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Abstract 

Designing new materials with desired properties is one of the main challenges for the current industrial and 

academic research, in the attempt to cover the societal demands. The ‘utopia’ would be, not only to find more 

reliable methodologies but also develop smarter ways for accelerating their discovery. Data-driven approaches are 

gaining ground as a tool for detecting patterns in known datasets and perform straightforward predictions.  

In this work, both computational chemistry approaches and machine learning were employed to investigate two 

different types of molecular materials: 1) metal-doped polyaromatic hydrocarbons and 2) co-crystals.  

The first Chapter provides a wide overview of the developments the data science tools have brought to the molecular 

world in the past years and covers the main theoretical aspects of the studied materials.  

In Chapter two, a broad overview of the methods used to support this work is given covering both data science and 

computational chemistry aspects.  

Chapter three is about the study of the relations between electronic properties and molecular structure in 

polyaromatic hydrocarbons, which are the building blocks of the materials studied herein.  

Chapter four is diving more into the metal-polyaromatic hydrocarbon systems, starting from the extraction of all 

the available information regarding the currently known systems and further on developing strategies on how to 

guide the selection of the next most interesting systems. 

Chapters five and six are related to co-crystals and how machine learning can be effectively used to provide an in-

silico screening tool to prioritize molecular pairs that have high probability to form co-crystals. Chapter five is 

focused on the formation of molecular crystals, that consist of two components (co-crystals) connected via π-π 

interactions that might have electronic functionalities, i.e., conductivity, whereas in chapter six the methodology 

developed for π-π co-crystals is scaled-up to cover all the co-crystal types. In both chapters, computational and 

machine learning approaches are implemented to detect promising coformers. Cambridge Structural Database 

(CSD), which is the world’s repository for small-molecule organic crystal structures is the knowledge source for 

extracting the crystal structures of interest and then trying to understand the rules that guide their existence in terms 

of their conformer combinations. 

Overall, this work is an attempt to combine predictive approaches using various machine learning algorithms with 

high-throughput computational modelling to guide the synthesis of new functional organic crystals. It is postulated 

that the complementarity of these tools will enable us to gain better insight into the materials discovery problems 

and thus drive to innovative and creative solutions. 
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1. Introduction 

Discovering new materials is one of the main drivers of technological progress. Over the last hundred years, new 

materials were usually found accidentally with trial-and-error experiments guided by human expertise. More 

recently, with the establishment of computational science, experimental work has been accelerated through 

computational screening. In the era of the fourth industrial revolution, materials design has changed its shape and 

priorities following the rise of artificial intelligence, high-performance computing and open-data regulations.1  

Current breakthroughs in the application of Artificial Intelligence (AI) and Machine Learning (ML) in life sciences 

have set the ground for systematizing materials design and discovery. Alphafold enables the accurate prediction of 

the three dimensional protein structure given only one dimensional information i.e., the sequence of amino-acids.2 

Molecular transformer has been successfully used in synthesis planning for predicting the products of a reaction 

given the reactants and reagents.3 It was also proven that the model can learn the language of chemical reactions 

and correctly classify them based on organic chemistry rules.4 Message Passing Neural Networks (MPNN) were 

used for screening a large molecular database to identify novel compounds with antibiotic activity5, to name just a 

few successful applications of data-driven models which not only accelerate materials discovery but also aid in 

gaining a deeper understanding of the existing data.   

Following these advances, the main areas where AI/ML has been established include: i) property prediction, i.e., 

models trained on curated datasets with known properties and are able to predict the desirable properties of any new 

material.6–8 Using the trained models, we can now rapidly screen materials for desirable properties by searching 

materials databases. ii) materials classification, i.e., being able to categorize materials based on their similarities. In 

that way materials that belong to the same class are expected to have similar properties9,10 iii) The systematic design 

of novel materials to expand our search beyond the structures stored in databases using inverse design. In this regard, 

new materials with optimal properties can be generated.11,12 

Some of the main problems the current AI-based systems encounter is the lack of negative data, the extremely 

biased datasets, unstructured data, and lack of explainability and physical understanding of the machine learning 

predictions.13–16 Moreover, most of the ML models are based on the available data, and it is hard to extrapolate to 

unseen and novel materials. These challenges and opportunities for the important domain of molecular materials 

are going to be discussed in this thesis. 

 

1.1 Molecular materials 

Ranging from pharmaceuticals to electronic materials (Figure 1.1), the discovery of functional compounds is 

recognized as one of the fundamental pillars for the development of advanced technologies which are needed to 
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face the challenges in clean energy, sustainability and global health.17 Drug discovery is a priority task, aiming 

towards not only finding new drug candidates but also being able to modify their physicochemical properties, e.g., 

making the drug more soluble to improve its delivery efficiency or improve its binding to proteins.18  

Furthermore, the interest towards organic electronics has grown since many successful organic photovoltaic cells 

(OPC), light emitting diodes (LED) and thin film transistors (TFT) have been reported.19,20 Organic electronics offer 

an alternative option to inorganic materials for applications that require low-cost, large-area and flexible electronic 

devices. In this regard, isotropic polymers, i.e., amorphous materials with identical properties in all their directions,  

are more used in the LED development, while highly ordered (anisotropic) compounds are considered more suitable 

for TFTs.21 In the context of energy storage, great focus is also put on the design of batteries from sustainable and 

cheap resources to substitute toxic lithium-ion counterparts. Metal-organic frameworks (MOFs) have gained 

significant attention from the academic community as gas separation and storage materials due to their 

unprecedented chemical and structural tunability.22   

  

Figure 1.1 Examples of molecular materials, including drugs (csd id: COTZAN02),23  Metal Organic Frameworks (csd 

id: ACAHAN),24 polymers (csd id: WIMZEX),25 proteins (Uniprot id P00370),26 organic electronics (csd id: BORCIW),27 

superconductors (csd id: QUHYOH).28 (Central molecules csd ids: YUFMAN, BENZEN) 
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It is evident that the molecular world is vast and current technologies are aimed towards finding clever approaches 

to navigate this world and investigate the huge possibilities it can offer. A synergy between AI/ML-driven models, 

computational chemistry and experimental realization is supposed to greatly improve the pace new discoveries are 

made and enable for a better understanding of molecular materials. 

1.2 Data-driven approaches for the discovery of new functional materials 

Machine learning has been incorporated in many fields of science and technology, ranging from medical diagnostics 

to materials design.29–31 Computational models are built to identify hidden patterns in data for the automated 

generation of information, often with a strong focus on making predictions of future data.  

The advances in machine learning algorithms, the vast amount of open-source chemical data and the availability of 

powerful computational resources have given rise to the development of different types of mathematical models 

that once trained on a dataset can infer the hidden patterns on the data and map input data to output values. For a 

given field of research, the success of data-driven materials discovery is often contingent on the availability of a 

large and diverse set of chemical data that display patterns according to structure-property relationships that are 

associated with that field.1 All the available chemical information makes the ‘chemical space’ of each subdomain 

of materials. The shape and size of the chemical space define the type of machine learning models that could be 

applied to the discovery of new materials.  

The goal of machine learning is to use algorithms to learn from data, in order to build generalizable models that 

give accurate classifications or predictions, or to find (useful) patterns, particularly with new and previously unseen 

data. The concept of deriving structure-property relationships is not new. This started many years ago with a method 

known as Quantitative Structure Activity Relationship (QSAR) modelling.32 Nowadays with the increase on the 

available data and the speed of calculations, QSAR has been substituted by up-to-date neural networks that are 

capable of modelling non-linear relationships in the data. Current research aims to bridge the gap between 

experiment and theory, and to promote a more data-intensive and systematic research approach.  

Applications of data-driven approaches can be found in various domains, e.g., for extracting important information 

of the electronic features space and understanding which of them have an important role in predicting some specific 

properties relevant to material’s performance. Sahu et al.. managed to estimate the power conversion efficiency 

(PCE) of organic photovoltaics using 13 important microscopic properties.33 Padula et al. combined both electronic 

properties with structural similarities of organic molecules to assess the power efficiency of similar molecules.34 In 

another work, researchers were able to simultaneously predict multiple electronic properties, including static 

polarizabilities, excitation energies and intensities, based only on stoichiometry and configurational information of 

small organic molecules35. 
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ML complements and can even be combined with established theoretical chemistry techniques, such as Density 

Functional Theory (DFT), wave function theory, force fields, and molecular dynamics. These sophisticated, physics 

inspired methods have proven to be highly valuable post hoc to understand specific systems. However, their 

prospective use is less common, due to their significant computational cost. With appropriate training data in hand, 

an ML model can learn on its own to generate such predictions, also for data points which the model has never 

encountered before – independent of current (human) knowledge. 

Machine learning methods bear the potential to change, or at least to strongly impact, the way chemical challenges 

will be approached in the future – guiding and complementing the skill set of synthetic chemists. With increasing 

amounts of well-curated data and algorithmic advances, the prime time for applying machine learning in chemistry 

is yet to come. The focus of this thesis is on developing data-driven strategies for accelerating the discovery of new 

materials that can arise by combining two different molecules, or a molecule with a metal.  

 

1.3 Co-crystals: materials based on molecular combinations 

A co-crystal can be defined as a crystalline material consisting of two or more different molecules in specific 

stoichiometries. The basic requirements of those structures for being considered as co-crystals are provided by the 

crystal engineering field and could be summarized as following36:  

i) Co-crystals differ from salts, as none of their components are charged; in the co-crystal lattice, the components 

co-exist with a defined stoichiometry and interact non-ionically, whereas salts consist of charged molecules.  

ii) All co-crystal components are organic species, ruling out inorganics and organometallics.  

iii) Water and solvents are excluded as components, otherwise the crystal structures are characterized as hydrates 

or solvates, respectively.  

Co-crystals could be broadly categorized in those of pharmaceutical and those of electronic interest. They offer 

great opportunities in materials science as their solid form properties can be easily modified by the combination of 

different molecular species instead of modifying the original molecules.  

1.3.1 Co-crystals for pharmaceutical applications 

Co-crystallization has emerged as an important process for drug development. According to the regulatory 

classification of pharmaceutical co-crystals, produced by the Food and Drug Administration (FDA), one of the 

constitutional components of a co-crystal is considered as the API (active pharmaceutical ingredient) and the other 

coformers are selected such that they comply with the above mentioned requirements37. The importance of 

cocrystals in the pharmaceutical industry lies in the fact that they can change the physical properties of an API, 
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whereas the chemical features are preserved38. Some of the physical properties that can be effectively tuned by co-

crystallization are dissolution rate, compressibility and physical stability36,39. 

1.3.2 Co-crystals as organic conductors 

Organic conductors are extended conjugated π-systems that have the ability to transport charge when an electrical 

bias is applied. Research has shown that the electronic properties of interfaces between two different solids might 

significantly differ from those of the constituent materials. As an example, interfaces formed by insulating 

transition-metal oxides have shown metallic conductivity40,41 and even, under some conditions, superconductivity.42 

Likewise, there are reports of metallic systems being created from conjugated organic molecules that are insulators 

with the first metallic organic charge-transfer co-crystal being synthesized by tetrathiofulvalene (TTF) and 7,7,8,8-

tetracyanoquinodimethane (TCNQ) in 1:1 ratio.43  

 

Figure 1.2. Charge transfer in the TTF–TCNQ system. The TTF and TCNQ molecules are well known since their use in 

the synthesis of the first metallic charge-transfer compound. In TTF–TCNQ crystals, electrons from the HOMO of the 

TTF molecules are transferred into the LUMO of the TCNQ molecules, leading to a stable charge-transfer state. 
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This co-crystal behaves as a metal over a large temperature range and has a large maximum electrical conductivity 

σmax=1.47x104 cm-1 at 66 K44, although single TTF and TCNQ crystals are semiconductors showing very low 

conductivity with HOMO-LUMO gap larger than 2eV.45 In the TTF–TCNQ system, the electronic transport is 

achieved between the highest occupied molecular orbital (HOMO) of TTF (donor) and the lowest unoccupied 

molecular orbital (LUMO) of TCNQ (acceptor), as shown in Figure 1.2. The constituent molecules are arranged in 

linear chains and the material is highly conducting at room temperature when these chains behave as decoupled, 

one-dimensional electronic systems. At low temperatures, the compound becomes an insulator owing to two Peierls 

transitions, i.e., rearrangement of electrons due to lattice distortion, occurring independently on the TTF and TCNQ 

chains (at T= 54 K for the TCNQ chain and at T=38 K for the TTF chain). 

1.3.3 Driving forces of co-crystal formation 

Various knowledge-based approaches have been implemented for understanding the powers that affect co-

crystallization. The fundamental know-how around their formation includes the selection of the constitutional 

molecules and investigates their connection to each other in a way that stable crystal structures will be formed. 

Considering the types of bonding in various co-crystal structures, the most commonly found are those relevant to 

the functional groups of the molecules (hydrogen-bond donors and acceptors, halogen atoms)46
 or refer to weakly 

bound co-crystals with no functional groups (π-π stacking or other weak interactions)47.  

A popular virtual screening method is calculating the electrostatic potential surfaces for hydrogen bonded two-

component cocrystals and the energy difference between the two pure solids and cocrystals is used as a probability 

measurement for a cocrystal formation. It was shown that for the experimentally observed structures this 

measurement is higher, indicating that this metric can be useful for quick assessment of a cocrystal formation. 

However, it is only limited to cocrystals with H-bond interactions48. Machine learning approaches can also predict 

quite accurately if two components will form a co-crystal or not, based on the complementarity of their functional 

groups (supramolecular synthons)49
 or their ability to form hydrogen bonds (hydrogen-bond forming moieties) 50. 

However, those methods cannot be appropriately fitted to structures where π-π interactions dominate. Thus, more 

general approaches that consider a wider range of molecular properties have been developed, which propose that 

shape and polarity are the most important descriptors that can influence the co-crystal formation.51  

Although the selection of the appropriate model depending on the candidate molecules enables for a quick in-silico 

screening for prioritizing molecular pairs, that does not guarantee the formation of a co-crystal. Some other 

approaches for defining a general rule for co-crystal formation are considering the energetic profile of the coformers, 

proving that a multicomponent crystal is expected to form only if it is thermodynamically more stable than the 

crystals of its constituents.52,53 In this approach all the possible types of bonding were taken into consideration and 

the changes in energy that might happen when a cocrystal is formed are calculated. It is suggested that the co-
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crystallization is almost always the thermodynamically favoured process, but it is still difficult to extract a general 

rule for guiding the synthesis53. For this type of evaluation to be feasible,  the possible crystal structure should be 

first determined. A crystal structure can be predicted from the chemical diagram as was shown in the most recent 

international blind test organized by the Cambridge Crystallographic Datacentre which includes a co-crystal.54 

However, one of the highest concerns when working with crystals is the polymorphism they present. Polymorphism 

has been declared as the nemesis of crystal design as the physical properties of the several polymorphs cannot be 

easily controlled.55 Consequently, the stable polymorphs should also be considered with the Crystal Structure 

Prediction (CSP) methods and evaluated in terms of their properties56. In addition to the energetic stability 

considerations, there are also some experimental considerations that might prohibit co-crystal formation, e.g., in 

solution crystallization methods if one of the two co-crystal components crystallized first then a co-crystal in 

infeasible.57  

Overall, the co-crystallization prediction task is very challenging as many parameters should be taken into 

consideration. The CSP methods show promise, but they are still quite time consuming and thus cannot be 

effectively used to evaluate a large amount of possible molecular pairs. Moreover, the CSP predicted structures 

cannot incorporate experimental considerations such as the solubility of the coformers. For that reason, a virtual co-

crystal screening is an important first step before the application of a CSP method such that only the highly 

promising pairs are further evaluated. 

 

1.4 Metal-Polyaromatic Hydrocarbon (PAH) systems of electronic importance 

Focusing on novel materials with electronic applications, systematic research in the field of metal-intercalated PAHs 

has been performed by several research groups.58–63 These systems are comprised of a polyaromatic hydrocarbon 

dopped with alkali metals (Figure 1.3). The electronic properties that arise show promise and thus these materials 

can serve as alternatives to expensive metals and inorganic optoelectronics.  

Figure 1.3. Metal-intercalated PAHs of a) C60 dopped with caesium (Cs)  b) tetracene dopped with potassium (K). 
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Further on, an overview of the important electronic characteristics of organic molecules is given, followed by the 

properties than could be achieved after the metal insertion. 

1.4.1 The electronic characteristics of organic materials 

Organic materials have recently been the object of intense studies due to their opto-electronic properties which 

follow from the behaviour of the outer-shell electrons. For designing materials for electronic applications, it is 

essential to first identify the functionality we are interested in and then the important characteristics that might 

control that functionality. In this work, we are aiming at identifying the ways to design materials with conducting 

properties, thus the features that affect conductivity in a structure are going to be further discussed. As conductivity 

in molecular materials is highly related to the electronic structure, the connection between the molecular orbital 

theory and the band theory is first discussed below. 

From molecular orbital energies to the band theory of solids 

Molecular orbitals can be defined as a set of energy levels that describe the motion of electrons in molecules. 

Molecular orbitals encode the distribution of electrons in a molecule, thus offering direct insights into its underlying 

electronic structure. Especially the highest occupied molecular orbital (HOMO) and the lowest unoccupied 

molecular orbital (LUMO) could play significant roles as they are involved in exciton formation, exciton 

dissociation, and hole transport processes influencing the macroscopic conductivity33. The HOMO orbital is often 

associated with the ionization potential of the molecule, whereas the LUMO with the electron affinity, i.e., the ease 

with which the molecule may accept an electron. To date, the design and selection of organic electronics was based 

primarily on the HOMO and LUMO of organic molecules. However, current research has shown that LUMO, 

LUMO+1 gap could play a very important role in the efficiency of those materials33. 

When zooming out of a single molecule, we observe that molecules are found in periodic arrangements, if 

crystalline, comprising a solid material. The electronic structure of the solid is described by band theory instead of 

molecular orbital theory. The electronic structure of solids can be regarded as an extension of molecular orbital 

theory to aggregates consisting of virtually infinite numbers of atoms. When talking about the band theory in solids, 

e.g, crystal structures, we refer to the formation of continuous bands of energy levels instead of discrete levels. 

Moreover, the translational symmetry of the lattice has a key role to play to the energy levels. 
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Figure 1.4. Evolution of electronic structure represented by the potential well of a) single molecule (b) solid with weak 

and (c)solids with stronger intermolecular interactions. When intermolecular interactions are weak, the width of energy 

bands is very narrow. With increase in the intermolecular interaction the bandwidth becomes larger. Eg: bandgap, As: 

electron affinity of solid, Is: ionization energy of solid. 

Figure 1.4 illustrates the concept of the evolution of the electronic structure from molecular orbitals to the bands of 

solids. Starting from a single polyatomic molecule (Figure 1.4a) or else regarded as gas phase, the potential well is 

formed by the Coulombic potential of each atomic nucleus. The wells of the nuclei are merged to form a broad well 

where various molecular orbitals (MOs) exist and produce discrete energy levels that are different from the atomic 

energy levels. The upper horizontal part of the potential well is the vacuum level at which an electron that is taken 

apart from the molecule stops moving and its kinetic energy is zero.64 When molecules come together connected by 

weak interactions to form an organic solid (Figure 1.4b), the wave functions of the occupied valence states and the 

lower unoccupied states are mainly localized in each molecule, yielding narrow intermolecular energy band of the 

bandwidth approximately. When intermolecular interaction becomes larger (Figure 1.4c), both the occupied 

(valence) and unoccupied (conduction) bands become wider because of larger overlapping of relevant MOs of 

adjacent molecules, forming the bands of solid materials64  

Band theory and the Fermi level 

The electronic structure of a solid consists therefore of three main parts, the conduction band, the valence band and 

the band gap, which govern the electronic conductivity properties of a material and the following classification 

arises (Figure 1.5):65 

i) Insulators: Materials that cannot conduct electricity due to a large band gap (Eg) that separated the valence band 

containing an even number of valence electrons per unit cell for the empty conduction band. 
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ii) Semiconductors: Materials that can conditionally conduct electricity due to the even number of valence electrons 

per unit cell. They possess a full valence band separated by a small band gap (Eg) from an empty conduction band. 

Their conductivity arises from the excitation of electrons from the valence band into the conduction band. The 

number of electrons promoted to the conduction band increases with an increase in temperature. 

iii) Metallic conductors: Materials which have partially filled conduction bands and thus electric conductivity which 

increases as the temperature is decreasing. Metals are regarded as the most well-known conducting materials as the 

presence of charge-carrying electrons is most obvious. A metal can be described as an array of widely spaced, small 

ionic cores, with the mobile valence electrons spread through the volume between and thus conduct electricity. The 

metallic state is favored by most elements, especially those that belong to the left-hand side of the periodic table.  

It should be noted that another category that arises from conductivity considerations is superconductivity. This 

category is further discussed in a separate section (Section 1.4.2).  

 

Figure 1.5. Energy level diagram for an insulator, a semiconductor, and a metal. The band theory of solids gives the 

picture that there is a sizable gap between the Fermi level and the conduction band of the semiconductor or an insulator. 

At higher temperatures, a larger fraction of the electrons can bridge this gap and participate in electrical conduction. In 

conductors, the valence band and the conduction band overlap. Hence there is no bandgap and the valence electrons 

can move to the conduction band easily. 

Band theory is used to explain the behaviour of conductors, semiconductors and insulators. The bands of orbitals 

take their name depending on the type of orbitals they are formed by. For instance, we have s-band when the band 
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of orbitals is formed by the linear combination of s-orbitals, or p-band when it is a linear combination of p-orbitals. 

In a typical semiconductor/insulator, the energy separation of the s- and p-orbitals of the free atoms will be quite 

large and as a result the two bands will not overlap. 

Another important concept related to the band theory of solids is the Fermi energy (EFermi). The Fermi energy is the 

energy of the highest occupied electronic state at 0 K temperature.66 At absolute zero, the electrons pack into the 

lowest available energy states and build up a “Fermi sea” of electron energy states. The Fermi level is the surface 

At higher temperatures a certain fraction, characterized by the Fermi function, will exist above the Fermi level.  

In metals, the Fermi energy is equal to the energy difference between the highest and the lowest electron energy 

states of the conductions electrons at absolute zero.67 Consequently, there are electronic states just above the Fermi 

energy that can be populated by electrons which are accelerated from an electric field. As a result, the material can 

readily conduct electricity.68 

In semiconductors and insulators, the Fermi function f(E) gives the probability that a given available electron energy 

state will be occupied at a given temperature. The Fermi function comes from Fermi-Dirac statistics and has the 

form: 

𝑓(𝐸)  =  
1

𝑒(𝐸−𝐸𝐹)/𝑘𝑇+1
   (1.1) 

The basic nature of this function dictates that at finite temperatures, most of the levels up to the Fermi level EF are 

filled, and relatively few electrons have energies above the Fermi level. Note that although the Fermi function has 

a finite value in the gap, there is no electron population at those energies. The population depends upon the product 

of the Fermi function and the electron density of states. Consequently, in the gap there are no electrons because the 

density of states is zero. In the conduction band at 0K, there are no electrons even though there are plenty of available 

states, but the Fermi function is zero. At high temperatures, both the density of states and the Fermi function have 

finite values in the conduction band, so there is a finite conducting population.69 

Overall, in metals the Fermi energy falls into the conduction band, whereas for semiconductors and insulators is 

within the band gap, as shown in Figure 1.5. In doped semiconductors, p-type and n-type, the Fermi level is shifted 

by the impurities and is close to the band edge or falls inside the conduction band.70  

Other important electronic characteristics 

Some of the important features that have been used up to date in research on organic electronic materials are 

presented below: 

http://hyperphysics.phy-astr.gsu.edu/hbase/Solids/Fermi.html#c2
http://hyperphysics.phy-astr.gsu.edu/hbase/quantum/disfd.html#c1
http://hyperphysics.phy-astr.gsu.edu/hbase/Solids/Fermi.html#c1
http://hyperphysics.phy-astr.gsu.edu/hbase/quantum/disene.html#c2
http://hyperphysics.phy-astr.gsu.edu/hbase/Solids/Fermi.html#c4
http://hyperphysics.phy-astr.gsu.edu/hbase/Solids/dope.html#c4
http://hyperphysics.phy-astr.gsu.edu/hbase/Solids/dope.html#c3
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i) Electron-electron coupling (Hubbard term): The Hubbard Hamiltonian offers insight on how the interactions 

between electrons give rise to insulating, magnetic and even novel superconducting effects in a solid.71  

ii) Electron-phonon coupling (reorganization energy): The electron-phonon interaction is very important both in 

creating the phonon scattering of the electrons but also in the formation of Cooper pairs. This interaction is indeed 

the cause of superconductivity.72  

iii) Polarizability: A large polarizability is expected to stabilize the charge separated states and thus reduce the 

exciton binding energy.73 

1.4.2 Superconductivity in PAHs 

Superconductivity is the phenomenon present in a material where electricity flows though it with no resistance when 

the material is cooled below a transition temperature (Tc). The phenomenon was discovered in 1911 by Dutch 

scientist Heike Kamerlingh Onnes, who demonstrated the lack of resistance by creating an electrical current in a 

closed loop of a mercury superconductor74. Superconductivity is a state that usually exists either at very low 

temperatures or at higher temperatures with high pressure involved.  

The highest transition temperature superconductors at ambient pressure belong to the cuprates family, i.e., cuprates 

of mercury, barium and calcium at 133K.75,76 In general, superconductivity used to be a phenomenon observed 

mainly in inorganic materials. However, superconductivity has been observed in organic chemistry in structures 

that involve graphite or fullerenes (C60). Graphite has a layered structure composed of infinite benzene-fused π-

planes (graphenes) with sp2 character, whereas fullerene has a soccer-ball-like structure with 12 pentagonal and 20 

hexagonal symmetrically arrayed faces that belongs to a high symmetry group, the icosahedral point group Ih. 

Superconductivity in these molecules was first reported in 1990 after alkali metal doping.77,78 Only recently, in 

2018, superconductivity in pure graphene was reported in a sandwich of two graphene layers when they are twisted 

at a ‘magic’ angle of 1.1o.79 

Going beyond graphite and C60, alkali-doped polyaromatic hydrocarbons have shown promise for their potential 

superconducting behaviour. PAHs are currently one of the most interesting and challenging research subjects due 

to their high stability, their rigid planar structure, and their characteristic optical spectra.80 Polyaromatic 

hydrocarbons are of interest for their structural relationship to fullerenes, as they include fused benzene rings and 

thus a conjugated π-system. The intermolecular interactions, in particular the π–π interactions, depend on the 

packing of the molecules in the crystal structure, and there are a few typical arrangements which favour the π–π 

interactions and, therefore, the electronic properties. 

With superconductivity being a highly sought-after property, there is a rich literature both on theoretical and 

experimental studies of different PAHs showing superconductivity when intercalated with alkali-metals. Once the 



 
 

39 

crystal structure of the material is determined, it is possible to obtain information about the electronic band structure. 

The occupation of the low energy orbitals of the PAHs by the electrons given by the potassium atoms will affect 

the Fermi level and consequently impact the charge transport in the material. Some examples are K3Picene, with a 

critical temperature of 18 K, and subsequently phenanthrene-, dibenzopentacene-, and coronene-based materials. 

The maximum superconducting temperature of 33 K was reported in potassium-doped 1,2:8,9-dibenzopentacene81. 

In addition to using the alkali metals dopants, there are references for superconductivity with rare earth doping in 

phenanthrene with the Tc approaching 6 K for La and Sm and in chrysene with Tc around 5 K for Sm.82 

Despite the vast reports of superconductivity in PAHs, the reproducibility of those products and a lack of detailed 

characterization inhibits the understanding of the properties of these materials.83,84 However, some insights about 

the mechanism of superconductivity have been gained through theoretical models, which suggest that both electron-

phonon interactions as well as electron correlations might play an important role.85 

 

1.5 Scope and structure of this thesis 

The aim of this thesis is to provide computational tools and workflows for enabling functional materials discovery. 

The main tools used are machine learning models, computational chemistry software and databases. Having 

polyaromatic hydrocarbons as the main building blocks for electronic materials, we are investigating their behaviour 

in metal:PAHs systems and in co-crystals. 

The thesis is outlined as follows: 

• Chapter 2 presents the main methodologies and tools used to support this work, ranging from machine 

learning algorithms to density functional theory.  

 

• Chapter 3 is related to a general understanding of the structure-property relations in PAHs. Starting from 

a small dataset of 210 PAHs we explore the important correlations between structure and orbital energies, testing 

on different 2D and 3D representations. Using these findings, we extrapolate on a large and diverse dataset of 7,000 

PAHs. Two main datasets are constructed which are the base for the analysis in the next chapters: i) 210 PAHs 

dataset for selecting pairs for co-crystallization and ii) 7,000 PAHs to select promising molecules for intercalation. 

 

• Chapter 4 is focusing on metal:PAHs systems. A comprehensive workflow is built to drive the selection 

of the best PAHs candidates to be experimentally intercalated. A Crystal Structure Prediction (CSP) study is 

performed on the most promising candidates for identifying energetically stable configurations and comparing the 

relative energies with the currently known metal:PAHs systems. The calculations demonstrate that all intercalated 
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structures are more stable than their constituent parts, indicating that the energetic stability might be a driving force 

for the formation of these systems. 

 

• Chapter 5 aims to establish a computationally efficient methodology, namely the one class classification, 

to identify promising molecular pairs for designing novel co-crystal structures with important electronic features, 

based on electronic, molecular and topological properties of the monomers. In this chapter, machine learning 

approaches are implemented to learn the boundaries of the area in which all the known PAHs co-crystals belong 

and then apply this knowledge to rank promising combinations of molecules according to their similarity to the 

known instances. The selection of the high-ranking pairs is further optimized based on electronic considerations, 

i.e., similarity to TCNQ, an electronically active molecule. Experimental verification of the method shows 

promising results as two novel PAHs co-crystals were synthesized with bandgaps in the range of semi-conducting 

materials. 

 

• Chapter 6 extends chapter 5 and explores how the one class classification approach can be extended to 

cover the whole known co-crystal space. The approach is validated on extended benchmark datasets including both 

successful and unsuccessful co-crystal screening results that have been gathered from literature. The methodology 

is significantly updated by investigating different molecular representations, tuning the network hyperparameters 

and including a measure for the uncertainty of predictions. The best performing model is used for ranking possible 

molecular pairs from the ZINC20 database including pharmaceutical and electronic co-crystals. A web application 

is also built for enabling for in-silico co-crystal screening by the user. 

 

 

• Chapter 7 concludes the thesis, summarises the main contributions and gives an outlook of the future of 

materials design. 
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2 Methods 

2.1 Introduction to machine learning 

Moving towards the 4th industrial revolution, new ways to make better use of the wealth of data are sought after. 

Machine Learning (ML) stands in the forefront of the current developments and has found several applications in 

different fields, ranging from economics to materials science.86,87 The four core components to be taken into 

consideration for any machine learning model include:  

1. The data to be learned from and how they are represented.  

2. A model to transform the data into a format such that training can be performed. 

3. An objective function that quantifies how well the model is doing based on the selected evaluation metrics. 

4. An algorithm to adjust the model’s parameters to optimize the objective function. 

ML is concerned with finding methods with which computers can extract useful patterns from data, transforming 

them into a model capable of performing a task without being explicitly programmed to do so. ML models usually 

fall under one of two groups: generative models, which are capable of generating similar data to what the trained 

model has seen; and discriminative models, which are capable of making predictions of properties of interest given 

the data.88,89 This thesis would be mainly focused on making use of discriminative models. 

2.1.1 Molecular Materials Representation 

A necessary step before performing any machine learning analysis on materials science data is to represent the 

material under consideration in a machine-readable format. This representation termed “descriptor” should contain 

all the relevant information on the system needed for the desired learning task.90–92 In the case of molecular 

materials, the critical choice of the representation will affect the accurate modelling and prediction of molecular 

properties. The most widely used molecular representation techniques are introduced in Figure 2.1. Herein, the 

categorization refers to two distinct types of representation techniques: i) the expert-designed molecular descriptors, 

i.e., obtained with rule-based algorithms and ii) the learnt molecular representations directly from data.93,94 The 

expert-encoded descriptors refer to features that describe the molecule based on structure or relevant molecular 

properties and are selected by experts. Examples in this category involve the molecular descriptors which encode a 

wide variety of molecular information, e.g., shape, geometry, atomic properties, pharmacophores.90 Using the 

molecular features in predictive models has shown not only a promising way for accurate molecular property 

predictions but also for a straightforward way to understand the factors that contributed to the predictions.95–97 

Morgan Fingerprint or else extended connectivity fingerprint (ECFP), which is a bit string with each bit denoting 

the presence or absence of a molecular feature or substructure, is another well-established representation 
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technique.98 The ECFP algorithm effectively encodes each molecule as a “bag-of- fragments” based on local atomic 

environments, generating unique integer identifiers that are subsequently hashed into a fixed-length representation. 

As a result, each fragment is necessarily and completely distinct. Despite their simplicity and sparseness (many 0s) 

Morgan fingerprints have shown great predictive capabilities for various molecular properties, showcasing their 

usefulness.99,100 The use of these fingerprints have also resulted in a fast method for bit-wise comparison of 

molecular features, namely Tanimoto similarity, which allowed for rapid filtering and search in chemical 

databases.101,102 Except from the structure-based descriptors, the electronic descriptors (e.g., orbital energies, 

reorganization energy) have been successfully used for predicting electronic related properties, e.g., photovoltaic 

efficiency or photocatalytic activities.34,103,104 

 

Figure 2.1 Different types of molecular representations using as an example a known drug TEGFIW, which is a molecule 

having several functional groups and used in several co-crystals; 1) Molecular descriptors based on the molecular 

structure, 2) Morgan Fingerprint as a bit-like vector, 3) Electronic properties, 4) 3D geometry, 5) Coulomb matrix, 6) 

SOAP descriptor, 7) Graph with atoms as vertices and bonds as edges, 8) SMILES string.  
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Other categories of manually engineered features involve the 3D geometry of the molecule as represented from the 

atomic coordinates, x,y,z, and the atomic structure descriptors (coulomb matrix, SOAP) describing the 

neighbourhood around each atom.35,105 More complex representations have been also implemented as input in deep 

neural networks, where molecular structures are represented through a vector of nuclear charges and a matrix of 

inter-atomic distances106. Another approach, inspired from Natural Language Processing (NLP), is to represent 

molecules as word vectors (mol2vec) where molecules are represented as sentences with the subsequent functional 

groups as words107.   

Large scale investigations have shown that the existing expert encoded molecular descriptors are insufficiently 

expressive for many applications. Consequently, there is a necessity for general-purpose molecular representations 

that can capture the rich diversity of chemical space. Deep learning models can efficiently learn compact molecular 

representations and provide an alternative way for describing the molecules. String- and graph-based formats are 

extensively used in deep neural networks for encoding the complete composition and bonding of molecules in 

continuous vectors as opposed to the discrete vectors of the hand-crafted features. The Simplified Molecular Input 

Line Entry System (SMILES) is a string-based representation that follows a formal grammar system allowing the 

direct adaptation of methods and architectures from natural language processing and neural machine translation. 

Another way for handling molecules is by representing them as graphs, with atoms as nodes and the bonds and the 

edges. Graph learning proceeds in several steps. First, existing molecular features, such as atom type and 

hybridization, are directly encoded to each node representation. Throughout the layers in a GNN, node 

representations are updated with information passed from their surrounding neighbourhoods in a framework known 

as message passing. This process of iterative message passing, and updates allows information to flow across the 

graph to create a continuous and dense representation of each node.94,108  

Overall, it should be noted that the representations should be complete and invariant to be effective and that the 

selection of the representation is mainly based on the property or functionality that needs to be predicted. For 

instance, molecular descriptors such as molecular weight or polarity might correlate well to a property such as 

boiling point but might suffer in more complex tasks but as protein binding where aspects of geometry and structure 

provide crucial information. A representation should also be interpretable to ensure that the model performance 

derives from learning relevant patterns instead of by exploiting experimental noise or other possible artifacts. 

2.1.2 Types of Machine Learning Algorithms 

The three broad categories of machine learning algorithms are supervised learning, unsupervised learning, and 

reinforcement learning. Semi-supervised learning is regarded as a subcategory which falls between unsupervised 

and supervised learning. 
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Supervised learning: In supervised learning, we are given a dataset in which we already know that there is a 

relationship between the input and output and how the correct output should look like. The main goal is to use 

labelled data to ‘teach’ a model (function) to predict the desired output on unseen or future data. Supervised learning 

problems can be broadly categorized into “regression” and “classification” problems. In a regression problem, we 

are trying to predict results within a continuous output space, meaning that we are trying to map input variables to 

some continuous function. Supervised regression models are often used for molecular properties prediction tasks, 

where a large amount of experimental or computational data exist together with known or calculated properties. On 

the other hand, in a classification problem the goal is to predict categorical class labels of new instances based on a 

given input. The set of class labels does not have to be binary in nature and can be of arbitrary size usually dictated 

by the number of class labels present in the training dataset.109 As a concrete example in computer vision, supervised 

machine learning can be used to classify dogs and cats. The model is trained using labelled images of cats and dogs 

and then is able to assign a label to any image. An important consideration of supervised learning approaches is 

how well they can generalize to out-of-distribution examples. 

Reinforcement learning: In reinforcement learning the goal is to develop an autonomous agent that learns to 

perform a task by acting in an environment. The agent receives a reward signal for each action and is trying to  

maximize the cumulative reward.110 Reinforcement learning requires a trade-off between exploration and 

exploitation, with exploration referring to taking actions in order to obtain new training data and exploitation to 

taking actions that we know will achieve a high reward. DeepMind demonstrated that a reinforcement learning 

system based on deep learning was able to learn playing Atari video games reaching human-level performance, 

without being trained on past games, having as goal to maximize the game score.111 

Unsupervised learning: Unlike supervised learning, where the ground truth is known, or reinforcement learning, 

where a proxy of the label can be achieved by querying the environment, in unsupervised learning we are dealing 

with unlabelled data or data with unknown structure. This structure can be derived based on the relationships among 

the variables, by a technique called clustering. Clustering is an exploratory data analysis technique that allows us 

to organise a pile of meaningful subgroup (clusters) without having any prior knowledge of their group 

memberships.110 Each cluster defines a group of objects that share a certain degree of similarity and simultaneously 

they are more dissimilar to objects in other clusters. Clustering is a technique for structuring information and 

deriving meaningful relationships from data. Unsupervised learning has found significant applications in medical 

imaging, where a quicker categorization of the patients based on disorders can be done.112 

Semi-supervised learning: The intersection of supervised and unsupervised learning is semi-supervised learning. 

