
Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution
of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Published under licence by IOP Publishing Ltd

ACAT 2019

Journal of Physics: Conference Series 1525 (2020) 012066

IOP Publishing

doi:10.1088/1742-6596/1525/1/012066

1

Using Continous Deployment techniques to manage

software change at a WLCG Tier-2

G Roy1, E Simili1, G Stewart1, S C Skipsey1 and D Britton1

1 School of Physics and Astronomy, University of Glasgow, Kelvin Building, University
Avenue, G12 8QQ, United Kingdom

E-mail: gareth.roy@glasgow.ac.uk

Abstract. Continuous Integration (CI) and Continuous Development (CD) are common
techniques in software development. Continuous Integration is the practice of bringing together
code from multiple developers into a single repository, while Continuous Development is the
process by which new releases are automatically created and tested. CI/CD pipelines are
available in popular automation tools such as GitLab, and act to enhance and accelerate the
software development process. Continuous Deployment, in which automation is employed to
push new software releases into the production environment, follows naturally from CI/CD, but
is not as well established due to business and legal requirements. Such requirements do not
exist in the Worldwide LHC Compute Gird (WLCG), making the use of continuous deployment
to simplify the management of grid resources an attractive proposition. We have developed
work presented previously on containerised worker node environments by introducing continuous
deployment techniques and tooling, and show how these, in conjunction with CI/CD, can reduce
the management burden at a WLCG Tier-2 resource. In particular, benefits include reduced
downtime as a result of code changes and middleware updates.

1. Introduction
As budgets within the Worldwide LHC Compute Grid (WLCG) become more constrained due
to a flat-cash funding environment sites are being forced to operate with reduced or limited
manpower. At the same time these sites are required to support large and complex stacks of
Grid Middleware essential for the daily operation of the WLCG experimental users. There is
ongoing efforts within the WLCG to reduce the amount of software needed to configure and
maintain a Grid site, with software such as CVMFS [9] used to simplify software distribution
or Singularity [11] being used to normalise the production environment. Additionally more
effort is being made to reuse industry standard tooling such as CEPH [5] for distributed storage,
OpenStack [8] for resource provision, or through the use of commercial cloud resources to supply
compute. There has also been work in novel methods for providing ephemeral resources such
as VAC which is a VM lifecycle manager that implements the vacuum model on a group of
autonomous worker nodes [10].

However, with nearly all these approaches System Administrators are still required to
deploy, upgrade and patch the computing infrastructure regularly to ensure a safe and trusted
environment. While configuration management tools such as Puppet [6] or Ansible [7] can
simplify the process and ensure repeatability software updates can often lead to downtimes.
To make sure systems are truly robust and minimise downtimes that may arise from failed



ACAT 2019

Journal of Physics: Conference Series 1525 (2020) 012066

IOP Publishing

doi:10.1088/1742-6596/1525/1/012066

2

software updates the setup and maintenance of staging or test systems is required, increasing
the overall workload and cost of running these systems. Additionally as automated attacks on
computational resources increase, System Administrators frequently have to upgrade and patch
systems quickly sacrificing availability for safety.

An alternative to this approach is to leverage the now industry standard use of containers and
couple this with the use of modern Continuous Integration (CI) and Continuous Development
(CD) techniques commonly found in the software development lifecycle. Continuous Integration
is the practice of bringing together code from multiple developers into a single repository, while
Continuous Development is the process by which new releases are automatically created and
tested. Continuous Deployment, in which automation is employed to push new software releases
into the production environment, follows naturally from CI/CD, but is not as well established in
industry due to business requirements where features are released on a fixed, controlled schedule
to customers, or legal requirements where software releases may need to be verified or audited
(potentially by a third party) for security compliance before release. Such requirements do not
exist in the WLCG, making the use of continuous deployment to simplify the management of
grid resources an attractive proposition.

We have developed work presented previously [1] on containerised worker node environments
by introducing continuous deployment techniques and tooling, and show how these, in
conjunction with CI/CD, can reduce the management burden at a WLCG Tier-2 resource.

2. Continuous Deployment Workflow

Figure 1: Schematic of a continuous deployment work flow based on containers.

The containerised worker node (CWN) that was developed previously [1] has been used
as a representative software application for our continuous deployment workflow. In that
previous work a container was developed that contained an HTCondor [4] worker node that
communicated with the existing batch farm running at the Uki-Scotgrid-Glasgow site to run
ATLAS payloads. The continuous deployment workflow proposed in this paper uses containers
to snapshot particular, tested combinations of software releases along with their associated
configuration. These snapshots can then be used as a single, atomic unit for deployment
simplifying the upgrade procedure. The workflow itself can be split into three parts:



ACAT 2019

Journal of Physics: Conference Series 1525 (2020) 012066

IOP Publishing

doi:10.1088/1742-6596/1525/1/012066

3

(i) Developers or System Administrators update configurations based on requirements.

(ii) Containers are automatically built, tested and pushed to a container registry ready for
deployment to production.

(iii) Containers are deployed to execution hosts, replacing existing, older instances where
necessary.

A schematic showing how the components interact is show in Figure 1. In this example
Developers (or System Administrators) push changes into a GitLab [2] instance. This instance
is used to implement the second part of our continuous deployment workflow by automatically
building the container and running tests as soon as any changes take place in the master branch
of a repository. If tests pass the containers are then pushed into a container registry (provided
as part of the GitLab instance) for execution on a worker node. On each worker node host
containers are run based on the images held within that registry, before a new container is
instantiated on the host the registry is checked for a newer version and if one exists it is pulled
to the host and all subsequent containers are started with the newer image.

