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Abstract

This paper presents a new approach for modelling the connectedness between

asset returns. We adapt the measure of Diebold and Yilmaz, which is based on

the forecast error variance decomposition of a VAR model. However, their

connectedness measure hinges on critical assumptions with regard to the

variance–covariance matrix of the error terms. We propose to use a more

agnostic empirical approach, based on a machine learning algorithm, to iden-

tify the contemporaneous structure. In a Monte Carlo study, we compare the

different connectedness measures and discuss their advantages and disadvan-

tages. In an empirical application we analyse the connectedness between the

G10 currencies. Our results suggest that the US dollar as well as the Norwegian

krone are the most independent currencies in our sample. By contrast, the

Swiss franc and New Zealand dollar have a negligible impact on other curren-

cies. Moreover, a cluster analysis suggests that the currencies can be divided

into three groups, which we classify as: commodity currencies, European cur-

rencies and safe haven/carry trade financing currencies.
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1 | INTRODUCTION

Triggered by the seminal work of Diebold and Yilmaz (2009,
2014), the measurement of spillover effects and connected-
ness between asset returns has gained popularity in the eco-
nomic literature. Their approach, which is based on the
forecast error variance decomposition (FEVD) of a VAR
model, hinges on critical assumptions with regard to a
recursive ordering of the variables (e.g., Cholesky). In this
paper, we propose an alternative and more agnostic
approach to modelling the connectedness between asset
returns, which is based on a causal search algorithm that
imposes no a priori recursive ordering. We compare its

properties with those of other identification measures using
a Monte Carlo experiment and apply it to the G10
currencies.i

Given the new procedure, our first goal is to estimate
the network structure between nine currencies vis-à-vis
an appropriate numéraire currency (i.e., pound sterling).1

We focus on the network structure and not the dynamics
of a connectedness measure, because we aim to under-
stand the relationships between currencies. Such esti-
mates provide important information for policy makers
and practitioners. The network indicates the extent to
which a certain currency or group of currencies is
affected by domestic and foreign shocks. In this sense, it
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helps to gain a better understanding of potential conta-
gion. The second goal is to utilise spillover intensities in
order to identify clusters which can be interpreted as cur-
rency blocs or groups of common influence factors such
as target currencies for carry trades.

Research in this area has created several extensions to
the original work by Diebold and Yilmaz (2009), who
estimated the return and volatility spillovers with respect
to global equity markets. Diebold and Yilmaz (2014) stud-
ied the connectedness of financial institutions during the
financial crisis period. In Diebold and Yilmaz (2015),
they also estimated the connectedness between returns of
other asset classes such as bilateral exchange rates, for
instance. The approach is based on the idea that the
network—or the spillover effects—between asset returns
can be estimated given a FEVD of a vector autoregressive
(VAR) model. Diebold and Yilmaz (2009) suggest
orthogonalising the VAR model residuals with the help
of a Cholesky decomposition, while pointing to the prob-
lem that the results of such a factorisation depend on the
ordering of the variables, as zero restrictions are imposed
on the upper triangular contemporaneous matrix without
any theoretical or statistical motivation (i.e., preventing
contemporaneous spillover effects between certain vari-
ables). Given the arbitrariness with respect to the order-
ing of the variables, the estimated model may not capture
the spillover effects correctly. Instead of choosing one
specific ordering, Klößner and Wagner (2014) propose
considering all possible variable permutations. They rep-
licate the paper by Diebold and Yilmaz (2009) and show
that given different permutations, differences in spillover
intensity can be large. Their approach, however, is not
only computationally intensive, but also induces a high
degree of model uncertainty. In other words, Klößner
and Wagner (2014) average on many misspecified models
and one correct model, which is unknown.

Apart from Cholesky decompositions, the literature
also employs generalised impulse response functions (see
Pesaran & Shin, 1998) in order to obtain variance decom-
positions which are invariant to the ordering of the vari-
ables, see for example Diebold and Yilmaz (2012, 2014).
Greenwood-Nimmo et al. (2016), for instance, use gener-
alised variance decompositions to study exchange rate
return and volatility connectedness. In a rolling-window
approach, Greenwood-Nimmo et al. (2017) apply the gen-
eralised approach in order to analyse the change in
European debt connectedness distributions over time.
This approach, however, has two shortcomings: First, the
explained shares of forecast error variance do not sum to
unity. In order to avoid re-scaling the shares, Lanne and
Nyberg (2016) propose an alternative generalised FEVD
which yields shares summing up to unity by construc-
tion. However, shocks are not orthogonalised. Second,

and more importantly, the approach is unable to model
contemporaneous causal linkages. The weaknesses of
generalised variance decompositions have been pointed
out by De Santis and Zimic (2018), who instead propose
absolute magnitude restrictions to identify SVAR models.
They show that generalised variance decompositions tend
to overestimate connectedness.

An alternative and more agnostic approach is identifi-
cation with the help of causal search algorithms from the
machine learning literature. Such an approach for struc-
tural VAR models has been suggested by Swanson and
Granger (1997). Demiralp and Hoover (2003) introduced
the causal search methods for identification. These algo-
rithms use information from the reduced VAR residuals
in order to uncover the contemporaneous causal struc-
ture. Applications can be seen in Heinlein and
Krolzig (2012) and Demiralp et al. (2014). We follow this
literature on empirical identification and systematically
analyse in a Monte Carlo experiment as well as in an
application on returns of G10 currencies how the identifi-
cation strategy impacts on the measures of connectedness.
To the best of our knowledge, the only papers using an
empirical identification strategy in the connectedness lit-
erature are Scida (2018) and Yang et al. (2021), but they
do not systematically study the impact of this approach or
compare the empirical identification with other identifica-
tion methods. The machine learning approach is very
appealing because it does not require any prior assump-
tions with regard to the contemporaneous causal struc-
ture between the variables. On the contrary, we derive
with our data-driven approach a causal ordering, which
can be evaluated and discussed.

Another important strand of literature in this context
focuses on VAR model parameter reduction. With an
increasing number of variables to be modelled, the num-
ber of coefficients to be estimated increases exponen-
tially. This problem is often referred to as the curse of
dimensionality. Demirer et al. (2018) use lasso-type
dimension reduction methods combined with generalised
variance decompositions in order to estimate the con-
nectedness between 150 bank stocks. An even sparser
approach is proposed by Barigozzi and Brownlees (2019),
who use lasso-type reduction methods not only to shrink
the VAR lag matrices but also to shrink the variance–
covariance matrix. Our causal search algorithm delivers
an over-identified model, reducing the number of coeffi-
cients to be estimated, and hence eases the issue of
dimensionality.

This paper contributes in several ways to the existing
literature. First, we propose an alternative identification
strategy which detects causal linkages. As Demiralp and
Hoover (2003) show, the empirical procedure is very
effective in detecting the true causal connections among

2 BETTENDORF AND HEINLEIN



different variables. Second, we analyse the performance
of our algorithm with respect to the Diebold and
Yilmaz (2014) measure of connectedness and show in a
Monte Carlo experiment that our algorithm outperforms
other approaches.2 Third, we apply our algorithm to the
G10 currencies and pay special attention to the choice of
the numéraire currency. This choice is of particular
importance because it can have strong effects on the esti-
mates, as we will discuss later.

Our results suggest that the US dollar as well as the
Norwegian krone are the most independent currencies in
our sample. By contrast, the Swiss franc and New Zealand
dollar have a negligible impact on other currencies. More-
over, a cluster analysis suggests that the currencies can be
divided into three groups, which can be identified as: com-
modity currencies, European currencies, and safe haven/
carry trade financing currencies. We show that following
the Brexit referendum, the within cluster dispersion is
very low.

2 | METHODOLOGY

For yt being a K� 1 vector of endogenous variables, we
consider a SVAR(1) as follows:

B0yt ¼Byt�1þwt, ð1Þ

where B refers to the K � K coefficient matrix of the
lagged vector of endogenous variables. B0 defines the
K�K contemporaneous coefficient matrix. Uncorrelated
structural shocks are denoted by wt �NID 0,Σwð Þ. Note
that the off-diagonal entries of Σw are 0. We follow the
notation of Kilian and Lütkepohl (2017). For brevity, we
work here with just one lag and no deterministic terms.
For the estimation, however, a constant is included, and
the lag order is chosen according to AIC.

The reduced form of this model can be written as
follows:

yt ¼Ayt�1þut, ð2Þ

with A¼B�10 B and ut ¼B�10 wt .
Traditionally, the contemporaneous matrix B0 is

uncovered with the help of restrictions motivated by eco-
nomic theory. For a VAR model of exchange rate returns,
economic theory does not provide a unique causal struc-
ture that can be imposed on the contemporaneous
matrix. However, we achieve (over-)identification using a
graph theoretical causal search algorithm which finds
contemporaneous causality in the reduced form residuals
ut. The correct contemporaneous effects are an important
factor in the computation of the FEVD and consequently

in the connectedness measure of Diebold and
Yilmaz (2014).

