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ABSTRACT The COVID-19 related shutdowns have made significant impacts on the electric grid operation
worldwide. The global electrical demand plummeted around the planet in 2020 continuing into 2021.
Moreover, demand shape has been profoundly altered as a result of industry shutdowns, business closures,
and people working from home. In view of such massive electric demand changes, energy forecasting
systems struggle to provide an accurate demand prediction, exposing operators to technical and financial
risks, and further reinforcing the adverse economic impacts of the pandemic. In this context, the “IEEE
DataPort Day-Ahead Electricity Demand Forecasting Competition: Post-COVID Paradigm™ was organized
to support the development and dissemination state-of-the-art load forecasting techniques that can mitigate the
adverse impact of pandemic-related demand uncertainties. This paper presents the findings of this competition
from the technical and organizational perspectives. The competition structure and participation statistics
are provided, and the winning methods are summarized. Furthermore, the competition dataset and problem
formulation is discussed in detail. Finally, the dataset is published along with this paper for reproducibility
and further research.

INDEX TERMS  Electricity demand forecasting, forecasting competition, COVID-19, electricity demand
uncertainty.

. INTRODUCTION
CCURATE electricity demand forecasting is an essen-
tial component of decision-making in power systems
operation. Forecasts are used in control rooms as well as
in processes such as unit commitment and economic dis-
patch [1]. Improving the load forecast accuracy is an effective
way to reduce the operational costs of the system through
reducing the need for reserves and adjusting generators’ out-
put to more economic schedules [2].
Demand (or ‘load’) forecasting has attracted wide attention
and extensive efforts have been devoted to developing new

tools and techniques. These include statistical-based methods
such as multiple linear regression, time-series analysis-based
methods such as auto-regressive integrated moving aver-
age (ARIMA), and machine learning-based methods such
as artificial neural networks and support vector machines.
With the advancement of artificial intelligence, deep neural
network (DNN) based methods have been applied to load
forecasting [3]. Furthermore, so-called ensemble learning
models have been developed to combine the advantages of
various base models to further improve the forecasting per-
formance [4], [5]. In addition to traditional deterministic load
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forecasting, various probabilistic forecasting algorithms have
also been proposed to assist the system operator’s decisions
in an uncertain environment.

As shown in [1], there is a rapid growth in energy
forecasting literature during the last decade (2010-2019),
where load forecasting papers account for about half of the
energy forecasting literature. Different papers demonstrated
the effectiveness and superiority of their proposed methods
on different datasets (open datasets, private datasets) or/and
with different settings (data partition, forecasting time hori-
zon, etc.). Many of them cannot be replicated because the
data is not published or the experimental settings are not
provided. In this situation, several questions may be raised.
For example, does the superiority of the proposed methods in
the literature review still exist on a different dataset? In which
condition do DNN-based methods perform worse than transi-
tional statistics-based methods even though they are powerful
tools for regression? To what extent do the ensemble learning
methods improve the forecasting accuracy compared to the
best individual forecasting model? Hosting forecasting com-
petitions seems to partially answer these questions because
different forecasting methods/algorithms can be tested on
the same platform, i.e., the same datasets, time horizon, and
evaluation metrics.

The time series forecasting competitions can be traced
back to the 1970s and have promoted the development of
forecasting research and applications [6]. In the electrical
load forecasting area, Hong and his collaborators organized
a series of Global Energy Forecasting Competitions, a.k.a.
GEFCom?2012 [7], GEFCom2014 [8] and GEFCom2017 [9].
The main focuses of these three competitions are hierarchical
load forecasting, probabilistic load forecasting, and hierar-
chical probabilistic load forecasting, respectively. The prob-
abilistic forecasts were evaluated by pinball loss. In addition
to system-level load forecasting, a competition on building
energy consumption forecasting was jointly organized by the
IEEE PES AMPS/ISS [10]. The forecasts were evaluated
using a comprehensive metric by combining absolute errors,
standard deviation (SD) of errors, etc. The wide installation
of smart meters makes it possible to conduct forecasting
on the individual consumer level [11]. IEEE Computational
Intelligence Society (IEEE-CIS) partnered up with one inter-
national energy provider, E.ON SE, and held a competition
on smart meter data [12], which focused not only on the
accuracy but also on the explainability of the predictions.
These load forecasting competitions covered wide topics
from deterministic forecasting to probabilistic forecasting,
from system level to individual consumer level, and also
attracted participants from both academia and industry.