3. GitLab-based CI/CD

Figure 2: Output and configuration of a GitLab CI/CD Pipeline

As described in the previous section, in our example workflow production versions of the
containerised worker node are built using a GitLab CI/CD pipeline. When changes are made
to the master branch of the repository, a new container is automatically built and pushed to a
self-hosted container registry. Figure 2 shows an example of a pipeline automatically building a
worker node container.

In our workflow a feature-branch model is employed, in which new features are added as new
branches in the repository; these branches can then be tested in isolation through manual or
automated testing. Once the feature-branch has been shown to be working correctly, it can be
merged into the master branch, at which point the pipeline is activated and the new container
is produced. In the future, it is planned that changes to feature-branches will also trigger the
production of a container. These can then be used in automated “canary” deployments, allowing
unattended live testing before the feature is rolled into production at scale. Additionally, if a
problematic deployment made it to production a particular branch could be reverted and a new
container generated. This in conjunction with the process of updating containers described in
the next section would allow the automated correction of any problematic deployment.



ACAT 2019

Journal of Physics: Conference Series 1525 (2020) 012066

IOP Publishing

doi:10.1088/1742-6596/1525/1/012066

4

Figure 3: Schematic showing the lifetime of a self terminating container, and operation of the
watchdog script.

4. Self-termintaing container
In order to ensure that containers are constantly updated, each container is configured with a
specific lifetime, after which the containers self terminate with a watchdog script restarting and
checking for updated containers to pull. The overall operation and lifetime of the container and
watchdog script is shown in Figure 3.

In this work ContainerPilot [3] is used as an initialisation mechanism within the running
container in order to create the self-terminating HTCondor worker nodes. The JSON listing
shown in Figure 4 describes two jobs run by ContainerPilot. The first starts a Condor master
daemon which connects to the local batch farm. The second is only triggered after the first
job is determined to be healthy, and waits 30 minutes before forcing a peaceful shutdown of
the Condor startd daemon, allowing the job to complete before all the daemons terminate.
Along with self-termination ContainerPilot is also used to register the container with a local
information system for monitoring purposes and in future it is planned to package up logging
information and send it to a central system. It is still possible to get self-termination by only
using Condor within the container. This is achieved by setting the STARTD NOCLAIM SHUTDOWN

parameter to terminate the startd daemon if no job was present after some period.
Along with the self-terminating container a simple watchdog script, built as a SystemD timer,

runs outside the container. This script checks to see which containers are running and, if a worker
node container is found to be missing, pulls the latest version of the container from the registry
and starts a new instance. This simple mechanism ensures that as each container terminates it
is replaced by the most up to date version. This allows the almost seamless upgrade of worker
nodes within the cluster without the need to drain the system as the lifetime of each container
is only that of the running job.

5. Conclusions
In this paper we have outlined an example continuous deployment workflow for a WLCG Tier-
2 based on a containerised worker node. We have described how changes to configuration
information can trigger an automated building process using GitLab provided CI/CD tooling.
How this build process can push a new container to a central registry and how this coupled with



ACAT 2019

Journal of Physics: Conference Series 1525 (2020) 012066

IOP Publishing

doi:10.1088/1742-6596/1525/1/012066

5

jobs: [

{

name: "condor-master",

exec: "condor_master -f",

port: 9621,

health: {

exec: "condor_config_val -startd StartJobs",

interval: "60",

ttl: "120",

timeout: "60",

},

{

name: "has-payload"

exec: "condor_off -daemon startd -peaceful

when:

source: "condor-master",

once: "healthy",

interval: "30m",

}

},]

Figure 4: JSON configuration for ContainerPilot showing the healthcheck and self-termination
stanza.

a lifetime and ability to self-termination can lead to a constant update process across the cluster
without the need to drain systems for rebuilding.

In the future it is hoped to extend this work to include the automated monitoring and
collection of logs from within each container, the exploration of different batch systems (or
other novel methods of resource allocation), and it is hoped to extend the model of a fixed
lifetime and a mechanism for self-termination to other services such as a CE.

References
[1] G. Roy et al., 2018 J. Phys.: Conf. Ser. 1085 032026, ”A container model for resource provision at a WLCG

Tier-2”
[2] giltlab.com, “Gitlab CE” [software], version 11.6.5, 2019. Available from https://www.gitlab.com [accessed 29

May 2019]
[3] ContainerPilot, “ContainerPilot” [software], version 2.7.8, 2017. Available from

https://www.joyent.com/containerpilot [accessed 29 May 2019]
[4] Michael Litzkow, Miron Livny, and Matt Mutka, ”Condor - A Hunter of Idle Workstations”, Proceedings of

the 8th International Conference of Distributed Computing Systems, pages 104-111, June, 1988.
[5] CEPH, “CEPH” [software], version Mimic, 2019. Available from https://ceph.com/ [accessed 29 May 2019]
[6] Puppet, “Puppet” [software], version 6.4.2, 2019. Available from https://puppet.com/ [accessed 29 May 2019]
[7] Ansible, “Ansible” [software], version 2.4, 2019. Available from https://www.ansible.com/ [accessed 29 May

2019]
[8] OpenStack, “Openstack” [software], version 14 Stein, 2019. Available from https://www.openstack.com/

[accessed 29 May 2019]
[9] J Blomer et al.; 2011 J. Phys.: Conf. Ser. 331 042003, “Distributing LHC application software and conditions

databases using the CernVM file system”
[10] A McNab; ”Running jobs in the vacuum” (A McNab et al 2014 J. Phys.: Conf. Ser. 513 032065)
[11] Singularity, “singularity” [software], version 2.3.2-dist, 2017. Available from http://singularity.lbl.gov/

[accessed 18 Oct 2017]


