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Abstract: The study of correlation effects in topological phases of matter can benefit from a multidis-
ciplinary approach that combines techniques drawn from condensed matter, high-energy physics
and quantum information science. In this work, we exploit these connections to study the strongly-
interacting limit of certain lattice Hubbard models of topological insulators, which map onto four-
Fermi quantum field theories with a Wilson-type discretisation and have been recently shown to be at
reach of cold-atom quantum simulators based on synthetic spin-orbit coupling. We combine large-S
and tensor-network techniques to explore the possible spontaneous symmetry-breaking phases that
appear when the interactions of the topological insulators are sufficiently large. In particular, we show
that varying the Wilson parameter r of the lattice discretisations leads to a novel Heisenberg–Ising
compass model with critical lines that flow with the value of r.

Keywords: topological insulators; large-S; tensor-network

1. Introduction
1.1. Topological Matter and Relativistic Field Theories

Our most accurate description of nature is based on a four-dimensional quantum field
theory (QFT) of fermionic matter coupled with gauge fields: the standard model of particle
physics [1]. In this context, challenges arise in the understanding of effects that cannot
be treated perturbatively, such as quark confinement in quantum chromodynamics [2].
To advance our understanding of nonperturbative phenomena, quantum field theorists
have introduced other simplified models that share some important aspects with the
standard model but, at the same time, avoid the intricacies of non-Abelian gauge theories.
Such toy QFTs, which are typically defined in reduced dimensionalities, have played an
important role in elucidating phenomena such as asymptotic freedom, dynamical mass
generation, chiral symmetry breaking, and the role of topological solutions and instantons.
Paradigmatic examples of such toy QFTs are the two-dimensional Thirring [3] and Gross–
Neveu [4] models, which describe self-interacting Dirac fields, and the two-dimensional
nonlinear sigma model [5], which consists of scalar fields coupled through a nonlinear
constraint. These models serve to develop and test tools, such as bosonisation [6] and large-
N expansions [7], the predictions of which can be benchmarked with efficient numerical
methods for low-dimensional QFTs. Nonetheless, our most accurate experiments are
consistent with a four-dimensional spacetime such that, in a strict sense, the specific
predictions of these toy models do not solve specific real problems in high-energy physics
that can be falsified experimentally. Instead, within high-energy physics, these toy QFTs
act as theoretical laboratories.

Remarkably, during the last decades, we have witnessed a change in status for low-
dimensional QFTs. Rather than looking at high energies and small-length scales, one may
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instead focus on nonrelativistic condensed-matter systems which, at long wavelengths and
small energies [8], display certain universal behaviours determined by emergent relativistic
QFTs. These effective descriptions [9] provide a more flexible framework in comparison
to that provided by the standard model, as realisation properties such as the effective
dimensionality or the emergent symmetries are not fixed a priori but depend instead on
the family of materials at hand. Some characteristic examples where relativistic Dirac fields
have emerged include graphene [10], Weyl semimetals [11], and topological insulators
and superconductors [12]. Regarding the emergence of scalar fields subjected to nonlinear
constraints, quantum magnets play a prominent role [13].

A further step in this direction was provided by the so-called quantum simulators
(QSs) [14]: well-isolated quantum many-body systems with unparalleled levels of control
down to the single-particle level that can directly mimic a specific target model [15]. In the
context of low-dimensional QFTs, QSs can be tailored such that one has full control of
the microscopic parameters and, moreover, can access the continuum limit in a controlled
fashion. In order to do so, QSs of QFTs [16–21] typically follow the lattice field theory
approach [22] in their Hamiltonian formulation [23]. Rather than reducing the lattice
spacing to recover the continuum limit, one may tune the microscopic couplings of these
QSs to approach a critical point where the correlation length is much greater than that
spacing, and the continuum description sets in. In recent years, we have taken very
promising experimental steps in this direction for Dirac fermions [24,25], Dirac QFTs [26–30]
and gauge theories [31–36] in low dimensions.

In this work, we explore the strong-coupling limit of four-Fermi models, namely the
QFTs of self-interacting Dirac fermions. As discussed below, these QFTs were inspired by
the Thirring and Gross–Neveu models, the origin of which can be traced back to the seminal
contributions of E. Fermi [37,38] and Y. Nambu and G. Jona-Lasinio [39,40]. In particu-
lar, we explore specific lattice discretisations based on the so-called Wilson fermions [41],
which make direct connections between these four-Fermi QFTs and the aforementioned
topological insulators [12,42–48], allowing us to study the effect of electron–electron in-
teractions. We note that recent advances in cold-atom QSs based on schemes of synthetic
spin-orbit coupling in atomic gases with negligible interactions [29,30] connect directly to
these Wilson-regularised lattice field theories and, furthermore, provide motivation for the
study of the regime of strong interactions. This is not only relevant from the perspective
of QFTs, where one can find novel strongly-coupled fixed points that can only be char-
acterised nonperturbatively [49,50], but also from the perspective of strongly-correlated
effects in topological phases of matter, a topic that has received significant attention in
recent years [51–54].

As we discussed in a series of recent works, the native Hubbard interactions [55,56]
of cold-atom QSs of spin-orbit coupling in two [57–59] and three [60,61] dimensions can
be understood as the single-flavour-limit of Four-Fermi QFTs with Lorentz-invariant self-
interactions and can be regularised via a Wilson-type discretisation. Such a discretisation
introduces the Wilson parameter r ∈ (0, 1], which is customarily set to unity r = 1 in most
lattice studies. As briefly discussed in [60,61], setting r < 1 has no important effect in
the absence of interactions, as one can simply rescale the axes of the phase diagram in
a simple manner to maintain the same layout: topological insulators are separated from
trivial band insulators by critical lines in parameter space. The situation is unclear as one
switches on the interactions. Here, as a consequence of spontaneous symmetry breaking,
one can find phases of long-range order corresponding to different fermion condensates
in the context of relativistic QFTs, as discussed in detail for r = 1 [58–61]. In this work,
we explore the nature of these fermion condensates as the Wilson parameter is allowed to
take values in r < 1. To identify the possible condensates and chart the phase diagram,
we explore the strong-coupling limit by deriving an effective Heisenberg-type compass
model with directional spin–spin interactions. Using the path-integral representation of
the partition function, we derive a version of the aforementioned nonlinear sigma model
with discrete Z2 symmetry, a constrained QFT amenable to a large-S expansion in the
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limit where the effective spin is S � 1. We then benchmark these predictions for the
two- and three-dimensional lattice field theories with numerical simulations based on
tensor networks.

Besides the fundamental interest in understanding the role of the Wilson parameter in
nonperturbative phenomena of four-Fermi models, we note that the specific cold-atom pro-
posals based on synthetic spin-orbit coupling [60,61] lead to an effective Wilson parameter
R that is controlled by the ratio of spin-preserving and spin-flipping tunnellings, each of
which can be independently controlled by the lasers that form a so-called optical Raman
lattice [29,30]. Accordingly, reaching the regime of r = 1 requires additional fine tuning,
as the generic QS would instead lead to r 6= 1. Regarding the possible experimental realisa-
tion of the four-fermi-Wilson model with cold atoms, it is thus interesting and useful to
understand the effects of 0 < r < 1. It is worth mentioning that, for asymptotically-free the-
ories where the continuum limit is recovered from the lattice model in the regime of weak
coupling strengths g2, one can generally expect that the value of Wilson parameter r will
not change the properties of the continuum QFT. From the perspective of condensed matter
and topological insulators, however, we are not only interested in this weak-coupling
regime but in the whole phase diagram where the specific value of r can modify the layout
and even allow for new strong-coupling phases. The goal of the present work is to explore
this possibility.

1.2. Constrained Quantum Field Theories

Let us start by discussing the nature of the constraints in representative QFTs, which
will allow us to frame the results of our work appropriately. A well-known QFT where an
effective constraint arises is the O(N) model, which describes a real scalar field Φ(x) =
(φ1(x), · · · , φN(x))t with N flavours. In the Hamiltonian formulation, and in the absence
of interactions, the free fields evolve under a Klein–Gordon Hamiltonian

H0 =
1
2

(
Π(x) ·Π(x)− ∂jΦ(x) · ∂jΦ(x)

)
, (1)

where we use natural units h̄ = c = 1 and Einstein’s convention of repeated-index sum-
mation. Here, the fields and conjugate momenta Π(t, x) = ∂tΦ(t, x) fulfil the canoni-
cal algebra [Φf1(t, x1), Πf2(t, x2)] = iδf1,f2 δd(x1 − x2), and j ∈ {1, · · · , d} labels the spa-
tial coordinates of a D = (d + 1)-dimensional Minkowski spacetime with the metric
η = diag(1,−1, . . . ,−1). This QFT describes N uncoupled scalar bosons and is invariant
under a continuous internal symmetry Φ(x), Π(x) 7→ oΦ(x), oΠ(x), where o ∈ O(N) is an
arbitrary rotation. In order to couple the different flavours, a quartic self-interaction that
respects this internal symmetry can be introduced:

Hint =
λ0

4!

(
Φ(x) ·Φ(x)−Φ2

0

)2
(2)

where λ0 is the bare coupling strength. Here, we introduce Φ0 as the vacuum expectation
value attained by one of the scalar-field flavours, e.g., 〈Φf(x)〉 = δf ,1Φ0, which corresponds
to the spontaneous symmetry breaking (SSB) of the continuous O(N) symmetry in the
classical limit, such that O(N) 7→ O(N − 1). This corresponds to the meson sector of the
linear sigma model [62], which describes the coupling of (N − 2)(N + 1)/2 pions π to
an additional heavy scalar σ [1] with σ(x) = Φ1(x)/Φ0, π(x) = (Φ2(x), · · ·ΦN(x))t/Φ0
corresponding to the symmetry-breaking and Goldstone components, respectively. Instead
of expanding around the SSB ground state, one may focus on the strong-coupling limit
λ0 → ∞, where the ground-state minimises the interaction energy (2) by imposing a
nonlinear constraint on the fields

σ2(x) + π2(x) = 1, (3)
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which are thus forced to take values on the unit sphere SN−1. The Klein–Gordon field
theory (1) subjected to this constraint (3) belongs to the family of sigma models [62], which
describe particles forced to move on a specific manifold. In this particular case, this con-
strained model is called the O(N) non-linear sigma model [1]. As noted in the introduction,
in two-dimensional spacetimes where the O(N) symmetry cannot be spontaneously bro-
ken [63], the O(N) nonlinear sigma model shares important features with non-Abelian
gauge theories, such as asymptotic freedom for N > 2 [5], the existence of topologically
non-trivial solutions called instantons [64], or large-N methods and dimensional transmu-
tation [7,65].