This type of learning is used when the training set has both labelled and unlabelled data.113–115 Semi-supervised 

learning can be particularly useful for medical images. For instance, a radiologist can label a small subset of the 

scans for tumours or diseases and that will improve the predictions of which patients require more medical 
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attention.116 A particular subclass of this method which is of interest and studied in this thesis is that of one-class 

classification. This is a scenario where there are two classes (positive and negative), however only the labels of one 

class are available for some of the data points. One class classification method has been well-studied with various 

algorithms implemented for tackling problems as anomaly or novelty detection.117   

2.1.3 Traditional machine learning models and dimensionality reduction 

Any machine learning model can be described by the following function:118 

𝐹(𝑥, 𝑤) = 𝑦 (2.1) 

where x is the input, w the learnable parameters and y the predicted output. The performance of the model is then 

evaluated using a loss/error function, which is a function that maps an event or the values of one or more variables 

onto a real number representing some “cost” associated with the event. In the case of supervised learning the loss 

function becomes: 

𝐿𝑜𝑠𝑠 =  𝑚𝑒𝑎𝑛((𝑦 − 𝑦𝑡𝑟𝑢𝑒)2) (2.2) 

where 𝑦𝑡𝑟𝑢𝑒 represents the true label of a datapoint. ML algorithms seek to minimize the loss function or else solve 

an optimization problem. As traditional machine learning models, we usually refer to logistic regression, SVMs, 

random forests, k-nearest neighbours.119,120 A detailed description of the traditional ML models used for one class 

classification is given in Chapter 5, Section 5.2.  

With regards to the features used as input, the application of traditional machine learning models requires manually 

discovering and creating relevant features with a process known as feature engineering.121 The need for feature 

engineering is often related to the ‘curse of dimensionality’,122 meaning that the amount of data needed to estimate 

a function with a given level of accuracy grows exponentially with respect to the dimensionality of the input 

variables of the function. Dimensionality reduction is important for data science as a technique for both visualization 

and as pre-processing before a ML algorithm is applied. Several methods can be used for reducing the 

dimensionality of the features, e.g. Principal Component Analysis (PCA)102 and UMAP (Uniform Manifold 

Approximation and Projection).123 PCA is used for reducing the dimensionality of a dataset when there are 

significant correlations between some or all the features. In that way the variation of the data can be explained by a 

small number of principal components and the global structure of the data is preserved. On the other hand, UMAP 

uses a more complex technique trying to preserve both the local and the global distances, i.e., if two datapoint are 

close in the high dimensions, then they will be also close in the lower dimensions, whilst the distance structure in 

the data is well preserved. 
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2.1.4 Artificial Neural Networks 

Artificial Neural Networks (ANNs) are a subclass of machine learning models that try to model the way in which 

brain performs a particular task.124 In its simplest form, an ANN is called a perceptron and as shown in Figure 2.2 

it is composed of three layers, an input layer, a single hidden layer, and an output layer. The perceptron accepts the 

inputs x1,x2,…xn and moderates them by multiplication with the weight values w1,w2,…,wn. The summation 

function Σ is adding the adjusted weights and then an activation functions e.g., a sigmoid function, converts the 

numerical output to +1 or -1. The predicted output is compared with the known label and the error is backpropagated 

to allow for a further weight adjustment. 

What is specific to neural networks is how the weights are updated using the loss function. Neural networks must 

be  differentiable i.e., they are composed of smooth continuous functions, so the weights (learnable parameters) can 

be updated with the following function: 

𝑤𝑖 = 𝑤𝑖  −  𝜂
𝑑𝑙𝑜𝑠𝑠

𝑑𝑤𝑖
 (2.3) 

with 𝜂  being the learning rate and 
𝑑𝑙𝑜𝑠𝑠

𝑑𝑤𝑖
 being the gradient across every single parameter of the network. This 

process continues to iterate until the model converged on the training data.  

Figure 2.2 Perceptron architecture. 

Deep learning models are neural networks, based on ANNs, that possess multiple hidden layers and thus the network 

is considered “deep”. The information is propagated in a layer-wise fashion, as each layer receives the output of the 
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previous layer. A trained model refers to a neural network architecture along with learned weights connecting all 

its neurons. 

The advantage of using deep learning models instead of traditional machine learning techniques, is mainly that the 

input features are not hand-engineered but learnt from the data. In other words, deep learning algorithms perform a 

type of feature learning, i.e., representation learning instead of feature engineering used in the traditional ML 

models. 

2.1.5 Autoencoders 

An autoencoder is a neural network that is trained with the task to recreate its input.110 The network consists of two 

parts, an encoder that maps the input to a hidden layer h by creating a compressed feature set and a decoder that 

given h tries to reconstruct the input. Autoencoders are designed to copy approximately and only the input that 

resembles the training data. For that reason, the model is able to prioritize the aspects of the input that are important, 

learn useful properties of the data and being used as a dimensionality reduction or feature learning technique. The 

autoencoder is trained with a purpose to minimize its reconstruction loss: 

𝐿𝑜𝑠𝑠 =  𝑚𝑒𝑎𝑛((𝑔(𝑓(𝑥)) − 𝑥)2) (2.4) 

where 𝑔(𝑓(𝑥)) is the reconstruction of the input, x the input and Loss is a loss function penalizing 𝑔(𝑓(𝑥)) for 

being dissimilar from x. After being trained, the part of the autoencoder that is more useful is the latent dimension 

h, as it can be used as a reduced-dimensions representation of the data.  

2.1.6 Transformers 

Transformers are a type of deep neural networks which have been primarily designed for language translations. The 

network learns word embeddings from their contextual usage proving an expressive dense representation that 

captures relationships between words.  

The building block of a transformer is the attention mechanism.125 Attention is described from the following 

formula: 

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄, 𝐾, 𝑉)  =  𝑠𝑜𝑓𝑡𝑚𝑎𝑥 (
𝑄𝐾𝑇

√𝑑𝑘
) 𝑉  (2.5) 

where Q is the query, K is the key and V is the value matrices of dimension dk. In a machine translation task, the 

encoder computes one vector from every input word resulting in a context matrix. The context matrix information 

is used for K and V. During the decoding process, the decoder queries the context matrix using Q for getting the 

most relevant information to predict the next words. The attention function returns the values weighted by how 
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aligned keys and queries are. The output of the softmax function, namely attention weights, can be visualized to 

show where the decoder is focusing on to predict the output words.  

Although the transformer models were designed for natural language problems, they have impacted significantly in 

a variety of fields. Several types of transformers have been recently developed for tacking a wide range of 

problems.126,127 SetTransformer is a type of transformers used for problems involving sets and is described in detail 

in Chapter 6, Section 6.2.2.  

2.1.7 Explainable AI  

For proving that a model is useful in materials science, a high accuracy is not enough. Knowing the physical 

meaning of the predictions is advantageous for ML models.  Several methods for model interpretability have been 

introduced to shed light on the internal decision processes of neural networks showing which features are salient to 

final predictions. The two broad computational approaches towards explainable AI that have been used in materials 

science are the feature attributions and the graph convolution based.128 Feature attributions are quantifying the 

impact of removing features on the predictive performance. In contrast, graph convolution-based methods are 

mainly using attention to highlight the parts on the input that are most importance in the performance of the model. 

Interpretable graph neural networks have shown promise in better understanding the chemistry behind the 

predictions.129 This work is using feature attribution techniques to learn the important motifs without expert-

encoded knowledge.  

A widely used feature attributions methods is LIME (Local Interpretable Model-agnostic Explanations), which is 

locally approximating the model around a given prediction.130 SHAP (Shapley Additive exPlanations) is an 

extension of LIME which was employed in this work as a model interpretation framework. SHAP is a model 

independent method, meaning that it does not take into consideration the feature weights but measures the influence 

each feature change has on the final decision of the model.131 In other words, by calculating Shapley values, the 

contribution of each feature to the final score is estimated. The overall SHAP formula is shown in equation (2.6), 

where g is the explanation model, M is the number of simplified input features, 𝜑𝑖 𝜖 ℝ is the feature attribution for 

a feature 𝑖, 𝑧ʹ 𝜖 {0,1} 𝑀  , and 𝜑0 represents the model output with all the simplified inputs missing. 

𝑔(𝑧′) = 𝜑0 + ∑ 𝜑𝑖𝑧′𝑖
𝛭
𝜄=1    (2.6) 

To obtain the contribution of a feature i, all operations by which a feature might have been added to the set (N!) and 

a summation over all possible sets (S) is considered. For any feature sequence, the marginal contribution through 

addition of feature i is given by [f(S∪{i}) − f(S)], where f(S) corresponds to the output of the ML model. The 

resulting quantity is weighted by the different possibilities the set could have been formed prior to feature i’s 
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addition (|S|!) and the remaining features could have been added ((|N| − |S| − 1)!). Hence, the importance of a given 

feature is defined by equation (2.7):  

𝜑𝑖 =
1

𝑁!
∑ |𝑆|! (|𝑁| − |𝑆| − 1)! [𝑓(𝑆 ∪ {𝑖}) − 𝑓(𝑆)]𝑆⊆𝐍\{𝐢}    (2.7) 

It follows that Shapley values represent a unique way to divide a model’s output among feature contributions 

satisfying three axioms: local accuracy (or additivity), consistency (or symmetry), and nonexistence (or null 

effect).132 

2.1.8 Evaluation Metrics 

ML models should always be tested on previously unseen data to ensure their generalization and extrapolation 

ability. The ML problem encountered in this work is clustering , i.e., building a model for deciding if a pair of 

molecules can form a stable crystal structure or not. Several evaluation metrics exist for clustering models, which 

are based mainly on the size and the balance of the evaluation data. For the development of our ML model for 

screening a small subset of co-crystals, namely π-π co-crystals, only positive data for both training and validation 

were available. Consequently, the selected evaluation metric is the True Positive Rate (TPR):  

𝑅𝑎𝑡𝑒 (𝑇𝑃𝑅)  =  
1

𝐾
∑

𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑖𝑛𝑙𝑖𝑒𝑟𝑠

𝑠𝑖𝑧𝑒 𝑜𝑓 𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔 𝑠𝑒𝑡 𝑖𝑛 𝑒𝑎𝑐ℎ 𝑓𝑜𝑙𝑑
 (2.8) 

where K is the number of folds in cross validation and as inliers, we define the positive datapoints. The training 

dataset was split into K groups (K=5) and for each one of k iterations a unique group is considered as the test set, 

whereas the remaining groups comprise the training set. Each time a model is fitted on the training set and then is 

evaluated on the test set.  

After the scaling-up on the ML model to cover all the existing types of co-crystals, both positive and negative 

validation data exist and thus the common evaluation metrics for balanced binary data were used as describe in 

Chapter 6, Section 6.2.4. 

2.1.9 Databases and Cheminformatics software 

The successful application of ML models depends mainly on the amount and quality of data that is available. 

Manually curated databases have largely grown according to the need for technological innovation, understanding 

life, characterizing structures and synthetic chemistry.1 The two main databased used in this work are: 

1) CSD Database: The Cambridge Structural Database (CSD) is the world’s repository for small-molecule organic 

and metal-organic crystal structures, containing over 1 million structures acquired from X-ray and neutron 

diffraction analyses133. CSD was the main source of knowledge for the further investigation of the up to date known 

cocrystals (https://ccdc.cam.ac.uk/).  
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2) ZINC Database: ZINC15 and the most recent version of ZINC20 is a free public access database that contains 

over millions of purchasable organic compounds (https://zinc15.docking.org/substances/home/).  

The basic cheminformatics software and computational tools used for this work is presented below: 

1) Pipeline Pilot: Pipeline pilot (version 2017) is a BIOVIA’s graphical scientific authoring application that offers 

advanced analytic tools.  Herein, it was implemented for reading the SMILES of the organic molecules acquired 

from ZINC Database and drop the duplicate structures. Moreover, a protocol was used to keep only the organic 

molecules that do not have acidic hydrogens. 

2) Dragon software: Dragon version 6.0/2012 was implemented for molecular descriptors calculation. Dragon 

descriptors can be used to evaluate molecular structure-activity or structure-property relationships, as well as for 

similarity analysis and high throughput screening of molecule databases. Dragon provides almost 5,000 molecular 

descriptors that are divided into 29 logical blocks, each in turn divided into a number of sub-blocks to allow easy 

retrieval of the molecular descriptors of interest. The user can calculate not only the simplest atom types, functional 

group and fragment counts, but also several topological and geometrical descriptors. Some molecular properties 

such as logP, molar refractivity, number of rotatable bonds, H-donors, H-acceptors, molecular volume and surface 

areas are also calculated by using some common models taken from the literature134. 

3) Mordred library: A freely available python library, which can calculate more than 1800 numerical 

representations of molecular properties and/or structural features using predefined algorithmic rules.135 

Disadvantage of this approach is that the library is not further updated and as a result many packages start 

deprecating producing many nan (non a number) values. 

4) CCDC software: Basic utilities from CCDC software that were used in this thesis are:136,137 

i) Mercury - Software providing tools for visualizing 3D structures and running calculations. 

ii) CCDC Python API – Allows for writing code in Python capable of searching the Crystal Structural Database 

(CSD) 

iii) Conquest – A search software enabling advanced searching of the CSD data after applying user-defined search 

constraints. 

iv) Isostar – A library providing information regarding intermolecular interactions from CSD. 

5) Crystal Structure Predictions – USPEX software: Crystal structure prediction is an optimization task, which 

involves the identification of the positions of the atoms in the unit cell such that the system of interest yields a 

desired response, i.e., the lattice energy of the crystal is minimized. The energetically favoured solid forms are 

considered as the most stable and possible experimental observations. USPEX code is using an evolutionary 
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algorithm coupled with ab initio structure relaxations. USPEX is currently the only CSP software that can handle 

both organic and inorganic crystals and thus was used for CSP calculations on the metal-PAHs systems.138 

6) Zeo++ software: Void space analysis of crystal structures was performed with ZEO++. The tools implemented 

by Zeo++ software are based on the Voronoi decomposition, which for a given arrangement of atoms in a periodic 

domain provides a graph representation of the void space and in that way the atomic connectivity is determined. In 

more detail, for each atom in the lattice, the Voronoi cell is constructed around that atom. Consequently, the material 

space is divided into irregular polyhedral cells which are analysed to determine the pore topology.139,140 

 

2.2 Introduction to computational chemistry 

Computational chemistry is the study of chemical systems through computer simulations, typically based on a 

theoretical framework describing the behaviour of electrons, atoms and molecules. Running simulations allows 

users to analyse chemical systems at an atomistic level, not easily accessible through experiment. As such, 

simulations can provide insight into fundamental processes occurring in bulk environments, which may be difficult 

to probe experimentally. Assuming simulations are performed to a sufficient degree of accuracy, they also facilitate 

property prediction for simulated materials. This has become an important tool in the field of materials discovery 

and design, as simulations are usually much cheaper, faster and easier to perform at scale than experiments. This 

means that materials can undergo an initial computational screening, after which synthetic resources are focused 

only on promising candidates, thereby increasing the rate and decreasing the cost of materials discovery. 

The two general methods of computational chemistry are molecular mechanics and electronic structure methods, 

with the latter including ab initio and semi-empirical methods. An overview of the basic concepts regarding Density 

Functional Theory (ab initio method) and semi-empirical methods is given below: 

2.2.1 Ab Initio methods: Density Functional Theory 

In quantum systems, a particle such as an electron does not have an exact location. Instead, its position is described 

by a probability density. Despite the complexity of the problem, the basis of the theory can be reduced down to a 

few straightforward equations. These equations are sufficient to describe the behaviour of all the familiar matter we 

see around us at the level of atoms and their nuclei. Their counterintuitive nature leads to all sorts of exotic 

phenomena: superconductors, super fluids, lasers, and semiconductors that are only possible because of the quantum 

effects. But even the covalent bond, which is the basic building block of organic chemistry, is a consequence of the 

quantum interactions of electrons. Once these rules were worked out in the 1920s, scientists realised that, for the 

first time, they had a detailed theory of how chemistry works. In principle, they could just set up these equations 

for different molecules, solve for the energy of the system, and figure out which molecules were stable and which 
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reactions would happen spontaneously. However, the actual calculation of the solution to these equations was only 

possible  for the simplest atom (hydrogen) as everything else was too complicated.141,142 The most famous of these 

equations, the Schrödinger equation, describes the behaviour of particles at the quantum scale and thus the electronic 

structure of a material according to the following equation:  

𝐻̂(𝑟;  𝑅) 𝛹 (𝑟;  𝑅) =   𝛦 (𝑅 )𝛹 (𝑟;  𝑅) (2.9) 

Where 𝐻̂ is the Hamiltonian operator, Ψ is the electronic wavefunction dependent on r (electron coordinates), E is 

the energy and R the nuclei coordinates. The conceptual framework of density functional theory is starting from the 

problem of solving the Schrödinger equation in a many particles system.  

Although the many-body Schrödinger equation is unsolvable due to the high dimensionality of the problem, several 

approximations have been introduced to reduce the number of variables and find accurate solutions. The first 

approximation is known as the Born-Oppenheimer approximation followed by the Hohenberg-Kohn and the Kohn-

Sham approximations which are explained in the following paragraphs.  

Born-Oppenheimer approximation 

The Born-Oppenheimer approximation neglects the motion of the atomic nuclei when describing the electrons in a 

molecule, as the mass of an atomic nucleus is much larger than the mass of an electron (approximately 1000s of 

times) and thus the nuclei move much slower than the electrons. 

The many-body Schrödinger equation using the Born-Oppenheimer approximation can be written as: 

𝐻̂𝛹 = [𝑇̂ + 𝑉̂𝑒𝑥𝑡 + 𝑉̂𝑖𝑛𝑡 + 𝐸𝐼𝐼] 𝛹 =   𝛦𝛹                      (2.10) 

where  𝑇̂ is the kinetic energy operator, 𝑉̂𝑒𝑥𝑡  is potential energy associated with the nuclei, 𝑉̂𝑖𝑛𝑡  describes the 

electron-electron interactions, 𝐸𝐼𝐼 is the classical interaction between nuclei, and E is the energy.143  

Equation (2.10) is computationally infeasible to solve for more than tens of particles because its complexity scales 

exponentially with the number of particles.  

Hohenberg-Kohn theorems 

For that reason, the two Hohenberg-Kohn theorems apply to enable an easier computed form:144  

i) for a given system {{𝑉}̂}
{𝑒𝑥𝑡}

(𝑟) and thus the total energy of a system is a functional of the ground state charge 

density, n( r ) descripted as:  

𝐸[𝑛(𝑟)] = ∫ 𝑑𝑟 𝑉̂𝑒𝑥𝑡(𝑟)𝑛(𝑟) + 𝐹[𝑛(𝑟)] + 𝐸𝐼𝐼          (2.11) 
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where F[𝑛(𝑟)] includes kinetic energy and electron-electron interactions, and  

ii) the density that minimizes the total energy is the ground state charge density.  

These two theorems combined imply that the ground state total energy of a system of interacting electrons and 

nuclei is determined by the ground state electron density. We only need to know the energy functional E[n(r)] to 

solve for the ground state charge density variationally. While a wavefunction has 3N variables, a charge density has 

only three (one for each spatial dimension). The greatly reduced number of degrees of freedom needed to describe 

the total energy and density of interacting many-body systems makes DFT a potentially powerful approach 

compared to more expensive wavefunction based methods. 

Kohn-Sham equation 

While the Hohenberg-Kohn theorem proves the existence of a universal functional, it does not provide a way to 

determine this functional. Soon after the appearance of the Hohenberg-Kohn theorem in 1964, Kohn and Sham 

found a way to map the many-body problem to that of a single electron in an external potential of non-interacting 

electrons in 1965. In this formulation, solving for the ground state charge density of this effective non-interacting 

system leads to the same ground state charge density of the true interacting many-body system; the ground state 

wavefunctions of the effective non-interacting system, obtained from the Kohn-Sham equations are used to 

determine ground state charge density of the many-body system. More explicitly, the Kohn-Sham approach 

reformulates the Hohenberg-Kohn expression for the ground state functional as: 

𝐸{𝐾𝑆} = 𝑇𝑆[𝑛] + ∫ 𝑑 𝑟𝑉̂𝑒𝑥𝑡(𝑟)n(𝑟) + 𝐸{𝐻𝑎𝑟𝑡𝑒𝑒}[n] + 𝐸𝐼𝐼 + 𝐸𝑋𝐶[𝑛]  (2.12) 

where 𝑇𝑆[𝑛] is the kinetic energy of non-interacting electrons, 𝐸{𝐻𝑎𝑟𝑡𝑒𝑒}[n] is the mean-field Coulomb interaction 

energy of the electron density, and 𝐸𝑋𝐶[n] is the exchange-correlation functional. Modern DFT relies on the Kohn-

Sham equations which are solved self-consistently. The Kohn-Sham Schrödinger-like equations are given as:143 

(𝐻𝐾𝑆
𝜎  −  𝜀𝜄

𝜎)𝜓𝜄
𝜎(𝑟)  =  0 (2.13) 

where the 𝜀𝑖 are the eigenvalues, and 𝐻𝐾𝑆 is the effective Hamiltonian  

𝐻𝐾𝑆
𝜎  = −

1

2
 ∇2  +  𝑉𝐾𝑆

𝜎 (𝑟) (2.14) 

where 𝑉𝐾𝑆
𝜎 (𝑟)  = 𝑉̂𝑒𝑥𝑡(𝑟) +  

𝛿𝛦𝐻𝑎𝑟𝑡𝑒𝑒

𝛿𝑛(𝑟,𝜎)
 +  

𝛿𝛦𝑋𝐶

𝛿𝑛(𝑟,𝜎)
 =  𝑉̂𝑒𝑥𝑡(𝑟)  +  𝑉̂𝐻𝑎𝑟𝑡𝑒𝑒(𝑟)  +  𝑉𝑋𝐶

𝜎 (𝑟)  (2.15) 

In equation (2.12) the first three terms are known and can be straightforwardly solved for. The 𝐸{𝑋𝐶}[n] term is in 

general unknown and expresses the difference in kinetics and potential of an interacting versus a non-interacting 

system and is given from: 
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𝐸{𝑋𝐶}[n] = 〈𝑇〉̂ − 𝑇𝑆[𝑛] + 〈𝑉̂𝑖𝑛𝑡〉 − 𝐸𝐻𝑎𝑟𝑡𝑒𝑒[𝑛]   (2.16) 

Density functionals - XC Energy Term Approximation 

The quality of the density functional approach relies on the accuracy of the chosen approximation to 𝐸{𝑋𝐶}. Each 

density functional approximates the 𝐸{𝑋𝐶} energy term by adding different variables. An overview of the most 

important functionals is going to be given below.  

Basic functionals: The two main types of exchange correlation functionals used in DFT are the local density 

approximation (LDA) and the generalized gradient approximation (GGA).  

The local density approximation (LDA) functional can be regarded as the basis system of all exchange-correlation 

functionals. The central idea of this model is the existence of a hypothetical uniform electron gas, which is a system 

of electrons moving on a positive background charge distribution forming an electrically neutral environment. The 

main characteristics of that environment are the number of electrons N and the volume of the gas V. Whilst both 

these parameters approach infinity, their ratio N/V, which represents the electron density remains finite and attains 

a constant value ρ everywhere. Based on that, the 𝐸{𝑋𝐶} for the LDA is linearly dependant to the charge density and 

is given from the following equation: 

𝐸XC
𝐿𝐷𝐴[𝜌] = ∫ 𝑑 𝑟𝜌(𝑟)ε𝑋𝐶

ℎ𝑜𝑚𝑜𝑔𝑒𝑛
(𝜌(𝑟))  (2.17) 

where ε𝑋𝐶
ℎ𝑜𝑚𝑜𝑔𝑒𝑛

(𝜌(𝑟)) is the exchange-correlation energy per particle of a uniform electron gas of density 𝜌(𝑟). 

The energy per particle is then weighted with the probability 𝜌(𝑟)𝑑𝑟 of finding an electron at this position in space.  

The idea of a uniform electron gas could be an appropriate model for simple metals. However, it cannot be 

representative for atoms and molecules which are characterized by rapidly varying electron densities. Nonetheless, 

LDA is not accurate enough for chemical applications as it tends to overbind resulting in structures that have smaller 

lattice parameters than experiment and generally underestimates band gaps. Hence, more sophisticated 

approximations were developed. The generalized gradient approximation (GGA) is often implemented as a 

corrective function of the LDA and includes corrections for gradients in the electron density.  

𝐸{𝑋𝐶}
{𝐺𝐺𝐴}[n]

= ∫ 𝑑 𝑟ε𝑋𝐶
𝐺𝐺𝐴(𝜌(𝑟),   ∇𝜌(𝑟))   (2.18) 

The functional by Perdew, Burke and Ernzerhof (PBE) is a specific functional based on the GGA. PBE does not 

treat van der Waals (vdW) dispersion interactions which is a non-local correlation effect. PBE tends to underbind 

resulting in structures that tend to have larger lattice parameters than experiment. PBE also generally underestimates 

band gaps.  

van der Waals dispersion and π-π interactions: Before referring to the functionals that include dispersion 

corrections, we will introduce this type of interactions with a focus on the systems with π-π bonding. vdW 



 
 

55 

interactions are essential for the description of the structure, stability and properties of many molecular systems.145 

These distance-dependent forces arise from electrostatic interactions between fluctuations in the electron charge 

density. Although vdW forces are relatively weak and they are considered to have a small contribution to the total 

energy of a system, they play a key role in accurate description of molecular systems and materials. 

In π-π systems that involve aromatic molecules, which are of interest in this work, there are theories that support 

that the vdW interactions between the electron clouds around the molecules enforce their stabilization. The aromatic 

ring is seen as such there is a partial negative electrostatic potential above the two aromatic faces and a partial 

positive electrostatic potential around the periphery of the aromatic molecule.146 Consequently, the π-π interactions 

take place not due the attractive electronic interactions between two π-systems but because π-σ attractions outweigh 

unfavourable contributions such as π-electron repulsion.147 

Functionals that include dispersion corrections: Although the development of new functionals have greatly 

improved the accuracy of DFT calculations, systems in which van der Waals dispersion interactions play a 

significant role cannot be effectively modelled. For that reason, developing vdW-inclusive methods has been one 

of the important fields of development in DFT in the last decade. The methods of dispersion correction led to further 

improvements in accuracy and broader applicability in more complex systems. 

The van der Waals density functional (vdW-DF) was first developed for including dispersion in approximate density 

functional theory exchange-correlation functionals.148 Using the vdW-DF method a broad range of systems, e.g., 

metals, insulators, ionic compounds, held by dispersion forces can be effectively described. However, it was found 

that vdW-DF overestimates lattice constants and also be inferior for a range of systems, e.g., systems with hydrogen 

bonds. To overcome these limitations, new methods were developed such as the PBE+D3 and the SCAN+rVV10. 

PBE+D3: Perdew–Burke–Ernzerhof (PBE) approximation. The new parameters introduced on PBE+D3 are the 

atom-pairwise specific dispersion coefficients and a cutoff radii that are both calculated from first principles.149 In 

the D3 correction of Grimme et al., the following vdW-energy expression is used: 

 

𝐸𝑑𝑖𝑠𝑝 =  −
1

2
 ∑ ∑ ∑ (𝑓𝑑,6(𝑟𝑖𝑗,𝐿  )

𝐶6𝑖𝑗

𝑟1𝑗,𝐿
6 +  𝑓𝑑,8(𝑟𝑖𝑗,𝐿)

𝐶8𝑖𝑗

𝑟1𝑗,𝐿
8  )𝐿

𝑁𝑎𝑡
𝑗=1

𝑁𝑎𝑡
𝑖=1    (2.19) 

where 𝑓𝑑,𝑛 are damping functions used for determining the range of the dispersion correction, 𝐶6𝑖𝑗 are the dispersion 

coefficients, C8ij are the dipole-quadrupole interactions, Nat is the number of atoms and 𝑟𝑖𝑗,𝐿 the atomic distances. 

SCAN+rVV10: The ‘strongly constrained and appropriately normed’ (SCAN) meta-generalized gradient 

approximation (meta-GGA) can generally improve over the non-empirical Perdew-Burke- Ernzerhof (PBE) GGA 

not only for strong chemical bonding, but also for the intermediate-range van der Waals (vdW) interaction.148 
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K-points and reciprocal space 

DFT calculations are applied to atoms that are located within the volume of a solid and can be specified as point 

positions in a three-dimensional Euclidean space called direct or real space.  The atoms belong to a unit cell which 

is periodically repeated in the space forming an infinite crystal. Given this periodic system defined by lattice vectors 

a1, a2, a3 the solution of the Schrödinger equation must satisfy Bloch’s theorem which can be expressed as: 

𝜑𝑘(𝑟)  =  𝑒𝑥𝑝(𝑖𝑘𝑟)𝑢𝑘(𝑟)   (2.20) 

where uk(r) = uk(r + n1a1 + n2a2 + n3a3) for any integers n1, n2, n3. The space of vectors r is called real space and the 

space of vectors k is called reciprocal space. Many parts of the mathematical problems posed by DFT are more 

convenient to solve in terms of k than in terms of r. Thus, the reciprocal k vectors can be expressed as a mapping 

from the real vectors a1, a2, a3 as: 

𝑏1 =  2𝜋
𝑎2 × 𝑎3 

𝑎1 (𝑎2 × 𝑎3)
 ,  𝑏2 =  2𝜋

𝑎3 × 𝑎1 

𝑎2 (𝑎3 × 𝑎1)
 ,  𝑏3 =  2𝜋

𝑎1 × 𝑎2 

𝑎3 (𝑎1 × 𝑎2)
    (2.21) 

A general vector of the form  

G= hb1 + kb2 +lb3   h,k,l = integers  (2.22) 

generates a reciprocal lattice. The integers h,k,l are called the Miller indices of a lattice plane and define lattice 

planes and directions in the lattice. 

Plane waves and pseudopotentials 

To represent wavefunctions, one needs a basis set. As the materials we are working on are crystal systems, we use 

plane-waves. The plane-wave basis depends on the crystallographic lattice parameters of the input unit cell and an 

energy cutoff (Ecutoff). For a given Ecutoff, all planewaves satisfying the following equation are included: 

 
ℎ2

2𝑚𝑒
|𝐺 + 𝑘| <  𝐸𝑐𝑢𝑡𝑜𝑓𝑓,                                                     (2.23) 

where G is a reciprocal lattice vector and k is a vector in reciprocal space within the first Brillouin zone. For many 

systems, including those described in this thesis, it is computationally expensive to treat all electrons independently. 

Like for all electrons, the wavefunctions of core electrons must be orthogonal to one another. Because core electrons 

exist in a rather confined region near the nucleus, this requires core electron wavefunctions to oscillate and defines 

their nodal structure. To accurately describe these core wavefunctions, one must use a basis that has a resolution 

comparable to these oscillations, which can be hundredths of Angstroms. For example, for Ecuttoff = 520 eV, the 

resolution is approximately a tenth of an Angstrom.  

 
ℎ2

2𝑚𝑒
|

1

1.2 𝑥 10−11  𝑚𝑒𝑡𝑒𝑟𝑠
|

2
≅  520 𝑒𝑉                                                  (2.24) 

To achieve a resolution of approximately a hundredth of an Angstrom, Ecutoff would have to be increased a hundred-

fold. Moreover, core electrons are highly localized and well-separated in energy from valence electrons, which are 

crucial to determining structural and electronic properties. Therefore, it is a good approximation to freeze them into 
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an effective core and neglect core degrees of freedom in solving the Kohn-Sham equations. Thus, rather than 

treating core electrons directly, we use pseudopotentials which combine the nuclear and core electron contributions 

and create a smooth potential for valence electrons. Current DFT codes provide a library of potentials of different 

elements. The Projector-Augnented-Wave (PAW) method is a technique used for calculating the pseudopotentials. 

Following this approach, the rapidly oscillating wavefunctions are transformed into smooth wavefunctions which 

are more computationally convenient.   

 

2.2.2 Hartree-Fock approximation 

Hartree-Fock theory is one of the simplest approximate theories for solving the many-body Schrödinger equation 

(eq. 2.9), requiring that the electrons are independent particles. Herein, the motions of the electrons in the molecular 

orbitals are approximated by a sum of the motions of electrons in the atomic orbitals. The electronic wavefunction 

is expressed by combining one-electron wavefunctions in a way that satisfies the antisymmetry principle. That can 

be achieved by using a single Slater determinant, i.e., the determinant of a matrix of single electron wavefunctions. 

The Slater determinant for the case of two electrons is given as: 

𝜓(𝑥1, 𝑥2) =
1

√2
𝑑𝑒𝑡 [

𝜒1(𝑥1) 𝜒2(𝑥1)
𝜒1(𝑥2) 𝜒2(𝑥2)

] =  
1

√2
 [𝜒1(𝑥1)𝜒2(𝑥2) 𝜒2(𝑥1)𝜒1(𝑥2)]  (2.25) 

where the coefficient 
1

√2
 is a normalization factor and 𝜒1(𝑥1) is a spin orbital with 𝑥1 being a vector of coordinates 

that defines the position of the first electron and its spin state. In general, the rows of the Slater determinant 

correspond to the electron and the columns to the spin orbital. The Slater determinant can be generalized to a system 

of N electrons by forming an N x N matrix of single electron spin orbit. It can be written in a conventional form by 

listing the spin orbitals 𝜒  as: 

𝜓 =  |𝜒𝑖𝜒𝑗. . . . . . . 𝜒𝑘⟩   (2.26) 

where i,j,k are the indices of the spin orbitals. The Hartree-Fock method is then trying to solve the wavefunction 

for those orbitals that minimize the electronic energy, which is mathematically equivalent to assuming each electron 

interacts only with the average charge cloud of the other electrons. Each spin orbital 𝜒(𝑥) is a function of four 

coordinates χ(x, y, z, ω) and can be written as a product of a spatial part φ(r) and a spin part σ(ω):  

𝜒(𝑥)  =  𝜑(𝒓) 𝜎(𝜔)  (2.27) 

The Hartree-Fock energy expression that should be minimized can be written in terms of integrals of one- and two-

electron operators: 

𝐸𝐻𝐹  =  ∑ 〈𝑖|ℎ|𝑖̂〉𝑒𝑙𝑒𝑐
𝑖  +  ∑ [𝑖𝑖|𝑗𝑗]𝑒𝑙𝑒𝑐

𝑖>𝑗  − [𝑖𝑖|𝑗𝑗]   (2.28) 

 

  

The one electron integral refers to the electron kinetic energy and the electron and nuclei attraction, whereas the 

two-electron integral represents the Coulomb repulsion between electron 1 in orbital i and electron 2 in orbital j. 

one-electron term two-electrons term 
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The two-electrons term may be called one-, two-, three- and four-centre integral depending on the values of the 

indices. The most expensive task of Hartree-Fock is evaluating and transforming the two-electron integrals and thus 

several semiempirical models were developed to approximate that task. 

 

2.2.3 Semi-Empirical methods 

Semiempirical (SE) methods can be derived by applying systematic approximations either on Hartee-Fock (HF) or 

density functional theory (DFT) level, resulting in calculations that are several orders of magnitude faster than the 

ab initio computational schemes.150 The most prevalent SE methods based on the approximations to HF theory are 

AM1, PM3, PM6 MNDO/d and OMx. An approach focusing on approximating DFT that has become popular in 

the past decade in the density functional tight binding (DFTB) method which is based on a Taylor expansion of the 

energy with respect to a reference density. In this work, PM6 method was used for geometry optimization and 

orbital energy calculations. A brief overview of the evolution of the main HF-based semiempirical methods which 

drove to the development of PM6 is given below.  

The HF-based semiempirical methods are trying to simplify the  Hartree-Fock energy calculation by approximating 

the two-electron integrals of equation (2.28). These methods treat explicitly the valence electrons, and the names of 

the various methods are suggestive of which two-electron integrals are set as zero in the treatment.65 The most 

primitive approach was the complete neglect of differential overlap (CNDO), where the two-electron integral is set 

to zero. The next level of approximation is the intermediate neglect of differential overlap (INDO), in which the 

(ii|jj) is retained if χi and χj belong to the same atom. Following INDO, the neglect of diatomic differential overlap 

(NDDO) is introduced in which the differential overlap is neglected only when the basis functions belong to 

different atoms. According to the NDDO formalism, all one-centre two-electron integrals and not just the one-centre 

exchange integrals are retained.65 Based on the NDDO, the modified neglect of differential overlap (MNDO) 

method was developed, where two main approximations exist: i) the two-centre two-electron integrals are replaced 

by approximate integrals derived from multipole interactions ii) there are improved core-core interaction terms in 

the one-electron operator. Although MNDO was a significant improvement, there were still deficiencies in 

particular regarding systems with hydrogen bonds. For that reason, an improved version of MNDO was developed 

namely Austin model 1 (AM1), which added up to four Gaussian functions to the core-core repulsion term to 

alleviate problems with short-range interactions. The continuous development and improvement of semiempirical 

methods as well as the incorporation of experimental data brought up a new more efficient method, called parametric 

model 3 (PM3) which as a reparameterization of AM1 using a different parametrization strategy and only two 

Gaussian functions to correct the core-core repulsion. Finally, after PM3 and due to the availability of an increasing 

amount of reference data to fit the parameters, the parametric model 6 (PM6) was introduced. Besides using a much 

larger set of reference data, PM6 also involves several improvements in the core-core terms by employing pairwise 
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parameters rather than element-specific parameters. PM6 further uses different core-core repulsion potentials for 

N-H, O-H, C-C, and Si-O pairs to correct for specific weaknesses in the parametrization. Lastly PM6 method also 

adds d-orbitals in the atomic basis to certain elements. 
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3 Uncovering the structure-property relationships in polyaromatic hydrocarbons 

(PAHs) 

3.1 Introduction 

Since the discovery of graphene, which can be regarded as a giant PAH, the interest surrounding those materials 

has grown significantly. PAHs can be defined as a uniform class of very similar molecules built up by six-membered 

rings of sp2-hybridized carbon atoms and hydrogens.151 The molecular sizes covered can range from the simplest 

case of benzene with its six carbons up to disk-like molecules containing as many as 96 carbon atoms. Despite their 

similar atomic composition, PAHs dramatically differ in terms of optical and chemical properties depending on 

their size and geometry.80,152 

Considering the size of the molecular space, which is estimated to contain about 1060 compounds,153 the number of 

PAHs is far too large to be screened by a human. For that reason, computational screening is increasingly becoming 

a choice for an initial screening of large sets of compounds before any attempts of experimental realization. With 

an effective virtual screening methodology, the enormous molecular space is narrowed down, and the most 

promising targets could be identified. 

