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Preventing an irreversible loss of biodiversity is one of human-
ity’s greatest contemporary challenges1. Anthropogenic habitat 
loss is recognized as a major driving force of species extinctions, 

threatening up to 85% of all species included in the International 
Union for Conservation of Nature Red List2. Current understand-
ing of the impacts of habitat change on biodiversity is heavily reli-
ant on the assumption that species respond rapidly to disturbances. 
However, the role that legacy effects and lags play in species’ 
responses to environmental change is increasingly recognized3–8.

The diversity of species at a given location is only partially deter-
mined by the current state of a habitat. Rather, it is the consequence 
of a legacy of complex historical effects of landscape change on 
community composition9,10. Notably, species’ responses to changes 
in land cover composition are rarely instantaneous, but instead are 
subject to lags leading to gradual species extinctions and coloniza-
tions at the landscape scale7,11. Thus, current observations of bio-
diversity could be substantially higher than a recently modified 
landscape is actually able to support, generating so-called extinc-
tion debts. In the opposite scenario, recent modifications that will, 
in time, be favourable to biodiversity, could instead lead to coloniza-
tion credits.

Extinction debts and colonization credits form the focus of a 
growing area of research in community ecology7,11, but have rarely 
been explicitly incorporated into predictive models of biodiversity 
over large spatial scales4,5,12. This hinders our ability to correctly 
quantify future biodiversity loss and increases the risk of policy 
strategies becoming out-of-date before they are even introduced8. 
Moreover, the type and directionality of habitat change may result in 
different magnitudes of legacy effects and lagged responses, leading 
to spatial variation in debts and credits. However, so far, most stud-
ies have focused on the loss of either forests or grasslands, largely 
ignoring gains and other habitat types3,4,12,13. To generate predictions 
of biodiversity that can reliably inform environmental policies, the 
contribution of different types of past landscapes and subsequent 

legacy effects on the composition of current communities need to 
be quantified and incorporated into large-scale spatio-temporal 
models. Here we developed such a model using bird diversity data 
collected from 2,880 bird communities over a 15-year period in the 
contiguous USA and validated our predictions using independent 
data from a more recent survey.

Results
Modelling extinction debts and colonization credits. Birds are an 
ideal taxon for analyses of spatial and temporal biodiversity changes 
because they have long been monitored over broad spatial scales 
and are highly sensitive to anthropogenic disturbance15. We calcu-
lated the species diversity of 2,880 communities surveyed as part 
of the North American Breeding Bird Survey (BBS, Extended Data 
Fig. 1), which comprises information on the abundance of more 
than 500 bird species across the contiguous USA14. We defined a 
community as the assemblage of birds associated with the land-
scape surrounding each survey unit (Extended Data Fig. 2) (that is, 
not a prespecified habitat type). We chose the effective number of 
species rather than species richness as a diversity metric because it 
provides a more robust measure that is less sensitive to species rar-
ity and detectability than species richness16,17. We also sourced high 
spatial resolution (30 m2) land cover data from the National Land 
Cover Database (NLCD)18, as well as temperature data (mean across 
May and June) from the PRISM climate dataset19 (Supplementary 
Figs. 1, 2 and Table 1). Using these datasets, we developed and fit-
ted a Bayesian generalized mixed effects model (GLMM) describ-
ing the effective number of species in 2016 as a function of the 
weighted contribution of the landscape composition in 2016 and 
the past landscape composition in 2001 (hereafter, legacy model, as 
it incorporates information about both present and past landscape 
compositions). We then fitted a similar model only considering the 
landscape composition of 2016 (hereafter, equilibrium model, as it 
models the biodiversity we would expect in an equilibrium state of a 
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static landscape with no legacies). By subtracting the effective num-
ber of species predicted by the legacy model from that predicted 
by the equilibrium model, we determined that colonization credits 
were present if the difference was positive, and vice versa, extinction 
debts were present if the difference was negative. A lower effective 
number of species in the equilibrium model highlighted an extinc-
tion debt, whereas a lower number in the legacy model spotlighted 
a colonization credit.

Our fitted legacy model was able to accurately predict the 
observed effective number of species in 2016 (Pearson correlation 
test, r = 0.65, d.f. = 4,798, P < 0.01; Supplementary Fig. 3). We fur-
ther validated the model with more recent bird data from 201914, 
to confirm that the predicted debts and credits matched recently 
observed changes in effective number of species from 2016 to 2019. 
Without using any land cover change information from the same 
period, and despite the relatively short time interval (we expect 
that most of these debts and credits will require more than 3 years 
before they become fully realized), changes in the effective number 
of species since 2016 have overall been in the direction predicted by 
our model (Pearson correlation test, R = 0.28, d.f. = 4,233, P < 0.001; 
Extended Data Fig. 3).

Our analysis revealed the previously unknown extent of debts 
and credits across large areas of the contiguous USA (Fig. 1). Overall, 
52% of this area is expected to lose species (extinction debts) and 
48% to gain species (colonization credits) (Fig. 1). Strikingly, many 
of the predicted debts are localized around metropolitan areas (for 
example, Atlanta, Orlando, Chicago, Indianapolis, St. Louis and 
Houston). Conversely, predicted colonization credits are largely 
concentrated in the Northeast, along the Appalachian Mountains 
and in less inhabited areas across the country. Neglecting such debts 

and credits could lead, in some locations, to overestimates of the 
effective number of species that a landscape can support by up to 
42%, whereas in other locations, to underestimates of up to 62%.