In this work, we discuss how similar constraints can also appear in purely fermionic
QFTs even in the absence of any continuous internal symmetry. In the most general setting,
we consider a spinor field Ψ(x) = (ψ1(x), · · · , ψN(x))t with N flavours evolving under a
Dirac Hamiltonian density

H0 = −Ψ(x)i(IN ⊗ γj)∂jΨ(x), (4)

where we introduce the gamma matrices {γµ, γν} = 2ηµν for spacetime indexes µ, ν ∈
{0, 1, · · · , d} and the adjoint spinor Ψ(x) = Ψ†(x)(IN ⊗ γ0). This model describes N
uncoupled Dirac fermions and is invariant under a continuous unitary transformation
Ψ(x) 7→ u ⊗ IsΨ(x), where u ∈ U(N), and the identity in the spinor components Is
depends on the dimensionality of the representation of the gamma matrices. Paralleling the
discussion around Equation (2), we can now couple the flavours via a four-Fermi [37–40]
contact interaction

Hint = −
g2

2N
(
Ψ(x)Ψ(x)

)2, (5)

where g2 is the bare coupling strength. Although not directly apparent, as in the bosonic
case, we show below that the strong-coupling limit g2 → ∞ leads to a constraint similar
to the one of Equation (3), where the σ and π fields are related to particular SSB chan-
nels of the above QFT related to fermion condensates. In contrast to the bosonic case,
the non-linear constraint appears down to the N = 1 level, as the symmetry being bro-
ken is not the U(N) symmetry but, rather, a discrete Z2 symmetry involving the spinor
degrees of freedom. In the following section, we introduce a particular lattice discretisation,
which plays an important role in determining the specific Z2 SSB and its connection with
topological insulators.

1.3. Four-Fermi Interactions in Topological Insulators

In this section, we describe, in more detail, the Wilson regularisation [41] of the above
fermionic QFT (4)–(5) and how it yields a playground to explore interactions in topological
insulators. We consider the Hamiltonian lattice formulation [23] obtained by discretising
the spatial coordinates x ∈ Λd, focusing on cases d = 1, 2

Λd =
{ d

∑
j=1

njajej : nj ∈ ZNj

}
, (6)

where {aj} are the lattice spacings along the {ej} unit vectors, and Nj are the corresponding
number of lattice sites along each axis (see Figure 1). Let us also note that for d = 1, 2 spatial
dimensions, one can use the following irreducible representations of the gamma matrices

d = 1, γ0 = σz, γ1 = iσy,

d = 2, γ0 = σz, γ1 = iσy, γ2 = −iσx,
(7)

which are proportional to the Pauli matrices.
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Figure 1. Four-Fermi-Wilson field theories: (a) For d = 1, the Dirac fermions indexes correspond-
ing to the lattice and spinor degrees of freedom can be depicted as a synthetic two-leg ladder.
The Wilsonian regularisation of the four-Fermi field theory can be depicted by horizontal (intraleg)
and cross-link (interleg) tunnellings as well as interleg density–density interactions and an onsite
energy imbalance (not shown). (b) For d = 2, the fermions occupy a synthetic bilayer with intra- and
interlayer tunnellings that depend on the direction {ej}j=1,2 as well as an interlayer density–density
interaction and an onsite energy imbalance (not shown). In both (a,b), if the legs or layers are under-
stood as different spin states of the fermions, the tunnellings can be understood in terms of spin-orbit
coupling in Hubbard lattice models.

Discretising the spatial derivatives that appear in Equation (4) using central differences
leads to the appearance of so-called naive fermions [66], the continuum limit of which
contains ND = 2d Dirac fermions due to fermion doubling [67,68]. We follow Wilson’s
prescription [41], which introduces additional terms that are responsible for giving different
masses to each of these Dirac fermion species:

H =
d

∑
j=1

(
−Ψ(x)

(
i(IN ⊗ γj)

2aj
+

r(IN ⊗ Is)

2aj

)
Ψ(x + ajej) + Ψ(x)

(
m
2d

+
r

2aj

)
Ψ(x) + H.c.

)

− g2

2N

(
Ψ(x)Ψ(x)

)2

,

(8)

where we introduce the bare mass m and the aforementioned dimensionless Wilson pa-
rameter r. In Figure 1, we present a schematic diagram of this Wilsonian discretisation
by means of tunnelling processes and density–density interactions with strengths ob-
tained after rescaling the fields in terms of dimensionless creation-annihilation operators.
In lattice field theories (LFTs), one typically works directly with the Euclidean action
associated to the above Hamiltonian by also discretising the Wick-rotated temporal coordi-
nate x = ∑d

µ=0 aµnµeµ, such that recovering the time-continuum limit requires temporal
anisotropies that permit the limit a0 → 0. In the case where there is no interested in making
contact with the Hamiltonian formulation, it is possible to focus directly on the isotropic
regime aµ = a and consider |r| ≤ 1 as being imposed by the reflection positivity of the
Euclidean action for g2 = 0 [69]. A standard choice in the literature is to set r = 1, such
that one recovers a single massless Dirac fermion in the limit of m→ 0 and at long wave-
lengths a→ 0, while the remaining doublers acquire a very large mass proportional to 1/a
and thus lie at the UV cutoff of the regularised QFT. The choice of r = 1 brings the technical
advantage that tunnelling terms are proportional to projection operators Pj± ≡ 1

2 (1± iγj)

with P2
j± = Pj±, Pj±Pj∓ = 0.
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The goal of the present work is to explore regimes with 0 < r < 1 and make con-
nections with effective constrained QFTs in the strong-coupling limit. We also explore
anisotropic lattice constants aµ 6= aν. We remark that isotropy is not required a priori,
since the continuum limit yields a QFT invariant under the full Lorentz group SO(1, d),
even when the anisotropic lattice formulation breaks translational, rotational and Lorentz
symmetries explicitly. In fact, temporal [70] and spatial anisotropies [71] can actually in-
crease the accuracy of lattice computations. To understand the effect of nonunity Wilson
parameters and anisotropic lattice constants, we start by focusing on the noninteracting
limit g2 = 0. In this case, it is straightforward to compute the half-filled groundstates |ε(k)〉
corresponding to the Dirac vacua [58,60,61], where we introduce the quasi-momentum
within the first Brillouin zone k ∈ BZ = ×j

(
−π/aj, π/aj

]
. Associated with this band

structure, one finds a Berry connection A(k) = 〈ε(k)| i∇k |ε(k)〉 [72,73] , which charac-
terises the principal fibre bundle associated with the occupied energy band [74]. Such fibre
bundles can be characterised by topological invariants which depend on dimensionality.

For d = 1 spatial dimensions, Zak’s phase [75] allows the Wilson loop for a cycle in
momentum space to be defined

WZ = eiϕZ , ϕZ =
∫

dkA(k) = Nπ(θ(2r + ma1)− θ(ma1)), (9)

where θ(x) is the Heaviside step function. Therefore, one finds a trivial band insulator
with WZ = +1 for ma1 > 0 or ma1 < −2r. Alternatively, a nontrivial topological insulator
WZ = −1 arises when −2r < ma1 < 0 and the number of flavours N is odd, which actually
lies in the symmetry class BDI [76,77]. In comparison to the previous results of [58], which
focused on the standard choice r = 1, we observe that the structure of the noninteracting
phase diagram is completely equivalent if one simply rescales the dimensionless mass with
the Wilson parameter ma1 7→ ma1/r.

For d = 2, the Berry curvature B(k) = ∇k ∧A(k) [72] allows us to define the first
Chern number

NCh =
∫ d2k

2π
B(k) =N(θ(2rξ2 + ma1)− θ(ma1)

+θ(2r(1 + ξ2) + ma1)− θ(2r + ma1)).
(10)

where ξ2 = a1/a2 is an anisotropy ratio, and we assume that ξ2 ≤ 1. Here, some comments
are in order. In the isotropic limit ξ2 = 1, when setting r = 1, the ground state corresponds
to quantum anomalous Hall (QAH) phase with NCh = −N for −2 < ma1 < 0 and NCh =
+N for −4 < ma1 < −2, whereas it is a trivial band insulator with NCh = 0 for ma1 > 0 or
ma1 < −4. This limit can be readily mapped onto the Qi–Wu–Zhang model [42,43] of the
QAH [78] with a central region along the ma1 axis comprising the QAH phases, surrounded
by trivial band insulators at both sides. It is worth noting that both the QAH and BDI
topological insulators can be understood as the bulk of a lower-dimensional version of the
domain-wall-fermion construction of lattice field theories [79,80], in which the nonzero
topological invariants give rise to effective Chern–Simons-type terms in the response of the
fermions to external gauge fields [43,81].

As discussed in [60,61,82], by allowing for spatial anisotropies ξ2 < 1, and fixing
the Wilson parameter to the standard value r = 1, one finds an additional trivial band
insulator for −2 < ma1 < −2ξ2, which separates the two QAH phases with NCh = ±N.
Something completely analogous occurs for spatial anisotropies ξ2 > 1. From the above
expression (10), we see again that the effect of a nonunity Wilson parameter 0 < r < 1 is
rather trivial in the noninteracting case—one can simply rescale ma1 7→ ma1/r and obtain
the same structure and phases as in the limit of r = 1. However, as one switches on
interactions g2 > 0, the situation need not be so simple: there can be SSB processes that
lead to long-range-ordered phases that are different from the above trivial and topological
insulators. In the following sections, we extend our previous studies presented in [58,60,61].
We study the nature of these SSB processes for arbitrary Wilson parameters 0 < r < 1 by



Symmetry 2022, 14, 799 7 of 31

exploring the strong-coupling limit, in which the four-Fermi interaction strength is the
leading parameter g2 → ∞. As discussed below, a different constrained QFT controls
that limit, which is exploited to predict the shape of the phase diagram and possible
phase transitions.

2. Strong Couplings and Effective Spin Models
2.1. Ising Order and Fermion Condensates

In order to understand the strong-coupling limit, let us first note that for d = 1, 2
spatial dimensions, the irreducible representations of the gamma matrices (7) imply that the
Dirac spinors have two components ψf(x) = (ψf ,1(x), ψf ,2(x)). In the single-flavour limit
f = 1 = N and for a fixed total number of fermions, the four-Fermi term in Equation (8)
can be rewritten as

Hint = g2ψ†
f ,1(x)ψf ,1(x)ψ†

f ,2(x)ψf ,2(x), (11)

up to an irrelevant shift in the ground-state energy. Accordingly, the strong-coupling
limit g2 → ∞ will give rise to a large energy penalty for configurations in which a pair of
fermions occupy the same lattice site. The Dirac vacuum corresponding to the half-filled
ground state will have a single fermion per site n, which has the freedom to select one of the
two possible spinor configurations |↑n〉 , |↓n〉. Within this subspace, the operators that fulfil
the SU(2) algebra [Ŝa(t, x), Ŝb(t, x′)] = iδn,n′ ∑c εabcŜc(t, x) at spatial points x = ∑j njajej,
x′ = ∑j n′jajej become

Ŝ(x) = S
(

∏
j

aj

)
ψ†
f (x)σψf (x) 7→ S(x) = Sσn. (12)

Here, S = 1/2, and σn is an operator acting on the projected Hilbert space Heff =
⊗n′span{|↑n′〉 , |↓n′〉}, that is defined by the tensor product of the identity I2 on all sites
except for n, where one can apply the vector of Pauli matrices σ = (σx, σy, σz). As discussed
in [58,60,61] for d = 1, 2 and for the unit Wilson parameter r = 1, the lattice model that
controls this strong-coupling limit corresponds to an effective spin model where the spins
reside on the sites of the spatial lattice regularisation (6). These spins are subjected to local
onsite terms and interact with each other via nearest-neighbour couplings, as depicted in
Figure 2. The physical mechanism underlying these nearest-neighbour spin–spin interac-
tions is the so-called super-exchange [83,84], and the most-general effective Hamiltonian
can be written as follows

Heff = ∑
x∈Λd

∑
a

(
d

∑
j=1

Jj,aSa(x)Sa(x + ajej) + haSa(x)

)
. (13)

Here, we use the label a ∈ {x, y, z} to distinguish the internal spin components from the
spatial coordinates j ∈ {1, · · · , d}, introduce a set of spin–spin couplings Jj,a describing the
strength of the interactions between neighbouring spins connected by a ej link and couple
their internal spin components via a SaSa interaction (see Figure 2).