At the beginning of 2020, the novel coronavirus disease
(COVID-19) has rapidly spread worldwide. The ongoing
COVID-19 related shutdowns have had a profound impact
on the electric demand profiles and power systems operation
all around the world, as governments put strict mitigation
and suppression measures in place [13], [14]. The global
electrical demand plummeted around the planet in March,
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April, and May 2020, with countries such as Spain and Italy
experiencing more than 20% decrease in their usual elec-
tric consumption. In view of such massive electric demand
changes, electricity network operators are facing unprece-
dented challenges in scheduling energy resources, as energy
forecasting systems struggle to provide an accurate demand
prediction [15], [16]. In fact, power systems’ operational reli-
ability highly depends on an accurate projection of the future
demand and scheduling an appropriate mixture of genera-
tion resources accordingly. Particularly, day-ahead forecasts
are critical in managing market operation uncertainty. Thus,
recent changes expose operators to technical and financial
risks, further reinforcing the adverse economic impacts of the
pandemic.

Since COVID-19 has largely changed the electricity con-
sumption behavior of consumers, including households, com-
mercial buildings, and industrial plants, forecasting models
trained before COVID-19 are unlikely to correctly capture the
characteristics of load profiles in the post-COVID paradigm.
How to provide accurate forecasts in this situation is a chal-
lenging issue. This paper presents a day-ahead electricity
demand forecasting competition that was established to moti-
vate experts worldwide to tackle this issue and share their
learning. This paper introduces the competition set-up, and
publicizes the load data used in the competition. In addition,
the top-ranking methods are summarized, and the future of
load forecasting under similar conditions is discussed.

The rest of this paper is organized as follows: Section II
provides basic information of the competition in post-COVID
paradigm; Section III introduces the data and forecasting
methods that have been used in the competition; Section IV
summarizes important findings and makes recommendations
on future competitions.

Il. COMPETITION GENERAL INFORMATION

A. ORGANIZERS, STRUCTURE, AND DATES

This day-ahead demand forecasting competition technical
committee was led by Dr. Mostafa Farrokhabadi (BluWave-
ai, Canada), and other committee members included
Dr. Jethro Browell (University of Glasgow, UK), Dr. Yi Wang
(The University of Hong Kong, Hong Kong), Dr. Wencong Su
(University of Michigan-Dearborn, USA), and Dr. Stephen
Makonin (Simon Fraser University, Canada). The committee
was advised by Dr. Hamidreza Zareipour (University of
Calgary, Canada).

This competition aimed at a detailed analysis of the
impacts of the COVID-19 related measures on electricity
demand, calling for strategies to mitigate the impact on
day-ahead forecasting techniques’ performance. In particu-
lar, the competition was focused on day-ahead prediction
of city-wide demand. The competition included one-track
only, deterministic forecasting of hourly load, 16 to 40 hours
ahead. The competition simulated operational forecasting
by requiring participants to submit forecasts on a daily
basis and providing them with actual demand data after
submission.

VOLUME 9, 2022



Farrokhabadi et al.: Day-Ahead Electricity Demand Forecasting Competition: Post-COVID Paradigm

Historical data was released on December 14, 2020. The
registration portal was open until March 1, 2021. The evalua-
tion period runs from March 15 to April 13 for a consecutive
period of 30 days. The final report and code submission was
due on April 19, 2021. The final competition results and
winners were announced in early May 2021. Supported by
the IEEE Foundation Donor Supported Program, the top three
participants received a prize of 5,000, 3,500, and 1,500 USD,
respectively.

B. EVALUATION AND RANKING METHOD

Forecasts were evaluated using the Mean Absolute Error
(MAE) with final ranking based on the teams’ MAE of all
30 days of the competition period. The MAE for forecasts J;
of y; for time period r = 1, ...., T is given by

T
1 A
MAE=7§|yt—)’t|- ()

In instances where a team missed a submission, forecasts
from the benchmark method, described in Section II1I-C, were
used in their place to ensure that the evaluation period was
exactly the same for all teams. Teams with more than 5 miss-
ing submissions were disqualified.

