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Abstract  

Meshless methods have become an essential numerical tool for simulating a wide range of flow-

structure interaction problems. However, the way by which the impermeable solid boundary 

condition is implemented can significantly affect the accuracy of the results and computational cost. 

This paper develops an improved boundary scheme through a weak formulation for the boundary 

particles based on Pressure Poisson’s Equation (PPE). In this scheme, the wall boundary particles 

simultaneously satisfy the PPE in the local integration domain by adopting the Meshless Local Petrov-

Galerkin method with the Rankine source solution (MLPG_R) integration scheme (Ma, 2005b) and the 

Neumann boundary condition, i.e., normal pressure gradient condition, on the wall boundary which 

truncates the local integration domain. The new weak formulation vanishes the derivatives of the 

unknown pressure at wall particles and is discretized in the truncated support domain without extra  

artificial treatment. This improved boundary scheme is validated by analytical solutions, numerical 

benchmarks, and experimental data in the cases of patch tests, lid-driven cavity, flow over a cylinder 

and monochromic wave generation. Second-order convergent rate is achieved even for disordered 

particle distributions. The results show higher accuracy in pressure and velocity, especially near the 

boundary, compared to the existing boundary treatment methods that directly discretize the pressure 

Neumann boundary condition. 
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1. Introduction  
Meshless methods have been intensively developed, especially in coastal and ocean engineering, 

benefiting from the relief of mesh generation and its inherent capacity in dealing with large-deformed 

wave surfaces. Applications of meshless methods to ocean and coastal engineering were recently 

reviewed in Luo et a. (2021). Several meshless methods have been developed based on various 

algorithms for discretizing Navier-Stokes equation, e.g., diffusion element (DE) method (Nayroles et 



al., 1992), element free Galerkin (EFG) method (Belytschko et al., 1994), smoothed particle 

hydrodynamics (SPH) method (Monaghan, 1994) and meshless local Petrov-Galerkin (MLPG) method 

(Atluri & Zhu, 1998). However, the solid boundary implementation, which plays a significant role in 

flow-structure interaction, remains less developed comparing to that for fluid particles, either 

requiring artificial terms or having a lower accuracy.  

In the SPH method, mass and momentum equations are discretized over neighbour particles within a 

support domain using kernel functions. Pressure is either explicitly expressed by the equation of state 

treating the fluid weakly compressible (WCSPH) or implicitly solved by the Pressure Poisson Equation 

(PPE) as the incompressible condition is adopted (ISPH). Several wall boundary approaches have been 

developed in SPH, including the repulsive force approach (Monaghan, 1994; Monaghan & Kajtar, 2009; 

Shadloo & Yildiz, 2011; Monaghan & Mériaux, 2018), the image or ghost particle approach (Morris et 

al., 1997; Liu et al. 2012; Bierbrauer et al., 2009), the dynamic particle approach (Liu & Liu, 2003; 

Gómez-Gesteira & Dalrymple, 2004; Gong et al., 2009), and the semi-analytical approach 

(Kulasegaram et al., 2004). In the repulsive force approach, the wall boundary condition is imposed by 

applying the repulsive force on fluid particles approaching solid walls to prevent them from 

penetrating the boundaries. This approach is capable of dealing with complex geometries at the 

boundary, but errors can be introduced due to the kernel truncation near the boundaries (Fourtakas 

et al., 2019). It is also reported that, in the static fluid test, particles near the wall boundaries undergo 

spurious movement (Ferrand et al., 2013). In the image particle approach, extra particles are 

generated beyond the wall boundaries with prescribed physical quantities (e.g. pressure and density) 

the same as fluid particles. The velocities and positions of image and fluid particles are set to be 

symmetrical with respect to the tangent of the boundary. The image particle approach can effectively 

prevent non-physical behaviours (Leroy et al., 2014) and improve the overall accuracy (Hosseini & 

Feng, 2011). However, challenges still remain in generating and adopting those particles, especially 

for computational domains with complex geometries. Furthermore, the computational cost for this 

approach is considerable due to image particle generation and movement (Wang et al., 2016). The 

dynamic particle approach uses virtual particles fixed beyond the wall boundaries with flow properties 

obtained from neighbouring fluid particles through linear extrapolation (Chen, 2020). According to 

Wang et al. (2016), the problem related to boundary deficiency for virtual particles still exists and may 

lead to inaccurate results in solving the pressure field. The semi-analytical approach is proposed by 

introducing a renormalization factor for fluid particles close to the wall boundaries (Kulasegaram et 

al., 2004; Ferrand et al., 2013; Mayrhofer et al., 2015). This approach improves the interpolation 

accuracy at the wall boundaries, but the difficulties in applications for complex boundary geometries 

remain (Valizadeh & Monaghan, 2015).  



As an alternative to the SPH method, another type of meshless method based on the Galerkin 

formulation, i.e., the meshless local Petrov-Galerkin (MLPG) method, has also been developed and 

widely applied. Different from the SPH method that directly discretizes the strong form of the PPE, 

this method takes integration over a local sub-domain which reduces the order of the pressure 

derivative in the PPE (Ma, 2005a). An state-of-the-art review of the MLPG method, including its 

correlation with other particle-based methods, has been carried out in Sriram & Ma (2021). 

According to Ma (2005a), solid boundary treatment approaches in MLPG was initially based on the 

weak formulation of flow governing equations over the incomplete sub-domains of the boundary 

particles but was only applied to solve the potential flow (Atluri & Zhu, 1998) and inviscid flow with 

artificial stabilizing term to suppress spurious pressure (Lin & Atluri, 2001). When the MLPG method 

was extended to simulate non-linear waves (Ma, 2005a), the wall boundary condition was imposed by 

direct discretization of the pressure Neumann boundary condition instead of its weak formulation. 