2.1 | The PC causal search algorithm and
its application to the identification of
SVAR models

The PC algorithm belongs to the literature on graph-
theoretic analysis of causal structures, see Pearl (2000)
and Spirtes et al. (2001).3 A causal structure is represen-
ted by a graph with arrows from causes to caused vari-
ables. The algorithm uses the residual variance–
covariance matrix of the reduced form model as an input
to detect the causal structure of a system, a directed
acyclical graph (DAG). The PC algorithm cannot neces-
sarily determine the DAG uniquely, but only down to a
Markov equivalence class of the DAG. All members of an
equivalence class encode the same conditional indepen-
dence information. By using the conditional indepen-
dence information the algorithm can only determine the
equivalence class, but not distinguish between members
of a class. In this way, the algorithm finds some undi-
rected edges. We will determine these undirected edges
with the help of a bootstrap procedure, which we will
explain in the following.

To find the DAG, the algorithm performs an elimina-
tion stage and an orientation stage. The elimination
stage starts with a graph where all the variables are
linked to each other with an undirected link. Then, links
are removed based on unconditional and conditional
correlation tests, with a tuning parameter α for Fisher's
Z-statistic being used as a significance level. First, con-
nections are removed between two variables, which are
unconditionally uncorrelated. Then, connections are
eliminated for variables which are uncorrelated condi-
tional on other variables. Here, the correlation of a
pair of variables is conditioned on every other variable
individually, then on all possible pairs of variables, there-
after on all subsets of three variables and so on up to all
possible subsets of conditioning. When there is no more
link to be removed, the elimination stage is finished and
the skeleton of the graph is identified.

In the orientation stage, triples of linked variables
A—B—C are analysed. Unshielded colliders (v-struc-
tures) A! B C can be determined when A and C are
independent when conditioned on possible sets of vari-
ables, but dependent when conditioned also on B. The
algorithm searches for unshielded colliders and directs
the edges accordingly. Finally, some more links might be
oriented on the basis of logic. Some directions of links
would lead to new unshielded colliders or to cyclicality,
hence they need to be directed the other way around.
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Cyclicality, like A! B! C! A, is not permitted, hence
bi-directional links are likewise not possible. Demiralp
et al. (2008) show that a bootstrap procedure is successful
in directing the undirected edges. The residuals of the
reduced form VAR are drawn randomly with replace-
ment, and new dataset are generated, to which the PC
algorithm is applied. The undirected edges are finally
directed in the direction, which is prominent more often
in the bootstrap runs. Sampling errors or latent variables
can lead to conflicting information about edge directions.
In these cases, the algorithm returns a bi-directed edge.
We decide on the bi-directed edges via our bootstrap pro-
cedure. Thus, the bootstrap procedure decides on the
undirected edges (Markov equivalence class) and on the
edges with conflicting information.

If the final graph is a DAG, then it can be mapped
in the contemporaneous matrix B0, and due to the
acyclicality property of the DAG, the contemporaneous
matrix can be written as an overidentified lower trian-
gular matrix for some ordering of the variables. Hence
the SVAR model is identified. If the final graph con-
tains cyclicality, which might arise due to some con-
flicting information about certain v-structures, the
order condition is fulfilled, but it will not be possible to
write the SVAR model as an overidentified recursive
form.4

It is not clear from the onset which alpha value
should be chosen in the PC algorithm. With increasing
alpha values the algorithm becomes more liberal and so
chooses fewer zero restrictions. Following our Monte
Carlo simulation and Demiralp et al. (2014), we choose
an alpha value of 10% in our application.

2.2 | A connectedness measure using
forecast error variance decompositions

We use the connectedness measure of Diebold and
Yilmaz (2014). The approach is based on the computation
of FEVD.5

The stationary SVAR model in Equation (1) can be
written in an MA representation as

yt ¼
X∞
i¼0

Φiut�i¼
X∞
i¼0

Θiwt�i, ð3Þ

where Φi are reduced-form impulse responses and Θi are
the structural impulse responses with Θi�ΦiB�10 . The
matrixes Φi can be retrieved recursively by computing
Φ0¼ IK and Φi¼ B�10 B

� �i
.

We compute a FEVD

dhjk ¼ 100
Xh�1
i¼0

e0jΘiek
� �2

=
Xh�1
i¼0

XK
k¼1

θ2jk,i, ð4Þ

where θjk,i are the jkth element of Θi and ek is the kth col-
umn of IK. The measure dhjk is the proportion of the h-step
forecast error variance of variable j, accounted for by
innovations from variable k. We multiply the fractions by
100 to obtain percentages. Following Diebold and
Yilmaz (2014), the pairwise directional connectedness
from k to j is defined as

Ch
j k ¼ dhjk: ð5Þ

In general Ch
j k ≠Ch

k j, so there are K2 - K separate
pairwise directional connectedness measures.

The measure of total connectedness can be defined as

Ch¼ 1
K

XK

j,k¼1, j≠ k

dhjk: ð6Þ

In the following sections, we will compare this mea-
sure with other measures of connectedness. One of these
alternative measures is the generalised forecast error vari-
ance decomposition (GFEVD). For the computation of a
GFEVD we follow Lanne and Nyberg (2016)6

dhjk,g¼ 100

Ph�1
i¼0

e0jΦiΣuekσ
�1=2
kk

� �2

Ph�1
i¼0

PK
k¼1

e0jΦiΣuekσ
�1=2
kk

� �2
, ð7Þ

where σkk are the diagonal entries of Σu.

2.3 | The algorithm

We make use of the R software package ‘pcalg’ by
Kalisch et al. (2012).7 Our proposed algorithm (see Algo-
rithm 1) starts with the estimation of a reduced form
VAR model where the lag order is determined by the
Akaike information criterion (AIC). Then, we apply the
PC algorithm (PC) to the reduced form residuals and test
if the resulting graph is a DAG. If this is the case, we can
proceed and determine the contemporaneous matrix (B0)
in accordance with the obtained DAG. Otherwise, we
bootstrap the reduced form VAR 10,000 times, apply the
PC algorithm in each run, and collect the 10,000
suggested graphs. Note that it is important to draw
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vectors from the residuals in such a way that the correla-
tion between the residuals is preserved. Afterwards, we
modify the original graph in such a way that the undi-
rected edges become directed according to the direction
preferred by the bootstrap. Note that we consider the
bootstrap only in order to decide on edges which were
originally undirected or bi-directed. Having obtained a
DAG, we may proceed with the specification of B0 (line
10 of Algorithm 1). Finally, the connectedness measure—
or spillover matrix—can be derived from the estimated
structural VAR model where the shocks are orthogonal-
ised by B0.

3 | THE EFFECTIVENESS OF THE
PC ALGORITHM IN THE
CONNECTEDNESS APPROACH:
A MONTE CARLO STUDY

In this section, we evaluate the impact of different identi-
fication strategies on the measures of connectedness by
performing a Monte Carlo experiment. We generate arti-
ficial data with the help of a known data generating pro-
cess (DGP). Afterwards, we estimate the connectedness
matrices for different identification strategies and bench-
mark them with the theoretical result of the known DGP.
We compare the empirical identification with the gener-
alised approach (see Lanne & Nyberg, 2016) and the

average-of-all-Cholesky-orderings (see Klößner &
Wagner, 2014) approach. The empirical identification is
performed with two different algorithms, the PC algo-
rithm and the greedy equivalence search (GES) algorithm
of Chickering (2002).8 Because the appropriate signifi-
cance level alpha for the individual conditional indepen-
dence tests of the PC algorithm is not clear, we use two
conventional options: 5% and 10%.

The artificial data are generated recursively according
to the SVAR(1):

yt ¼B�10 Byt�1þB�10 wt, ð8Þ

with structural shocks wt �NID 0,Σwð Þ and y0¼ 0. To
eliminate dependence on the initial condition we discard
the first 80% of the generated data in all cases. The lag
matrix, B, is K�K with random uniform coefficients
between �0.05 and 0.05. The residuals, wt, are drawn
randomly from independent normal distributions with
mean 0 and variance 1. For the contemporaneous matrix,
B0, we generate random directed acyclic graphs (DAGs)
with a fixed expected number of neighbours. We use ran-
dom Erd}os-Rényi graphs for the DAGs, multiply the
matrix entries by �1 and add an identity matrix. In this
way we generate a sparse contemporaneous matrix with
some negative off-diagonal entries between 0 and�1.9
We perform this Monte Carlo study for N = 100 datasets
in each MC experiment. The categories are: two different

ALGORITHM 1

1: procedure IDENTIFICATION
2: ut,A½ � VAR data,p¼AICð Þ
3: graph PCalgorithm α,utð Þ
4: if graph is directed-acyclical-graph then
5: DAG graph
6: else
7: DAG Bootstrap(ut, A, α, graph)
8: end if
9: B0 DAG
10: connectedness FEVD SVAR B0,Að Þ½ �
11: end procedure

12: function BOOTSTRAP(ut, A, α, p, graph)
13: for runs � {1, 2,…, 10,000} do
14: artificial data Create artificial data ut,Að Þ
15: uBS

t

� �
 VAR artificial data,pð Þ

16: bootstrap-graph runsð Þ PCalgorithm α,uBS
t

� �
17: end for
18: return direct undirected edges ingraphaccording tobootstrap� graph
19: end function