The past landscape casts a shadow on current biodiversity. The 
debts and credits identified by our analysis originate from the sub-
stantial contribution of the past landscape to the current effective 
number of species (Fig. 2). Together, our results indicate that legacy 
effects are strong and pervasive for all land cover types, even for 
small magnitudes of change during a 15-year window. Indeed, a 
mere 10 % increase or decrease in any land cover type leads to a 
substantial weighting of the past land cover composition in explain-
ing the current effective number of species (proportional contribu-
tion of past landscape >0.6; Fig. 2f). Specifically, strong legacies 
were observed for gains of urban and cropland (Fig. 2a,e), and for 
losses of grassland and cropland (Fig. 2d,e). A 10% change in these 
land cover types led to the effective number of species being almost 
completely explained by the past land cover composition (propor-
tional contribution of past landscape ≥0.9). Conversely, a loss of 
10% of forest cover or a 10% gain of grassland were associated with 
less pronounced legacy effects (proportional contribution of past 
landscape = 0.68 and 0.67, respectively; Fig. 2b,d). Whether cover 
was lost or gained also mattered for legacy effects; for example, for-
est cover gain implied a stronger legacy effect than forest loss (Fig. 
2b), while the opposite was true for grasslands. Taken together, our 
results highlight the importance of considering multiple attributes 
of land cover change over time: magnitude, type and directionality.

Explaining spatial variation in debts and credits. Land cover 
changes have not been homogeneous across the contiguous USA 

48% 52%

Debt (<10% quantile) Debt (<25% quantile) Near equilibrium (25% < × < 75%  quantile) Credit (>75% quantile) Credit (>90% quantile)

Fig. 1 | extinction debts and colonization credits across US bird communities. The estimated distribution and magnitude of extinction debts (red) and 
colonization credits (blue) across the contiguous USA. Debts and credits were calculated by subtracting the effective number of species predicted by 
the legacy model from that predicted by the equilibrium model. We estimated that 48% of the contiguous USA land area is, as of 2016, experiencing 
colonization credits (equilibrium model − legacy model > 0), whereas 52% of it is experiencing extinction debts (equilibrium model – legacy model < 0). 
Note that the percentages shown in the pie chart are not the same as the map legend, which instead shows the 10% and 25% quantiles for both credits 
and debts. Uncertainty associated with these predictions is presented in Extended Data Fig. 4.
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(Fig. 3). For instance, much of the area in the central US has experi-
enced large-scale conversion of grasslands (Fig. 3d) into croplands 
(Fig. 3e). Forest loss has been concentrated in the Northwest, as well 
as along the Appalachian Mountains (Fig. 3b) where forests have 
been mostly converted to grasslands (Fig. 3d), including pasture. 
Urban development has occurred around major metropolitan areas 
across the entire US, although particularly in the East (Fig. 3a). In 
contrast, the vast areas of desert and shrubland of the Southwest 
have experienced only very limited land cover change. We hypothe-
sized that some of the spatial patterns in debts and credits predicted 
by our model should reflect this spatial segregation of different types 
of land cover changes. To test this hypothesis, we modelled the mag-
nitude of the predicted debts and credits as a function of changes in 
land cover. We found extinction debts to be significantly associated 
with urban and cropland gain, and with loss of wetland (Fig. 4 and 
Supplementary Table 3). This is consistent with earlier findings that 
increases in cropland and urban cover are associated with declines 
in bird diversity20,21; similarly, wetlands are important habitats for 
birds22 and it is thus unsurprising that recent wetland loss is associ-
ated with extinction debts. We found that colonization credits were 

only significantly associated with recent loss of grasslands. While 
this association might appear at first surprising, it could be a con-
sequence of the inclusion of pasture within the grassland category 
of NLCD: because pastures are globally associated with reduced 
animal diversity23, the reduction of grassland might result in future 
benefits to biodiversity.

Discussion
By quantifying the geographical extent and magnitude of debts and 
credits, we have revealed the invisible footprint of anthropogenic 
change on bird biodiversity at continental scale. Far from being a 
minor effect, we estimate that the contiguous USA is already com-
mitted to biodiversity changes, of different magnitudes, that have yet 
to become realized. Moreover, we emphasize that the legacy of past 
landscapes on the current biodiversity (effective number of species) 
is dependent not only on the type and amount of land cover change, 
but also on its directionality. By accounting for all these aspects in our 
model, we show the expected widespread distribution of future spe-
cies extinctions and colonizations across a large geographical area. 
Our results spotlight areas of conservation concern, particularly  
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Fig. 2 | the contribution of past landscape to the current effective number of species depends on the type, amount and directionality of land cover 
change. a–e, Our model allowed us to quantify the proportional contribution of the past landscape in 2001 on the effective number of species in 2016 (y 
axis), in response to positive and negative changes of urban (a), forest (b), wetland (c), grassland (d) and cropland (e) land cover types between the two 
timepoints (x axis). A value of 0 on the y axis indicates that the effective number of species in 2016 is completely explained by contemporary land cover, 
whereas a value of 1 indicates that it is fully described by the land cover in 2001. All values presented are predictions under the assumption that no other 
land cover changes take place. Lines indicate the estimated mean value of the contribution of the past landscape, while coloured areas around each line 
represent 95% credible intervals. Lighter shaded regions are predictions outside of the maximum observed land cover change. f, Values of the proportional 
contribution of past landscape associated with a 10% increase or decrease for each land cover analysed.
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around urban centres and in the Southeast US, a region that has 
already experienced catastrophic losses of avian diversity and abun-
dance over the last 50 years15. We show that this decline is far from 
being over and that more avian diversity will be lost if urgent con-
servation actions are not put in place. However, extensive areas of 
the contiguous US are also predicted to gain species, particularly in 
the Northeast, but also in many other less populated locations that 

