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Abstract: The arrangement of habitat features via historical or contemporary events can strongly
influence genomic and demographic connectivity, and in turn affect levels of genetic diversity and
resilience of populations to environmental perturbation. The rusty blackbird (Euphagus carolinus) is
a forested wetland habitat specialist whose population size has declined sharply (78%) over recent
decades. The species breeds across the expansive North American boreal forest region, which contains
a mosaic of habitat conditions resulting from active natural disturbance regimes and glacial history.
We used landscape genomics to evaluate how past and present landscape features have shaped
patterns of genetic diversity and connectivity across the species’ breeding range. Based on reduced-
representation genomic and mitochondrial DNA, genetic structure followed four broad patterns
influenced by both historical and contemporary forces: (1) an east–west partition consistent with
vicariance during the last glacial maximum; (2) a potential secondary contact zone between eastern
and western lineages at James Bay, Ontario; (3) insular differentiation of birds on Newfoundland;
and (4) restricted regional gene flow among locales within western and eastern North America. The
presence of genomic structure and therefore restricted dispersal among populations may limit the
species’ capacity to respond to rapid environmental change.

Keywords: Euphagus carolinus; genetic diversity; boreal; glacial refugia; phylogeography

1. Introduction

The spatial organization of suitable habitat across the landscape via historical and
contemporary events plays an important role in the maintenance of both genetic and
demographic connectivity within plant or animal populations. Discontinuities in habitat,
whether from physical barriers or from natural or anthropogenic disturbances, fragment
populations into smaller units and can diminish levels of connectivity when (1) the distance
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between suitable habitat patches exceeds the dispersal capacity of individuals or (2) dis-
persing individuals do not successfully reproduce. In this way, spatial habitat heterogeneity
influences effective dispersal (dispersal followed by reproduction) by individuals, which
in turn impacts gene flow and population dynamics (i.e., potential outcome of disper-
sal, [1,2]). Isolation, whether by distance or environment, often results in lower levels of
intra-population genetic variation and higher levels of inter-population genetic differentia-
tion across a species’ range, which can have major short- and long-term implications on
population persistence. For example, isolated populations with reduced genetic diversity
may lose adaptive potential, accumulate deleterious mutations, or experience increased
inbreeding [3–7]—all of which can reduce individual fitness and increase vulnerability of
populations to decline and extirpation [8–10].

While habitat configuration can have a profound influence on population structure and
dynamics, species-specific responses to habitat heterogeneity vary widely due to differences
in life history characteristics [11]. In some species, reduced connectivity among habitats
may be offset by either high dispersal capabilities [12,13] or the presence of relatively
continuous habitat during critical parts of the annual cycle that promote genetic exchange
(e.g., mating). Even in highly vagile migratory species, however, habitat fragmentation
and availability can contribute to genetic differentiation [14,15]. Thus, the capacity to
move may be insufficient alone to offset the negative effects of habitat loss. Effective
dispersal (i.e., with reproduction) can have a stronger effect on population demographics
than the dispersal event alone [16–18]. Because of this, conservation strategies may need
to promote site conditions favorable for successful reproduction in addition to general
landscape connectivity, as gene flow is essential for population persistence in a changing
environment [16–18]. However, determining the effective outcome of dispersal events
is often difficult or nearly impossible with banding or telemetry data alone as neither
can directly infer successful reproduction. Genetic signatures can provide insights into
the success of natal dispersal and connectivity among breeding areas, which are relevant
to the conservation of populations. Population genomics can help identify areas where
connectivity across the landscape enriches genetic diversity and enhances the resiliency of
populations to environmental perturbation. It can also identify where contemporary or
historical limitations in dispersal have led to genomic structuring and distinct populations
that may require specific management strategies to remain viable. Thus, population
genomics provides a powerful approach to understanding implications of dispersal and
can fill information gaps in traditional movement data, especially in migratory birds that
nest in remote regions (see references within [15]) such as the vast boreal forest biome of
North America.

North America’s boreal forest biome contains ≥ 25% of the world’s wetlands and
intact forests [19,20], which provide important habitats to over 300 bird species during the
breeding season [21]. While migratory songbirds across North American have undergone
concerning population declines, boreal nesting species have exhibited some of the most
dramatic declines over the past half century [22,23]. Rusty blackbirds (Euphagus carolinus)
are an unfortunate example of this pattern; since 1966 the global population size is estimated
to have decreased by 78% [23,24], with the decline likely ongoing since the late 19th

century [25,26]. Loss of wooded wetlands on the wintering grounds in the southern United
States is suspected as a principal driver of these declines [27]. However, methylmercury
contamination on the breeding grounds [28–30], conversion of wetland habitats used
during migration [31], alteration of boreal wetland breeding habitats, and climate change
are also likely contributing factors [27,32,33].

Little is known regarding patterns of genomic connectivity and differentiation among
nesting areas of rusty blackbirds, owing to their expansive and remote distribution span-
ning the boreal forest biome from Alaska eastward to Newfoundland and northern New
England. However, banding, migration tracking, and stable-isotope analyses indicate a
general migratory divide. Rusty blackbirds nesting in Alaska and western Canada migrate
west of the Appalachian Mountains to winter in the Mississippi Alluvial Valley, while
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birds nesting in eastern Canada and the northeastern United States migrate east of the
Appalachian Mountains and winter on the Southeastern Coastal Plain [34–36]. There have
been no phylogenetic studies on the species to date, but birds breeding on Newfoundland
and Magdelen Islands, Quebec and wintering in South Carolina have been described as a
putative subspecies (E. c. nigrans) that is phenotypically distinct from the nominate form
breeding over the remainder of the range [37].

