in particular has been previously implicated in prostate

and other cancers, particularly in pro-survival and therapeutic resistance (Voelkel-Johnson et al., 2018).

This highlights NAA metabolism and sphingolipid metabolism as potential common metabolic strategies

for future therapeutics in CRPC.

STAR+METHODS

Detailed methods are provided in the online version of this paper and include the following:

d KEY RESOURCES TABLE

d RESOURCE AVAILABILITY
B Lead contact

B Materials availability

B Data and code availability

d EXPERIMENTAL MODEL AND SUBJECT DETAILS

B Modeling CRPC using a pre-clinical orthotopic murine transplantation model

B Orthograft tumour models

d METHOD DETAILS

B Cell culture

B LC-MS untargeted metabolomics protocol

B Untargeted metabolomics analysis

B LC-MS targeted metabolomics protocol

B SILAC standard development

B Tissue processing for in vivo proteomics

B Proteomics LC-MS protocol

B Proteomics data acquisition

B MaxQuant and perseus analysis

B Reactome pathways GSEA

B RNA sequencing

d QUANTIFICATION AND STATISTICAL ANALYSIS

B Gene set enrichment and multi-omics analysis

SUPPLEMENTAL INFORMATION

Supplemental information can be found online at https://doi.org/10.1016/j.isci.2022.104056.

ACKNOWLEDGMENTS

We thank the Core Services and Advanced Technologies at the CRUK Beatson Institute, particularly the

Metabolomics, Proteomics, RNA sequencing and Bioinformatics units. This work was supported by the

Medical Research Council Clinical Research Training Fellowship awarded to MS (MR/L017997/1) and

CRUK Beatson Institute core funding (C596/A31287) and CRUK core group awarded to HYL (A15151)

and SZ (A29800).

AUTHOR CONTRIBUTIONS

MJS, AB, and HYL designed the study. MJS, HMD, SL, RP, DS, and NJFB performed the experiments. MJS,

AB, HMD, PR, SL, DS, NJFB, SZ, and RD analyzed the data. MJS, AB, HMD, RD, SZ, and HYL interpreted the

data. MJS and HYL wrote the manuscript and all authors reviewed the final manuscript.

DECLARATION OF INTERESTS

The authors declare no competing interests.

Received: December 29, 2020

Revised: November 10, 2021

Accepted: March 8, 2022

Published: April 15, 2022
iScience 25, 104056, April 15, 2022 9

https://doi.org/10.1016/j.isci.2022.104056


ll
OPEN ACCESS

iScience
Article
REFERENCES

Baslow, M.H. (2002). Functions of N-Acetyl-l-
Aspartate and N-Acetyl-l-Aspartylglutamate in
the vertebrate brain. J. Neurochem. 75, 453–459.
https://doi.org/10.1046/j.1471-4159.2000.
0750453.x.

Berthois, Y., Katzenellenbogen, J.A., and
Katzenellenbogen, B.S. (1986). Phenol red in
tissue culture media is a weak estrogen:
implications concerning the study of estrogen-
responsive cells in culture. Proc. Natl. Acad. Sci. U
S A 83, 2496–2500. https://doi.org/10.1073/pnas.
83.8.2496.

Blomme, A., Ford, C.A., Mui, E., Patel, R., Ntala,
C., Jamieson, L.E., Planque, M., McGregor, G.H.,
Peixoto, P., Hervouet, E., et al. (2020). 2,4-dienoyl-
CoA reductase regulates lipid homeostasis in
treatment-resistant prostate cancer. Nat.
Commun. 11, 2508. https://doi.org/10.1038/
s41467-020-16126-7.

Boersema, P.J., Geiger, T., Wisniewski, J.R., and
Mann, M. (2013). Quantification of the N-
glycosylated secretome by super-SILAC during
breast cancer progression and in human blood
samples. Mol. Cell. Proteomics 12, 158–171.
https://doi.org/10.1074/mcp.M112.023614.

Bogner-Strauss, J.G. (2017). N-acetylaspartate
metabolism outside the brain: lipogenesis,
histone acetylation, and cancer. Front.
Endocrinol. 8, 240. https://doi.org/10.3389/
fendo.2017.00240.

Davies, L.C., Rice, C.M., Palmieri, E.M., Taylor,
P.R., Kuhns, D.B., and McVicar, D.W. (2017).
Peritoneal tissue-resident macrophages are
metabolically poised to engage microbes using
tissue-niche fuels. Nat. Commun. 8, 2074. https://
doi.org/10.1038/s41467-017-02092-0.

Edden, R.A.E., Pomper, M.G., and Barker, P.B.
(2007). In vivo differentiation of N-acetyl aspartyl
glutamate from N-acetyl aspartate at 3 Tesla.
Magn. Reson. Med. 57, 977–982. https://doi.org/
10.1002/mrm.21234.

Geng, H., Xue, C., Mendonca, J., Sun, X.-X., Liu,
Q., Reardon, P.N., Chen, Y., Qian, K., Hua, V.,
Chen, A., et al. (2018). Interplay between hypoxia
and androgen controls a metabolic switch
conferring resistance to androgen/AR-targeted
therapy. Nat. Commun. 9, 4972. https://doi.org/
10.1038/s41467-018-07411-7.

Grasso, C.S., Wu, Y.-M., Robinson, D.R., Cao, X.,
Dhanasekaran, S.M., Khan, A.P., Quist, M.J., Jing,
X., Lonigro, R.J., Brenner, J.C., et al. (2012). The
mutational landscape of lethal castration-
resistant prostate cancer. Nature 487, 239–243.
https://doi.org/10.1038/nature11125.