are close to areas predicted to be in debt. Nevertheless, we acknowl-
edge that changes in effective numbers of species provide only a 
coarse measure of biodiversity change and that processes specific 
to species or functional traits could play a substantial role in how 
communities respond to habitat change. We are also aware that our 
results are a first attempt at quantification of biodiversity credits 
and debts over large spatial scales, and while this is a considerable 
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Fig. 3 | Maps of the contiguous USa showing the spatial distribution of each land cover change type included in the analysis. a–e, Data represent the 
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and 2016. Data were sourced from the open-access NLCD CONUS products developed by the USGS18. f, Total area of negative and positive change for 
each land cover covariate between 2001 and 2016 in km2.
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improvement over assuming that equilibria are reached instanta-
neously, additional information could be obtained by considering 
multiple timepoints over a longer time period.

Taken together, our results demonstrate that extinction debts and 
colonization credits are widespread in avian communities across the 
US. This highlights the complex and dynamic nature of biodiversity 
responses to land use change. We argue that this complexity needs 
to be accounted for in predictive models to improve the projections 
of the impact of past, current and future habitat change on biodiver-
sity, thus contributing to the conservation of biota worldwide.

Methods
All of the statistical analyses were conducted using the R programming language 
version 4.0.5 within the RStudio IDE version 1.4.124,25. Data visualization and 
processing were performed with the ‘tidyverse’ collection, ‘foreach’ and ‘doParallel’ 
R packages26–28. Geographical Information System (GIS) operations on raster and 
vector files were conducted using the ‘sf ’, ‘exactextractr’ and ‘raster’ R packages29–31.

Data sources and pre-processing. Biodiversity data. We used the North American 
Breeding Bird Survey dataset as our source of biodiversity data due to its long 
temporal coverage and spatial extent14,32. The BBS is composed of bird species 
abundance records collected since 1966 from over 4,000 survey routes across the 
countries of Mexico, USA and Canada. For this study we focused solely on routes 
in the USA, due to their longer time dimension. Data collection follows public 
access roads that are 24.5 miles long (circa 39.2 km) using a point count protocol 
whereby routes are surveyed every half-mile (800 m) for a total of 50 stops. At 
each stop, observers stand for 3 min and record the species and the abundance of 
every bird seen or heard within 400 m of their location. The routes are surveyed by 
volunteers with experience in bird observation, and surveys are conducted from 
late April to July to capture the peak of the breeding season.

We selected the years 2001 and 2016 as the two timepoints of our analysis. 
This 15-year timeframe corresponded to the longest possible timespan for which 
land cover data products were available at high spatial resolution18. Before analysis, 
we subset the BBS dataset by removing routes that had incomplete survey lengths 
(less than 50 point count stops, indicated by the RouteTypeDetailID field value 
being less than 2 in the extracted BBS dataset) or that were surveyed under adverse 
weather conditions such as high wind and rain (as indicated by the Run Protocol 
ID field being equal to 1), which could affect bird occurrence and detectability. 
Following this filtering process, the total number of BBS routes analysed was 960 
(Extended Data Fig. 1).

For higher precision when inferring the relationship between avian diversity 
and environmental variables, we subdivided each route into five segments of equal 
length, consisting of 10 count locations each. This approach was motivated by the 
need to more closely associate bird communities with the land cover composition 
in the area in which they are found. To minimize the spatial autocorrelation 
between adjacent segments and avoid overlaps in landscapes analysed, we filtered 
the data to keep only the first, third and fifth segment of each route. These 
segments therefore formed our sampling unit used in all analyses.

We recognized that environmental conditions and stochastic trends in 
populations could introduce variability in biodiversity calculated from bird 
community data. We therefore extracted, for each segment and each species, the 
average population count across a 3-year period centred on our two timepoints 
(2000, 2001, 2002 and 2015, 2016, 2017)33. We then calculated the mean abundance 
of each species across these 3 years.

