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ABSTRACT
Background  In malignant pleural mesothelioma 
(MPM), complex tumour morphology results in 
inconsistent radiological response assessment. Promising 
volumetric methods require automation to be practical. 
We developed a fully automated Convolutional Neural 
Network (CNN) for this purpose, performed blinded 
validation and compared CNN and human response 
classification and survival prediction in patients treated 
with chemotherapy.
Methods  In a multicentre retrospective cohort study; 
183 CT datasets were split into training and internal 
validation (123 datasets (80 fully annotated); 108 
patients; 1 centre) and external validation (60 datasets 
(all fully annotated); 30 patients; 3 centres). Detailed 
manual annotations were used to train the CNN, 
which used two-dimensional U-Net architecture. CNN 
performance was evaluated using correlation, Bland-
Altman and Dice agreement. Volumetric response/
progression were defined as ≤30%/≥20% change and 
compared with modified Response Evaluation Criteria In 
Solid Tumours (mRECIST) by Cohen’s kappa. Survival was 
assessed using Kaplan-Meier methodology.
Results  Human and artificial intelligence (AI) volumes 
were strongly correlated (validation set r=0.851, 
p<0.0001). Agreement was strong (validation set 
mean bias +31 cm3 (p=0.182), 95% limits 345 
to +407 cm3). Infrequent AI segmentation errors (4/60 
validation cases) were associated with fissural tumour, 
contralateral pleural thickening and adjacent atelectasis. 
Human and AI volumetric responses agreed in 20/30 
(67%) validation cases κ=0.439 (0.178 to 0.700). AI 
and mRECIST agreed in 16/30 (55%) validation cases 
κ=0.284 (0.026 to 0.543). Higher baseline tumour 
volume was associated with shorter survival.
Conclusion  We have developed and validated the first 
fully automated CNN for volumetric MPM segmentation. 
CNN performance may be further improved by enriching 
future training sets with morphologically challenging 
features. Volumetric response thresholds require further 
calibration in future studies.

INTRODUCTION
Malignant pleural mesothelioma (MPM) is an 
incurable cancer associated with previous asbestos 

exposure. For nearly two decades, platinum-
pemetrexed chemotherapy has been the established 
standard of first-line care,1 although recent data 
report superior survival with combination immune 
checkpoint inhibition.2 3 Radiological assessment 
of treatment response is a critical part of routine 
care for most patients, and a key metric for clin-
ical trials. Response assessment is, however, notori-
ously difficult in MPM because the primary tumour 
has a complex morphology, violating assumptions 
regarding spherical growth that underpin the 
Response Evaluation Criteria In Solid Tumours 
(RECIST) criteria used in other cancers.4 Modi-
fied RECIST criteria (mRECIST) mitigate errors 
related to this by allowing the reporter to make 
six unidimensional tumour measurements at arbi-
trary positions, generating a summed value, which 
when compared with summed values from adjacent 
timepoints, can be codified into complete response 
(CR), partial response (PR), stable disease (SD) or 
progressive disease (PD).5 However, mRECIST 
grossly oversimplifies true tumour burden and is 
associated with poor reproducibility, including up 
to 30% variation between readers,6 which is large 
enough to cross response groups based on the same 

Key messages

What is the key question?
	⇒ Can an artificial intelligence (AI) system be 
trained to accurately measure mesothelioma 
tumour volume on CT images, without any 
human input?

What is the bottom line?
	⇒ Fully automated tumour segmentation was 
possible and the deep learning AI algorithm 
performed well in a diverse and previously 
unseen external validation set drawn from 
three UK centres.

Why read on?
	⇒ This is the largest volumetry study performed 
in mesothelioma and the first description of 
a fully automated and externally validated AI 
segmentation tool.
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Pleural disease

data. This can be mitigated by multiple readers in clinical trials; 
however, this increases cost and slows drug development. The 
inherent technical difficulty also results in a threshold of ‘mini-
mally measurable disease’, below which early stage patients 
cannot be reliably assessed and may not therefore be treated or 
offered entry to trials.7