Gucalp, A., Iyengar, N.M., Zhou, X.K., Giri, D.D.,
Falcone, D.J., Wang, H., Williams, S., Krasne,
M.D., Yaghnam, I., Kunzel, B., et al. (2017).
Periprostatic adipose inflammation is associated
with high-grade prostate cancer. Prostate Cancer
Prostatic Dis. 20, 418–423. https://doi.org/10.
1038/pcan.2017.31.

Hieronymus, H., Schultz, N., Gopalan, A., Carver,
B.S., Chang, M.T., Xiao, Y., Heguy, A., Huberman,
K., Bernstein, M., Assel, M., et al. (2014). Copy
number alteration burden predicts prostate
cancer relapse. Proc. Natl. Acad. Sci. U S A 111,
10 iScience 25, 104056, April 15, 2022
11139–11144. https://doi.org/10.1073/pnas.
1411446111.

Horoszewicz, J.S., Leong, S.S., Chu, T.M.,
Wajsman, Z.L., Friedman, M., Papsidero, L., Kim,
U., Chai, L.S., Kakati, S., Arya, S.K., and Sandberg,
A.A. (1980). The LNCaP cell line–a new model for
studies on human prostatic carcinoma. Prog. Clin.
Biol. Res. 37, 115–132.

Huber, K., Hofer, D.C., Trefely, S., Pelzmann, H.J.,
Madreiter-Sokolowski, C., Duta-Mare, M.,
Schlager, S., Trausinger, G., Stryeck, S., Graier,
W.F., et al. (2019). N-acetylaspartate pathway is
nutrient responsive and coordinates lipid and
energy metabolism in brown adipocytes.
Biochim. Biophys. Acta Mol. Cell Res. 1866,
337–348. https://doi.org/10.1016/j.bbamcr.2018.
08.017.

Kim, D., Pertea, G., Trapnell, C., Pimentel, H.,
Kelley, R., and Salzberg, S.L. (2013). TopHat2:
accurate alignment of transcriptomes in the
presence of insertions, deletions and gene
fusions. Genome Biol. 14, R36. https://doi.org/10.
1186/gb-2013-14-4-r36.

Komatsu, S., Hara, N., Ishizaki, F., Nishiyama, T.,
Takizawa, I., Isahaya, E., Kawasaki, T., and
Takahashi, K. (2012). Altered association of
interleukin-6 with sex steroids in lipid metabolism
disorder in men with prostate cancer receiving
androgen deprivation therapy. Prostate 72, 1207–
1213. https://doi.org/10.1002/pros.22471.

Korenchuk, S., Lehr, J.E., MClean, L., Lee, Y.G.,
Whitney, S., Vessella, R., Lin, D.L., and Pienta, K.J.
(2001). VCaP, a cell-based model system of
human prostate cancer. In Vivo 15, 163–168.

Kuntz, E.M., Baquero, P., Michie, A.M., Dunn, K.,
Tardito, S., Holyoake, T.L., Helgason, G.V., and
Gottlieb, E. (2017). Targeting mitochondrial
oxidative phosphorylation eradicates therapy-
resistant chronic myeloid leukemia stem cells.
Nat. Med. 23, 1234–1240. https://doi.org/10.
1038/nm.4399.

Liu, Y., Beyer, A., and Aebersold, R. (2016). On the
dependency of cellular protein levels on mRNA
abundance. Cell 165, 535–550. https://doi.org/
10.1016/j.cell.2016.03.014.

Love, M.I., Huber, W., and Anders, S. (2014).
Moderated estimation of fold change and
dispersion for RNA-seq data with DESeq2.
Genome Biol. 15, 550. https://doi.org/10.1186/
s13059-014-0550-8.

Martinez, R.S., Salji, M.J., Rushworth, L., Ntala, C.,
Rodriguez Blanco, G., Hedley, A., Clark, W.,
Peixoto, P., Hervouet, E., Renaude, E., et al.
(2020). Schlafen family member 5 (SLFN5)
regulates LAT1-mediated mTOR activation in
castration-resistant prostate cancer. BioRxiv.
https://doi.org/10.1101/2020.09.17.301283.

Mehta, V., and Namboodiri, M.A. (1995). N-
acetylaspartate as an acetyl source in the nervous
system. Brain Res. Mol. Brain Res. 31, 151–157.
https://doi.org/10.1016/0169-328x(95)00044-s.

Meller, B., Bremmer, F., Sahlmann, C.O., Hijazi,
S., Bouter, C., Trojan, L., Meller, J., and Thelen,
P. (2015). Alterations in androgen deprivation
enhanced prostate-specific membrane antigen
(PSMA) expression in prostate cancer cells as a
target for diagnostics and therapy. EJNMMI
Res. 5, 66. https://doi.org/10.1186/s13550-015-
0145-8.

Meller, S., Meyer, H.-A., Bethan, B., Dietrich, D.,
Maldonado, S.G., Lein, M., Montani, M., Reszka,
R., Schatz, P., Peter, E., et al. (2016). Integration of
tissue metabolomics, transcriptomics and
immunohistochemistry reveals ERG- and gleason
score-specific metabolomic alterations in
prostate cancer. Oncotarget 7, 1421–1438.
https://doi.org/10.18632/oncotarget.6370.

Moffett, J., Tieman, S.B., Weinberger, D.R.,
Coyle, J.T., and Namboodiri, A.M.A. (2006). N-
acetylaspartate: A Unique Neuronal Molecule in
the Central Nervous System (Springer Science &
Business Media).