BETTENDORF AND HEINLEIN 5



system dimensions (K = 8/16), three different levels of
sparsity (d = 1/3/5) and two different sample lengths
(T = 250/2500).10

The results are evaluated as follows. For each identifi-
cation method, we compute four measures in terms of
recovering the true connectedness matrix. For all four
measures, we report the mean absolute error (MAE) of
the estimated measure relative to the measure for the
true connnectedness matrix. The first measure, C, is the
MAE of the off-diagonal elements of the connectedness
matrix:

C¼ 1
N

XN
i¼1

1
K2�K

XK
j,k¼1, j≠ k

jCh
j k,i�Ch�

j k,i j , ð9Þ

whereby the variables with a star are the true connected-
ness values. C is an important measure, as it places a strong
weight on the direction of the connectedness. The second
measure, T , is the MAE of the total connectedness:

T ¼ 1
N

XN
i¼1
jCh

i �Ch�

i j : ð10Þ

Here, it is not so much the direction of the links that is
evaluated, but rather whether the over-identifying
zeros of the PC algorithm are appropriate. The third
measure, S, is the MAE of the skewness of the distribu-
tion of the off-diagonal entries of the connectedness
matrix:

S ¼ 1
N

XN
i¼1

j Skew Ch
j k,i

n o
j,k¼1…K ,j≠ k

�Skew Ch�

j k,i

n o
j,k¼1…K ,j≠ k

j :

ð11Þ

While the fourth measure, K, is the MAE of the kurtosis
of the distribution of the off-diagonal entries of the con-
nectedness matrix:

TABLE 1 Monte Carlo simulation: Comparing connectedness measures for different identification strategies relative to the correct

connectedness measures using 100 random DAGs dimension 8

d = 1

T = 250 T = 2500

C T S K C T S K

avgChol 1.849 3.648 1.798 14.836 1.487 0.558 1.576 13.606

GFEVD 2.823 12.233 1.523 11.965 2.233 7.126 1.260 10.400

PCalg 5% 1.644 2.594 0.455 4.245 1.031 0.534 0.228 2.166

PCalg 10% 1.664 2.824 0.452 4.334 1.045 0.548 0.245 2.300

GES 1.421 2.731 0.444 4.243 1.017 0.405 0.238 2.290

d = 3

T = 250 T = 2500

C T S K C T S K

avgChol 5.386 4.337 1.331 5.342 5.195 2.219 1.310 5.350

GFEVD 8.276 28.478 1.207 4.644 8.284 23.241 0.862 3.637

PCalg 5% 4.722 3.249 0.520 3.261 3.584 2.738 0.354 2.217

PCalg 10% 4.668 3.256 0.502 3.086 3.630 2.554 0.366 2.247

GES 5.221 3.983 0.411 2.449 4.143 1.811 0.363 2.208

d = 5

T = 250 T = 2500

C T S K C T S K

avgChol 9.695 6.007 1.559 3.596 9.643 5.091 1.564 3.586

GFEVD 11.552 30.634 1.113 3.098 13.508 28.869 0.858 2.642

PCalg 5% 9.592 8.656 0.754 3.730 9.157 6.858 0.576 2.561

PCalg 10% 9.728 7.621 0.671 3.217 9.227 6.807 0.579 2.634

GES 10.914 6.249 0.442 1.865 10.628 5.452 0.415 1.762

Note: 100 random Erd}os-Rényi graphs with eight nodes. d (1, 3, 5) corresponds to the expected number of neighbours per node, more precisely the expected
sum of the in- and out-degree. Sample size 250/2500 observations. C is the MAE of the off-diagonal entries of the connectedness matrix. T is the MAE of the
total connectedness. S and K are the MAEs of the skewness and kurtosis of the distribution of the off-diagonal entries of the connectedness matrix.
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K¼ 1
N

XN
i¼1

jKurt Ch
j k,i

n o
j,k¼1…K ,j≠ k

�Kurt Ch�

j k,i

n o
j,k¼1…K ,j≠ k

j :

ð12Þ

These distributional measures aim to evaluate whether
the extreme values in the connectedness matrices of the
identification strategies are comparable to the theoretical
connectedness. The results of the Monte Carlo experi-
ments are displayed in Tables 1 and 2.

The PC algorithm performs, in general, better than
the average-of-all-Cholesky-orderings approach and the
generalised approach. While the other two identification
strategies usually split the connectedness between j and k
in such a way that Ch

j k ≈Ch
k j, the causal search algo-

rithm manages to find the true causal connectedness.
Even when the PC algorithm might find incorrect direc-
tions for some links, overall the true causal structure is
uncovered to a much higher degree, which can be seen in

the lower MAE values of our measure C. The generalised
approach overestimates the total connectedness strongly
in all cases, which can be seen in the high MAE in the
measure T . This result is in line with findings by De

TABLE 2 Monte Carlo simulation: Comparing connectedness measures for different identification strategies relative to the correct

connectedness measures using 100 random DAGs dimension 16

d = 1

T = 250 T = 2500

C T S K C T S K

avgChol 1.291 8.006 2.603 33.602 0.864 0.997 2.219 30.262

GFEVD 2.066 20.489 2.572 30.278 1.334 8.775 1.763 22.862

PCalg 5% 1.020 5.867 0.613 10.554 0.581 0.680 0.322 5.870

PCalg 10% 1.023 6.179 0.586 9.586 0.586 0.670 0.321 5.810

GES 0.995 6.202 0.602 9.510 0.497 0.641 0.251 4.384

d = 3

T = 250 T = 2500

C T S K C T S K

avgChol 3.021 7.009 1.791 12.483 2.762 2.477 1.752 12.510

GFEVD 4.871 36.769 2.112 13.264 4.468 26.757 1.460 9.546

PCalg 5% 2.309 2.932 0.505 5.531 1.729 1.896 0.494 5.094

PCalg 10% 2.276 3.332 0.515 5.633 1.671 1.796 0.453 4.607

GES 2.455 5.582 0.430 4.572 1.881 1.850 0.417 4.272

d = 5

T = 250 T = 2500

C T S K C T S K

avgChol 5.018 8.309 2.163 10.084 4.900 5.410 2.140 10.111

GFEVD 6.420 37.451 1.720 9.183 6.684 33.617 1.593 8.289

PCalg 5% 4.662 4.533 0.772 6.909 3.952 4.408 0.640 5.155

PCalg 10% 4.606 4.381 0.822 7.276 4.000 4.532 0.685 5.542

GES 5.262 7.762 0.648 4.871 4.854 5.255 0.511 3.802

Note: 100 random Erd}os-Rényi graphs with eight nodes. d (1, 3, 5) corresponds to the expected number of neighbours per node, more precisely the expected
sum of the in- and out-degree. Sample size 250/2500 observations. C is the MAE of the off-diagonal entries of the connectedness matrix. T is the MAE of the
total connectedness. S and K are the MAEs of the skewness and kurtosis of the distribution of the off-diagonal entries of the connectedness matrix.

TABLE 3 Monte Carlo simulation: comparing connectedness

measures for different identification strategies relative to the correct

connectedness measures using 100 random DAGs. Specification

similar to the application: dimension = 9, d = 3.8, T = 2048

C T S K

avgChol 6.042 3.342 1.332 4.750

GFEVD 9.371 28.402 0.803 3.249

PCalg 5% 4.863 4.033 0.467 2.725

PCalg 10% 4.875 3.661 0.484 2.831

GES 5.410 2.939 0.463 2.645

Note: 100 random Erd}os-Rényi graphs with nine nodes. d = 3.8 corresponds

to the expected number of neighbours per node, more precisely the expected
sum of the in- and out-degree. Sample size 2048 observations. C is the MAE
of the off-diagonal entries of the connectedness matrix. T is the MAE of the
total connectedness. S and K are the MAEs of the skewness and kurtosis of

the distribution of the off-diagonal entries of the connectedness matrix.
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Santis and Zimic (2018). The average-of-all-Cholesky-
orderings approach usually overestimates the total
connectedness slightly. The PC algorithm partly overesti-
mates and partly underestimates the total connectedness,
depending on the sparsity of the network, performing
well for many DGPs, but poorly in a small number of
cases. The GES algorithm tends to overestimate the total
connectedness more often. The empirical approaches are
superior in estimating connectedness for models with
sparse contemporaneous matrices. In general there is no
clear favourite between a PC algorithm with a 5% and
10% significance level. The GES algorithm performs
equally well as the PC algorithm and is particularly
strong for sparse contemporaneous matrices.

To reinforce the relevance of the Monte Carlo simula-
tion to our empirical application, we perform a simula-
tion experiment where we mimic the settings of the
application, see Table 3. In the application we have a
dimension of 9, a level of sparsity of d = 3.8 and 2048
observations.11 In the Monte Carlo experiment, the
causal search PC algorithm performs strongly, achieving
low MAEs, especially in category C, which measures the
direction of connectedness.