C. WINNING TEAMS

There were a total of 239 unique registrations; 37 teams
entered the evaluation period, out of which 20 teams success-
fully finished the competition. The final leader board can be
found on the competition website [17]. The top three winners
of the competition are as follows:

« First Place: Joseph de Vilmarest (Electricité de France
R&D and Laboratoire de Probabilités, Statistique
et Modélisation, Sorbonne Université, France) and
Yannig Goude (Electricité de France R&D and
Laboratoire de Mathématiques d’Orsay, Université
Paris-Saclay, France);

o Second Place: Honggiao Peng (Guangdong Power Grid
Co., Ltd., China);

o Third Place: Florian Ziel (Universitit Duisburg-Essen,
Germany).

lll. COMPETITION DESCRIPTION, DATA, AND METHOD
A. PROBLEM DESCRIPTION

The competition included one-track only, deterministic fore-
casting of hourly load, 16 to 40 hours ahead. Thus, partici-
pants had to submit 24 predictions for 24 hourly intervals of
a full test day, based on data up to 8 AM of the previous day.
The focus was specifically on the day-ahead utility-scale load
prediction.

B. DATA

The competition data belonged to a metropolitan electric
utility and represent the total system load for the metropoli-
tan area. Throughout the competition, the teams were pro-
vided with approximately four years of data, spanning from
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March 18, 2017 to February 16, 2021. Data was provided
to participants in CSV files, including the following hourly
measurements and day-ahead forecasts:

o Electricity demand in kW,

« Air Pressure observation and forecast in kPa,

o Cloud cover observation and forecast in %,

« Humidity observation and forecast in %,

o Temperature observation and forecast in °C,

o Wind direction observation and forecast in degrees,

« Wind speed observation and forecast in km/h.

Data was split into training set and test set. The training set
was provided in two different releases, first one in December
2020 including data up to November 6, 2020, and second one
in March 2021 including data up to January 16, 2021. It was
assumed that the weather forecasts are available 48 hours in
advance and remain the same throughout the 48-hour period.
The test data was released in daily batches for 30 consecutive
days from March 15 to April 13, 2021. Each batch contained
24 hours of daily measurements up to 8 AM as well as
weather forecasts for the next 24-48 hours. The first batch
of test data included demand measurement up to 8 AM of
January 17, 2021; the last batch of test data included demand
measurement up to 8 AM of February 15, 2021. Participants
had a period of approximately 24 hours to submit their day-
ahead prediction; each submission consisted 24 predictions
for 24 hourly intervals 16 to 40 hours ahead, i.e., beginning
to end of the next day.

Figure 1 demonstrates the load and temperature data used
in this competition. As seen in this figure, the COVID-19-
related shutdowns have had a significant impact on the load
profile, with a drastic decrease in load average, peak, and
variance observed around February to June 2020. Figure 1d
demonstrates the load during the first week of June in
2019 and 2020; observe the significant difference in both load
shape and magnitude.

C. BENCHMARK

A persistence-based method was implemented as a bench-
mark and included in the competition leader board to provide
a common reference for participants, and to fill missing sub-
missions in the event that a team failed to submit a forecast.
Benchmark forecasts were issued at 8am for midnight-to-
midnight of the next day. The load measured on most recent
complete day of the same type was used as a forecast for the
target day. Summary of the benchmark is provided in Table 1.
Ultimately, this simple benchmark proved challenging to beat
with only nine teams having a significantly lower MAE than
the benchmark over the evaluation period, as discussed in the
next section.

D. TOP PERFORMING METHODS

Participants provided the computer code and a summary
report to complete the competition. These were reviewed
to ensure the rules of the competition were followed, and
to facilitate dissemination of learnings from the competi-
tion. The approaches taken by several top-placed teams are
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FIGURE 1. Load and temperature data used for the competition.

TABLE 1. Persistence-based benchmark load forecasts.

Data used as Forecast
Previous Sunday’s load
Previous Friday’s load
Load from two days ago
Previous Saturday’s load

Target Day
Sunday

Monday, Tuesday
Wednesday—Friday
Saturday

summarised in Table 2 based on the details provided in these
reports.

All teams used information from recent days as an input
to re-train or update their models. This is a marked contrast
to successful methods from previous load forecasting com-
petitions (including GEFcom 12, 14 and 17 [7]-[9] and all
other competitions cited in the Introduction) where data has
been released in blocks making the use of lagged observations
impossible. Several teams combined forecasts from large
pools of models, including those placing 1st, 3rd and 4th. All
three of these teams’ ensemble methods were distinct but all
had a time-varying component with final combination based
on the recent performance of individual models.

The impact of having a relatively short evaluation period
and a competitive field of entrants warrants consideration
as apparent difference in performance may be the result of
sample variation rather than superior forecast performance.
Therefore, in addition to calculating the MAE for each par-
ticipant, we have investigated the impact of sample varia-
tion using bootstrapped skill scores and the Diebold-Mariano
(DM) test.