Here we present a landscape genomic approach to examine the influence of historical
(Last Glacial Maximum, LGM) and contemporary processes on patterns of diversity within
the rusty blackbird, using reduced representation genomic (double-digest restriction-site
associated DNA sequences, ddRAD; biparentally inherited) and mitochondrial DNA data
(mtDNA, maternally inherited). Much of the present-day geographic extent of the Nearctic
boreal biome was covered by ice sheets during the LGM ~20,000 years ago. Consequently,
the post-glacial colonization of the region by flora and fauna expanding their ranges from
south of ice sheets or from ice-free glacial refugia such as Alaska (Beringia) and the Atlantic
Shelf [38] has influenced how genetic diversity within species is arrayed across boreal
landscapes (e.g., [39–42]). Within glacial refugia, populations that diverged in isolation
during the LGM generally harbor greater levels of genetic diversity than populations
in areas recolonized after glacial retreat, except in areas where lineages from separate
refugia intermixed [43]. As the present-day distribution of rusty blackbirds spans the
entire North American boreal biome including previously glaciated and unglaciated areas,
we hypothesize that (1) rusty blackbirds likely contracted to at least two refugia during
the LGM as suggested for other avifauna (e.g., [44]). Further, we hypothesize that (2)
the putative subspecies of rusty blackbird (E. c. nigrans, [37]) residing on the island of
Newfoundland would be differentiated from eastern populations on the mainland through
insular isolation, LGM isolation in the Atlantic Shelf refugium, or isolation through other
physical barriers (e.g., [45,46]).

Just as the repeated glacial and interglacial cycles of the 2.5 million-year Pleistocene
epoch were a powerful force shaping patterns of genetic diversity in boreal forest birds [47],
contemporary genetic diversity and structure are also dependent on behavioral and bio-
logical aspects of individual species [48] that influence their capacity to move across the
landscape [49,50]. Indeed, interpopulation variation in dispersal traits is often related to
landscape structure (see [51]). The boreal biome is a mosaic of wetland complexes, upland
forests, and montane areas and therefore comprises a naturally fragmented landscape for
wetland habitat specialists, such as the rusty blackbird [52]. Although rusty blackbirds
are able to move long distances and traverse large gaps in suitable habitat during migra-
tion (e.g., Lake Erie, [31], western cordillera, [53]), the broad level migratory connectivity
observed [35] may equate to some degree of philopatry within each region (i.e., return to
natal area to reproduce). We therefore hypothesize that (3) rusty blackbirds will display
genetic structure within western and eastern North America.

2. Materials and Methods
2.1. Sampling and DNA Extraction

Blood was sampled from 205 rusty blackbirds captured from 5 May to 15 July 2009–
2018 in mist nets placed near their nests or in post-breeding foraging areas across their
breeding range (Figure 1, see Table 1 for sample sizes and locality names). Genomic DNA
was extracted using a DNeasy Blood and Tissue kit following the manufacturer’s protocols
(Qiagen, Valencia, CA, USA). Extractions were quantified using a Broad Range Quant-iT
dsDNA Assay Kit (Thermo Fisher Scientific, Inc., Waltham, MA USA).
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Figure 1. Nesting distribution of rusty blackbirds with sampling locations color-coded and numbered (see Table 1). We
note that location 13 (white circle) includes sample locations in Vermont and New Hampshire, USA, and location 12 (grey
circle) includes both Nova Scotia and New Brunswick, Canada. The scatter plots are of the first two principal components
plotted for haplotypic data, with the proportion of variance explained, from 6205 autosomal and 231 Z-linked loci (males
only, because principal components analysis (PCA) does not accommodate heterogamy).

2.2. ddRAD-seq Library Preparation

Sample preparation for ddRAD sequencing followed the double-digest protocol out-
lined in DaCosta and Sorenson [54]. Genomic DNA (~1 µg) was digested with high fidelity
versions of Sbf I and EcoRI restriction enzymes (New England Biolabs, Ipswich, MA, USA).
Amplification and sequencing adapters containing unique barcode or index sequences
were ligated to the sticky ends generated by the restriction enzymes. Libraries were size
selected using gel electrophoresis (size range 300–450 bp) and purified using a MinElute
Gel Extraction Kit (Qiagen) following the manufacturer’s protocol. Size-selected fragments
were amplified with Phusion high-fidelity DNA polymerase (Thermo Scientific, Pittsburgh,
PA, USA) for 20 cycles, and purified using AMPure XP beads (Beckman Coulter, Inc.,
Indianapolis, IN, USA). Libraries were pooled in equimolar amounts determined via quan-
titative PCR (KAPA Biosystems, Wilmington, MA, USA). Single-end (150 bp) sequencing
was completed on an Illumina HiSeq 4000 at the University of Oregon Core Genomics
Facility. Raw Illumina reads are accessioned on National Center for Biotechnology Infor-
mation (NCBI) Sequence Read Archive (BioProject PRJNA699594, Biosample accessions:
SAMN17803887-SAMN17804091, see [55] for additional sample information).
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Table 1. Indices of genetic diversity for rusty blackbirds sampled across their North American nesting distribution.
Descriptive statistics are listed by marker type (ddRAD autosomal and Z-linked loci, and mtDNA control region) and
include nucleotide diversity (π: autosomal [A], z-linked [Z]), effective population size (Ne) based on the molecular co-
ancestry method, number of haplotypes (H), haplotype diversity (h) along with sample size (n). Locations are listed west to
east. Single standard deviation and 95% confidence limits are in parentheses. Significant values are indicated by asterisks.
Refer to Figure 1 for location numbers.