In this work, we screened two molecular databases, i.e., ZINC15 and ZINC20, for identifying PAHs which can i) 

serve as hosts for metal insertion to build materials showing superconductivity or other interesting electronic 

phenomena and ii) become co-crystal components to design semiconducting materials. Our main focus in this 

chapter was to examine how the structural properties of PAHs can be related to their electronic properties and 

identify the best ways to categorize them based on their similarity.  

Starting from a small subset of 210 PAHs, we computed their equilibrium geometries and orbital energies (PM6 

semiempirical model) and tested several representation techniques for describing the molecules. It was found that 

the representations that incorporate 3D information have higher correlation with the electronic properties (orbital 

energies). Using that representation, we divided the PAHs into classes of structurally similar molecules and 

investigated the electronic properties shared among these classes. Further on, we categorized a larger dataset of 

more than 7,000 PAHs based on their molecular shape and orbital energies distribution and further relations between 

the shape and electronic characteristics were extracted. The more structurally and electronically interesting readily 

available PAHs were listed to be further evaluated in the following chapter.  

3.1.1 Structural and electronic analysis of PAHs 

PAHs can be classified based on their topology to i) linear (comprised of homologous groups of oligoacenes, 

phenacenes, and oligorylenes), ii) circular flakes/discs (K-region PAHs and circumacenes), and iii) triangular.154 
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Within each topology two periphery types exist: (1) zigzag and (2) armchair.154 Known relationships between the 

topological characteristics of PAHs and their electronic properties involve the observations that the band gap (Eg) 

decreases as the number of aromatic rings (or carbon atoms) increases, where arm-chair edge PAHs have larger 

band gaps and enthalpies of formation than their zigzag counter parts.155 It is then understood that the Ionization 

Potential (IP) decreases, and the Electron Affinity (EA) increases with increasing number of rings in a homologous 

class. 

Traditionally, PAHs can be either heterocyclic or only carbon containing and assemble in molecular crystalline 

arrays under ambient conditions. Those PAHs containing only hydrogen and aromatic carbon can be classified into 

five crystalline motifs as shown in Figure 3.1: i) herringbone, characterised by tilted edge-to-face C-H…..π 

interactions, ii) sandwich-herringbone, where pairs of co-facial molecules make up the herringbone motif,  iii) β-

herringbone, observed in PAHs with σ-bound aromatic groups iv) γ, a flattened herringbone featuring stacks of 

parallel translationally related molecules and v) β, sheet-like packing of molecules.156,157 

 

Figure 3.1. Motifs in PAHs. a) herringbone which is dependent on C…..H interactions,  b) sandwich-herringbone which 

is stabilized by both C…..H and C…..C interactions,  c) β-herringbone, which is dependent on C…..C interactions, d) γ,  

which is dependent on C…..C interactions, e) β, which is dependent on C…..C interactions.     
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A famous theory incorporating structure-property relationships is Clar’s rule, which refers to the effect of sextets 

in the stability and reactivity of PAHs.80 A sextet is a grouping of the π-electrons within the aromatic ring, which is 

usually indicated by drawing a circle inside the ring. In cases where we have two consecutive aromatic rings, only 

one sextet can be formed. For instance, in anthracene (Figure 3.2a), only one sextet can be assigned to one of the 

rings whereas the remaining 8 π-electrons remain ungrouped. However, in triphenylene, all 18 electrons can be 

grouped into sextets and be assigned to each ring (Figure 3.2b). According to Clar’s sextet rule, the electron sextets 

possess strong aromatic stabilization, whereas the bonds not included in the sextet are more susceptible to chemical 

reactions. It is concluded that for optical properties a balance among stability and reactivity should be found.158 

 

 

 

 

 

 

 

Figure 3.2. The Clar structure in a) anthracene and b) triphenylene. The blue rings indicate the sextets, whereas the 

electrons not in a sextet remain as double bond. 

On another note, as PAHs have been reported as substrates in hydrocarbon-based superconductors,74,77,159 the 

electronic properties that might be related to that phenomenon are highly sought after. There are several reports 

claiming that a near of exact degeneracy on the LUMO, LUMO+1 orbitals play an important role for observing 

exotic electronic properties in PAHs.160 That is because, when we gradually insert free electrons into a material, the 

first electron will occupy the lowest energy states (LUMO orbital), whereas the subsequent electrons will be forced 

to occupy higher energy states. According to the Pauli’s rule the electrons of different spin pair together. Thus, the 

first electron will occupy the LUMO orbital, the second electron will again occupy the LUMO with different spin 

to form a pair. However, in the cases where Δ (LUMO+1 – LUMO) is close to zero, the second electron will occupy 

the LUMO+1 orbital and the system is going to have two unpaired electrons which makes the material able to conduct 

current because of the holes that are going to be formed. The effect of orbital degeneracy is more apparent in the 

C60 case, where their unique spherical shape is responsible for a triple degeneracy of the LUMO orbital and the 

unique distribution of the electronic potential161. That is the main reason why those molecules are more prone to 

reach the exotic states, such as superconductivity162. Research has also shown that high performing non-fullerene 



 
 

64 

electron acceptors are characterized by very low gap between LUMO and LUMO+1 LUMO+2 orbitals, whereas the 

non-planarity of the acceptor might be beneficial for some classes of acceptors.163 Of course, it is evident that for 

determining the electronic properties not only the type and shape of each single PAHs is important but also their 

configuration in the crystal lattice and their connectivity to their neighbouring molecules. The crystal structure of 

the PAHs will be considered in Chapter 4. 

3.1.2 High-throughput screening for materials discovery 

When searching for compounds with targeted properties for certain applications, large databases should be 

effectively used. That brings the development of screening workflows widely known as high-throughput virtual 

screening (HTVS). HTVS can be defined as the computational investigation of a large set of materials to assess 

their suitability for a particular function. The term ‘large’ is relevant and can range from hundreds to millions of 

materials. Taking into consideration the size of molecular space, which has been estimated to 1060, a rational global 

search is extremely challenging. Starting from large and reliable databases containing a sufficient large number of 

known structures, HTVS can be applied by: i) using low-cost computational infrastructure, ii) applying 

cheminformatics tools, iii) employing robust quantum chemical methods, iv) following data science methods. 

HTVS of material databases has been so far increasingly successful in the discovery of new functional materials, 

with the most interesting finding being the identification of new patterns on the datasets and structure-property 

relations. Moreover, a list of top candidates based on the desired application can be easily extracted following these 

routes.  

 

3.2 Methods 

Dataset construction 

An initial search was performed on ZINC15 database for purchasable molecules similar to the eight initial molecules 

shown in Table 3.1 on the basis of molecular fingerprints with a Tanimoto similarity threshold of > 0.35. The 

similarity search in ZINC15 is based on 512 bit ECFP4 fingerprints164, meaning that the atomic environment 

between two under comparison molecules is four bonds long with size of fingerprint is 512 bits. Further on, Pipeline 

Pilot165 was used for filtering out the incompatible groups, i.e., acidic hydrogens, affording a library of 210 candidate 

molecules. For extending the initial PAHs dataset, ZINC20,166 a new version of ZINC, which includes billions of 

new molecules and new search methodologies was implemented. Starting again from the same eight representative 

molecules as before, SmallWorld algorithm was used for similarity search in the whole ‘in-stock’ ZINC20 database. 

SmallWorld algorithm is reported as a graph-edit distance and maximum common subgraph method, meaning that 

the algorithm is first indexing the topological space of organic molecules into anonymous graphs and then connects 
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each graph to its neighbours by elementary steps in graph- edit-distance space by adding/deleting a terminal atom, 

ring opening/closure, inserting/deleting a linker atom.166 Following the same process as before, Pipeline Pilot was 

used to filter out the acidic groups affording an extended PAHs dataset of 7,060 molecules. 

Table 3.1 Initial Polyaromatic Hydrocarbons (PAHs) which differ according to shape and symmetry. 

CCDC 
Search 

Identifier 

Zinc Search 
Identifier 

Actual Name Molecular structure 

 
 

CORONE 
 

 
 

ZINC0000001580987 

 
 

CORONENE 

 

 
ZZZOYC 

 
ZINC000001598876 

 
PICENE 

 

 
PENCEN 

 
ZINC000001581013 

 
PENTACENE 

 

 
TRIPHE 

 
ZINC000001688068 

 
TRIPHENYLENE 

 
 

 
 
 
 

 
PHENAN 

 
ZINC000000967819 

 
PHENANTHRENE 

 

 
FLUANT 

 
ZINC000008585874 

 
FLUORANTHENE 

 
 

 

 
CORANN01 

 
ZINC0000079045456 

 
CORANNULENE 

 

 
DNAPAN 

 
ZINC0000167079286 

 
DINAPHTHO,(1,2 

a:1',2'-h) 
ANTHRACENE 

 

 

Data representation 

The molecules have been encoded using a diverse selection of molecular representations. Molecular descriptors 

incorporating several molecular properties have been extracted using Mordred library (Methods Section 2.1.9).135 
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Morgan fingerprint with vector length 1,024 bits was extracted from RDKit.167 SOAP (Smooth Overlap of Atomic 

Positions) descriptors were also tested for transforming the atomistic structures into fixed-sized numerical 

fingerprints. The SOAP descriptor describes the neighbour density around each atom using radial and angular basis 

functions.105 Molecular orbitals have been calculated using PM6 method and Spartan software. The electronic 

descriptor used is a vector of the orbital energies from HOMO-1 to LUMO+4.  

Principal moments of inertia (PMI) 

The shape analysis was performed using the principal moments of inertia as described by the NPR1 and NPR2 

distributions. Here, we define NPR1 = I1/I3 and NPR2 = I2/I3, where I1 is the first (smallest) Principal Moment of 

Inertia (PMI), I2 is the second PMI, and I3 is the third (largest) PMI. PMI descriptors assess the extent to which a 

given 3D molecular structure is rod-shaped, disc-shaped and sphere-shaped. Ternary plots are usually used for 

visualizing the PMIs with the top-left corner representing the purely rod-shaped, the top-right corner the structures 

that are entirely sphere-shaped and the bottom corner structures that are completely disc-shaped.168 The points inside 

the ternary plot are represented as hexagonal binning, which is a technique of data aggregation for grouping a dataset 

of N values into less than N discrete groups. Each hexagon might represent one single molecule or a grouping of 

overlapping molecules. 

Python API CCDC 

For the calculation of the SOAP descriptor and the construction of the PMI plots, the 3D structure of the molecules 

is needed. As the information provided from the ZINC database is two-dimensional, the simplified molecular-input 

line-entry system (SMILES) strings were converted to a 3D structure using the CSD Python API 2021.1 release. 

The tool is based on the CSD Conformer Generator which uses knowledge from more than 1 million experimentally 

derived structures to predict and generate appropriate conformers with bond lengths and angles based on known 

data. The generated 3D structures were relaxed, using the Spartan Software and PM6 semiempirical model, until 

the geometric minimum in found. 

Theoretical model 

PM6 semi-empirical method was applied through Spartan software for the orbital energy calculations. As PM6 is a 

low-cost computation with lower accuracy than DFT, it was benchmarked with a more accurate but time consuming 

B3LYP (B3LYP/3-21G*) model by identifying the linear relation between the PM6 and the B3LYP calculated 

HOMO, LUMO, LUMO+1 orbital energies. The calibration curves are presented in Figure 3.3, showing a very 

strong correlation between the two models and thus allowing for a reliable estimate.  
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Figure 3.3. Calibration curves of the lower (PM6) versus the higher level of theory (B3LYP/3-21G*) on the orbital 

energies of 210 PAHs. The comparison between semi-empirical and DFT theory is quite satisfactory, based on the 

squared correlation coefficient R2 and the m and b values for the liner fit y=mx+b. 

 

3.3 Results 

3.3.1 Measuring similarity between PAHs: Extracting structure-property relationships 

A detailed analysis of the molecular and electronic structure of PAHs is very important with regards to their 

application as organic electronic materials. Similarity measures are broadly used in cheminformatics and drug 

discovery to help uncovering relationships between different instances. Simplistic predictive tools are based on the 

general theory that if two molecules are similar, they will likely show similar behaviour. Reflecting on this logic, 

we want to examine various ways to identify molecules that are similar to the ones with desired electronic 

functionalities.  

Our starting PAHs dataset is composed of 210 molecules which are structurally similar, based on the Tanimoto 

similarity, to eight representative PAHs (See Methods 3.2) and C60 which is so far the PAH with the most interesting 

electronic properties that arise from its unique shape. To visualize the differences in shape between the PAHs, the 

PMI ratios (NPR1 and NPR2) were computed using RDKit. In Figure 3.4a these results are visualized, with the 

longer molecule being p-quaterphenyl, the most spherical being C60 and the most circular being coronene. The 

elemental composition of the molecules in the dataset is also shown in Figure 3.4b.  

The functional molecule we are mainly focused on is fullerene (C60) as it is currently the most studied among PAHs 

being both electronically and structurally interesting. C60 owes its electronic properties to its triple degenerate 

LUMO orbitals as well as to its non-planar circular shape. The question to answer is how we could identify 

molecules similar to C60 and which similarity metric could be more informative for enabling the more efficient 

categorization of PAHs. It is evident that there are several methods to measure similarity as there are several ways 
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to describe the molecules. For the structural representation we are using well known molecular features which take 

into account 2-dimension or 3-dimensional characteristics, i.e., the Morgan fingerprint, the molecular descriptors 

provided from Mordred library and the atomic environment descriptors using the SOAP method. The electronic 

description of PAHs is stated by measuring the band energy structures of each molecule (See Methods 3.2).  

 

Figure 3.4. A library of 210 polyaromatic hydrocarbons (PAHs). a) PMI plots for the PAHs dataset. C60, coronene and 

p-quaterphenyl were found as the corner molecules. The contour is generated from kernel density estimator on the data 

with the colourbar indicating the density of the data, which lies between the linear and circular molecules. A hexagon is 

present if at least one structure belongs to that regime. b) Bar chart showing the composition analysis of the PAHs in 

our library: 100% contain C and H, whereas O, N and S atoms can be found in 20, 15, 8% respectively. The radial 

coordinates are on a logarithmic scale. 

Starting from the ZINC15 dataset of 210 PAHs, the molecular similarity is measured using different distance metrics 

according to each representation. For the comparison based on the Morgan fingerprint, the Tanimoto coefficient 

(Tc) was used,  𝑇𝑐 =
𝑐

𝑎+𝑏−𝑐
  where a and b are the bit vectors of the two molecules under comparison and c the bits 

the two molecules have in common. For the comparisons based on the orbital energy distance and the molecular 

descriptors distance the Euclidean distance was used. The SOAP descriptors distance was calculated using the 

“regularized-entropy match” (REMatch) kernel.105 The selection of the distance metrics is in accordance with the 

type of the representations and was inspired by similar works where researchers were analysing libraries of 

electronically active organic molecules.34,103 These four distance matrices are presented in Figure 3.5 a,b,c&d. 
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Figure 3.5. a) The electronic structure comparison of the PAHs based on the orbital energy vector (HOMO-1 to LUMO+4) 

b) Similarity based on the chemical topology using SOAP descriptor of the local environment (3D structure).  c) Tanimoto 

similarity d) Molecular features similarity with Mordred descriptors. Distances are multiplied by -1 and scaled from 0 

to 1 to be equivalent to similarity measures. e) Table showing the Pearson correlation between the matrices a,b,c,d. It is 

evident that there is a high positive correlation between the SOAP descriptor and the orbital energies descriptor. We can 

observe that molecules with similar 3D structures are expected to have similar electronic properties. 

a) b) 

c) d) 
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According to the similarity techniques shown in the table in Figure 3.5e, there is an important correlation between 

the molecular representation and the orbital energy representation, derived after calculating the Spearman 

correlation coefficient between the four matrices. That could indicate that molecules with similar molecular 

structure are expected to have similar electronic properties and thus the structural categorization could provide a 

sensible choice for selecting electronically similar molecules. Although 2D molecular representation using the 

Morgan fingerprint, shows a considerable correlation with the orbital energies, the 3D method, namely SOAP 

descriptors, was found as more informative and correlated.  

3.3.2 Categorizing PAHs with unsupervised machine learning  

Clustering molecules based on structural similarity 

Unsupervised learning was applied to identify the distinct clusters with structurally similar molecules in the dataset. 

The three different representations were tested i.e., Morgan fingerprint paired with Tanimoto similarity, molecular 

features with Euclidean distance and SOAP descriptors with REMatch kernel, alongside with three different 

clustering techniques, i.e., k-means clustering, affinity propagation and Gaussian Mixtures. The selection of the 

optimal  number of clusters was performed using the elbow method. The clustering performance was evaluated 

considering the optimal cluster separation, using the Silhouette Coefficient169 and the Davies-Bouldin Index170 as 

described in the Appendix Table A1.1 & Figure A1.1. 

SOAP descriptors with REMatch kernel have previously shown (Figure 3.5b) the best correlation with the orbital 

energies similarity matrix and also the best cluster separation in comparison to the other representations. As such 

this encoding is used to quantify the structural similarity between all PAHs in the dataset. The SOAP-based 

similarity matrix is projected onto a 2D space by a UMAP (Uniform Manifold Approximation and Projection) 

embedding used for dimensionality reduction, as shown in Figure 3.6a, where each point represents a molecule.  

K-means clustering on the 2D UMAP coordinates was found to better separate the clusters and was used to 

categorize the PAHs datasets into five groups of structurally similar molecules. For extracting the electronic 

property trends in each molecular group, the average orbital energies of each cluster are plotted in Figure 3.6b. The 

averaging of the orbital energies was performed by initially applying a gaussian function to the orbital energies 

from HOMO-1 to LUMO+4 for each molecule. That results in a continuous function representing each molecule. 

The molecules that belong to the same cluster were then grouped together and their orbital energy functions were 

averaged.  
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Figure 3.6. Structure-property map of the PAHs library extracted from ZINC15. a) Unsupervised clustering of the 

starting PAHs based on their SOAP representation using k-means algorithm. b) Average value of orbital energies on 

each cluster. C60 belongs to Cluster 1, where a small HOMO-LUMO gap and the lowest LUMO orbital energies can be 

observed. 

That resulted in five distinctive orbital energy-based categories which can be analysed as follows: i) cluster 1, with 

small HOMO-LUMO gap and low LUMO energies. Moreover, the slope of the line connecting the LUMO orbitals 

is the smallest in comparison to the other clusters, thus indicating several molecules with LUMO orbital degeneracy, 

ii) cluster 2, with large HOMO-LUMO gap, and high LUMO energies, iii) cluster 3 with a small HOMO-LUMO 

gap and high HOMO energy,  iv) cluster 4, with small HOMO-LUMO gap and high HOMO energies v) cluster 5, 

with small HOMO-LUMO gap high HOMO and high LUMO energies. It can be observed that the five different 

structural categories have also distinctive electronic features, proving that the clustering technique is also 

electronically meaningful.  C60 belongs to the first cluster with the most obvious LUMO orbital degeneracy and 

small HOMO-LUMO gap. Some characteristic molecules that belong to cluster 1 are shown in Figure 3.7. Among 

them coronene and bezanthracene were considered in more detail in Chaper 4. 

It can be seen that a wide range of structural characteristics were found to belong to the same cluster, e.g., molecules 

with curvature achieved with pentagon integration, molecules crosslinked via an aliphatic bond, twisted molecules 

and circular molecules.   

 

a) b) 
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Figure 3.7. Representative molecules from cluster 1 which were identified as structurally similar to C60.  

Clustering molecules based on the electronic similarity 

Hierarchical clustering based on Euclidean distance was further implemented as an alternative way to directly categorize 

the PAHs based on their orbital energies vectors. As before, a PAH was represented by the vector containing the orbital 

energies from HOMO-1 to LUMO+4. As shown in Figure 3.8 five main clusters were identified with C60 belonging to the 

golden one.  

Figure 3.8. Hierarchical clustering of the PAHs dataset based on the orbital energies vector representation. Some 

representative molecules of each class are shown on the x axis.  
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The green cluster includes all the solvent-like polyaromatic molecules, e.g., naphthalene, benzene and is the cluster with 

the largest distance to the C60-containing cluster. Most of the molecules shown in Figure 3.7 fall inside the golden cluster 

confirming their electronic similarity alongside with their structural similarity. The way hierarchical clustering based on 

orbital energies works is by capturing the actual energy levels and not the degeneracy, i.e., one molecule, such as benzene, 

might have degenerate LUMO, LUMO+1 orbitals however the energy level is quite higher than the LUMO energy of C60, 

consequently benzene is going to belong to a different cluster from C60.  

Overall, it can be concluded that there are several ways to measure similarity between polyaromatic hydrocarbons for 

identifying molecules similar to C60. Similarity can be structural or electronic, but it mostly depends on the way we are 

going to represent the molecules. Unsupervised clustering is a useful technique for exploratory data analysis to get better 

insights from the dataset at hand and enables measuring similarity through different viewpoints. However, one of the 

major limitations of unsupervised clustering techniques is that a visual inspection of the identified clusters is essential 

for proving its usefulness. 

In this work, the clustering was important for understanding the PAHs dataset, proving that there is a strong relationship 

between structure and electronic properties in PAHs and identifying molecular families with similar trends. Through our 

analysis, the uniqueness of C60 with its triply degenerate orbitals and spherical shape was proven.  Further on,  we are 

going to search for similar molecules in a larger dataset focusing mainly in the LUMO orbital degeneracy. 

 

3.4 Scaling-up the screening on ZINC20  

After the initial investigation on the smaller PAHs dataset, the search was expanded towards a wider range of PAHs. 

ZINC20166 was screened using the new search functionality resulting in an extended dataset of 7,060 molecules (see 

Methods Section 3.2). The new dataset covers larger area on the PMI plot (Figure 3.9a) and also involves 

heteroatoms in higher percentage (Figure 3.9b). C60, decacyclene and 4,4'-bis({[1,1'-biphenyl]-4-yl})-1,1'-biphenyl 

occupy the corners of the ternary plot indicating the most spherical, most circular and most linear molecules in the 

extended dataset. The highest density of the plot, as indicated in yellow colour, lies on the area with linear 

molecules, whereas the ‘spherical’ corner is occupied only by C60. 
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Figure 3.9. a) PMI plot for the extended ZINC20 dataset showing high space coverage in terms of shape distributions. 

C60, decacyclene and 4,4'-bis({[1,1'-biphenyl]-4-yl})-1,1'-biphenyl are located on the corners of the triangle.  b) Barchart 

of the compositional analysis of the extended PAHs dataset showing that the considered PAHs are rich in heteroatoms. 

The radial coordinates are on a logarithmic scale. 

Further on, the same PMI plot is colour-coded based on the orbital energy differences across the PAHs space (Figure 

3.10). These maps provide a visual representation of the spread in some important electronic properties within the 

selected molecular space. The three most important energy differences that were taken into consideration are i) the 

HOMO-LUMO gap, ii) the LUMO-LUMO+1 degeneracy and iii) the LUMO+1-LUMO+2 degeneracy.  

The HOMO-LUMO gap describes the energy difference between the highest occupied and lowest unoccupied 

molecular orbital and is an important property for designing organic semiconductors. The lower the HOMO-LUMO 

gap, the higher the chance to find an organic semiconductor are, as the electrons that will be excited from the HOMO 

orbital need less energy to reach and occupy the LUMO orbital. Most of the research related to the high-throughput 

identification of organic molecules with electronic interest is focusing on screening molecules based on the HOMO-

LUMO gap.171–173 
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Figure 3.10. PMI plots for the extended ZINC20 dataset showcasing the shape vs orbital energy relationship in PAHs. 

The plots are colour-coded based on the a) HOMO-LUMO gap, b) LUMO-LUMO+1 and c) LUMO+1-LUMO+2 

degeneracies. C60 is the only molecule with the lowest orbital energy differences in all three cases. It can also be seen 

that the near degeneracy in the LUMO orbitals is favoured for circular and spherical molecules. 

In Figure 3.10a, the distribution of the HOMO-LUMO gap across the PAHs reveals that the area with the lowest 

gap lies between the linear and circular structures. This area is dominated by sulphur (S)-containing PAHs, e.g., 

molecule (1), which are known for their optoelectronic applications and have been reported to display photophysical 

and hole transport properties.174,175 Interestingly, the PAH with the smallest bandgap in the dataset contains no 

heteroatoms and is dibenzo(bc,ef)coronene (2). Among the spherical molecules only C60 shows a small HOMO-

LUMO gap. 
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The LUMO-LUMO+1 degeneracy describes the energy difference between the first and the second lowest 

unoccupied molecular orbital and has been reported as an important measure for designing organic molecular 

magnets as the free electrons will occupy the orbitals in an open shell distribution. According to Figure 3.10b, the 

molecules that show exact degeneracy are mainly around the spherical and circular corners, e.g., C60, tetraphenyl 

methane (3), coronene (6), corannulene (7) and decacyclene (8). 

The LUMO+1-LUMO+2 degeneracy describes the energy difference between the second and the third lowest 

unoccupied molecular orbital and can also play an important role in organic electronics. The molecules with that 

type of degeneracy lie to the area between the circular and spherical. Molecules can have LUMO-LUMO+2 

degeneracy without showing LUMO-LUMO+1 degeneracy. C60 is one of the molecules showing exact degeneracy 

in these three orbitals (LUMO-LUMO+1-LUMO+2) 

The uniqueness of C60 both in terms of structure and electronic characteristics can be seen in the PMI maps,  as it 

is the only molecule with all three orbital energy differences being the lowest. Its icosahedral symmetry is causing 

the triple degenerate LUMO orbitals that play a key role in its exotic electronic properties, i.e., high temperature 

superconductivity after metal insertion. As the orbital degeneracy in the LUMO orbitals plays a significant role for 

observing electronic properties after electron injection, we are focusing on identifying molecules that have this 

exact degeneracy in their LUMO orbitals as candidates for metal insertion in Chapter 4.  

According to Figure 3.10, LUMO degeneracies are observed in molecules in the ‘spherical’ and ‘circular’ area. This 

finding indicates the role of molecular shape in the orbitals. Molecules in these areas are more symmetrical and thus 

they have near-orbital degeneracies. We can observe that molecular symmetry is highly related to orbital energies, 

as highly symmetric structures tend to have degenerate orbitals. It can also be seen that molecules with S4 symmetry, 

e.g. molecule (9) can have exact triple degeneracy similarly to C60. 

 

3.5 Future work 

After observing the significant correlation between structure and property in PAHs, it is evident that the large and 

diverse PAHs dataset could further be used for developing machine learning models that are able to predict orbital 

energies by learning this correlation. Developing such a model could enable the high throughput screening of large 

databases (e.g., ChEMBL, CSD), where given the molecular structure, molecules with the desired orbital energies 

or orbital energy differences can be directly identified. The different 2D and 3D molecular representations could 

become the input to the model and several deep learning or conventional machine learning techniques could be 

tested for their ability to predict the desired electronic properties, e.g., orbital degeneracies. By creating models 
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which can effectively predict targeted properties we can accelerate materials discovery by quickly identifying the 

most interesting materials to be experimentally tested.  

3.6 Conclusion  

The main target of this introductory chapter is to construct the PAHs datasets to be further used in search of novel 

materials for electronic applications. The two main datasets derived from this work are:  

i) A molecular dataset with 210 PAHs which is a starting point for the evaluation of structure-property relations and 

is further used on Chapter 5 for extracting molecular pairs that could form co-crystals. This dataset was analysed in 

terms of structural and electronic characteristics and unsupervised learning clustering enabled the categorization of 

the molecules into classes based on their similarities. 

ii) An extended molecular dataset of more than 7,000 PAHs which is used for selecting the most promising 

molecules for metal intercalation. Although the majority of research for identifying electronically interesting 

(conducting) PAHs is focusing on the search for a small HOMO-LUMO gap, in this work, the main aim is to 

identify PAHs among the extended dataset with degeneracy on the LUMO, LUMO+1, LUMO+2 orbitals. We provide 

the full dataset of PAHs with the orbital energies as calculated from the semi-empirical model (PM6). 

Overall, we tried to understand the properties of PAHs on the molecular level and categorize them in terms of 

similarity to C60 employing unsupervised machine learning techniques. It was found that structurally similar 

molecules are also electronically similar in terms of their orbital energies, which makes the use of machine learning 

models for property prediction a powerful tool for exploring these materials. We can also conclude that for different 

applications we need to focus more on different properties, e.g., for a semiconductor HOMO-LUMO should be 

small but for the intercalation chemistry the LUMO degeneracy is more important. The PMI plots provided a 

sensible way to visualize the distribution of the structural characteristics across a large dataset of molecules. Of 

course, there are many more structural categorizations that can be made, e.g., twisting, curvature. However, these 

can also be regarded as subparts in the PMI plots. On another note, it should be reported that searching the ZINC 

database for available molecules can be sometimes misleading as although there seems to be a vendor for a molecule 

considered as ‘purchasable’ in reality the molecule might not be available or the vendor to be disconnected. As a 

result, for selecting the most interesting molecules for the metal insertion part we considered both LUMO 

degeneracy and real availability. The selected molecules are shown in the Appendix, Table A1.2. 

Herein, we investigated properties of PAHs on the molecular level. However, it is evident that the a priori design 

of functional molecular organic crystals with desirable properties is one of the most challenging cases, since they 

rarely obey simple geometric principles, like framework-based materials e.g., zeolites and MOFs, which could be 

exploited for rational design. Even very small changes to the molecular structure might result in considerable effects 
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on crystal packing and hence on the resultant solid-state properties. Molecular crystal packing is often dictated by 

weak, competing intermolecular interactions. For that reason, crystal structure prediction in Chapter 4 is further 

used as an exploratory tool for assessing the different possible positions the molecules might have in the crystal 

structure. A mechanistic understanding of the of the molecular function can only be facilitated by understanding 

their structure. 
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4. Strategies for identifying PAHs systems as hosts for metal intercalation 

4.1 Introduction 

Carbon-based materials of different structural topologies showing exotic electronic properties have attracted 

significant attention. In this work we are investigating the possible metallic and superconducting properties of a 

certain category of carbon-rich materials, the alkali-doped aromatic compounds. 

The tantalizing perspective of designing flexible, large area, low-cost electronic materials made from abundant and 

simple components, such as polyaromatic hydrocarbons and metals, has sparked considerable research interest in 

that field. It has been shown that the alkali metal doping of organic molecules causes the activation of their electrical 

conductivity. Alkali metal atoms have a ‘noble gas-like’ ionic core surrounded by one loosely bound valence 

electron. When the alkali metal atoms lose the outer electron, they get a stabler noble gas-like configuration, whilst 

the aromatic molecule is activated by incorporating an extra electron to the LUMO orbitals. 

Although there are several metal-PAH structures reported in literature for having extraordinary electronic 

properties, including high temperature superconductivity and quantum magnetism,83,176 the nature of these 

properties still remains mysterious. For instance, several studies report superconductivity in a number of potassium- 

and rubidium-intercalated materials.177 However, the incomplete structural characterization of these materials 

hinders the understanding of the underlying chemistry and physics of these systems. Nevertheless, the electrical 

conductivity of most doped organic structures is still orders of magnitude lower than the best inorganic conductors. 

Although significant progress has been made regarding the theoretical and experimental investigation of these 

materials a systematic way to predict basic elements such as stoichiometry, crystal structure and electronic bands is 

not yet established.178 I hope that the presented methodology could afford as a starting point for the determination 

of viable synthetic pathways. 

4.1.1 Key points of this chapter 

a. Investigation of metal-π landscapes in the Cambridge Structural Database. The extracted geometric 

parameters are further used in CSP calculations as initial constraints to aid in the generation of more sensible 

structures. 

b. Analysis of the existing fully structurally characterized pure metal-PAHs structures. The findings of this 

analysis are driving towards the development of a strategy for identifying the next most promising candidates. 

c. Evaluation of the new proposed candidates in terms of void space, orbital degeneracy, metal capacity and 

energetic stability. 

d. Crystal structure identification of selected metal-PAHs systems. Furthermore, electronic structure analysis 

is performed for the energetically favourable structures. 
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4.2 Motivation 

It is well known that the electrical conductivity (σ) is directly proportional to the carrier concentration (n), the charge 

of the carrier (q) and the charge-carrier mobility (μ), following equation: 

σ = nqμ  (4.1) 

This relation indicates that n and μ should be increased to achieve larger conductivity and electrical current. For 

increasing n, charge carriers should be effectively injected, whereas μ is mostly related to the configuration of the 

molecules. In this regard, in the making of an open shell conducting material, the alkali metals play the role of the 

charge carrier (n) and the molecular packing of the final system controls the μ parameter.179 

 

Figure 4.1. PAHs are regarded as closed-shell structures with no electron mobility around them, whereas the metals 

serve as reducing agents and thus have the ability to transfer electrons to the system and drive to the formation of open-

shell molecular units. 

Reported examples where an alkali metal acting as a charge carrier gave rise to extraordinary electronic properties 

in PAHs are C60, picene and triphenylene, to name just a few.85 However, C60 remains the only PAH superconductor 

that is fully characterised with single crystal diffraction. The C60 alkali-doped structures and the reported 

superconducting temperatures (Tc) involve K3C60 at 18oC77, Rb3C60 at 29K180, RbCs2C60 at 33K181 and Cs3C60 at 

38K.182 
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In fullerene systems, the alkali metal cations occupy the interstitial voids that already exist in the host structure 

leaving the crystal unchanged. As the empty voids are adjacent to the electron densest area in the structure, 

consequently the conjugated π-electron system enables the strong interaction among the inserted cation and the 

fullerene molecules. On the other hand, in PAHs systems the metal insertion affects the arrangement of PAHs in 

the crystal structure. Consequently, the derived electronic propertied are highly dependent on the crystal packing 

the PAHs will afford after the metal insertion. Regarding some of the known metal-PAHs systems, pristine picene, 

pentacene, phenanthracene and tetracene crystals all adopt the herringbone packing motif with edge-to-face (σ−π) 

interactions dominating over any potential π−π interactions. The largest voids are located between the molecular 

layers, adjacent to the saturated C-H bonds and far from the electron density of the PAH π systems (Figure 4.2a). 

The rearrangement of the packing after the metal insertion is performed in a way that the K sites are now closer to 

the aromatic π systems and strengthens the C-H…..π contacts whilst a single void per molecule is created (Figure 

4.2b).183 However, in these structures the interaction among the cation and the PAH is still weak.  

 

 

Figure 4.2. Voids modification after metal insertion in pentacene, viewing along b axis. a) Pristine pentacene crystal 

structure, containing 2 molecules/unit cell with lattice parameters a 7.90, b 6.06, c 16.01, a 101.90 β 112.60 γ 85.80, 

displaying the available void spaces in yellow. b) Modified pentacene structure after potassium insertion (purple balls), 

containing 4 molecules/unit cell with lattice parameters a 7.20, b 7.22, c 30.44, α 90, β 92.66 γ 90. Herein, it can be 

observed a significant lattice parameters modification. 

a) 

b) 
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The rubrene case reveals a different scenario, in which the dominating interactions are π−π intermolecular 

interactions between neighbouring tetracene cores of parallel rubrene molecules (Figure 4.3a). It was observed that 

the insertion of the K metal completely disrupts the intermolecular interactions of pristine rubrene. In this regard, 

two large voids per molecule are created where the accommodated K+ cations strongly interact with both the 

tetracene core and the phenyl groups of rubrene (Figure 4.3b).  

 

Figure 4.3. Structure modification after metal insertion in rubrene, viewing along a axis. a) Pristine rubrene crystal 

structure, containing 8 molecules/unit cell with lattice parameters a 26.86, b 7.19, c 14.43, β 90. The main interactions 

are π-π intermolecular interactions highlighted by red dotted lines However, σ-π intermolecular interactions are also 

present (blue dotted line). b) Modified rubrene structure after potassium insertion (purple balls), containing 2 

molecules/unit cell with lattice parameters a 12.85, b 8.36, c 14.53, β 71.26. 

 

4.3. Methods 

4.3.1 Isostar library 

The Isostar library provided by CSD is a computerized library containing crystallographic and theoretical (ab inito) 

data on intermolecular nonbonded interactions184. Herein, it was used for extracting valuable insights about 

chemical groupings between polyaromatic rings and metals aiming to display visually the most possible space where 

the metals can be found. The screening for the detection of the existing metal-PAHs systems was done using 

b) a) 



 
 

83 

Conquest software. The unsaturated hydrocarbons were defined as a benzene fused to aromatic ring (central group), 

which is designed as a benzene ring connected with two aromatic bond which can indicate a polyaromatic structure. 

In that way, it is ensured that all the polyaromatics are included to the search. The metals in contact (contact groups) 

that were selected are all the alkali metals. The enquiry for the fragments search is shown below (Figure 4.4).  

 

 

 

 

Figure 4.4: Metal-π bond configuration used in the CSD Conquest, representing the benzene fused to aromatic ring and 

the alkali metals(M). 

The distance d is set between 0 to 5 Å without constraints to the angles. The geometric parameters that were taken 

into consideration are the distance between the metal atom/ion and the centroid of the aromatic ring as well as the 

angle formed. Scatterplots with the distribution of metals around the aromatic fused ring were generated using the 

Isogen library and are presented in the Appendix Figure B1.1. 

4.3.2 Zeo++ software 

The void space analysis was performed using the well-established Zeo++ software140 widely used for analysis of 

porous materials such as zeolites and metal organic frameworks (MOFs). The arrangement of polyaromatic 

hydrocarbons in certain crystal structures is generating void spaces that are appropriate for metal insertion. As the 

structural characterization is a key part of computer-aided design of porous materials, the investigation of the 

geometrical parameters describing pores is essential and will enable a better prioritization of candidates.  

The void space analysis using Zeo++ is based on the Voronoi decomposition. For a given arrangement of atoms in 

a periodic domain it provides a graph representation of the void space and in that way the atomic connectivity is 

determined. In more detail, for each atom in the lattice the Voronoi cell is constructed around that atom. 