The effect of observer experience34–36 was accounted for by sourcing the 
observer ID responsible for each route at each timepoint and including it as a 
random effect in the legacy model (see ‘Model development’ section). We also 
controlled for the time of day as it is plausible to expect visibility and avian species 
activity patterns to vary between early morning and later parts of the day. Time of 
day for each segment was calculated by averaging across the start and end time data 
entries associated with each route, and then including this as a covariate in both 
the legacy and equilibrium models (see ‘Model development’ section). However, we 
did not model detectability issues associated with traffic noise and disturbance for 
two reasons. First, all BBS surveys are conducted along public access roads with a 
vehicle, so the disturbance is expected to be similar across sites. Second, previous 
studies have found no clear evidence for noise being the main cause for reduced 
bird abundance near roads37.

Following these procedures, our processed BBS dataset included entries of 
mean abundances of each species for a total of 2,880 segments, corresponding to 
segment 1, 3 and 5 of 960 routes (Extended Data Figs. 1 and 2). For each segment, 
at each timepoint we calculated different measures of alpha diversity following 
the Hill numbers framework38. We then selected to use the effective number of 
species at q = 1, calculated as the exponential of the Shannon–Wiener Index38. The 
effective number of species at q = 1 sits at the theoretical half-way point between 
the classic species richness measure that accounts only for the absolute number of 
species (q = 0) and the Berger-Parker dominance index (q = infinity), which instead 
only reflects the most common species. Thus, the effective number of species is a 
robust alternative to species richness, which does not take account of species rarity 
or detectability and can thus lead to biased biodiversity estimates16,17.

Land cover and environmental data. Land cover data for the US for our focal years 
of 2001 and 2016 were sourced from the open-access NLCD CONUS products 
developed by the US Geological Survey (USGS)18,39. The NLCD products are 
high-resolution (30 m pixel dimensions) classified raster files covering the land 
area of the whole USA. This dataset provides us with the opportunity to look 
at finely gridded spatio-temporal changes in a landscape over a relatively long 
timeframe of 15 years, while utilizing data collected and analysed with the same 
methods (for example, land use classification algorithms).

To reduce the number of potentially collinear explanatory variables included 
in our models, we aggregated the land cover variables provided by the NLCD 
dataset. We summarized these to five land cover categories: ‘urban’ (an aggregate 
of the Developed-Open Space (subclass 21), Developed-Low Intensity (22), 
Developed-Medium Intensity (23) and Developed-High Intensity classes); 
‘forest’ (an aggregate of the Deciduous Forest (41), Evergreen Forest (42) and 
Mixed Forest (43) classes); ‘grassland’ (an aggregate of the Shrub (52), Grassland/
Herbaceous (71) and Pasture/Hay (81) classes); ‘cropland’ (cultivated Crops (82) 
subclass) and ‘wetland’ (an aggregate of the Woody Wetland (90) and Herbaceous 
Wetland (95) classes). The Perennial Ice/Snow (12), Open Water (11) and Barren 
Land (31) classes were excluded from the analysis as they were very uncommon 
in our dataset. The distribution and total area of the land cover categories across 
the US are shown in Supplementary Figs. 1 and 2. Temperature data were sourced 
from the 30 arc-seconds gridded PRISM climate database19 and were extracted 
as the mean across May and June for each group of years from which bird 
abundances were taken.

We first sampled the landscape surrounding each segment using a range 
of buffer shapes and sizes, and then selected the buffer type on the basis of the 
capacity of each buffer type to explain the response variable. The types of buffers 
that we explored were: a circular buffer around the centroid of the polygon defined 
by the vertices of each segment (4,000 m radius) and a series of three buffers 
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Forest decrease

Forest increase

Cropland decrease

Grassland increase
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Grassland decrease
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Parameter estimate

Fig. 4 | effect of land cover change on extinction debts and colonization 
credits. Coefficient estimates (points) and credible intervals (lines) of 
different land cover change types of a GLM in which the response variable 
was the model-predicted magnitude of colonization credits and extinction 
debts (see Fig. 1) and the explanatory variables were the magnitudes of 
the positive or negative changes in the land cover types. Credible intervals 
are the result of uncertainty propagation by fitting the GLM to 1,000 sets 
of predicted values of debts and credits generated by posterior sampling. 
Subsequently, the parameters of each fitted GLM were sampled 1,000 times 
before computing the means and credible intervals presented in the figure.

NatURe ecologY & evolUtioN | VOL 6 | MArCH 2022 | 324–331 | www.nature.com/natecolevol328

http://www.nature.com/natecolevol


ArticlesNaTURE Ecology & EvolUTioN

around the segment line (500 m, 2,000 m and 4,000 m radius). The best fit was 
given by the smallest buffer size of 500 m, shown in Extended Data Fig. 2, which 
also coincides with the BBS protocol effective counting distance of 400 m and more 
closely reflects the size of bird territories14. Land cover variables were computed 
as a percentage of the total buffer area. Change in percentage points for each land 
cover type between the 2 years was computed by subtracting the values at the two 
timepoints. A change product is also provided by the USGS databases40, but it does 
not meet our needs because it considers land cover changes based on a ranking. 
Nonetheless, a comparison of urban land cover change between the timepoints 
showed a similar result (Supplementary Fig. 4). Land cover data were processed 
geospatially using the NAD 83 Conus Albers Coordinate Reference Systems 
projection, EPSG 5070.