Location
ddRAD mtDNA

π − A π − Z Ne n H π h Fs D n

1 Bethel, Alaska, USA 0.0065 0.0041 – 6 4 0.0046
(0.0033)

0.867
(0.129) 0.3 −0.4 6

2 Anchorage, Alaska, USA 0.0069 0.0048 46.7
(38.5–55.7) 24 13 0.0050

(0.0031)
0.899

(0.046) −5.1* −1.2 24

3 Cordova, Alaska, USA 0.0065 0.0045 – 6 2 0.0012
(0.0013)

0.333
(0.215) 1.6 −1.1 6

4 Tanana, Alaska, USA 0.0067 0.0048 – 9 4 0.0022
(0.0017)

0.694
(0.147) 0.0 −0.8 9

5 Tetlin NWR, Alaska, USA 0.0070 0.0049 48.7
(36.6–62.5) 30 14 0.0038

(0.0025)
0.893

(0.040) −6.3* −1.4 31

6 Yukon Flats, Alaska, USA 0.0070 0.0049 21.3
(18.4–24.5) 25 15 0.0048

(0.0030)
0.952

(0.029) −9.2* −0.8 22

7 Yukon Territory, Canada 0.0058 0.0043 – 4 3 0.0034
(0.0029)

0.833
(0.222) 0.0 1.1 4

8 Alberta, Canada 0.0069 0.0048 26.5
(23.5–29.7) 21 12 0.0039

(0.0025)
0.922

(0.035) −5.8* −1.1 22

9 Manitoba, Canada 0.0066 0.0048 – 7 7 0.0063
(0.0042)

1.000
(0.076) −3.6* −0.4 7

10 Ontario, Canada 0.0070 0.0048 41.3
(33.9–49.3) 23 15 0.0036

(0.0024)
0.949

(0.028) −11.6* −1.2 23

11 Newfoundland, Canada 0.0062 0.0037 19.1
(16.7–21.6) 10 4 0.0040

(0.0027)
0.691

(0.128) 0.9 −0.4 11

12 Nova Scotia/New Brunswick, Canada 0.0061 0.0040 – 5 7 0.0069
(0.0045)

1.000
(0.076) −3.8* 0.1 7

13 New Hampshire/Vermont, USA 0.0068 0.0046 22.4
(19.4–25.6) 28 13 0.0047

(0.0029)
0.878

(0.041) −5.2* −0.3 28

All populations 0.0061 0.0050 – 198 – – – – – 200

2.3. Bioinformatics

Illumina reads were demultiplexed at the core facility and processed using the com-
putational pipeline described by DaCosta and Sorenson ([54], custom Python scripts [56]).
Briefly, the pipeline filters and clusters reads into putative loci based on sequence similar-
ity (85%) using custom scripts and the UCLUST function in USEARCH v.5 [57]. Genomic
positions of loci were determined by BLAST analysis [58] to the Taeniopygia guttata (Zebra
Finch GenBank assembly reference GCA_003957565.1) reference genome. MUSCLE v.3 [59]
was used to align the reads within each cluster with genotyping of samples completed
through custom scripts (See [60]). Genotypes were scored homozygous if > 93% of sequence
reads were consistent with a single haplotype, whereas heterozygotes were scored if a
second haplotype was represented by at least 29% of the reads, or if a second haplotype
was represented by 20–29% of reads and the haplotype was present in other individu-
als. Loci were also “flagged” if the number of single-nucleotide polymorphisms (SNPs)
was > 10, and if > 3 SNPs showed strong linkage. Alignments were visually inspected
in Geneious (Biomatters Inc. San Francisco, CA), which allowed us to retain loci with
insertion/deletions or high levels of polymorphism. To limit any biases due to sequencing
error and/or allelic dropout, a minimum of 10 total reads was required to score a genotype
as heterozygous with alleles with less than 5X coverage were scored as missing. Loci with a
median depth of 10 per individual, < 10% missing genotypes, and < 10% flagged genotypes
across all individuals were retained for downstream analyses.

Finally, autosomal and Z chromosome-linked loci were identified as described in
Lavretsky et al. [60], with assignments based on differences in sequencing depth and
homozygosity between males and females. Chromosomal positions across loci were
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attained by using blastn results against the Taeniopygia guttata reference genome from
previous steps in the bioinformatic pipeline. These positions were used to verify marker
type based on sequencing depth. Because females have only one Z chromosome, Z-linked
markers in females are expected to appear homozygous and be recovered at about half the
sequencing depth of males.

2.4. mtDNA Sequencing

Rusty blackbird individuals were sequenced at the mtDNA control region domain
I and II. We amplified a 543-base pair (bp) fragment using primer pairs RUBL_CR114L
(5’–TCTTTGCCCCATCAGACAGC–3’) and BBCR_Rev1 [61]. Polymerase chain reaction
(PCR) amplifications, cycle-sequencing protocols, and post-sequencing processing followed
Sonsthagen et al. [62], with one exception: excess dNTPs and primer were removed using
ExoSAP-IT (ThermoFisher Scientific, Waltham, MA, USA). PCR products were sequenced
at Functional Biosciences, Inc. (Madison, WI, USA). For quality control purposes, we
extracted, amplified, and sequenced 10% of the samples in duplicate. No inconsistencies
in mtDNA sequences were observed between replicates. Sequence data are accessioned
on GenBank (accession numbers: MW574845-MW574901; see [55] for additional sample
information).

2.5. Population Divergence and Nucleotide Diversity

We calculated (1) nucleotide diversity (π) of each ddRAD locus (autosomal and
Z-linked) and overall (all loci combined) and (2) composite pairwise estimates of relative di-
vergence (φST) between sample locations using a custom Python script (out2phistA.py [63]).

Haplotype (h) and nucleotide (π) diversity were calculated for mtDNA in ARLEQUIN
2.0 [64]. Fu’s FS [65] and Tajima’s D [66] were calculated to test the hypothesis of selective
neutrality and evidence of population fluctuations as implemented in ARLEQUIN. We
applied critical significance values of 5%, which requires a p-value < 0.02 for Fu’s FS [65]. An
unrooted haplotype network for mtDNA loci was constructed in NETWORK 5.0.1.1 (Fluxus
Technology, Suffolk, England 2019) using the reduced median method [67] to illustrate
possible reticulations in the gene tree because of homoplasy or recombination. The degree
of genetic divergence within rusty blackbirds was assessed by calculating overall and
pairwise FST [frequency-based) and ΦST using a nucleotide substitution model [68] in
ARLEQUIN.

2.6. Population Structure—ddRAD

Population structure was analyzed using four complementary methods with dif-
ferent underlying assumption requirements: (1) principal components analysis (PCA,
nonparametric method) to identify major trends in the distribution of genetic variation;
(2) maximum likelihood clustering analysis to estimate the number of underlying pop-
ulations using individual SNPs in the program ADMIXTURE (parametric method); (3)
fineRADstructure utilizing haplotypes (concatenation of all variable sites at each locus) to
assess contemporary genetic relationships based on shared co-ancestry; and (4) estimate
effective migration surfaces (EEMS, [69]) to identify regions that deviate from a null model
of isolation-by-distance (IBD).