Consequently, the material space is divided into irregular polyhedral cells which are analysed to determine the pore 

topology (Figure 4.5a). The resulting Voronoi network is analysed to obtain the diameter of the largest included 

sphere and the largest free sphere, which are two geometrical parameters that are frequently used to describe pore 

geometry (Figure 4.5b).  

θ 
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Figure 4.5. a) 2D Voronoi diagram of nine atoms. b) The typical parameters describing pore sizes are the diameters 

describing: (1) the largest included sphere (Di), (2) the largest free sphere (Df), and (3) the largest included sphere along 

the free sphere path (Dif). 

4.3.3 DFT calculations for modelling the known metal-PAHs systems 

Dispersion inclusive density functional theory was implemented to understand the electronic structure of the 

experimentally known materials, evaluate the energetic stability and investigate the effect of metal intercalation to 

them. Plane-wave-based DFT calculations were performed using the VASP (version 5.4.1) programme. The 

optB86b-vdW functional was used to improve the description of van der Waals interactions over other semilocal 

DFT functionals,185 with a plane-wave cutoff energy of 520 eV. Core electrons were treated using the projector 

augmented-wave method. Unit-cell parameters and atomic positions were relaxed until all the forces were reduced 

to below 10−3 eV Å−1. Calculations on all the metal-PAHs systems were performed using the unit cells which 

correspond to the refined crystal structures, setting k-space parameter to 0.2. For the calculations of the potassium 

crystal the body-centered cubic (bcc) structure with Im-3m space group was extracted from ICSD and the same 

DFT parameters were applied. The k-point strings used to plot band structures were generated using the AFLOW 

framework.186 The benchmarking of the selected VASP parameters is described in the Appendix Table B1.1, Table 

B1.2, Figure B1.2. 

4.3.4 Convex hull construction 

The convex hull construction is a methodology used to identify relative stability of structures with different 

stoichiometries. In the absence of kinetic effects, a convex hull construction can be used to identify structures and 

compounds that are stable with respect to decomposition into two or more parent structures at fixed thermodynamic 

conditions. In this work we make use of a compositional based convex hull, which could be interpreted as the 

following: If two structures A and B with compositions C(A) and C(B) and free energies G(A) and G(B) are part 
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of the hull, then any structure C with composition C (A) < C (C) < C (B) and a free energy G(C) that lies above the 

line joining A and B on the hull will spontaneously decompose at constant volume into a mixture of A and B.187 

Herein, the structures A and B correspond to the polyaromatic hydrocarbon and the metal atom. The steps followed 

to construct the convex hull for the metal-PAHs systems are the following: i) starting from the known structure for 

a single PAH, the empty voids are identified and ranked by their size from the highest to the lowest, ii) inserting 

metals in the voids after selecting the desired metal content in the structure, e.g., 1 ≤ x ≤ 4 in most of the cases, iii) 

structural relaxation until full convergence with both atomic positions and cell parameters (a, b, c, α, β, γ) being 

free to change to minimize the forces on atoms and stresses on the unit cell, and iv) the construction of the convex 

hull plot showing on the x axis the metal concentration in the structure as K/(K+molecule) and on the y axis the 

energy difference between the intercalated structure and their constituent single-component structures. The void 

space detection and theoretical metal insertion (steps i and ii) were performed using an in-house script employing 

the Pymatgen library (version 4.7.5) and the incorporated Zeo++ library.139,188 Step iii was performed using the 

same DFT model as for modelling the known metal-PAHs systems (section 4.3.3). Moreover, spin polarized 

calculations were also performed for some theoretically intercalated systems. These calculations are the basis of 

theoretical determination of spin magnetic moments. In addition, they can be used to understand the basic 

mechanisms which might lead to the occurrence of magnetism in solid state materials. The approach described 

above will be referred in the text as ‘simple intercalation approach’ as only the parent crystal structure of the single 

molecules was used for metal insertion and no crystal structure was generated from scratch. The term ‘simple 

intercalation approach’ is used for discriminating this approach from the crystal structure predictions (section 4.3.5) 

where new structures were generated given only the molecular diagram and no information about the crystal 

structure. 

4.3.5 Crystal structure prediction 

When the most electronically and structurally promising combinations of molecules have been identified, their 

directed assembly into crystalline materials with targeted properties is the next significant step. Various successful 

computational methods have been developed for Crystal Structure Prediction (CSP) of molecular materials. 

According to these methods, a set of thermodynamically feasible crystal structures can be generated and a better 

insight into the range of polymorphs can be provided. The most widely used approach for predicting organic crystal 

structures is to minimize the lattice energy of a large number of systematically or randomly generated candidate 

structures. In this approach, the experimentally observed structure is assumed to correspond to the most stable 

packing arrangement.  

In this work, USPEX 10.4 software for crystal structure prediction was implemented as it is currently the only CSP 

software that can afford modelling both organic and inorganic systems.138 USPEX code employs an evolutionary 

algorithm (EA) which is an iterative and stochastic search method inspired by Darwinian evolution. Herein, each 
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crystal structure is described by the atom coordinates and the lattice vectors (a, b, c, α, β, γ). During the first 

generation a set of structures is randomly generated which could optionally satisfy some constraints, e.g., distance 

of molecular centres. The quality of each member of the population is assessed by a so-called fitness function which 

in our case is the energy value after the ab initio calculation. The best members (structures with the lowest energy) 

are selected as the parent structures and the next generation is created by applying specially designed variation 

operators, i.e., heredity, mutation or randomly. The process continues until some stopping criteria are achieved. In 

our cases the stopping criteria are either reaching 1,000 generated structures or if the same best structure remains 

unchanged for eight consecutive generations. 

The CSP study was carried out using an evolutionary algorithm, as implemented in the USPEX code, in conjunction 

with ab initio structure relaxations based on density functional theory (DFT) within the dispersion inclusive Perdew-

Burke-Ernzerhof (PBE+D3) generalized gradient approximation as implemented in VASP (Vienna ab initio 

simulation package). It should be noted that even modest changes in the orientation and deformation of the PAHs 

molecules and in the relative position and distance of alkali-metal atoms with respect to the PAHs and among 

themselves can alter the bonding nature of the doped system and its electronic structure. Moreover, even by knowing 

the metal composition in the structure, several competing and coexisting crystalline structures with the same 

chemical composition but different symmetries and physicochemical properties might be possible. To explore the 

variety of low energy structural polymorphs an extensive search over the energy landscape of each compound is 

essential, according to the following steps: 

1. First, we need to set the number of molecules and metals per unit cell, e.g., 4 molecules + 8 K for 1:2 

stoichiometry. To cover all the possible ratios and directly compare with the simple intercalation approach, we 

selected four stoichiometries 1:1, 1:2, 1:3, 1:4. For both the examined systems, i.e., Kxbezanthracene and 

Kxcoronene, two aromatic molecules and two, four, six and eight alkali atoms were used respectively to achieve the 

desirable stoichiometry. We also assumed integrity of molecules, excluding all possibilities of structural 

decomposition or polymerization. 

2. Calculations were performed using DFT supplemented by van der Waals (vdW) corrections by using the 

PBE+D3 method at zero pressure and temperature. The relaxation is performed in four stages, starting from stage 

1 and 2 with low and medium precision respectively. In these steps very crude structure relaxations of both atomic 

positions and cell parameters keeping the volume fixed are performed. In stages 3 and 4 a full relaxation with 

medium and normal precision respectively takes place with unit-cell parameters and atomic positions being relaxed. 

3. The energy cutoff for the plane-wave basis was set to 520 eV to ensure full convergence, and zero-point 

energies were not included. The Brillouin zone was sampled by Monkhorst-Pack meshes with the resolution of 

2π×0.05A−1. 

4. For each system, 4000 structures were explored within 20 generations for each stoichiometry.  
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5. The final most stable CSP generated structures of each stoichiometry were recalculated at the same accuracy 

as the simple intercalation approach for direct comparisons. The USPEX workflow was also benchmarked to a 

known system, namely K2tetracene (csd id: MURLIX) in which the CSP started given the known composition (4 

tetracene molecules and 8K). The ability of the software to generate sensible structures as well as the structure-

energy maps  are discussed in the Appendix B3. 

4.3.6 Electronic structure calculations 

To understand the origin of the electronic properties of the metal-PAHs systems, we performed density functional 

theory (DFT) calculations with the VASP code using the optimized lattice parameters and atomic positions as 

derived from the lowest energy  predicted structures. The position of the Fermi level in relation to the band energy 

levels is a crucial factor in determining electrical properties. In highly conducting materials, e.g., K3C60, the Fermi 

level intersects the LUMO band, whereas LUMO and LUMO+1 bands are connected (no band gap between them).176 

 

Figure 4.6. The electronic structure of C60 and the band structure of the metallic K3C60. Reproduced from ref. 191 

(https://journals.aps.org/rmp/pdf/10.1103/RevModPhys.68.855). Copyright (1996) by the American Physical Society.  

The electronic structure of the undoped insulating C60 and the band structure of  the metallic K3C60 is presented in 

Figure 4.6.  In the undoped C60, the HOMO band is filled and the triply degenerate LUMO band is empty, hence 

HOMO 

LUMO 

Fermi 
level 

https://journals.aps.org/rmp/pdf/10.1103/RevModPhys.68.855
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C60 is an insulator. On the other hand, in K3C60, the alkali metal is donating its electron to the LUMO orbitals. Hence 

K3C60 is expected to be a metal with a half-filled LUMO band.189   

4.4. Results 

4.4.1 Existing Metal-π bond landscapes in the Cambridge Structural Database 

Using Conquest and the Isostar library with the parameters defined in the Methods 4.3.1 section, the search for 

metal-PAHs contacts revealed 142 structures and 1,817 molecular fragments. Potassium (K), lithium (Li) and 

sodium (Na) were found to be the dominant metals in these systems as shown  in Table 4.1. 

Table 4.1. Distribution of the geometric parameters in the metal-PAHs systems, based on the alkali metals. The main 

geometric parameters are the distance between the metal atom/ion and the centroid of the aromatic and  the angle 

formed, as shown in Figure 4.4. 

Metal Radius Total Number of 
structures 

Number of 
fragments 

Distance (Å) Angle( θ◦) 

Range Median Range Median 

Li 1.28 26 497 1.92-4.99 3.67 16.31-161.91 88.45 

Na 1.66 32 95 2.74-4.95 4.36 37.47-165.71 90.02 

K 2.03 49 683 2.64-4.99 3.84 33.51-151.09 90.16 

Rb 2.2 11 203 2.78-4.98 3.89 36.99-148.08 84.67 

Cs 2.44 24 339 3.02-4.94 3.81 33.91-146.18 84.57 

 

From the total number of fragment found in the CSD, it is evident that there are many interactions among a fused 

polyaromatic ring and metals. However, very limited structures contain only metal and a polyaromatic hydrocarbon 

in their structure. These pure crystal structures are summarized in Table 4.2. In the majority of the cases examined 

with Isostar, a solvent was present in the structure which can be prohibitive for electron correlation effects.  

Nevertheless, for the extracted structures that contain a metal-π interaction, it was observed that as the radius of the 

metal gets bigger they tend to be more concentrated around 90o (perpendicular to the center of the aromatic ring). 

Moreover, our statistical analyis indicate that lithium, which has the lower radius, is the only alkali metal that can 

be found closer to the aromatic ring, with distances even lower than 2 Å (Figure 4.7).  
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Figure 4.7: Scatterplots showing the distribution of the geometric parameters according to the radius of each metal. The 

alkali metals are sorted based on increasing radius, starting from Li with the smallest to Cs with the highest. 

4.4.2 Analysing the existing Metal-PAHs systems 

From the statistical analysis of CSD, it can be concluded that the majority of currently existing metal-PAHs 

landscapes refer to coordination compounds or systems which include a solvent in the structure. All the metal-PAH 

systems that were fully structurally characterized are summarized in Table 4.2. The energetic stability of the doped 

structures is measured by the energy difference between the final energy of the doped form and the sum of the 

energies of the un-doped molecular crystals and the crystal of the single metal, following the equation: 

Energy difference (eV)  =  energy of KxPAH – (energy of PAH +  energy of single K crystal)       (4.1) 

Table 4.2 shows the lattice energy calculations on the existing pure phase and fully characterized metal-PAHs 

systems. The calculations were performed used the optB86b-vdW functional to include dispersion corrections. The 

final energy difference is given in eV per Functional Unit (FU), i.e., the number of PAHs in the structure.  
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Table 4.2. Evaluation of energetic stability in metal-PAHs systems using Wan der Walls corrections (optB86b functional). 

Known doped 

structures in 

CSD 

Energy of PAH 

without K (eV) 

Energy of 

single K (eV) 

Energy of 

KxPAH (eV) 

Energy 

difference 

(eV) 

Energy 

difference 

(eV/FU) 

Density 

(g/cm3) Ref 

K2tetracene 

(MURLIX) 

-741.386 

4 molecules 

9.289 

8 K atoms -742.086 -9.989 -2.50 
1.497 

190 

PIWHUB 

(K2rubrene) 

-861.11 

2 molecules 

4.6447 

4 K atoms -861.603 -5.138 -2.57 1.370 191 

K2pentacene 

(YASTOE) 

-896.483 

4 molecules 

9.289 

8 K atoms -898.725 -11.531 - 2.88 
1.824 

183 

K2picene 

(YASTUK) 

-898.729 

4 molecules 

9.289 

8 K atoms -894.262 -4.822 -1.20 1.604 183 

Csphenanthre

ne 

-1173.627 

8 molecules 

-2.42 

8 atoms -1182.724 -7.885 -0.99 1.964 59 

Cs2phenanthr

acene 

-586.813 

4 molecules 

-2.42 

8 atoms -594.829 -5.595 -1.40 2.490 59 

 

Our findings indicate that in all cases the formation energy of the intercalated crystals is significantly lower than 

the energy of the constituent molecules by more than -1 eV/FU. It can also be observed that all structures have high 

density above 1.3 g/cm3. Regarding the volume expansion (see Figure 4.8) after the metal doping we can conclude 

the following: i) potassium (K+) insertion to pentacene to afford K2pentacene resulted in an expansion of the original 

unit cell by 15% per pentacene moiety ii) potassium (K+) insertion to picene to afford K2picene led to an expansion 

by 11.4% of the original unit cell iii) caesium (Cs+)  intercalation to phenanthrene led to a ~16% or a ~27%  volume 

expansion for Csphenathracene and Cs2phenathracene, respectively59 iv) potassium (K+) insertion to rubrene to 

afford K2rubrene resulted in 6.4% unit cell expansion.  

In Figure 4.8, we investigate the modification of the voids after metal insertion. We report the void parameter of 

both the single molecule structures and the intercalated structures (after theoretically removing the metals). It can 

be seen that in all cases the metal insertion drove to a significant void expansion which is in accordance with the 

unit cell expansion reported in literature for the above-mentioned cases. The structures are represented as circles 

and are colour-coded based on the LUMO orbital degeneracy. The only two fully structurally characterized 

materials found with metallic character are C60 and phenanthrene, which are also the two molecules with the smallest 



 
 

91 

LUMO, LUMO+1 orbital energy difference. Picene, which also shows significant LUMO degeneracy, has been 

reported as superconductor in the K3picene ratio. However, its structure has not been verified.  

 

 

Figure 4.8. Mapping the voids modification and energetic stability after metal insertion in well-studied PAHs. Both the 

undoped and doped structures are represented, with the curly arrows indicating the changes in energy and volume. The 

structures are colour-coded based on the LUMO degeneracy (in eV) of the PAH. 

After observing the trends on the existing doped PAHs systems in Figure 4.8, we can conclude that: i) PAHs that 

have been intercalated have diameter of largest included sphere Di > 2 Å ii) The metal insertion leads to an 

energetically favourable conformation in all the studied cases iii) Superconductivity was only observed in C60 – 

Metal systems which afford exact triple degeneracy, iv) Metal insertion leads to significant unit cell expansion in 

all the cases, except the C60 systems v) Finally, from several experimental studies and reported observations arises 

that decomposition of the structures is a possible phenomenon.191,192 
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4.4.3 Identifying possible PAHs as metal hosts 

For the selection of new molecules as substrates for metal insertion, we are focusing only on aromatic molecules, 

based on the assumption that the presence of a π-conjugated system is necessary for electron mobility. For the 

computational screening of the PAHs, we are considering three major parameters: i) void space ii) orbital 

degeneracy iii) metal capacity. Based on the investigation of these key points of interest, we are going to propose 

good candidates for experimental consideration using as a fourth criterion the availability in the lab/purchasability. 

The PAHs dataset, consisting of 210 molecules, used as a starting point for the analysis is previously reported in 

Chapter 3 and was extracted from the ZINC15 database after searching for Tanimoto similarity to the eight 

representative PAHs (Chapter 3, Methods). The Cambridge structural database was searched using Conquest tool 

for identifying 84 molecules out of the 210 having a reported crystal structure. The void diameters of these structures 

are reported in the Appendix, Figure B2.2. 

Considering the effect of orbital degeneracy and void space 

C60 is the only molecule with reported intercalated structure in which unarguably high Tc superconductivity was 

observed experimentally. The indicative triple degeneracy in the LUMO orbital of C60 as was discussed in Chapter 

3 is regarded as the top important characteristic for observing electron correlation. Moreover, several theoretical 

studies have identified that the near degeneracy between the LUMO, LUMO+1 half-filled conduction bands close 

to the Fermi level might be a driving element of phonon-driven superconductivity. 

Following the analysis and comparison of orbital degeneracies, we selected available molecules with exact double 

degeneracy for further analysis. In this regard, if the original double LUMO degeneracy is retained, then a single 

electron transferred from the alkali metal would lead to a 1/4 filled band and the PAH should behave as a metal. 

However, in some cases it is experimentally observed that PAHs lose the 2-fold LUMO degeneracy and therefore 

are easily driven to the Mott insulating state.  

As described in the methods section, Zeo++ was used for the calculations of the void space in the identified PAHs 

crystals. Although high porosity might be desirable to increase the pore surface and let the structure afford higher 

metal concentration, it might also reduce the carrier mobility. We need both degeneracy and high void space such 

that the degeneracy will remain low after the metal insertion. The six most promising structures in addition to C60 

in terms of large void space, degeneracy and availability are shown in Figure 4.9.  
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Figure 4.9. Pore size parameters and LUMO degeneracy of the ZINC single molecules with known structures. Each 

point represents a crystal structure and is colour-coded based to the LUMO- LUMO+1 orbital energy difference (eV). 

Bezanthracene (BEANTR) is shown as a promising candidate for metal insertion in terms of available void space. 

Coronene (CORONE),triphenylene (TRIPHE15) and corannulene (CORANN) are promising in terms of exact LUMO 

orbital degeneracy. 

Considering the effect of metal capacity 

It has been observed that the metal ratio plays an important role for the electronic properties of the materials. For 

instance, in the picene case, K3picene is reported as a high Tc superconductor, whereas the K2picene was an 

insulator. For the investigation of metal capacity in the detected PAHs systems, the convex hull was constructed for 

each structure as described in Methods. Similar analysis was performed for all the PAHs highlighted in Figure 4.9 

and the overall convex hull is shown below. The known potassium intercalated structures are represented as stars. 
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It can be observed that all the known potassium intercalated structures, represented as stars, can afford 1:2 

stoichiometry.  

 

Figure 4.10. Convex hull summary of the selected PAHs showing the most stable ratios for the different intercalated 

structures. Structures with low energy, promising metal ratio (open shell ratio), high metal capacity are prioritized as 

synthetic targets. 

Spin-polarized calculations for the K1 and K3 ratios were further used for the promising systems for describing the 

magnetism of itinerant electrons. Detailed tables with all the ab initio calculations are given in the Appendix B2. 

Considering the effect of metal type 

Another important factor to be taken into consideration regarding metal-PAH systems is the type of metal. 

potassium, sodium and caesium are the three metals usually found in analogous systems and thus their effect was 
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also investigated for two systems, i.e., metal-Coronene and metal-Triphenylene. These systems were selected as 

both have exact LUMO degeneracy and an open cell ratio for potassium x=3.  

 

Figure 4.11. Convex hull comparisons based on the metal type, i.e., potassium (K), Caesium (Cs) and sodium (Na). (top) 

triphenylene (bottom) coronene case. 

Our findings indicate that sodium has similar behaviour as potassium for both structures, accommodating the same 

1:3 stoichiometry. Cs, as a more aggressive reducing agent than potassium and sodium, seems to be able to afford 

higher ratios and more stable structures. It was also found that Cs is causing significant deformation to the starting 

crystal structure in both coronene and triphenylene as opposing to K and Na (Appendix Figure B2.3, Table B2.14). 

It is evident that as Cs is a larger alkali metal, when inserted in structures of small size PAHs where direct 

intermolecular forces are weak, the addition of high metal quantities is a major perturbation that impacts the pristine 
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herringbone structure. Based on the spin polarized calculations for the metal-coronene open shell ratio (x=3) 

(Appendix tables B2.2, B2.3, B2.4), the ferromagnetic (FM) K3coronene was found more stable in comparison to its 

non-spin polarized solution indicating a magnetic character. 

Selecting the candidates for further investigation 

Alongside the ab initio method for the convex hull determination, a well-established Crystal Structure Prediction 

(CSP) software coupled with DFT theory was used to identify the lowest energy structure for each metal ratio. CSP 

is a key to computational materials discovery as the properties of a material depend sensitively on its structure. 

Herein, we use CSP in search of evidence of metallic and superconducting phases for the promising metal-PAH 

systems identified in the previous chapters. Due to the time demanding nature of CSP, we performed these 

calculations only for two systems, namely KxBezanthracene and KxCoronene. The selection of these two candidate 

systems was based on large void space (KxBezanthracene), exact LUMO orbital degeneracy (KxCoronene) and 

immediate availability in our lab (both). Both molecules were also classified in the same cluster as C60 in the 

analysis performed in Chapter 3 (Figure 3.6). Bezanthracene is a molecule with high structural similarity to tetracene 

and phenanthracene, which both have been successfully intercalated with potassium and caesium respectively. 

Coronene is a very well-studied material for metal intercalation. Although it has been reported several times as a 

superconductor, an experimental structure has not yet been determined nor a detailed first principles study has been 

yet reported to the best of our knowledge.  

4.4.4 The atomic structure of potassium-doped bezantrhacene from a first-principles study 

Benzanthracene (BEANTR) is the first structure for further computational investigation as it has a large enough 

void space for metal insertion and was also grouped together with C60 in the analysis performed in Chapter 3, Figure 

3.6. Moreover, it shows interesting structural properties as it is the first molecule that could be regarded as an 

intersection of an acene and phenacene, i.e includes both linear fusion of and zig-zag benzene rings respectively.  

That could be of importance as the zig-zag molecules are more stable, whilst the linear fusion rings absorb more 

energy. Thus, benzanthracene as an intersection could have both stability and electronic properties. Bezanthracene 

is reported as an insulator with band gap of 2.02 eV. 

In the following paragraphs, we will present the structures, their energies, and their electronic structures followed 

by a conclusive discussion. The structures generated with the simple intercalation approach, i.e., theoretically 

intercalating metals in the largest free void spaces, are named as KxPAH_simple, with x=1,2,3,4. The structures 

generated with USPEX are indicated as KxPAH_(EAy) with with x=1,2,3,4 and y being the id number of the 

generated structure as defined by USPEX.  
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Figure 4.12. Structures of potassium-doped benzanthracene (KxBeantr, x = 1, 2, 3, 4) comparing with undoped case. 

(a)Bezanthracene, (b)K1bezanthracene, (c) K2bezanthracene, (d) K3bezanthracene, (e) K4bezanthracene. The purple 

balls represent K atoms. In K2Beantr, which is the most stable configuration, the insertion of K atoms seems to promote 

the σ-π bonds (C-H…..π contacts). 

After the doping of the parent bezanthracene structure with different amount of potassium, the energetically 

favoured configuration was found to be that of K2beantr with a unit cell volume expansion of 13.9%. The void 

space in the parent herringbone structure lies between the PAH layers and is lined with C-H σ bonds (Figure 4.12 

a). However, the insertion of potassium atoms seems to contribute to a structural rearrangement of the bezanthracene 

molecules, empowering the σ-π bonds (C-H…..π contacts) (Figure 4.12 b).  

The convex hull of the USPEX generated structures for the Kxbezanthracene system is presented in Figure 4.13 a. 

Each point represents one of the generated compounds, described by the stoichiometric ratio and the energy 

difference as derived from equation 4.1. The most stable stoichiometry is the divalent (K2bezanthracene), which is 

in agreement with the outcome of the simple intercalation approach (Figure 4.13b). For direct comparison of the 

energetic stability, the energies of the lowest USPEX generated structures (EA1046, EA602, EA979, EA1077) were 

recalculated in the same level of accuracy with the more accurate functional optB86b-vdW185 and projected in the 

same convex hull (Figure 4.13b). It can be observed that the CSP results are comparable to the simple intercalation 

approach outcome in terms of the identified stable ratio, namely K2bezanthracene. 

 

 

a) b) c) d) e) 
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Figure 4.13. Convex hulls of the KxBezantracene system. a) constructed with USPEX b) derived from the simple 

intercalation approach. The stable composition in both cases is K2bezanthracene. The pink stars in b represent the lowest 

energy structures from USPEX reoptimized with higher accuracy with optB86b.  
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Table 4.3. The lattice parameters for various phases of Kxbezanthracene with x=1,2,3,4. The energies of all the systems 

were calculated with the same level of accuracy for direct comparisons. The most stable structure overall is highlighted 

in bold. 

Phases a b c α β γ Energy 

difference 

(eV/FU) 

K1beantr_simple 7.054 7.378 12.101 90.153 114.311 88.968 -0.129 

K2beantr_simple 7.236 7.997 11.795 89.992 110.734 90.004 -1.582 

K3beantr_simple 9.516 6.834 11.046 89.646 96.979 90.012 -1.202 

K4beantr_simple 9.937 7.184 10.962 90.405 97.548 92.621 -1.011 

K1beantr_uspex (EA1046) 14.683   6.822   6.835 108.740   79.034 101.073 -0.611 

K2beantr_uspex (EA602) 12.248   6.222   9.802   89.988   89.953   63.323 -1.568 

K3beantr_uspex (EA979) 10.585   13.371 5.360 87.393   89.910   90.211 -1.328 

K4beantr_uspex (EA1077) 12.865  11.584   5.473   90.192   75.076   96.451 -1.407 

Pristine bezanthracene 7.958 6.50 12.121 90.000 100.500 90.000 - 

 

The lowest energy structures for each stoichiometry as obtained with both the simple intercalation and USPEX 

methods are listed in Table 4.3. Overall, the divalent stoichiometry K2beantr_simple is the energetically favourable 

structure. The alkali metal atoms are found in intralayer positions, i.e., between planes defined by PAH molecules. 

The fully optimized values for the unit cell length and angles are a=7.236, b=7.997, c=11.795, α=89.9ο, β=110.734ο, 

γ=90.0ο, whereas the herringbone pattern of pristine bezanthracene is preserved (Figure 4.14).  

The doping of bezanthracene results in a very small volume expansion from 615.814 to 638.436 Å3 whilst the unit 

cell parameters remain similar to pristine bezanthracene. The distance between the alkali metals was found to be 

4.141 Å, whereas the distance between the metal and the centre of the aromatic ring is 2.901 Å, which is in 

agreement with the extracted statistics from metal-π contacts. 

The synthesis of the Kxbezanthracene system was performed by Dr Angelos Tsanai and the PXRD data were 

analyzed by Dr Rhian Patterson and Dr Rebecca Vismara. According to the experimental findings a new intercalated 

phase has been identified, which most probable is a mixture of two phases. Different compositions and temperatures 

have been tried to identify those in which the pattern remains the same. There is a high possibility that the 

intercalated phase consists of two different stoichiometries, however the PXRD patterns have not been solved and 

there is no exact match between the simulated low energy structures and the experimental pattern. It is most likely 

that the experimental structure involves four bezanthracene molecules, considering the possible unit cell dimensions 

suggested from the crystal structure analysis software used. 



 
 

100 

 

Figure 4.14. Crystal structures viewing along the a axis of a) pristine bezanthracene. The unit cell contains two molecules 

and b) K2Bezanthracene. The unit cell contains two molecules and four K atoms in the intralayer space. 

 

4.4.5 The electronic properties of potassium-doped bezanthracene 

Herein, we have obtained the electronic structure of solid bezanthracene, both doped and undoped. As the 

K2Bezanthracene structure obtained with the simple intercalation approach was found to be the energetically 

favourable one it was used as representative for the doped case. The nonmagnetic, the ferromagnetic (FM) and the 

antiferromagnetic (AFM) structures were considered for the doped case, with lattice energies -369.519 eV, -369.320 

eV, -369.519 eV, respectively. The nonmagnetic solution was the most stable, and thus was used for further 

electronic structure analysis.  
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Figure 4.15. The electronic structure of pristine benzanthracene. The band structure (left) and density of states (right) 

are shown for the relaxed structure of bezanthracene(BEANTR). The horizontal blue line indicates the Fermi level. 

In the case of the undoped structure (Figure 4.15), the molecules take a herringbone pattern, and the first unoccupied 

band above the Fermi level (conduction band) is a mixture of the LUMO states of the two molecules in the unit cell 

forming two entangled bands. The second unoccupied band is a mixture of the LUMO+1 states and is separated from 

the first by 0.2 eV. 

It is expected that in the case of doped bezanthracene with two potassium atoms per molecule the two electrons per 

bezanthracene molecule would fill the empty bands corresponding to the LUMO states resulting in two filled bands 

and no metallic character is expected. Indeed, the electronic structure analysis of the K2bezanthracene system 

(Figure 4.16)  showed that the final structure consists of a filled LUMO derived band and an unoccupied LUMO+1 

derived band, with the gap between these two gaps being calculated to be 0.3 eV. The Fermi level is not intersecting 

any of the bands, so there are not any partly filled bands in the doped structure.  
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Figure 4.16. The electronic structure of K2benzanthracene. The band structure (left) and density of states (right) are 

shown for the relaxed structure of the K2bezanthracene. Based on the position of the Fermi level (blue line), the LUMO 

band is filled with electrons whereas the LUMO+1 is unoccupied. 

 

4.4.6 The atomic structure of potassium-doped coronene from a first-principles study 

Similar analysis as for the potassium-doped benzanthracene was performed for the potassium-doped coronene. A 

full determination of the doped coronene structure based on x-rays diffraction data has not been possible so far 

because of the large background and the small number of useful measured peaks. As a result, the crystal structure 

identification can be only performed by simulating existing crystal structures of single coronene after metal 

insertion. Coronene consists of six benzene rings arranged in a ring-like manner. The unit cell of pristine coronene 

contains two molecules arranged in herringbone pattern. Pristine coronene has a monoclinic structure (space group 

of P21/α) and the lattice parameters are a = 16.094 Å, b = 4.690 Å, c = 10.049 Å, and β = 110.79o. All the structures 

generated with USPEX as well as the structures resulted from the simple metal insertion approach were compared 

in terms of relative lattice energy as shown in Figure 4.17. Our results indicate that the possible stoichiometric 

content of potassium in Kxcoronene compounds is x=3, as verified from both the USPEX generated structures and 

the simple intercalation approach.  
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Figure 4.17. Convex hull constructed for Kxcoronene with x=1,2,3,4 a) using USPEX software for crystal structure 

prediction b) following the simple intercalation approach. The most stable composition identified from both methods was 

for x=3 (K3coronene). The pink stars in b represent the lowest energy structures from USPEX reoptimized with higher 

accuracy with optB86b. 
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The lattice parameters of the most stable structures of each method and stoichiometric ratio are shown on Table 4.4 

and the detailed calculations on the lattice energies are on the SI, Table A.1. For the cases of x=4 USPEX identified 

a more stable structure whereas for all the other ratios the simple intercalation approach resulted in the energy 

minima. In the USPEX generated K2Coronene, although around 1,000 structures were generated, the structure 

EA420 was the best found and remained the same for 8 generations. 

Table 4.4. The lattice parameters for various phases of KxCoronene with x=1,2,3,4. The formation energy is measured 

in eV per functional unit (FU). 

Phases a b c α β γ Formation energy 

(eV/FU) 

K1Coronene_simple 16.582 4.596 10.720 89.999 116.944 90.001 0.178 

K2Coronene_simple 14.636 6.639 7.914 90.011 95.046 90.023 -0.622 

K3Coronene_simple 11.627 7.791 9.743 91.639 108.042 92.900 -1.124 

K4Coronene_simple 17.710 5.864 10.113 90.103 118.215 89.953 -0.833 

K1Coronene_uspex (EA1056) 7.519 7.017 14.145 89.055 90.640 86.311 -0.263 

K2Coronene_uspex (EA420) 9.916 4.924 19.309 95.360 84.256 90.950 -0.328 

K3Coronene_uspex (EA1305) 10.024 5.341 17.567 90.123 90.074 74.002 -0.868 

K4Coronene_uspex (EA950) 15.547 5.681 10.543   90.128   90.098   81.966 -0.844 

Pristine Coronene 10.014 4.662 15.575 90 106.53 90 - 

It was found that the structure derived from the simple intercalation approach with a doping level of x=3 is the most 

stable with the largest formation energy (-1.1244 eV/FU) in all the above structural phases. The alkali metal atoms 

are found in intralayer positions, i.e., between planes defined by PAH molecules. The fully optimized values for the 

unit cell length and angles are a=11.627, b=7.791, c=9.743, α=91.639ο, β=108.042ο, γ=92.90ο, whereas the 

herringbone pattern of pristine coronene is preserved (Figure 4.18). The doping of coronene results in a volume 

expansion from 715.27 to 837.239 Å3 and significant changes of the b and c unit cell lengths. The distance between 

the alkali metals was found to be 5.64 Å, whereas the distance between the metal and the centre of the aromatic ring 

is 3 Å, which is in agreement with the extracted statistics from metal-π contacts. 

Experimental work on the Kxcoronene system was performed by Dr Angelos Tsanai and the PXRD data were 

analyzed by Dr Rhian Patterson. According to the experimental findings, a new intercalated phase has been 

identified. Different compositions and temperatures have been tried and it is postulated from the crystal structure 

analysis software used that the experimental structure affords 1:3 ratio with 8 coronene molecules and 24 K in the 

unit cell. The final structure has not been found yet for enabling direct comparisons with the theoretical ones. 
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Figure 4.18. Crystal structures viewing along the c axis of a) pristine coronene. The unit cell contains two molecules 

and b) K3Corone. The unit cell contains two molecules and six K atoms in the intralayer space. 

 

4.4.7 The electronic properties of potassium-doped coronene 

For having accurate electronic properties calculations, getting the magnetic structure is a critical step. As the 

structure of K3Coronene_simple was found to be the most stable, further analysis for the electronic structure is 

performed using that structure. The ferromagnetic (FM) and antiferromagnetic (AFM) structures were obtained by 

allowing spin polarization in the initial K3coronene structure. The lattice energies of the nonmagnetic, FM and AFM 

structures are -464.146 eV, -464.173 eV, -464.169 eV respectively, indicating that the FM solution is the most 

energetically favourable. Consequently, the relaxed ferromagnetic structure was used for further electronic structure 

analysis.  

Both the undoped and doped coronene were analysed and with the band structures and density of states plots shown 

in Figures 4.18 and 4.19, respectively. In the undoped crystalline coronene, the two molecules in the unit cell take 

a herringbone structure. The conduction band consists of four entangled bands originating from the lowest two 

unoccupied molecular orbitals (LUMO and LUMO+1) of each of the two molecules in the unit cell. The LUMO and 

LUMO+1 orbitals are degenerate.  
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Figure 4.19. Calculated electronic structure of undoped solid coronene. The origins of energy are set to their Fermi 

levels. The band structure (left) and density of states (right) are shown for pristine solid coronene. The first unoccupied 

band above the Fermi level (solid blue line) is a mixture of LUMO and LUMO+1 states of the two coronene molecules in 

the structure. 

When coronene is doped with potassium atoms, the original double degeneracy of pristine coronene remains in the 

simulated structure. This leads to a metallic character after the two first unoccupied bands (which are also 

degenerate) of pristine coronene are filled with the electrons provided by the potassium metal, resulting in a ¾-

filled two-band system. Although the metallicity of coronene containing open shell molecular ions has been already 

claimed from other theoretical studies,81 the experimental outcomes are contradictory. Potassium intercalated 

coronene films have been studied using photoemission spectroscopy. However, no emissions from the Fermi level 

were experimentally measured, ruling out the possibility for a metallic ground state.193  

As there are not yet any published data that allow a detailed structure refinement and thus enabling the determination 

of the real crystal structure, we can only speculate regarding the existence of any metallicity in K3coronene. 

Nonetheless, even a small structural difference could be responsible for the different metallic or insulating ground 

state at the same doping level, since this small difference might change the balance between the bandwidth (kinetic 

energy gain) and the Coulomb repulsion in compounds with an integer doping level.193 Reports for these metal 

insulator transitions exist both in theoretical and experimental studies for K3phenanthracene58 and K3C60, 

respectively.71 In the case of doped phenanthrene among the lowest energy structures generated using USPEX, one 

is a band insulator and the other is metallic. Whereas in the case of doped fullerene it was found that a lattice 
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expansion and symmetry lowering in the metallic K3C60 or a change of the lattice symmetry transiting from K3C60 

to K4C60 results in an insulating ground state.194 

 

Figure 4.20. Calculated electronic structure of the potassium-doped solid coronene. The origins of energy are set to 

their Fermi levels. The band structure (left) and density of states (right) are shown for the simulated K3coronene. The 

first unoccupied band above the Fermi level (solid blue line) is a mixture of LUMO and LUMO+1 states of the two 

coronene molecules in the structure, indicating that the original double degeneracy of LUMO is retained after the metal 

insertion. This band is filled with three electrons (provided by potassium) per coronene molecule resulting in a ¾ filled 

band and indicating a metallic character. 