4 | AN APPLICATION TO
EXCHANGE RATE DATA

The bilateral exchange rate can be interpreted as the rela-
tive price between two currencies. Here, it is defined as
the foreign currency price of buying one unit of home
currency (quantity quotation). A positive shock to the
bilateral exchange rate in quantity quotation can thus be
interpreted as a positive shock to the demand of the
home currency or a negative shock to the demand of the
foreign currency. These shocks can trigger movements in
other exchange rates as well. The reasons behind the
international effects are manifold. One could think of
currency (basket) pegs or international substitution
effects, for instance.

The aim of this exercise is to uncover the network of
spillover effects between exchange rate returns.12 We
apply the proposed algorithm to the G10 bilateral euro
exchange rates and cluster the exchange rates in order to
uncover potential currency blocs afterwards. All bilateral
exchange rates are downloaded in daily frequency from
the ECB statistical data warehouse (SDW) and corre-
spond to the ECB reference rates, representing the 14:15
CET fixing.13 The sample covers the period between
January 2010 and December 2017. We start in 2010 in
order to exclude potential effects arising from the 2008
financial crisis. As ECB reference rates are expressed in
quantity quotation and quoted against the euro, we

transform the rates in such a way that the pound sterling
becomes the numéraire. All transformed series enter our
model in log differences. The reasoning behind changing
the numéraire currency is discussed in the following
section.

4.1 | Choice of the numéraire currency

The bilateral (or multilateral) nature of exchange rates
poses a problem for researchers and practitioners. When
regressing exchange rate returns on exchange rate
returns, the correct choice of the numéraire currency
(or basket) is crucial, because the numéraire can have
substantial effects on the estimates. If both currencies
were pegged to the numéraire, the regression coefficient
would be zero, implying that despite the common peg no
relationship would exist. This problem has been exten-
sively discussed by the literature on currency baskets and
blocks, for example by Frankel and Wei (2008), Frankel
and Xie (2010), or Ohno (1999).

The US dollar, the most heavily traded currency,
appears to be a good choice as the numéraire currency.
But the afore mentioned statistical problems arise if cur-
rencies, pegged to the dollar enter the model. Despite the
peg, these exchange rates—expressed in US dollar—
would appear to be unconnected. More importantly,
however, the connectedness of the US dollar could not be
estimated if it served as the numéraire currency. This
would eliminate important information, as several stud-
ies have pointed out that the US dollar shares certain
properties with other currencies, for example its status as
a safe haven currency (see Hossfeld & MacDonald, 2015).
Other studies such as Frankel and Wei (2008) and
Ohno (1999) relied on the Swiss franc as the numéraire
currency. The Swiss franc seemed to be an appealing
choice, because its trading volume is high and the cur-
rency was independent at that time. The Swiss franc lost
this property when the Swiss National Bank introduced a
minimum rate vis-�a-vis the euro on 6 September 2011.14

When the numéraire currency is pegged to another cur-
rency in the sample, the exchange rate has no variance,
which can be explained by other currencies. Apart from the
numerical problems that arise from this, the series would
not have any variance and should thus not be employed
within the Diebold and Yilmaz (2014) approach.15 Deutsche
Bundesbank (2019) provides numerical examples with
respect to this issue.

The literature on basket weights proposes using a bas-
ket of different currencies as the numéraire. Frankel and
Xie (2010) claim that monetary authorities are more
likely to use a weighted average of currencies as a refer-
ence for possible interventions when the exchange rate
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regime is a managed float or target zone and propose the
IMF Special Drawing Right (SDR) basket as the numér-
aire. On the other hand, Aloosh and Bekaert (2021) pro-
pose the use of unweighted baskets in a somewhat
different setting. Nevertheless, a closed basket as the
numéraire cannot be employed in the Diebold and
Yilmaz (2014) approach, because the first currency basket
is nothing but a linear combination of the other N � 1
currency baskets. A VAR model cannot be estimated for
such a dataset. Hence, even when baskets are used, one
currency needs to be excluded.

Therefore, we have to find a suitable numéraire cur-
rency which is freely floating, not an anchor currency and
preferably not, or at least only to a small extent, part of cur-
rency baskets which central banks peg their currency to. A
currency which sufficiently fulfils these criteria is the pound
sterling (see IMF, 2016). The pound sterling is not as
heavily traded as the US dollar. But for this approach, prices
and not quantities matter. Arbitrage is supposed to
eliminate any discrepancy in prices within one period
(here: 14:15 CET to 14:15 CET on the following trading
day). Overall, the pound sterling appears to be inde-
pendent and relatively uncorrelated with other curren-
cies (see Aloosh & Bekaert, 2021; Hossfeld &
MacDonald, 2015). The yen is also a relatively indepen-
dent currency. But our study will show that the yen
shares certain properties with other currencies such as
the US dollar and the Swiss franc.

4.2 | Uncovering the causal structure

We follow the proposed algorithm and estimate the VAR
model Equation (2) for the rate of change in nine G10
exchange rates, taking the pound sterling as the numér-
aire currency. The number of observations is 2048, and
the lag length of p = 1 is chosen according to the Akaike
Information Criterion (AIC).16 Before applying the PC
algorithm, we investigate the correlation structure of the
residuals ut (see Table 4).

The table reveals relatively strong correlations between
the residuals of commodity currencies such as the
Australian dollar, Canadian dollar, New Zealand dollar and
Norwegian krone. Particularly striking is the strong correla-
tion between the Australian dollar and the New Zealand
dollar (ρutAUD,NZD¼ 0:76). The correlation between the
Swedish krona and euro residuals (ρutSEK,EUR¼ 0:75) is
similarly strong. The Swedish krona residuals, however,
are also correlated with the Norwegian krone residuals,
thus linking the euro to the commodity currencies.
The euro itself is also correlated with the Swiss franc.
The correlation between the Japanese yen and the US
dollar (ρutJPY ,USD¼ 0:66) is somewhat uncoupled. These

correlations provide us with a first insight into interna-
tional exchange rate connectedness. They suggest the
existence of a commodity currency bloc which is con-
nected with the euro, and a strong relationship between
the Japanese yen and US dollar. These correlations, how-
ever, do not reflect any type of causality. We only learn
that certain relationships may exist.

In order to estimate the causal structure we apply the
PC algorithm with an α size of 0.1 to the residuals. The
algorithm yields the adjacency matrix

where 1 indicates that the currency of the related column
is causing the currency of the corresponding row. By con-
trast, 0 indicates that the currency of the related column
is not causing the currency of the corresponding row.
Hence, if F[i,j] ≠ F[j,i] (with i ≠ j) the algorithm was
able to direct the link between the two currencies: if F
[i,j] = F[j,i] = 0, then there is no contemporaneous
relationship between the two currencies and an over-
identification of the variance covariance matrix is possi-
ble. A problem occurs, however, if F[i,j] = F[j,i] = 1 (see
underlined numbers). In that particular case, the PC
algorithm was unable to direct the link between the two
currency pairs (Markov equivalence class). Note,
undirected edges do not indicate causation in both direc-
tions. Undirected edges have been found for the pairs
AUD—SEK, CHF—NZD, EUR—USD, NOK—SEK and
USD—JPY. As explained earlier, we apply the bootstrap
approach of Demiralp et al. (2008) in order to direct the
undirected edges.17

More specifically, we bootstrap the VAR, let the PC
algorithm determine the causal structure between the
residuals, and save the output of the algorithm for each
of the 10,000 runs. The results are reported in Table 5. Of
particular interest are the entries F[7,1] (AUD—SEK), F
[6,3] (CHF—NZD), F[8,4] (EUR—USD), F[7,5] (NOK—
SEK), and F[9,8] (JPY—USD).

The table shows for the currency pair AUD—SEK that
AUD ! SEK is preferred over AUD  SEK by 35.68%
vs. 1.17% of the draws. The results are slightly less clear
for CHF—NZD, as only 9.23% of the draws prefer CHF!
NZD. According to the bootstrap, the edge EUR—USD
should be directed such that EUR  USD. Lastly, we
direct the edges NOK—SEK and JPY—USD such that
NOK! SEK and JPY USD.
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Given the bootstrap information, the matrix F can
now be updated and written as

This matrix no longer exhibits any cycles or undi-
rected edges and can now be used to (over-)identify the
variance–covariance matrix of the VAR model. Each
1-entry represents a coefficient which has to be esti-
mated. Figure 1 presents the adjacency matrix FBS as a
graph.

For a better understanding of the dynamics, we re-
order the adjacency matrix into the over-identified
matrix B0 in such a way that we recover its recursive
form.18

This enables us to uncover and interpret the causal
structure between the structural shocks. Note here that
the ordering is entirely determined by the data-driven
causal-search algorithm (PC). We observe that the USD is

ordered first, suggesting that it is the most independent
currency in the sample. Shocks to the US dollar affect the
Japanese yen, the Canadian dollar and the euro contem-
poraneously, while no foreign shock has contemporane-
ous effects on the US dollar. The New Zealand dollar is
ordered last. Thus, shocks to this currency have no con-
temporaneous effects on any other currency in the sam-
ple. However, it is affected by shocks to the Japanese yen,
the Canadian dollar, the Australian dollar and the Swiss
franc. Interestingly, these are all currencies which are
related to carry trades. The commodity currencies (AUD,
CAD) are often referred to as carry trade target curren-
cies, while the other two (CHF, JPY) are used by market
participants for carry trade funding (see Ferreira Filipe &
Suominen, 2013; Hossfeld & MacDonald, 2015). The Nor-
wegian krone appears to be another important currency.
It is ordered third, but the PC algorithm suggests that
shocks to the US dollar and the Japanese yen, which is
ordered second, have no contemporaneous effects on the
krone. However, shocks to the krone affect other com-
modity currencies (CAD, AUD) and geographical neigh-
bours (EUR, SEK) contemporaneously. Overall, we
observe a causal structure which is not only closely
related to the correlation of reduced form residuals
(Table 4), but also economically plausible.