Model development. Theoretical background. We developed a statistical model 
that conceptualized extinction debts and colonization credits by combining the 
following two concepts: (1) the settled biodiversity of avian communities in a 
given landscape composition (that is, a system at equilibrium) and (2) the lagged 
response in the species diversity in a given landscape due to recent land cover 
changes (that is, a system moving to a new equilibrium). We reasoned that, given 
enough time, and with no further changes in land cover, the effective number 
of species at a given location would eventually equilibrate. The equilibrium 
distribution of the effective number of species emerges with the waning of the 
legacy effect of previous landscape compositions in encouraging or impeding the 
recruitment and survival of particular species. We did not model these ecological 
mechanisms directly, but instead expressed the equilibrium of the effective number 
of species, and the rate of approach to this equilibrium, as empirical functions of 
environmental covariates. It is important to keep in mind that during a finite time 
interval following environmental change, it is possible that our observations of 
effective number of species represent a system in a transitory state towards its new 
equilibrium. Yet, environmental changes may occur at rates that never allow the 
system to equilibrate. Although the equilibration processes are latent (that is, not 
amenable to direct observation), the combination of equilibrium and temporal 
legacy components into an integrated model, applied to a dataset with extensive 
environmental replication (due to spatial expansiveness), has allowed us to retrieve 
distributions for all relevant model parameters (see below).

Model overview. The observed effective number of species Rs,t at site s in year t for 
t = t1,t2 is modelled as a normally distributed variate with mean μs,t and standard 
deviation σ

Rs,t ≈ Normal
(

μs,t , σ
)

(1)

We assume that, under landscape change, the system is in a state of flux 
and that the data are from observations witnessing the transition between two 
(unattained) equilibria. The expected state of the system at any given point in time, 
μs,t, was formulated as a mixture of past and future equilibrium distributions (that 
is, a weighted average of the two distributions, where the weights are given by the 
complementary proportions ω and 1 − ω)

μs,t = f (xs,t2 ;β) ω (Δxs,t1 ,t2 ;γ) + f (xs,t1 ;β) (1 − ω (Δxs,t1 ,t2 ;γ)) (2)

Here, the function f describes the equilibrium distribution of the effective 
number of species as a function of the configuration of the local environment, 
captured in covariates xs,t. The weighting function ω depends on covariates ys,t 
derived from the difference in the local land cover between 2016 and 2001 (that 
is, it is a function of the land cover change that has taken place). The mixture 
weights ω and (1 − ω) determine the relative importance of the two equilibrium 
distributions (past or current). If ω = 1, the interpretation is that the new 
equilibrium distribution has been completely attained, and thus the current (2016) 
effective number of species is entirely explained by the current (2016) land cover. 
Conversely, if ω = 0, the current effective number of species is entirely explained 
by the past (2001) land cover. The vectors of parameters β and γ, presented in 
equation (2), are inferred from model fitting.

We also augmented equation (2) with a function g of static covariates and 
random effects z that we expect to have an impact on the effective number of 
species. Thus, the model comprised equilibrium components, a temporal legacy 
component and static covariates:

μs,t = f (xs,t2 ;β) ω (Δxs,t1 ,t2 ;γ) + f (xs,t1 ;β) (1 − ω (Δxs,t1 ,t2 ;γ)) + g (zs;α) (3)

in which f (xs,t;β) are the equilibrium components for the two timepoints, 
ω (Δxs,t1 ,t2 ;γ) is the temporal legacy component, and g (zs;α) is the function that 
captures the static covariates and random effects, with α being the estimated static 
covariates parameter effects.

Equilibrium components. We defined the equilibrium distribution of the effective 
number of species at a given timepoint as a function f (xs,t;β) of land cover. This 
function describes the expected effective number of species at location s, given 
sufficient time for the community to adapt to the given land cover composition. 
We now describe this function in more detail.

The equilibrium component was formulated as a log-linear model comprising 
a total of I = 5 environmental covariates (the percentage cover of five landscape 
classes: urban, forest, grassland, wetland and cropland), using 2nd-order 
polynomial terms, captured by the coefficient j, to account for optima in effective 
number of species along each of the five environmental dimensions:

f (xs,t) = exp



β0 +
I=5
∑

i=1

J=2
∑

j=1
βi,jx

j
i,s,t



 (4)

In equation (4), the β parameters capture the effect of covariates on the 
equilibrium and are assumed to be the same for each environmental composition. 
A simplifying assumption necessary for the application of this model is that  
the effective number of species had equilibrated at the first timepoint. As data 
become available for more years in the future, the influence of this assumption  
on the model results will diminish and more accuracy will be achievable with 
multiple timepoints.