In previous works [58,60,61], where we used the standard choice of r = 1, the nature
of the spin–spin couplings was restricted to be of the Ising type. For d = 1, where the
coupling strength g2 is dimensionless, the spin couplings found were

J1,a = −
2

g2a1
δa,y, ha = 2

(
m +

1
a1

)
δa,z, (14)

which have units of inverse length, such that the effective Hamiltonian (13) with dimension-
less spin operators (12) has the correct units of energy. The strong-coupling Hamiltonian
for r = 1 thus coincides with a quantum Ising model [22,85] with SySy ferromagnetic
interactions subjected to a transverse field along the internal z axis [58]. This is an exactly-
solvable model with a quantum phase transition at |hz| = |J1,y|/2, marking the onset of SSB
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of an underlying Z2 symmetry S(x) 7→ (−Sx(x),−Sy(x), Sz(x)), ∀x ∈ Λ1. This symmetry
can also be combined with a reflection about the lattice centre, such that

S(x) 7→ (−Sx(−x),−Sy(−x), Sz(−x)). (15)

<latexit sha1_base64="c/A3NBERjQfy5ap56ynJYPpnyx0=">AAACG3icbVBLS8NAGPzis9ZX1KOXYBE8SElEtBel6EU8VbAPaEPYbDft0s2D3Y0Y0/wU/TN6kurNg//GbezBts5pdmYWvhk3YlRI0/zWFhaXlldWC2vF9Y3NrW19Z7chwphjUschC3nLRYIwGpC6pJKRVsQJ8l1Gmu7geuw3HwgXNAzuZRIR20e9gHoUI6kkR68Mb53UOu74SPaFlyZZNryclh6VdDEtPSnJ0Utm2cxhzBNrQkowQc3RR51uiGOfBBIzJETbMiNpp4hLihnJip1YkAjhAeqRtqIB8omw07xhZhx6ITdknxj5+282Rb4Qie+qTH7drDcW//PasfQqdkqDKJYkwCqiPC9mhgyN8VBGl3KCJUsUQZhTdaWB+4gjLNWcRVXfmi07TxonZeusbN2dlqpXkyEKsA8HcAQWnEMVbqAGdcDwAm/wAZ/as/aqvWuj3+iCNvmzB1PQvn4APneiww==</latexit>|J1,y| > |J1,x| = |J1,z|

J1,𝗒

J1,𝗑

J1,𝗓

J2,𝗒
J2,𝗑

J2,𝗓

b

a
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e2

e1

Figure 2. Strong-coupling Heisenberg–Ising spin models: (a) For d = 1, the half-filled chain Λ1

in the limit of strong interactions can be described by localised spins S = 1/2, here depicted with
black arrows. The spins interact with the neighbours via spin–spin couplings Sa(x)Sa(x + a1e1)

of strength J1,a for a ∈ {x, y, z}, here represented by solid lines on a red scale that determine their
relative magnitude for a generic Wilson parameter 0 < r < 1, such that |J1,y| dominates. (b) For the
d = 2 half-filled lattice Λ2, the effective spins S = 1/2 of the strong-coupling limit are arranged in a
rectangular lattice, and the spin–spin couplings Sa(x)Sa(x + ajej) have a directional character Jj,a,
where j ∈ {1, 2} labels the horizontal and vertical neighbours, leading to a compass-type model.
In addition to the horizontal interactions shown in (a), the spins now interact vertically with strengths
J2,a, here represented by solid lines on a blue scale that determine their relative magnitude for
0 < r < 1, such that |J2,x| dominates. The anisotropy parameter ξ2 = a1/a2 controls the directionality
of the compass Heisenberg–Ising model, i.e., if the vertical (|J1,a| < |J2,a|) or horizontal (|J1,a| > |J2,a|)
couplings dominate, which occurs for ξ2 < 1 and ξ2 > 1, respectively.

It is interesting to note that, for the representation of the gamma matrices in Equation (7),
this Z2 symmetry corresponds to

ψf(t, x) 7→ γ0ψf(t,−x), (16)

which is precisely the parity symmetry on Dirac spinors [1]. Accordingly, the ferromagnet
with all spins aligned with the internal y axis (FMy) can be readily identified with a parity-
breaking pseudo-scalar π condensate

〈Sy(x)〉 ∝ Π5 = 〈ψf(x)iγ5ψf(x)〉, (17)

where γ5 = γ0γ1 is the chiral gamma matrix. Note that, in the quantum Ising model [85],
the ground state always displays nonzero magnetisation along the direction of the trans-
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verse field for any hz 6= 0. In the language of Dirac spinors, this corresponds to a nonzero
value of the so-called scalar σ condensate

〈Sz(x)〉 ∝ Σ = 〈ψf(x)ψf(x)〉, (18)

and the fact that it is generically nonzero can be traced back to the explicit breaking of the
discrete chiral symmetry ψf(x) 7→ γ5ψf(x), by the Wilson discretisation (8). The appearance
of the scalar condensate is typical of four-Fermi models with dynamical mass generation,
such as the Gross–Neveu model [4], whereas the pseudo-scalar one depends on the specific
lattice regularisation. A nonzero pseudo-scalar condensate has also been discussed in the
context of lattice gauge theories in 3 + 1 dimensions [86,87] and is known as the Aoki phase.
We thus see that the strong-coupling limit captures this condensate nicely, even in the N = 1
limit and, moreover, provides an analytical expression for the critical line that has been
proven to be very accurate when compared with matrix-product-state numerics [58]. In this
manuscript, we explore how this situation changes as the Wilson parameter is modified
0 < r < 1.

For d = 2 spatial dimensions, where the coupling strength g2 has units of length,
setting r = 1 [60,61] leads to the following spin–spin couplings

J1,a=
−2a2

g2a1
δa,y, J2,a=

−2a1

g2a2
δa,x, ha= 2

(
m +

1
a1

+
1
a2

)
δa,z, (19)

which, again, have the correct units of energy, as shown in Equation (14). The corresponding
spin model (13) is an instance of the so-called 90o compass model [88,89] with directional
spin couplings SySy (SxSx) along the e1 (e2) spatial axis and a transverse magnetic field
that is again directed along the internal z axis. In contrast to the quantum Ising chain (14),
the compass model is no longer exactly solvable and presents two different types of phase
transition. For hz = 0, which is achieved for a negative bare mass m = −1/a1 − 1/a2, there
is a well-studied first-order phase transition at J1,y = J2,x [90–92]. This critical point sepa-
rates two different ferromagnets: a FMx characterised by the order parameter |〈Sx(x)〉| > 0
for |J2,x| > |J1,y|, achieved for a1 > a2, and a FMy characterised by |〈Sy(x)〉| > 0 for
|J1,y| > |J2,x| for a2 > a1. Both ferromagnets break the aforementioned Z2 symmetry (15).
We remark that, in this d = 2 case, the expression of this symmetry in fermion operators (16)
does not correspond to parity, as x 7→ −x is generated by a rotation in the connected
component of the Lorentz group SO(1, 2). Rather than breaking parity, a nonzero value of
the corresponding fermion π condensates

〈Sx(x)〉 ∝ Π1 = 〈ψf(x)γ1ψf(x)〉,
〈Sy(x)〉 ∝ Π2 = 〈ψf(x)γ2ψf(x)〉,

(20)

breaks the inversion symmetry. We note that taking a continuum long-wavelength limit
around the critical lines that separate these ferromagnets from the symmetric paramagnet
would lead to a QFT where Lorentz symmetry cannot be recovered when approaching
from the condensed phase. Accordingly, these d = 2 FMx, FMy phases were referred to
in [60,61] as Lorentz-breaking condensates, which contrast the parity-breaking pseudo-
scalar condensate (17) of d = 1.

In contrast, the regime with a nonvanishing transverse field hz 6= 0 has not been
studied in as much detail. In the limit of very large spatial anisotropies ξ2 = a1/a2 → 0
(ξ2 = a1/a2 → ∞), the compass model (19) reduces to a collection of uncoupled rows
(columns), each described by an Ising model in a transverse field with a second-order phase
transition at |hz| = |J1,y|/2 (|hz| = |J2,x|/2). This critical point separates a paramagnet,
which has all spins aligned along the internal z axis from the aforementioned ferromagnet
with |〈Sy(x)〉| > 0 ( |〈Sx(x)〉| > 0) for each row (column). We note that there is an
accidental exponentially-large degeneracy in the number of rows (columns) in these large-
anisotropy limits. For nonzero anisotropies ξ2 > 0 that are finite ξ−1

2 6= 0, these rows
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(columns) become coupled, lifting the degeneracy and selecting a unique 2-fold degenerate
ferromagnetic ground state FMx (FMy), where all columns (rows) get locked to the same
spin direction when |hz| < |J2,x|/ζ and |J2,x| > |J1,y| (|hz| < |J1,y|/ζ and |J1,y| > |J2,x|).
Here, we introduce a parameter zeta, which serves to locate the critical point and is equal to
ζ = 2 in the regime of large spatial anisotropies. For other finite and nonzero anisotropies
ξ2 = a1/a2, the critical point will change, and ζ 6= 2 will no longer be found exactly
but must be estimated using numerical or analytical approximations [60,61].

2.2. Heisenberg–Ising Chains for d = 1

So far, we have reviewed known results that apply for the Wilson parameter r = 1.
Moving away from this limit modifies the super-exchange mechanism, leading to the ad-
ditional spin–spin couplings depicted in Figure 2a. These still have the general form of Equa-
tion (13) but lead to different strengths with respect to those expressed in Equations (14)–(19).
In particular, for d = 1, we find that the expression of the external field is

ha = 2
(

m +
r
a1

)
δa,z (21)

whereas the spin–spin couplings following the super-exchange mechanism of virtual double
occupancies are now

J1,x =
1− r2

g2a1
, J1,y = −

1 + r2

g2a1
, J1,z = −

1− r2

g2a1
. (22)

One can readily see how the previous ferromagnetic Ising model in a transverse
field (14) is recovered for r → 1. In this limit, the distinction between ferromagnetic and
antiferromagnetic couplings is trivial, as one can invert the sign of the spin–spin couplings
J1,y 7→ −J1,y by a unitary transformation that takes Sy(x) 7→ (−1)n1 Sy(x). Under this
transformation, the SSB ferromagnetic ground state is transformed into a classical Néel
pattern of alternating spins. The discussion of the possible SSB orderings for the general
Wilson parameter 0 < r < 1 is slightly more involved.