The coefficients in the contemporaneous matrix (B0)
can be obtained by re-estimating the (structural) VAR
equation by equation, whereby the contemporaneous
effects (according to B0) are included in each equation.
The estimates are presented in Appendix A.

The matrix B0 is overidentified with 19 zero restric-
tions. When testing the 19 restrictions with a likelihood
ratio test, the null hypothesis that all these 19 coefficients
can be restricted to zero needs to be rejected with a test
statistic of 268.66 and a p value of 0.000. When we return

TABLE 4 Correlation between residuals (ut)

AUD CAD CHF EUR NOK NZD SEK USD JPY

AUD 1.00

CAD 0.66 1.00

CHF 0.31 0.33 1.00

EUR 0.44 0.42 0.61 1.00

NOK 0.53 0.50 0.40 0.64 1.00

NZD 0.76 0.57 0.33 0.43 0.48 1.00

SEK 0.51 0.45 0.44 0.75 0.73 0.46 1.00

USD 0.34 0.53 0.39 0.43 0.24 0.31 0.30 1.00

JPY 0.31 0.36 0.48 0.45 0.22 0.33 0.28 0.64 1.00

Note: The table shows the cross-correlation between reduced form VAR residuals. Correlation coefficients >0.5 are marked in bold.
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TABLE 5 PC algorithm results in percent (bootstrap with 10,000 draws)

F[i,j]
# of # of # of # of # of

i j PC Undirected Left No edge Right Bi-directed

2 1 �1 38.41 0.60 0.00 60.98 0.01

3 1 0 0.00 0.01 99.99 0.00 0.00

4 1 0 0.00 0.00 100.00 0.00 0.00

5 1 �1 43.65 12.72 2.28 41.28 0.07

6 1 1 46.13 22.10 0.00 31.59 0.18

7 1 2 62.26 35.68 0.84 1.17 0.05

8 1 0 11.00 0.07 87.40 1.53 0.00

9 1 0 0.00 0.00 99.95 0.00 0.05

3 2 0 0.00 0.00 100.00 0.00 0.00

4 2 0 0.00 0.00 100.00 0.00 0.00

5 2 �1 39.84 11.43 0.00 48.60 0.13

6 2 1 12.79 77.39 8.15 0.66 1.01

7 2 0 0.19 0.05 99.71 0.05 0.00

8 2 �1 46.67 1.15 0.00 51.29 0.89

9 2 0 2.15 0.22 97.28 0.35 0.00

4 3 �1 31.55 5.88 0.00 62.56 0.01

5 3 0 0.81 1.45 97.59 0.15 0.00

6 3 2 31.41 9.23 54.85 4.46 0.05

7 3 0 11.48 1.49 85.70 1.33 0.00

8 3 0 16.96 2.04 79.69 1.31 0.00

9 3 �1 32.84 4.85 0.00 62.31 0.00

5 4 �1 33.40 4.74 0.00 61.78 0.08

6 4 0 9.68 4.57 83.26 2.33 0.16

7 4 �1 55.26 10.49 0.00 34.24 0.01

8 4 2 57.21 8.06 18.79 15.81 0.13

9 4 �1 1.90 0.03 37.10 60.97 0.00

6 5 0 18.55 12.59 68.59 0.27 0.00

7 5 2 67.08 29.71 0.00 3.19 0.02

8 5 0 0.01 0.00 99.99 0.00 0.00

9 5 0 0.00 0.00 100.00 0.00 0.00

7 6 0 0.68 0.17 98.79 0.36 0.00

8 6 0 0.00 0.00 100.00 0.00 0.00

9 6 �1 6.54 4.32 15.80 60.98 12.36

8 7 0 0.03 0.01 99.95 0.01 0.00

9 7 0 0.89 0.03 98.77 0.31 0.00

9 8 2 75.20 17.25 0.00 7.55 0.00

Note: The table shows the decisions of the PC algorithm for each entry in the adjacency matrix F[i,j]. The PC column refers to the PC algorithm decision with

respect to the VAR point estimate residuals. Here, ‘0’ denotes ‘no edge’, ‘1’ stands for ‘right’, ‘�1’ for ‘left’ and ‘2’ for an ‘undirected’ linkage. The columns
for the percentages (abbreviated as #) of the decisions ‘undirected’, ‘left’, ‘no edge’, ‘right’ and ‘bi-directed’ refer to the bootstrap. Whenever the algorithm
finds no direction using the point estimate residuals (i.e., where the PC column has the entry 2), the edge is directed according to the (maximum) percentage in
the ‘left’ and ‘right’ columns.

BETTENDORF AND HEINLEIN 11



more coefficients to the contemporaneous matrix, begin-
ning with the highest entries in the variance covariance
matrix of the SVAR model, we find that already with
7 over-identifying restrictions the null needs to be
rejected with a test statistic of 16.17 and a p value of
0.024. We attribute this finding to the fact that we are
working with bilateral exchange rates. The contempora-
neous correlations of the currency pairs are high in all
cases, see Table 4, which might be due to a UK effect in
all exchange rates. To further scrutinise this point we per-
form a robustness check at the end of section 4.3, where
we compare the connectedness matrix for the PC algo-
rithm approach with the connectedness matrix of a ver-
sion of the SVAR model without over-identifying
restrictions on the contemporaneous matrix but the same
ordering.

4.3 | Connectedness

This section shows the connectedness between exchange
rates for different identification methods. First, we use a
simple Cholesky decomposition as in the seminal paper
by Diebold and Yilmaz (2009). As we are completely
agnostic with regard to causality, the ordering of the vari-
ables is random. Table 6 presents the FEVD (i.e., the con-
nectedness). The entries represent the shares of forecast
error variance (in percent) of the variables in rows, which
are explained by shocks to the variables in columns.
Hence, rows add up to 100. For instance, the estimates
suggest that 16.8% of US dollar forecast error variance is
explained by shocks to the Canadian dollar, while only

0.3% of Canadian dollar forecast error variance is
explained by shocks to the US dollar. This result is sur-
prising, because the United States is usually considered
as a large and less dependent economy. Accordingly, one
would expect causality to point from USD to CAD rather
than the other way round. Later, we will see that a differ-
ent causal ordering yields completely different results
from those obtained by the PC algorithm. But also the
measures of total connectedness show a surprising pic-
ture. The row ‘IN’ represents the contribution of interna-
tional shocks to the forecast error variance of the
variables in rows (i.e., the row sum minus the idiosyn-
cratic contribution). This measure is referred to as in-con-
nectedness. Particularly the Australian dollar, which is
ordered first, is almost entirely driven by its own shocks.
Then again, the out-connectedness of the Australian dol-
lar (OUT; i.e., the column sum of contributions sub-
tracted by the idiosyncratic component) is extraordinarily
high compared with other currencies. Overall, we
observe that the shares on the lower diagonal are sub-
stantially higher than those on the upper diagonal,
reflecting the lower diagonal structure of the Cholesky
factorisation which has been applied. Hence, a Cholesky
decomposition has to be applied with caution.

One way to circumvent this problem is to apply a
generalised FEVD. This decomposition is derived from
generalised impulse response functions which were
originally proposed by Pesaran and Shin (1998). The
intuition behind this approach is that every variable is
treated as it would be ordered first in a Cholesky
decomposition. Hence, any variable can have contem-
poraneous effects on any variable in the system. The

FIGURE 1 Visualization of the

adjacency matrix FBS. This figure shows

the contemporaneous causality structure

which is used to orthogonalise the SVAR

residuals (see matrix B0). Note that this

graph does not represent the

connectedness matrix, which will be

estimated in section 4.3.
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problem, however, is that this approach does not
orthogonalise the shocks, implying that forecast error
variance shares do not sum to unity for any given vari-
able.19 Instead of normalizing the variance shares in
such a way that they sum to unity (see Greenwood-
Nimmo et al., 2016, for instance), we proceed as out-
lined in section 2.2 and apply an alternative form of
the generalised FEVD where variance shares sum to
unity by construction (see Lanne & Nyberg, 2016). This
decision is based on the results of Chan-Lau (2017),
who finds that the generalised variance decomposition
by Lanne and Nyberg (2016) performs better than the
one by Pesaran and Shin (1998).

The results of the GFEVD measure are presented in
Table 7. Now, we observe that the differences between
in- and out-connectedness have decreased for all cur-
rency pairs. For many pairs, the degrees have even
become roughly equivalent: 3.9% of the Japanese yen's
forecast error variance is explained by the Norwegian
krone and vice versa. Overall, the linkages are qualita-
tively similar to those obtained from the Cholesky
decomposition with the difference that the information
with regard to the direction of causality has been lost.