Nguyen, T., Kirsch, B.J., Asaka, R., Nabi, K.,
Quinones, A., Tan, J., Antonio, M.J., Camelo, F.,
Li, T., Nguyen, S., et al. (2019). Uncovering the
role of N-Acetyl-Aspartyl-Glutamate as a
glutamate reservoir in cancer. Cell Rep. 27, 491–
501.e6. https://doi.org/10.1016/j.celrep.2019.03.
036.

Oakes, S.A., and Papa, F.R. (2015). The role of
endoplasmic reticulum stress in human
pathology. Annu. Rev. Pathol. 10, 173–194.
https://doi.org/10.1146/annurev-pathol-012513-
104649.

Patel, R., Fleming, J., Mui, E., Loveridge, C.,
Repiscak, P., Blomme, A., Harle, V., Salji, M.,
Ahmad, I., Teo, K., et al. (2018). Sprouty2 loss-
induced IL6 drives castration-resistant prostate
cancer through scavenger receptor B1. EMBO
Mol. Med. 10, e8347. https://doi.org/10.15252/
emmm.201708347.

Ribeiro, R., Monteiro, C., Cunha, V., Oliveira, M.J.,
Freitas, M., Fraga, A., Prı́ncipe, P., Lobato, C.,
Lobo, F., Morais, A., et al. (2012). Human
periprostatic adipose tissue promotes prostate
cancer aggressiveness in vitro. J. Exp. Clin.
Cancer Res. 31, 32. https://doi.org/10.1186/1756-
9966-31-32.

Sciarra, A., Gentilucci, A., Salciccia, S., Pierella, F.,
Del Bianco, F., Gentile, V., Silvestri, I., and
Cattarino, S. (2016). Prognostic value of
inflammation in prostate cancer progression and
response to therapeutic: a critical review.
J. Inflamm. 13, 35. https://doi.org/10.1186/
s12950-016-0143-2.

Sharifi, N. (2013). Minireview: androgen
metabolism in castration-resistant prostate
cancer. Mol. Endocrinol. 27, 708–714. https://doi.
org/10.1210/me.2013-1007.

Simpson, B.S., Camacho, N., Luxton, H.J., Pye, H.,
Finn, R., Heavey, S., Pitt, J., Moore, C.M., and
Whitaker, H.C. (2020). Genetic alterations in the
3q26.31-32 locus confer an aggressive prostate
cancer phenotype. Commun. Biol. 3, 440. https://
doi.org/10.1038/s42003-020-01175-x.

Sircar, K., Huang, H., Hu, L., Cogdell, D., Dhillon,
J., Tzelepi, V., Efstathiou, E., Koumakpayi, I.H.,
Saad, F., Luo, D., et al. (2012). Integrative
molecular profiling reveals asparagine synthetase
is a target in castration-resistant prostate cancer.
Am. J. Pathol. 180, 895–903. https://doi.org/10.
1016/j.ajpath.2011.11.030.

https://doi.org/10.1046/j.1471-4159.2000.0750453.x
https://doi.org/10.1046/j.1471-4159.2000.0750453.x
https://doi.org/10.1073/pnas.83.8.2496
https://doi.org/10.1073/pnas.83.8.2496
https://doi.org/10.1038/s41467-020-16126-7
https://doi.org/10.1038/s41467-020-16126-7
https://doi.org/10.1074/mcp.M112.023614
https://doi.org/10.3389/fendo.2017.00240
https://doi.org/10.3389/fendo.2017.00240
https://doi.org/10.1038/s41467-017-02092-0
https://doi.org/10.1038/s41467-017-02092-0
https://doi.org/10.1002/mrm.21234
https://doi.org/10.1002/mrm.21234
https://doi.org/10.1038/s41467-018-07411-7
https://doi.org/10.1038/s41467-018-07411-7
https://doi.org/10.1038/nature11125
https://doi.org/10.1038/pcan.2017.31
https://doi.org/10.1038/pcan.2017.31
https://doi.org/10.1073/pnas.1411446111
https://doi.org/10.1073/pnas.1411446111
http://refhub.elsevier.com/S2589-0042(22)00326-1/sref12
http://refhub.elsevier.com/S2589-0042(22)00326-1/sref12
http://refhub.elsevier.com/S2589-0042(22)00326-1/sref12
http://refhub.elsevier.com/S2589-0042(22)00326-1/sref12
http://refhub.elsevier.com/S2589-0042(22)00326-1/sref12
http://refhub.elsevier.com/S2589-0042(22)00326-1/sref12
https://doi.org/10.1016/j.bbamcr.2018.08.017
https://doi.org/10.1016/j.bbamcr.2018.08.017
https://doi.org/10.1186/gb-2013-14-4-r36
https://doi.org/10.1186/gb-2013-14-4-r36
https://doi.org/10.1002/pros.22471
http://refhub.elsevier.com/S2589-0042(22)00326-1/sref16
http://refhub.elsevier.com/S2589-0042(22)00326-1/sref16
http://refhub.elsevier.com/S2589-0042(22)00326-1/sref16
http://refhub.elsevier.com/S2589-0042(22)00326-1/sref16
https://doi.org/10.1038/nm.4399
https://doi.org/10.1038/nm.4399
https://doi.org/10.1016/j.cell.2016.03.014
https://doi.org/10.1016/j.cell.2016.03.014
https://doi.org/10.1186/s13059-014-0550-8
https://doi.org/10.1186/s13059-014-0550-8
https://doi.org/10.1101/2020.09.17.301283
https://doi.org/10.1016/0169-328x(95)00044-s
https://doi.org/10.1186/s13550-015-0145-8
https://doi.org/10.1186/s13550-015-0145-8
https://doi.org/10.18632/oncotarget.6370
http://refhub.elsevier.com/S2589-0042(22)00326-1/sref24
http://refhub.elsevier.com/S2589-0042(22)00326-1/sref24
http://refhub.elsevier.com/S2589-0042(22)00326-1/sref24
http://refhub.elsevier.com/S2589-0042(22)00326-1/sref24
http://refhub.elsevier.com/S2589-0042(22)00326-1/sref24
https://doi.org/10.1016/j.celrep.2019.03.036
https://doi.org/10.1016/j.celrep.2019.03.036
https://doi.org/10.1146/annurev-pathol-012513-104649
https://doi.org/10.1146/annurev-pathol-012513-104649
https://doi.org/10.15252/emmm.201708347
https://doi.org/10.15252/emmm.201708347
https://doi.org/10.1186/1756-9966-31-32
https://doi.org/10.1186/1756-9966-31-32
https://doi.org/10.1186/s12950-016-0143-2
https://doi.org/10.1186/s12950-016-0143-2
https://doi.org/10.1210/me.2013-1007
https://doi.org/10.1210/me.2013-1007
https://doi.org/10.1038/s42003-020-01175-x
https://doi.org/10.1038/s42003-020-01175-x
https://doi.org/10.1016/j.ajpath.2011.11.030
https://doi.org/10.1016/j.ajpath.2011.11.030