In the limit r → 0, where one recovers the naive-fermion regularisation [66], the spin–
spin couplings tend to J1,x = −J1,y = −J1,z and are unitarily-equivalent to a quantum
Heisenberg model with antiferromagnetic couplings [93–97]. The important point is that,
if there is an even number of spin–spin couplings with negative signs, these can always be
inverted by a spin rotation along the remaining axis with an alternating angle. The specific
transformation in this case takes S(x) 7→ (Sx(x), (−1)n1 Sy(x), (−1)n1 Sz(x)), such that
J1,a 7→ J = 1/g2a > 0, ∀a = {x, y, z}, and the spin–spin interactions clearly display the
SU(2) symmetry of the Heisenberg model. Additionally, if the external field is nonzero,
this maps onto a staggered transverse field under the above transformation, such that

Heff 7→ Ĥeff = ∑
x∈Λ1

(
JS(x) · S(x + a1e1) + hzeiks ·xSz(x)

)
, (23)

where we introduce the wavevector ks =
π
a1

e1. This transformation unveils a continuous
U(1) symmetry with respect to rotations along the internal z axis that is not directly appar-
ent in the original formulation (13). It is interesting to note that rewriting this transformed
model in terms of Jordan–Wigner fermions maps the spin chain into a staggered-fermion
regularisation [23,98] of the D = (1 + 1)-dimensional Thirring model [99] for a single
fermion flavour, provided that the four-Fermi term has a specific coupling strength. We
also note that for the vanishing transverse field hz = 0, the Heisenberg chain can be exactly
solved via the Bethe ansatz [100,101] and does not support a long-range order, as shown
via the inverse scattering method [102].

Given the clear difference between the r = 1 and r = 0 limits, one may expect dif-
ferent ground states with distinct magnetic orders, i.e., fermion condensates, for Wilson
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parameters 0 < r < 1. In this regime, we recall that the noninteracting phase diagram
comprises regions of nontrivial topological insulators and trivial band insulators separated
by topological gap-closing phase transitions (9). For strong interactions, the absolute values
of the spin–spin couplings (22) are no longer equal, and the mapping to the antiferromag-
netic Heisenberg model no longer holds. Interestingly, one can still find U(1) symmetry
by combining a pair of transformations. To do this, first, the spins are rotated about the
internal z axis in an alternate fashion as S(x) 7→ ((−1)n1 Sx(x), (−1)n1 Sy(x), Sz(x)), which
effectively changes the spin–spin couplings to J1,x = J1,z = J⊥, and J1,y = J⊥∆, where

J⊥ =
r2 − 1
g2a1

, ∆ =
1 + r2

1− r2 . (24)

Next, a rotation about the internal x axis S(x) 7→ (Sx(x),−Sz(x), Sy(x)) is applied;
the spin chain maps onto the XXZ model [97,103,104], also known as a Heisenberg–Ising
model, under an additional longitudinal field

Heff 7→ Ĥeff = J⊥∑
x∈Λ1

(
Sx(x)Sx(x + a1e1) + Sy(x)Sy(x + a1e1)

+∆Sz(x)Sz(x + a1e1) + gySy(x)
)

.
(25)

As shown previously, for gy = hz/J⊥ = 0, there is U(1) symmetry with respect
to continuous rotations about the new z axis. In this limit, the XXZ model for S = 1/2
is known to display a Berezinskii–Kosterlitz–Thouless (BKT) phase transition [105,106]
at the SU(2)-symmetric point ∆ = 1 [107], separating a critical phase at ∆ < 1 from
an Ising SSB phase at ∆ > 1. This model has also been exactly solved via the Bethe
ansatz [108,109], and the inverse scattering method [102] demonstrates the different decay
of spin–spin correlations in the critical and Ising phases, yielding a long-range order in the
latter. Following these results, we expect that such a BKT transition will not appear in the
strong-coupling limit of our model (8), as the effective anisotropy (24) always exceeds unity
∆ > 1 for 0 < r < 1. This favours the Ising long-range ordered phase which, after reversing
the previous spin transformations, corresponds to the FMy order, i.e., a pseudo-scalar
condensate in the fermion language (17). There may be, however, other types of transition
when the longitudinal field is switched on gy 6= 0. Despite lacking U(1) symmetry in
these cases, the global Z2 symmetry (15) remains intact in the Hamiltonian (25) for any
r > 0, provided that we consider its correspondence in terms of the new rotated spin
axes. Accordingly, similar second-order quantum phase transitions to those discussed for
the quantum Ising model (14) may still appear, albeit at critical points that flow with the
Wilson parameter.

2.3. Heisenberg–Ising Compass Models for d = 2

Before checking the validity of the above conjecture, let us discuss the effect of nonunit
Wilson parameters on the effective spin model for the d = 2 case depicted in Figure 2b.
Instead of the microscopic couplings presented in Equation (19), the super-exchange for
0 < r < 1 leads to an external field

ha = 2
(

m +
r
a1

+
r
a2

)
δa,z, (26)

whereas the spin–spin couplings transform into

J1,x =
a2(1− r2)

g2a1
, J1,y = −

a2(1 + r2)

g2a1
, J1,z = −

a2(1− r2)

g2a1
,

J2,x = −
a1(1 + r2)

g2a2
, J2,y =

a1(1− r2)

g2a2
, J2,z = −

a1(1− r2)

g2a2
.

(27)
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In the limit r → 1, we recover the quantum compass model with the directional spin–spin
couplings of Equation (19), which supports the idea of Lorentz-breaking fermion conden-
sates (20) as discussed in [60,61]. In the isotropic a1 = a2 and naive-fermion r → 0 limits, we
recover a model that is unitarily equivalent to the Heisenberg model on a square lattice with
antiferromagnetic couplings Jj,a 7→ J = 1/g2 and a staggered field hz 7→ hz(−1)n1+n2 . This
requires a slightly more involved transformation in comparison to d = 1 (23). For odd rows,
the spins must be transformed as S(x) 7→ (Sx(x), (−1)n1+1Sy(x), (−1)n1+1Sz(x)), ∀x =
(n1a1, (2n2 − 1)a2), whereas for even rows, they transform as S(x) 7→ ((−1)n1 Sx(x), Sy(x),
(−1)n1 Sz(x)), ∀x = (n1a1, (2n2)a2), where (n1, n2) ∈ ZN1 × ZN2 . The resulting Hamilto-
nian is

Heff 7→ Ĥeff = ∑
x∈Λ1

∑
j=1,2

(
JS(x) · S(x + ajej) + hzeiks ·xSz(x)

)
, (28)

where the corresponding staggering wave-vector now reads ks =
π
a1

e1 +
π
a2

e2. For a van-
ishing transverse field hz = 0, one finds that the strong-coupling limit of the naive fermion
r = 0 isotropic limit a1 = a2 corresponds exactly to the two-dimensional antiferromagnetic
Heisenberg model on a square lattice. This model is no longer solvable via the Bethe
ansatz [100] and has been a subject of intense research in the past [13]. In contrast to
d = 1, all analytic and numerical evidence supports a ground state displaying a long-range,
anti-ferromagnetic order in this case.

Let us now discuss the case of a nonzero Wilson parameter 0 < r < 1, where
Equation (27) leads to directional Heisenberg–Ising anisotropies |J1,y| > |J1,x| = |J1,z|
and |J2,x| > |J2,y| = |J2,z|. In the limit a1/a2 → 0 (a1/a2 → ∞), we again have a collection
of uncoupled spin chains along the rows (columns), as discussed for the quantum com-
pass model (19), with the difference being that each of these rows (columns) is no longer
described by a quantum Ising model (19) but, instead, by an XYZ chain [110,111]. As re-
marked for Equation (25), there is an even number of negative spin–spin couplings in these
rows (columns), such that a specific spin rotation maps this model to an antiferromagnetic
XXZ model where the Ising anisotropy is always larger than unity. In analogy to the d = 1
case discussed above, we also expect to find either a ferromagnetic FMx (FMy) ordering for
each of the columns (rows) or a symmetric paramagnet (PM) when the transverse field is
larger than the leading spin–spin coupling. Following this analogy, as we depart from the
limits of large anisotropies a1/a2 → 0 (a1/a2 → ∞), the additional spin–spin couplings
will lock these columns (rows) to the same ferromagnetic order, and we expect that the
critical points of the purely 90o compass model |hz| < |J2,x|/ζ and |J2,x| > |J1,y| for the
FMx–PM transition and the |hz| < |J1,y|/ζ and |J1,y| > |J2,x| for FMy–PM transition will
change, such that ζ flows with the Wilson parameter. Since these Heisenberg–Ising com-
pass models are no longer solvable, they can only be determined numerically or by using
certain approximations that are discussed below. We start by deriving a path-integral
representation of these effective spin models that connects to variants of the constrained
QFTs discussed previously.

3. Z2 Nonlinear Sigma Models

In this section, we derive a path-integral representation for the partition function
Z = Tr{e−βHeff} of the strong-coupling Heisenberg–Ising model (13), which allows us to
understand how constraints in QFTs, such as Equation (33), can appear in our fermionic
model (8). This requires the use of spin coherent states [112], which can be defined by per-
forming a SU(2) rotation on a fiducial state that fulfils S2(x) |S,+S〉x = S(S + 1) |S,+S〉x
and Sz(x) |S,+S〉x = S |S,+S〉x. The coherent-state basis, depicted in Figure 3, can thus be
defined by the action of the following operator on the tensor product of fiducial states for
each lattice site

|{ω(τ, x)}〉 = e
∑

x∈Λd
iθ(τ,x)(sin φ(τ,x)Sx(x)−cos φ(τ,x)Sy(x)) ⊗

x∈Λd

|S,+S〉x . (29)
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Here, we introduce polar θ(x) and azimuthal φ(x) angles, which define a unit vector
per spin pointing along the radial outward direction of a unit 2-sphere S2. Therefore,
|ω(τ, x)|2 = 1 parametrises all possible spin directions

ω(x) = sin θ(x) cos φ(x)ex + sin θ(x) sin φ(x)ey + cos θ(x)ez. (30)

θA, ϕA θB, ϕB

θA,𝗅, ϕA,𝗅 θB,𝗋, ϕB,𝗋

θB,𝗅, ϕB,𝗅 θA,𝗋, ϕA,𝗋

a1

a1

a2

a

ωAθA

ϕA

𝗑

𝗓

𝗒

ωB

θB

ϕB

𝗑

𝗓

𝗒

b

φ

|↑A⟩ = ψ†
1 (xA) |0⟩

|↓A⟩ = ψ†
2 (xA) |0⟩

|↑B⟩ = ψ†
1 (xB) |0⟩

|↓B⟩ = ψ†
2 (xB) |0⟩

Λ1

Λ2

Figure 3. Spin coherent states for bipartite lattices: (a) The one-dimensional chain Λ1 of lattice
spacing a1 contains a 2-site unit cell with s = A (odd) and s = B(even) sites represented by blue
and red circles. The low-energy properties of the half-filled chain in the strong-coupling limit can
be spanned by the |↑s〉 , |↓s〉 states, which correspond to the north and south poles of the respective
S2 spheres. A generic spin coherent state can be described by the unit vector ωs with angles θs, φs.
(b) For a rectangular lattice Λ2 with spacings a1, a2, the two sub-lattices A, B are represented by
blue and red symbols. The spin-coherent state basis is now composed of a 4-site unit cell where,
in addition to the sublattice label s = A, B, we consider the left- and right- corners c = l, r, leading to
θs,c, φs,c .