Volumetric tumour measurement is established in lung8 and 
other cancers9–11 and eliminates decision-making about where to 
make, and how to replicate, unidimensional measures on serial 
scans. Volumetric measurements based on MRI have recently 
been shown to outperform traditional T-staging in predicting 
survival,12 but MRI is not available routinely and CT remains the 
primary imaging modality used in MPM. Efforts therefore need 
to be focused on delivery of CT volumetry, at least in the short 
term. This requires development of accurate new techniques that 
minimise reader variation, ideally by reducing reliance on human 
annotation, which can be exceptionally time-consuming given 
the volume and complexity of the pleural space. Previous CT 
volumetry studies that have used human readers report interob-
server variation broadly similar to mRECIST,13 14 so a fully 
automated tool is needed. Deep learning Convolutional Neural 
Networks (CNNs) are uniquely well suited to image recogni-
tion and classification tasks.15 Outside biomedicine, CNNs have 
demonstrated exceptional performance in such tasks, given 
sufficiently large training datasets. For example, in the ImageNet 
challenge,15 which comprised over 14 million labelled images, 
CNNs now match or exceed human reader performance. In 
medical settings, millions of images are rarely available, and 
the labelling process is generally more arduous. In this study, 
we show that a CNN can be trained to segment MPM without 
human input, using a relatively small but extremely detailed set 
of ground truth images. The system’s performance is also evalu-
ated in an independent validation set to verify that the CNN did 
not overfit to the training data.

METHODS
Study design
A multicentre retrospective cohort study was performed. The 
training and internal validation set comprised 123 CT data-
sets from 108 patients with MPM from Glasgow. The external 
validation set comprised 60 CT datasets from 30 patients 
with MPM from Leicester (n=10), Manchester (n=10) and 
Glasgow (n=10). The study is reported according to Stan-
dards for Quality Improvement Reporting Excellence 2.0 
guidelines.16

Study objectives
The training and internal validation set was used (1) to train 
the CNN and report initial performance, (2) to compare repro-
ducibility between human and AI readers and (3) to compare 
the fidelity of AI segmentations to the reference human ground 
truth by region overlap Dice coefficient, and to compare that 
performance with a second human annotation and repeat human 
annotation by the first reader.

The external validation set was used for (1) a blinded compar-
ison between human and AI volumes by correlation and agree-
ment (Bland-Altman and Dice region overlap), (2) an analysis of 
anatomical features associated with AI segmentation errors, (3) 
a comparison between volumetric and mRECIST classification 
of chemotherapy response and (4) survival analyses based on PD 
versus non-PD, as defined by human volumes, AI volumes and 
mRECIST.

Case selection
Cases were selected from two multicentre MPM biomarker 
studies, led by the senior author, that have recently completed 
recruitment (DIAPHRAGM, Diagnostic and Prognostic 
Biomarkers in the Rational Assessment of Mesothelioma17 and 
PRISM, Prediction of Resistance to chemotherapy using Somatic 
Copy Number Variation in Mesothelioma18). DIAPHRAGM 
prospectively recruited 649 patients at presentation for evalu-
ation of diagnostic blood biomarkers, 152 of whom were diag-
nosed with MPM. In PRISM, 266 MPM tumour blocks and CT 
scans were retrospectively retrieved for discovery and validation 
of a genomic predictor classifier of chemotherapy resistance. 
Cases were selected for the training set based on the following 
inclusion criteria: (1) recruited to DIAPHRAGM or PRISM in 
Glasgow; (2) histological diagnosis of MPM; (3) venous phase 
contrast-enhanced CT available. DIAPHRAGM cases were 
specifically included in the training set as these had contem-
poraneous contrast-enhanced MRI. These scans were used to 
disambiguate tumour from adjacent structures on CT, using 
the superior soft tissue contrast offered by MRI,19 20 enhancing 
ground truth quality. Validation set cases were selected using the 
following criteria: (1) recruited to PRISM in Glasgow, Leicester 
or Wythenshawe; (2) histological diagnosis of MPM; (3) preche-
motherapy and postchemotherapy CT available, where the 
postchemotherapy scan was >4 weeks after chemotherapy initi-
ation. These cases were selected to provide a diverse CT dataset 
collected in different UK centres using different CT scanners and 
imaging protocols.

Clinical data
Data were extracted from study databases and supplemented by 
electronic records, including demographics, histological subtype, 
date of diagnosis, details of chemotherapy and CT imaging. 
Missing data were recorded as not available. Overall survival 
(OS, days) was recorded from the date of prechemotherapy CT 
to death from any cause.