To allow for conditionality in the effects of one land cover variable on the 
response of the effective number of species to another land cover variable, we 
extended this function with pairwise interaction terms k between all the linear 
terms for land cover variables and pairwise linear-quadratic terms, as follows:

f (xs,t) = exp



β0 +
I=5
∑

i=1

J=2
∑

j=1
β0,i,j,x

j
i,s,t +

I=4
∑

i=1

K=5
∑

k=i+1
β1,i,kxi,s,txk,s,t



 (5)

Temporal legacy component. The main covariates, Δxi,s,t1 ,t2, for the part of the model 
that captures the temporal legacy, ω (Δxs,t1 ,t2 ;γ), are derived from the change in 
land cover (Δxi,s = xi,s,t2 − xi,s,t1) between the two timepoints

xi,s, =
{

x1,i,s = |Δxi,s| , x2,i,s = 0, ifΔxi,s < 0

x1,i,s = 0, x2,i,s = Δxi,s, otherwise
(6)

where Δxs,t,z is a vector of the ith environmental change variable (that is, urban, 
forest, grassland, wetland, cropland) at site s and for directionality z. The effect of 
these covariates on the mixture weights is given by:

ω (Δxs,t1 ,t2 ;γ) = exp
( I=5
∑

i=1
−γi,zΔxz,s,i

)

(7)

This formulation weights the contribution that the environmental variables at 
the two timepoints have on the current effective number of species, as a function 
of the magnitude and directionality of change in each type of land cover covariate. 
The γ parameters, and subsequently the temporal legacy component, are allowed 
via the inclusion of the environmental change data Δxs,t,z, to account for the 
distance between the land cover at the two timepoints, therefore quantifying 
how far the initial community would need to travel to reach equilibrium in 2016 
as a function of the type, magnitude and directionality of change. It should be 
noted that our model, in equation (3), is only implicitly related to the speed with 
which the effective number of species reacts to environmental changes. Instead, 
it quantifies how much further it would still have to travel to reach the expected 
equilibrium associated with the current configuration of the landscape.

Static covariates. As described in model equation (3), we included a function of 
static covariates to which we can expect the effective number of species to respond 
without lags relating to the past landscape. We added a linear and quadratic fixed 
effect for temperature in 2016 to control for any difference in the effective number 
of species related to climatic characteristics and to allow for a parabolic relationship 
to be expressed (optima either at mean or extremes values). We also controlled for 
the heterogeneity of a landscape by including the effective number of land cover 
types, computed in the same way as the effective number of species, as a fixed 
effect40. A fixed effect for time of day, reflecting the time at which each segment was 
surveyed, was included to correct for differences in species detectability between 
early morning and later parts of the day41. An observer-level random effect was 
also added to control for variation between observers35,36 and partly account for 
between-route variation, given that we would expect observers who collect data 
from multiple routes to do so within a relatively small area. Spatial autocorrelation 
of the effective number of species was tested for all segments at once and by different 
radiuses for neighbour inclusion (500 m, 1,000 m, 5,000 m, 10,000 m, 100,000 m), 
using the Moran’s I statistic42. Spatial autocorrelation was not corrected for because 
Moran’s I was not significant at any spatial scale (P > 0.05). Pseudo-replication 
between neighbouring segments was avoided by considering segments 1, 3 and 5, 
whose land cover buffers did not overlap (Extended Data Fig. 2).

Model fitting. The model was fitted within a Bayesian framework using a 
Hamiltonian Markov chain Monte Carlo algorithm implemented in the STAN 
programming language43 version 4.3.0 and the ‘cmdstanr’ R package version 
2.26.144.
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We ran 4 chains, sampling for 1,000 iterations with a burn-in period of 500 
iterations each. These numbers of iterations were sufficient to achieve chain 
convergence. The STAN sampling was run on four parallel threads on a multi-core 
Intel i7 – 8750H processor with a maximum clock speed of 4.1 GHz.

For the purposes of Bayesian inference, all slope parameters associated 
with the equilibrium component equation (5) and the static additive terms 
were assigned an unbiased prior βi,j ≈ N (0, 1) and zs ≈ N (0, 1) , where 
N is normal, with the aim of shrinking the parameter estimated towards 0 
(that is, no covariate effect). A gamma distributed prior, with shape and rate 
0.001, was assigned to the standard deviation of the random effect. For the 
following known and expected relationships, we also truncated the range of 
parameter values by bounding the upper or lower limits of the prior/posterior 
distributions. Intercept and standard deviation of the observer random effect 
were bounded below by 0. Linear effects for the environmental covariates and 
temperature were bounded below at 0, while their quadratic counterparts were 
bounded above at 0. Interaction terms were not limited. The temporal legacy 
component parameters were given a uniform (U) prior γi ∼ U (0, 1), bounded 
between 0 and 1 to act as a weighting proportion between the present and the 
past. The upper bound on the gamma parameters to 1 does not bias us towards 
an increased contribution of the past land cover, but instead provides a more 
conservative approach.

Model diagnostics were conducted by assessing chain convergence visually 
through trace plots, as well as statistically by employing the Gelman-Rubin test, 
which compares the estimated between-chain and within-chain variances45. Chain 
autocorrelation and the associated effective sample size were also monitored. In 
the case of low effective sample size, the chains were extended until the effective 
sample size exceeded a threshold value of 400. The marginal posterior distribution 
for each parameter was visualized via a density plot to check for multimodality.

Model selection was conducted to inform choice of the size and shape of 
the land cover buffer around each sampled segment. We did so by comparing 
values of the Watanabe-Akaike Information Criterion leave-one-out (WAIC)-loo 
information criterion46 of four different models, each computed using land cover 
data calculated with two different buffer options of various sizes: a circular buffer 
around the centroid of the polygon defined by the vertices of each segment 
(4,000 m radius) and a series of buffers around the segment line (500 m, 2,000 m 
and 4,000 m radius). This approach was implemented through the ‘loo’ R package 
version 2.1, which provides an improvement on the original WAIC by including 
diagnostic measures around the point-wise log-likelihood value estimated around 
each sample draw47.