Note that x = (τ, x) now represents the Wick-rotated spacetime points, where the
imaginary time τ extent is related to inverse temperature via τ ∈ [0, β] [113]. One can
readily check that 〈S(x)〉 = Sω(x), such that the components of this unit vector field
contain information about the fermionic σ and π condensates mentioned above

σ(x) = ωz(x), π(x) = ωx(x)ex + ωy(x)ey. (31)

One can now rewrite the partition function as a path integral

Z =
∫
[DΩ]eSE , [DΩ] = ∏

x∈Λd

d3Ω
(2S + 1)

4π
δ(Ω2(τ, x)− 1), (32)

where the vector field Ω(τ, x) can, in principle, take values in Ω(τ, x) = ‖Ω(τ, x)‖ω(τ, x) ∈ R3

but gets constrained to lie on the S2 sphere through the path integral measure

Ω2(τ, x) = 1, ∀x ∈ Λd. (33)
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As discussed in [13,96,113], the Euclidean action contains a geometric contribution
proportional to the sum of the Berry phases of each spin history as it moves along the
corresponding trajectory Γx : τ → Ω(τ, x) on its respective sphere. These trajectories are
closed due to the periodic boundary conditions along the τ direction Ω(0, x) = Ω(β, x).
Altogether, the action is expressed as

SE = ∑
x∈Λd

(
−i
∮

Γx
dΩ · A(Ω(τ, x)) +

∫ β

0
dτ ∑

a

(
∑

j
Jj,aS2Ωa(τ, x)Ωa(τ, x + ajej) + haSΩa(τ, x)

))
, (34)

where the first contribution corresponds to the aforementioned Berry phase [73] and is
known as a Wess–Zumino term. For each spin, this term can be understood as an effective
Aharonov–Bohm phase gained by a unit test charge qe = 1 moving on the sphere and sub-
jected to the magnetic field of a monopole of charge qm = 4πS located at its centre [74].
Using Stokes’ theorem, this phase can be rewritten as the magnetic flux across the spherical
cap enclosed by each spin trajectory containing the north pole of S2, which is where the
fiducial state |S,+S〉x points to. Hence, the effective vector potential and magnetic field are
those generated by the magnetic monopole

A(Ω(τ, x)) =
S

|Ω(τ, x)|
ez ×ω(τ, x)

1 + ez ·ω(τ, x)
,

B(Ω(τ, x)) = ∇Ω × A =
Sω(τ, x)
|Ω(τ, x)|2 .

(35)

The second term in (34) represents the additional coupling of neighbouring spins due
to the spin–spin couplings as well as their precession under the transverse field.

Let us briefly discuss the r → 0 naive-fermion limit and its relation to an O(3) non-
linear sigma model [96]. In this limit, the spin–spin couplings along the different internal
directions are all equal |Jj,a| = Jj, and there is continuous SU(2) symmetry. In light of
the field constraint in the integral measure (32) and up to an irrelevant constant term,
the nearest-neighbour couplings can be rewritten as −Jjaj

1
2aj

(Ω(τ, x + ajej)−Ω(τ, x))2 →
Jjaj
2 ∂jΩ · ∂jΩ, which clearly resembles the spatial derivative terms presented in Equation (1)

and can be understood as the energy contribution due to the strain caused by a field defor-
mation. The kinetic part, which depends on the canonical momenta of the scalar vector
field in Equation (1), appears in the form of Euclidean time derivatives in the corresponding
action and is not readily apparent in Equation (34). However, a specific parametrisation
of the spin trajectory shows that the Berry phase indeed contains these time derivatives∫ β

0 dτA(Ω) · ∂τΩ, albeit still being different from the kinetic terms of the O(3) nonlinear
sigma model. In a seminal work [96], F.D.M. Haldane showed that, for anti-ferromagnetic
Heisenberg couplings Jj = J > 0, an expansion of Ω(τ, x) about the saddle point of the
Euclidean action, corresponding to the alternating antiferromagnetic configuration of the
classical limit, yields the kinetic term of the O(3) nonlinear sigma model exactly. More-
over, in d = 1, the Berry phase also contributes a topological theta term θ = 2πS which,
depending on the half-integer or integer value of the spin S, makes the O(3) nonlinear
sigma model massless or massive [114].

Let us now explore how this situation changes for our current spin models. Since
the effective spin models do not have the continuous SU(2) symmetry of the Heisenberg
limit for generic 0 < r < 1, we first need to understand the nature of the saddle point of
Equation (34) controlling the large-S limit, which will eventually lead to a different type
of constrained nonlinear sigma model. By inspecting the action (34) and the magnetic
monopole fields (35), one can readily see that the dΩ · A(Ω(τ, x)) term can only depend
on the equatorial components of the scalar field via ∑x∈Λd

(Ωx∂τΩy −Ωy∂τΩx). This term
remains invariant under the Z2 symmetry (15) which, in this context, reads

Ω(τ, x) 7→ (−Ωx(τ,−x),−Ωy(τ,−x), Ωz(τ,−x)). (36)
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Accordingly, the action of (34) with the constraint (32) (equivalent to the non-linear
sigma constraint (33) via Equation (31)) describes a Z2 nonlinear sigma model that arises
naturally in the strong-coupling limit of the original model (8), even for a single fermion
flavour N = 1.

4. Large-S Limit and Saddle-Point Equations

Recall that the spin operators presented in Equation (12) correspond to S = 1/2. In this
section, we assume that S is a free parameter and explore the S→ ∞ limit, which can be
understood as a mean-field approximation of the effective spin chain. According to our
previous discussion of the Berry phase, one can see that time-dependent spin histories
∂τΩ 6= 0 will get suppressed in this limit due to the averaging of the rapid oscillations
associated with the pure-imaginary Wess–Zumino term. Accordingly, the large-S limit
will be controlled by static fields Ω(τ, x) = Ω(x). This is precisely analogous to the large-
N limit in interacting fermion theories, e.g., in the d = 2 Thirring model, the induced
Chern–Simons term resulting from the leading quantum correction [115] plays no role in
determining the ground state in the large-N limit. Moreover, the Euclidean action can be
rewritten as SE = 1

h̄eff
sE, where h̄eff ∝ 1/S plays the role of an effective Planck constant.

In the absence of dynamic and kinetic terms, the Euclidean action per spin sE = βVeff can
be expressed in terms of the following effective potential

Veff({Ω}) = ∑
x∈Λd

∑
a

(
∑

j
J̃j,aΩa(x)Ωa(x + ajej) + haΩa(x)

)
, (37)

where we note that, analogous to the large-N limit [7] of the four-Fermi term (5), the spin-
spin couplings (22)–(27) must be rescaled to give finite contributions for S→ ∞

Jj,a =
J̃j,a

S
, (38)

where J̃j,a are finite and have nonzero coupling strengths.
Accordingly, the large-S limit is controlled by the saddle point of the potential (40)

given below, in which quantum fluctuations are suppressed h̄eff → 0, bearing in mind
that the fields are subjected to an extensive number of constraints, i.e., one per spatial
coordinate, as they must lie on their corresponding S2 spheres (33). At this level, one can
either introduce a Lagrange multiplier to deal with the nonlinear constraint or work directly
with the generalised ‘coordinates’ {Ω(x)} 7→ {θ(x), φ(x)} satisfying the constraints (30).
In this second approach, the saddle-point equations are given by a set of 2 ∏j Nj nonlinear
equations ∀x ∈ Λd, namely

∂Veff({θ(x), φ(x)})
∂θ(x)

∣∣∣∣
θ? ,φ?

=
∂Veff({θ(x), φ(x)})

∂φ(x)

∣∣∣∣
θ? ,φ?

= 0. (39)

4.1. Large-S Ising Magnetism for d = 1

Let us start by discussing the solutions to these saddle-point equations for d = 1. Fol-
lowing the discussion presented in Section 2.2, where we argued that the spin couplings (22)
for 0 < r < 1 can be mapped onto an antiferromagnetic Heisenberg–Ising chain (25), we
can simplify the set of nonlinear equations shown in Equation (39) by restricting them to
translationally-invariant configurations within a 2-site unit cell {θ(x), φ(x)} 7→ {θs, φs},
which may capture a possible alternating order, where s ∈ {A, B} stands for the odd/even
sites of the chain (see Figure 3a). Under this simplification, the effective potential reads

Veff(θA, θB, φA, φB)

N1
= sin θA sin θB

(
J̃1,x cos φA cos φB + J̃1,y sin φA sin φB

)
+ J̃1,z cos θA cos θB + 1

2 hz(cos θA + cos θB),
(40)
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which leads to a system of four non-linear equations via (39). Let us note that this choice
of angles allows for both ferromagnetic and antiferromagnetic configurations, the latter
reducing the translational invariance of the model from a 1-site to a 2-site unit cell. If the
angles in the A/B sites differ, one should enlarge the ansatz to rule out other possible
inhomogeneous modulations. However, as discussed below in detail, we always find that
the saddle-point configurations retain the full translational invariance.

To gain some knowledge about the ground state, one can numerically search for
a global minimum of this potential using a coarse-grained discretisation of the angles
and performing a grid search that restricts the search space to account for the Z2 symmetry.
Once we have a rough estimate of the minimum, for further accuracy we directly minimise
the effective potential as a nonlinear constrained problem using an interior-point algorithm
of nonlinear programming [116], choosing the outcomes of the global coarser minimisation
as initial points . In practice, we also initialise the minimisation for all different combinations
of the cardinal states of the two S2 spheres associated with the 2-site unit cell and check for
consistency, ensuring that the solution found with the nonlinear programming algorithm
that starts with the grid-search minimum yields the minimum potential among the different
starting points. This analysis yields saddle-point solutions {θ?A, θ?B, φ?