CT image acquisition and mRECIST reporting
CT examinations were performed within routine care, using a 
variety of scanners (GE Medical Systems BrightSpeed, Light-
Speed or Optima 660 or Canon Medical Aquilion). Although 
local imaging protocols will have varied, all imaging was 
acquired in the portal venous phase (~65 s following injection of 
75–95 mL of iodinated contrast). Multislice helical axial images 
were reconstructed with a maximum contiguous slice thickness 
of 2 mm. The mean number of slices was 225. For the purpose 
of mRECIST classification,5 validation set scans were re-re-
ported centrally by an expert MPM radiologist (GWC), who was 
blinded to all other data.

Manual tumour annotation for ground truth
Respiratory physicians with PhD training in MPM imaging (ACK 
and ST) performed the human tumour annotations, using a track-
ball mouse and cursor and Myrian Intrasense software (Paris, 
France). ACK generated the reference ground-truth annotations; 
ST generated second reader annotations for interobserver data. 
Tumour boundaries were outlined on every slice in the CT stack, 
generating a tumour volume integrating the summed areas and 
slice thickness (see figure 1A). In the DIAPHRAGM cases in the 
training set, ACK and ST used contemporaneous MRI scans to 
refine contour drawings, for example, disambiguating loculated 
fluid from tumour. In 43/123 training datasets, a sparser anno-
tation was performed, with only every fifth slice annotated. This 
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Pleural disease

followed an interim analysis, which demonstrated that adjacent 
slices were highly correlated, and enabled more cases to be 
included since each full annotation required  ~2.5 hours. The 
sparse annotations were not included in the internal validation 
accuracy metrics, which report only the 80 fully annotated cases.

Convolutional Neural Network architecture
A CNN with a two-dimensional U-Net architecture was used21 
on each axial CT slice. The network has three input CT slices: 
the slice to be segmented plus its two adjacent slices. CT inten-
sities are clipped to −1025 to +1100 Hounsfield units and then 
normalised to the range −1 to +1. The output from the CNN 
is a two-dimensional map predicting the likelihood that each 
pixel contains tumour. An optimal threshold (as determined on 
a subset of the training data) is applied to this map resulting 
in a binary mask of the tumour pixels. This is repeated for all 
slices in the stack, generating a full volumetric segmentation. To 
increase robustness and to provide an estimation of confidence, 
seven CNN models were trained using a sevenfold division of 
the training data and the volume measurements ensembled. A 

more detailed technical description of the method has previously 
been reported by us in conference proceedings.22

Training and internal validation
Internal validation was by sevenfold cross validation. The sparse 
annotations were included in the training sets for all folds but 
were not used for volume accuracy metrics. The training data 
were divided as follows: the 80 fully annotated datasets were 
randomly assigned to the seven folds, resulting in 11 or 12 data-
sets per fold. During evaluation of each fold, the remaining six 
folds were split 30:70 between (a) a set used to select the best 
performing model and determine the optimal threshold and (b) 
the training set, which also included the 43 sparsely annotated 
volumes. To avoid biasing the algorithm towards images with 
more tumour-containing slices, all training annotations were 
sparsely sampled during training.

Volumetric response classification
In the external validation set only, human and AI volume change 
following chemotherapy was computed for each case as ((post-
chemotherapy volume minus prechemotherapy volume)/preche-
motherapy volume)×100 (%). Volumetric PR required  ≥30% 
reduction, PD required ≥20% increase. SD was recorded if volume 
change did not meet PR/PD thresholds. The selection of these 
criteria was based on previous mathematical modelling reported by 
Oxnard et al,23 suggesting these volumetric thresholds approximate 
accurately to unidimension-based mRECIST, assuming the volume 
imaged approximates a crescent-shaped prism (see figure  1A for 
images supporting this assumption).