4.4.8 Overall proposed strategy 

The overall proposed process for the theoretical investigation of the metal-PAH systems is summarized in Figure 

4.21. Starting from large molecular databases, the molecules with exact double degeneracy are found to have a 

better perspective for keeping this degeneracy in the crystal structure and accommodate half-filled bands after the 

electrons insertion. The next parameter to be considered is if these molecules have a known crystal structure such 

that the available void space can be calculated. A large enough void space could indicate that the structure will not 

change significantly after the metal insertion and thus the orbital degeneracy will not be affected. Given the crystal 

structure, it was found that by applying a simple intercalation approach can give a very good estimation about the 

metal capacity, although the experimental crystal structure might not be found. Previous works195,196 performing an 

ab initio workflow for metal-PAHs similar to ours are mainly based on the assumption that the unit cell parameters 
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do not change significantly upon metal insertion. However, the recent well-characterized structures reveal a 

different scenario, where the lattice is being modified significantly e,g., K2tetracene. For this reason, we tried to go 

further from these assumptions and used a CSP method to generate from scratch structures using a genetic algorithm. 

 

Figure 4.21. Overall proposed strategy for rationalizing the selection of PAHs for intercalation. 

CSP could be beneficial in the cases where some of the initial parameters are known. Firstly, the distance of the 

molecular centers was found to be very important for generating structures with high density as demonstrated in the 

Appendix, Figures B3.1 & B3.2 Moreover, the knowledge of the number of compounds in the unit cell is very 

important to generate structures which are comparable to the synthesized ones. Another limitation of USPEX 

workflow is that the dispersion correction method used (PBE + D3) describes metal-PAHs systems less accurately 

than the more computationally expensive optB86b-vdW functional and the ranking of the structures may differ 

according to which functional in used.  
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4.5 Discussion and perspectives 

The scope of this chapter was to investigate the metal-unsaturated hydrocarbon salt chemistry. To this date, the 

metallic and superconducting behaviour of many of these exciting systems is proving difficult to reproduce and 

there is considerable uncertainty, ranging from stoichiometry, mechanism and precise crystal structure. For that 

reason, simultaneous efforts of experiment and theory are necessary. This work is aiming to propose new strategies 

for the identification of the most appropriate candidates for metal insertion and can be divided into four major parts: 

1) Statistical analysis of the existing metal-polyaromatic hydrocarbons (PAHs) interactions in the Cambridge 

Structural Database to extract important parameters that have been observed in these systems, e.g. minimum 

distance between the alkali metals and the molecular centres. 

2) Computational analysis of all the known pure phase metal-PAHs structures, measuring the energetic stability, 

the void space modification, and the orbital degeneracy. Our calculations demonstrate that in all the known cases 

the doped structures were on average -1.92 eV/FU more stable than their constituents. However, although the 

energetic stability is the driving force for the formation of metal-PAHs systems, there are many prohibitive 

parameters related to the experimental conditions used that might led to unwanted decomposition of molecules.  

3) Following the observations on the known data, we develop new strategies for selecting the next most promising 

systems having as a starting point the PAHs datasets created in Chapter 3. The selection criteria involve large void 

space, degenerate LUMO orbitals and high metal capacity. An ab initio method has been developed for measuring 

the stability of PAHs after doping with alkali metals. 

4) Crystal structure identification. As all the properties are derived from the crystal structure, two different methods 

were tested for the theoretical determination of the crystal structure of metal-PAHs systems. The first method 

employs Zeo++ to identify the appropriate positions in the structure to insert metal ions and then density functional 

theory is used to optimize the structures allowing for complete variational freedom of the crystal structure 

parameters and the molecular atomic positions. Several PAHs were explored within that framework after being 

theoretically intercalated mainly with potassium. The second method tested is a well-established software, namely 

USPEX which is able to handle systems containing both organic and inorganic components. As this approach is 

more time and resource consuming only two detailed studies were performed for two interesting candidate systems, 

KxCoronene and KxBezanthracene. The structures derived from USPEX are comparable with the structures of the 

simple intercalation approach. Both methods agree on the most stable stoichiometry, x=2 for KxBezanthracene and 

x=3 for KxCorone. From the calculated electronic structure, we expect insulator behaviour for potassium-doped 

bezanthracene and metallic behaviour for potassium-doped coronene. It can be concluded that Crystal Structure 

Prediction for the metal-PAHs systems can only be beneficial in the cases where some starting information about 

the structure exists, e.g. the number of molecules in the structure or the possible unit cell parameters. Otherwise, it 
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is a very time-consuming method and the only reliable information that we can get is the stoichiometry that could 

also be obtained from the simple intercalation approach. For CSP the initial constraints such as the distance of the 

molecular centers are very important for generating more sensible structures. After testing and optimizing the 

USPEX workflow in a benchmark system, i.e., K2Tetracene, where the structure is known, it was found that starting 

the structure generation given lattice parameters close the experimental ones (which could be derived from the 

analysis of a PXRD pattern) resulted in structures very similar to the experimental (as demonstrated from the PXRD 

patterns comparison in the Appendix Figure B3.3 and the unit cell parameters comparison in Table B3.2). 

Our main conclusions in this chapter can be summarized as following; if a metal-PAH system is formed then that 

is going to be more stable than its components. However, if a theoretical system is calculated as more stable than 

the constituents that does not automatically mean that the crystal will be formed as some experimental restrictions 

might apply, e.g., decomposition of the PAH. The formation of a metal-PAH system is a thermodynamically driven 

process which was quantified by calculating the formation energies on all the currently known systems. For the 

identification of the most likely metal ratio in the structure a simple intercalation approach, i.e., void space analysis 

and manual insertion of K atoms, gives comparable results with the time consuming CSP method. A list with the 

molecules identified as good hosts for metal insertion is given in the Appendix, Table A1.2.  Further work in this 

field will require faster crystal structure prediction approaches, such as coupling CSP software with low cost and 

relatively accurate models (e.g. DFTB+). For the crystal structure identification, close collaboration with 

crystallographers to extract important information related to lattice parameters will be beneficial for initiating the 

CSP given some constraints.  

Having established the protocol for identifying promising PAH molecules and stable compositions for their 

intercalation with alkali metals, the future of work in this area will focus on the simultaneous improvement of the 

computational and synthetic approaches to design and realise more materials of this type. 
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5 Accelerating π-π co-crystal discovery with One Class Classification 

This work is reproduced from Ref. 253 with permission from the Royal Society of Chemistry. 

 

5.1 Introduction 

Machine learning approaches are being increasingly incorporated into the design workflows to explore and better 

understand the materials space.13,197,198 The ultimate goal is to identify more reliable methodologies and to develop 

smarter ways to accelerate the discovery of new materials with novel properties. Following the rapidly growing 

data availability, data-driven approaches have taken hold as a tool for detecting patterns in known datasets and 

performing straightforward predictions. However, they still suffer from many limitations in terms of defining the 

appropriate representations of the target materials and/or achieving reliable predictions based solely on known 

instances or otherwise biased datasets. One matter of concern for the data-driven approaches is the lack of negative 

data from unsuccessful synthetic attempts, which might generate inherently imbalanced datasets. In this chapter we 

introduce a data-driven workflow based on one-class classification, which is a method specifically designed to 

address the issue of ‘positive-only’ data. An extensive study on the different one-class classification algorithms was 

performed in order to identify the most appropriate workflow for guiding the discovery of the weakly bound 

polyaromatic hydrocarbon co-crystals. The two-step approach presented in this study first trains the model using 

all the known molecular combinations that form this class of co-crystals extracted from the Cambridge Structural 

Database (1722 molecular combinations), followed by scoring possible yet unknown pairs from the ZINC15 

database (21736 possible molecular combinations). Focusing on the highest-ranking pairs predicted to have higher 

probability of forming co-crystals, materials discovery can be accelerated by reducing the vast molecular space and 

directing the synthetic efforts of chemists. Furthermore, a more detailed understanding of the molecular properties 

which lead to co-crystallization is sought after with the use of interpretability techniques. The applicability of the 

current methodology is demonstrated with the discovery of two novel co-crystals, namely pyrene-6H-

benzo[c]chromen-6-one (1) and pyrene-9,10-dicyanoanthracene (2). The electronic structure analysis of the two 

synthesized co-crystals reveals that (2) has a band gap in the range of semiconducting materials.  

5.1.1 Co-crystal definition 

As discussed in the Introduction, a co-crystal is a crystalline single-phase material composed of two or more 

different molecular compounds in a specific stoichiometry.199–201 These compounds are neither solvates/hydrates 

nor simple salts and they are connected via one or more non-covalent interactions, such as hydrogen bonding, π-π 

stacking, halogen bonds and charge transfer(C-T) interactions.202 Co-crystal design has undoubtedly received a lot 

of attention from the Pharmaceutical Industry. These compounds may offer the advantage of preserving the 
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pharmacological properties of the Active Pharmaceutical Ingredient (API) whilst improving the physicochemical 

properties of the potential drug. Consequently, this attention stimulated the development of various theoretical and 

experimental studies for designing pharmaceutical co-crystals by selecting effective coformers which are suitable 

with the API.203 Hydrogen bond propensity (HBP), pKa rule, Fabian’s method for molecular complementarity and 

Hansen solubility parameters are some of the most effective designing approaches.203 The selection of the 

appropriate method is based mainly on the nature of the molecules and the way these molecules are 

interconnected.199,204   

5.1.2 Co-crystals with electronic properties 

Co-crystals are gaining emerging interest in other cutting-edge research fields, ranging from photonic, to optical 

and electronic materials.205–207 It is well-known that most organic molecular crystals are insulators as there is no 

electronic interaction between the molecules.208  However, molecules with electron rich π-orbitals could possibly 

overcome this barrier, thus enabling the electron mobility in cases where there is a favourable overlap of π-orbitals 

in adjacent molecules.209 π-π stacking is a common motif for getting electronic communication between the 

molecules and has been proven to be an important characteristic of organic electronics (e.g. in conjugated 

polymers).210,211 A special category of molecules which self-assemble via π-π interactions are the polycyclic 

aromatic hydrocarbons (PAHs), which are regarded as two-dimensional graphite segments.78 Hence, PAHs are 

possibly considered promising candidates for electronic materials and have been extensively used for designing co-

crystals with desirable electron mobilities.205,212,213 Most of the research on electronic co-crystals is focused on the 

charge-transfer complexes between a good electron donor and a poor electron acceptor.212,214,215 This work suggests 

a promising pathway to expand the investigation on PAHs based co-crystals where the π-π interactions are the 

dominant structure-defining forces. 

In this context, the strong structure directing groups such as hydrogen-bonding are eliminated, and targeted 

exploration of carbon-based π-electron systems is performed. Although π-π interactions are desirable for designing 

electronic functional co-crystals, they are relatively weak compared to stronger interactions such as hydrogen or 

halogen bonding. In a recent computational work, Taylor et al. emphasized the difficulty in evaluating the 

thermodynamic stability of  weakly-bound co-crystals without any additional group that can form charge transfer 

systems.53 The lack of strong energetic driving forces for co-crystallization makes the formation less favourable, 

thus these co-crystals are rare. In addition, the weak interactions give rise to shallow energy landscapes associated 

with  multiple configurations of similar energy, hindering the structure prediction. The synthesis of weakly-bound 

co-crystal materials still remains a challenging task, albeit interaction between aromatic hydrocarbon systems have 

been suggested as a viable synthetic way on first principle calculations.216 All these evidences bring to light the 

challenging prediction of π-π co-crystallization.  
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Figure 5.1. Proposed one class classification workflow. Starting from eight representative PAHs, two molecular pairs 

datasets were constructed, i) the labelled, including all the known co-crystal forming pairs from CSD ii) the unlabelled, 

including all the possible pairs extracted from ZINC15 database. Various one class classification algorithms were 

trained only on the positive data and were further used to provide a ranking for the unlabelled pairs. The reliability of 

the presented procedure is tested and supported by experimental data. 

Reproduced from Ref. 253 with permission from the Royal Society of Chemistry. 

 

5.2 Methods 

5.2.1 One-class classification/outlier detection algorithms 

Our method is based on one-class classification, a well-known method that has been applied under many research 

themes, such as novelty/outlier detection, concept learning or single class classification.117 It is imbalance tolerant, 

so no specific distribution of the target class has to be assumed. The objective of one-class classification approaches 

is to accurately describe the ‘normality’, namely the distribution of the known dataset. It is assumed that the majority 
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of the training dataset consists of ‘normal’ data.217 Thus, the one class classification algorithms learn to accurately 

describe the positive/known data. Deviations from this description are seen as anomalies and thus belong to a 

different class. The known data class is well characterized, and these instances are used as the training set. In this 

way the classifiers are focused on the deviations from the known distribution rather than focusing on the 

discrimination task between the data. The existing algorithms for one-class classification/outlier detection are 

discussed below: 

Distribution based. Methods in this category are basically inspired from statistical modelling, that deploy some 

standard distribution model and flag as outliers the instances that deviate from the model, whereas inliers are those 

that follow the same distribution.218 Typical examples are the Autoencoders and the Gaussian Mixture models. 

Density based. These methods assume that normal data points occur around a dense neighborhood. The local outlier 

factor (LOF) approach is one of the well-known algorithms in this category, where normal points get low LOF 

values as they belong to a local dense neighborhood. The neighborhood is defined by the distance to the MinPts-th 

nearest neighbor, with MinPts being the minimum number of neighbors used  for defining the local 

neighbourhood.219 

Distance based. Among other distance based methodologies, k-nearest neighbour algorithm is ranking each point 

on the basis of its distance to its kth nearest neighbor.2.7 The lower the distance the closest to the normal data is the 

point. 

Clustering based. Clustering Based Outlier Factor (CBLOF) is an algorithm developed for considering both the 

size of clusters and the distance between points and the closest cluster. Each datapoint is then assigned a 

score/outlier factor based on these considerations.221 

Support Vector Machine. One class support vector machine algorithm (OC-SVM) is an extension on the well-

known support vector machine technique. The planar approach of OCSVM is about finding a linear boundary to 

maximally separate all the data points from the origin, whereas the spherical approach designs a spherical boundary 

in feature space around the data and the algorithm tries to minimize the volume of the hypersphere.117 

Histogram-based. This method assumes that all the features are independent from each other. For each single 

feature a univariate histogram is constructed where the height of the bins gives an estimation of the density. Then 

the score of each point is calculated by combining all the histograms using the corresponding height of the bins 

where the point in located.222 

Forest-based. Whilst most of the afore-mentioned models are basically used to profile the normal labelled data, 

this model is focused on isolating anomalous instances. The isolation forest algorithm is recursively randomly 

partitioning a randomly selected feature between its minimum and maximum values, with the partitions represented 
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as a tree structure. The number of recursive partitions required to isolate an instance is equivalent to the path length 

from the root node to the terminating node. The instances with short path lengths are regarded as anomalies with 

the anomaly score being computed by the mean anomaly score of the trees in the forest.223   

Ensemble-based. The ensemble technique is highly suggested for one-class classification tasks. In that approach a 

number of base detectors is fitted to different sets of features on the dataset and identifies outliers based on the 

probability of each point to be an anomaly. Representative model of this category is the feature bagging algorithm.224 

Deep One Class. In contrast to traditional approaches which make use of heuristics or statistical methods, deep 

learning approaches stack multiple processing layers one above another with each layer providing higher order 

interactions among the features. The success of deep learning is rooted in the ability of deep neural networks to 

learn descriptors of data with different level of abstraction without human intervention. Deep learning approaches 

specifically designed for one class classification are not yet very widespread. The majority of the existing models 

involve neural networks being trained to perform tasks other than one class classification which are then adapted 

for use in the one class problems. Deep networks designed for one class (anomaly detection) involve the objective 

function of a traditional one class approach. However, they are trained deeper i.e., using more layers and in higher 

dimensions for fitting the appropriate function to the normal data. Deep learning models could easily handle more 

complex molecular representations as inputs, e.g., SMILES strings or 3D molecular configurations (See section 

2.1.1 for molecular materials representations).32 

5.2.2 Configuring the appropriate co-crystal datasets 

The approach we followed was to build models for the class corresponding to the normal behavior and use this 

model to identify normal and abnormal points on the test set. For that reason, we had to construct two datasets, one 

extracted from CSD containing all the stable structures in which acene-like molecules can be found and one 

manually constructed with unknown but possible combinations of the same type of molecules. At that point we are 

focusing only on binary co-crystals, composed of two different molecules as they can be easier tested 

experimentally.  

Extracting the labelled dataset. The labelled dataset of existing co-crystals in the CSD database was extracted 

using the CSD Python API (Application Programming Interface), version 2.0 (December 2018). As a starting point, 

eight molecules (Table 3.1) with extended polyaromatic systems are used as a representative set for searching the 

CSD and generating the co-crystal space of interest (> 1700 molecular combinations). The selection of these 

representative eight initial molecules is performed on the basis of promising electronic properties (e.g., known 

organic semiconductors) and distinct geometry (i.e., the set is diverse in shape and symmetry). The names of the 

initial molecules as well as their 6 letter CSD Refcode were: Coronene (CORONE), Picene (ZZYOC04), Pentacene 

(PENCEN), Triphenylene (TRIPHE), Phenanthrene (PHENAN), Fluoranthene (FLUANT), Corannulene 
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(CORANN01), Dinaphthol-anthracene (DNAPAN). The similarity search function of the CSD Python API is 

applied to those molecules, using the standard CSD fingerprint similarity search with a Tanimoto similarity 

threshold of > 0.35225 and accepting only neutral organic molecules with known SMILES identifiers. The 1722 

entries in the resulting list are crystal structures that include either one of these molecules or molecules that are 

structurally similar to them (based on CSD molecular fingerprint similarity). The search aims to identify all the co-

crystals that have as co-formers PAHs whilst the main interaction between them is π-π stacking. Each co-crystal in 

CSD can be represented as a combination of Simplified Molecular Input Line Entry System (SMILES)226 separated 

with a full stop e.g., ‘c1cc2ccc3cccc4ccc(c1)c2c34. N#CC(C#N)=C1C=CC(C=C1)=C(C#N)C#N representing 

pyrene-TCNQ’. Using this form we can count the number of different molecules in the asymmetric unit and take 

into consideration the molecular stoichiometry of the co-formers. Combinations including common non-aromatic 

solvents are excluded. However, aromatic solvents are accepted e.g., benzene, as the interactions in this case are 

only π-π stacking and these combinations might hold important information about the predictions this work is 

interested in. Finally, the molecular combinations are filtered using Pipeline Pilot (version 2017)165 by applying a 

SMARTS227 filter that removes molecules with acidic hydrogens, making sure that the main interaction among the 

co-crystals is π-π stacking (Appendix Figures C1.2 & C1.3). The whole process for the extraction of the labelled 

dataset is schematically described in the Supporting Information (Appendix Figure C1.1). 

Designing the unlabelled dataset. The dataset with the promising combinations of molecules is constructed using 

the ZINC15 database,228 which includes all the purchasable organic molecules. The molecules were taken from a 

version downloaded in August 2018. The same initial molecules used for the CSD search were used and the database 

was searched based on molecular Extended Connectivity Fingerprints (ECFP4) with a Tanimoto similarity threshold 

of > 0.35101 After filtering out the molecules with acidic hydrogens using Pipeline Pilot, the ZINC database reveals 

209 molecules with calculated Dragon descriptors that match the selected similarity criteria with the initial 

molecules. All the possible combinations of these 209 molecules are taken into consideration, resulting in a dataset 

with 21736 unique pairs. 

Data representation. Each molecule is represented as an n-dimensional vector with n being the number of the 

available descriptors calculated with Dragon software,229 version 6.0/2012. Although the deep one class approach 

doesn’t require any manual feature engineering,  for the traditional one-class classification approaches it is desirable 

to reduce the dimensions of the problem before the analysis. The dimensionality reduction is performed following 

the standard good practices for removing descriptors that are highly correlated to each other or describe similar 

properties.230 Features that are correlated more than 0.92 as well as those that have variance lower than 0.4 were 

removed from each co-former’s dataset. The feature selection process was performed according to the molecular 

complementarity approach.51 All the pairwise correlations between the molecular pairs were calculated, after 

removing co-crystals contain benzene-like solvents to avoid possible bias on the feature importance. The pairwise 
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correlations were calculated with both Pearson and Spearman methods51 and the p-values were used to verify that 

the correlations are statistically significant. We regard as important and unbiased features those with both Pearson’s 

and Spearman’s correlations above 0.4 and p-values below 10-3. Finally, each single molecule is represented by a 

24-dimensional space of the highly pairwise-correlated descriptors (Table C1.2). Thus, the molecular pairs are the 

concatenation of the individual vectors of each single molecule. As each molecular pair is order invariant, we need 

to find a way to denote the combination of molecules. Consequently, the training was performed using both orders 

(a,b) and (b,a) for each molecular combination. All the labelled molecules were standardized to [0,1] using the 

scaling methods provided from sci-kit learn, such that all the numerical features will belong to the same range. The 

scaler is fitted to the known molecules that form co-crystals. Then the trained scaler is implemented to transform 

each molecule in the molecular pairs in both the labelled and the unlabelled datasets, such that there will be a 

consistency among them and the same molecules will get the same representation independent of which pair they 

belong to. 

5.2.3 Designing the One Class Models 

Traditional one class classification. Eight different algorithms were selected from the PyOD and sklearn library 

representing the wide range of the one-class classification (anomaly detection) categories as described above: 

Gaussian Mixture Models (GMM), Local Outlier Factor (LOF), k-nearest neighbors (kNN), Isolation Forest 

(Iforest), One Class SVM (OCSVM), Histogram Based Outlier Score (HBOS), Cluster-based Local Outlier Factor 

(CBLOF) and Feature Bagging.231 Each algorithm has its internal scoring function, depending on the cost function 

it tries to minimize. For achieving better predictive performance and ensuring the robustness of our method the 

models were combined in an ensemble way. For consistency with the GMM model from the scikit-learn library,232 

the scores from the PyOD library were multiplied by -1 to have higher scores for the inliers and lower for the 

outliers. Each model was initially trained and optimized separately to provide an anomaly score to the input data. 

Then the scores of the pretrained models were normalised between [0,1] and averaged, following the methodology 

from the combo library233 so that the outputs become comparable.  

Deep Learning Approach. Using the traditional one class classification algorithms as baselines, the application of 

a deep learning method was investigated for extending the dataset to the whole n-dimensional space (n = 3714, i.e., 

1857 descriptors for each molecule in the pair). In that way the predictions are not only dependent on the selected 

pairwise correlated descriptors. That is very important as the co-crystal design problem is complex and thus higher-

order interacting features might have a key role in the co-crystal formation. The main advantage of using a neural 

network in this context is that the extensive feature engineering part can be omitted, as the network can learn relevant 

features automatically. The most broadly used deep learning approaches for one class classification rely mainly on 

Autoencoders. An Autoencoder is a neural network that learns a representation of the input data by trying to 



 
 

118 

accurately reconstruct the input with minimum error. It is considered to be an effective measure for separating inlier 

and outlier points.234 Autoencoders are used for learning the representation of the labelled data and then the 

unlabelled data are reconstructed using the same weights from the target class. The decision of whether a new 

datapoint is an inlier or an outlier is made based on the reconstruction error. High reconstruction error indicates that 

a sample is most probably an outlier, whereas when we have low reconstruction error the samples most probably 

belong to the same distribution as the labelled data. Autoencoders have the objective of minimizing the 

reconstruction error, but do not target one class classification directly. For designing a more compact methodology, 

the adapted approach incorporates both an Autoencoder for representational learning which is jointly trained with 

a Feed Forward Network targeting one-class classification.  

Deep One Class Architecture. The Deep Support Vector Data Description (DeepSVDD) architecture used in this 

paper is adapted from the work of Ruff et al..217,235 The aim of DeepSVDD is to find a data-enclosing hypersphere 

of smaller size, such that the majority of the normal data will be found there, whereas the anomalous data will be 

outside. The objective of DeepSVDD is to jointly learn the network parameters together with minimizing the 

volume of the hypersphere. Using these settings, we expect the normal data points to get mapped near the 

hypersphere center whereas anomalous data are mapped further away. The hypersphere center is calculated with a 

pretraining step and is fixed as the mean of the network representations of the known data.217 Each pair of molecules 

is scored based on its distance from the center of the hypersphere. The DeepSVDD network consists of a 

Convolutional Autoencoder, where the output of the Encoder is connected with a Feed Forward Neural Network 

with the specific task of minimizing the loss function (distance from the center of the hypersphere). The same 

pretraining and training steps as in the DeepSVDD method were used for our known dataset, whereas the 

Convolutional Autoencoder was substituted with the Set Transformer Autoencoder adapted from Lee et al..236 The 

implemented set-input architecture uses a self-attention mechanism that allows the encoding of higher-order 

interactions among pairs. We use a batch size of 200 and set the weight decay hyperparameter to λ = 10−6. All the 

known data are considered to belong to the hypersphere and they are scored based on their distance from the center, 

thus the lower the score the closer to the center and the more of an inlier is the data point. Likewise, the unlabelled 

data are assigned scores based on their distance from the pre-defined center. All the scores are multiplied by -1 and 

normalized from 0 to 1 so that they are comparable to the other models and give scores close to 1 for the inliers, 

whereas the points scored close to 0 are the anomalies. 

Hyperparameter tuning. As the performance of the algorithms is highly dependent on the choice of the 

hyperparameters, i.e., algorithm variables, the optimization step is crucial for achieving the highest possible 

accuracy. For the machine learning models, the optimization step is about searching for the hyperparameters with 

the lowest validation loss. Bayesian optimization was used via the Hyperopt library.237  The main idea behind 

Hyperopt is to get more points from the regions with high probability of yielding good results and less points from 
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elsewhere. Hyperopt library was implemented for each of the eight algorithms from the PyOD&scikitlearn 

library,231,232 to find the best set of parameters to maximize the average accuracy of the k-fold cross-validation. 

Model evaluation. The evaluation of the classification performance for one-class classifiers differs from multi-

class classification as only the probability density of the positive class is known. That means that the model can 

only be optimized and validated by minimizing the number of positive class instances that are not accepted by the 

one-class classifier (false negatives).117 Opposed to the binary classifiers, where the decision of the class is made 

based on a set threshold, usually 0.5 (if a point scores below 0.5 it belongs to the first class else to the second), in 

one class classification the threshold is defined only from the known class. That is set using a parameter (here 

refered as contamination), which defines the amount of noise we expect to have in our known class. Herein, we 

accept that parameter as 0.05, meaning that 95% of the known data are inliers and only a very small part of them 

that deviated from the rest can be regarded as outliers. The evaluation of the models was performed using five-fold 

cross validation on the labelled dataset. The labelled dataset is split into five parts (folds) where 4/5 are used for the 

training and the remaining part is used for the validation. The process is repeated five times, each time selecting a 

different fold and the evaluation is performed using accuracy metrics from version 0.22 of the scikit-learn package. 

The final accuracy is calculated by taking the mean of the five accuracy scores of the validation set. 

5.2.4 Electronic structure calculations 

Calculations of the orbital energies of the single molecule were carried out at the B3LYP/6-31g* level of theory 

using the SPARTAN’18 software package (Spartan, Wave Function Inc. CA). The electronic structure analysis of 

the co-crystal was performed with plane-wave-based DFT calculations using the VASP programme.238 The 

SCAN+rVV10 functional was used to improve the description of van der Waals interactions over other semilocal 

DFT functionals, with a plane-wave cutoff energy of 600 eV. The KSPACING parameter, the functional for van 

der Waals corrections as well as the cut-off energy were selected after convergence check on a known co-crystal 

system as shown in Appendix C3 Figure C3.1, Table C3.1.  

 

5.3 Results 

5.3.1 Models evaluation and comparison 

The two different one class classification workflows followed involve i) the application of traditional algorithms 

designed for one class classification after extensive feature engineering to reduce the dimensionality of the problem 

and ii) the design of a deep learning methodology for handling the specific co-crystals dataset, considering them as 

pairs of data, and avoiding feature engineering by solving the problem in higher dimensions. As traditional 

algorithms we are referring to the provided algorithms from PyOD/scikit-learn libraries and as Deep One Class to 
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the deep learning model that was built by combining an Attention-based Encoder and deepSVDD network. In both 

workflows a two-step process is employed. First the algorithms were trained and optimized on the known data and 

then they were used for scoring both the labelled and unlabelled molecular combinations. High scores are an 

indication for inliers, whereas the lower the score the higher the probability for a point to be an outlier.

 

Figure 5.2. Score distributions of the labelled (orange) and unlabelled (light blue) data using all the discussed one-class 

classification algorithms. Each algorithm employs a different scoring function to assign scores to the molecular 

combinations, giving in all the cases higher scores to the labelled combinations (training set) whereas only a certain 

part of the unlabelled combinations (test set) receives high scores and can be regarded as inliers. As the number of 

unlabelled data is significantly higher than the number of known data, the y axis (showing the frequency) is normalized 

to [0,1] (for visualization purposes). The output scores of all the models are also normalized to [0,1]. 

Reproduced from Ref. 253 with permission from the Royal Society of Chemistry. 

The score distribution of both the labelled and unlabelled data for all the implemented algorithms is presented in 

Figure 5.2. It can be observed that the labelled and unlabelled data form two overlapping classes. The unlabelled 

data consist of both positive and negative examples in an unknown proportion. Consequently, a certain part of the 

unlabelled data is expected to belong to the known class i.e., are inliers. Moreover, in the labelled data there is a 

small proportion of examples that significantly differ from the rest of the data and is regarded as noise of the normal 

class, i.e., outlier examples. The impact of the class noise is mitigated using one class classification, as a percentage 

of the labelled data are regarded as outliers during the hyperparameter optimization process (see Methods). In 

general, for both the traditional and deep one class classification workflows, i) the labelled data show higher scores 

with all the methods, ii) each method has a different way of scoring the samples and deciding for whether a point 

is  a normality or anomaly and iii) only a certain part of the unlabelled data receives high scores. Differences arise 

between the algorithms because each is based on different definitions on what an oulier/inlier means, i.e., an outlier 

is a point far from other points (kNN), an easily splittable point (Isolation forest), not part of a large cluster (Cluster-
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based outlier detection) or a point far away from the center of a hypersphere (deepSVDD). Moreover, the traditional 

approaches differ from the deep approach in terms of the dimensionality of the features and the way the molecular 

pairs are perceived by the models. For achieving more reliable and robust predictions, the eight traditional one class 

classification algorithms were combined in an ensemble way by averaging their output. Thus the final scores of 

both the labelled and unlabelled data were calculated by the ensemble. The distribution of the ensemble scores, after 

being normalized to [0,1], are shown in Figure 5.2. It is observed that the ensemble separates better the labelled 

from the unlabelled data in comparison to the individual traditional algorithms. That is an indication that the 

ensemble is a better classifier as the balance point above which the amount of labelled data is maximum and the 

number of unlabelled data is minimum is easier found.239  

The performance of each algorithm was calculated by the True Positive Rate (TPR), meaning the average of 

correctly predicted inliers resulting from five-fold cross validation. As illustrated in Figure 5.3, all the algorithms 

achieve a high accuracy on the True Positive Rate and perform quite well on unseen data. However, the Gaussian 

Mixture Model (GMM) and the Histogram-based Model (HBOS) are less robust as indicated by the higher variation 

in the total accuracy. The effect that the addition of data in the training set has on the accuracy is also investigated 

after calculating the learning curves of each algorithm. For the correct sampling of the bidirectional dataset in the 

different training set sizes, it should be ensured that equivalent pairs exist in each subset. 

 

Figure 5.3. Learning curves of all the implemented algorithms showing the performance of the models while the size of 

the training set increases. The highlighted grey area represents the standard deviation of each model. The validation 

metric used is the True Positive Rate (TPR), i.e., number of correctly predicted inliers/total size of the training set in 

each fold of the k-fold (k = 5) cross validation. It is observed that the Deep learning model (DeepSVDD) outperforms 

the traditional algorithms as it has higher accuracy and low standard deviation. 
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The two workflows are also compared scores-wise (Figure 5.4). It can be seen that there is a good agreement 

(correlation) in high scores, whereas in the lower scores area there is not a clear correlation as the ensemble method 

gives a narrower range of scores and higher scores for low-scoring examples in the Deep case. 

 

Figure 5.4. Correlation between the scores of the Ensemble and Deep One Class methods. Both workflows show a good 

correlation in the general distribution of scores, with Deep One Class covering a wider range of scores and enabling in 

that way a better separation between inliers and outliers. A significant correlation exists for the high score pairs, showing 

that both methods could be reliable in the high-score region.  

Reproduced from Ref. 253 with permission from the Royal Society of Chemistry. 

In every classification problem, a threshold should be specified above which the datapoints that belong to the normal 

class can be found. We set that threshold at 0.7 and thus all the molecular pairs with scores higher than 0.7 are 

regarded as reliable inliers with a high probability to exist. That threshold was selected based on the good agreement 

between both workflows for scores above 0.7. Moreover, it is a good balance point as the majority of the labelled 

data receive scores above that threshold whereas only the top quartile of the unlabelled data can be found in that 

area. In cases were a better separability is achieved,240 the amount of misclassified data (FP: False Positives) is 

minimized significantly, thus the selection of the threshold (on 0.7) could be regarded a reasonable decision 

boundary. 

5.3.2 Understanding the predictions 

The reliability of any machine learning model is improved when the models’ decisions are related to physical 

properties. Following the traditional one class classification workflow, the features associated with the final 

predictions are already known after the extensive feature engineering process. On the other hand, an understanding 
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about the features that played a key role in the deep learning approach is a more challenging task, as the complexity 

of the model is higher. To better understand the features that are important for the neural network categorization of 

the molecular pairs in one class, we used SHAP (SHapley Additive exPlanations).131 This interpretability method 

is based on the calculation of the game theoretically optimal Shapley values, which are indicative of the contribution 

of each feature to the final prediction. To this end, features that play a key role in the scoring for the deep learning 

approach are retrieved and analysed. The aim of this process is to identify molecular properties or characteristics 

that might provide a chemical understanding to the models’ decisions and assist the experimental screening process. 

As for many of the Dragon descriptors it is hard to extract a physical meaning, the correlations among the most 

significant descriptors with those that are more general and understandable are calculated .  

According to Shapley analysis, the most important features that the inliers have in common and dominate the 

decisions are related to the descriptors B06[C-C], ATS6i, B08[C-C], ChiA_Dz(p), Eig06_AEA(dm) and 

SpMin5_Bh(s). The physical meaning of these descriptors is extracted after calculating the correlations between 

them and the other Dragon descriptors, that are higher than 75% (Table C2.1). Interestingly, except for the B06[C-

C] and B08[C-C], which are related to the topological distance between two carbon atoms, i.e., the presence of 

connected carbon atoms at specific positions on a molecular graph, the other descriptors are highly correlated with 

easily understandable molecular properties. These chemically meaningful descriptors refer to i) electronic 

properties, such as the sum of first ionization potentials (Si), sum of atomic Sanderson electronegativities (Se), sum 

of atomic polarizabilities (Sp) ii) molecular size, such as McGowan volume (Vx), sum of atomic van der Waals 

volumes (Sv), iii) molecular shape, regarding the molecular branching (Ram, eta_B), iv) polarity (Pol, SAtot) and 

v) molecular weight (MW). 

The relationship among some of the important interpretable descriptors in the molecular pairs is illustrated in Figure 

5.5 for both the labelled and the unlabelled datasets. The distribution of the property values in the high scoring pairs 

(inliers) in the unlabelled dataset (Figure 5.5b) are predicted to follow the same patterns at the labelled dataset 

indicating that the deep learning model effectively learnt the trends of the labelled dataset and was able to score the 

unlabelled dataset based on those trends. The dominating trends on the labelled dataset can be observed with darker 

orange colour indicating the densest area with more molecular combinations. Two main areas are extracted from 

the labelled dataset. The first area includes molecular pairs where both molecules have low values of the same 

property, e.g., in the Polarity plot the area 0<Pol<60, where both molecules could have similar values. The second 

area includes molecular pairs with higher difference on their property values, i.e., when one molecule has a low 

value of one descriptor then the pairing molecule has a higher value for the same descriptor, complementing the 

first molecule. These observations are also compared with a previous study by Fabian that focused on the CSD co-

crystal dataset.51 Fabian’s statistical analysis of the data at that time concluded that the majority of co-crystals in 

CSD (CSD, version 5.29, November 2007) are formed by molecules of similar size and polarity.51 Our analysis 
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shows a more complex scenario. Size, shape and polarity, identified as important factors of co-crystallization, have 

similar property values only in the low value region, in agreement with Fabian’s conclusions. However, in the high 

value regions the trend drastically changes; molecules having high size, shape and polarity values tend to pair with 

molecules having low values of these parameters.  

 

 

 

 

 

 

 

 

 

 

 

Figure 5.5. a) Scatterplots showing the distribution of representative descriptors among the molecular pairs on the 

labelled dataset. The plotted descriptors are those identified as the most general and highly correlated to the descriptors 

extracted using the Shapley analysis. b) The distribution of the same descriptors for the unlabelled data. Blue circles 

represent the whole unlabelled dataset extracted from ZINC15 (21736 points) and yellow-orange represent the top 

quartile of the unlabelled data having scores above 0.7 and are regarded as inliers. It can be clearly seen that the 

predicted inliers follow the distribution of the labelled dataset, especially in the densest area. 

The dominating features as expressed with global Shapley values can give a general picture of the dataset. However, 

it should be noted that a better understanding for specific groups of pairs that might be of interest can be attained 

when focusing on them explicitly. The advantage of using Shapley values is that local explanations are given to 

each individual molecular pair or to a subset of interest among the molecular pairs. As a case study, the pyrene-

cocrystal family is investigated, aiming to extract some general patterns about the important molecular 

characteristics that drive a good match for co-crystal formation with pyrene. The dominating features in the known 

co-crystals with pyrene are presented in Figure 5.6. It was found that the existence of heteroatoms such as oxygen 

and/or nitrogen groups on various topological distances, as indicated by the B03[C-O], B02[C-O], B02[C-N] and 
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B05[C-N] descriptors or the existence of halogen atoms as indicated by the X% descriptor play a key role in the 

assignment of high scores in these combinations. Furthermore, the aromaticity as represented by the ARR descriptor 

was a factor that contributed to high scores. 

 

Figure 5.6. Shapley values showing the important descriptors that molecules pairing with Pyrene in the labelled dataset 

have. Only the contributions of the second co-formers are shown here.  The presence of heteroatoms in several 

topological distances in the molecule are those that seem to contribute more. The notable elements are N and O. It is 

expected that molecules with these groups in the certain topological distances and high scores are good candidates for 

forming co-crystals with pyrene. 