This wall boundary treatment approach excludes artificial stabilizing terms and prevents fluid particles 

from penetrating the wall with flow viscosity considered. Three schemes for directly discretising 

Neumann boundary condition were compared in Zhou et al. (2008), including two in MPS with single 

and three layers of boundary particles (Koshizuka & Oka, 1996; Hibi & Yabushta, 2004; Zhang et al., 

2006) and one in MLPG based on simplified finite-difference interpolation (SFDI) (Ma, 2008). It was 

found that SFDI enabled more stable and accurate simulations. However, such an approach does not 

have a consistent weak formulation throughout the simulation domain. The flow governing equation 

near the boundary was not implemented at the particle distance scale. MLPG method was further 

improved by introducing the Rankine source solution (MLPG_R), instead of the Heaviside step function, 

as the test function for the fluid particles, in which the pressure derivative was entirely replaced by 

the pressure itself to be numerically solved (Ma, 2005b). The weak formulation for inner fluid particles 

in the MLPG_R improves the stability and accuracy in solving the PPE by entirely omitting Laplacian or 

gradient operator of the unknown pressure (Ma et al., 2016) and was successfully applied to problems 

such as 2D breaking waves (Ma & Zhou, 2009) and violent water waves (Zheng et al., 2014). As the 

treatment of wall boundary condition was unchanged with the gradient operator of the pressure being 

discretized directly, the errors introduced at the boundary can creep into the inner flow domain, 

especially in regions close to the solid walls. 

In this work, using the local integration scheme of the MLPG_R method, a weak formulation for the 

wall boundary condition is developed that satisfies simultaneously the incompressible fluid governing 

equation in the local integration domain and the pressure Neumann boundary condition.  The 

pressure gradient is eliminated for wall particles, leaving only the unknown pressure itself to be 

numerically discretized. The new formulation has been validated by the analytical solution of the patch 



test with particles randomly distributed, numerical benchmarks of lid-driven cavity cases at various 

Reynolds numbers and monochronic waves. Validation on the curved boundary will also be carried 

out for flow over a cylinder in which pressure acting on the cylinder and wakes after the cylinder will 

be discussed. 

2. Governing Equations 

The governing equations are the incompressible and viscous Navier–Stokes equations in the 

Lagrangian form as follows: 

∇ ∙ 𝒖 = 0 (1) 

𝐷𝒖

𝐷𝑡
= −

1

𝜌
∇𝑝 + 𝒈 + 𝑣∇2𝒖 (2) 

where 𝜌 is the density, which is a constant for the incompressible fluid, 𝒖 is the velocity, 𝒈 is the 

gravitational acceleration, 𝑝 is the pressure, and 𝑣 is the kinematic viscosity.  

At the wall boundary, impermeability condition is applied by enforcing the normal component of the 

fluid velocity equals to that of the boundary velocity as 

𝒖 ∙ 𝒏 = 𝑼 ∙ 𝒏 (3) 

By substituting Eq. (3) into Eq. (2), the pressure at the wall satisfies  

𝒏 ∙ ∇𝑝 = 𝜌(𝒏 ∙ 𝒈 − 𝒏 ∙ �̇� + 𝑣𝒏 ∙ ∇2𝒖 ) (4) 

where 𝑼 and �̇� are the velocity and the acceleration of the solid wall, respectively. 

3. Numerical Method 

3.1 Time marching procedure 

The projection method solves pressure and velocity fields in many meshless simulations for 

incompressible fluids (Ma et al., 2016). Based on the known variables of each particle at n-th time step 

(𝑡 = 𝑡𝑛), intermediate velocity 𝒖∗ and intermediate position 𝒓∗ are explicitly calculated according to 

Eq. (2) without the pressure gradient term as 

𝒖∗ = 𝒖𝑛 + (𝑣∇2𝒖𝑛 + 𝒈)∆𝑡 (5) 

𝒓∗ = 𝒓𝑛 + 𝒖∗∆𝑡 (6) 

By using the intermediate velocity and combining it with Eqs. (1) and (2), the pressure equation at 

𝑡𝑛+1 can be formulated as the Pressure Poisson Equation (PPE) as  



∇2𝑝𝑛+1 =
𝜌

∆𝑡 
∇ ∙ 𝒖∗ (7) 

The PPE is numerically solved for both fluid particles as detailed in section 3.2 and for wall boundary 

particles with the impermeable wall boundary condition implemented in Section 3.3. Once the 

pressure field is obtained by solving Eq. (7), the velocity and position of the fluid particles can be 

updated by 

𝒖𝑛+1 = 𝒖∗ + (−
1

𝜌
∇𝑝𝑛+1) ∆𝑡 (8) 

𝒓𝑛+1 = 𝒓𝑛 + 𝒖𝑛+1∆𝑡 (9) 

It should be noted that the velocity and position updates with Eqs. (8) and (9) are not applied on wall 

boundary particles as their velocity and position follow the movement of the wall boundaries by 

adopting either the non-slip or slip condition.  

                                                                                                                 

                 

                  

                                       (a)                                                                                         (b) 

Figure 1. (a) Local sub-domain 𝛺𝐼 for fluid particles I, support domain for fluid particle J with a radius 

of 𝑅𝐽 and two domains for wall boundary particle K. (b) Demonstration of sub-domain for the wall 

boundary particle K, which is a semi-circle with the centre semi-circle 𝛺𝜀, having the radius of 𝑅𝜀, being 

taken out. 