A skill score is given by

Mot — M
Skill = —< — 7
ref — Mperf

(@)
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(d) Demand during the first week of June in 2019 and 2020

for a metric with value M for the candidate forecast,
M.t for a reference forecast, in this case the benchmark,
and where Myt is the metrics value for a perfect forecast,
S0 Mpert = O in the case of MAE. We further perform
block bootstrap re-sampling in order to estimate the scale of
sample variation while controlling for auto-correlation with a
block size of 24h. We have bootstrapped skill scores as this
provides greater discrimination than bootstrapping metrics
directly [20]. The results of this analysis are shown in Figure 2
for the top ten performing teams.

Only the top nine teams are providing positive skill that can
be discriminated from the benchmark. The teams ranked 1% to
5t have skill scores between 20% and 30%, and perform
significantly better than those ranked 6 to 9™ with a skill
of 10% and lower. Distinguishing within these groups is
more challenging. We can be fairly confident that difference
between Team 4’s skill score and that of Teams 14 and 7 is
not the result of sample variation, although evidence of Teams
14’s superiority over Team 7 is tenuous. It is not possible
to distinguish between the skill scores of Teams 36 and
19 ranked 4™ and 5%, respectively, or Teams 23, 9, 25 and
13 ranked 6 to 9.

We have also calculated the skill score for each of the
top 10 teams relative to one another and performed the
DM test [21] to assess the significance of apparent differ-
ences in performance between all pairs of forecasts. How-
ever, we note that this test is likely to be conservative given
the auto-correlation observed in forecast errors and modest
size of the evaluation period. These results are presented in
Figure 3. The DM test confirms the superiority of Team 4’s
forecasts over all others and inability to separate other teams
in the top 10. Notably, the DM test provides evidence against
separating the performance of Teams 14 and 7. Furthermore,
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TABLE 2. Summary of methodologies based on reports submitted by participants. Due to an error there was a problem with the first
three submissions from team 6, who would have finished in 8th position if submissions 1-3 were discounted for all teams.

Team | Rank | Data Preparation Techniques

4 1 Correction to meteorological forecasts using linear | Multi-model ensemble (72 models): Auto-regression, linear regression,
model on recent errors and observations. Feature en- | generalised additive models, random forest (quantiles 0.4, 0.5 and 0.6),
gineering: exponentially smoothed temperature with | random forest for GAM residuals, multi-layer perceptron. Kalman
smoothing factor 0.95 and 0.99 filter adaptation. Intraday correction (AR model). Ensemble using

‘online robust aggregation of experts’. Based on [18]

14 2 Normalisation of load by daily peak Combination similar days from training data using day type and peak
temperature. Adjustment based on peak load forecast recent profiles
from days of the same type

7 3 Visual outlier detection, filled with interpolation. | Multi-model ensemble (674 models): STL-decomposed exponential
Creation of north/south and east/west wind com- | smoothing, AR(p), generalized additive models, and lasso-estimated
ponents, daily rolling means of weather features, | high-dimensional linear models. Separate models for each lead-time.
multiple ReLU transformed weather features and | Combination by smoothed Bernstein Online Aggregation.
interactions. Creation of holiday-adjusted training
data.

36 4 Data normalized to [0,1] Ensemble of random forest, gradient boosted machine and XGBoost
models with 1) recursive multi-step set-up using lagged load, time
of day and day of week only, 2) models for each hour of the day
with addition of temperature forecasts. Weighted average combination
based on recent performance.

19 5 None Deep residual networks [19]

25 8 Feature engineering: sin/cos of hour of day and day | Gradient boosted regression tree with quantile loss, separate models
of year, averages of recent load, averages of recent | for 0-8h and 9-24h due to availability of 24h lag, tuning via grid
weather forecast error search

13 9 None Load from the same day in the last three weeks is averaged and then
multiplied 1.02

6 22 None Multi-model ensemble (400 models): Facebook prophet to forecast
temperature, cloud cover and load, XGBoost to forecast temperature
and load using forecasts from prophet as inputs. 100 XGBoost models
fit for 4 training/validation splits resulting in 400 models and forecasts
which were combined using simple linear regression.
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FIGURE 2. MAE skill scores relative to the benchmark. Box plots
indicate sample variation produced via block bootstrap
re-sampling with 500 samples and blocks of length 24.
Overlapping boxes, and whiskers to a lesser extent, suggest a
lack of statistically significant difference in skill.

the test for equal performance of multiple forecasts proposed
in [22] at a significance level of 5% suggests that teams
ranked 2" to 5™ have equal predictive ability, as do those
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ranked 6™ to 10 plus the benchmark, also illustrated in
Figure 3.