First, a PCA was implemented on Autosomal and Z-linked loci separately using
haplotypic/allelic data and the dudi.pca function in the adegenet R package [70,71]. As
PCAs require individuals to be either diploid or haploid, we only included males (in birds,
the sex with two copies of Z chromosome) in the analysis of the Z chromosome loci. We
plotted individuals relative to the first two principal components to determine the degree
that genetically similar individuals cluster into distinct geographic groups.

Second, maximum likelihood estimates of population assignments across individuals
were obtained with ADMIXTURE v.1.3 [72,73]. We used all autosomal bi-allelic SNPs with
singletons (i.e., rare SNPs observed in only one individual) excluded and without a priori
assignment of individuals to populations. First, SNPs were formatted for analyses using
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plink [74], following steps outlined in Alexander et al. [75]. ADMIXTURE analysis was
run with a 10-fold cross-validation, and a quasi-Newton algorithm employed to accelerate
convergence [76]. Each analysis used a block relaxation algorithm for point estimation
and terminated once the change (i.e., delta) in the log-likelihood of the point estimations
increased by < 0.0001. To limit any possible stochastic effects from single analyses, we ran
100 iterations at each population of K (from K of 1–18). The optimum K was based on the
average of CV-errors across the 100 analyses per K; however, additional K’s were analyzed
for further population structure resolution. We then used the program CLUMPP v.1.1 [77]
to determine the robustness of the assignments of individuals to populations at each K.
First, ADMIXTURE outputs were converted into CLUMPP input files at each K using the R
program PopHelper [78]. In CLUMPP, we employed the Large Greedy algorithm and 1000
random permutations to estimate final admixture proportions for each K with per sample
assignment probabilities (Q estimates, the log likelihood of group assignment) based on all
100 replicates per K.

Third, we used the fineRADstructure program [79] to cluster individuals into popula-
tions with indistinguishable genetic ancestry using a haplotype-based approach. FineR-
ADstructure focuses on the most recent coalescent events (common ancestry) providing
information on recent sample relatedness which can be informative regarding levels of
contemporary gene flow. Samples were assigned to populations using 5,000,000 iterations
sampled every 1000 steps with a burn-in of 500,000. We used 1,000,000 iterations of the
tree-building algorithm to assess genetic relationships among clusters. Finally, the output
was visualized using the R scripts, fineradstructureplot.r and finestructurelibrary.r [80].

We implemented the spatial method EEMS [69] to estimate effective gene flow (m)
and genetic diversity (q) in order to identify areas across the breeding range that deviate
from the null expectations of IBD. This method is based on a stepping-stone model where
individuals are allowed to move between neighboring demes and gene flow rates can vary
by locality. Expected genetic dissimilarity under the model depends on sample location and
gene flow rates. Regions where genetic dissimilarity decays more quickly than expected
are identified as barriers to gene flow or, conversely, corridors where genetic dissimilarity
decayed more slowly than expected. A migration surface that correlates genetic variation
with geography is interpolated to visualize potential barriers or corridors to movement. In
addition, the model estimates an effective diversity parameter (q), which is the expected
within-deme coalescent time and is proportional to average heterozygosity.

We used the same set of SNPs as in Admixture and calculated a dissimilarity matrix
using bed2diffs R code included with the EEMS package [81]. An outer coordinate file
was constructed using Google Maps API v3 [82] that included the species’ entire breeding
distribution [52]. Based on preliminary runs, we adjusted parameters, so the accepted
proportion of proposals of variance was at least between 10% and 40%. We ran three inde-
pendent analyses using 10,000,000 burn-in steps followed by 50,000,000 MCMC iterations
sampled every 2000 steps for each deme size (100,250). We checked for convergence and
visualized effective migration and diversity surfaces using the R package rEEMSplots [69].

2.7. Effective Population Size—ddRAD

Contemporary effective population size (Ne) was estimated from 6184 loci with
NeEstimator v.2.1 [83] based on two methods: the linkage disequilibrium (LD) method [84]
which tests for the nonrandom associations among alleles at different loci formed by genetic
drift in small populations [85] and the molecular co-ancestry method [86] which evaluates
the level of allele sharing among individuals. Further, we excluded rare alleles below a
range of allele frequency values (Pcrit) from the linkage disequilibrium model to evaluate
the effects of low-frequency alleles on Ne estimates. Variance in Ne estimates across a
range of Pcrit values suggests a history of gene flow and/or the presence of first-generation
dispersers, whereas stable Ne estimates are indicative of isolated populations [87]. We
estimated Ne using a haplotype-based approach and Pcrit values between 0.01 and 0.09 and
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without a frequency restriction. Confidence limits (95%) were determined by jackknifing
over loci. Ne was not estimated for sites with a sample size < 10.

2.8. Hindcasted Paleo-Distributions of Breeding Rusty Blackbirds

Finally, we evaluated the paleo-hindcasted maps of the potential LGM breeding range
of rusty blackbirds by Stralberg et al. [53]. This was to assess whether population isolation
during the LGM may have contributed to genomic structuring detected in our analyses of
mtDNA and ddRAD. Models of rusty blackbird breeding density were developed by fitting
boosted regression trees [88] to bioclimatic indices derived from current climate normals
(1961–1990) as predictors of species abundance data derived from surveys conducted across
the species’ boreal range [89]. Climate variables were chosen from a set of bioclimatic
indices [90] based on several criteria, including relevance to vegetation distributions,
avoidance of extreme collinearity, and a preference for seasonal over annual variables
when they showed high correlations. The final set of variables included extreme minimum
temperature, chilling degree days below 0 ◦C, growing degree days above 5 ◦C, seasonal
temperature difference, mean summer precipitation, climate moisture index [91], and
summer climate moisture index.

Models were then fed inputs from downscaled paleo-climate projections for 21,000
years before present, according to two global climate models, Community Climate Model
(CCM1) and Geophysical Fluid Dynamics Laboratory model (GFDL, [92]), to develop
hindcast projections of the species’ potential LGM breeding distribution [53]. We used
projections from Stralberg et al. [53] to develop modified maps of potential LGM density
that included areas thought to be covered by the Cordilleran and Laurentide ice sheets.
This was to show where suitable habitats may have existed in unglaciated micro-refugia
within the major ice sheets or along coastlines adjacent to known refugia now submerged
under the sea (e.g., Bering Land Bridge, Grand and Georges Banks; [38]).