Statistical analysis
Given the exploratory nature of the study, a sample size calcula-
tion was not performed. Individual data are summarised by median 
(IQR) or mean (SD) depending on their distribution, but since 
most variables were non-normally distributed non-parametric tests 
were used for all comparisons. The Wilcoxon matched-pairs signed 
rank test was used to compare paired volume data (human vs AI 
volumes, prechemotherapy vs postchemotherapy). Spearman’s 
rho test was used for correlation and agreement was evaluated 
using Bland-Altman plots. The Dice coefficient (equivalent to the 
F1 score) was used to quantify region overlap between different 
volumetry methods or readers. Cohen’s kappa statistic was used to 
quantify agreement between chemotherapy response classification 
by human volumetry, AI volumetry and mRECIST. Differences in 
volume between AI-defined and mRECIST-defined PR, SD and PD 
groups were compared by Kruskal-Wallis test, with Dunn’s test for 
multiple comparisons. Human interobserver and intraobserver vari-
ability were assessed using intraclass correlation coefficient (ICC) 
for volume outputs, and Dice coefficient for voxel-level region 
overlap. The latter comparisons involved a mean total of 2250 
CT slices (mean 225 slices, 10 patients). For interobserver data, 10 
randomly selected DIAPHRAGM study scans were annotated by 
ST. For intraobserver data, ACK re-annotated 10 randomly selected 
training scans, no sooner than 3 weeks after the first annotation. 
Differences in OS were compared using Kaplan-Meier method-
ology. Statistical tests were performed in SPSS (V.24.0, Chicago, 
USA), GraphPad (V.9.1.0, San Diego, USA) and MATLAB (V.9.10, 
MathWorks, Natick, USA).

RESULTS
Study population
The training set comprised 123 CT datasets from 108 patients; 
23 were drawn from DIAPHRAGM, 85 from PRISM; 80/123 

Figure 1  Panel A shows an example of expert human ground truth, 
with mesothelioma primary tumour volume outlined using trackball 
mouse and cursor on Myrian Intrasense software. The segmented 
volume is shown in the bottom right. Panel B shows examples of a 
human annotated tumour volume (in the two left hand images) and 
the artificial intelligence (AI)-derived volume from the same case at the 
same slice position (in the two right hand images). The AI volumes were 
generated by automatic segmentation without any user prompts.
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Pleural disease

CT datasets from 80 individual patients were fully annotated. 
The external validation set included 30 individual patients, each 
with a prechemotherapy and postchemotherapy scan (60 CT 
datasets). As summarised in table 1, the clinical characteristics 
of the fully annotated training and external validation sets were 
well balanced.

This included stage distribution overall, however the fully 
annotated training set contained some stage heterogeneity, with 
16/23 (70%) DIAPHRAGM cases being stage I, compared with 
10/57 (18%) PRISM cases. All cases in the external validation 
set were drawn from PRISM. All patients received cisplatin/
carboplatin-pemetrexed chemotherapy (median number of 
cycles 4 (3.75–4)). The median interval between the last dose 
and the postchemotherapy CT scan was 22 (10–62) days. In 4/30 
cases this interval exceeded 100 days, these cases were excluded 
from the response classification survival analyses. This was an 
a priori but arbitrary threshold. It was selected to allow only 
inclusion of cases in which imaging was acquired with reason-
able proximity to chemotherapy conclusion. We defined this 
as 100 days, approximating to around 3 months, judging this 
to provide sufficient tolerance for a study reliant on routinely 
acquired, non-protocolised imaging.

Training and internal validation
Initial CNN performance
Human and AI volumes (see figure  1B for examples) were 
strongly correlated (training set r=0.847, p<0.0001, see 
figure 2A). AI volumes were significantly larger with a mean bias 
(AI-human volume) of +142 cm3 (p<0.0001, 95% limits −226 
to 511 cm3) (see figure 2B).

Reproducibility
Human interobserver agreement was moderate (ICC 0.732, 
p=0.001), with a mean difference of 65.8 (70.9) cm3. Human 

intraobserver agreement was excellent (ICC 0.997, p=<0.0001), 
with a mean difference of 29.6 (19.1) cm3. There is, by defini-
tion, no AI intraobserver variation. AI interobserver variation 
would involve comparison with a different algorithm.

Fidelity to reference human annotations by region overlap
The mean Dice overlap between reference human ground truth 
annotation and AI segmentation was 0.54 (0.08) and 0.54 
(0.16), respectively, for the two sets of 10 scans used for interob-
server and intraobserver analyses. In direct comparisons of these 
CT datasets, this was superior to agreement with the second 
human reader (ST, mean DICE 0.36 (0.1), p=0.002) but inferior 
to agreement with re-annotation by the reference human (AK, 
mean DICE 0.61 (0.09), p=0.014).