ll
OPEN ACCESS

iScience
Article
Smittenaar, C.R., Petersen, K.A., Stewart, K., and
Moitt, N. (2016). Cancer incidence and mortality
projections in the UK until 2035. Br. J. Cancer 115,
1147–1155. https://doi.org/10.1038/bjc.2016.304.

Sramkoski, R.M., Pretlow, T.G., Giaconia, J.M.,
Pretlow, T.P., Schwartz, S., Sy, M.S., Marengo,
S.R., Rhim, J.S., Zhang, D., and Jacobberger,
J.W. (1999). A new human prostate carcinoma
cell line, 22Rv1. In Vitro Cell Dev. Biol. Anim. 35,
403–409. https://doi.org/10.1007/s11626-999-
0115-4.

Sreekumar, A., Poisson, L.M., Rajendiran, T.M.,
Khan, A.P., Cao, Q., Yu, J., Laxman, B., Mehra,
R., Lonigro, R.J., Li, Y., et al. (2009).
Metabolomic profiles delineate potential role
for sarcosine in prostate cancer progression.
Nature 457, 910–914. https://doi.org/10.1038/
nature07762.

Stagljar, I. (2016). The power of OMICs. Biochem.
Biophys. Res. Commun. 479, 607–609. https://
doi.org/10.1016/j.bbrc.2016.09.095.

Taylor, B.S., Schultz, N., Hieronymus, H.,
Gopalan, A., Xiao, Y., Carver, B.S., Arora, V.K.,
Kaushik, P., Cerami, E., Reva, B., et al. (2010).
Integrative genomic profiling of human prostate
cancer. Cancer Cell 18, 11–22. https://doi.org/10.
1016/j.ccr.2010.05.026.

Taylor, R.A., Lo, J., Ascui, N., and Watt, M.J.
(2015). Linking obesogenic dysregulation to
prostate cancer progression. Endocr. Connect. 4,
R68–R80. https://doi.org/10.1530/EC-15-0080.

Tyanova, S., Temu, T., and Cox, J. (2016a). The
MaxQuant computational platform for mass
spectrometry-based shotgun proteomics. Nat.
Protoc. 11, 2301–2319. https://doi.org/10.1038/
nprot.2016.136.

Tyanova, S., Temu, T., Sinitcyn, P., Carlson, A.,
Hein, M.Y., Geiger, T., Mann, M., and Cox, J.
(2016b). The Perseus computational platform for
comprehensive analysis of (prote)omics data.
Nat. Methods 13, 731–740. https://doi.org/10.
1038/nmeth.3901.

Voelkel-Johnson, C., Norris, J.S., and White-
Gilbertson, S. (2018). Interdiction of sphingolipid
metabolism revisited: focus on prostate cancer.
Adv. Cancer Res. 140, 265–293. https://doi.org/
10.1016/bs.acr.2018.04.014.

Wang, Y., Yang, F., Gritsenko, M.A., Wang, Y.,
Clauss, T., Liu, T., Shen, Y., Monroe, M.E., Lopez-
Ferrer, D., Reno, T., et al. (2011). Reversed-phase
chromatography with multiple fraction
concatenation strategy for proteome profiling of
human MCF10A cells. Proteomics 11, 2019–2026.
https://doi.org/10.1002/pmic.201000722.

Whitaker, H.C., Shiong, L.L., Kay, J.D., Grönberg,
H., Warren, A.Y., Seipel, A., Wiklund, F., Thomas,
B., Wiklund, P., Miller, J.L., et al. (2014). N-acetyl-
L-aspartyl-L-glutamate peptidase-like 2 is
overexpressed in cancer and promotes a pro-
migratory and pro-metastatic phenotype.
Oncogene 33, 5274–5287. https://doi.org/10.
1038/onc.2013.464.