The key findings from the model interpretation and feature analysis can be summarized below:  

i) Shape, Size and Polarity were detected as important factors for co-crystallization, which is in accordance with 

previous understanding about the co-crystals of CSD. However, Fabian’s observations are relevant only for low 

values of these properties. We observe that there are no cases in the labelled data and in the inlier part of the 
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unlabelled dataset where both molecules have very high values of polarity and/or volume. This could be an 

indication for factors prohibiting co-crystallization. In cases, where high polarity or volume values are assigned to 

one molecule the pairing molecule usually has a low value of that property. 

ii) PAH co-crystals seem to deviate from empirically established rules and trends observed for organic co-crystals 

in general. Thus, a deeper understanding of their properties can only be gained when they are studied separately. 

As PAHs lack hydrogen bonding, other types of interactions appear as stabilizing factors for co-crystallization. For 

instance, in the pyrene-based co-crystals the existence of O and/or N groups has been identified as a key parameter 

as the majority of molecules that form co-crystals with pyrene contain these groups. The existence of these groups 

can drive the formation of C-H…N, C-H…O and C-H…X (X= halogen groups) which will probably stabilize the co-

crystal formation. 

iii) There is not a ‘magic’ descriptor or set of some descriptors that can directly predict co-crystallization. The 

synergy among many descriptors will led to a successful combination. The more parameters, and the more the 

relationships among them, that are taken into consideration, the more reliable the predictions and the more accurate 

the results we can attain. For instance, it is not enough that a molecule in a pair has a polar group (e.g., the -CN 

group), as many other driving forces (i.e., significant descriptors) should be in line to get a successful molecular 

combination. This is the reason the implementation of the appropriate ML tools could save significant amount of 

time and guide the synthetic work, as this is the only way where the relationship among a large number of properties 

is simultaneously considered. As seen in Figure 5.5 (a and b), the current model is able to extract the descriptors’ 

trends from the labelled dataset and learn the dominating patterns. In this way the model gives a score and suggests 

molecular pairs that look feasible based on the known co-crystals.  

5.3.3 Molecular Ratios Prediction 

Herein, we showcase that the representation learned for the Attention-based autoencoder can be effectively used 

for predicting the stoichiometry of the molecules in the co-crystal. An important parameter that should be taken into 

consideration in co-crystals design is the stoichiometry of the co-formers. The molecular ratio is going to affect the 

crystal packing and thus contribute to possible materials properties. To this end, the labelled co-crystals dataset was 

further tested for molecular ratio prediction. The molecular ratio of all the combinations was extracted during the 

labelled dataset construction (See Methods). The dominating ratio in the dataset is 1:1 as shown in Figure 5.7, 

resulting in a highly biased dataset towards the molecular ratios. The problem setting was adjusted for performing 

binary classification and investigated whether the molecular ratio is going to be 1:1 or higher. We assigned label 

‘0’ to all the molecular pairs having 1:1 ratio and ‘1’ otherwise. The problem was solved using SMOTE technique  
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for balancing the two classes of the dataset such that they have equivalent amount of data having 1:1 ratios and data 

having ratios different to 1:1. 

Figure 5.7. Piecharts illustrating the molecular stoichiometry on the reported (left, labelled dataset) and on the predicted 

(right, inliers) compounds of the co-crystal dataset. The blue area represents the 1:1,, the orange area the 1:2, the green 

area the 1:3 and the red area the 1:4 molecular pairs stoichiometry. It can be observed that the dominating ratio is 1:1, 

resulting in a highly imbalanced dataset towards molecular ratios. Significant improvement when using the Set 

Transformer latent representation. 

Reproduced from Ref. 253 with permission from the Royal Society of Chemistry. 

The labelled dataset was split into a training and a test set with the latent representation being the input to a binary 

classifier. The model showed strong predictive power, with accuracy on both the training and test sets of about 94 

% and no overfitting on the training data (Figure 5.7). The same model was then implemented for predicting the 

molecular ratios in the inlier pairs. 
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5.3.4 Pareto front optimization on the predictions 

To narrow down the selection of potential co-formers from those identified using the single class classifier model, 

we chose pyrene as a fixed component because both the existing data (i.e., CSD database) and the model output 

reveal its popularity and versatility as a co-former, i.e., pyrene can co-crystalize with a diverse range of molecules 

forming high score pairs. In total, 207 possible pyrene-containing co-crystals were identified by the single class 

classifier model which were narrowed down to a subset of 29 pairs where the second co-former has zero examples 

of known co-crystals with any other molecule (blue points in Figure 5.8). Pareto optimization was used to identify 

the most suitable candidate co-formers for experimental investigation. Pareto optimization simultaneously identifies 

the optimal values in a set of parameters and was used to select and prioritise the co-formers to be experimentally 

tested. In our case the parameters that were optimised are the score from the model and the similarity to 7,7,8,8-

Tetracyanoquinodimethane (TCNQ). This two-parameter optimization was implemented to drive the decision 

making for the experimental screening. From the Pareto front (Figure 5.8 green line) 1-4 are identified as the optimal 

candidates and 5 is the highest scoring co-former off the Pareto front. 

 

 

 

 

 

 

 

 

 

Figure 5.8. Scatterplot illustrating the selection criteria for the experimental screening process. Pareto optimization was 

implemented having as the main task the optimization of two objectives, i) the score of the deep learning model and ii) 

the Tanimoto similarity to TCNQ. Each point represents a molecule that could be used as the second co-former in pyrene 

co-crystals. Red empty circles stand for molecules that are already known to form co-crystals in the CSD, whereas 

molecules represented with filled blue circles have zero reported co-crystals. The molecules selected and experimentally 

tested are highlighted in green circles. 

Reproduced from Ref. 253 with permission from the Royal Society of Chemistry. 
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The experimental realization of the one class classification approach led to the synthesis of two novel co-crystals, 

namely pyrene-6H-benzo[c]chromen-6-one (1) and pyrene-9,10-dicyanoanthracene (2). 

5.3.5 Electronic structure of the experimentally validated predictions  

So far, only the structural similarity to TCNQ on the molecular level was taken into consideration to drive the 

selection of the coformers. In this section, the electronic characteristics of the two co-formers (1) and (2) are also 

calculated and directly compared to TCNQ. Moreover, the relationship between the crystal structures and the 

density of states for the two new co-crystals were investigated and compared with a TCNQ-based semiconducting 

co-crystal.  

7,7,8,8-Tetracyanoquinodimethane (TCNQ), has been extensively studied for its interesting electronic properties 

both in the crystalline form and as a co-crystal.212,216,241–247 TCNQ is one of the most widely used electron acceptors 

in organic electronics having four strong electron-accepting cyano groups (-C≡N).248  

Resembling TCNQ, 9,10-dicyanoanthracene has two strong electron-accepting cyano groups. On the other hand, 

6H-benzo[c]chromen-6-one has a lactone (cyclic carboxylic ester) motif which has been reported as an electron 

deficient building block used into conjugated polymers.249  

Both the cyano (-CN) and ester (-COOR) groups are strong electron withdrawing groups (EWG) that reduce the 

electron density in a molecule through the carbon atom it is bonded to. In all three molecules the lowest-energy 

empty molecular orbital (LUMO) is delocalized onto several atoms and as shown in Figure 5.9 it is more 

concentrated on the carbons than on the nitrogen or oxygen atoms. All three molecules, namely TCNQ, (1) and (2) 

have low-lying LUMO levels complying with their electron acceptor nature.  

Following similar trend as for the structural similarity, 9,10-dicyanoanthracene is electronically more similar to 

TCNQ, as both a have lower LUMO energy values and in higher HOMO orbital values in comparison to 6H-

benzo[c]chromen-6-one. In this regard, 9,10-dicyanoanthracene could be a strong candidate for co-crystals of 

electronic interest, although its HOMO-LUMO gap is larger by 0.5 eV from TCNQ. Consequently, both (1) and (2) 

can be regarded as Donor-Acceptor (DA) co-crystals with pyrene playing the role of a π-electron rich donor and the 

two molecules containing the lactone and cyano groups, respectively, serving as the electron acceptors. 

 

 



 

Figure 5.9. The shapes of the HOMO and LUMO orbitals of TCNQ (top), 6H-benzo[c]chromen-6-one (middle) and 9,10-

dicyanoanthracene (lower). The blue and red regions correspond to positive and negative values of the orbital (the 

absolute sign is arbitrary).  

As the final electronic properties of the materials are defined from their 3D conformation, the electronic structure 

analysis of the structure was performed using Density Functional Theory. DA co-crystals with 1:1 D:A 

stoichiometric ratios generally feature the D and A molecules packed in segregated- (i.e., a column of D molecules, 

···D−D−D−D···, aligned next to a column of A molecules, ···A−A−A−A···) or mixed-stack (i.e., a column of D 

and A molecules stacked in a regular ···D−A−D−A··· pattern) arrangements. Cocrystals formed by varying the D:A 

stoichiometric ratios, for example, 2:1 and 3:1, have also been created and studied.250 The two synthesized co-

crystals have different stoichiometries and molecular arrangement, as shown in Figure 5.10. (1) was correctly 
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predicted from the one class classifier having a 1:2 ratio. D and A molecules are packed in segregated-stack, i.e., a 

column of D molecules, -D−D−D−D-, aligned next to a column of A molecules, -A−A−A−A-. On the other hand, 

(2) was correctly predicted to afford a 1:1 stoichiometry and it was experimentally found to form a mixed-stack 

arrangement, i.e., D-A-D-A pattern. 

 

Figure 5.10. Crystal structures of (1) (left) and (2) (right), viewed along the b axis. The electron acceptor molecules are 

coloured in red (6H-benzo[c]chromen-6-one) and blue (9,10-dicyanoanthracene). 

The density of states of the two synthesized co-crystals (1) and (2) was compared with single pyrene crystal and the 

pyrene-TCNQ co-crystal as shown in Figure 5.11. From the partial density of states (PDOS) of (1) can be observed 

that both pyrene and 6H-benzo[c]chromen-6-one contribute to the conduction band and the valence band. On the 

other hand, from the PDOS of (2) we can observe that in the conduction band 9,10-dicyanoanthracene is 

predominant (based on the carbon and nitrogen content), whereas the valence band has significantly higher pyrene 

character. A similar behaviour is found in the pyrene-TCNQ complex, where TCNQ contributes to the valence and 

pyrene to the valence band. Noteworthy, it was found that (2) has a small bandgap of 1.49 eV which belongs to the 

region of currently known organic semiconductors and is comparable to the pyrene-TCNQ co-crystal.251,252 As 

discussed in Chapter 3 the electronic structure is correlated with the structural characteristics thus by searching for 
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molecules that are structurally similar to an electronically interesting compound can lead in the formation of 

semiconducting materials with important electronic properties.  

 

Figure 5.11. Density of states and bandgap of a) pyrene single crystal (PYRENE) b) pyrene-TCNQ (PYRCBZ04) known 

semiconductor, c) EHUFIZ(1) and d) EHUFEV(2). 

 

5.4 Discussion 

A machine learning tool is developed which is able to extract the patterns from only positive known co-crystal data 

and rank novel molecular pairs based on their probability to form new crystalline materials. The major research 

challenge that sparked this work is the lack of densely and uniformly sampled data in materials chemistry, which 

result in inherently imbalanced datasets and unreliable negative counterexamples. The existing databases 
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constructed of published literature typically only include positive results, with scientists very rarely publishing such 

clear details of experiments that did not work. From a machine learning perspective, this means that only one class 

(i.e., the positive outcome) is well defined by the data.  

The implementation of one class classification as a methodology for dealing with the ‘only positive data’ challenge 

was highlighted. We report as a case study the prediction of new molecules which have not previously been 

recognised as co-formers in the unique and limited class of materials, the π-π interconnected co-crystals. In the 

attempt to improve our understanding about one class classification, a broad overview of the current methods and 

concepts is given. The problem is initially investigated using traditional one class classification algorithms in lower 

dimensions after extensive feature engineering. Further on, we demonstrate that by using a Deep One Class 

approach, the manual feature engineering could be avoided, and we can not only achieve higher accuracy, but also 

the incorporation of more feature interactions among the co-formers. In this way, all the features that might lead to 

the formation of stable co- crystals are taken into consideration and the relationships among them are extracted. Co-

crystallization emerges as a difficult task for both computational predictions and experimental screening, 

particularly for cases of limited strong directional forces that could give a strong indication for a successful outcome. 

In our contribution, we show that the implementation of the appropriate data mining strategy combined with the 

extraction of a reliable dataset can leverage the synthetic attempts and lead to the successful discovery of new 

materials. Moreover, an in-depth understanding of the machine learning model with a rationale about the predictions 

is sought after for advancing our knowledge on the chemical factors that favour co-crystal formation. Currently, 

many steps towards explainability of machine learning models have been made. Therefore, for a computational 

strategy to be reliable it is important to incorporate interpretability for rationalizing the predictions. SHAP 

calculations were carried out for interpreting the scoring of the deep learning model by assigning feature weights. 

Consequently, a better understanding of the features that dominate the known molecular pairs is gained and 

meaningful information regarding the characteristics of the molecules that can relate to π-π stacking is extracted. 

Shape, size and polarity were detected as important factors for co-crystallization, which is in accordance with 

previous understanding about the co- crystals of CSD. However, our analysis reveals a more complex scenario, 

where co-crystallization is feasible for molecules having similarly low values of these properties or coupling 

molecules with low and high values of the same feature. Overall, it can be concluded that the rules that dominate 

the co-crystal formation are far more complex than just some general properties and many parameters should be 

taken into consideration.  

The computational strategy followed is able to successfully extract the patterns that dominate the known co-crystals 

and predict a range of potential combinations showing similar trends with the labelled data. Therefore, the number 

of experiments as well as the time frame required to obtain new compounds can be significantly reduced by focusing 

on co-formers with high scores and possible interesting properties. A realistic picture of the single class applicability 
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is demonstrated by the discovery of two co-crystals (pyrene-6h-benzo[c]chromen-6-one (1) and pyrene-9,10-

dicyanoanthracene (2)), both containing molecules which have not previously been reported as co-formers in the 

CSD. The co-formers of 1 and 2 are characterized by similar shape/size, polarity and electronic characteristics, 

confirming the ability of the model to learn and reproduce the key-features of the labelled dataset. The electronic 

analysis of the two newly synthesized structures revealed that both structures have bandgaps in the range of known 

organic semi-conductors, pointing out the power of our model in exploring, understanding and expanding the 

targeted labelled dataset.  

 

5.5 Further work 

The one class classification workflow proposed herein is a promising way to tackle imbalanced datasets and 

prioritising synthetic experiments. However, that was only the first step towards the design of a practical tool for 

in-silico co-crystal screening. The focus of this current work lies on the π-π co-crystals discovery, consequently the 

models were only trained on a very limited category of materials. As there are not any available validation datasets, 

the approach was only validated towards the true positive rate which can be misleading in some instances. 

Moreover, only one type of representation was tested as the input to the models, the 2D molecular descriptors. The 

resulting workflow can rank any possible molecular pair based on the extracted patterns from the training set. 

However, it is not providing any information about how certain the model is for the ranking of the pairs. Keeping 

these pitfalls in mind, we are going to extend the current methodology trying to incorporate predictions for the 

whole range of co-crystals in CSD. Covering a larger and more diverse dataset, the validation can be performed 

more effectively using the results from publicly available experimental data. The machine learning method 

expansion is discussed in the following chapter.  
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6 Molecular Set Transformer: Attending to co-crystals in the Cambridge Structural 

Database 

6.1 Introduction  

The tendency of various molecules to form multi-component crystal structures has been linked to the observation 

of several new properties in organic materials. Understanding the molecular basis of co-crystallization and 

predicting whether two molecules will form a co-crystal or not can have a significant impact in the design of 

functional materials and especially in the drug discovery process. Although the crystal structure determines the 

properties of the material and is the most trustworthy indicator that a co-crystal can indeed exist, crystal structure 

prediction is a time consuming method and thus prohibitive for quick co-former screening.  

The aim of this work is to develop predictive models for co-crystal formation that can generalize to all types of 

currently known co-crystals, ranging from pharmaceutical to electronic co-crystals. For that reason, the workflow 

proposed in our previous work,253 i.e., training using only the ‘positive data’, will be adjusted and scaled-up to cover 

all the existing co-crystals in the Cambridge Structural Database (~7,500 molecular combinations). Key 

improvements of this framework include the consideration of various molecular representation techniques, 

extensive hyperparameter tuning, uncertainty estimation and extensive validation. Feature representation has a 

major impact on the effectiveness of Machine Learning (ML) models especially on imbalanced datasets. In this 

context, if both the positive and negative or unknown classes with high amount of disproportionality are well-

represented with non-overlapping distributions, good classification rates can be obtained by the ML classifiers.  

Molecular Set Transformer, which is an attention based autoencoder designed for sets, is the building block of our 

classifier. The training of our model was performed in a way such that the reconstruction error is minimised and 

also an uncertainty aware component can be added. The uncertainty estimates of each prediction can mitigate the 

effect of out-of-distribution examples and provide a degree of confidence with which the classifier ranks every new 

datapoint. The final models were tested in real case scenarios using several independent external co-crystal 

screening datasets collected from literature. To showcase the applicability of the methodology, the best performing 

model was used for ranking an independent molecular pairs datasets extracted from ZINC20, considering the drug 

delivery and solubility of the co-formers. 

To help visualize and get further insights of all the CCDC co-crystals, we developed an interactive browser-based 

explorer (https://csd-cocrystals.herokuapp.com/). An online app has also been designed for enabling the wider use 

of our models for in-silico co-crystal screening (https://github.com/katerinavr/streamlit). 

 

https://github.com/katerinavr/streamlit
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6.1.1 Trends in co-crystal research 

Co-crystals are crystalline materials composed of two or more different uncharged molecular compounds in a 

particular stoichiometry. Over the past years significant attention has been received both from academia and 

industry due to their possible applications in the pharmaceutical and electronic materials industries. This can be 

verified by the exponential increase in deposited co-crystals in the Cambridge Structural Database over the recent 

years (Figure 6.1). Looking at the timeline, it can be observed that the first co-crystals were composed of smaller 

molecules, as indicated by the average length of their SMILES (Simplified Molecular Input Line Entry System). 

The highest complexity among the molecular pairs is observed around the early 90’s with the discovery of the 

fullerene (C60) co-crystals.254 Moreover, an increasing interest in co-crystals with electronic properties is also 

observed, based on the statistics extracted from Web of Science using as key words ‘co-crystal’ AND ‘electronic’. 

 

Figure 6.1. Bar chart with the timeline of co-crystals structures deposited in CSD. The bars are colour-coded based on 

the complexity of the molecules that form the co-crystals, as indicated from the average length of the SMILES strings. 

The increase of publications regarding electronic co-crystals is shown in the inset. It can be observed that there are two 

significant trends, i.e., for designing more complex and electronically interesting co-crystals. 

In pharmaceutical co-crystals at least one of the components is an Active Pharmaceutical ingredient (API), whereas 

the co-crystals of electronic interest are mainly composed from polyaromatic hydrocarbons (PAHs) which are π-

electron rich molecules. For pharmaceutical applications, co-crystallization is an important technique for improving 
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the physicochemical properties of the API without interfering with the chemical behaviour. For example, many 

pharmaceutical compounds do not make it to the commercial market due to their low solubility. The incorporation 

of a co-former into the API can result in significantly higher solubility levels in comparison to any crystal form of 

the API itself. In electronic co-crystals, the existence of a second molecule in the structure might generate a charge-

transfer complex where electrons or holes can freely be exchanged between the compounds and thus electrical 

conductance can be enabled.  

6.1.2 Interactions between molecular pairs 

Co-crystallization relies purely on intermolecular interactions, and it therefore opens a new range of potential 

combinations of building blocks to be investigated. If the two building blocks contain only one binding site each 

and if there is only one way in which those two moieties can be connected a heteromeric synthon can be formed. 

However, synthetic predictability deteriorates quickly when the number of potentially interacting moieties on each 

reactant is increased or in cases where one or both reactants lack strong directional moieties. The intermolecular 

interactions that are present in co-crystals are largely dominated by hydrogen bonds. Hydrogen bonds are formed 

when a hydrogen atom is covalently bonded to an electronegative atom (A), such that the hydrogen becomes 

partially positively charged (Hδ+). This hydrogen atom can then go on to form an attractive interaction with a second 

atom (B) which possesses either a lone pair of electrons or polarizable π-electrons. Within the crystal structure the 

molecules with appropriate functionalities will arrange themselves in a packing arrangement in an attempt to 

maximize the number and strength of the hydrogen bonding interactions within the solid-state crystal.255 Alongside 

H-bonding, other interactions appear to play a significant role in the formation of stable structures, i.e., halogen 

bonding and π-π stacking (Table D1.1). 

Halogen bonds are another type of non-covalent bonding which is typically formed between iodine- or bromine 

atoms (the halogen-bond donor) and an appropriate halogen-bond acceptor (electron-pair donor) such as an N-

heterocycle.256 Hydrogen and halogen bonds display important strength and directionality and thus offer a good 

starting point for supramolecular strategies that simultaneously encompass two different non-covalent interactions. 

The π-π interactions play a key role in the electronic structure of the materials and refer to the attractive interactions 

between adjacent π systems such as aromatic rings, arising from attractive interactions between π-electrons and the 

σ-framework outweighing the repulsive forces between π-electrons. Aromatic rings of neighbouring molecules can 

arrange themselves in a variety of different orientations, each of which can allow for π-π stacking interactions to 

form. The way in which the aromatic rings arrange themselves with respect to one another can be influenced by the 

substituents on the rings, due to the resultant polarisation of the electron cloud. For example, species with 

unsubstituted aromatic rings tend to form edge-to-face stacking, whereas rings with large substituents form parallel 

stacking arrangements such as offset π-stacking – face-to-face stacking is rarely observed.257  
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6.1.3 Data-driven approaches for in-silico co-crystal screening 

Following the trend of increasing interest in co-crystal synthesis, data-driven methods aimed towards reducing the 

time needed to screen co-crystals are being actively developed. The first such data-driven method was proposed 

back in 2009 by Fabian, who first analysed the co-crystals in the Cambridge Structural Database and extracted 

important statistics that drive co-crystallization. Since then, several other data-driven workflows have been 

developed, either focusing on a co-crystal subset204,253,258,259 or on the whole co-crystal dataset.260,261 In more detail, 

Wicker et al. used a binary classifier trained on an inhouse co-crystal screening dataset composed from both 

successful and unsuccessful experiments.204 Przybylek et al. are focused on a co-crystal subset based on the co-

formers instead of the APIs, showcasing the importance of phenolic and dicarboxylic acids.258 Devogelaer et al. 

extracted the network of the whole CSD co-crystals and uncover the relations between the molecules.261,262 Wang 

et al. performed in-silico screening by training a Random Forest binary classifier after generating possible negative 

pairs based on Tanimoto similarity to the already known molecular pairs that form co-crystals.260 The common 

ground in the aforementioned approaches is that they all use a negative dataset and focus on training binary 

classifiers. Labels in chemistry can be expensive (more experiments), unsustainable (solvents) or in some cases 

unreliable (different experimentalist and/or different conditions might enable the synthesis of a materials that was 

previously labelled as negative). For that reason, we want to focus only on the information we have at hand and try 

to make better use of it. Initially, we started with a small co-crystal dataset, referring to π-π interconnected 

polyaromatic hydrocarbons (PAHs) co-crystals. That type of co-crystal is interesting in terms of the electronic 

properties that the materials might possess. We implemented and compared several one class classification 

approaches and designed a neural network for one class classification which outperformed the standard anomaly 

detection algorithms. Indeed, we managed to synthesize two new co-crystals based on the pareto optimal co-formers 

which had the highest similarity to TCNQ, well known for its application in electronically active co-crystals. One 

major problem we came across, was the complete lack of negative data, even for evaluating the performance of our 

algorithms which was limited to the evaluation based on the true positive rate (TPR). This evaluation involves the 

split of the training dataset in five folds, use the four folds for training and the one-fold for evaluating based on how 

many positives were indeed identified as positives. A dummy classifier would of course have a very high TPR if 

all the data were identified as inliers. To ensure that we are not facing this problem we used another dataset of 

unlabelled data with possible molecular pairs that have not yet reported as co-crystals from ZINC15 database and 

verified that only a part of these data was found to be high-scoring and thus enabled us to draw a reliable threshold 

above which we assumed that a new pair can be formed.  

6.2. Methods 

A schematic representation of the workflow followed in this chapter is shown in Figure 6.2. 
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Figure 6.2. Training/evaluation pipeline and task description. Simplified schematic of Molecular Set Transformer with 

bidirectional loss architecture. 

 

6.2.1 Creating the datasets 

Training dataset. A key part of the development of a data-driven approach is the creation of a curated dataset that 

is reliable and can be used for training. The co-crystal dataset used for training the models was extracted from CSD 

2020 using the CSD Python API and an in-house python script. The CSD database contains more than one million 

crystal structures of small molecules and metal-organic molecular crystals resolved by X-ray and neutron diffraction 

experiments. The whole database was screened with the following constraints: 

i) The structures should be only organic, not polymeric, not ionic and should not contain metals. 

ii) The structures should have 3D coordinates and no disorder to ensure the high quality of the structures. 
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iii) Polymorphs are ruled out based on the CSD identifier by dropping out structures that have the first 6 letters the 

same. 

iv) The structures should have exactly two distinct molecules independent of the stoichiometry, i.e., the csd entry 

CSATBR with SMILES string:  

OC(=O)c1cc(Cl)ccc1O.OC(=O)c1cc(Cl)ccc1O.CN1C=NC2=C1C(=O)NC(=O)N2C, has three molecules in the 

asymmetric unit, however there are only two different co-formers with 1:2 stoichiometry. Given the CSD refcode 

identifier, the SMILES string representation is extracted and split into the subsequent strings (one SMILES string 

for each molecule in the structure). A structure is proceeded only if after removing the duplicate strings in each 

structure, only two different strings remain. In that way we incorporate to the co-crystals dataset structures that 

belong to different molecular stoichiometries. 

v) Neither of the two different molecules in the extracted structure should be a solvent or single atom, as listed in 

the Appendix Table D1.2. 

This process resulted in a training dataset of 7470 molecular pairs. 

External validation datasets. As the interest around co-crystals is rising, several studies report both the successful 

and unsuccessful results from the synthetic attempts. However, the results are not reported in a consistent manner 

and an extensive literature screening is unavoidable. For the validation and comparison of our models, a benchmark 

database was created in collaboration with Dr Ioana Sovago  from CCDC. This was a time-consuming process that 

took over 2 months to screen all the related literature, collect the experimental data and then convert them in machine 

readable files (csv files). In most of the papers the overall screening experiments were reported as supporting 

information and only the names of the molecules as well as the outcome, i.e., successful or unsuccessful co-

crystallization, were given.  We had to identify the correct SMILES strings given the names and then assign the 

label ‘1’ for successful and ‘0’ for unsuccessful experiments. It should be also noted that the experimental validation 

of a successful co-crystal was not always performed with a detailed crystal structure determination process, but in 

many cases IR or PXRDs observations were enough for categorizing a molecular pair as a positive or negative 

example. As Wang et al.  have already pointed out,260 there are cases where a molecular pair has been reported as 

negatives, however after some years the structures were experimentally proven to be positive. In this work the labels 

have been corrected in a similar way as proposed from Wang et al..260 

The wide range of diverse categories containing both positive and negative outcomes are listed based on 

chronological order in Table 6.1. 
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Table 6.1. Publicly available co-crystal screening datasets in total consisting of 1,057 negative and 1,320 positive 

examples. 

Dataset name Dataset description Year Number or data Reference 

MEPS dataset 18 APIs against different co-

formers 

2014 432 (300 negatives + 132 

positives) 

263 

Artemisinin 

dataset 

Artemisinin + coformers 2014 38 (36 negatives + 2 

positives)  

36264 

Cooper dataset 20 APIs + 34 coformers 

(always the same) 

2017 680 (408 negatives + 272 

positives) 

204 

Propyphenazone 

dataset 

Propyphenazone + coformers 2017 89 (81 negatives + 8 

positives) 

47 

Phenolic acids 

dataset 

Phenolic acids as co-formers 2018 226 (58 negatives + 168 

positives) 

259 

Dicarboxylic 

acids dataset 

Dicarboxylic acids as co-

formers 

2019 712 (104 negatives + 608 

positives) 

258 

Aakeröy dataset Desloratadine & loratadine + 

coformers 

2020 82 (17 negatives + 65 

positives) 

265 

Linezolid dataset Linezolid + coformers 2021 19 (9 negatives and 10 

positives) 

266 

Pyrene dataset Pyrene + coformers with 

electronic similarity to 

TCNQ 

2021 6 (4 negatives + 2 

positives) 

253 

Praziquantel 

dataset 

Praziquantel + coformers 2021 30 (18 negatives + 12 

positives) 

267 

MOP dataset  2-amino-4,6-

dimethoxypyrimidine (MOP) 

+ 63 co-formers 

2021 63 (22 negative + 41 

positives) 

268 
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6.2.2 Data representation 

In machine learning for chemistry applications, molecules are translated into a numerical vector of a fixed length, 

namely the molecular representation or molecular fingerprint. A molecular fingerprint can be either fixed or learned, 

depending on whether the algorithm will always return the same vector for a molecule (Morgan fingerprint, 

molecular descriptors) or will learn a task-specific, database dependant vector (neural fingerprint, message passing 

fingerprint).93,94  

6.2.2.1 Fixed molecular features 

Molecular descriptors. The first case study was on the use of molecular descriptors extracted from a freely 

available library, namely Mordred.135 Mordred can calculate more than 1800 numerical representations of molecular 

properties and/or structural features using predefined algorithmic rules. The disadvantage of this approach is that 

the library is not further updated and as a result many packages start deprecating, which can result in many NaN 

(Not a Number) values.  

Morgan fingerprint. Morgan Fingerprint (MF) or else extended connectivity fingerprint (ECFP) is generated by 

assigning unique identifiers, i.e., Morgan identifiers, to all the substructures within a defined radius around all heavy 

atoms in a molecule.269 These identifiers are afterwards hashed to a vector with a fixed length. In this work we used 

the MF with lengths 2048 and 4096 extracted from RDKit library.167  

6.2.2.2 Learned molecular fingerprints with pretraining 

Deep learning models usually require a large amount of data to be trained efficiently. However, not all tasks have 

enough data to train on. One approach to help achieving better results is pretraining, i.e., a model is first trained on 

an auxiliary task for which more data exist and then the pretrained model starts with more favourable weights than 

randomly initialized ones to learn the actual task.270 For attaining a learned vector, a large, labelled dataset is needed, 

such that the algorithm will learn the best representation based on the task to be predicted. As in our case no training 

labels are available, a transfer learning approach was followed by using pretrained models in different tasks where 

labelled large datasets exist. Transfer learning is supposed to be an effective way for reducing the training bias. We 

used two different models pretrained in very different tasks, i) a graph-neural network fingerprint pretrained in a 

self-supervised manner with masking on 2 million unlabelled molecules from ZINC15 database.271 Each molecule 

is represented as a 300-dimensional vector after applying the pretrained model. ii) an NLP based fingerprint which 

is learning the molecular fingerprint by translating the SMILES string to the chemical name trained in 1 million 

molecules from ChEMBL. 

Using pre-trained Graph Neural Networks with transfer learning. Graph neural networks (GNNs) have found 

many applications in chemistry data as molecules can be easily represented as graphs with the atoms being the 
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nodes and the bonds being the edges. GNNs learn parametrized mappings from graph-structures objects to 

continuous feature vectors and have achieved state-of-the art performance in a wide variety of problems for property 

prediction or materials classification. Common feature in these cases was that the training data were labelled and 

thus the graph neural network is training to extract the molecular representation having a downstream task to 

achieve. There are numerous cases in chemistry, where labels are not available or are very costly to attain. For that 

reason, the combination of self-supervised learning with transfer learning for a downstream task is an approach very 

useful in these situations. In the present work I focused on GNNs which are pretrained with self-supervised methods 

for learning useful local and global representations simultaneously.271 Then using transfer learning, I want to 

examine if the representation learnt in the self-supervised task can be applied to for the pairs representation. The 

attribute masking as the pretraining step was used, where node/edge attributes of molecules in a large unlabelled 

dataset are masked and then the GNN tries to predict those attributes based on the neighbourhood structure. We 

adapted the trained model released by Hu et al.271 for computing the molecular embeddings of our molecules on the 

co-crystal pairs and used that representation as the input to Set Transformer, as an alternative fingerprint.  

Using Natural Language Processing (NLP) based models and transfer learning. One NLP-based pretrained 

model, namely ChemBERTa272 was tested for encoding the molecular SMILES in a learned vector. The vital part 

for processing text-based chemical representations for deep learning models is the tokenization, i.e., how to break 

SMILES strings into a sequence of standard units, known as tokens. The tokens are supposed to contain the essential 

structural information that can reliably and consistently characterize the molecules. ChemBERTA is transformer 

model that learns molecular fingerprints through semi-supervised pre-training of the sequence-to-sequence 

language model, using masked-language modelling of a large corpus of 10 million SMILES strings from PubChem. 

The raw SMILES were tokenized using a Byte-Pair Encoder (BPE) from the Hugging face tokenizers library.  

6.2.3 Molecular Set Transformer 

Traditional ML approaches usually operate on fixed dimensional vectors or matrices. However, there are several 

problems that demand the inputs to be order invariants, i.e., sets. Deep learning tasks defined on sets usually require 

learning functions to be permutation invariant. The Set Transformer architecture was adapted from the work of Lee 

et al.236 and was used as building block for the One Class Classifier reported in previous work.253 For our Molecular 

Set Transformer, we utilize an Attention Based Autoencoder.  

In its simplest form the Autoencoder has two components: an encoder and a decoder. The encoder takes an input 

and transforms it into a latent representation which is usually a more compact representation than the original 

datapoint. On the other hand, the decoder is trying to reconstruct the original input from the latent dimension. 

Mathematically, for a given datapoint x, the encoder compresses the information to a vector z, and the decoder 

decompresses the data into a reconstructed sample 𝑥. To learn these transformations, neural networks are used as 
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computational and optimizable building blocks for the encoder and decoder. The encoder and decoder are then 

optimized according to a loss, which is a low reconstruction error (||x– 𝑥||).110 Set Transformer captures the input in 

a permutation invariant way. However, to ensure that the output is order invariant as well, a permutation invariant 

training technique was applied by integrating a bidirectional reconstruction loss function to the original model.273 

The way the Set Transformer extracts the features is key for capturing the complexity of the problem. Set 

Transformer ‘looks’ in all the features across a single molecule as well as in all the features of the pairing molecule. 

In that way the latent dimension holds information for the relation between the features for each molecular pair. Set 

Transformer uses a learnable pooling operation, instead of a fixed pooling operation such as mean, to combine the 

set input such that most of the information is preserved after compressing the data. The pooling operation is the dot-

product attention with SoftMax (i.e., the self-attention mechanism). In this way, a richer representation of the input 

data is ensured, that captures higher-order interactions which are important for co-crystal design. The main 

architectural differences with the previous workflow we implemented for co-crystal screening is that the feed 

forward neural network was completely removed, and it is now fully based on the attention mechanism with a 

bidirectional reconstruction loss function.  

6.2.4 Hyperparameter tuning.  

As the performance of the neural network is highly dependent on the choice of the hyperparameters, i.e., algorithm 

network variables, the hyperparameters were tuned using Weights and Biases software.274 The model was trained 

on all ‘positive’ co-crystal data, excluding those molecular pairs that belong to the validation sets. The traininig was 

performed without labels and with a different set of parameters each time, having as the final goal to minimize the 

bidirectional reconstruction loss. After the identification of the optimalset of parameters for each model, the models 

were retrained using the selected hyperparameters and used for the evaluation on the external validation datasets. 

6.2.5 Evaluation metrics 

The evaluation of the Molecular Set transformer inspired models is performed in the external datasets containing 

experimental results from co-crystal screening data. The datasets are balanced between the two classes of co-crystal 

and not observing a co-crystal, with 1,320 positives and 1,057 negatives assigned as 1 and 0 respectively (Table 

6.1). The evaluation metrics used are described below. 

The Area Under Curve (AUC) is defined as the probability that a classifier will rank a randomly chosen positive 

instance higher than a randomly chosen negative one. 

The F1 score is defined as the harmonic mean of precision and recall, where TP stands for true positives, TN for 

true negatives, FP for false positives, and FN for false negatives predicted by the classifier. 
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𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃 +  𝐹𝑃
 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃 +  𝐹𝑁
 

𝐹1 𝑠𝑐𝑜𝑟𝑒 =  2  
(𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ×  𝑅𝑒𝑐𝑎𝑙𝑙)

(𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 +  𝑅𝑒𝑐𝑎𝑙𝑙)
 

Sensitivity or else True Negative Rate (TNR) is an indicator of how correctly the model is predicting the negative 

class 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =  
𝑇𝑁

𝑇𝑁 +  𝐹𝑃
 

6.2.6 Adding an uncertainty aware component 

Machine learning techniques can be used as a powerful and cost-effective strategy to learn from existing datasets 

and perform predictions on new unseen data. The standard approach is to train the network to minimize a prediction 

loss. However, the resultant model remains ignorant to its prediction confidence. Herein, we demonstrate the use 

of Monte Carlo Dropout Ensembling as a Bayesian approximation technique to provide uncertainty estimates on 

the network’s scores.  

Dropout is a well-established technique for training neural networks by stochastically setting the weight of each 

node in the network to zero with probability p at every training step. Dropout was initially introduced as a way to 

avoid overfitting, however, it has been applied is several other works as a strategy to approximate Bayesian 

inference.3,275,276 

6.3. Results 

6.3.1 Co-crystal space exploration 

In order to get insights from the existing co-crystals in the CSD, we initially categorize them in terms of the type of 

bonding that connects the molecules in the crystal structure. The three main bonding types involve hydrogen 

bonding, halogen bonding and weak interactions (π-π stacking). The distance between all the existing co-crystals 

was calculated by the Average Minimum distance metric using the crystal structure of each co-crystal as provided 

from the Crystallographic Information File (CIF).277  
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Figure 6.3. Co-crystal space representation based on the average minimum distance metric (AMD) of the crystal 

structures, generated by Daniel Widdowson (University of Liverpool) after providing him with the co-crystal data.277 The 

co-crystals are colour coded based on the main interactions between the two different molecules. Hydrogen bonding is 

the dominating interaction, whereas the interesting electronic properties arise in the area of the weak interactions where 

the pairwise HOMO-LUMO difference enables charge transfer interactions. 