A, φ?
B} for different

values of the Wilson parameter r ∈ {0.5, 0.6, 0.7, 0.8, 0.9, 1}.
In Figure 4a, we use these numerical large-S solutions to represent the corresponding

SSB order parameter, which corresponds to the pseudo-scalar condensate 〈Sy(x)〉 ∝ Π5 in
Equation (17). This figure clearly depicts a SSB region hosting an Ising ferromagnet FMy,
corresponding to the parity-breaking Aoki phase with a nonzero pseudo-scalar conden-
sate. This phase is separated from the one invariant under parity, namely a disordered
paramagnet PM in the language of the spin model, via a critical point where the order
parameter behaves nonanalytically. To find the accurate location of this point, in Figure 4b,
we show the corresponding susceptibilities χy = ∂〈Sy(x)〉/∂hz, which clearly peak at the
corresponding points. These figures show, as qualitatively argued in the previous section,
that the critical point hz/J1,y

∣∣
c flows with the value of the Wilson parameter r. For r = 1,

the critical point obtained from the numerical minimisation is |hz/J1,z|c ≈ 1. This coincides
with the analytical solution of the saddle-point equations which, with this limit, can be
found exactly

φ?
A = φ?

B ∈
{

π

2
,

3π

2

}
, θ?A = θ?B = π − arccos

(
hz
|J1,y|

)
. (41)

We thus find that, for |hz/J1,y| < |hz/J1,y|c = 1, the spins align according to

〈S(x)〉 = ±S

√
1−

(
hz
J1,y

)2
ey − S

hz
|J1,y|

ez, (42)

where the two possible signs ± account for the two-fold degeneracy associated with the Z2
parity SSB.

Now, as 0 < r < 1 is varied, it is simple to understand the flow of the critical point
by performing a self-consistent mean-field decoupling of the effective Hamiltonian (13).
In light of the ground state expectation values (42), a mean-field decoupling of the addi-
tional terms of the Heisenberg–Ising chain (25) that arise when r 6= 1

∑
a=x,z

J1,aSa(x)Sa(x + a1e1) 7→ ∑
a=x,z

2J1,aSa(x)〈Sa(x)〉, (43)

would only contribute with terms along the internal z direction, effectively shifting the
transverse field to hz 7→ h̃z = hz + 2J1,z〈Sz(x)〉. The saddle-point solution (42) now yields
a self-consistent equation, which can be readily solved for the couplings in Equation (22):∣∣∣∣ hz

J1,y

∣∣∣∣
c
= 1− 1− r2

1 + r2 . (44)
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In order to test the validity of this prediction, we present a contour plot of the Ising
order parameter in Figure 5 as a function of the relative coupling strengths |J1,x/J1,y| =
|J1,z/J1,y| = (1− r2)/(1 + r2) and |hz/J1,y|. We also plot the critical points extracted from
the numerical maxima of the susceptibility in Figure 4b. These are depicted with red stars,
and their analytical prediction (44) is represented with a white dashed line. The level of
agreement is very good, and the main source for the flow of the critical coupling with the
Wilson parameter can be identified. In the d = 1 case, the critical point flows towards
smaller values |hz/J1,y|c < 1 due to the effective renormalisation of the transverse field
hz 7→ h̃z, which increases h̃z > hz due to the nonvanishing ferromagnetic couplings J1,z < 0
along the internal z axis and the specific alignment of the spins in Equation (42). Coming
back to the context of four-Fermi-Wilson lattice field theories (8), we cna see that the Aoki
phase extends for arbitrary values of the Wilson parameter 0 < r < 1, provided that
one goes sufficiently close to the so-called central Wilson branch m = −1/a1 [117,118].
For strictly vanishing r = 0, where the naive-fermion discretisation is recovered, the Aoki
phase is no longer present. Right at the central branch, where hz = 0, the strong-coupling
ground state lies exactly at the critical line and would correspond to the gapless ground
state of the antiferromagnetic Heisenberg chain.

Before moving towards the d = 2 case, let us note that the large-S approximation is not
expected to provide an accurate estimate of the exact critical point but, at least, it captures
the main sources for the flow of the critical point qualitatively . In fact, for the quantum
Ising model at r = 1, where a large-S predicts a critical point |hz/J1,z| = 1 in Figure 4a,b,
the exact solution gives instead instead |hz/J1,z| = 1/2 [85]. In Section 5, we present more
accurate predictions of the critical points using the quasi-exact DMRG algorithm based on
matrix product states.
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Figure 4. Large-S Ising magnetism in the Heisenberg–Ising chain for d = 1: (a) Ferromagnetic
order parameter 〈Sy(x)〉 as a function of the relative transverse field, considering various values of
the Wilson parameter. For each value of r, the region with nonzero magnetisation corresponds to the
long-range ordered FMy. (b) Chiral magnetic susceptibility χy = ∂〈Sy(x)〉/∂hz, which peaks at the
critical points of SSB.
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Figure 5. Large-S phase diagram for d = 1: Magnetisation contour plot, including the red stars
that stand for the critical points obtained numerically in Figure 4b as well as the white dashed line
for the predictions in Equation (44), which correspond to a straight line with negative unit slope∣∣hz/J1,y

∣∣
c = 1− |J1,x/J1,y|.

4.2. Large-S Compass Magnetism for d = 2

Let us now discuss the d = 2 case, where the A and B sublattices correspond to two
interpenetrating square lattices with the lattice spacing (a2

1 + a2
2)

1/2, rotated with respect to
the original rectangular lattice by angles ϕ, π− ϕ, where ϕ = arctan(a2/a1) (see Figure 3b).
Analogous to d = 1, we can restrict the configurations of spin coherent states to be trans-
lationally invariant within these sublattices {θ(x), φ(x)} 7→ {θs, φs}, where s ∈ {A, B},
and we can still account for antiferromagnetic configurations when the respective A, B
angles differ or ferromagnetic ones when they are equal. However, this choice may not
suffice to capture the ground state ordering of the effective strong-coupling model (13).
For illustrative purposes, consider the limit a1 � a2 and r ≈ 1 so that, in light of the
spin–spin couplings in Equation (27), |J2,x| � {|Jj,a|, ∀j 6= 2, a 6= x}. Since this leading spin
coupling is negative J2,x < 0, the spins will want to align ferromagnetically along each of
the columns, adopting polar and azimuthal angles θ∗A = θ∗B = π/2, φ∗A = φ∗B ∈ {0, π}. Ad-
ditionally, since the perturbative coupling between neighbouring columns fulfils J1,x > 0,
spins in adjacent columns might minimise the ground state energy by choosing opposing
azimuthal angles φ∗A = φ∗B ∈ {π, 0}. Since this is inconsistent with the A, B sublattice
layout, allowing for this possible ordering in the parametrisation of the constrained effec-
tive potential requires the number of configurations to be augmented by considering a
4-site unit cell {θ(x), φ(x)} 7→ {θs,c, φs,c}, where c ∈ {l, r} labels the left and right corners,
as depicted in Figure 3b. By directly incorporating the nonlinear constraint, as we did for
Equation (40), the effective potential reads

2Veff
N1N2

=∑
c

(
∑

j
sin θA,c sin θB,c̃(j)

(
J̃j,x cos φA,c cos φB,c̃(j) + J̃j,y sin φA,c sin φB,c̃(j)

)
+ J̃j,z cos θA,c cos θB,c̃(j) +

hz
2
(cos θA,c + cos θB,c)

)
,

(45)

where the function c̃(2) = c is introduced when the spin–spin couplings occur along the e2
spatial direction and c̃(1) = c along e1. For the latter, we define c = r(l) for c = l(r), which
swaps the left and right corners.

The saddle-point conditions (39) corresponding to this potential lead to a nonlinear
system of 8 equations which, once again, must be solved numerically for generic cases.
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The exception is the standard limit r = 1, where the effective spin model reduces to the 90o

compass model [88] in a transverse field, and one can find

φ?
s,c ∈

{
π

2
,

3π

2

}
, θ?s,c = π − arccos

(
hz
|J1,y|

)
, if a1 < a2,

φ?
s,c ∈ {0, π}, θ?s,c = π − arccos

(
hz
|J2,x|

)
, if a1 > a2.

(46)

The SSB order parameters for these solutions are

〈S(x)〉 = ±S

√
1−

(
hz
J1,y

)2
ey − S

hz
|J1,y|

ez, if a1 < a2,

〈S(x)〉 = ±S

√
1−

(
hz
J2,x

)2
ex − S

hz
|J2,x|

ez, if a1 > a2,

(47)

which predict critical points at |hz/J1,y|c = 1 if a1 < a2, and |hz/J2,x|c = 1 if a1 > a2.
Accordingly, for |hz| < |J2,x| and a larger horizontal lattice spacing a1 > a2, the SSB or-
der parameter 〈Sx(x)〉 ∝ Π1 corresponds to ferromagnetic ordering along the internal
x axis FMx, which corresponds to the inversion-breaking π condensate of Equation (20)
for the underlying four-Fermi model. Alternatively, for |hz| < |J1,y| and a larger vertical
lattice spacing a1 < a2, the SSB order parameter describes ferromagnetic ordering along
the internal y axis FMy, which corresponds to the other inversion-breaking π condensate
〈Sy(x)〉 ∝ Π2. We note that these large-S solutions for r = 1 coincide with the varia-
tional mean-field estimates discussed in [60,61] and recall again that these condensates are
different from the Aoki parity-breaking phase.

To treat 0 < r < 1, we must solve the problem numerically. We use the same strategy as
described for d = 1, which combines a coarse global minimisation with more efficient non-
linear programming methods that are consistently initialised to yield accurate estimates of
the potential minima. We obtain the SSB order parameters from the numerical saddle points
{θ?s,c, φ?

s,c} for various Wilson parameters r ∈ {0.5, 0.6, 0.7, 0.8, 0.9, 1}. The corresponding
magnetisations display similar nonanalytic behaviours, which can be used to infer the loca-
tions of the critical points and how these flow as one varies r. In Figure 6, we present a stack
of two-dimensional contour plots that summarises the large-S phase diagram and shows a
clear dependence on both the Wilson parameter and the anisotropy parameter

ξ2 =
a1

a2
. (48)

In this contour plot, we represent the difference between the two possible SSB order
parameters 〈Sy(x)〉 − 〈Sx(x)〉, such that negative (positive) values signal a FMx (FMy)
phase with a Π1(Π2) Lorentz-breaking condensate and are depicted on a red (yellow) scale.
In the stacking z direction, we plot the anisotropy parameter for ξ2 ∈ [0, 1] for a1 < a2
(black axis), while we represent 2− 1/ξ2 ∈ [1, 0] for a2 > a1 (grey axis).