External validation
Human versus AI volumes
Human and AI volumes were strongly correlated (validation 
set r=0.851, p<0.0001) (see figure  2C). Bland-Altman plots 
revealed a mean bias of +31 cm3, which was not significantly 
different to zero (p=0.182) and 95% limits of −345 to +407 
cm3 (see figure  2D). Similar results were found when preche-
motherapy and postchemotherapy scans were analysed sepa-
rately (see online supplemental figures 1 and 2). Analysis of the 
four datapoints outside the 95% limits revealed that the two 
undersegmented scans both reflected failures to include fissural 
tumour (see figure  3A) while the two oversegmentation scans 
reflected erroneous inclusion of atelectatic lung overlying the 
hemidiaphragm (see figure 3B) and contralateral segmentation 
in a patient with contralateral benign pleural thickening (see 
figure 3C).

Table 1  Demographics and clinical findings in patients with 
malignant pleural mesothelioma, split into training (n=80 subject to 
full annotation) and external validation (n=30) sets

Training set n=80 External validation set n=30

Age at diagnosis 70 (8%) 69 (7%)

Male gender 71 (89%) 22 (73%)

Histological subtype

 � Epithelioid 62 (78%) 24 (80%)

 � Non-epithelioid 11 (14%) 6 (20%)

 � Not available 7 (9%)

Disease stage

 � I 28 (35%) 12 (40%)

 � II 2 (3%) 1 (3%)

 � III 11 (14%) 2 (7%)

 � IV 6 (8%) 4 (13%)

 � Not available 33 (41%) 11 (37%)

ECOG performance status

 � 0 20 (25%) 6 (20%)

 � 1 47 (59%) 15 (50%)

 � 2 11 (14%) 3 (10%)

 � Not available 2 (3%) 6 (20%)

Values are n (%; NB: % may exceed 100 due to rounding).
ECOG, Eastern Cooperative Oncology Group.

Figure 2  Panel A summarises Spearman’s correlation between human 
and artificial intelligence (AI)-derived tumour volume measurements in 
80 subjects (80 scans) in the training set. All scans were acquired prior 
to chemotherapy. Panel B shows a Bland-Altman plot comparing human 
versus AI-derived tumour volume measurements based on the same 
scans. Panel C summarises Spearman’s correlation between human and 
AI-derived tumour volume measurements in 30 subjects (60 scans) in 
the validation set. Each subject had CT scans acquired prechemotherapy 
and following at least two cycles of chemotherapy. Panel D shows a 
Bland-Altman plot comparing human versus AI-derived tumour volume 
measurements based on the same scans.
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Pleural disease

Volumetric change following chemotherapy
There were trends towards lower human and AI tumour 
volumes following chemotherapy, but neither change reached 
statistical significance (human: 366 cm3 (244 to 656) vs 328 
cm3 (225 to 663), p=0.196; AI: 427 cm3 (220 to 682) vs 
371 cm3 (122 to 689), p=0.081). Human and AI volume 
changes were closely correlated (r=0.611, p=0.0003) (see 
figure  4A), with a mean bias (AI minus human) of  +2.1% 
that was not significantly different to zero (p=0.425), 95% 
limits of agreement −59.6% to 55.5% (see figure  4B). 
When human and AI volume changes were codified into 

PR, SD and PD, there was agreement in 20/30 (67%) cases, 
kappa=0.439 (0.178 to 0.700) (see figure  4C). When 
response was simplified to non-PD versus PD, the number of 
agreements increased to 26/30 (87%), kappa=0.586 (0.227 
to 0.945) (see figure 4D).

mRECIST versus AI volumetric response
The number of PR/SD/PD and non-PD/PD cases by 
mRECIST, AI and human volumetrics are summarised 
in table  2 (overleaf). In 16/30 (55%) cases, there was 

Figure 3  In 4/60 validation set datasets, artificial intelligence (AI)-human differences exceeded 95% Bland-Altman limits (see figure 2D), with 
AI undersegmentation in 2/60 and oversegmentation in 2/60. CT images, human annotations and AI segmentations were examined in these cases; 
representative images are presented (CT images on the left, human annotation in the middle, AI segmentations on the right of all panels). Panel A 
shows prechemotherapy and postchemotherapy images (upper and lower rows, respectively) from the same patient in whom the AI undersegmented 
compared with the human at both timepoints, reflecting failure to include fissural tumour (arrow). Panel B is from the first oversegmented case, in 
which the AI erroneously included an area of atelectatic lung overlying the right hemidiaphragm (arrow), which was not included by the human 
reader. Panel C is from the second oversegmented case and shows erroneous inclusion of contralateral benign pleural thickening by the AI (arrow), 
but not by the human reader.
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Pleural disease

agreement between mRECIST and AI response classification, 
kappa=0.284 (0.026 to 0.543), constituting fair agreement 
(see figure  5A). When response was simplified to non-PD 
versus PD, the number of agreements increased to 20/30 
(67%), kappa=0.223 (−0.128 to 0.574) (see figure 5B).