The same applies to the results based on the fastSOM
algorithm by Klößner and Wagner (2014), which repre-
sent the average variance shares over all possible
Cholesky permutations (Table 8). Here, the differences
between in- and out-connectedness are even smaller than
in the previous case. We learn, for instance, that the
Australian dollar and the New Zealand dollar are con-
nected, but the differences between the variance shares
(AUD! NZD [18.6%] and AUD NZD [17.6%]) are not
strong enough to make a statement about the direction.

Additionally, when studying all possible permutations of
orderings, the maximum and minimum levels of connect-
edness per country pair can be computed, see Tables B1
and B2. It is obvious that the connectedness between cur-
rency pairs depends crucially on an arbitrary ordering of
the variables in the model.

The ambiguity diminishes drastically when our pro-
posed algorithm is applied (Table 9). Clear causal pat-
terns appear, which help in understanding the network
topology of G10 exchange rates and the direction of
edges, in particular. The estimates suggest that the US
dollar and the Norwegian krone are both important
drivers of international exchange rate fluctuations. Their
in-connectedness is very low (0.7 and 1.4, respectively),
suggesting that they are barely affected by shocks to for-
eign currencies. However, their out-connectedness is rel-
atively high (91.1 and 152.4, respectively). Shocks to the
US dollar explain 21.2% of Canadian dollar and 41.2% of
Japanese yen forecast error variance. Note that these are
clearly not bi-directed linkages. Our estimates suggest
that the causality is directed from the US dollar to both cur-
rencies. The Norwegian krone appears to explain high
shares of the Australian dollar, Canadian dollar, Swiss
franc, euro, New Zealand dollar and Swedish krona forecast
error variance. Hence, there seem to be strong ties between
commodity currencies and European currencies. The strong
effects of the Norwegian krone are somewhat surprising. It
is possible that the Norwegian krone reflects influences of
other currencies from oil exporting countries.

Also other studies find a high influence of the Norwe-
gian krone, for example Le et al. (2018) use measures like
right-hand eigenvector centrality, Harmonic closeness
centrality, out-degree and out-strength and detect a high

TABLE 6 Connectedness: Cholesky (random ordering)

AUD CAD CHF EUR NOK NZD SEK USD JPY IN

AUD 99.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.2

CAD 43.8 55.5 0.0 0.0 0.1 0.1 0.0 0.3 0.1 44.5

CHF 9.9 2.7 86.9 0.0 0.1 0.0 0.3 0.0 0.0 13.1

EUR 18.8 3.2 22.0 55.4 0.0 0.0 0.1 0.2 0.3 44.6

NOK 28.5 3.6 4.5 13.3 49.5 0.0 0.2 0.0 0.4 50.5

NZD 58.1 0.6 0.8 0.4 0.0 39.9 0.0 0.0 0.2 60.1

SEK 25.9 2.3 7.2 24.9 7.0 0.0 32.2 0.1 0.4 67.8

USD 12.0 16.8 5.4 1.7 3.2 0.0 0.1 60.9 0.0 39.1

JPY 9.4 4.1 14.0 1.8 2.9 0.4 0.2 16.9 50.3 49.7

OUT 206.5 33.4 53.8 42.2 13.4 0.5 0.9 17.4 1.5 C10 = 41.1

Note: The table shows the (10 periods ahead) forecast error variance decomposition of the SVAR model which is identified by a Cholesky decomposition with
random ordering. The column ‘IN’ corresponds to the row sum of the non-diagonal variance shares (i.e., the total share of variance which is explained by
[international] shocks). The column ‘OUT’ corresponds to the column sum of the non-diagonal variance shares (i.e., the total share of variance, which is

explained by the corresponding column variable). C10 refers to the measure of total connectedness (see section 2.2).
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influence of the Norwegian krone in a set of 34 curren-
cies. Wen and Wang (2020) study volatility connected-
ness, finding a high connectedness of the Norwegian
krone to the Swedish krona, but not to the US dollar,
confirming our results. Other studies on currency con-
nectedness, like Wan and He (2021) measure dynamic
connectedness of currencies in G7 countries, finding the
US dollar to be the highest transmitter of spillovers to
other currencies. While Huynh et al. (2020) study the role
of trade policy uncertainty for currency connectedness,
Kühl (2018) focuses on the role of macroeconomic
fundamendals and non-fundamental factors in com-
ovements of currencies.

We also find evidence suggesting that the Australian
dollar causes the New Zealand dollar, which was not
obvious when other measures of connectedness were
applied. The same accounts for the USD ! JPY relation-
ship. Another interesting edge is the EUR ! CHF link,
which reflects the minimum exchange rate of CHF 1.20
per EUR.20

As a robustness analysis, we estimate the spillover
matrix of Table 9 without over-identifying restrictions on
the contemporaneous matrix. More specifically, we use
one of the possible causal orderings which is consistent
with the findings of the PC algorithm and estimate the
structural VAR using a Cholesky decomposition. The

TABLE 8 Connectedness: fastSOM

AUD CAD CHF EUR NOK NZD SEK USD JPY IN

AUD 53.5 11.2 1.3 2.8 5.5 17.6 4.7 1.9 1.5 46.5

CAD 11.4 59.3 1.6 2.5 5.0 6.9 3.2 7.8 2.3 40.7

CHF 1.3 1.5 69.7 10.1 3.1 1.7 3.7 3.0 5.9 30.3

EUR 2.8 2.6 8.7 51.0 9.3 2.8 15.3 3.3 4.1 49.0

NOK 5.8 4.8 2.8 9.7 56.3 4.0 14.6 0.9 1.1 43.7

NZD 18.6 7.1 1.7 2.9 4.1 58.9 3.4 1.4 1.9 41.1

SEK 4.8 3.3 3.4 15.7 14.1 3.4 52.4 1.3 1.6 47.6

USD 2.1 8.4 3.0 3.8 1.0 1.5 1.3 65.1 13.8 34.9

JPY 1.4 2.3 5.8 4.5 1.0 1.8 1.2 14.2 67.8 32.2

OUT 48.2 41.3 28.4 52.0 43.0 39.7 47.6 33.7 32.1 C10 = 40.7

Note: The table shows the (10 periods ahead) forecast error variance decomposition of the SVAR model as an average of all possible Cholesky orderings. The
column ‘IN’ corresponds to the row sum of the non-diagonal variance shares (i.e., the total share of variance which is explained by [international] shocks). The
column ‘OUT’ corresponds to the column sum of the non-diagonal variance shares (i.e., the total share of variance which is explained by the corresponding

column variable). C10 refers to the measure of total connectedness (see section 2.2).

TABLE 7 Connectedness: GFEVD (Lanne & Nyberg, 2016)

AUD CAD CHF EUR NOK NZD SEK USD JPY IN

AUD 33.7 11.4 3.8 3.9 9.3 21.6 8.0 2.8 5.5 66.3

CAD 17.2 28.9 4.7 4.1 9.6 13.3 7.1 7.5 7.7 71.1

CHF 4.6 3.8 44.1 8.9 7.6 5.0 8.1 4.3 13.5 55.9

EUR 7.4 5.2 13.8 20.6 13.6 7.1 17.4 4.3 10.6 79.4

NOK 11.7 7.3 6.5 9.2 32.9 9.3 17.8 1.5 3.9 67.1

NZD 20.8 8.7 4.4 4.0 7.9 38.7 6.8 2.3 6.3 61.3

SEK 10.3 6.0 7.4 12.1 17.4 8.2 30.9 2.2 5.4 69.1

USD 6.0 10.4 7.7 5.2 4.4 4.7 4.0 31.3 26.2 68.7

JPY 4.1 4.1 9.8 4.8 3.9 4.5 3.4 11.2 54.0 46.0

OUT 82.2 56.9 58.0 52.2 73.7 73.7 72.6 36.2 79.3 C10 = 65.0

Note: The table shows the (10 periods ahead) forecast error variance decomposition of the SVAR model which is identified by using generalised impulse
responses. The column ‘IN’ corresponds to the row sum of the non-diagonal variance shares (i.e., the total share of variance which is explained by
[international] shocks). The column ‘OUT’ corresponds to the column sum of the non-diagonal variance shares (i.e., the total share of variance which is

explained by the corresponding column variable). C10 refers to the measure of total connectedness (see section 2.2).
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obtained spillover matrix (see Table C1) shows a very
similar pattern when compared to Table 9.21 The total
connectedness increases slightly because of missing over-
identifying restrictions.22 However, the relative impor-
tance of the shocks remains the same, therefore the
results are qualitatively similar. For instance, shocks to
the euro explain 8.1% (9.1% with over-identifying restric-
tions) of Swiss franc forecast error variance and only 0.3%
(0.0% with over-identifying restrictions) of New Zealand
forecast error variance, although the coefficient b97 is
now unrestricted. It is also surprising to see that the mea-
sure of total connectedness, C10 = 41.0 is very similar to
the Cholesky application with random ordering (here,
C10 = 41.1). This finding supports Diebold and
Yilmaz (2014), who argue that the system-wide summary
measure (Ch) is often robust to the Cholesky ordering.
However, this does not change the fact that the result is
due to a random ordering and thus (potentially) a result
of misspecification.