Wiame, E., Tyteca, D., Pierrot, N., Collard, F.,
Amyere, M., Noel, G., Desmedt, J., Nassogne,
M.-C., Vikkula, M., Octave, J.-N., et al. (2009).
Molecular identification of aspartate N-
acetyltransferase and its mutation in
hypoacetylaspartia. Biochem. J. 425, 127–136.
https://doi.org/10.1042/BJ20091024.
iScience 25, 104056, April 15, 2022 11

https://doi.org/10.1038/bjc.2016.304
https://doi.org/10.1007/s11626-999-0115-4
https://doi.org/10.1007/s11626-999-0115-4
https://doi.org/10.1038/nature07762
https://doi.org/10.1038/nature07762
https://doi.org/10.1016/j.bbrc.2016.09.095
https://doi.org/10.1016/j.bbrc.2016.09.095
https://doi.org/10.1016/j.ccr.2010.05.026
https://doi.org/10.1016/j.ccr.2010.05.026
https://doi.org/10.1530/EC-15-0080
https://doi.org/10.1038/nprot.2016.136
https://doi.org/10.1038/nprot.2016.136
https://doi.org/10.1038/nmeth.3901
https://doi.org/10.1038/nmeth.3901
https://doi.org/10.1016/bs.acr.2018.04.014
https://doi.org/10.1016/bs.acr.2018.04.014
https://doi.org/10.1002/pmic.201000722
https://doi.org/10.1038/onc.2013.464
https://doi.org/10.1038/onc.2013.464
https://doi.org/10.1042/BJ20091024


ll
OPEN ACCESS

iScience
Article
STAR+METHODS

KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Biological samples

CWR tumour 33 this paper N/A
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Proteomics Raw and Analysed - Proteome Exchange/

Mendeley Data
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projects/PXD021428) and Mendeley Data: https://data.

mendeley.com/datasets/6jz2y44w4x/1

Metabolomics Raw and Analysed - Mendeley Data this paper Mendeley Data: https://data.mendeley.com/datasets/
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RNA sequencing - ArrayExpress / Mendeley Data this paper ArrayExpress: E-MTAB-9831 (https://www.ebi.ac.uk/

arrayexpress/experiments/E-MTAB-9831/) and Mendeley

Data: https://data.mendeley.com/datasets/6jz2y44w4x/1

Experimental models: Cell lines

CWR Case Western Reserve University,

Cleveland, Ohio

N/A

22RV1 ATCC CRL-2505

LNCAP ATCC CRL-1740

LNCAPAI Newcastle University, UK N/A

VCAP ATCC CRL-2876

Experimental models: Organisms/strains

CD-1 Nude Mouse prostate orthograft model

castrated and uncastrated

charles river Crl:CD1-Foxn1nu

Software and algorithms

Maxquant v. 1.5.2.8 (Tyanova et al., 2016a) https://www.maxquant.org/

Perseus v. 1.5.2.4 (Tyanova et al., 2016b) https://www.maxquant.org/perseus/

Progenesis Nonlinear Dynamics http://www.nonlinear.com/

Compound Discoverer Thermo https://mycompounddiscoverer.com/

Tracefinder Thermo https://planetorbitrap.com/tracefinder

R version 3.5.2 (2018-12-20) CRAN https://cran.r-project.org/

TopHat 2 (Kim et al., 2013) https://ccb.jhu.edu/software/tophat/index.shtml

DESeq2 (Love et al., 2014) http://www.bioconductor.org/packages/

release/bioc/html/DESeq2.html

(Continued on next page)
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Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

Other

FASP membrane of 30 KDa pore size (15 mL Falcon) Millipore Cat#UFC903024

Proteomics offline high pH fractionation 321 fractions Dionex Foxy Jr. FC144 fraction collector
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RESOURCE AVAILABILITY

Lead contact

Further information and requests for resources and reagents should be directed to and will be fulfilled by

the Lead Contact, Professor Hing Y Leung (h.leung@beatson.gla.ac.uk).
Materials availability

This study did not generate new unique reagents.

Data and code availability

The datasets and code generated for this study are available at publicly available repositories. Proteomics

data via ProteomeXchange (PXD021428) and Mendeley data. RNA sequencing data via ArrayExpress (E-

MTAB-9831) and Mendeley data. Metabolomics data via Mendeley data.
EXPERIMENTAL MODEL AND SUBJECT DETAILS

Modeling CRPC using a pre-clinical orthotopic murine transplantation model

Orthograft tumours from hormone naı̈ve (HN) and the respective isogenic castration resistant (CR) cell lines

were obtained and processed for multiple omic level analysis as illustrated in Figure 1A and described pre-

viously (Martinez et al., 2020). CWR, LNCAP and VCAP human PC cell models were selected due to being

commonly studied with CR versions maintaining AR expression and representing local, lymph node

and bone metastasis stages of human PC. Triplicates were used for each HN and CR model resulting

in 18 tumours studied: 9 HN control tumours (33 CWR, 33 LNCAP and 33 VCAP) and 9 CR tumours

(33 22RV1, 33 LNCAPAI and 33 VCAPCR).
Orthograft tumour models

Human PC cell lines were authenticated using the Promega GenePrint 10 System. CWR - RRID:CVCL_LI38,

22RV1 - RRID:CVCL_1045, LNCAP-RRID:CVCL_4783, LNCAPAI - RRID:CVCL_4791 and VCAP -

RRID:CVCL_2235. Hormone naı̈ve cell lines CWR, LNCAP and VCAP were maintained in RPMI 1640 with

2 mmol Glutamine and 10% Foetal Bovine Serum (FBS). Charcoal Stripped FBS (CSS) was used for mainte-

nance of CR 22RV1 and LNCAPAI cell lines. 143106 PC cells in serum free RPMI were mixed with matrigel

(1:1), with final volume of 50 ml, and orthotopically injected into the anterior prostate of 10 week old male

CD-1 Nudemice (Charles River Labs) +/- surgical castration (Project Licence P5EE22AEE), reviewed by local

ethics committee in full compliance with UK Home Office regulations (UK Animals (Scientific Procedures)

Act 1986). Uptake rate for each model was CWR 100% (n = 3/3), 22RV1 83% (n = 5/6), LNCAP 15%