The lower stacked contour plots thus represent FMy ordering, whereas the upper
ones represent FMx. In the x and y axes of these contour plots, we select the relevant
normalised couplings such that the stacked contour plots are completely symmetric as
one crosses the isotropic configuration a1 = a2. In general, it can be observed that the
critical point |hz/J2,x|c = 1 (|hz/J1,y|c = 1) at r = 1 and ξ2 > 1 (ξ2 < 1) changes as
one decreases r, increasing the remaining coupling strengths of the compass Heisenberg
model (27), namely |J2,z/J2,x| = |J2,y/J2,x| ( |J1,z/J1,y| = |J1,x/J1,y|). In addition, one can
also observe how the critical points change with anisotropy when r < 1, such that the extent
of the Lorentz-breaking fermion condensates in general depends on the anisotropy of the
lattice regularisation. To gain some further understanding, we can extend the previous
discussion of the d = 1 case around Equation (43) to cover d = 2 in the regime of very large
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anisotropy since, in this case, the compass Heisenberg–Ising models reduce to very weakly
coupled columns (rows). To derive a self-consistent mean-field decoupling for d = 2, note
that we now have to deal with these additional spin–spin couplings between adjacent
rows (columns) for a1 > a2 (a1 < a2). By setting r ≈ 1, one can solve the corresponding
self-consistent equations approximately, leading to∣∣∣∣ hz

J1,y

∣∣∣∣
c
≈ 1− 1− r2 + (1− r2)ξ2

2
1 + r2

1− (1− r2)ξ2
2

1 + r2 , if a1 < a2,∣∣∣∣ hz
J2,x

∣∣∣∣
c
≈ 1− 1− r2 + (1− r2)ξ−2

2
(1 + r2)

1− (1− r2)ξ−2
2

1 + r2 , if a1 > a2.

(49)

The white dashed lines of Figure 6 represent the analytical predictions of the critical
points. As can be observed, they match the numerical critical lines well for large anisotropies
ξ2 � 1 (ξ2 � 1), but the discrepancy increases as one approaches the isotropic case ξ2 = 1.
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Figure 6. Large-S compass magnetism for d = 2: The large-S method predicts that the type of
ferromagnetic SSB order (inversion-breaking) condensate will correspond to FMx or FMy for ξ2 > 1
or ξ2 < 1, respectively. To visualise the phase diagram in a single figure, we present stacked contour
plots of the difference in ferromagnetic order parameters 〈Sy(x)〉 − 〈Sx(x)〉 as a function of the
relative transverse field and the Wilson parameter via |J1,x/J1,y| = |J2,y/J2,x| = (1− r2)/(1 + r2).
The contour plot shows FMx in red scale, FMy on a yellow scale and PM on a blue scale. We also
include dashed lines for the large-S analytical estimates (49).

5. Tensor-Network Numerical Simulations

In this section, we test the validity of the large-S predictions of Section 2 by means of
variational algorithms based on tensor network states (TNSs) [119–121].

The quantum state of a lattice model composed of Ns d̃-level systems, i.e., spins, can
be written on the basis of the tensor products of local states. The quantum state is then
fully characterised by the coefficients of these basis states, which are tensors Ci1,i2,··· ,iN of
rank Ns and dimension d̃

|ψ〉 = ∑
i1,i2,··· ,iNs

Ci1,i2,··· ,iNs
|i1, i2, · · · , iNs〉. (50)

Here, we introduce the indexes in ∈ {1, · · · , d̃}, such that the description of the state re-
quires d̃Ns complex parameters. This exponential growth makes this generic description un-
suitable for numerical analysis. However, in a number of situations, the physically-relevant
many-body states have a more concise description based on TNSs [122,123]. Obtained from
a contraction of low-rank tensors on so-called virtual indices, TNSs economically approx-
imate the states of a system with local interactions in thermal equilibrium. The number
of required parameters scales only polynomially with system size [124], circumventing
the previous exponential growth of the most generic description. In fact, these variational
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states are based on powerful insights related to the area law [125,126]. The area law places
bounds on the quantum entanglement that a many-body system can generate, which
translates directly to the number of parameters required to describe a physically relevant
quantum state.

Tensor-network calculations have benefited from the advent of White’s density matrix
renormalisation group (DMRG) [127], famous for its extraordinary accuracy in solving one-
dimensional quantum systems, which is intimately connected with a tensor decomposition
known as the matrix product state (MPS) [128,129]. These variational states can be under-
stood in terms of pairs of maximally entangled states on neighbouring lattice sites, which
describe auxiliary degrees of freedom and get locally projected onto the lower-dimensional
subspace of physical spins at each lattice site. In fact, a very useful and intuitive way of
thinking about MPS is through the following valence-bond construction. Consider Ns spins
aligned on a ring, the states of which are labelled by the internal index i. One assigns two
auxiliary spins of dimension D to each of these physical spins, assuming that each pair of
neighbouring auxiliary spins is initially in a maximally entangled state |I〉 = ∑D

α=1 |α, α〉,
often referred to as an entangled bond. By applying the map that plays the role of the
aforementioned projector

A = ∑ Ai,αβ|i〉〈αβ| (51)

to each of the Ns spins and interpreting Ai as a D⊗D matrix, we find that the coefficients of
the final state can be expressed by a matrix product Tr

[
Ai1 Ai2 · · · AiN

]
(see Figure 7a). In the

d = 1-dimensional models discussed in this work, we consider physical spins S = 1/2,
such that in = sxn ∈ {↑, ↓}, d̃ = 2, and n ∈ {1, · · · , Ns}, with Ns = N1 being the number
of sites in the spatial chain. In general, the dimension of the entangled state |I〉 can be
site-dependent and A[xn ]

sxn
is written for the Dn × Dn+1 matrix corresponding to site xn; the

states then have the form

|ψ〉 = ∑
{sxn}

Tr
{

A
[sx1 ]
sx1

A
[sx2 ]
sx2
· · · A[sxNs

]
sxNs

}
|sx1 , sx2 , · · · , sxNs

〉 (52)

and are called MPS. This construction can be mathematically expressed as a network
of tensors with multiple indexes corresponding to the physical and auxiliary degrees of
freedom, such that those corresponding to the auxiliary ones are contracted as described in
Figure 7b. In this case, the number of parameters needed to describe a physical state in the
MPS language scales as O(N1dD2) with d being the physical dimension of the spins.

a

b

c

Figure 7. Tensor network representations: (a) Matrix product states as a network of maximally
entangled states |I〉 shared between physical sites of the one-dimensional lattice to which local
operations Aj are applied on combined virtual space at each site. (b) Diagrammatic representation
of MPS characterised by a three leg tensor A defined at every site throughout the tensor network.
(c) Diagrammatic representation of PEPS corresponding to a square lattice.
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A natural generalisation of MPS to two, or even more, spatial dimensions is repre-
sented by projected entangled pair states (PEPS [130]). Again, this kind of state can be
understood in terms of pairs of maximally entangled states of neighbouring auxiliary
systems, which are are locally projected into the low-dimensional physical subspace. As
represented in Figure 7c, the PEPS describes a state through interconnected tensors. For the
two-dimensional spatial lattices considered in this work, which consist of Ns = N1N2 sites,
we specify the PEPS variational ansatz [130–132] as

|ψ〉 =∑
sxn

F
(

A[x1]
sx1

, A[x2]
sx2

, · · · , A
[xN1N2 ]
sxN1N2

)
|sx1 , sx2 , · · · , sxN1N2

〉. (53)

This PEPS is represented by a network of N1N2 tensors A[xm ]
sxn

, some of which are
connected according to the geometry of the lattice and the notion of neighbouring lattice
sites. Each tensor of the PEPS has Nb so-called bond indices of dimension Dn, which
describe the aforementioned auxiliary degrees of freedom, and a single physical index of
dimension d. The choice of Nb in the tensor network can be arbitrary and typically depends
on the geometry of the lattice. For example, for a N1 × N2 lattice, a PEPS contains N1 × N2
bulk tensors with Nb = 4 and Dn = D. Each tensor depends on dD4 complex coefficients.
Therefore, the PEPS is characterized by O(NsdD4) parameters. The function F contracts all
tensors A[xm ]

sxm
according to this pattern and then performs a trace to obtain a scalar quantity,

such that Equation (53) can be understood as a parametrisation of a particular set of states
in the exponentially-large physical Hilbert space.

In this manuscript, we study the ground state properties of quantum lattice Hamil-
tonians using different strategies for d = 1 and d = 2 spatial dimensions. For d = 1, we
variationally optimize the MPS tensors, so as to minimise the expectation value of the
corresponding Hamiltonian. In contrast, for d = 2, analogous to spectroscopic methods
that determine the particle spectrum via the imaginary-time evolution of correlators in
Euclidean LFTs [66], we evolve the system in imaginary time until a stationary state cor-
responding to the ground state is reached. This assumes that this ground state is unique
and that the energy gap is nonzero, as done with the time-evolving block-decimation
method (TEBD) for one-dimensional chains [133,134]. In the following text, we use this
method with the thermodynamic limit for the infinite PEPS state (iPEPS) [135,136].

5.1. Tensor-Network Ising Magnetism for d = 1

In this section, we analyse the effect of correlations in the phase diagram of the
Heisenberg–Ising chain (13) with the spin–spin couplings defined in Equation (22) follow-
ing subjection to an additional transverse field in Equation (21). All of these parameters
depend on the Wilson r, and the goal is to explore the phase diagram as it is varied within
0 < r < 1. In particular, we benchmark the large-S results discussed in Section 4.1, giving
more accurate predictions of the phase diagram and critical points presented in Figure 5.

As discussed in Section 4.1, the Heisenberg–Ising chain presents a critical line separat-
ing the ferromagnet FMy and the paramagnet PM. In Figure 8 we present the corresponding
MPS phase diagram as a function of relative coupling strengths |J1,x/J1,y| = |J1,z/J1,y| and
|hz/J1,y|. Our numerical results for the phases of matter are extrapolated using the quasi-
exact DMRG algorithm, as discussed in detail below. The lines represent the critical points
where the SSB phase transitions occur, either obtained with DMRG based on finite MPS
with the bond dimension D = 200 (red stars) or by the self-consistent mean-field method
(yellow dashed lines), which exploits exact solutions of the transverse-field Ising model
to derive a self-consistent equation for the transverse magnetisation that can be solved
analytically in the limit |J1,x/J1,y| = |J1,z/J1,y| � 1. This yields∣∣∣∣ hz

J1,y

∣∣∣∣
c
=

1
2
− 4

π

1− r2

1 + r2 , (54)
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which must be compared to the large-S estimate (54), depicted by a white dashed line in
the figure.
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Figure 8. Phase diagram of the Heisenberg–Ising chain: The phase diagram displays two regions
hosting a long-range-ordered ferromagnetic phase (FMy) and a paramagnetic phase (PM). The hori-
zontal axis represents the magnetic field hz, whereas the vertical axis corresponds to the ratio of the
tunnelling strengths J1,z/J1,y. The red stars (yellow dashed lines) show the critical points found from
DMRG (self-consistent mean-field) numerics. These points are plotted on top of the contour plot of
the magnetisation 〈Sy(x)〉 obtained using DMRG.