Visualization of model predictions. A map of the USA (Fig. 1) was produced 
to represent the predicted extinction debts and colonization credits (that is, 
positive or negative distance in the effective number of species from the expected 
equilibria). The map was produced on a hexagonal grid at a spatial resolution of 
10 km vertex-to-opposite-vertex, with each hexagon covering a total of 86 km2. 
Values of extinction debt and colonization credit were calculated by subtracting 
the predicted effective number of species produced by the model (equation 3) from 
the predicted effective number of species at equilibrium in 2016 (that is, when the 
legacy component equals 1). To correctly propagate and represent uncertainty in 
the extinction debts and colonization credits presented, this process was repeated 
1,000 times for predictions originating from different draws from the posterior 
distribution. Uncertainty in the form of the geometric coefficient of variation, 
calculated as 2

√

e(log(σ+1)2)
− 1 where σ is the standard deviation, is mapped 

in Extended Data Fig. 4a. Extended Data Fig. 4 also includes a copy of Fig. 1 
(Extended Data Fig. 4b) for reference, alongside upper (Extended Data Fig. 4c) and 
lower (Extended Data Fig. 4d) credible intervals.

Over/underestimation values of biodiversity that could arise by neglecting 
debts and credits were computed as the difference between the effective numbers 
of species predicted by the equilibrium model and the legacy model, multiplied by 
100 and then divided by the predicted effective number of species under the legacy 
model. This calculation results in a percentage measurement of the extent to which 
(in relative terms) the current effective number of species under- or overestimates 
the diversity that a given landscape can sustain at equilibrium.

To further validate our predicted extinction debts and colonization credits, we 
compared the direction of the expected changes with the recorded difference in 
effective numbers of species between 2016 and 2019 (the latest year for which data 
are available). To do so, we sourced bird abundances from the North American BBS 
dataset14,32 for the year 2019 and conducted the same data processing as described 
above for the other two timepoints. We then conducted a Pearson correlation test 
to assess how well the observed change followed the model-predicted one. We are 
nevertheless aware that a 3-year timeframe is unlikely to be large enough for debts 
and credits to fully manifest.

Plots were also generated to describe the behaviour of the mixture weight, 
ω (equation 7), which captures the contribution (weighting) of the landscape 
composition in determining the effective numbers of species at the two timepoints 
(Fig. 2 in the main text). Values of ω across the whole spectrum of plausible land 
cover change values (that is, from −100 to +100) were simulated by averaging 
over 10,000 draws from the posterior distribution of each γ parameter. Credible 
intervals were measured by taking the 95% range of the 10,000 draws.

Explaining spatial variation in debts and credits. The extinction debts and 
colonization credits predicted for the contiguous USA states were further modelled 
to identify which past land cover changes were the main drivers of the delayed 
biodiversity changes in USA bird communities. We considered the values of 
debts or credits associated with the 92,000 individual 86 km2 hexagons (Fig. 1) 
as a response variable. We then specified a Gaussian linear model including the 
magnitude of each land cover change as explanatory covariates. Positive and 
negative changes in each covariate were treated as separate linear components to 
differentiate their effects. The model was fitted to 1,000 sets of debts and credits, 
each originating from predictions based on independent draws from the posterior 
distribution. For each generalized linear model (GLM) fit, we then subsequently 
sampled each parameter distribution another 1,000 times and extracted the 
summarized parameter estimates from a total of 100,000 values. Model coefficients 
and their resulting uncertainty from the above process are presented in Fig. 4 and 
in more detail as part of Supplementary Table 3.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
All data utilized in the analysis are open access. Data on bird abundances can be 
accessed at https://www.pwrc.usgs.gov/BBS/RawData/. Data on the land cover 
and temperature covariates can be accessed at https://www.mrlc.gov/ (land cover) 
and https://prism.oregonstate.edu/ (temperature). BBS routes were sourced from 
https://databasin.org/datasets/02fe0ebbb1b04111b0ba1579b89b7420/.