In summary, the PC algorithm provides us with well-
defined directed edges, which enable us to unveil a
directed network of exchange rates. This gives the PC
algorithm a clear advantage over the other presented
methods. However, the PC algorithm is computationally
also the most intense procedure, particularly because of
the time-consuming bootstrap.23

4.4 | Cluster analysis

In this section, we exploit the connectedness between
exchange rates (displayed in Table 9) in order to divide
the network into clusters (also known as communities or
modules). A cluster is characterised by a high number of

edges between nodes within the cluster, relative to the
number of edges to nodes outside the cluster. In this
sense, we visualise the previously estimated connected-
ness and identify groups of exchange rates with a rela-
tively high intra-group connectedness. These groups can
be interpreted as currency blocs. The currencies of a bloc
are likely to move in tandem, which is important infor-
mation for policy makers and the management of cur-
rency risk. Note that our definition of a currency bloc is
more general than the definition by Fischer (2016), for
instance.

The quality of the partitioning of a whole network,
which can consist of as many clusters as nodes, is thus often
expressed by a measure, depending on the differences
between the numbers of edges within clusters and the num-
bers of edges that would exist if it were a random network
model. Hence, positive values indicate the existence of clus-
ters. This measure is referred to as modularity. For a
detailed explanation, we refer the reader to Blondel
et al. (2008), who propose a popular algorithm (hereafter:
Louvain algorithm) which detects the best clustering by
maximizing modularity. Initially, the algorithm assigns
each node to a single cluster. In a second step, the algo-
rithm moves nodes to new clusters if gains in modularity
can be achieved until no additional gain can be achieved
(see Blondel et al., 2008). One drawback of the Louvain
algorithm is that it is designed for undirected networks.
Consequently, it is not feasible given the causal structure of
our network. Dugué and Perez (2015) provide a solution to
this common problem. They modify the Louvain algorithm
in such a way that it allows for directed modularity as
defined by Leicht and Newman (2008).

Using the Directed Louvain algorithm by Dugué and
Perez (2015), we aim to partition the network in Table 9.

TABLE 9 Connectedness: PC algorithm (α = 0.1)

AUD CAD CHF EUR NOK NZD SEK USD JPY IN

AUD 53.0 16.8 0.1 0.0 24.1 0.0 0.0 5.9 0.1 47.0

CAD 0.1 61.6 0.1 0.1 16.8 0.0 0.0 21.2 0.1 38.4

CHF 0.1 0.0 61.9 9.1 8.4 0.0 3.5 8.9 8.0 38.1

EUR 0.5 0.3 0.1 39.6 36.1 0.0 13.8 6.9 2.7 60.4

NOK 0.4 0.1 0.0 0.0 98.6 0.0 0.2 0.2 0.5 1.4

NZD 24.3 11.2 0.4 0.0 14.5 42.3 0.0 6.6 0.6 57.7

SEK 1.6 0.6 0.0 0.0 52.0 0.0 45.1 0.3 0.5 54.9

USD 0.2 0.1 0.0 0.1 0.2 0.0 0.0 99.3 0.0 0.7

JPY 0.0 0.0 0.0 0.0 0.3 0.0 0.1 41.2 58.4 41.6

OUT 27.1 29.2 0.7 9.4 152.4 0.1 17.6 91.1 12.5 C10 = 37.8

Note: The table shows the (10 periods ahead) forecast error variance decomposition of the SVAR model, which is identified by the PC algorithm. The column
‘IN’ corresponds to the row sum of the non-diagonal variance shares (i.e., the total share of variance which is explained by [international] shocks). The column
‘OUT’ corresponds to the column sum of the non-diagonal variance shares (i.e., the total share of variance which is explained by the corresponding column

variable). C10 refers to the measure of total connectedness (see section 2.2).
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We observe in Figure 2 that the algorithm classifies the
G10 currencies into three different clusters. The first clus-
ter contains the AUD, CAD and NZD, which are often
referred to as commodity currencies. Another common
property is that investments in these countries provide

the investor with a relatively high yield. The NOK is
often also referred to as a commodity currency, but it is
part of the second cluster. In addition to the NOK, this
cluster also contains the EUR as well as the SEK and thus
European currencies only. The third cluster contains the

FIGURE 2 Partition according to

the directed Louvain algorithm. This

figure shows the exchange rates

clustered according to the spillover

matrix of the PC algorithm (Table 9).

Cluster 1 (dark grey): AUD, CAD, NZD;

Cluster 2 (grey): EUR, NOK, SEK;

Cluster 3 (light grey): CHF, USD, JPY.

Causation propagates clockwise.

FIGURE 3 Exchange rate

movements following the Brexit

referendum. This figure shows pound

sterling exchange rate movements

following the Brexit referendum (pound

sterling in quantity quotation). Exchange

rates are marked according to their

corresponding cluster. Cluster 1 (solid):

AUD, CAD, NZD; Cluster 2 (dashed):

EUR, NOK, SEK; Cluster 3 (dotted):

CHF, USD, JPY. Source: ECB.
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CHF, USD and JPY. These currencies are often referred
to as safe haven and/or carry funding currencies (see
Ferreira Filipe & Suominen, 2013; Hossfeld &
MacDonald, 2015). Thus, the latter group has the ten-
dency to appreciate in times of financial stress, either
because investors are seeking a safe haven for their
investments or due to the unwinding of carry trades.

4.5 | Empirical assessment of the
clustering: Brexit referendum

In this section, we assess the quality of the partition
suggested by the Directed Louvain algorithm. To this end
we normalise all exchange rates before the referendum
on the UK's membership of the EU, the result of which
surprised many market participants, and discuss their
movements during the trading days following the refer-
endum (see Figure 3). The Brexit referendum is an
appealing example, as it is a shock to the numéraire,
which affects all other currencies. Following the referen-
dum, the pound sterling depreciated against all curren-
cies in our sample. Figure 3 shows the movements of the
pound sterling exchange rates against all currencies in
quantity quotation (cross rates of ECB reference rates). In
order to simplify the interpretation, exchange rates have
been normalised to 100 on the day of the referendum
(23 June 2016 is day 0).24 The similarity of movements
within clusters is striking. Currencies within the first
(solid lines) and second (dashed lines) cluster, in particu-
lar, move closely in tandem. Only currencies in the third
cluster (dotted lines) display a slightly larger dispersion.
Nor is it surprising that the pound sterling depreciates
strongly against the third cluster, which reflects safe
haven and carry funding currencies. These are supposed
to appreciate in times of financial stress. Additionally, it
is expected that the European currencies appreciate the
least of the three clusters, because the uncertainty sur-
rounding Brexit means uncertainty for the European
Monetary Union. The Swiss franc, which has been found
by our procedure to belong to the cluster of safe havens,
moves in the case of the Brexit experiment more closely
in line with European currencies.

Overall, we observe that exchange rate movements
follow a very similar pattern, but we also see that the dis-
persion within clusters is strikingly low.

5 | CONCLUSIONS

The literature on connectedness between exchange rates
has so far ignored a potential causal structure. Research
along the lines of Diebold and Yilmaz (2014) is based on

a FEVD in a VAR framework. The difficulty in this con-
text is the identification of the variance–covariance
matrix in order to orthogonalise the shocks. We show
that a Cholesky decomposition, which is frequently used,
can lead to arbitrary results, as the outcome depends
heavily on the ordering of the variables. A generalised
FEVD is independent of the ordering of the variables, but
it is unable to detect causality between the shocks. The
same applies when all possible orderings of variables are
considered (see Klößner & Wagner, 2014).

We address this problem by employing a causal sea-
rch algorithm from the machine learning literature,
which is able to find causality in contemporaneous data.
This approach is then applied to the G10 currencies,
whereby nine currencies are modelled vis-�a-vis the pound
sterling as the numéraire currency. Our results suggest
that the US dollar and the Norwegian krone are the most
independent currencies in our sample. Shocks to these
currencies affect a large set of other currencies. We also
observe that connectedness between commodity curren-
cies and those that are often referred to as safe haven
and/or carry funding currencies is particularly high.

Using a clustering algorithm, we identify three cur-
rency clusters which confirm the previous findings. The
first cluster contains commodity currencies such as
the AUD, CAD and NZD. The second cluster comprises
the European currencies EUR, NOK and SEK. Finally,
the third cluster contains the CHF, USD and JPY—cur-
rencies, which are often referred to as safe haven or carry
funding currencies. They have the tendency to appreciate
in times of financial stress.

In an additional exercise, we evaluate the movements
of currencies with respect to their clusters following the
Brexit referendum. We observe that the dispersion of
exchange rate movements within clusters is indeed rela-
tively low, particularly for the first and second clusters.
The third cluster shows the strongest appreciation against
the pound sterling following the referendum. The Swiss
franc, however, appears to move more closely in line with
other European currencies (second cluster).