Using the human ground truth volumes as a reference stan-
dard, there was no significant difference in volume change 
between mRECIST PR, SD and PR groups (median volume 
change (%) −52 cm3, −21 cm3, −18 cm3, p=0.072, see 
figure 5C). However, volume change did differ between AI 
classified PR, SD and PR (median volume change (%) −18 
cm3, −15 cm3, +23 cm3, p=0.009, see figure 5D).

Survival analyses
Median OS in the validation cohort was 377 days (median 
follow-up 1729 days (4.7 years)). Higher prechemotherapy tumour 
volume was a strong predictor of OS, when the validation cohort 
was dichotomised around the median human or AI volume (see 
online supplemental figure 3a,b), respectively. There were non-
significant trends towards shorter OS in cases with PD versus 
non-PD as defined by mRECIST (293 vs 399 days, HR 1.78 (0.71 
to 4.46), p=0.149, n=26); human volumes (271 vs 375 days, HR 
1.61 (0.51 to 5.07), p=0.326, n=26) and AI volumes (271 vs 375 
days, HR 1.58 (0.37 to 6.75), p=0.326, n=26) (see online supple-
mental figure 3c-e).

Figure 4  Panel A summarises Spearman’s correlation between human and artificial intelligence (AI) volume change following chemotherapy in 30 
subjects (60 scans) in the validation set. Panel B shows a Bland-Altman plot comparing human and AI volume change based on the same scans. In 
panel C, human and AI volumetric responses for each patient (rows 1–30) are compared (as partial response (PR), stable disease (SD) and progressive 
disease (PD)), accompanied by a confusion matrix summarising agreement, which was present in 20/30 (67%) cases, kappa=0.439 (0.178 to 
0.700). Similar results are summarised in panel D, in which responses have been simplified to non-PD (PR and SD) and PD, generating 26/30 (87%) 
agreements (kappa=0.586 (0.227 to 0.945)).
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Pleural disease

DISCUSSION
In this study, we trained an automated deep learning CNN 
capable of accurately segmenting primary tumour volume in 
MPM, without any human input. In an independent valida-
tion set (60 CT datasets), the mean difference between AI and 
human volumes was not significantly different to zero (mean 
bias +31 cm3 (p=0.182), 95% limits −345 to +407 cm3, see 
figure  2C and D). Segmentation errors exceeding 95% limits 
were observed in 4/60 cases, reflecting important morphological 
features of MPM (fissural tumour, contralateral pleural thick-
ening and adjacent lung atelectasis), suggesting CNN perfor-
mance can be further improved by enriching future training sets 
for these features. In the training set, the positive bias observed 
for AI volumes may have reflected the stage heterogeneity of 
the training set, that is, training on predominantly later stage 
PRISM patients followed by initial internal validation which 
included early stage DIAPHRAGM patients. Inclusion of lower 
volume disease patients in future training steps may therefore 
also enhance CNN performance.

In the current study, higher prechemotherapy tumour volume 
by human reader was strongly associated with survival, replicating 
findings from multiple previous volumetry studies.13 24 However, 
to our knowledge, ours is the first report of an entirely indepen-
dent AI-generated volume generating the same prognostic infor-
mation. The chemotherapy response rate reported here (20% 
PR by mRECIST) is concordant with previous reports, including 
a large, expanded access programme (n=1704, 21.7%–26.3% 
PR)25 and a meta-analysis of nine chemotherapy trials (n=526, 
11% PR).26 In these studies, SD was the most frequent radio-
logical response (51.4%–54.1%25 and 75%26), reflecting the 
low efficacy of this treatment, which has been supplanted by 
platinum-pemetrexed bevacizumab27 and combination immune 
checkpoint blockade2 in recent phase III trials.