code availability
Reproducible R code and processed datasets are available from https://github.com/ 
valiriel/USBBS_Biodiversity_LandCover_Delays.
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Extended Data Fig. 1 | BBS routes. Distribution of the 960 analysed routes of the United States Breeding Bird Survey across the contiguous USA. This 
represents a subset of routes which were consistently surveyed across the two timepoints of interest and surrounding years (2000, 2001, 2002 and 2015, 
2016, 2017).
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Extended Data Fig. 2 | Route buffers. Visual representation of a Breeding Bird Survey route segments and spatial buffers. Each route is approximately 
40 km long. Visible are five segments, each representing 10 bird point counts. In bold black are segment one, three and five, which were the source of 
biodiversity and landscape data used in the model. The buffer from which landscape metrics were sampled is shown in pale yellow. Buffers are 500 metres 
distant from each segment line, and buffer size was selected by comparing model fit between several shapes and sizes. In grey, are segment two and four, 
which we excluded from the analysis to minimise pseudo-replication that would otherwise arise from the proximity of the route segments.
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Extended Data Fig. 3 | Model validation. Correlation between the observed change in effective number of species between 2016 and 2019 and the 
model-predicted values of extinction debt and colonisation credits. Data was obtained from 4233 US bird communities (subset of the 4800 communities 
with data also available in 2019). Despite the relatively short time interval (we expect most of these debts and credits will require longer before they can 
be fully realized), changes in effective number of species since 2016 have overall been in the direction predicted by our model (Pearson correlation test, 
r = 0.28, df=4233, p < 0.001).
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Extended Data Fig. 4 | Mapping model uncertainties. Maps of the contiguous USA showing the uncertainty around the predictions of extinction debts 
and colonisation credits. We first sampled from the posterior distributions of the equilibrium and legacy models, and computed the difference between 
the predicted values of the effective number of species of both models. The process was repeated 1000 times for each of the circa 92,000 landscape 
compositions mapped in panel B (same as Fig. 1 in main text). We then calculated the geometric coefficient of variation of these predicted values predicted 
and presented it in panel A. Panels C and D show, respectively, the upper (97.5%) and lower (2.5%) credible intervals of the predicted values.
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reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Portfolio guidelines for submitting code & software for further information.

Data
Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable: 
- Accession codes, unique identifiers, or web links for publicly available datasets 
- A description of any restrictions on data availability 
- For clinical datasets or third party data, please ensure that the statement adheres to our policy 

 

All data utilised in the analysis is open access. Data on bird abundances can be accessed at: https://www.pwrc.usgs.gov/BBS/RawData/. Data on the land cover and 
temperature covariates can be accessed at: https://www.mrlc.gov/ (land cover) and https://prism.oregonstate.edu/ (temperature). BBS routes were sourced from 
https://databasin.org/datasets/02fe0ebbb 1b04111b0ba1579b89b7420/
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For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Ecological, evolutionary & environmental sciences study design
All studies must disclose on these points even when the disclosure is negative.

Study description We used species richness data from the North American Breeding Bird Survey (BBS), comprising information on the abundance of 
541 bird species across the contiguous USA. We also sourced high spatial resolution (30m2) land cover data from the National Land 
Cover Database CONUS products, as well as temperature data (mean across May and July) from the PRISM climate dataset. Using 
these datasets, we developed a generalized mixed effects model (GLMM) within a Bayesian framework describing the number of 
species in 2016 as a function of the weighted contribution of landscape composition in 2001 and 2016. This enabled us to explicitly 
quantify the importance of legacy effects in the response of bird communities to % changes in each of five major land cover classes 
(forest, grassland, cropland, wetland and urban area). 

Research sample We used the North American Breeding Bird Survey (BBS) dataset as our source of biodiversity data due to its long temporal coverage 
and spatial extent. The BBS is composed of bird species abundance records collected since 1966 from over 4000 survey routes across 
the countries of Mexico, USA and Canada. 

Sampling strategy Our final dataset included species richness and evenness data for 960 routes, each divided into five segments, giving a total of 2880 
observational units (that we refer to as “segments”). 

Data collection Data collection follows public access roads along non-linear transects that are 24.5 miles long (circa 39.2 Km) using a point count 
protocol whereby routes are surveyed every half-mile (800 m) for a total of 50 stops. At each stop, observers stand for three minutes 
and record the species and the abundance of every bird seen or heard within 400 meters of their location. The routes are surveyed 
by volunteers with experience in bird observation, and surveys are conducted during May and July to capture the peak breeding 
season. 

Timing and spatial scale To address our research questions, we selected the years 2001 and 2016 as our two timepoints. This 15-year timeframe was selected 
as a reasonable scale to explore biodiversity lags to land cover change and it also corresponded to the longest possible timespan for 
which land cover data products were available at high spatial resolution. To minimise the noise in bird community data associated 
with stochastic annual variability in environmental conditions, we selected, for each sampling point and each species, the average 
population count across three adjacent years (2000, 2001, 2002; 2015, 2016, 2017) 

Data exclusions For this study we focused solely on routes in the USA, as most Mexican and Canadian routes are currently still being set up, therefore 
data in these regions are spatially and temporally sparse. Prior to analysis, we filtered the BBS dataset by removing routes that had 
incomplete survey lengths (less than 50 point count stops, indicated by the RouteTypeDetailID field value being less than 2 in the 
extracted BBS dataset), routes that were surveyed under adverse weather conditions such as high wind and rain (as indicated by the 
Run Protocol ID field being equal to 1), which could affect bird occurrence and detectability. We also removed segments 2 and 4 
from our analyses, thus considering only segments 1-3-5, to minimise spatial autocorrelation.

Reproducibility Since this is a modelling study using freely available data, and we made our code available to the community, the study can be 
reproduced by anybody.

Randomization Sampling was not random as data collection depends on volunteers, and it's therefore dependent on population density. We have 
repeated our analyses with a subselection of the data to have a more equally spatially-distributed dataset, but this did not change 
the results. 

Blinding We have used all bird data from the USA irrespective of who collected it and where it was collected.

Did the study involve field work? Yes No

Reporting for specific materials, systems and methods
We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, 
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response. 
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Palaeontology and archaeology
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