The construction of the two-dimensional map, as shown in Figure 6.3, was performed using TMAP algorithm with 

the structures being colour-coded based on the interactions group they belong to. TMAP is as a dimensionality 

reduction and data visualization technique capable of representing large high-dimensional datasets as a two-

dimensional tree. The local and global structure of the data is preserved, meaning that datapoints that are close in 

the high dimensional space will also be found close in the lower dimensions.278 As shown in Figure 6.3, the co-

Weak interactions Hydrogen bonding Halogen bonding 

(eV) 
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crystal space is dominated by molecules connected via hydrogen-bonds. For getting a further insight regarding the 

electronic characteristics of the molecular pairs that form the co-crystals, the HOMO-LUMO gap between the two 

molecules was calculated using PM6 semiempirical method.279 The calculation was performed by taking the 

minimum HOMO-LUMO difference between the two isolated co-formers as min(LUMOmol2-HOMOmol1, 

LUMOmol1-HOMOmol2). Apparently, the HOMO-LUMO gap is smaller in the area of the weak interaction (red data 

in Figure 6.3). This was expected as the molecules that participate in charge transfer complexes have small LUMO 

orbital energies.  

Further on, the shape of the individual molecules that form the co-crystal pairs is also investigated. Molecular pairs 

are sorted such that the first co-former has larger molecular weight than the second co-former. In the PMI plots 

presented in Figure 6.4 we visualize the shape distribution of the two sets of co-formers. 

 

Figure 6.4. PMI plots of the two co-crystal components, sorted such that the first molecule in the pair is the one with the 

highest molecular weight. The corners of the triangle show the most linear, most circular and most spherical molecules 

in the dataset. On the left, the shape distribution of the molecules found as the first co-former is shown, covering a wide 

are of the triangle. On the right plot, the molecules found as the second co-former covering a smaller area of the triangle. 

The plots are colour-coded according to the kernel-density estimate (kde) using Gaussian kernels. 
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It can be seen that the molecules used as the first co-former (typically the API for in the pharmaceutical co-crystals) 

cover a wider area on the plot indicating that the molecules are more shape-diverse than those used as second co-

formers (or known as excipients for the pharmaceutical co-crystals case). The frequency of the molecules appearing 

as first and second co-formers was counted, with the top ten molecules of each category being visualized in Figures 

6.5 & 6.6. 

 

Figure 6.5.  The ten most popular molecules appear as the first co-former and their frequency on the co-crystals dataset. 

 

Figure 6.6.  The ten most popular molecules appear as the second co-former and their frequency on the co-crystals 

dataset. 
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6.3.2 Model comparisons        

As we have established the one-class approach, based on Set-Transformer, for dealing with the co-crystallization 

problem, what remains is to identify the most effective representation of our molecules. Herein, we compare four 

different representation strategies that make use of the 2D molecular structure. Based on each molecular pair’s 

representation method, we developed four different workflows. In addition, two traditional one class classification 

algorithms (see section 5.2.3), i.e., kNN and Iforest with the Morgan fingerprint as the molecular representation, 

were trained and tested on the same data as the Molecular Set Transformer (Table 6.3). 

The four different models based on the diverse representation techniques were trained on the ‘positive’ co-crystal 

data. A dataset collection containing 11 different experimental co-crystal screening datasets was used for the 

validation and comparison of the models. It should be highlighted that for fair comparisons all the overlapping 

molecular pairs between the training and the validation datasets were removed from the training set, such that the 

models haven’t previously ‘seen’ any of the molecular pairs they are validated on. As there are no labels on the 

training data, the training task of all the models is to minimize the reconstruction loss of the Autoencoder, which is 

the building block of the Molecular Set Transformer. We explored the relation between the network parameters and 

the final accuracy on the external data by performing grid search on the learning rate, the batch size, the weight 

decay, the number of epochs and the dropout rate. The range of the hyperparameters is presented in Table 6.2. 

Table 6.2. Hyperparameters optimization. 

Hyperparameters Values range 

Learning rate [10-3, 10-4, 3*10-4, 10-5] 

Batch size [32, 64, 128, 256] 

Number of epochs  [50, 100] 

Weight decay [0.0005, 0.005, 0.0001] 

Dropout [0.1, 0.2, 0.3, 0.4] 

 

All the hyperparameter contributions for the GNN-based model are plotted on the parallel coordinates plot as shown 

in Figure 6.7a. The range of the hyperparameters, the reconstruction loss of the network and the total validation 

accuracy on the ‘unseen’ data are shown in the parallel axes. A visual inspection of the relations among the parallel 

coordinates reveals that there is a strong correlation between the reconstruction loss and the validation accuracy 

(Figure 6.7b).  
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Figure 6.7. a) Parallel coordinates plot showing the hyperparameters contribution towards the final task, i.e., the 

minimization of the reconstruction loss. Importantly, it can be observed that as the reconstruction loss decreases, the 

validation accuracy on previously unseen data increases. b) Scatterplot visualizing the correlation between the validation 

accuracy and the reconstruction loss. Each run with the different parameters is shown in a different colour. The plots 

were generated using wandb library (https://wandb.ai/). 

After the selection of the best performing hyperparameters, the models were retrained and their performance of the 

unseen data is reported in Table 6.3. The performance measures include the total accuracy, Sensitivity and F1.  
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Table 6.3 Evaluating Molecular Set Transformer with different input representations on the external benchmark 

dataset. The metrics include accuracy, Sensitivity (TNR) and F1 score. The performance of two traditional one-class 

classification algorithms is also reported as baseline performance.  

 Accuracy Sensitivity F1 

Molecular Set Transformer 

+ Mordred descriptors a 

0.74 ± 0.007 0.68 ± 0.005 0.7 ± 0.005 

Molecular Set Transformer 

+ ECFP4 (2048) b 

0.73 ± 0.004 0.71 ± 0.005 0.71 ± 0.005 

Molecular Set Transformer 

+ ECFP4 (4096) b 

0.75 ± 0.005 0.71 ± 0.006 0.72 ± 0.005 

Molecular Set Transformer 

+ GNN c 

0.76 ± 0.001 0.69 ± 0.004 0.73 ± 0.005 

Molecular Set Transformer 

+ ChemBERTa d 

0.66 ± 0.005 0.65 ± 0.005 0.63 ± 0.005 

Isolation forest + ECFP4 

(2048) b 

0.65  0.58 0.64 

kNN+ ECFP4 (2048) b 0.62 0.56 0.61  

          a 2D molecular descriptors, 1023 dimensions 

                b 2048 dimensions 

                c 600 dimensions 

               d  354 dimensions 

 

The validation dataset is balanced so the standard metrics can be used to evaluate the performance of the different 

models. Finding an accuracy of 75% is a significant result considering the fact that the validation data are not 

extremely reliable especially concerning the negatives cases.  The experimental validation of the reported successful 

or unsuccessful co-crystals was not always performed with a detailed crystal structure determination process, but 

with IR or PXRDs observations. There are several cases that a molecular pair was reported as unable to form a 

crystal structure and afterwards trying different conditions from a different researcher gave a successful result (See 

Methods, External validation datasets).  
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Figure 6.8. Evaluation metrics and standard deviation of the four different models. A naïve classifier would have 0.5 

accuracy. All four different models perform better than a random classifier with the Molecular Set Transformer using 

GNN or Morgan fingerprint to outperform the other cases. 

 

From the above plots it can be seen that the Molecular Set Transformer using either Morgan (ECFP4) or GNN 

fingerprints perform quite well with unseen data. Figure 6.9 shows the probability ranking of the list of co-formers 

on the validation data. The scores distribution between the true positives and true negatives for each model as well 

as the confusion matrices are presented in the Appendix Figure D2.1 and D2.2 respectively. We can see that in all 

models the true positive data points tend to stack on the top of the ranking scatterplot and getting scores close to 1. 

The experimentally observed hits are significantly enriched at the top, indicating that virtual screening is a 

promising tool for focusing experimental efforts and reducing the number of experiments required to identify 

successful molecular pairs. The selection of the ‘best’ representation is dependent on the domain of application. 

Numerous studies have shown that GNN fingerprint could yield more promising results, whereas other studies claim 

that there is  not much difference.108 We should also consider the fact that a GNN representation is not as easily 

interpretable as the molecular descriptors of the Morgan fingerprint.  
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Figure 6.9. Probability ranking by the four different models used in this work for the external validation sets. The external 

data consist of two balanced classes of positive and negative data. Yellow dots indicate known co-crystals, whereas 

unsuccessful co-former pairs are represented as purple dots. The red line is the selected threshold just that the better 

discrimination between the classes can be achieved. The experimentally observed hits are significantly enriched at the 

top-ranking percentile, indicating that virtual screening is a promising tool for focusing experimental efforts. 

6.3.3 Benchmarking with currently available methods 

The importance of developing accurate and time-efficient co-crystal screening models is showcased by the number 

of approaches that have been released for this task in the past years.268,280,281 Most of these approaches are targeting 

pharmaceutical co-crystals, i.e., pre-screening co-formers against several APIs, due to the importance of making 

the API more soluble such that is could be easier delivered to the body. To prove the effectiveness of our method, 
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we compared our two best models, i.e., Molecular Set Transformer using either GNN or Morgan fingerprints, with 

other screening approaches that are currently used and report their performance on publicly available data.  

The comparisons are performed against two physical modelling methods and two machine learning methods on 

single APIs versus the co-formers. As shown in Figure 6.10, the evaluation metric is the AUC per each API. The 

two physical modelling methods are COSMO-RS282 and the method based on calculated gas phase molecular 

electrostatic potential surfaces (MEPS).263 The two ML models refer to a screening tool developed from Wang et 

el and CCGnet280 developed from Jiang et al.. 

COSMO-RS relies on the observation that if the enthalpy between an API-coformers mixture is more negative than 

the enthalpy of the pure components, then the formation of a co-crystal between the two components is highly 

possible. The method assesses the miscibility of two components in a super cooled liquid phase according to their 

excess enthalpy, ΔHex, which is the difference between enthalpy of the mixture and those of the pure components. 

The more negative the ΔHex the more likely the components are to form a stable structure. 

On the other hand, MEPS is based on an electrostatic model that treats intermolecular interactions as point contacts 

between specific polar interaction sites on molecular surfaces. The MEPS of a molecule is calculated in the gas 

phase, and this is used to identify a discrete set of surface site interaction points (SSIPs), which are described by H-

bond donor and H-bond acceptor parameters α and β. SSIPs identify conventional H-bond donor and acceptor sites 

as well as less polar sites that make weak electrostatic interactions, so they completely describe the surface 

properties of a molecule and can be used to calculate the total interaction of a molecule with its environment.263 

The large-scale machine learning model, indicated as Wang method, based on random forest and Morgan fingerprint 

have been previously tested on most of the twelve APIs shown in Figure 6.10.  

Another recent data-driven method, namely CCGnet combining 3D molecular structures and some important 

molecular fingerprints in a graph neural network reports 97% accuracy on external validation sets. CCGnet is trained 

on labelled data, both positive and negative, derived from literature screening. Herein, CCGnet was tested on the 

MOP and ibuprofen external datasets (Figure 6.10 grey bars) as these were the only two APIs that were not part in 

their training set and a reliable out-of-distribution evaluation score can be calculated. The accuracy in the two 

previously unseen from their model cases is smaller than any of the other models tested in this work indicating an 

overinflating reported accuracy. 
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Figure 6.10. Head-to-head comparison of our best models (green and yellow bars) on individual APIs with other models 

and methods reported in literature. The evaluation metric is the AUC accuracy (y axis). 

Note that the majority of methods we are comparing with are either computational chemistry models, or ML binary 

classifiers. Our methodology is only based on neural networks and only positive data were used due to the lack of 
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reliable negative data points within our training set. It is noteworthy that the Molecular Set Transformer was able 

to have comparable accuracy to computational chemistry models whereas it was based only on the molecular 

fingerprint. The ML model (CCGnet)280 claiming 97% accuracy on external data showed the lowest performance 

on previously ‘unseen’ data, with a 35% AUC. That is a strong indication that this model was overfit on the training 

data and that the incorporation of 3D representations did not resulting in a significant advancement of the in-silico 

screening process. Both our models show the lowest performance in the itraconazole dataset which is the smallest 

one containing only 8 entries. Itraconazole (Figure 6.11) is a large molecule containing many functional groups and 

branching. Although four itraconazole co-crystals are reported as a hit in the literature extracted dataset, there is 

only one itraconazole co-crystal deposited in CSD, i.e., itraconazole:succinic acid (csd id: REWTUK). 

Consequently, our models have only been trained in one itraconazole co-crystal and were not able to perform well. 

 

Figure 6.11. Itraconazole molecular structure. 

6.3.4 Rationalizing the predictions 

As the key goal is to generate both predictive models and to gain physical insights for the co-crystallization driving 

forces, an explainable AI technique was applied. Shapley additive explanations (SHAP) is implemented for 

rationalizing the scoring of each molecular pair by using feature weights represented as Shapley values from game 

theory. SHAP is a model-agnostic method where sensitivity analysis is used to investigate the influence of 

systematic feature values changes on the model output. SHAP-generated explanations can be categorized as global, 

i.e., summarizing the relevance of input features in the model or local, i.e., based on individual predictions.  

Of course, the choice of the molecular ‘representation model’ is an important factor governing the explainability 

and performance of the AI model as it determines the content and type of the obtained interpretability, i.e., 

physicochemical properties, functional groups. The features of the input vector are randomly set on and off, thereby 

examining feature influence in the final scoring. In that way we can get better insights about which features played 

an important role in the ranking. The advantage of using Shapley values is that we can get local interpretations, 

meaning that for any single pair or subset of molecular pairs we can ‘see’ which where the molecular characteristics 

that played an important role.  
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Figure 6.12. Shapley additive explanations categorized according to the type of interactions between the molecular pairs. 

Each molecule is represented as a vector containing the Mordred descriptors. The notation _1 and _2 indicate the first 

or second molecule in the pair. a) global interpretation of the whole co-crystals dataset and local interpretations of b) 

hydrogen bonded pairs, c) halogen bonded pair, d) weakly bonded molecular pairs. The pink colour refers to high values 

of the molecular features and the blue to low values, whereas the x axis refers to the model’s scores being high or the 

right and low on the left. 

As for the co-crystal formation the type of interactions among the molecular pairs plays a crucial role, we got 

insights for what affected co-crystallization based on which bonding group the pairs belong to. Molecular 
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descriptors representation is straight forward and the weight of each feature can be directly extracted with SHAP. 

According to Figure 6.12a representing the Shapley global interpretation, we can observe that as the dataset is 

dominated by H-bond interactions the most important features are related to the OH group (MAXsOH,MINsOH) 

and the N group (MAXaaN, MinaaN). According to the Shapley local interpretations we can derive i) the important 

features for hydrogen bonded pairs (Figure 6.12b) where the existence of OH (MAXsOH,MINsOH), NH2 

(MAXsNH2, MINsNH2) and N groups (MAXaaN, MinaaN) are highlighted as the most important contributing 

factors, ii) the dominating features for the halogen bonded co-crystals (Figure 6.12c) are those related to the 

existence of F groups (MINsF, MAXsF) and iii) in the case of weak interactions the existence of electronegative 

groups such as terminal triple bonded N (≡N)  groups (MAXtN, MINtN) or F groups (MINsF) was found to be the 

most important for the formation of that type of weak bonding. It can be concluded that the top important descriptors 

of each category are mostly related to the existence of some functional groups in the molecules that form the pairs 

and not a physical property. That could be the reason why using the molecular fingerprints for the co-crystallization 

prediction shown a good performance in the tested systems. Shapley local explanations can also be directly used to 

highlight the important functional groups of high-scoring pairs, when molecules are represented as bit strings 

(Morgan fingerprint) as shown in the Appending Figure D2.3. 

6.3.5 Dataset of suggested experiments - ZINC20 

To further demonstrate the applicability of the methodology, one of our best performing model, i.e., the fingerprint 

model, was used for predicting high-probability molecular pairs from a freely available database with purchasable 

molecules, namely ZINC20166. We extracted all the neutral in-stock molecules getting a starting dataset of 6,883,326 

molecules represented as SMILES strings. Out of them we selected only those that have Tanimoto similarity > 0.8 

with the molecules that form all the known co-crystals in CSD. That process limited the dataset to 3,119 single 

molecules.  

Solubility and lipophilicity are key parameters that can dictate the success or failure rate of drug discovery and 

development. Successful drug compounds should have lipophilicity optimal values between 2 and 3 to achieve the 

optimal bioavailability resistance to metabolism solubility and toxicity. Their measurement is vital for both in-vivo 

and in-silico evaluation of drug properties. We followed similar approach to Zhao et al.. using SwissADME283 for 

the calculation of the loqP values as an indicator for lipophilicity.284 By limiting the selected molecules based on 

lipophilicity, the molecular dataset was reduced to 300 molecules that pass all these constraints. 

All the possible pairs between these molecules were generated and ranked based on our model. Those pairs that 

scored above 0.8 are plotted in a 2D map and unsupervised clustering was used to cluster them into similarity 

groups. The representation used is fingerprint and the distance metric is the Tanimoto distance of the pairs. An 

interactive plot of the high scoring pairs is provided (https://zinc20.herokuapp.com/) as demonstrated in Figure 

https://zinc20.herokuapp.com/
https://zinc20.herokuapp.com/
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6.13. The molecular pairs identified from the screening were projected into a two-dimensional map and were 

grouped into chemical families using the kmeans clustering algorithm. By selecting one point in the interactive map 

a table is printed which displays the SMILES strings of the two molecules. the molecular diagrams as well as the 

score and uncertainty of each molecular combination.  

Overall, we identified ~2,000 high-scoring potential molecular pairs with low uncertainty, which cover a diverse 

set of shapes in the molecular space. These pairs could be good possible synthetic targets for achieving novel co-

crystals. 

  

Figure 6.13. 2D UMAP embedding of the chemical space of the high scoring co-crystal pairs, colour-coded by k-means 

clusters identified using the 2D UMAP coordinates. For each selected point a table is displayed showing the images of 

the molecular pairs, the score of the model and the uncertainty of the prediction. 
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6.4. Discussion 

Data scarcity remains a fundamental challenge for supervised learning in the materials science domain in which 

each new labelled data point requires costly and time-consuming laboratory testing. Determining effective ways to 

make use of large amounts of unlabelled data remains an important unsolved challenge. Herein, we propose the use 

of the Molecular Set Transformer for learning how to represent molecular sets with high probability to form co-

crystals. The machine learning framework has three main parts: (1) data representation (2) machine-learning 

algorithm and hyperparameter tuning (3) validation on external literature data and uncertainty estimation.   

In terms of molecular representations, both fixed (Mordred descriptors, Morgan fingerprint) and learned 

representations (GNN, ChemBERTa) have been tested. For the learnt representations, pretraining coupled with 

task-specific finetuning provides substantial gains. We used self-supervised pretraining strategies for GNNs and 

ChemBerta to assess the viability of these architectures for co-crystal screening. We demonstrated that pre-trained 

models can be effectively used as ‘encoders’ for molecules to generate structural features. These features can then 

be used as input to Set transformer to predict molecular pairs for co-crystallization. 

Some of the key findings include that using the Molecular Set Transformer with either the Morgan fingerprint or 

Graph Neural Network representations perform well on previously unseen data. However, the advantage of using 

pretrained models (self-supervised training coupled with transfer learning) in the scenarios that only a small amount 

of training data exists lies to the fact that these models can perform better in data outside the confidence area and 

provide lower uncertainty with molecules that differ from the training set. Previous approaches have been reported 

to use graph neural network representations for co-crystals. However, they are only trained with a small amount of 

data, and usually these types of networks need more than 1M data points to extract the underlying trends. The 

existing ML models are focusing on solving the co-crystal screening problem by using either sparse or somewhat 

unreliable negative data from alternative sources to produce a trained model. Our work illustrates that one class 

classification can overcome these limitations and learn how to effectively describe a certain class of interest, 

showing the potential to significantly advance many areas of chemical research. As such, we highlight the 

implementation of one class classification as a methodology for dealing with the ‘only positive data’ challenge in 

materials design. 

One important observation from our co-crystal prediction approach is that the better and in more detail, we describe 

the substructure of a molecule, the better we can reconstruct the molecular pairs and extract the interactions among 

them. Importance of interpreting and getting insights from predictions. Molecular descriptors and fingerprint can 

offer a better understanding of the characteristics that contribute to the final scoring.  

Overall, this work is aiming towards contributing to the co-crystal design field by addressing the major challenges 

current data-driven for materials discovery face. The problems addressed herein are the lack of negative data, the 
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representation selection, the uncertainty calibration of the model’s predictions, the extrapolation on previously 

unseen data and the interpretability of the models. A solution to these problems is given by providing models that 

can evaluate diverse molecular pairs in their possibility to form co-crystals, not limited to pharmaceutical co-crystals 

but also co-crystals of electronic interest. The usefulness of the proposed approach is further demonstrated by 

ranking combinations from ZINC20 and providing an interactive map of high-ranking high-certainty combinations.  
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7 Conclusion 

7.1 Summary of thesis 

This thesis is an attempt to explore the enormous potential data-driven methods have towards accelerating molecular 

materials discovery. Machine learning models can not only be useful for guiding the research of suitable molecular 

candidates but also for avoiding prohibitively time consuming calculations or experiments. The two main categories 

of materials that were investigated are the metal-polyaromatic hydrocarbons systems and co-crystals. 

Metal-polyaromatic hydrocarbons systems are unique materials with proven extraordinary electronic properties. 

Despite their theoretical interest, there are only a few studies reporting their actual structure and related properties. 

A periodic density functional theory study for all known pure metal-PAHs structures was performed and showed 

that the energetic stability achieved after the metal insertion could be the driving force for the formation of these 

materials. To the best of our knowledge this is the first time a systematic study on the quantification of the 

thermodynamic stability of these systems has been done. Further on, a workflow is proposed for the establishment 

of some general rules and guidelines to select the most promising PAHs for metal loading. The candidates are 

selected based on void space availability, orbital degeneracy, metal loading capacity and experimental accessibility. 

Alongside with that, a complete crystal structure prediction study was performed for identifying and analysing 

possible crystal structures for some selected metal-PAH combinations.  

PAHs were further investigated as potential substrates for the formation of multicomponent crystals dominated by 

weak interactions, namely π-π co-crystals. A machine learning framework based on one class classification for sets 

was developed for enabling high-throughput in-silico co-crystal screening. This tool was able to rank more than 

20,000 possible polyaromatic hydrocarbon pairs which were further screened based on their similarity to an 

electronically active molecule, TCNQ. As an outcome two novel PAHs co-crystals were synthesized showing semi-

conducting behaviour. 

Given the successful application of the machine learning model in the small π-π co-crystals subset, the integration 

of more co-crystal cases was further tested. Data quality, molecular representations and uncertainty estimations are 

the basic improvements of the extended model, namely Molecular Set Transformer. Molecular Set Transformer is 

an autoencoder designed for sets, i.e., inputs that should be order invariant. The models were trained on the whole 

existing co-crystal data and their reliability is evaluated on external co-crystal screening experimental data. Our 

findings indicate that even without any labels given, our model outperforms other data-driven or physical modelling 

co-crystal screening methodologies.   

 

 



164 
 

7.2 The future of materials design: challenges and opportunities  

The last part of the conclusion is dedicated to open challenges and opportunities in machine learning for materials 

chemistry. Some of the fundamental assets for the future of materials design are discussed below. 

7.2.1 Data and databases 

Machine learning models benefit from data volume and data integrity. The quality of the data used to train machine 

learning algorithms is crucial for the outcome. Although open data availability and databases that follow the FAIR 

(Findability, Accessibility, Interoperability, and Reuse) principles285 have significantly contributed to the 

development and benchmarking of newly developed algorithms and methodologies, there is still room for 

improvement.  

The existing databases continue to suffer from missing data, publication bias and lack of negative data points. 

Moreover, many existing benchmarks are small, not diverse, and can easily be overfit.  Some recent attempts to 

overcome these limitations include the development of the Open Reaction Database (ORD) for structuring and 

sharing organic reaction data286 and the development of the High Throughput Experimental Materials (HTEM) 

Database for sharing experimental data for synthesizing inorganic materials.287 Another critical bottleneck is the 

lack of large databases that report materials properties, i.e., ICSD contains more than 100,000 entries but provides 

only information of the composition and structure of the inorganic materials and not any related properties. 

Although there are some smaller databases providing different properties for inorganic materials, e.g., 

AtomWorks,288 the availability of datasets referring to molecular properties is still very limited. So far, the most 

widely used dataset for organic molecules is QM9289 which reports computed geometric, energetic, electronic, and 

thermodynamic properties, however it only refer to small molecules with up to nine heavy atoms. 

Following the limitation in the existing databases, materials datasets that derive from them are inhomogeneous and 

heavily biased towards materials frequently used and successful experiments. The publication of failed experiments 

would enable the development of models that could learn from negative examples. In this work, an alternative 

methodology for dealing with the underrepresentation of negative data points is proposed, using as a case study the 

co-crystals deposited in CSD (see Chapters 5 and 6). In addition, we created a benchmark dataset consisting of 

2,377 experimental co-crystal screening results including both positive and negative outcomes. This benchmark 

dataset could be further used for training or validating ML models tailored for in-silico co-crystal screening.  

Another important consideration is that ML models show great promise when dealing with large materials labelled 

data. However, they suffer in the small data regime which is common in materials science. For that reason, the 

development of ML models that can work efficiently given only limited data points is essential.  
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7.2.2 Molecular representations 

In this thesis, several approaches for molecular representation have been tested, mostly based on 2D graph structures 

or text-based representation (SMILES). However, the 3-dimensional shape of molecules, which may play a crucial 

role both in material structures and properties, is poorly captured by these representations. In Chapter 3, it was 

shown that descriptors which can capture the 3D structure of the molecules are more correlated with electronic 

properties such as the molecular orbital energies and thus are expected to show better predictive performance in 

comparison to 2D descriptors in that task.  

Future studies should focus on better molecular representations including 3D information as this is a promising 

future direction for property predictions.290 Although for several applications the 2D graph representation has been 

proven powerful,101,291,292 there are cases where the knowledge of the 3D shape is crucial. Using only the 2D graph 

molecular notation, some important aspects of three-dimensional shape, e.g., the chirality, and relevant 

conformational dynamics for flexible molecules are neglected. Representative examples include the search for drug-

like molecules that can attach to disease-causing proteins and change their functionality293 and the recent ground-

breaking results in protein structure prediction using 3D-rotoequivariant neural networks.127 The ongoing field of 

geometrical deep-learning will allow researchers to leverage the symmetries of the molecular representations and 

thus increase the versatility of computational models for molecular structure generation and property prediction.294  

While for non-periodic chemical systems, such as molecules, several representations have been proven powerful, 

e.g., fingerprint, SMILES, graphs, defining a representation for periodic crystalline molecular materials still remains 

as a big challenge. Recent developments of invariants for crystals inspired from periodic geometry open up a new 

field on the representation of these systems.277,295,296 As demonstrated in Chapter 6 Section 6.3.1, an invariant 

geometric representation of the whole co-crystals space can effectively capture the diversity of the structures and 

enable for better visualizations. 

7.2.3 Models to deal with limited data 

Small datasets are ubiquitous in materials science as the data generation process might be expensive or time and 

resource consuming. For that reason, it is crucial to identify methodologies that can alleviate this problem and be 

able to perform sensible predictions given a limited amount of data. Some recently developed models for tackling 

the small data regime problem employ a method called few-shot learning. This type of learning, characterized as a 

type of meta-learning, involves a pre-training step in a substantially large corpus of data, such that after the 

pretraining, predictions for smaller and related datasets can be given.297 The knowledge transfer between the low-

data tasks has shown promising results so far in drug discovery, making it an attractive way to go forward in these 

problems.298 In our work we demonstrated how pre-trained models can be used for learning the representation of a 

small set of molecular pairs and improve the predictive ability of  our neural network.  
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Future directions in this field and especially for coupling ML with autonomous platforms require the development 

of more models and techniques for limited data point. Some recent examples include one-shot learning methods 

such as Siamese Neural Networks have shown good potential to perform well with low data amount. This type of 

networks has shown strong capability in image recognition with limited examples and high predictive ability in the 

low data regime in drug discovery tasks with molecular structure information as an input.299,300  The coupling of 

Siamese neural networks with graph convolutional neural networks has also enabled the prediction of synthetic 

conditions for golden nanoparticles after being trained with only 54 examples.301 

7.2.4 Explainability 

One of the major drawbacks of using machine learning in natural sciences is the lack of physical understanding of 

the predictions due to the inherent black box character of ML models. However, this information is important for 

capturing meaningful relationships between features and properties. Recently, Explainable Artificial Intelligence 

(XAI) methods have become popular  for rationalizing the predictions of ML models. Explainability methods that 

currently exist range from model agnostic (SHAP) and model specific (LIME) libraries. The SHAP library was 

used in this work to extract those features that are more related to co-crystallization and provide better guidance on 

the selection of the molecular pairs. Our study demonstrates that neural network-based approaches using molecular 

descriptors or the Morgan fingerprint to represent the molecules in the pair can be effectively interpreted. On the 

other hand, using learnt fingerprints though transfer learning requires more complex handling and thus appropriate 

interpretation techniques has not yet been reported.  Further work in this field is required as the more complex the 

ML models become, the hardest to derive a physical meaning of the predictions. 

 7.2.5 Inverse design 

Inverse design is the concept of designing a material based on the desired functionality. As opposed to property 

predicting algorithms, which aim to predict a property y given a datapoint x, inverse design is far more challenging. 

Here the input is the functionality, and the output is a distribution of possible structures.11 Consequently, the input 

features which are usually high-dimensional are difficult to predict from the outputs which are low dimensional. 

However, there are successful cases where inverse design techniques were applied to materials science, e.g., for 

synthesizing polymers with desired phase behaviour employing particle swarm optimization.302 In general, the most 

widely used approaches for inverse design are the generative models. VAEs have been increasingly proposed as 

appropriate generative frameworks for property targeted molecular generation.11 Until now the majority of 

generative models for molecules are focusing on the creation novel valid SMILES strings. However, they are 

restricted by a lack of spatial information which can only be enabled by the 3D representation of molecules. A 

recently developed generative network, namely G-SchNet,12 is able to generate new molecules with tailored 

properties by their 3D coordinates and thus capturing the relationship between 3D geometry and electronic 
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properties. The use of such a network could be further extent our work on the detection of the most promising PAHs 

with the desired electronic properties. As our interest was to identify molecules with some certain structural and 

electronic characteristics that resemble C60 and because of the fact that there are limited such molecules in the 

current databases, a generative model like G-Schnet could be beneficial for generating entirely new molecules. 

7.2.6 Uncertainty aware AI 

Reliable uncertainty estimates are important for assessing confidence in predictions and enabling decision making 

and automation. Bayesian optimization is widely used in materials discovery, as it includes the uncertainly 

estimation which is an indispensable part of every materials system. Using Bayesian optimization models, the aim 

is not only to predict the property of a given material, but also propose a material to simulate in a next iteration step 

in a way that minimizes the total number of simulations needed. Bayesian optimizers coupled with automation 

platforms are going to advance the way chemistry is currently performed. Any predictive ML model should be able 

to provide some uncertainty estimates for being trustworthy. In our case, the co-crystal data which are currently 

deposited in the databases might significantly differ from the molecular pairs which are confidential to 

pharmaceutical companies as such the ability of the model to provide the uncertainty of its predictions is crucial for 

developing a useful tool with broader applicability. 

7.2.6 Automation in chemistry 

Automation and robotic platforms are changing the way materials design and synthesis is performed. Automated 

processes are more efficient, less error-prone than human labour and more reproducible. A single experiment can 

be considered as a point in a multidimensional space, the parameter space, which is defined by the combination of 

several experimental conditions, e.g., temperature, reagent stoichiometry, reaction time. Instead of navigating in the 

parameter space in an orthogonal way, i.e., optimizing one factor as a time by fixing all process factors except for 

one, automation platforms coupled with optimization algorithms enable the simultaneous optimization of several 

parameters. Automation processes enable for an efficient navigation on the parameter space by not only predicting 

a property of a given material but also proposing a material to synthesize or simulate in the next iteration step in a 

way that minimizes the total number of experiments needed. The less constrained the search space and more flexible 

the automation platform, the more extensive the possibility for new discoveries. Pairing automation platforms or 

mobile robotic chemists with data-driven models is going to revolutionise the way chemistry is done today. The 

research interest is going to be shifted from being only based on data-driven models to the design of rule-based 

models, which could be taught the rules of chemistry to be able to acquire a ‘chemical intuition’.  

Keeping these challenges and opportunities in mind, machine learning methods bear the potential to change, or at 

least to strongly impact, the way chemical challenges will be approached in the future – guiding and complementing 
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the skill set of a synthetic chemist. With increasing amounts of well-curated data, algorithmic advances, robotics, 

and cloud computing the prime time for applying machine learning in chemistry is yet to come.  

Overall, it is evident that complicated problems and novel materials acceleration require novel methodologies and 

a highly interdisciplinary way of thinking and approaching each problem. Joined interdisciplinary research between 

ML and experimental chemistry will unfold the full potential. 

Developing a closed loop system between automation platforms or mobile robotic chemists and data-driven models 

has enormous potential and will likely revolutionise the way chemistry is done today. The field of chemistry requires 

new methods leveraging all emerging technologies, i.e., AI, cloud computing, robotics and quantum computers. 

We should welcome the era of digitalization in chemistry and of course the end goal of all these attempts should be 

the transition towards to a more sustainable and greener society. 
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APPENDIX A - Chapter 3 

A1. Categorizing PAHs with unsupervised clustering  

 

Figure A1.1 Unsupervised clustering based on a) the Morgan fingerprint with Tanimoto index and b) Mordred fingerprint 

with Euclidean distance as similarity measure. The clusters are colour-coded by Gaussian Mixture clusters identified 

using the 2D UMAP coordinates. 

Table A1.1 Evaluation of the unsupervised clustering techniques tested in this work. The best performing  

clustering algorithm for each representation is highlighted in bold. 

Clustering algorithm Representation Silhouette score* Davies-Bouldin index** 

k-means  

Morgan fingerprint 

0.46 0.67 

Affinity propagation 0.43 0.80 

Gaussian Mixture 0.47 0.59 

k-means  

SOAP descriptor 

0.56 0.53 

Affinity propagation 0.55 0.55 

Gaussian Mixture 0.53 0.59 

k-means  

Mordred descriptors 

0.51 0.66 

Affinity propagation 0.44 0.82 

Gaussian Mixture 0.51 0.65 

 

* The Silhouette Coefficient for a set of samples is given as: 

𝑆 =  𝑚𝑒𝑎𝑛 (
𝑏−𝑎

𝑚𝑎𝑥(𝑎,𝑏)
) , where a is the mean distance between a sample and all other points in the same class and 

b the mean distance between a sample and all other points in the next nearer cluster. The silhouette coefficient 

ranges from -1 to 1 and  higher the Silhouette coefficient the better the cluster separation.169 
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** The Davies-Bouldin index is given from:170 

𝐷𝐵 =  
1

𝑘
 ∑ 𝑚𝑎𝑥 𝑅𝑖𝑗

𝑘
𝑖=1  ,  

where 𝑅𝑖𝑗  =  
𝑠𝑖 + 𝑠𝑗

𝑑𝑖𝑗
, with 𝑠𝑖 being the average distance between each point of cluster i and the centroid of that 

cluster and 𝑑𝑖𝑗 being the distance between cluster centroids i and j. 

The lower the Davies-Bouldin index, the better the separation with the minimum score being zero. 

 

 

Table A1.2. Single PAHs identified as good hosts for metal insertion 

PAH Reasoning 
  Coronene 
 
 
 
 
 

• Exact double degeneracy in LUMO, LUMO+1 
• Most stable ratio in the convex hull is an open shell ratio: 
K3Coronene 
• Magnetic character found with DFT calculations 
 
 

 Corannulene 
 
 
 
 

 

• Exact double degeneracy in LUMO, LUMO+1 
• Most stable ratio in the convex hull is a high metal content ratio: 
K4Corannulene 
 
 

Triphenylene 
 
 

 

• Exact double degeneracy in LUMO, LUMO+1 
• Most stable ratio in the convex hull  is an open shell ratio: 
K3Triphenylene or a high metal content ratio Cs4triphenylene 

Hexabenzo[bc,ef,hi,kl,no,qr] 
coronene 

 
 
 
 
 
 
 

• Exact double degeneracy in LUMO, LUMO+1 
• Most stable ratio in the convex hull is a high metal content ratio: 
K6hexabenzocoronene 
 

Perylene 
 

 
 
 

 

• Electronic similarity to C60 found by measuring the Euclidean 
distance of the energy orbitals 
• Near double degeneracy in LUMO+1, LUMO+2 
• Most stable ratio in the convex hull is an open shell ratio: 
K3Perylene 
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Binapthalene 
 
 
 
 
 

• Large void space  
• Most stable ratio in the convex hull is a high metal content ratio: 
K4binapthalene 
 

Triphenylmethane 
 
 
 
 
 
 

• Near double degeneracy 
• Not stable in the protonated form 
• Becomes stable after deprotonation on the K2triphenylmethane 
ratio 
 

Dibezanthracene 
 
 
 
 
 

• Large void space  
• Most stable ratio in the convex hull is a high metal and open-shell 
content ratio: K5dibenzanthracene 
 

Decacyclene 
 
 
 
 
 

• Large void space 
• Exact LUMO degeneracy 
• Open shell content ratio 
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APPENDIX B - Chapter 4 

B1. Intercalated PAHs systems 

 

Figure B1.1 Scatterplots showing the distribution of the metals around the polyaromatic structure. 

  

Li 
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Benchmarking the VASP system 

Identifying the optimal VASP parameters tailored for metal-polyaromatic hydrocarbons systems. The 

benchmarking system is K2Tetracene (CSD id: MURLIX). 