We observed only fair agreement between mRECIST and 
AI volumetric response classifications (kappa=0.284, see 
figure 5A). Agreement was better between AI and human volume 
responses (kappa=0.439, increasing to 0.586 when simplified to 
PD versus non-PD) with no significant difference between these 
values on Bland-Altman analysis (see figure 2D).13 24 The rela-
tively poor agreement between mRECIST and AI classification is 
therefore most likely to reflect poor calibration of the volumetric 
response criteria chosen, which may also explain the disloca-
tion between volume change and subsequent survival observed 
(see online supplemental figure 3). We defined PR and PD as 
−30% and +20% changes in tumour volume based on previous 

mathematical modelling reported by Oxnard et al,23 as reported 
in the ‘Methods’ section. However, like previous volumetric 
response studies23 28 29 using different response thresholds, 
we observed significantly more SD and less PR using volume-
defined response than with mRECIST. Frauenfelder et al used 
alternative ‘volume equivalent’ criteria (−65.7%, +72.8%)28 
proposed by Oxnard et al, while acknowledging their inherent 
limitations when applied to a non-spherical tumour. Based on 
median scores from three readers, this study reported volumetry-
defined SD in 20/30 (67%) cases and a PR in only 2/30 (7%), 
which is lower than expected based on previous chemotherapy 
studies,25 26 and significantly different to the mRECIST-defined 
PR and SD rates in the same study (7/30 (23%) and 16/30 (53%), 
respectively). This may reflect the broad SD category used but is 
concordant with our own and other studies,23 28 29 which used 
different criteria. This poor calibration of volumetry response 
criteria currently offsets the potentially exquisite sensitivity of 
volumetric measures to minimal change during therapy.11 Future 
large studies are therefore essential to determine the optimal cut 
points for volumetric PR and PD in MPM. Validated cut points 
from future studies could also help define what constitutes a 
clinically important difference (or bias) between human and AI 
volumetry measurements.

Previous studies report increasingly capable computer-
aided systems for volumetric segmentation in MPM, including 
methods based on the Cavalieri stereological principle,29 
semi-automated segmentation with linear interpolation,28 a 
random walk-based method30 and a previous deep learning 
CNN that required the user to define the laterality of the 
disease.31 The CNN developed here is, to our knowledge, 
the first fully automated and validated system that requires 
no user input. However, this highly evolved technical system 
remains constrained by the clarity of the imaging acquired. 
This will be of critical importance if CNNs for MPM segmen-
tation are to be made ready for clinical practice, wherein vari-
able image quality may lead to inconsistent response calls. This 
is reflected in previous studies that report highly discordant 
volumetric MPM measurements when CT tissue contrast is 
poor,13 14 emphasising the need for highly protocolised acqui-
sition and further large-scale validation.

Clinical implications
User independence and the high fidelity to human ground truth 
make the AI tool reported here a potentially important clin-
ical development. Following further optimisation, including 
validation of optimal response thresholds, it could improve 
clinical decision making, by enabling practical deployment of 
volumetric tumour measurements for the first time, allowing 
earlier cessation of toxic treatment, and enhancing clinical 
trials by increasing statistical power and reducing costs.11 
AI-generated volumes could also obviate the current need for a 
minimal measurable disease threshold, since the tool reported 
here was able to accurately segment tumour volumes as low 
as ~100 cm3.

Strengths and limitations
The current study is the largest report of MPM volumetry, 
comprising 183 datasets, of which 80 fully annotated datasets 
were used for internal validation, and 60 were used for external 
validation. However, this sample size is modest when compared 
with many deep learning projects. Nevertheless, extremely detailed 
ground truth was used for training, validation and comparisons 
between volumetry methods and readers, reducing the number of 

Table 2  Primary tumour volume was measured by manual human 
segmentation and a fully automated AI algorithm on CT scans before 
and after palliative chemotherapy in 30 patients with MPM, allowing 
calculation of volumetric responsemRECIST criteria were also used by 
an expert MPM radiologist to score response on the same scans

Human volume AI volume Human mRECIST

PR 4/30 (13%) 9/30 (30%) 6/30 (20%)

SD 21/30 (70%) 14/30 (47%) 13/30 (43%)

PD 5/30 (17%) 7/30 (23%) 11/30 (37%)

Non-PD 25/30 (83%) 23/30 (77%) 19/30 (63%)

PD 5/30 (17%) 7/30 (23%) 11/30 (37%)