 

3.2 MLPG_R formulation for fluid particles 

For fluid particles, such as node I and J, as demonstrated in Fig. 1(a), the weak formulation for 

numerical discretization involves the integration of PPE over local sub-domains as  

∫ (∇2𝑝𝑛+1 −
𝜌

∆𝑡
∇ ∙ 𝒖∗) 𝜑

𝛺𝐼
𝑑Ω = 0 (10)  

where 𝜑 is the test function and 𝛺𝐼 is the integration sub-domain that can be of any arbitrary shape 

(Atluri & Shen, 2002). In the developed MLPG_R method (Ma, 2005b), the circular sub-domain with 

(𝜕𝛺𝐾 = 𝜕𝛺ℎ ∪ 𝜕𝛺𝑏1+𝑏2 ∪ 𝜕𝛺𝜀) 



the radius of  𝑅𝐼 = 0.8 × ∆𝑙 is adopted, where ∆𝑙 is the initial particle distance.  The test function 

adopted here is  

𝜑 =
1

2𝜋
𝑙𝑛 (

𝑟

𝑅𝐼
) (11) 

where r is the distance away from particle I, since the weak formulation is only applied on fluid 

particles, the integration sub-domain is entirely located in the fluid domain forming a complete circle. 

The test function 𝜑 satisfies ∇2𝜑 = 0 in 𝛺𝐼  and 𝜑 = 0 on its circular boundary of 𝜕𝛺𝐼 . By applying 

Gauss’s theorem to Eq. (10), the final weak formulation for fluid particles yields: 

∫ 𝒏 ∙ (𝑝∇𝜑)
∂𝛺𝐼

𝑑𝑆 − 𝑝 = ∫
𝜌

∆𝑡
𝒖∗ ∙ ∇𝜑

𝛺𝐼
𝑑Ω (12)  

where ∂𝛺𝐼 is the boundary of 𝛺𝐼 which is a complete circular curve, and 𝒏 is the normal vector of the 

sub-domains pointing to the outside. For more details of the derivation of Eq. (12), readers are 

referred to Ma (2005b). 

 

3.3 MLPG_R formulation for wall particles 

In this study, instead of direct discretization of the impermeable wall boundary condition involving 

normal pressure gradient as in the previous MLPG_R method (Ma, 2005b), a new weak formulation 

will be derived for wall particles based on the PPE with impermeability condition of Eq. (3) imposed. 

As shown in Fig. 1(b), the sub-domain for the wall particle, K, is a semi-circle. By adopting the same 

test function as for the fluid particles, a zero term 𝑝∇2𝜑 is added to the left-hand side of the PPE and 

then integrated over the sub-domain 𝛺𝐾. To apply Gauss’s theory and to avoid the singularity of the 

test function at the centre of the sub-domain, a semi-circle with a radius being 𝑅𝜀 is extracted from 

the sub-domain and the integration becomes 

∫ [(∇2𝑝)𝜑 − 𝑝∇2𝜑]
𝛺𝐾

𝑑Ω  = ∫ [𝒏 ∙ (𝜑∇𝑝) − 𝒏 ∙ (𝑝∇𝜑)]
𝜕𝛺𝐾

𝑑𝑆 (13)  

where 𝜕𝛺𝐾  is the boundary of the sub-domain consisting of a semi-circular boundary 𝜕𝛺ℎ , a flat 

boundary 𝜕𝛺𝑏 = 𝜕𝛺𝑏1 ∪ 𝜕𝛺𝑏2 representing the wall boundary, and a semi-circular boundary  𝜕𝛺𝜀 for 

avoiding the singularity at the centre, which will be taken as infinitesimal in the following derivation. 

By taking 𝑅𝜀 → 0, the first term of the right-hand side of Eq.(13), can be expressed as 

∫ [𝒏 ∙ (𝜑∇𝑝)]
∂𝛺ℎ+𝜕𝛺𝑏+𝜕𝛺𝜀

𝑑𝑆 = ∫ [𝒏 ∙ (𝜑∇𝑝)]
𝜕𝛺𝑏

𝑑𝑆 (14)  

as it can be easily proven that  

∫ [𝒏 ∙ (𝜑∇𝑝)]
∂𝛺ℎ

𝑑𝑆 = 0 as 𝜑 vanishes on ∂𝛺ℎ and 



∫ (𝒏 ∙ ∇𝑝)
1

2𝜋
ln (

𝑟

𝑅𝐾
)

∂𝛺𝜀
𝑑𝑆 = ∫ (𝒏 ∙ ∇𝑝)

1

2𝜋
ln (

𝑅𝜀

𝑅𝐾
) 𝑅𝜀

𝝅

0
𝑑𝜃 = 0 as lim

𝑅𝜀→0
𝑙𝑛 (

𝑅𝜀

𝑅𝐾
) 𝑅𝜀 = 0 

And the second term can be manipulated to become  

∫ [𝒏 ∙ (𝑝∇𝜑)]
∂𝛺ℎ+𝜕𝛺𝑏+𝜕𝛺𝜀

𝑑𝑆 = ∫ [𝒏 ∙ (𝑝∇𝜑)]
∂𝛺ℎ

𝑑𝑆 −
𝑝

2
   (15)  

as   

∫ 𝒏 ∙ (𝑝∇𝜑)
∂Ωε

𝑑𝑆 = −
𝑝

2
  and  

∫ [𝒏 ∙ (𝑝∇𝜑)]
𝜕𝛺𝑏

𝑑𝑆 = 0  

Combining Eq. (14) and (15) gives the weak formulation of the Laplacian pressure as 

∫ (∇2𝑝)𝜑
𝛺𝐾

𝑑Ω  = ∫ 𝒏 ∙ (𝜑∇𝑝)
𝜕𝛺𝑏

𝑑𝑆 +
𝑝

2
− ∫ [𝒏 ∙ (𝑝∇𝜑)]