IV. FINDINGS AND RECOMMENDATIONS FOR FUTURE
COMPETITIONS

This competition has provided, for the first time, the oppor-
tunity for competitors to test methods in an on-line fash-
ion with daily feed-back and the availability of recent load
observations as an input to forecasting models, similar to
an actual operational setting. The value of recent data is
clear as all top performing teams used it as an input, and
most also used it to update or adapt their forecasting models.
Given both the value and relevance of the on-line set-up it
would be a positive step for it to be the future of demand
forecasting competitions. However, it places an additional
burden on competition organisers and participants by increas-
ing the frequency of data release, forecast submission, and
evaluation.

Three of the top four teams combined forecasts from mul-
tiple models. While multi-model approaches are not new to
forecasting, this is the first forecasting competition where
their dominance has been so pronounced. A similar trend
has been observed in the M-series of competitions with the
top performing teams in M5 all combining forecasts from
multiple models [23]. This trend is expected to continue as
large computational resources become more accessible and
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tools for automatic model selection and tuning, so called
autoML, continue to improve.

The on-line format of the evaluation period required a strat-
egy for missing submissions; the technical committee’s con-
sensus was to replace the missing submissions by benchmark.
The benchmark performed relatively well in this competition,
and thus the decision could have been leading to a conflict if
any of the top teams were to benefit from it. Hence, future
organizers of similar competitions are advised to take extra
care in dealing with missing submissions. In addition, the
platform on which the on-line format is being organized must
be reliable and easy to interact with, given the tight deadline
for submissions each day. Furthermore, since each participant
submitted a new file each day, a naming convention and
standard format was needed to facilitate the storage and anal-
ysis of results. While the organizers announced the naming
convention and sent multiple reminders, some participants
continued to ignore the defined naming format throughout the
evaluation period. A possible remedy is an online submission
portal that automatically verifies formatting.

In this competition, the organisers made a trade-off
between the length of evaluation period and the burden
of running and participating in a ‘live’ competition for an
extended period of time. As a result, dissemination between
the performance of closely matched teams was challenging
or impossible. Future competitions in a similar positions
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should consider this aspect of competition design carefully
to ensure they are able to draw meaningful conclusions from
competition results and the fairness of final rankings. For
instance, any procedure to award joint rankings if scores are
statistically indistinguishable could be part of the competition
design. In addition to statistical tests, additional criteria could
be employed, such as judging teams based on the explainabil-
ity of their methods, as in [12].

The competition ran as an academic exercise in contrast
to commercial data science competitions where findings are
often kept private for commercial exploitation. Publication
of results and methods is therefore critical to maximize the
benefit to society from this activity. We hope the dataset set
and forecast will serve as a useful test case and benchmark
for academics and practitioners working on electricity load
forecasting, and time series forecasting in general.

V. CONCLUSION

“Day-Ahead Electricity Demand Forecasting Competition:
Post-Covid Paradigm”™ was well-received among the fore-
casting community, with approximately 250 unique registra-
tions and 40 teams entering the competition. The competition
on-line evaluation period received positive feedback from the
participants, providing a benchmark format for future energy
forecasting competitions. Multi-model ensembles were used
by two of the top three winners of the competition. We pub-
lished the competition data alongside the predictions sub-
mitted by top three teams on the competition official web
page [17].

One future direction is analyzing the practicality and gen-
erality of the submitted methods. First, submitted methods
used a considerable portion of post-COVID-19 data to train
their models; it is not clear if these models are robust to
load profile changes caused by other similar global or local
events. Second, large multi-model ensembles are costly to
productize and maintain as each member of the ensemble
places demands on staff and computational effort for marginal
forecast improvement, raising questions on whether system
operators will be able to justify the additional overhead of
using such models. However, they are adaptable to sud-
den and unexpected changes in conditions, as imposed by
COVID-19, so may be justified on the grounds of improving
resiliency to future disruptive events. Finally, it is not clear
if the winning methods would perform well in other jurisdic-
tions. A similar competition could be organized using data
from around the globe to test the robustness of the methods
to location, demand rating, etc.
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