Values are n (%) unless stated.
MPM, malignant pleural mesothelioma; mRECIST, modified Response Evaluation 
Criteria In Solid Tumours; PD, progressive disease; PR, partial response; SD, stable 
disease.
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Pleural disease

individual patients needed. The selection of 10 cases for inter-reader 
comparisons was arbitrary but followed precedents set in recent 
similar publications, including Brahim et al,32 in which an identical 
number were evaluated and Sensakovic et al33 and Gudmundsson 
et al34 in which a larger number of patients, but a significantly 
smaller number of CT sections were interrogated. Sensakovic et al 
compared a total of 155 CT slices between readers (31 patients, 5 
CT slices each), while Gudmundsson et al compared a total of 69 
CT slices from 27 patients. In the current study, we computed a 

voxel-wise metric, the Dice co-efficient and compared this between 
readers over a mean total of 2250 CT slices (10 patients, mean of 
225 CT slices each), far exceeding the comparisons made in previous 
studies. Unlike previous studies which used selected CT slices only, 
comparisons in the current study also benefit from fully volumetric 
datasets, encompassing a wide variety of tumour appearances and 
features. The diversity of the imaging data (centres, scanner vendor 
and model) is an additional strength that reduces the chance of 
overfitting.

Figure 5  In panel A, modified Response Evaluation Criteria In Solid Tumours (mRECIST) and artificial intelligence (AI) volumetric responses for 
each patient (rows 1–30) are compared (as partial response (PR), stable disease (SD) and progressive disease (PD)), accompanied by a confusion 
matrix summarising agreement, which was present in 16/30 (55%) cases, kappa=0.284 (0.026 to 0.543). Similar results are summarised in panel 
B, in which responses have been simplified to non-PD (PR and SD) and PD, generating 20/30 (67%) agreements, kappa=0.223 (−0.128 to 0.574). 
Panels C and D use the manually annotated human volumes as a reference standard to compare volume changes in mRECIST (panel C) and AI volume 
(panel B)-defined PR, SD and PR groups. By mRECIST, the median volume changes (%) were not significantly different (−52 cm3, −21 cm3, −18 cm3, 
p=0.072). By AI volume, there was significant volume difference between response classes (median volume changes (%) −18 cm3, −15 cm3, +23 cm3, 
respectively, p=0.009), driven by a significant difference between PR and PD cases (**p=0.008). ns, not significant.
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CONCLUSIONS
We have developed and validated the first fully automated deep 
learning CNN for the volumetric assessment of MPM. Volu-
metric classification of response requires further calibration 
in large-scale studies. Given the complexity of MPM tumour 
morphology, these data represent a strong proof-of-principle for 
development of similar tools for other cancers.
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Supplementary Figure 1 
Median pre-chemotherapy human and AI volumes (n=30) were not significantly different (366 cm3 
[244 -656] v 427 cm3 [220-682], p=0.67). Panel A shows correlation between human and AI volumes 
(r=0.86, p<0.0001)). Panel B shows Bland-Altman agreement, with a mean bias of +29 cm3 and 95% 
limits (-312.9 to 371.1 cm3). 
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 2 

Supplementary Figure 2 
Median post-chemotherapy human and AI- volumes (n=30) were not significantly different (328 cm3 
[225-63] v 371cm3 [122-689], p=0.84. Panel A shows correlation between human and AI volumes 
(r=0.86, p<0.0001). Panel B shows Bland-Altman agreement, with a mean bias of +32 cm3 and 95% 
limits of agreement (-381 to 445 cm3). 
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Supplementary Figure 3 
Overall survival (days) was calculated for cases in the validation set from the date of pre-
chemotherapy CT scan to death from any cause. Survival analysis was by Kaplan-Meier 
methodology. Panels A and B report the statistically significant association between higher baseline 
(pre-chemotherapy) tumour volume and OS, dichotomised around the median volume measured by 
human (Panel A) and AI (Panel B) segmentation. Panels C-D report non-significant trends towards 
shorter OS in cases with PD v non-PD defined by human volume criteria (271 v 375 days, n=26), AI 
volume criteria (271 v 375 days, n=26) and mRECIST criteria (293 v 399 days, n=26), respectively.  
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A

B

HR 1.61 (0.51-5.07)

p=0.326 

C

HR 1.78 (0.71-4.46) 

p=0.149

HR 1.58 (0.37-6.75) 

p=0.326 

E

D

HR 4.01 (1.67-9.64)

p=0.0019

HR 2.45 (1.08-5.55)

p=0.010
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