∂𝛺ℎ
𝑑𝑆 (16)  

Gauss theory is also applied to the integration of the term associated with the divergence of the 

intermediate velocity, and it reads 

∫
𝜌

∆𝑡
𝜑(∇ ∙ 𝒖∗)

𝛺𝐾
𝑑Ω = ∫

𝜌

∆𝑡
∇ ∙ (𝜑𝒖∗)

𝛺𝐾
𝑑Ω − ∫

𝜌

∆𝑡
𝒖∗ ∙ ∇𝜑

𝛺𝐾
𝑑Ω

                                       

                                       = ∫
𝜌

∆𝑡
𝒏 ∙ (𝜑𝒖∗)𝑑𝑆

∂𝛺𝑏
−  ∫

𝜌

∆𝑡
𝒖∗ ∙ ∇𝜑

𝛺𝐾
𝑑Ω (17)

  

in which the integration over the sub-domain boundary ∂𝛺𝐾  is reduced to ∂𝛺𝑏  as ∫
𝜌

∆𝑡
𝒏 ∙

∂𝛺ℎ

(𝜑𝒖∗)𝑑𝑆 = 0 and ∫
𝜌

∆𝑡
𝒏 ∙ (𝜑𝒖∗)𝑑𝑆

∂𝛺𝜀
= 0. Combining Eqs. (16) and (17), the final weak formulation 

for the wall boundary particles is expressed as  

∫ 𝒏 ∙ (𝜑∇𝑝)
𝜕𝛺𝑏

𝑑𝑆 +
𝑝

2
− ∫ [𝒏 ∙ (𝑝∇𝜑)]

∂𝛺ℎ
𝑑𝑆 = ∫

𝜌

∆𝑡
𝒏 ∙ (𝜑𝒖∗)𝑑𝑆

∂𝛺𝑏
− ∫

𝜌

∆𝑡
𝒖∗ ∙ ∇𝜑

𝛺𝐾
𝑑Ω (18)  

In Eq. (18), the first terms at the left- and right-hand sides are integrals over the boundary 𝜕𝛺𝑏, where 

the pressure Neumann condition satisfies. Thus Eq. (4) in the format of 𝒏 ∙ ∇𝑝 =
𝜌

∆𝑡
𝒏 ∙ (𝒖∗ − 𝑼) (Ma 

& Zhou, 2009) is implemented, and the two terms involving pressure gradient and intermediate 

velocity are vanished.  The final formulation for the wall boundary particles yields 

∫ [𝒏 ∙ (𝑝∇𝜑)]
∂𝛺ℎ

𝑑𝑆 −
𝑝

2
= ∫

𝜌

∆𝑡
𝒖∗ ∙ ∇𝜑

𝛺𝐾
𝑑Ω − ∫

𝜌

∆𝑡
𝒏 ∙ (𝜑𝑼)𝑑𝑆

∂𝛺𝑏
(19)  

For the scenarios that only involve fixed or tangentially moving boundaries, i.e., 𝒏 ∙ 𝑼 = 0, Eq. (19) 

can be further simplified as 



∫ [𝒏 ∙ (𝑝∇𝜑)]
∂𝛺ℎ

𝑑𝑆 −
𝑝

2
= ∫

𝜌

∆𝑡
𝒖∗ ∙ ∇𝜑

𝛺𝐾
𝑑Ω (20)  

This new formulation for wall particles satisfies the PPE in the local sub-domain and has the 

impermeable wall boundary condition implemented for both fixed and moving walls. Furthermore, 

because all terms involving derivatives of the unknown pressure are removed, the accuracy and 

efficiency of solving for pressure at the wall boundary can be much improved  to the same level as for 

fluid particles (Ma, 2005a, b).  

It should be noted that the semi-circular sub-domain used in the derivation assumes that the wall 

boundary truncating the sub-domain is a straight line and is the diameter of the sub-domain. This can 

be justified by the fact that the size of the sub-domain is small with the same scale of the particle 

distance, and the error induced by the assumption, when applied to curved boundaries, can be 

reduced by increasing the number of particles on the boundary. Simulations of flow over a cylinder 

will be presented in Section 4.3, in which the proposed scheme will be applied on curved wall 

boundary with various particle distances tested. 

 

3.4 Discretized Equations 

For fluid and wall particles governed by the weak formulations of Eqs. (12) and (19) respectively, the 

unknown pressure will be approximated by a set of neighbouring particles and discretized as 

𝑝(𝒙𝒊) ≈ ∑ 𝛷𝑗(𝒙)𝑁
𝑗=1 �̂�𝑗  (21)  

where 𝛷𝑗  is the interpolation function in terms of neighbour particle 𝑗 which is located within the 

support domain of particle 𝑖 and will be formulated by the Moving Least Square (MLS) method in this 

paper, which is detailed in Belytschko et al. (1994) and Atluri et al. (1999), 𝑁 is the total number of 

neighbour particles affecting the pressure at 𝒙, and �̂�𝑗  is the pressure of each neighbour particle.  