(n = 3/20), LNCAPAI 50% (n = 3/6), VCAP 50% (n = 5/10), VCAPCR 70% (n = 7/10). The first 3 tumours

from each model was used with a quarter snap-frozen and cryo ground in liquid nitrogen for protein,

metabolite and RNA extraction using 4% SDS, methanol/ acetonitrile/water (5:3:2 ratio at 4�C) and RNeasy

mini kit (Qiagen) respectively (Figure 1A). Whole blood was sampled at the time necropsy with

approximately 1 mL obtained by inferior vena cava puncture and approximately 0.5 mL of serum obtained

by centrifugation at 2000 rcf for 10 minutes at 4�C.
METHOD DETAILS

Cell culture

Prostate Cancer (PC) cell line models CWR, 22RV1, LNCAP and LNCAPAI selected for study were tested in

house for authentication and matching to known database using Promega GenePrint 10 Kit (multiplex

PCR).
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Hormone naı̈ve cell lines CWR LNCAP and VCAP were maintained in RPM1 1640 with Phenol Red minus

Glutamine (Gibco Cat 31870025) purchased from ThermoFisher. Glutamine was supplemented to media

at 2 mmol concentration. Media was also supplemented with 10% Foetal Bovine Serum (FBS) to produce

Full Media (FM) conditions. Castration Resistant cell lines LNCAPAI and 22RV1 were maintained RPM1

1640 minus Phenol Red and minus Glutamine (Gibco Cat 32404014) purchased from ThermoFisher. Phenol

red freemedia was used to remove any effects of phenol on growth under androgen deprived conditions as

phenol has been shown to have weak oestrogenic activity bearing a similar structure to non-steroidal Oes-

trogens (Berthois et al., 1986). Glutamine was also supplemented at 2 mmol concentration and 10% Char-

coal Stripped Foetal Bovine Serum (CSS) was used to produce Charcoal Stripped (CS) androgen deprived

media conditions, removing all steroid hormones and growth factors, including androgens, by the FBS

charcoal filtration process.

LC-MS untargeted metabolomics protocol

A Q-Exactive Plus Orbitrap mass spectrometer (Thermo Scientific, Waltham, MA, USA) was used together

with a Thermo Ultimate 3000 HPLC system for untargeted metabolomics. Setup of the HPLC system

involved a ZIC-pHILIC column (SeQuant, 150 3 2.1 mm, 5 mm, Merck KGaA, Darmstadt, Germany), and

a ZIC-pHILIC guard column (SeQuant, 20 3 2.1 mm). Initial HPLC mobile phase of 20% 20 mM ammonium

carbonate was used, at pH 9.4, with 80% acetonitrile concentration. Tumour extracts (5 mL) were injected

and metabolites were separated over a 30 minute mobile phase gradient. This was made by decreasing

the acetonitrile concentration to 20%, using a flow rate of 200 mL/min and column temperature set at

45�C. The total analysis time for untargeted analysis including MS2 acquisition was 37 minutes per sample.

All metabolites were detected across a mass range of 75-1000 m/z using the Q-Exactive Plus mass spec-

trometer at a higher resolution of 70,000 (MS1) and 17.500 (MS2) with top 10 ions fragmented. Electrospray

ionization was used and polarity switching was not enabled. This was because of improved quantification

without polarity switching allowing time for fragmentation as well. Therefore negative and positive ion

modes were performed and analysed separately. Lock masses were used and the mass accuracy obtained

for all metabolites was below 5 ppm. Data were acquired with Thermo Xcalibur software.

Untargeted metabolomics analysis

Raw data were initially analysed using Progenesis QI (Water’s) and subsequently re-analysed using Com-

pound Discoverer (Thermo Scientific v3.0). In Progenesis QI retention times were aligned to the pooled

sample to account for any variations in retention time on column between samples during the analysis

period. A total of 4,055 compounds passed the initial feature detection stage in Progenesis. Data on

feature for individual compounds were processed by application of a normalisation factor calculated by

comparison of the median of the log abundance ratio of all signals. This assumes that the majority of com-

pounds do not change between samples and uses these compounds to calculate a normalisation factor for

each sample which is then applied to all compounds within that sample. Orthogonal Projection to Latent

Structures (OPLS) Discriminant Analysis (DA) model was generated using the Progenesis software suit, with

the prior segregation of samples into either HN or CR groups. This allows the model to determine the

fundamental differences between HN- and CR- PC samples and scoring each variable (metabolite) based

on its ability to discriminate HN from CRPC in multidimensional space (Figure S1).

Using Compound Discoverer software (Thermo Scientific v3.0), retention times were aligned across all sam-

ple data files (maximum shift 2 min, mass tolerance 5 ppm). Unknown compound detection (minimum peak

intensity 1e6) and grouping of compound adducts was carried out across all samples (mass tolerance

5 ppm, RT tolerance 0.5 min). Missing values were filled using the software’s Fill Gap feature (mass toler-

ance 5 ppm, S/N tolerance 1.5). No further normalisation factor was applied during the compound discov-

erer analysis. Feature identification was achieved by matching the mass and retention time of observed

peaks to an in-house database generated using metabolite standards (mass tolerance 5 ppm, RT tolerance

0.5 min). Peak annotations were further confirmed using mzCloud (ddMS2) database search (precursor and

fragment mass tolerance of 10 ppm, match factor threshold 50) (Figure S1B).

LC-MS targeted metabolomics protocol

Targeted metabolomics analysis employed the same HPLC setup as untargeted but with shorter gradient.