3. Results
3.1. Bioinformatics—ddRAD

We obtained over 294,699,715 million raw sequencing reads (median = 1,432,707
reads per individual, range 901,000–1,943,040) with a maximum 150 bp length. Initial
exploration of genotyping results revealed that most loci were unambiguously genotyped
across samples. We removed seven samples that were deemed to be of close familial
relationship (e.g., siblings) based on preliminary PCAs and fineRADstructure results, and
field notes (location, date, and age of individuals sampled). For the remaining 198 samples,
a total of 6443 clusters (i.e., putative single-copy loci) met the depth/genotype threshold.
Of these loci, 6436 passed automated checks for alignment quality or passed thresholds
after manual edits that yielded 42,446 SNPs or insertion/deletion (polymorphic sites) from
6381 polymorphic loci. Of those, 6205 loci and 231 loci were assigned to autosomal and the
Z chromosome, respectively. Final datasets comprised loci with a median sequencing depth
of 118 reads per locus per individual (median range = 73−175 reads/locus/individual),
and on average 98.5% (minimum of 80.0%) of alleles per individual per locus were scored.

3.2. Population Divergence and Molecular Diversity

Autosomal nucleotide diversity across the 6205 ddRAD loci was similar for all lo-
cations (0.0058–0.0070) with overall value of 0.0061 (Table 1). The highest percentage of
loci with no variation (i.e., nucleotide diversity equals zero) was found within Yukon
Territory, Canada (21.9%) and Vermont, USA (19.5%). Similar pattern was observed with
Z-linked loci with overall nucleotide diversity of 0.0050 (range 0.0037–0.0049, Table 1).
Among the 231 Z loci, Yukon Territory (39.4%) and Vermont (38.5%) had the highest per-
centage of non-variable loci. It should be noted that these populations also had the smallest
sample size.

Overall, we uncovered relatively moderate levels of genetic differentiation across
sample locations with Z-linked loci showing a 1.5× higher level of differentiation than
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autosomal (Figure 2; φSTAutosomal = 0.019; φSTZ-linked= 0.029). Autosomal and Z-linked
loci ΦST values ranged from 0.002 to 0.082 and −0.016 to 0.144, respectively, with highest
degrees of pairwise differentiation found between Newfoundland and other locations and
between eastern and western locales (Figure 2). This pattern is reflective in the number
of loci showing elevated pairwise divergence (φST > 0.1) which ranged from 0.2–30.3% of
loci (12–1880 loci) across all comparisons (overall 0.8%, n = 52) for autosomal loci and from
0.9–33.3% for Z-linked loci (overall 5.2%, n = 12).

Figure 2. Pairwise ΦST (above diagonal) and FST (below diagonal) for mtDNA control region (A) and pairwise ΦST estimate
for 6205 autosomal loci (above diagonal) and 231 Z loci (below diagonal (B). Darker colors indicate higher values. The
northeastern region where higher levels of genetic differentiation were found is outlined.

We uncovered 56 unique mtDNA haplotypes characterized by 36 variable sites. Nu-
cleotide and haplotype diversity were generally similar across sampled locations, except
Cordova, Alaska which exhibited lower levels of diversity (n = 4, π = 0.0012, h = 0.333),
and Nova Scotia/New Brunswick, Canada (n = 7, π = 0.0069, h = 1.000) and Manitoba
(n = 7, π = 0.0063, h = 1.000) which exhibited higher diversity (Table 1). Tajima D was not
significant, which is consistent with a hypothesis of selective neutrality of mtDNA. Fu’s
Fs was significantly negative for eight populations, suggestive of historical population
growth.

Two main haplotype groups were observed in the mtDNA network, although sepa-
rated by one or three variable sites depending on evolutionary pathway (e.g., presence
of reticulations, Figure 3). The first group consisted of mainly Alaska locales with only 2
samples from eastern region and 17 haplotypes though only one haplotype was predomi-
nately represented. Conversely, the second group consisted of samples from both regions
but was predominately comprised of central and eastern locations and 39 haplotypes
with no one dominate haplotype. Genomic structure was uncovered with higher levels
of differentiation estimated between Newfoundland and other sample locales, as well as
between northeastern and Alaska locales. Similar results were observed with ddRAD loci;
pairwise ΦST values ranged from −0.046 to 0.677 (overall ΦST = 0.147), and pairwise FST
values ranged −0.014 to 0.438 (overall FST = 0.073, Figure 2).
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Figure 3. Unrooted mitochondrial DNA haplotype median-joining network for rusty blackbirds. Size of circle is proportional
to the frequency of each haplotype observed.

3.3. Population Structure—ddRAD

For PCA, plotting samples relative to the first two principal component axes based on
autosomal loci recovered four main clusters that included (1) Newfoundland, (2) Nova Sco-
tia and northeast United States, (3) Ontario, and (4) central Canada and Alaska (Figure 1).
These four clusters were also retained but overlapped more when using only Z-linked
loci. When PCA included samples only from Cluster 4 (central Canada through Alaska),
Anchorage and Canada (Manitoba and Alberta) samples appear slightly differentiated from
all other Alaska samples, although there is overlap in PC components (results not shown).

All possible K values were explored across ADMIXTURE analyses (Figure 4A). When
K = 2, samples from northeastern locales (Clusters 1 and 2 in PCA) and Alaska and central
Canada (PCA Cluster 4) were assigned with high probability to unique clusters. Ontario
(PCA Cluster 3) was intermediate between (~70–80% assignment to Alaska cluster) the two
main groups. When K = 3 or 4 are considered, the same overall pattern remained except
central Canada (Manitoba and Alberta) and Ontario make up a third cluster with variable
assignment probability (40–98%, see Supplementary Figure S1).