In this paper, the size of supporting domain is chosen to be 1.85 × ∆𝑙 as it was taken in the MLPG_R 

method (Ma, 2005b), where ∆𝑙 is the initial particle distance. The linear equation set for pressures of 

all the particles with the total number of 𝑛, 𝑷 = [𝑝1, 𝑝2, … 𝑝𝑛], is written as 

𝑺𝑲 ∙ 𝑷 = 𝑭𝑩 (22)   

where 

𝑺𝑲𝑖𝑗 = {
∫ 𝛷𝑗(𝒙𝑖)𝒏 ∙ ∇𝜑

∂𝛺𝐼
𝑑𝑆 − 𝛷𝑗(𝒙𝑖)                      fluid particles

∫ 𝛷𝑗(𝒙𝑖)𝒏 ∙ (∇𝜑)
∂𝛺ℎ

𝑑𝑆 −
𝛷𝑗(𝒙𝑖) 

2
                 wall particles

  (23)  

 



𝑭𝑩𝑖 = {
∫

𝜌

∆𝑡
𝒖∗ ∙ ∇𝜑

𝛺𝐼
𝑑Ω                                                   fluid particles 

∫
𝜌

∆𝑡
𝒖∗ ∙ ∇𝜑

𝛺𝐾
𝑑Ω − ∫

𝜌

∆𝑡
𝒏 ∙ (𝜑𝑼)𝑑𝑆

∂𝛺𝑏
           wall particles

  (24)  

By keeping the same formulation for the fluid particles, the direct discretization of the wall boundary 

condition, as in Ma & Zhou (2009), is presented in Eqs. (25) and (26) for comparison, which shows that 

the newly developed weak formulation removes the gradient approximation for the unknown 

pressure. The derivation process also fulfils the mass and momentum conservation and the 

impermeable wall condition. 

𝑺𝑲𝑖𝑗 = 𝒏 ∙ ∇𝛷𝑗(𝒙𝑖)  (25) 

𝑭𝑩𝑖 =
𝜌

∆𝑡
𝒏 ∙ (𝒖∗ − 𝑼) (26) 

In Eq. (23), for terms involving line integration over ∂𝛺𝐼  and ∂𝛺ℎ  for fluid and boundary particles, 

respectively, Gaussian quadrature is adopted for each quarter segment of the circular integration 

surface by using two Gaussian points (Ma, 2005b). Domain integration of explicitly calculated 

intermediate velocity will be carried out for fluid and wall particles. As for the intermediate velocity 

calculation in Eq. (5), the viscous term involving velocity Laplacian is obtained by the second-order 

MLS method. Alternative Laplacian operators such as QSFDI and CSPM are discussed in Korzilius et al. 

(2016), Yan et al. (2020) and Zhang et al. (2021). Several numerical techniques are developed for the 

integral evaluation, such as the classic Gaussian quadrature method (Atluri et al., 1999; Sellountos & 

Polyzos, 2003) and the semi-analytical method (Ma, 2005b). The Gaussian quadrature method is 

relatively time-consuming for domain integration due to the required number of Gaussian points, e.g., 

16 points for 2D simulation. Recently a more efficient integration technique was developed for 3D 

simulation with only 6 points needed and quantified the order of the error (Agarwal et al., 2021, Sriram 

and Ma, 2021). In this study, the domain integration technique follows that proposed in Ma (2005b), 

dividing the domain into four divisions and requiring 4 points in total, which is sufficiently efficient for 

2D simulations. Similar to Agarwal et al. (2021), it assumes the field values (i.e., intermediate velocities) 

have a linear variation over each division for the analytical integration. As discussed in 3.2 and 3.3, the 

domain integration for fluid particles is over a complete circle while it is over a semi-circle for a single 

layer of the wall particles. Once Eq. (22) is solved and the pressure field is obtained, velocity and 

particle position updates will be explicitly carried out according to Eq. (8) and (9) with the SFDI scheme 

(Ma, 2008) adopted for pressure gradient estimation.  

4. Model Validations 

In this section, four test cases, namely patch test for solving Poisson’s equation, lid-driven cavity, flow 

over a cylinder and monochromic wave generation, which have analytical solutions, numerical 



benchmarks and experimental results, are presented to validate the proposed scheme for 

implementing the boundary condition. The MLPG_R method for modelling fluid particles, without the 

special boundary treatment approach, is well established in solving linear potential flow problems 

(Atluri & Zhu, 1998), non-linear water waves (Ma, 2005a), and more recently, contaminant transport 

problems (Boddula & Eldho, 2017) and wave-vegetation interaction problems (Divya et al., 2020).  

 

4.1 Patch tests for solving Poisson’s equation 

To test the performance of different numerical schemes, patch tests for solving Poisson’s equation 

with comparisons with the analytical solution are widely reported (Schwaiger, 2008; Lind et al., 2012 

and Zheng et al., 2014). In this study, the equation of ∇2𝑝 = 0 in the patch of 0 ≤ 𝑥 ≤ 1 and 0 ≤ 𝑦 ≤

1 will be solved. Four solid boundary conditions are defined as 
𝜕𝑝

𝜕𝑥
|

𝑥=0
= 0, 

𝜕𝑝

𝜕𝑥
|

𝑥=1
= 0, 

𝜕𝑝

𝜕𝑦
|

𝑦=0
= 0 

and 
𝜕𝑝

𝜕𝑦
|

𝑦=1
= 𝜋sinh (𝜋𝑦)cos (𝜋𝑥) which lead to the analytical solution of 𝑝(𝑥, 𝑦) = cosh (𝜋𝑦)cos (𝜋𝑥). 