Tumour or serum (taken at time of tumour harvesting) samples (5 mL in total injected) metabolites were

separated by a 15 minute mobile phase gradient with an overall analysis time of 23 minutes per sample.
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Metabolites mass range was 75-1000m/z with themass spectrometer set at a resolution of 35,000 (at 200m/

z). Electrospray ionisation was used and also polarity switching was enabled to allow both positive and

negative ion metabolites to be analysed in the same run. Lock masses was used and the mass accuracy ob-

tained for all metabolites was below 5 ppm. Data from the Exactive Orbitrap mass spectrometer were ac-

quired using Thermo Xcalibur software.

The area under the peak of compounds was calculated using Thermo TraceFinder software. Metabolites

were identified by matching the exact mass of the singly charged ion and by also matching the known

retention time of a commercial metabolite standards library on the HPLC column setup described above.

Metabolite intensities were not further normalised as this was performed during the extraction; the sam-

ples were normalised by ground tumour weight or serum volume at 1:20 ratio of tumour tissue or serum

to lysis buffer. The above methods are standardly used by the metabolomics service and have been pre-

viously published by Kuntz et al. (Kuntz et al., 2017).

Metabolite standards for N-acetyl-aspartate (NAA cat 00920-5G) andN-acetyl-aspartate glutamate (NAAG

cat A5930-25MG) were purchased from Sigma Aldrich and were confirmed to be themetabolites identified.

Later NAA and NAAG were added to the metabolite library with expected mass and retention time of

174.0403 m/z, and retention time 8.57 minutes for NAA and 303.0834 m/z, 10.10 minutes for NAAG.

Data S1 shows the 112 compounds analysed by targeted metabolomics with expected retention time in

minutes.

SILAC standard development

For SILAC standard generation, cell lines were grown using 100% dialysed serum conditions. Dialysed FBS

(dFBS) was purchased from ThermoFisher to supplement full media conditions. Charcoal Stripped Serum

(CSS) was dialysed in house by submerging CSS in dialysis membrane under continuous flow of water for 8

hours. Dialysed CSS (dCSS) was then filter sterilised to 0.2 micron and used to supplement SILAC charcoal

stripped media.

RPMI SILAC media minus Arginine and Lysine with and without phenol red was purchased from Thermo-

Fisher. Standard RPMI 1640 conditions were replicated by replacing Arginine and Lysine with their heavy

labelled SILAC amino acid at the same concentration Arginine (Arg10) at 200 mg/L and Lysine (Lys8) at

40 mg/L. SILAC RPMI phenol free was used for SILAC CS media this was purchased from ThermoFisher

only available minus Glucose which was added back to 2000 mg/L.

Tissue processing for in vivo proteomics

A quarter of frozen tumour was processed for proteomics by initial cryogrinding and mixing the whole

quarter of the tumour to provide a representative sample. Approximately 20 mg of cryoground tumour

was then added to a precellys homogenisation tube along with 200 mL of 4% SDS lysis buffer and processed

at room temperature on the precellys machine. The lysate was then removed, boiled at 95�C for 5 minutes

and sonicated prior to centrifugation.

Each of the four SILAC labelled cell lysates (CWR, LNCAP, LNCAPAI, and VCAP) were mixed at a 1:1:1:1

ratio to ensure equal contribution to the super SILAC standard. Mixed super SILAC standard was then ali-

quoted and stored at -80�C. Each tumour sample (18 samples representing biological triplicates of 3

tumour models of HN and matched CRPC (3 3 2 3 3 = 18)) was mixed at 1:1 ratio with the super SILAC

standard prior to FASP and trypsin digestion. The amount of peptide material required for each analysis

was approximately 500 mg. It was therefore required to perform FASP with approximately 1000 mg of pro-

tein (500 mg of tumour sample and 500 mg of super SILAC standard) due to expected 50%material loss dur-

ing the FASP processing (Boersema et al., 2013).

Offline reverse phase high pH fractionation technique has previously been described (Wang et al., 2011)

and here it is applied to a SILAC mixture to improve the number of peptide identification by reducing

the complexity of the sample by splitting each sample prior to MS analysis. A C18 column (250 3

4.6 mm i.d. – Durashell RP (5 mm, 150 Å)) was used with a Dionex HPLC system (Ultimate LPG-3000 binary

pump and UVD170U Ultraviolet detector). Modules were controlled by Chromeleon version 6.7. Solvent A

(98% water, 2% Acetonitrile) and solvent B (90% Acetonitrile and 10% water) were adjusted to pH 10 using

ammonium hydroxide. Samples were injected manually through a Rheodyne valve onto the RP-HPLC
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column equilibrated with 4% solvent B and kept at this percentage for 6 minutes. A two step gradient was

applied at a flow-rate of 1 ml/min (from 4–28% B in 36minutes, then from 28-50% B in 8minutes) followed by

a 5-minute washing step at 80% solvent B and a 10-minute re-equilibration step, for a total run time of 65mi-

nutes. Column eluate was monitored at 220 and 280 nm, and collected using a Foxy Jr. FC144 fraction col-

lector (Dionex). Collection was allowed from 8 to 50 minutes for 85 seconds per vial (1.42 ml) for a total of 30

fractions. No fraction concatenation strategy was used; only the first 4 and the last 5 fractions were pooled

resulting in 21 fractions in total. Previous analysis had shown that 21 fractions provided the highest number

of peptide identifications after analysis using the MaxQuant and Perseus pipeline.