Overall, these estimates provide important information
for policy makers and practitioners, as they shed light on
potential co-movements between certain exchange rates.
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ENDNOTES
i Note that the G10 currencies refer to the 10 most heavily traded
currencies and not to the Group of Ten countries.
1 In order to measure spillover effects using variance decomposi-
tions, the numéraire currency should neither be an anchor cur-
rency nor be pegged to another currency. Returns of fixed
exchange rates have no volatility, implying that variance decom-
positions would be meaningless. Moreover, we interpret an
exchange rate as an asset price and focus in our empirical analy-
sis on exchange rate changes. Within this strand of literature,
exchange rate changes (log differences) are referred to as
exchange rate returns.

2 Previous studies have focussed on the ability of the PC algorithm,
a causal search algorithm which will be explained in the follow-
ing sections, to detect the correct causal structure. We, however,
focus on the ability of different approaches to detect the correct
degree of network connectedness.

3 PC stands for the initials of its inventors, Peter Spirtes and Clark
Glymour.

4 On these grounds, we estimate our SVAR models equation by
equation using OLS.

5 For an introduction to FEVDs, see Lütkepohl (2005).
6 Chan-Lau (2017) studies the advantages of the Lanne and
Nyberg (2016) approach in a connectedness application. Note
that this is not the same GFEVD approach as in Diebold and
Yılmaz (2014). Nevertheless, it is also subject to the shortcoming
that it fails in modelling contemporaneous causality.

7 The chosen settings are: (conservative = TRUE, solve.
confl = TRUE, u2pd = c(‘relaxed’)). By choosing the conservative
rule instead of the retry option, the algorithm produces a fully
order-independent output; see Colombo and Maathuis (2014).

8 Note that the PC algorithm is a constraint-based approach, while
the GES algorithm is a score-based method. Constraint-based
approaches work with conditional independence tests. Score-
based approaches assign scores to particular graph structures
based on the data fit, for example using scoring metrics like the
BIC score, which we use here.

9 Given positive correlations between variables in applications to
most markets, it is a reasonable assumption to focus on negative
entries in the contemporaneous matrix.

10 In contrast to our application, we perform 100 bootstrap runs in
the Monte Carlo experiment.

11 We identified 17 links in our application. Hence, the sum of in-
and out-degree is 34. Thirty-four divided by 9 is 3.8.

12 As our focus is on the identification of the contemporaneous
causal structure and its impact on the connectedness between
returns, we are not interested in dynamic total connectedness,
which is a standard procedure in this literature.

13 Note that all exchange rates are fixed at the same time. Hence,
trading times do not overlap.

14 The minimum rate was abandoned on 13 January 2015, which
caused the Swiss franc to appreciate strongly against several
major currencies.

15 Note that even if the numéraire is an independent currency, hard
pegs among other currencies in the sample cause collinearity.

16 When performing Ljung-Box tests on the residuals of the VAR
(1), the null hypothesis of no autocorrelation cannot be rejected
in each of the equations under the 5% significance level. Hence,
a lag length of one in the VAR is adequate to model the multivar-
iate dynamics of the system.

17 Bi-directed edges have not been found in our application.
Where a bi-directed edge is detected in the bootstrap of the
application, these edges are displayed under ‘bi-directed’ in
Table 5. Overall, bi-directed edges are not prominent in our
application, no bi-directed edge has been found on the origi-
nal data, and only one edge showed a relevant occurrence of
bi-directed outcomes in the bootstrap. The absence of bi-directed
edges indicates that the system of exchange rates is contemporane-
ously self-contained. Latent variables, which might affect several
exchange rates, seem to enter only with a lag.

18 Note that due to the over-identifying restrictions, this ordering is
not unique. For example, the Japanese yen could also be ordered
behind the Norwegian krone and the following other currencies,
but it needs to be before the euro. Hence, some other orderings
would also be consistent with the output of the causal search
algorithm. However, the computed connectedness measures in
the following are not influenced by our choice of a recursive
ordering.

19 We observe that the sum of variance shares is close to unity, but
not exactly unity.

20 The minimum exchange rate was introduced by the Swiss
National Bank on 6 September 2011 and abandoned on
15 January 2015. It served as a key monetary policy instrument.

21 Note that in Table C1 the currencies follow the recursive
ordering.

22 Given the Cholesky decomposition, we no longer have exact zero
entries in the lower diagonal of the contemporaneous matrix.
The non-zero coefficients translate into minor changes in the
variance shares.

23 However, we found that working with a small number of boot-
strap runs usually leads to the same result as with a large num-
ber of runs. For example, for our application we ran
100 experiments with bootstraps with 100 runs each and found
that 86 experiments lead to the same contemporaneous matrix as
a bootstrap with 10,000 runs, while in 14 experiments one of the
edges is found to be directed differently.

24 Note that the fixing of ECB reference rates takes place at 14:15
CET—before the results of the referendum were published.
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APPENDIX A: ESTIMATED MATRICES A

which can be inverted and scaled by the standard deviations of the residuals to.

APPENDIX B: MAXIMUM AND MINIMUM CONNECTEDNESS B

TABLE B1 Maximum connectedness considering all permutations of recursive orderings

AUD CAD CHF EUR NOK NZD SEK USD JPY

AUD 99.8 44.0 9.9 18.9 28.4 58.1 26.0 11.8 9.5

CAD 43.8 99.1 11.0 17.7 24.7 31.9 20.2 28.4 12.7

CHF 9.9 11.0 99.5 36.5 15.9 11.2 18.8 15.4 23.0

EUR 18.8 17.7 36.5 99.3 40.6 18.7 55.7 18.3 20.2

NOK 28.5 24.5 15.8 40.3 98.6 22.6 52.5 5.6 5.2

NZD 58.1 32.0 11.2 18.8 22.6 99.7 20.7 9.5 10.8

SEK 25.9 20.1 18.9 55.6 52.7 20.6 99.0 9.0 8.5

USD 12.0 28.4 15.4 18.2 5.7 9.6 9.1 99.4 41.1

JPY 9.4 12.7 23.0 19.9 4.9 10.7 8.1 41.2 99.6

Note: The table shows (10 periods ahead) forecast error variance decomposition values of SVAR models which are identified by a Cholesky decomposition. The
entries of the matrix show the maximum entries which can be achieved with a Cholesky decomposition approach considering all possible orderings.
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APPENDIX C: ROBUSTNESS ANALYSIS C

TABLE C1 Connectedness: Cholesky (ordering according to PC algorithm)

USD JPY NOK CAD AUD SEK EUR CHF NZD IN

USD 99.4 0.0 0.2 0.1 0.2 0.0 0.1 0.0 0.0 0.6

JPY 41.2 58.4 0.3 0.0 0.0 0.1 0.0 0.0 0.0 41.6

NOK 5.6 1.2 92.5 0.1 0.4 0.2 0.0 0.0 0.0 7.5

CAD 28.4 0.1 14.6 56.5 0.1 0.0 0.1 0.1 0.0 43.5

AUD 11.8 1.3 20.9 16.2 49.6 0.0 0.0 0.1 0.0 50.4

SEK 9.0 1.9 44.4 0.3 1.1 43.2 0.0 0.0 0.0 56.8

EUR 18.3 5.2 28.6 0.2 0.1 12.3 35.1 0.1 0.0 64.9

CHF 15.4 8.9 8.5 0.0 0.0 2.0 8.1 57.2 0.0 42.8

NZD 9.5 3.0 16.1 10.6 21.0 0.0 0.3 0.1 39.4 60.6

OUT 139.2 21.6 133.6 27.5 22.9 14.7 8.6 0.4 0.1 C10 = 41.0

Note: The table shows the (10 periods ahead) forecast error variance decomposition of the SVAR model which is identified by a Cholesky decomposition
determined by the PC algorithm. The column ‘IN’ corresponds to the row sum of the non-diagonal variance shares (i.e., the total share of variance which is
explained by [international] shocks). The column ‘OUT’ corresponds to the column sum of the non-diagonal variance shares (i.e., the total share of variance

which is explained by the corresponding column variable). C10 refers to the measure of total connectedness (see section 2.2).

TABLE B2 Minimum connectedness considering all permutations of recursive orderings

AUD CAD CHF EUR NOK NZD SEK USD JPY

AUD 32.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1

CAD 0.0 42.3 0.0 0.0 0.1 0.0 0.0 0.0 0.1

CHF 0.0 0.0 57.1 0.0 0.0 0.0 0.1 0.0 0.0

EUR 0.0 0.0 0.0 30.7 0.0 0.0 0.0 0.0 0.2

NOK 0.3 0.0 0.0 0.0 38.9 0.0 0.0 0.0 0.2

NZD 0.0 0.0 0.0 0.0 0.0 39.4 0.0 0.0 0.1

SEK 0.0 0.0 0.0 0.0 0.0 0.0 32.1 0.0 0.3

USD 0.0 0.0 0.0 0.0 0.1 0.0 0.0 45.6 0.0

JPY 0.0 0.0 0.0 0.0 0.2 0.0 0.0 0.0 50.3

Note: The table shows (10 periods ahead) forecast error variance decomposition values of SVAR models which are identified by a Cholesky decomposition. The

entries of the matrix show the minimum entries which can be achieved with a Cholesky decomposition approach considering all possible orderings.
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