• An Ecutoff of 520eV was used in all the calculations based on previous work on tetracene.190  

 

• KSPACING selection: KSPACING values = 0.1, 0.2, 0.3, 0.4, 0.5  
 

 

Table B1.1. KSPACING selection 

 KSPACING 

 0.1 0.2 0.3 0.4 0.5 

 

Energy 
(eV) kpts 

Energy 
(eV) kpts 

Energy 
(eV) kpts 

Energy 
(eV) kpts 

Energy 
(eV) kpts 

K2 
tetracene -742.086 9 9 3 

-
742.086 5 5 2 -742.082 3 3 1 -742.082 3 3 1 -742.077 2 2 1 

K 2.375 14 14 10 2.366 7 7 5 2.369 5 5 4 2.431 4 4 3 2.322 3 3 2 

tetracene -370.693 9 11 6 
-

370.693 5 6 3 -370.693 3 4 2 -370.693 3 3 2 -370.693 2 3 2 
energy 
difference 
(eV/TU) -2.550 -2.541 -2.543 -2.605 -2.495 

 

 

 

 

 

Figure B1.2. KSPACING versus Formation energy for the benchmark K2tetracene system. The selected KSPACING for 

further investigating the alkali metal intercalated PAHs systems is 0.2. 
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Lattice parameters comparison between simulated and experimental structures 

We have simulated the crystal structure of pristine tetracene and found that the optimized lattice parameters with a 

have a perfect agreement with the experimental ones. The consistency indicates that the C and H pseudopotentials 

and the parameters selected in our calculations are reasonable, which is a reliable basis for exploring the doped 

PAHs structures. 

Table B1.2. Testing the selected VASP on the experimental  structure. 

 Volume (Å3) Unit cell params 

Experimental 1359.66 a 7.259  b 7.274  c 25.756 
 

 90   91.783   90 

Simulated 1303.036 a 7.13826 b 7.19650 c 25.38743   
 

α 90  β 92.384  γ 90 
 

 

 

 

 

B2 Convex hull analysis (simple intercalation approach) 

Table B2.1. Kxbezanthracene calculations  

a) 
structure 

Energy (EH) EK K ratio Formation 
energy/molecul

e 
(eV/FU) 

Bezanthracene  
(2 molecules/unit cell) 

-371.090  0   

K1 bezanthracene 
(2 molecules + 2 K/unit cell) 

-368.981 2.368 0.5  -0.1295 

K2 bezanthracene 
(2 molecules + 4 K/unit cell) 

-369.519 4.736 0.667  -1.5825 

K3 bezanthracene 
(2 molecules + 6 K/unit cell) 

-366.391 7.104 0.75  -1.2025 

K4 bezanthracene 
(2 molecules + 8 K/unit cell) 

-363.640 9.472 0.8  -1.011 

Potassium (K) 
(2 atoms/unit cell) 

2.368 - 1  0 
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Table B2.2. KxCoronene calculations  

a) 
structure 

Energy (EH) EK K ratio Formation 
energy/molecule 

(eV/FU) 
Pristine Coronene 
(2 molecules/unit cell) 

-469.0016 - 0  0 

K1coronene 
(2 molecules + 2 K/unit cell) 

-466.2758 2.368 0.5  0.1789 

K2coronene 
(2 molecules + 4K/unit cell) 

-465.5109 4.736 0.667  -0.622 

K3corone 
(2 molecules + 6K/unit cell) 

-464.1465 7.104 0.75 -1.1244 

AFM K3corone 
(2 molecules + 6K/unit cell) 

-464.1696 7.104 0.75 -1.1364 

FM K3corone 
(2 molecules + 6K/unit cell) 

-464.1731 7.104 0.75 -1.1377 

K4coronene 
(2 molecules + 8K/unit cell) 

-461.1967 9.472 0.8  -0.8335 

 

 

 

Table B2.3. CsxCoronene calculations  

a) 
structure 

Energy (EH) EK K ratio Formation 
energy/molecule 

(eV/FU) 
Cs1coronene 
(2 molecules + 2 Cs/unit cell) 

-469.696 -0.6056 0.5  -0.0446 

Cs2coronene 
(2 molecules + 4Cs/unit cell) 

-471.84653 -1.2112 0.667  -0.8168 

Cs3corone 
(2 molecules + 6Cs/unit cell) 

-474.67504 -1.8168 0.75 -1.928 
 

AFM Cs3corone 
(2 molecules + 6Cs/unit cell) 

-474.670 -1.8168 0.75 -1.928 
 

FM Cs3corone 
(2 molecules + 6Cs/unit cell) 

-474.6744 -1.8168 0.75 -1.928 
 

Cs4coronene 
(2 molecules + 8Cs/unit cell) 

-475.567 -2.422 0.8  -2.0717 

Cs5coronene 
(2 molecules + 10Cs/unit 
cell) 

-476.413 -3.028 0.8333 
 

-2.1802 

Cs6coronene 
(2 molecules + 12Cs/unit 
cell) 

- 477.117 -3.633 0.8571 -2.2409 

Caesium (Cs) 
(4 atoms/unit cell) 

-1.211 - 1  0 
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Table B2.4. NaxCoronene calculations  

a) 
structure 

Energy (EH) EK K ratio Formation 
energy/molecule 

(eV/FU) 
Na1coronene 
(2 molecules + 2 Na/unit cell) 

-464.2308 5.881 0.5  -0.556 

Na2coronene 
(2 molecules + 4Na/unit cell) 

-459.5179 11.7638 0.667  -1.14 

Na3corone 
(2 molecules + 6Na/unit cell) 

-454.9041 17.6457 0.75 -1.7741 

AFM Na3corone 
(2 molecules + 6Na/unit cell) 

-454.904 17.6457 0.75 -1.7741 

FM Na3corone 
(2 molecules + 6Na/unit cell) 

-454.7670 17.6457 0.75 -1.7055 

Na4coronene 
(2 molecules + 8Na/unit cell) 

-448.42190 23.5276 0.8  -1.47395 

Sodium (Na) 
(2 atoms/unit cell) 

5.881 - 1  0 

 

 

 

Table B2.5. KxTriphenylene calculations  

a) 
structure 

Energy (EH) EK K ratio Formation 
energy/molecule 

(eV/FU) 
Pristine Triphenylene 
(4 molecules/unit cell) 

-742.596 - 0  0 

K1triphenylene 
(4 molecules + 4 K/unit cell) 

-737.117 4.736 0.5  0.18575 

K2triphenylene 
(4 molecules + 8K/unit cell) 

-733.704 9.472 0.667  -0.145 

K3triphenylene 
(4 molecules + 12K/unit cell) 

-729.635 14.208 0.75 -0.3117 

AFM ↑↓↑↓ K3triphenylene 
(4 molecules + 12K/unit cell) 

-729.635 14.208 0.75 -0.3117 

AFM ↑↓↓↑ K3triphenylene 
(4 molecules + 12K/unit cell) 

-729.637 14.208 0.75 -0.3117 

AFM ↑↑↓↓ K3triphenylene 
(4 molecules + 12K/unit cell) 

-729.635 14.208 0.75 -0.3117 

FM K3triphenylene 
(4 molecules + 12K/unit cell) 

-729.480 14.208 0.75 -0.273 

K4triphenylene 
(4 molecules + 16K/unit cell) 

-724.227 18.944 0.8  -0.1437 
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Table B2.6 CsxTriphenylene calculations  

a) 
structure 

Energy (EH) EK K ratio Formation 
energy/molecule 

(eV/FU) 
Cs1triphenylene 
(4 molecules + 4 Cs/unit 
cell) 

-744.6347 -1. 2112 0.5  -0.2068 

Cs2triphenylene 
(4 molecules + 8 Cs/unit 
cell) 

-747.7577 -2.4224 0.667  -0.6848 

Cs3triphenylene 
(4 molecules + 12 Cs/unit 
cell) 

-750.5702 -3.6337 0.75  -1.0851 

Cs4triphenylene 
(4 molecules + 16 Cs/unit 
cell) 

-753.4007 -4.8449 0.8  -1.4899 

 

 

 

 

Table B2.7 NaxTriphenylene calculations  

a) 
structure 

Energy (EH) EK K ratio Formation 
energy/molecule 

(eV/FU) 
Na1triphenylene 
(4 molecules + 4 Na/unit 
cell) 

-731.962 11.764 0.5  -0.282 

Na2triphenylene 
(4 molecules + 8 Na/unit 
cell) 

-722.059 23.528 0.667  -0.747 

Na3triphenylene 
(4 molecules + 12 Na/unit 
cell) 

-711.761 35.292 0.75 -1.114 

Na4triphenylene 
(4 molecules + 16 Na/unit 
cell) 

-699.133 47.056 0.8  -0.898 
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Table B2.8. Corannulene calculations  

structure Energy (EH) EK K ratio Formation 
energy/molecule 

(eV/FU) 
Corannulene 
(8molecules /unit cell) 

-1543.0703  0   

K1corann 
(8 molecules + 8 Na/unit cell) 

-1538.8109 9.472 0.5  -0.6515 

K2corann 
(8 molecules + 26 Na/unit cell) 

-1535.377 
 

18.944 0.667  -1.406 

K3corann 
(8 molecules + 24 Na/unit cell) 

-1529.818 28.416 0.75  -1.895 

AFM ↑↑↓↓↑↑↓↓ 
K3corann 
(8 molecules + 24 Na/unit cell) 

-1529.8186 28.416 0.75  -1.895 

AFM ↑↓↑↓↑↓↑↓ 
K3corann 
(8 molecules + 24 Na/unit cell) 

-1529.8186 28.416 0.75  -1.895 

NUPDOWN=8 FM K3corann 
(8 molecules + 24 Na/unit cell) 

-1529.7290 28.416 0.75  -1.884 

K4corann 
(8 molecules + 32 Na/unit cell) 

-1522.549 
 

37.888 0.8  -2.170 

K5corann 
(8 molecules + 40 Na/unit cell) 

-1511.235 47.36 0.8333 -1.9407 

 

 

Table B2.9. Hexabenzocoronene non-spin polarized calculations (2 molecules in the structure) 

structure Energy (EH) EK K ratio Formation 
energy/molecule 

(eV/FU) 
Hbc 
(2 molecules/unit cell) 

-799.6850  0   

K1hbc  
(2 molecules + 2 K/unit cell) 

-797.9577 2.368 0.5  -0.3203 

K2hbc  
(2 molecules + 4 K/unit cell) 

-796.3361 4.736 0.667  -0.6935 

K3hbc 
(2 molecules + 4 K/unit cell) 

-795.6617 7.104 0.75  -1.5403 

AFM ↑↓ K3hbc 
(2 molecules + 4 K/unit cell) 

-795.6635 7.104 0.75  -1.5403 

K4hbc 
(2 molecules + 4 K/unit cell) 

-794.0737 9.472 0.8  -1.9303 

K5hbc 
(2 molecules + 4 K/unit cell) 

-792.5760 11.84 0.8333 -2.3655 

K6hbc 
(2 molecules + 4 K/unit cell) 

-791.3432 14.208 0.8571 -2.9332 
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Table B2.10. Decacyclene calculations 

structure Energy (EH) EK K ratio Formation 
energy/molecule 

(eV/FU) 
Decacyclene 

(4 molecules/unit cell) 

-1395.6204  0   

K1 decacyclene 

(4 molecules + 4 K/unit cell) 

-1392.5894 4.736 0.5  -0.4262 

K2 decacyclene 

(4 molecules + 8 K/unit cell) 

-1391.3485 9.472 0.667  -1.30004 

K3 decacyclene 

(4 molecules + 12 K/unit cell) 

-1391.1404 14.208 0.75  -2.43200 

K4 decacyclene 

(4 molecules + 16 K/unit cell) 

-1387.4909 18.944 0.8  -2.70362 

 

 

Table B2.11. perylene calculations  

structure Energy (EH) EK K ratio Formation 
energy/molecule 

(eV/FU) 
Perylene 
(4 molecules/unit cell) 

-806.5425  0   

K1 perylene 
(4 molecules + 4 K/unit cell) 

-805.0967 4.736 0.5  -0.8225 

K2 perylene 
(4 molecules + 8 K/unit cell) 

-803.0941 9.472 0.667  - 1.50588 

K3 perylene 
(4 molecules + 12 K/unit cell) 

-799.72574 14.208 0.75  -1.855 

K4 perylene 
(4 molecules + 16 K/unit cell) 

-
793.96904984 

18.944 0.8  -1.592 
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Table B2.12. dibenz[a,c]anthracene non-spin polarized calculations (4 molecules in the structure) 

structure Energy (EH) EK K ratio Formation 
energy/molecule 

(eV/FU) 
dibenz[a,c]anthracene 
(4 molecules/unit cell) 

-897.9260293  0   

K1 dibenz[a,c]anthracene 
(4 molecules + 4 K/unit cell) 

-893.954 4.736 0.5  -0.087 

K2 dibenz[a,c]anthracene 
(4 molecules + 8 K/unit cell) 

-892.0956329 
 

9.472 0.667  -0.9104 

K3 dibenz[a,c]anthracene 
(4 molecules + 12 K/unit cell) 

-887.7189869 14.208 0.75  -1.000 

K4 dibenz[a,c]anthracene 
(4 molecules + 16 K/unit cell) 

-883.9205887 18.944 0.8  -1.2346 

K5 dibenz[a,c]anthracene 
(4 molecules + 20 K/unit cell) 

-879.3438252 23.68 0.8333 -1.274 

 

Table B2.13. 1,1'-Binaphthalene  

structure Energy 
(EH) 

EK K ratio Formation 
energy/molecule 

(eV/FU) 
1,1'-Binaphthalene 
(4 molecules/ unit cell) 

-833.1501  0   

K1 1,1'-Binaphthalene 
(4 molecules + 4 K/unit cell) 

-829.9362 4.736 0.5  -0.3805 

K2 1,1'-Binaphthalene 
(4 molecules + 8 K/unit cell) 

-826.9562 9.472 0.667  -0.8195 

K3 1,1'-Binaphthalene 
(4 molecules + 12 K/unit cell) 

-821.4434 14.208  0.75  -0.62533 

K4 1,1'-Binaphthalene 
(4 molecules + 16 K/unit cell) 
 

-817.6482 18.944 0.8  -0.86054 
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Figure B2.1. Detailed convex hull of all the PAHs structures that have been analysed with the simple intercalation 

approach. The most interesting ratios are highlighted in the plot. 
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Figure B2.2. Scatterplot showing all the molecules identified with exact LUMO-LUMO+1 degeneracy. 

 

 

 

Table B2.14. Unit cell parameters for the intercalated coronene phases  

 x=1 x=2 x=3 x=4 

Kxcoronene a 16.58 b 4.59 c 10.72 

α 89.99 β 116.94 γ 90.00 

a 14.63 b 6.63 c 7.91 

α 90.01 β 95.04 γ 90.02 

a 11.62 b 7.79 c 9.74 

α 91.63 β 108.04 γ 92.90 

a 17.71 b 5.86 c 10.11 

α 90.10 β 118.21 γ 89.95 

Naxcoronene a 15.33 b 4.26 c 9.84 

α 89.99 β 112.58 γ 90.00 

a 15.23 b 4.25 c 9.45 

α 90.00 β 111.02 γ 

90.00 

a 12.70 b 5.15 c 9.53 

α 87.60 β 113.37 γ 89.84 

a 13.60 b 4.84 c 9.54 

α 90.01 β 115.27 γ 89.99 

Csxcoronene a 16.84 b 5.11 c 9.98 

α 89.99 β 117.42 γ 89.99 

a 16.95 b 5.51 c 11.63 

α 89.88 β 133.41 γ 

90.06 

a 12.22 b 8.12 c 10.86 

α 89.99 β 123.92 γ 90.02 

a 12.49 b 9.08 c 10.00 

α 89.96 β 111.83 γ 90.00 
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Figure B2.3. Coronene theoretical structure modification after the insertion of K, Na and Cs. It can be observed that Cs 

causes the higher deformation of the initial structure. The structures are viewed along the b axis. 

Na2coronene Na3coronene Na4coronene 

Pristine coronene 

a 16.119  b 4.702 c 10.102 

α 90.00 β 110.90 γ 90.00 

K1coronene K4coronene K3coronene K2coronene 

Na1coronene 

Cs1coronene Cs4coronene Cs2coronene Cs3coronene 



199 
 

B3. Crystal Structure Prediction – Benchmarking system K2tetracene (csd id: MURLIX) 

The CSP method was first tested in a known system, namely K2tetracene (csd id: MURLIX) where the experimental 

crystal structure is determined. USPEX software with VASP and PBE + D3 corrections was implemented trying to 

predict the experimental structure, given the correct number of compounds in the structure, i.e., 4 tetracene 

molecules and 8 K atoms. The relaxation consists of five steps with increasing accuracy and kspacing.  

Figure B3.1. Energy-density scatterplot showing the crystal structures generated using USPEX with VASP. Herein, the 

only initial constraints used were the distance of the molecular centres, which was set according to the observations on 

the known metal-PAHs systems. The effect of the constraints in the generation of more sensible structures is 

demonstrated, as without the constraints the generated structures have a very small density and it will take much 

computational time until reaching the lower density configurations. On the other hand, when starting with the constraints 

all the generated structures have densities above 0.8.  The generated structures are close to the experimental. However, 

the experimental is still lower in energy. This process required 6 weeks’ time on a supercomputer for the generation of 

1,000 structures. 

 

Without constraints 
With constraints 

(Distance of molecule 

centres) 
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To overcome the limitations of time, semi-empirical DFT-based method was next used, namely DFTB+ for the 

structural relaxations and energy calculations. Although the calculations can be completed in a significantly lower 

time, i.e., 1,500 structures in two weeks’ time, the exact known experimental structure was not found.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure B3.2. Energy-density scatterplot showing the crystal structures that were generated using USPEX with DFTB+. 

The effect of the initial constraints in the generation of more sensible structures is shown here. The generated structures 

are close to the experimental. However, the experimental is still lower in energy.  
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The final approach that was tested regarding K2etracene was to start generating structures given the known unit cell 

parameters. 

Table B3.1. Testing starting parameters for reproducing K2tetracene experimental structure. 

Parameters Num of generations 

 

 

 

 

 

- 8 K + 4 tetracene 

- Molcenters distance 

- Correct unit cell params:  

      a 7.25 b 7.27 c 25.75 

      α 90 β 91.78 γ 90 

- Space group: P21/c 

No structure was generated 

- Correct unit cell params:  

     a 7.25 b 7.27 c 25.75 

      α 90 β 91.78 γ 90 

- No spacegroup 

No structure was generated 

- Correct unit cell params:  

     a 7.25 b 7.27 c 25.75 

- No angles 

- No spacegroup 

No structure was generated 

- Unit cell lengths rounded up:  

     a 8 b 8 c 26 

- No angles 

- No spacegroup  

Experimental structure found on the 

second generation 
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Figure B3.3. PXRD pattern comparison of the experimental structure (MURLIX) and the USPEX generated structures 

given as initial constraints the distance between the molecule centers and the correct unit cell lengths. 

 

MURLIX 

EA177 
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Table B3.2. Comparison of the known experimental structure (MURLIX) with the USPEX generated structures. 

Structures Unit cell Volume Spacegroup Density (g 

cm-3) 

Energy (eV) 

MURLIX a 7.25 b 7.27 c 25.75 

α 90 β 91.78 γ 90 

1359.66 P 21/c 1.497 -742.086   

EA177 (given the lattice 

params) 

a 7.19 b 7.21 c 25.94 

α 90 β 90 γ 90 

1346.337 P 21/c 1.512 -742.063 

EA1280_dftb+ 

(no initial lattice params) 

a 9.63 b 12.68 c 10.59 

α 89.99 β 89.93 γ 

90.00 

1295.42 P1 1.574 -741.284 

EA845_vasp 

(no initial lattice params) 

a 11.12 b 7.42 c 15.07 

α 89.96 β 90.01 γ 90.0 

1245.56 P1 1.561 -741.672 
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APPENDIX C - Chapter 5 

Figure C1.1. Flow diagram for PAH co-crystals extraction. The search starts with 8 representative PAHs and 

Python API CCDC is employed for extracting all the co-crystals that are formed from these 8 molecules or 

molecules that are similar to them on the basis of molecular fingerprints (ECFP4 > 0.35 Tanimoto Similarity). The 
extracted dataset was further filtered for removing co-crystals containing molecules with acidic parts.  
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Table C1.2. Initial Polyaromatic Hydrocarbons (PAHs) for co-crystals extraction.  

Dragon 
Descriptor 

Description Pearson 
Correlation 

Spearman 
Correlation 

p-
value 

nBT molecular weight 0.403 0.620  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

< 10-5 

nHet number of heteroatoms  
0.515 

 
0.685 

ZM1V first Zagreb index by valence vertex 
degrees 

0.528 0.729 

DBI Dragon branching index 0.548 0.654 
ICR radial centric information index 0.546 0.422 
MAXDN maximal electrotopological negative 

variation 
0.440 0.600 

MAXDP maximal electrotopological positive 
variation 

0.426 0.626 

DELS molecular electrotopological variation 0.414 0.629 
CIC0 Complementary Information Content 

index (neighborhood symmetry of 0-
order) 

0.298 0.515 

J_D/Dt Balaban-like index from 
distance/detour matrix 

0.323 0.424 

SM1_Dz(Z)         spectral moment of order 1 from 
Barysz matrix weighted by atomic 
number 

0.551 0.627 

SM1_Dz(v)         spectral moment of order 1 from 
Barysz matrix weighted by van der 
Waals volume 

0.404 0.479 

SM1_Dz(e)         spectral moment of order 1 from 
Barysz matrix weighted by Sanderson 
electronegativity 

0.480 0.558 

HyWi_B(s)         hyper-Wiener-like index (log function) 
from Burden matrix weighted by I-State 

0.744 0.682 

SpMax4_Bh(m)      largest eigenvalue n. 4 of Burden matrix 
weighted by mass 

0.541 0.571 

SpMax3_Bh(s)      largest eigenvalue n. 3 of Burden matrix 
weighted by I-state 

0.422 0.482 

SpMax7_Bh(s)      largest eigenvalue n. 7 of Burden matrix 
weighted by I-state 

0.439 0.542 

P_VSA_v_2         P_VSA-like on van der Waals volume, 
bin 2 

0.501 0.684 

P_VSA_s_6         P_VSA-like on I-state, bin 6 0.522 0.704 
Eta_F_A           eta average functionality index 0.434 0.438 
Eig02_AEA(dm)     eigenvalue n. 2 from augmented edge 

adjacency mat. weighted by dipole 
moment 

0.530 0.539 

Eig03_AEA(dm)     eigenvalue n. 3 from augmented edge 
adjacency mat. weighted by dipole 
moment 

0.609 0.572 

nHAcc         number of acceptor atoms for H-bonds 
(N,O,F) 

 0.449 0.620 

Uc                unsaturation count 0.520 0.551 
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Filtering with Pipeline Pilot 

The filtering for incompatible functional groups in both the labelled and unlabelled dataset was performed using 
Pipeline Pilot165 with the following workflow. 

 

Figure C1.2. Pipeline Pilot workflow. 

 

 

 

 

 

 

 

 

 

 

Figure C1.3. Substructure SMARTS227 filter for detecting the molecular combinations with at least one molecule 

with acidic hydrogens. 
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C2. Results 

Table C2.1 Descriptors correlated to the descriptors identified as important for the decisions of the deep learning 
model.  The correlation between the descriptors follows a previously reported method.303  

Descriptor Correlated 
Descriptors 

Correlation Description Related Physical Meaning 

B06[C-C] 
 
 

B07[C-C]           
          
 

0.857434 Presence/absence of C - C at 
topological distance 7 

atom pairs descriptors that 
describe pairs of atoms and bond 
types connecting them in 2D space 

B05[C-C]           0.812225 Presence/absence of C - C at 
topological distance 5 

atom pairs descriptors that 
describe pairs of atoms and bond 
types connecting them in 2D space 

ATS6i ATS6e 0.998216 Broto-Moreau 
autocorrelation of lag 6 (log 
function) weighted by 
Sanderson electronegativity 

electronegativity 

ATS5e 0.983335 Broto-Moreau 
autocorrelation of lag 5 (log 
function) weighted by 
Sanderson electronegativity 

electronegativity 

ATS5i 0.981890 Broto-Moreau 
autocorrelation of lag 5 (log 
function) weighted by 
ionization potential 

ionization potential 

SpMax8_Bh
(i) 

0.928269 largest eigenvalue n. 8 of 
Burden matrix weighted by 
ionization potential 

Ionization potential 

SpMax8_Bh
(p) 

0.923641 largest eigenvalue n. 8 of 
Burden matrix weighted by 
polarizability 

polarizability 

ATS8e 0.927747 Broto-Moreau 
autocorrelation of lag 8 (log 
function) weighted by 
Sanderson electronegativity 

electronegativity 

Vx          
0.913402 

McGowan volume shape 

Si         0.945914  sum of first ionization 
potentials (scaled on Carbon 
atom) 

Ionization potential 

Se         0.940544  sum of atomic Sanderson 
electronegativities (scaled 
on Carbon atom) 

electronegativity 

nBT 0.934793 number of bonds general 
Sp         0.923744 sum of atomic 

polarizabilities (scaled on 
Carbon atom) 

polarizability 

Sv 0.913610 sum of atomic van der Waals 
volumes (scaled on Carbon 
atom) 

shape 
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IAC              0.900917 total information index on 
atomic composition 

composition 

S1K  0.887118 1-path Kier alpha-modified 
shape index 

Shape 

Eta_epsi  0.875800 eta electronegativity 
measure 

electronegativity 

SAtot  0.871258 total surface area from 
P_VSA-like descriptors 

polarity 

Pol  0.863927 polarity number polarity 
nSK  0.853433 number of non-H atoms general 
MW                 0.828710 Molecular weight general 

Eig06_AEA

(dm):  

Eig05_AEA(
dm) 

0.956601 eigenvalue n. 5 from 
augmented edge adjacency 
mat. weighted by dipole 
moment 

 
 
dipole moment 

Eig7_AEA(d
m) 

0.938136 eigenvalue n. 7 from 
augmented edge adjacency 
mat. weighted by dipole 
moment 

 
dipole moment 

Eig08_AEA(
dm) 

0.918267 eigenvalue n. 8 from 
augmented edge adjacency 
mat. weighted by dipole 
moment 

 
dipole moment 

Ram               0.792930 Ramification branching 
Eta_B 0.778573 eta branching index Shape 

ChiA_Dz(p) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

SpMaxA_B(
p) 

0.910006 normalized leading 
eigenvalue from Burden 
matrix weighted by 
polarizability 

polarizability 

WiA_B(p) 0.908640 average Wiener-like index 
from Burden matrix 
weighted by polarizability 

polarizability 

ChiA_Dz(e) 0.901665 average Randic-like index 
from Barysz matrix weighted 
by Sanderson 
electronegativity 

electronegativity 

UNIP  0.933653 unipolarity Polarity 
Sv                
 

0.822757 sum of atomic van der Waals 
volumes (scaled on Carbon 
atom) 

shape 

MW                0.822103 Molecular weight molecular weight 
VvdwMG  0.819518 van der Waals volume from 

McGowan volume 
Shape 

Vx  0.819518 McGowan volume shape 
Si                0.815686 sum of first ionization 

potentials (scaled on Carbon 
atom) 

Ionization potential 

Pol               0.805521 polarity number polarity 
Sp                0.795808 sum of atomic 

polarizabilities (scaled on 
Carbon atom) 

polarizability 
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SpMin5_Bh

(s) 

ATS3i 0.921903 Broto-Moreau 
autocorrelation of lag 3 (log 
function) weighted by 
ionization potential 

ionization potential 

ATS3e   0.917570 Broto-Moreau 
autocorrelation of lag 3 (log 
function) weighted by 
Sanderson electronegativity 

electronegativity 

SpMin5_Bh
(e) 

0.915201 smallest eigenvalue n. 5 of 
Burden matrix weighted by 
Sanderson electronegativity 

electronegativity 

Sv               0.898829 sum of atomic van der Waals 
volumes (scaled on Carbon 
atom) 

shape 

Sp               0.895652 sum of atomic 
polarizabilities (scaled on 
Carbon atom) 

polarizability 

Si               
              

0.882950 sum of first ionization 
potentials (scaled on Carbon 
atom) 

Ionization potential 

Se 0.881810 sum of atomic Sanderson 
electronegativities (scaled 
on Carbon atom) 

electronegativity 

Vx               
 

0.878079 McGowan volume shape 

VvdwMG           0.878079 van der Waals volume from 
McGowan volume 

shape 

MW                 0.803832 Molecular weight molecular weight 
Ram               0.800056 Ramification shape 

Eig06_EA(b
o) 
 

Pol         0.888838 
 

Polarity number polarity 

CSI       
 

0.887028 eccentric connectivity index shape 

UNIP 0.871951 unipolarity polarity 
Sv        
 

0.859414 sum of atomic van der Waals 
volumes (scaled on Carbon 
atom) 

shape 

MW 
 

0.834828 Molecular weight general 

Ram 
 

0.831023 Ramification branching 

Vx 
 

0.818124 van der Waals volume from 
McGowan volume 

shape 

VvdwMG            0.818124 van der Waals volume from 
McGowan volume 

Shape 

Sp 0.811851 sum of atomic 
polarizabilities (scaled on 
Carbon atom) 

polarizability 
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C3. Electronic Structure Calculations 

• C60 co-crystals: C60-triphenylphosphineoxide 

C60-triphenylphosphineoxide was used as the benchmarking system for selecting the vasp parameters.  

➢ Energy cut-off selection: As we have carbon in our structure, the default cutoff will be 400 eV and usually 

we need to multiply this by at least 4/3 for unit cell optimisations. So, the testing cut-offs are 550, 600, 650. 

➢ KSPACING selection: The selected KSPACING parameters are 0.5, 0.4, 0.3, 0.2, 0.1. We should start from 

the faster ones (KSPACING=0.5) and then do the slower ones starting from the end point of the other calculations. 

So, for the KSPACING=0.4 we are going to use the CONTCAR file from the final converged structure with 

KSPACING=0.5 and so on when progressing to lower KSPACING parameters. 

 

KSPACING Ecut Energy 

0.5 (2    1    1) 

550 
-

677.509 

600 
-

677.865 

650 
-

678.305 

0.4 ( 2    2    2) 

550 
-

677.531 
600 -677.88 

650 
-

678.305 

0.3 (3    2    2) 

550 
-

677.516 

600 
-

677.864 

650 
-

678.287 

0.2 (4    3    3) 

550 
-

677.521 

600 
-

677.867 

650 
-

678.291 

0.1 (7    5    5) 

550 -677.52 

600 
-

677.867 
650 -678.29 

 

 

 

Figure C3.1. Convergence check for the C60 co-crystal systems using SCAN + rVV10. The parameters that gave 

the best convergence were KSPACING=0,2 and Ecut=600. These are going to be further used when studying 

similar systems. 
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Table C3.1: Comparing the experimental structure with the VASP optimized 

 Volume (Å^3) Unit cell params Shape 
Experimental 2012.3840 lengths 

9.993 
14.276 
14.719 

 
angles 
99.002 

 103.842   
90.015 

 

 
SCAN + rVV10 

 
 
Energy: 
-677.910 eV 

1864.4585 
 

lengths 
9.763 

13.877 
14.362 

 
angles 
98.976 

 103.935  
 89.734 

 

 
PBE + D3 
 
 
Energy: 
-1520.3896 

2004.765070  10.001  14.250  
14.687 

 
99.148  103.884  

89.960 
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Appendix D - Chapter 6 

D1. Data preparation 

 

Figure D1.1. HOMO-LUMO gap in single molecule semiconductors. The orbital energies using PM6 were 

calculated for the list of the top 40 molecules reported in the SI of Nematiaram et al..251  

 

 

Table D1.1. Co-crystals categorized based on the types of bonding. 

Type of bonding Functional groups Comments 

Hydrogen bonding Both molecules have OH or NH 
or SH 

the donor atom D is any of N, 
O, or S, and the acceptor 

atom A is any of N, O, or S 

Halogen bonded One molecule should have a 
halogen and the other a 

heteroatom 

D···X-A, where D is one of N, 
O, S, or Cl; X is either Br or I 

Weakly bound 
(π-π stacking) 

At least one molecule of the 
pair has one aromatic ring 

without heteroatoms 

interactions that do not 
belong to any other category, 

mainly π-π interconnected 
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Table D1.2. Solvents and single atoms that were excluded from the molecular pairs during the co-crystal 

extraction. 

CC(Cl)(Cl)Cl NC=O CCNCC 

OCC(F)(F)F OC=O F 

ClC=C(Cl)Cl CCCCCCC Br 

ClC(Cl)=C CCCCCC BrBr 

CCOC(CC)OCC CC(C)COC(C)=O [F] 

COCOC CCCCCC(C)C [O] 

ClCCCl CC(C)O [C] 

ClC=CCl CC(C)OC(C)=O [Cl] 

COCCOC CC(C)OC(C)C [Br] 

C1COCCO1 Cc1cccc(C)c1 [Xe] 

CCCCO CO [N] 

CCCCCO COc1ccccc1 [H] 

CCCO COC(C)=O [I] 

COC(C)(C)OC CCCCC(C)=O [He] 

CCC(C)O CC1CCCCC1 Cl 

CCOCCO CCC(C)=O ClCl 

COCCO CC(C)CC(C)=O I 

CC(C)CO CC(C)C(C)=O II 

CC1CCCO1 C1COCCN1 IIII 

CC(C)CCO CN(C)C(C)=O IC(I)I 

CC(O)=O CN1CCCC1=O ICI 

CC(C)=O CN([O])=O C=O 

CC#N Cc1ccccc1C C#C 

c1ccccc1 Cc1ccc(C)cc1 ClCl 

CCCCOC(C)=O CCCCC ClI 

ClC(Cl)(Cl)Cl CCCOC(C)=O COC 

Clc1ccccc1 c1ccncc1 OB(O)O 

ClC(Cl)Cl O=S1(=O)CCCC1 S=C=S 

CC(C)c1ccccc1 COC(C)(C)C O=S=O 

C1CCCCC1 C1CCc2ccccc2C1 O=C=O 

ClCCl C1CCOC1 N#N 

CCOCC Cc1ccccc1 C#C 

CC(C)NC(C)C OC(=O)C(Cl)(Cl)Cl CC#CC 

CN(C)C=O OC(=O)C(F)(F)F I[As](I)I 

CS(C)=O O NCCN 

CCO OO IC#CI 

CCOC(C)=O C CBr 

OCCO S BrI 

CCOC=O N 
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# Import the libraries 

import tempfile 

import numpy as np 

import pandas as pd 

import os.path 

import ccdc 

from ccdc import search, io, molecule 

from ccdc.io import MoleculeReader, CrystalReader, EntryReader 

from collections import Counter 

from itertools import groupby 

import argparse 

 

def remove_polymorphs(lst): 

    '''  

    Checking if the first 6 letters of the ccdc id are the same  

    ''' 

    res = [] 

    for g, l in groupby(sorted(lst), lambda x: x[:6]): 

        res.append(next(l)) 

    return res 

 

def Remove(duplicate): 

    return list(set(duplicate)) 

 

def search_cocrystals(filter_solvents=True): 

    ''' 

    Search the whole CSD for structures that contain two different molecules 

    with the specific settings 

    ''' 

    csd = MoleculeReader('CSD') 

    entry_reader = EntryReader('CSD') 

    settings = search.Search.Settings() 

    settings.only_organic = True 

    settings.not_polymeric = True 

    settings.has_3d_coordinates = True 

    settings.no_disorder = True 

    settings.no_errors = True 

    settings.no_ions = True 

    settings.no_metals = True 

    pairs=[] 

    for entry in csd: 

        if settings.test(entry): 

            mol = csd.molecule(entry.identifier) 

            mol.normalise_labels() 

            smi= mol.smiles 
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            if smi !=  None: 

                smi = smi.split('.') 

                # We make sure that the structure consist of two different molecules 

                if len(Remove(smi)) == 2:                 

                    pairs.append(mol.identifier)             

    # clean the list from solvents 

    if filter_solvents: 

        print('Solvates and hydrates will be removed') 

        solvates=[] 

        name_dict={} 

        for mol1 in pairs: 

            mol = csd.molecule(mol1) 

            e=entry_reader.entry(mol1) 

            name_dict[mol1]=e.chemical_name 

            for i in range(0, (len(mol.components))): 

                if mol.components[i].smiles in clean_smiles.SOLVENT_SMILES: 

                    solvates.append(mol.identifier)     

        solvates = Remove(solvates) 

        final_cocrystals = [x for x in pairs if x not in solvates]    

    else: 

        final_cocrystals=pairs 

    # Clean the list from polymorphs 

    cocrystals = remove_polymorphs(final_cocrystals) 

    name=[] 

    name= [name_dict[i] for i in cocrystals] 

    cocrystals_data= pd.concat([pd.DataFrame(cocrystals, columns=['csd_id']),   

pd.DataFrame(name, columns=['name'])], axis=1) 

    cocrystals_data=cocrystals_data.dropna(axis=0) 

    dataset_cocrystals = cocrystals_data[~cocrystals_data.name.str.contains("solvate")] 

    dataset_cocrystals = 

dataset_cocrystals[~dataset_cocrystals.name.str.contains("clathrate")]  

    dataset_cocrystals.to_csv('datasets/train_data/all_cocrystals.csv',index=False) 

    return cocrystals 

def main(): 

    parser = argparse.ArgumentParser(description=__doc__) 

    parser.add_argument('-s', '--solvent', default=True, action='store_true', 

help='Remove solvents or not') 

    args = parser.parse_args() 

    cocrystals = search_cocrystals(args.solvent) 

 

if __name__ == "__main__": 

    main() 
 

Figure D1.2. Python script for extracting co-crystals  
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D2. Results 

 

 

 

 

Figure D2.1. Scores distribution of the different models on the external validation sets. The real positives (orange bars) 

have higher scores than the true negatives (blue bars) for all four models. A better discrimination between the two classes 

is achieved for the ECFP4 and GNN models. 
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Figure D2.2. Confusion matrices of the four different models based on the representation techniques.  
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Figure D2.3. Three examples of diclofenac co-crystals when using Shapley local explanations to visualize the important 

bits of the molecular graph that drove to high scores of the Molecular Set Transformer. The bits with the highest 

importance are highlighted with red circles. It can be observed that the two most important groups are the -OH group of 

the API (diclofenac) and the N group of the co-former which can form H-bonding.  

 

2,6-dimethylimidazo[2,1-
b][1,3,4]thiadiazole 

diclofenac 

diclofenac 4,4-bipyridine 

2-(4-Methoxyphenyl)-6-

methylimidazo[2,1-

b][1,3,4]thiadiazole 
diclofenac 