The equation is numerically solved by the newly developed boundary condition scheme as well as the 

existing scheme involving direct discretization of the wall boundary condition (Ma, 2005a) for 

comparison. A range of particle distances ∆𝑙 = 0.01, 0.0125, 0.01666, 0.025 and 0.05 in both x and y 

directions are tested corresponding to total particle numbers of 10201, 6561, 3721, 1681 and 441 

respectively in the patch. To achieve the particle distribution similar to that in the real flow simulation, 

controlled randomness is added to regularly distributed particles with the coordinates modified by  

∆𝑙′ = (1 + 𝑘(𝑅𝑛 − 0.5))∆𝑙 where 𝑅𝑛 is a random number ranging from 0 to 1, and 𝑘 is a constant for 

adjusting the disorderliness of the particles. The accuracy is quantified by evaluating the mean error 

for all particles as 𝐸𝑟 = √∑|𝑝𝑖 − 𝑝𝑖,𝑎|
2

/√∑|𝑝𝑖,𝑎|
2

, where 𝑝𝑖  is the numerically solved pressure and 

𝑝𝑖,𝑎 is the analytical solution.  



 

Figure 2. Errors of the new boundary scheme and direct discretisation of pressure Neumann boundary 

condition for different particle distances of ∆𝑙 =0.007, 0.008, 0.01, 0.0125, 0.01666, 0.025, 0.05 with 

the randomness of 𝑘 = 0.3. The dashed line is to indicate the 2:1 gradient. 

 

Fig.2 shows the errors of numerical results using the direct discretization of the wall boundary 

condition by the SFDI scheme (Ma, 2008) and the present weak formulation. It can be seen that with 

different numbers of particles employed at typical randomness in the simulation 𝑘 = 0.3, the errors 

of the new boundary scheme are smaller than those with the existing direct discretization scheme. 

The scheme also achieves overall second-order convergence for particle distance, as shown in Fig.2. 

When examining wall boundary particles only, the mean error for the particle distance of ∆𝑙 = 0.01𝑚  

is 6.299 × 10−4 by adopting the new boundary approach, which is lower than 1.729 × 10−3 obtained 

by the direct discretisation approach. Since the numerical scheme remains the same for all the inner 

particles, the reduced mean errors, including all the particles as shown in Fig. 2, indicate that the 

improvement on the boundary condition implementation also significantly impacts the equation 

solving for the inner particles.   



     
 (a)                                                                       (b) 

     
(c)                                                                        (d) 

Figure 3. Errors of the direct Neumann boundary condition scheme (triangle markers) and the 

improved weak formulation boundary scheme (square marker) for different particle distances ∆𝑙 

=0.01, 0.0125, 0.01666, 0.025, 0.05 with different randomness in (a) 𝑘 = 0.1, (b) 𝑘 = 0.2, (c) 𝑘 = 0.4 

and (d) 𝑘 = 0.5. The dash lines are to indicate the 2:1 gradient. 

Further tests for the various particle distributions by ranging randomness 𝑘 from 0.1 to 0.5 are carried 

out, and results are compared with the existing scheme as shown in Fig.3. For both schemes, errors 

slightly increase as the increased disorder is introduced in the distribution of particles, which is 

consistent with results from other meshless methods (Basic et al., 2018). It also can be seen that the 

new scheme shows better performance over the full range of randomness and particle distances. For 

minor disordered particles (𝑘 = 0.1 and 0.2), the performances of the two schemes are similar, 

especially when particle distance is sufficiently fine, i.e., ∆𝑙 = 0.01 , while for higher disordered 

distribution (𝑘 = 0.4 and 0.5), the new scheme achieves much higher accuracy. 



In addition to the mean error, the number of particles having large errors, which may lead to 

simulation instability, is also investigated. For the case with ∆𝑙 = 0.01 and 𝑘 = 0.3, the maximum 

errors 1.534 × 10−2 and 2.424 × 10−2 for the new and existing schemes, respectively. Fig.4 shows 

the number of particles having large errors, which are higher than 20% of the maximum error in the 

simulation. Those particles are divided into groups with an increment of 10% relative to the maximum 

error. It can be seen that 97 particles out of 10201 in total have errors between 20% and 30% of the 

maximum error in the present scheme. While the number is doubled for the existing boundary 

condition scheme in this error range, and this is the case for all other larger error ranges. 

 

Figure 4. The number of particles, the blue column for the new scheme and the red column for the 

existing scheme, has errors within the ranges compared to the maximum error. 

 

4.2 Lid-driven cavity 

In this section, the lid-driven cavity flow in a 2D square domain with the length of sides being 𝐿 = 1𝑚 

is considered. This case has been used to examine the accuracy and efficiency of other numerical 

methods such as the Finite Volume method (Ghia et al., 1982), which will be used as the benchmark. 

The flow in the rigid wall confined domain is driven by the lid sliding laterally at a constant velocity of 

𝑈𝑙𝑖𝑑 = 1𝑚/𝑠. The flow regime is classified by Reynolds number defined as 𝑅𝑒 = 𝑈𝑙𝑖𝑑𝐿 𝜐⁄  where 𝜈 

denotes the kinematic viscosity of the fluid. 𝑅𝑒 from 100 to 3200 are tested, covering a wide range of 

the flow regime which can reach a steady state (Peng et al., 2003). 



 
                                           (a)                                                                                      (b) 

Figure 5. Velocities of lid-driven cavity flow at 𝑅𝑒 =400 obtained by the MLPG_R method with the new 

wall boundary scheme using different particle distances and the benchmark. (a) Horizontal velocity at 

x=L/2 and (b) Vertical velocity at y=L/2. 

The convergence test regarding to the particle distance is firstly carried out for 𝑅𝑒 = 400 with 𝛥𝑙 = 

0.05m, 0.025m, 0.017m, 0.013m and 0.01m corresponding to total particle numbers of 21 × 21, 41 ×

41, 61 × 61, 81 × 81 and 101 × 101 respectively. Horizontal and vertical velocities at 𝑥=L/2 and 

𝑦=L/2 respectively, are plotted for all the resolutions along with the benchmark results (Ghia et al., 

1982) as shown in Fig.5. It can be seen that with the particle number increased, both velocities 

gradually approach the benchmark with the results from 81 × 81 well agreed with the benchmark. To 

ensure the accuracy of the simulations, particle distance 𝛥𝑙 = 0.01 (corresponding to the particle 

number of 101 × 101) will be adopted for the following cases unless stated otherwise.  