Proteomics LC-MS protocol

Each of the 21 fractions was then re-suspended in 2% acetonitrile/0.1% TFA acid in water and separated by

nanoscale C18 reverse-phase liquid chromatography performed on an EASY-nLC II (Thermo Scientific)

coupled to a Linear Trap Quadrupole - Orbitrap Velos mass spectrometer (Thermo Scientific). Elution

was carried out using a binary gradient with buffer A: 2% acetonitrile and B: 80% acetonitrile, both contain-

ing 0.1% of formic acid. Peptides were subsequently eluted at 200 nl/min flow, into a 20 cm fused silica

emitter (New Objective) packed in-house with ReproSil-Pur C18-AQ, 1.9 mm resin (Dr Maisch GmbH).

Packed emitter was kept at 35�C by means of a column oven integrated into the nanoelectrospray ion

source (Sonation). Peptides were eluted at a flow rate of 200 nl/min using 3 different gradients optimised

for set of fractions 1-7 (2,20,41% buffer B), 8-15 (5, 25, 46% buffer B) and 16-21 (7, 28, 50% buffer B). Two-step

gradients were used, all with 42 minutes for step one and 13 minutes for step two.All gradients were

followed by a washing step (100% B) for 10 minutes followed by a 20 minute re-equilibration step (5%),

for a total run time of 85 minutes.

Eluting peptides were electrosprayed into the mass spectrometer using a nanoelectrospray ion source

(Thermo Scientific). An Active Background Ion Reduction Device was used to decrease air contaminants

signal level.

Proteomics data acquisition

General mass spectrometric conditions were as follows: spray voltage, 2.4 kV, ion transfer tube tempera-

ture, 200�C. The mass spectrometer was operated in positive ion mode and used in data-dependent

acquisition mode (DDA). A full scan (FT-MS) was acquired at a target value of 1,000,000 ions with resolution

R = 60,000 over mass range of 350-1600 amu. The top ten most intense ions were selected for fragmenta-

tion in the linear ion trap using Collision Induced Dissociation (CID) using a maximum injection time of

25 ms or a target value of 4000 ions. Multiply charged ions from two to five charges having intensity greater

than 3000 counts were selected trough a 1 amu window and fragmented using normalized collision energy

of 36 for 10 ms. Former target ions selected for MS/MS were dynamically excluded for 60 seconds.

MaxQuant and perseus analysis

Raw data obtained (378 Raw data files in total) were processed withMaxQuant version 1.5.6.3 and searched

with Andromeda search engine, querying either Uniprot Homo sapiens (UP000000589) and Mus musculus

(UP000005640) alone or with additional custom FASTA generated from RNA sequencing of the same

tumours.

Protein hits coming from individual database were separated in MaxQuant. The ‘‘Re-quantify’’ and ‘‘Match

Between Runs’’ options were also used. For quantification, multiplicity was set to 2 (doublets) and Arg0/

Arg10, Lys0/Lys8 were used for ratio calculation of SILAC labelled peptides. Only unique peptides were

used for protein group quantification. Digestion mode was set to trypsin and allowing for two miscleav-

ages. Iodoacetamide derivative of cysteine were specified as a fixed modification, whereas: oxidation of

methionine and acetylation of proteins N-terminus were specified as variable modifications. First and

main searches were carried out with precursor mass tolerances of 20 and 4.5 ppm respectively, and the

MS/MS tolerance was set to 0.5 Da for CID data. The peptide, protein and site FDR were 0.01; peptides

with less than seven amino acid residues were excluded from processing.

Only protein groups identified with at least one unique peptide were used for quantification. The protein

groups output file was then loaded into the Perseus platform version 1.6.2.3. Perseus was used to filter the

data for confident identifications based on at least 1 unique peptide match and identified in at least 2 of 3

biological replicates in at least one group. A further median normalisation was performed on all samples
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prior to Welch’s t-test with permutation based FDR set at 0.01 used to identify significantly changing pro-

teins. A further median normalisation of all samples to zero was employed prior to applying FDR (0.01)

adjusted statistical testing using Welch’s T-test between HN and CRPC samples. Data were then exported

into R version 3.5.2 for downstream analysis.
Reactome pathways GSEA

Data were exported into R and the following packages used for downstream analysis, VennDiagram, split-

stackshape, biomaRt, fgsea, ggplot2, FGNet, stringr, dplyr. Column means of normalised Light / Heavy SI-

LAC ratio were generated as a measure of the increase in abundance of protein in the CRPC model

compared to its HN tumour. In summary ratio change between HN and CRPC models were used to

generate ranked lists for GSEA (FGSEA package) analysis using Reactome pathways.
RNA sequencing

RNA samples were depleted for both cytoplasmic and mitochondrial RNA using the Ribo-Zero gold illu-

mina kit and sequenced on an Illumina NextSeq 500 using High Output 75 cycles kit (2 3 36 cycles, paired

end reads, single index). FastQ files were generated using Illumina’s bcl2fastq (v. 2.20.0.422), read quality

was checked with FastQC (v. 0.11.7) outputs available via Mendeley data portal. Alignment to the GRCh38

human genome was performed with Tophat (v. 2.1.0). Differential expression with normalisation based on

negative binomial distribution was performed in DESeq2 prior to downstream analysis in R.
QUANTIFICATION AND STATISTICAL ANALYSIS

Gene set enrichment and multi-omics analysis

21,499 transcripts and 4,470 proteins were converted to ranked gene lists by normalised Log2 SILAC ratio

change or normalised Log2 FC reads in CRPC for input into the Reactome GSEA analysis (R package clus-

terProfiler). Annotated compounds via Compound Discoverer (MZ Cloud) were mapped onto Reactome

pathways of interest and identification manually confirmed by mass, RT and fragmentation spectra (Data

S4). Heatmaps were generated in R using package pheatmap. Welch’s t-tests were used with Benjamini

Hochberge or permutation based FDR p-value adjustment for multiple comparisons.
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