FineRADstructure revealed more sub-structuring than ADMIXTURE analyses, with in-
dividuals clustering mainly by geographic proximity (Figure 4B, Supplementary Figure S2).
Locales in northeast North America had the highest shared co-ancestry values with samples
being assigned to (1) Newfoundland, (2) Nova Scotia, and (3) northeast United States. On-
tario samples were assigned to their own population but in agreement with ADMIXTURE,
it shared higher co-ancestry with all other groups/populations indicating connectivity to
western (overall higher with central Canada than Alaska) and northeastern locales. Samples
from the central and western breeding range were primarily assigned to three main groups:
(1) Alaska (excluding most Anchorage samples), (2) Anchorage, and (3) central Canada
(Alberta and Manitoba). Unlike northeastern North America and Ontario where groups
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were mutually exclusive, there was some admixture indicated by individuals being placed
in a non-origin group within these central Canada and western populations, for example,
Cordova, Alaska and Yukon Territory individuals being grouped with central Canada.

Figure 4. Population assignment analysis using the program (A) Admixture and (B) fineRADstructure. Average assignment
probabilities for K = 2 inferred from bi-allelic single nucleotide polymorphisms in ADMIXTURE. FineRADStructure co-
ancestry matrix indicating pairwise genetic similarity between individuals. Inferred populations are indicated by clustering
in accompanying dendrogram and locations are indicated by color blocks for general region (solid blocks on right, color was
chosen based on locale making up highest proportion of cluster) and by individual (single bars at left). Colors correspond
to sampling locations indicated in Figure 1. Co-ancestry values were capped at 60 for illustrative purposes as only a few
comparisons were above that value (see Supplementary Figure S2).

EEMS analysis highlighted regions of lower gene flow than expected under IBD.
Migration surfaces were similar across deme sizes with one exception. Regions with
reduced gene flow were (1) south-central Alaska, (2) Yukon Territory (only present with
deme size 250), (3) Alberta, (4) eastern and western Ontario, and (5) Maritime provinces of
Canada (Newfoundland, New Brunswick, and Nova Scotia; Figure 5). All these regions
had high posterior probabilities (> 0.90) except for the western boundary of Ontario. These
boundaries roughly correspond to the population clustering observed in fineRADstructure.
High gene flow was characteristic across the remaining distribution.

3.4. Effective Population Size—ddRAD

Although Ne estimates were 10-fold lower for Anchorage, Alaska, and Alberta based
on the linkage disequilibrium method, 95% confidence limits overlapped for all of the
sampled sites as the upper bounds were infinity (Figure 6). Variation in Ne estimates
across Pcrit values was observed for Alaska sites (Tetlin and Yukon Flats), Ontario, and
New Hampshire, indicative of past gene flow or the presence of first-generation dispersers
affecting Ne estimates. Point estimates for Ne for Newfoundland were infinity, indicating
there is no evidence that the population is not very large. However, lower bounds of
95% confidence levels using jackknife method ranged from 83.5 (Pcrit = 0.09) to 372.9
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(Pcrit = 0.01) providing a plausible limit for Ne [93]. Conversely, Ne estimates based on the
molecular co-ancestry method were lower for two Alaska sites (Anchorage and Tetlin) and
Ontario (Table 1).

Figure 5. The estimated effective migration surfaces between all sampling locales (black circles) for deme size 250. White
areas indicate gene flow rates consistent with isolation by distance expectations whereas shaded areas have dispersal rates
that are higher (blue, corridors) or lower (orange, barriers) than expected under isolation-by-distance (IBD). We note that
orange area around the Yukon Territory sampling location showed opposite pattern when deme size was lower than 250
(higher than average gene flow rate). For all other areas deme size did not change results.

Figure 6. Effective population size (Ne) estimates as a function of excluding rare alleles (Pcrit) in rusty blackbirds sampled
across their North American distribution. Point estimates of Ne are log transformed with values >5 signifying infinitely
large estimates. Colors correspond to Figure 1.
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3.5. Hindcasted Paleo-Distributions of Breeding Rusty Blackbirds

Suitable climate conditions for breeding rusty blackbirds hindcasted to the LGM by
Stralberg et al. [53] were located primarily in what is now the central and eastern United
States, with some potential suitable habitat in northwestern regions of the United States
and Canada (Figure 7). Projected LGM densities were lower, and distributions were more
limited and fragmented compared to the species’ current distribution and abundance
patterns. Despite substantial variation between them, both CCM1 and GFDL models
hindcasted suitable climates for paleo-populations of rusty blackbirds in or adjacent to
glacial refugia in (1) Alaska and Yukon Territory (Beringia), (2) insular British Columbia
(Vancouver Island and Haida Gwaii), (3) Newfoundland (Grand Banks), and (4) New
England and the Canadian Maritimes (Georges Banks), as well as south of the ice sheets
in (5) British Columbia and Washington and (6) the Great Plains, Upper Midwest, and
Northeast United States (Figure 7).

Figure 7. Predictions of current breeding density (left) versus hindcasted paleo-breeding densities of rusty blackbirds (based
on [53]. Paleo-breeding densities were hindcasted by fitting models of current rusty blackbird density with bioclimatic
indices downscaled by Roberts and Hamann [92] for the last glacial maximum (21,000 YBP) using two global climate models:
Community Climate Model (CCM1, middle) and Geophysical Fluid Dynamics Laboratory (GFDL, right). Model-predicted
density values range from 0 to 1.4 pairs/ha. Overlaid on hindcast projections are level 1 ecoregion boundaries in black [94]
and the extent of Last Glacial Maximum (LGM) ice sheets in transparent gray [95,96].

4. Discussion

The geographic patterns in genomic structure we detected across the rusty blackbird’s
breeding range conformed to our hypotheses. (1) An east–west partition in genomic struc-
ture was observed between rusty blackbirds nesting in the western and central boreal
regions versus the eastern boreal region. This was consistent with the east–west migratory
divide detected for the species using stable isotopes [35] and suggests long-term separation
of populations. (2) As expected, based on insular isolation and plumage differences [37],
birds in Newfoundland were differentiated from birds from other sampled sites. (3) Popu-
lations within both eastern and western regions exhibited subtle genomic structuring and
restricted gene flow, indicating dispersal is limited by discontinuities in habitat, physical
barriers, philopatry, or migratory behavior. Further, Ontario appears to be an area of
secondary contact between birds originating from eastern and western lineages identified
in ADMIXTURE and fineRADstructure analyses. Together, these results indicate that
historical and contemporary processes are shaping the distribution of genomic variation
among populations of rusty blackbirds across their boreal distribution.