As can be observed in Figure 8, for the small relative coupling |J1,x/J1,y|, attained
for r ≈ 1, the self-consistent mean-field and DMRG critical points separating the FMy
and PM regions yield two critical lines that are very similar. By increasing |J1,x/J1,y|,
larger differences appear between the critical lines, since the self-consistent mean-field
predicts a smaller FMy region. Note, however, that this prediction is strictly valid only
in the vicinity of the exact critical point

∣∣hz/J1,y
∣∣
c = 1/2. In comparison with the large-S

white-dashed line, we see that there is a large quantitative difference in the critical lines,
e.g., for r = 1

∣∣hz/J1,y
∣∣
c = 1 within a large-S, whereas

∣∣hz/J1,y
∣∣
c = 1/2 with DMRG. This

difference is characteristic of large-S methods and is a consequence of how we neglect
quantum fluctuations by taking the saddle-point solution. However, note that the large-S
captures the physics of the model qualitatively correctly: it predicts that the FMy region
(pseudo-scalar condensate) will shrink proportionally to the combination (1− r2)/(1 + r2)
whenever 0 < r < 1. Had we solved the lattice model for increasing S using DMRG,
we would have found that the two lines approach each other as the spin is increased
S ∈ {1/2, 3/2, 5/2, · · · }.

In the background of Figure 8, we present a contour plot of the SSB order parameter,
which corresponds to the pseudo-scalar condensate 〈Sy(x)〉 ∝ Π5 defined in Equation (17).
In order to avoid numerical problems due to the incomplete symmetry breaking of the
magnetisation My = 〈Sy(x)〉 = 1

N1
∑x∈Λ1

〈Sy(x)〉, we determine instead the corresponding
structure factors

Syy(k) =
1

N2
1

∑
n1,n′1

eika1(n1−n′1)〈Sy(n1)Sy(n′1)〉. (55)

The zero-momentum component of these structure factors yields the desired magneti-
sation in the thermodynamic limit My = (Syy(0))

1/2. The contour plot of the magnetisation
clearly identifies the SSB region on a yellow-green scale with a nonzero pseudo-scalar con-
densate, namely a Ising ferromagnet FMy, which is separated from the region by a blue scale,
where the parity is preserved, namely through a paramagnet PM with zero magnetisation
along the internal y axis.

Let us now give some more details on the methodology used to numerically extract
the critical points shown in Figure 8. By calculating the ferromagnetic magnetisations and,
particularly, the corresponding susceptibilities, we can identify the critical points occurring
at a nonzero external field hz > 0. In Figure 9a, we present the susceptibility χy = ∂My/∂hz
for different values of the Wilson parameter r, which clearly peaks at specific values of
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the ratio
∣∣hz/J1,y

∣∣, which moves to the left as r is decreased. In Figure 9b, we display the
ferromagnetic susceptibility χy for different numbers of sites Ns, fixing r = 0.82 and vary
the external magnetic field hz. The finite size scaling (FSS) of the magnetic susceptibility
maxima, as a function of N1 is displayed in the lower inset. As one can see in the inset,
the peak of the chiral susceptibility at the transverse field hc

z diverges with the size of the
chain, and by fitting the maxima of hc

z to hc
z(N1) = hc

z(1 + aN−1
1 + bN−2

1 ), we can delimit
the ferromagnetic region and locate the phase transitions in the thermodynamic limit
Ns → ∞. Once the critical point is known, in the upper inset, we show the data collapse of
the magnetisation curves when rescaled with the system size using the critical exponent
of the 2D Ising universality class. Accordingly, the whole critical line delimiting the Aoki
phase belongs to this universality class, in spite of having perturbations to the Ising limit in
the form of the additional spin–spin couplings (22) when r < 1.
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Figure 9. Ferromagnetic and paramagnetic susceptibilities: (a) The ferromagnetic susceptibility
χMy for a fixed coupling strength Jy = −1 and for different couplings Jx. As the magnetic field hz is
varied, it develops peaks at the critical points. In the inset, we show ferromagnetic magnetisation
along the y direction. The system develops a nonzero expectation value for transverse fields below
a critical value hz < hc

z. (b) The paramagnetic susceptibility χMz , for the same parameters, which
develops peaks at those critical points. In the inset, we show ferromagnetic magnetisation along the
z direction.

5.2. Tensor-Network Compass Magnetism for d = 2

In this section, we show the results obtained by using the above iPEPS algorithm for the
Heisenberg–Ising compass model (13) with the spin–spin couplings defined in Equation (27)
and subject to an additional transverse field in Equation (26) that works directly in the
infinite-lattice limit. In particular, we compute the ground state wave function |ψGS〉
of the system by performing the imaginary-time evolution for different values of the
spin couplings {J1,a, J2,a}a∈{x,y,z}, and the transverse magnetic field hz and then evaluate
observable quantities on it, such as the ground state energy and the local order parameters
related to the ferromagnetic phases.

In Section 4.2, we used a large-S method to predict a critical line separating the
symmetry-broken ferromagnets FMx and FMy from a paramagnet via second-order phase
transitions. Under certain approximations, these critical lines can be found analytically (49),
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corresponding to the white dashed lines of Figure 6. In order to test the validity of these
large-S predictions, we use our iPEPS algorithm for D = 2. By measuring paramagnetic
and ferromagnetic magnetisations, we confirm that these quantities can be used to identify
the critical points for a nonzero magnetic field hz > 0.

We start by setting the spatial anisotropy to ξ2 = 3.16, which corresponds to a specific
stacked plane in the large-S phase diagram of Figure 6, where the FMx order competes
with the disordered PM. Our numerical iPEPS results for this competition are presented
in Figure 10. The lines correspond to the critical points where the FMx and PM phase
transitions occur, either obtained through an imaginary time evolution based on infinite
iPEPS with the bond dimension D = 2 (red stars) or by large-S approximate prediction (49)
(orange dashed lines). We observe a similar trend as for the case of d = 1: the region
of the inversion-breaking condensate shrinks as the value of the Wilson parameter r is
reduced within 0 < r < 1. In the vicinity of the standard choice r = 1, and for ξ2 � 1,
we see once again that the region of nonvanishing condensate decreases proportionally to
the ratio (1− r2)/(1 + r2)) = |J2,y/J2,x|. On the other hand, as r → 0, the iPEPS critical
line bends upwards, as with d = 1 (see the red stars in Figure 8). Note that, although the
large-S and iPEPS critical lines cross for smaller values of r, i.e., larger ratios of |J2,y/J2,x|,
the analytical predictions (49) are not strictly valid in this regime. On the other hand, for the
regime where r ≈ 1, we see that the large-S predictions are closer to the iPEPs results in
comparison with the d = 1 case, showcasing that mean-field predictions typically improve
as the dimensionality increases.
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Figure 10. Phase diagram of the Compass Heisenberg–Ising model: The phase diagram displays
two regions hosting a long-range-ordered ferromagnetic phase (FMx) and a paramagnetic phase
(PM). The horizontal axis represents the magnetic field hz, whereas the vertical axis corresponds to
the ratio of the tunnelling strengths J2,y/J2,x. The red stars (yellow dashed lines) show the critical
points found from the iPEPS algorithm (large-S predictions) numerics. These points are plotted on
top of the contour plot of the magnetisation 〈Sx(x)〉, using the iTEBD algorithm for the iPEPS ansatz.

Let us again discuss the details on how we extracted these critical points numerically.
In the inset of Figure 11, we present the magnetisation Mx = 〈Sx(x)〉 as a function of a
transverse magnetic field hz, setting J1,x = −1 and exploring different values of J1,y < 1.
This figure shows that, for weak transverse fields, the magnetisation attains a nonzero
value signalling the broken symmetry FMx phase, which corresponds to the inversion
symmetry-broken fermion condensate. The main panel shows the corresponding magnetic
susceptibility χx, peaking at a specific value of the transverse field, which can be used to
locate the corresponding critical points. Note that these peaks are not as pronounced as for
d = 1, and given that we work with translationally invariant iPEPS, we cannot perform
FSS to see how the peak diverges and extract accurate estimations of the critical point and
universality class. In future studies, it would be interesting to push the numerics to explore
larger values of the bond dimension D > 2, which would permit more accurate location of
the critical points. This question is particularly relevant in the regime r → 0. where d = 1
and d = 2 results seem to differ qualitatively. In the 1D case, the Aoki phase shrinks all the
way to zero, whereas in the 2D case, it seems to survive. This could be related to the fact
that the r = 0 limit maps onto a Heisenberg model on a rectangular lattice, and that this
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model has a long-range order in contrast with the 1D version. We note that these questions
could also be addressed with other methods, such as the Monte Carlo simulation.
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Figure 11. Ferromagnetic susceptibility: The ferromagnetic susceptibility χMx for J2,y = −1.0 and
J1,x = 0.2 shows peaks for different Wilson parameters r and allows us to locate the critical points.
In the upper inset, we show the magnetisation Mx versus hz.

6. Conclusions and Discussion

In this work, we explored the limit of strong Hubbard interactions in models of cor-
related topological insulators that arise for spin-orbit coupled fermions in lattices with
one and two spatial dimensions. These models can be understood as the single-flavour
limit N = 1 of four-Fermi quantum field theories with a Wilson-type discretisation, demon-
strating an interesting and fruitful connection between condensed matter and lattice field
theories. As discussed in this work, most lattice field theory studies fix the Wilson pa-
rameter of this discretisation to r = 1, as a nonunity value has trivial consequences in
the noninteracting limit. However, the role of 0 < r < 1 in the presence of interactions
is not clear a priori, and this was the topic explored in this work. Moreover, given the
fact that these four-Fermi field theories are amenable to study using cold-atom quantum
simulators with spin-orbit coupled fermions in Raman lattices where the effective value of r
depends on the intensities of the lasers that control the Raman lattice, which are generically
different, i.e., r 6= 1, the question addressed in this work is also relevant for understanding
the possible phases that can be explored in possible cold-atom realisations.

To address this question, we derived an effective spin model for the limit of strong
four-Fermi interactions and found a specific dependence of the couplings on the Wilson
parameter r. For d = 1, the resulting model can be related to an XXZ, also known as
Heisenberg–Ising, model in a staggered magnetic field, whereas in d = 2, it is related
to a compass model with directional spin–spin couplings, each of which is described by
different Heisenberg–Ising coupling. We formulated a path-integral representation of the
partition function, which connects the strongly-interacting limit with a constrained QFT:
a nonlinear sigma model with a discrete Z2 symmetry. This permitted exact solutions to
be found for a large-S limit, which enabled us to identify the relevant phases of matter
and draw specific predictions about phase transitions and the flow of the critical points with
the Wilson parameter r. The validity of these predictions was tested against tensor-network
numerical simulations, which showed that the large-S diagrams are qualitatively correct.
On the other hand, the numerical results gave more accurate estimates of the flow of the
critical lines and, in some cases, allowed us to infer the correct universality class of the lines
that differs from the large-S mean-field-type scaling.

As an outlook, we believe that the present manuscript, together with other recent
works [57–61], provides a rich cross-disciplinary toolbox that can be used to understand
interaction effects in topological matter. It will be interesting to exploit, adapt and combine
all of these different techniques to study harder problems, such as the abandonment of half-
filling and exploration of correlated topological phases at nonzero fermion densities. This
would connect to recent works on the existence of inhomogeneous kink crystals in the Gross–
Neveu model with discrete chiral symmetry [137,138], extend it to (2 + 1)-dimensional
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spacetimes, and explore whether such inhomogeneities can also appear in the parity- and
Lorentz-breaking condensates that are characteristic of Wilson-type discretisations.
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