The velocities for the flows with 𝑅𝑒 being from 100 to 3200 are plotted and compared with those 

simulated by the existing boundary condition scheme in Fig.6. The results of the new boundary 

condition scheme show good agreement with those in Ghia et al. (1982) across the whole range of the 

𝑅𝑒. Similar performance of both schemes at low 𝑅𝑒 = 100 as shown in Fig. 6(a) and (b) is to be 

expected due to the maximum velocities in flows with lower 𝑅𝑒 are developed far away from the 

boundaries, i.e., the magnitude of the horizontal velocity becomes maximum at 𝑦 = 0.5𝑚, and that 

happens at 𝑥 = 0.22𝑚 and 0.8𝑚 for the vertical velocity, which is less sensitive to the boundary 

treatment. When 𝑅𝑒 is increased, the improvement by the new boundary scheme becomes significant, 

especially for the maximum velocities which occur closer to the wall boundaries. As for the case of 

𝑅𝑒 = 1000, the maximum horizontal velocity occurs at 𝑦 = 0.18𝑚, which is closer to the bottom 

boundary and that for the vertical velocity occurs at 𝑥 = 0.15𝑚 and 0.9m which move forward the 

two sidewalls. One should also note that when the 𝑅𝑒 is further increased to 3200, although the 



results are improved from the previous scheme, velocities are slightly underestimated may be caused 

by the lack of consideration for turbulence which is not the focus of this paper. 

 

(a) 

  
(b) 

  
(c) 



  
(d) 

Figure 6. Velocities of the lid-driven cavity flow by adopting the improved wall boundary scheme (solid 

black line) and the existing wall boundary scheme (blue dash line). (a) to (d) are results of 𝑅𝑒 = 100, 

400, 1000 and 3200 with horizontal velocities at 𝑥 = 𝐿/2 in the left column and vertical velocities at 

𝑦 = 𝐿/2 in the right column. The squares are benchmarks from the Finite Volume Method (Ghia et al., 

1982). 

 

4.3 Flow over a cylinder 

In this section, simulations are carried out for flow over a cylinder to show the capacity of the new 

boundary scheme for handling curved boundaries. As shown in Fig.7, flow with a constant inlet velocity 

𝑢𝑎=0.1m/s interacting with a cylinder is simulated in a rectangular domain with the length of 𝐿=0.9m 

and the height of 𝐻=0.6m. The cylinder has a radius of 𝑅=0.02m and is located at 𝑥=0.5m and 𝑦=0.3m. 

The Reynolds number of the flow is defined by 𝑅𝑒 = 𝑢𝑎2𝑅/𝑣.  

To simulate continuous inflow and outflow at two ends of the channel, the periodic boundary 

condition is applied by returning the particles to the inlet once it reaches the outlet. It is achieved by 

setting multiple layers of particles, with the width of 𝑊 = 0.1m, in the inlet and outlet zone to be 

mirrored to the outside of the domain by carrying all the flow properties. This treatment also 

completes the support domains for particles at inlet and outlet boundaries. 



 

Figure 7. Illustration of the simulation domain with mirrored particles to achieve periodic boundaries 

and integration domain tangent to the curved wall. 

The new boundary scheme is applied on all the solid boundaries, including the top wall, bottom wall, 

and cylinder surface. To use the semi-circular sub-domain on the wall particles at the curved boundary, 

the diameter goes through the wall particle and tangents to the curved wall, as illustrated in Fig.7. It 

is worth noting that the wall boundary condition is applied on the diameter of the semi-circle as that 

for the flat boundary rather than on the actual surface of the cylinder. The error induced by this 

procedure can be reduced by increasing the number of particles which has been tested by setting the 

different particle numbers distributed at the circular wall boundary with 𝛥𝑙 = 2𝜋𝑅/12 ,  2𝜋𝑅/

18, 2𝜋𝑅/24 and 2𝜋𝑅/30. The flow with 𝑅𝑒 = 40 is simulated, and the pressures relative to the far-

field pressure around the cylinder surface are shown in Fig.8. It can be seen that the results converge 

at 𝛥𝑙 = 2𝜋𝑅/24 ≈ 0.005𝑚 and show a negligible difference when the particle distance is further 

decreased to 𝛥𝑙 = 2𝜋𝑅/30. Therefore, the particle distance of  𝛥𝑙 = 2𝜋𝑅/24 will be adopted for 

other flow over cylinder tests. 



 

Figure 8. Pressure distribution along the upper half surface of the cylinder as shown by dash line for 

different particle distances in the flow of 𝑅𝑒 = 40.  

         
                                  (a) 𝑅𝑒 =20                                                                            (b) 𝑅𝑒 =30 

         
                                  (c) 𝑅𝑒 =40                                                                            (d) 𝑅𝑒 =50                                                                



         
                                  (e) 𝑅𝑒 =60                                                                            (f) 𝑅𝑒 =100      

  

Figure 9. Velocity field near the cylinder at (a) 𝑅𝑒 = 20; (b) 𝑅𝑒 = 30; (c) 𝑅𝑒 = 40; (d) 𝑅𝑒 = 50; (e) 

𝑅𝑒 = 60 and (f) 𝑅𝑒 = 100. 

 

Figure 10. Comparison of normalized wake lengths 𝐿𝑤𝑎𝑘𝑒/𝐷 with the experimental data (Coutanceau 

& Bouard, 1977). 