4.1. Pleistocene Influences on Patterns of Genomic Diversity

While the species’ current nesting distribution is largely contiguous across the boreal
forest biome, the distribution hindcasted to 21,000 years before present was displaced
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south (other than portions of Beringian Alaska) and was fairly discontinuous and limited
(Figure 7, [53]). During the LGM, the glacial ice sheets covered most of northern North
America, except Alaska and areas along Pacific and Atlantic coasts [97], and may have
sundered the rusty blackbird’s nesting range, isolating populations in separate western
and eastern refugia, and promoting the partition in genomic variation we detected in
multiple analyses of mtDNA and ddRAD (autosomal and Z-linked) loci. In the same way,
glacial vicariance is hypothesized to have led to Pleistocene speciation in several sister
pairs of temperate conifer boreal bird species [47,98,99]. In addition, several passerines
with trans-boreal distributions share this east–west divide in genomic diversity with sec-
ondary contact between divergent lineages occurring in the central boreal: mixing occurs
from Alberta to Manitoba within the yellow warbler (Setophaga petechia, [100,101]), from
Alberta to Ontario within Wilson’s warbler (Cardellina pusilla, [15,102]), from Saskatchewan
to Manitoba within the Canada jay (Perisoreus canadensis, [41,44]), from Alberta to On-
tario within the golden-crowned kinglet (Regulus satrapa, [103]), and from Manitoba to
Ontario within the rusty blackbird (this study). However, the east–west divide within the
blackpoll warbler (Setophaga striata) was attributed to isolation by distance and not glacial
vicariance [46]. These concordant breaks in genomic diversity across multiple trans-boreal
species emphasize the strong influence that the Pleistocene ice sheets played in shaping
how genomic variation is arrayed across northern North America in boreal avifauna.

Models of the paleo-breeding distribution indicated that the nesting habitat for rusty
blackbirds could have been present in four potential glacial refugia: (1) Alaska (Beringia),
(2) Atlantic Shelf, and south of the ice sheets in (3) western (Cordilleran) United States, and
(4) eastern (Laurentide) United States, with the eastern region likely a core area based on the
relatively high densities inferred during the LGM [53]. These four regions coincide with the
locations of glacial refugia proposed for the boreal chickadee [42], the Canada jay [41,44],
and the black spruce (Picea mariana, [104])—the tree species most often selected for nesting
by rusty blackbirds [105]. Rusty blackbirds and other spruce-associated species may have
therefore followed the post-glacial colonization routes inferred for black spruce from
pollen, fossils, genetics, and ecological modeling [41,106,107]. The spatial apportionment of
genomic diversity does suggest that rusty blackbirds occupied at least two refugia during
the LGM, although it is not clear from model hindcasts which regions were the refugia
nor from the genetic data which sample locations represent refugial populations. Recent
colonization of deglaciated areas, whether via long-distance dispersal or leading-edge
expansion from glacial refugia, leaves predictable signatures, notably reduced genomic
diversity associated with founder events followed by founders preventing subsequent
waves of colonizers [108]. Levels of genomic diversity, however, were similar across the
rusty blackbird distribution (Table 1). Dispersal likely continued from refugial populations
into founding populations in deglaciated areas either via short movements or continued
long-distance dispersal. Connectivity between refugial and founding populations would
have maintained genomic diversity because effective population sizes would not have been
markedly reduced [39,109], thereby erasing the genetic legacy of founder events associated
with post-glacial colonization. Further, the eastern clade had high haplotype diversity with
no single dominate haplotype suggesting that Newfoundland, Canada Maritime provinces,
and New England states were colonized by rusty blackbirds originating from the “core”
eastern refugium and possibly the Atlantic Shelf refugium as the effective population
size would need to be large to retain and maintain genetic diversity through the LGM.
Conversely, the mtDNA network for the western clade had a star-like pattern with a
single dominant haplotype predominately represented by Alaska birds. This suggests that
the western breeding range from Alaska to Manitoba was colonized by a small refugial
population of rusty blackbirds expanding their range from a western or Alaska (Beringia)
refugium that supported lower nesting density, and therefore presumably lower effective
population size during the LGM.
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4.2. Isolation in Newfoundland

Rusty blackbirds occupying Newfoundland were genetically divergent from all sam-
pled locations across marker types. The presence of genetic structure is concordant with
the putative subspecies, Euphagus carolinus nigrans, described by Burleigh and Peters [37]
to nest on Newfoundland and Magdelen Islands, winter in South Carolina, and have a
distinctive plumage that is darker, glossier, and bluer than the nominate form. Burleigh and
Peters [37] described an additional 12 endemic subspecies of passerines breeding on New-
foundland that also had darker plumages than their mainland counterparts. Similar to rusty
blackbird, several of these species and others have since been found to have genetically
distinct populations on Newfoundland: the American redstart (Setophaga ruticilla, [45]),
the blackpoll warbler [46], the boreal chickadee [42], the purple finch (Haemorhous pur-
pureus, [110], the Canada jay [44], the gray-cheeked thrush [111], and the black-capped
chickadee (Poecile atricapillus, [112]). Cabot Strait (≥104-km wide) and the Strait of Belle Isle
(≥15-km wide) separating Newfoundland from mainland Canada therefore seemingly act
as strong physical barriers to dispersal by the rusty blackbird and several other passerines.