The velocity fields are plotted in Fig. 9 for 𝑅𝑒 = 20, 30, 40, 50, 60 and 100. Complex flow phenomena 

near the cylindrical wall boundary involving wake flow, flow separation and vortex shedding are well 

captured by the new boundary scheme. It can be seen from Fig.9 (a) to (e) that two symmetrical 

vortexes are generated behind the cylinder for low 𝑅𝑒 up to 60, with the wake length increased when 

the Reynolds number gets higher. At a higher 𝑅𝑒 = 100, as shown in Fig. 10(f), non-symmetrical wakes 

are captured, which is consistent with the observation in Ding et al. (2004). Fig.10 demonstrates a 

good agreement between calculated and measured (Coutanceau & Bouard, 1977) wake lengths for 

various 𝑅𝑒 values. Furthermore, the distribution of time-averaged relative pressure coefficient 𝐶𝑝 =

(𝑝 − 𝑝∞)/
1

2
𝜌𝑢∞

2  along the upper half surface of the cylinder at 𝑅𝑒 = 100  is calculated, where 𝑝∞ 

and 𝑢∞ are the far-field pressure and velocity. Fig.11 shows a good agreement between the results 



from the present model with the numerical results of Park et al. (1998), which used a high-resolution 

finite volume method. It should also be noted that the direct discretisation approach for the boundary 

condition is also tested with the same settings as that in the new boundary approach. Without using 

any regularization, particle disorder at the wake of the cylinder is significant, which leads to stability 

issues. But this is much improved for the new boundary scheme as the void in the wake of the cylinder 

was fairly small (the largest particle distance is about 1.3 × ∆𝑙) and do not expand throughout the 

simulation until equilibrium vortex is developed. 

 

Figure 11. Comparison of the time-averaged pressure coefficient 𝐶𝑝  along the upper half surface of 

the cylinder with experimental data (Park et al., 1998) at 𝑅𝑒 = 100.  

 

4.4 Monochromic wave generation 

In this section, the monochromic wave will be generated by a piston moving wavemaker to examine 

the performance of the proposed boundary scheme for the moving boundary with accelerations. The 

monochromic wave is generated in a long rectangular tank with water depth 𝐻 = 1𝑚 and tank length 

𝐿 = 30𝑚, which is sufficiently long to contain several waves without reflection from the end of the 

tank. The motion of the wavemaker is governed by  

𝑆(𝑡) = 𝑎(1 − cos 𝜔𝑡) (27)  

𝑈𝑥(𝑡) = 𝑎𝜔 sin 𝜔𝑡 (28)  

where 𝑈𝑥  is the velocity of the wavemaker in the wave progression direction with the amplitude 𝑎 =

0.01𝑚 and the frequency 𝜔 = 1.45𝑠−1; 𝑆 is the displacement of the wavemaker. Like the test in Zhou 

et al. (2008), the slip boundary condition is applied on the wavemaker with the tangential velocity 

obtained by calculating pressure gradient by the SFDI scheme. The generated waves have small wave 



steepness, i.e., 0.012, and can be characterised as a linear wave for which the surface profile can be 

expressed by the linearized analytical solution (Eatock Taylor et al., 1994). By setting the initial particle 

distance ∆𝑙 = 0.04𝑚 and the time step ∆𝑡 = 0.02𝑠 , the new boundary condition scheme is validated 

by the analytical solution by comparing wave profiles at two instants of 𝑡 = 24𝑠  and 𝑡 = 30𝑠  as 

shown in Fig.12. It can be seen that the present study has achieved a good agreement with the 

analytical solution, which demonstrates the capability of the proposed boundary scheme for treating 

moving boundaries.  

 

(a) 𝑡 = 24𝑠 

 

(b) 𝑡 = 30𝑠 

Figure 12. Comparison with analytical solution (Eatock Taylor et al., 1994) of wave profiles at two 
instants (a) 𝑡 = 24𝑠 and (b) 𝑡 = 30𝑠 (𝑎 = 0.01𝑚 and 𝜔 = 1.45𝑠−1).  

 



5. Conclusion 

This study developed a new boundary condition implementation scheme for rigid and impermeable 

walls by integrating the PPE over a semi-circular sub-domain for wall boundary particles with the 

Neumann pressure boundary condition imposed. In this formulation, terms involving the derivative of 

the unknown pressure are removed to improve accuracy. Through validating the new scheme by the 

patch test of solving Poisson’s equation, the new scheme achieves a second-order particle distance 

convergent rate for a range of disorderliness of particle distributions. Higher accuracy is also 

demonstrated by comparing the results with those of the previous scheme, which directly discretizes 

the pressure wall boundary condition, especially for particles with relatively high randomness through 

patch test validations. Apart from the reduction of mean error, the number of particles having large 

errors are also reduced, thus enhancing the stability of the simulation. In the lid-driven cavity cases, 

the velocity fields simulated by the model with the new boundary scheme has achieved good 

agreement with those by the well-established numerical method across a wide range of Reynolds 

number. The maximum velocities developed in the lid-driven cavity flow which appear near the wall 

boundary are better captured by the new boundary scheme. In the simulation of flow over a cylinder, 

the new boundary scheme is applied to the curved surface of the cylinder. The convergent results to 

various particle numbers show the capacity of the new scheme to deal with non-flat geometries. The 

development of symmetrical vortex and its length at low Reynolds number and asymmetrical vortex 

at high Reynolds number are all well captured compared with measurements. The capability of the 

new boundary approach is also validated for the moving boundary by generating monochromic waves 

using piston wavemaker as the wave surface profiles well agree with the analytical solutions.  
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