While Newfoundland rusty blackbirds were genetically differentiated, they were
peripheral on the mtDNA network and shared several mtDNA haplotypes with birds
breeding elsewhere in eastern North America. This coupled with the limited structure
we observed in ADMIXTURE and other analyses of ddRAD loci indicate that divergence
between Newfoundland and other eastern locales likely arose post-Pleistocene and has
been maintained through restricted dispersal. The observation of shallow divergence
is consistent with several other passerines that nest on Newfoundland [44,46,110]. In
contrast, other species show much deeper genetic divisions between birds in nesting areas
along the northern Atlantic coast versus nearby locales [40,42,112]. In these species, it
is more plausible that Newfoundland populations were isolated during the Pleistocene
on the Atlantic Shelf refugium offshore of Newfoundland along the Grand Banks [38,97].
Although hindcasting models indicate that suitable habitat was available in Newfoundland
during the LGM, the Laurentide ice sheet covered most of the region. Therefore, if rusty
blackbirds currently occupying Newfoundland were present in the Atlantic Shelf refugium
(Grand Banks, [38,97]), individuals were likely restricted into small isolated area(s) with
low numbers. As genetic drift is a strong force shaping genomic diversity in small isolated
populations, the lack of deep partitions in genomic variation suggests rusty blackbirds
colonized Newfoundland post-Pleistocene and that genomic and morphological variation
likely evolved recently as shown for the widely distributed and phenotypically diverse
Junco species complex [113].

4.3. Contemporary Influences on Patterns of Genomic Variation

We also found several lines of evidence that contemporary processes are limiting
dispersal of rusty blackbird populations. First, the maintenance of two distinct genetic
groups in western versus eastern North America is indicative of continued restrictions
to dispersal between regional nesting areas. This genetic divide mirrored the general
migratory divide between western and eastern flyways identified with stable isotopes [35].
Thus, differences in migratory pathways or timing of migration may reinforce reproductive
isolation or spatial segregation of regional rusty blackbird populations in the same way as
suggested for other passerines with northern distributions [114–117]. We also identified a
potential area of secondary contact between eastern and western lineages of rusty black-
birds from a single sample location at the northern border between Ontario and Quebec
which had similar levels of recently shared ancestry with both western and eastern regions.
Genetic samples coupled with tracking studies from additional eastern locales would help
determine the geographic extent of the mixing zone and the degree that migratory behavior
may be restricting genomic connectivity [115].

Second, we found evidence of restricted dispersal within eastern and western North
America in the form of subtle structure in ddRAD loci among most sampled locales (e.g.,
Nova Scotia versus other northeastern locales and Alberta/Manitoba versus Alaska) that
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deviated from expectations based on IBD on a regional scale (Figure 5). Furthermore,
three areas (Anchorage, Alberta, and Newfoundland) had similar estimates of effective
population size (Ne) across a range of rare alleles, suggesting genomic diversity in these
populations is not influenced by ongoing gene flow from adjacent populations. While
mountain ranges and ocean bodies are obvious barriers isolating rusty blackbirds in
Anchorage and Newfoundland, respectively, there are no clear physical barriers restricting
dispersal between Alberta and Manitoba within central Canada. Despite the lack of physical
barriers, Alberta individuals were assigned to a non-origin grouping (24%, 5/21) less often
than Anchorage individuals (38%, 9/24) in the fineRADstructure analysis, suggesting that
other factors are impeding dispersal. Indeed, rusty blackbird nest in boreal forest wetlands
that are often distributed in discrete patches separated by unsuitable upland habitat or
fragmented by frequent natural disturbance [104,118]. Although rusty blackbirds as well
as other passerines migrate over long distances, many species return to near their natal
sites to nest where local landscape features influence movements to locate new nesting
areas [119]. Other forest dependent birds have shown a reluctance to disperse across large
gaps of non-forested habitat to locate new nesting grounds [14,51,120,121]. This type of
behavior, if exhibited by rusty blackbirds, may limit dispersal and contribute to genomic
structuring among some rusty blackbird nesting areas.

5. Conclusions

Across the breeding range, rusty blackbirds exhibited genomic structuring evident of
restricted gene flow, which may limit the species’ adaptive capacity to respond to rapid envi-
ronmental change. The North American boreal biome is a mosaic of wetland complexes and
forests that are projected to be transformed as the Earth’s climate continues to warm and
increase the frequency and magnitude of boreal disturbances such as drought, permafrost
thaw, fire, and insect outbreaks [122]. Under various simulations of climate-mediated
ecological change over the 21st century, the boreal biome is projected to contract by up to
42% [123], and boreal birds are projected to both dramatically shift their ranges northwards
and upwards in elevation and suffer disproportionately high losses in population size and
range extent among North America avifauna [22,89,122,124,125]. The rusty blackbird is
particularly vulnerable to projected reductions in suitable breeding habitat, which could
result in the loss of more than half of the species’ breeding range [125] and population num-
bers [89]. These future declines will exacerbate the species’ already steep global population
decline and southern range retraction since the mid-20th century [25,26]—the latter already
linked to regional trends in warming [33]. Additional research on genotype-environment
associations using functionally relevant loci (e.g., transcriptome or gene expression anal-
ysis) can build off of the foundation of this study to identify breeding areas that may be
more vulnerable to stochastic events as well as areas that pose high conservation value for
the species as the climate continues to change (e.g., [101,126]).

The rusty blackbird has an immense migratory range (breeding across the continental
boreal biome, wintering over the eastern half of United States) and the many stressors
suspected to be contributing to its decline are hypothesized to vary widely across breeding
areas and over the annual cycle [26,27,127]. Efforts to understand the causes of decline and
efficiently link conservation across this species’ annual cycle will therefore benefit from
a more comprehensive knowledge of migratory connectivity than the general east–west
migratory divide identified through stable isotope and tracking studies [34–36]. Our study
is a foundational step in gaining this knowledge as it provides a basis for researchers to infer
the natal origins of birds sampled at key migration stopover sites and important wintering
areas (e.g., [15]). Understanding migratory connectivity across the rusty blackbird’s non-
breeding range would, for example, allow researchers to weigh the relative contributions
of summer versus winter environmental change on vital rates and population trends
(e.g., [128,129]) and enable wildlife managers to strategically target habitat restorations
throughout the annual cycle for genetically distinct populations [130]. As the boreal
avifauna is among the most rapidly declining groups of birds in North America [23], the
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integration of information on connectivity with the science and management of recovering
rusty blackbird populations could serve as a model for how to restore other poorly studied
declining boreal species [27].

Supplementary Materials: The following are available online at https://www.mdpi.com/1424-281
8/13/3/103/s1, Figure S1: Admixture results for population clustering, Figure S2: FineRADStructure
co-ancestry matrix.
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