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Abstract-- Auditing the energy consumption in urban rail is vital 

for energy consumption evaluation and system parameter design. 

There are multiple ways to audit energy consumption, but a 

universal and global approach is missing. The system-level 

traction energy consumption (STEC) is proposed. Compared to 

the main substation energy consumption (MSEC), STEC is more 

accurate by eliminating the influence of step-down loads based on 

field test studies. An optimization parameter designing model is 

built, which takes the system cost as the optimal object considering 

the life span of energy feedback system (EFS)s. The modified salp 

swarm algorithm (MSSA) is proposed as the optimization 

algorithm. The numerical tests show that MSSA has better 

converge performance than salp swarm algorithm (SSA) and 

particle swarm optimization (PSO). The impact factors of STEC 

are analyzed. Compared with SSA and PSO, the initial value of the 

MSSA is improved and it evolves faster. Compared with the case 

that does not take the no-load voltage of rectifiers and start voltage 

of EFSs as optimal parameters, the composite cost of the case that 

takes the abovementioned parameters as optimal parameters is 

3.49% less. Compared to the system without EFSs, the optimal 

system with EFSs can save costs by 29.47%.  

Index Terms—Energy audit; Modified salp swarm algorithm; 

Optimization parameter designing 

NOMENCLATURE 

Symbol Definition 

Us The starting voltage of the energy feedback 

system (EFS) [V] 

U0 The no-load voltage of the rectifier unit [V] 

WM Active energy of all main transformers in 

contradistinction system (CS) [kWh] 

WT The total active energy of all rectifier units in 

CS [kWh] 

WF Feedback energy of all energy feedback 

system (EFS)s at the AC side in CS [kWh] 

WR Energy returned to the main substation 

(MS)s in CS [kWh] 

Wreg-trac Regenerative braking energy absorbed by 
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the adjacent trains in CS [kWh] 

Wres Total energy consumed by on-board braking 

resistors in CS [kWh] 

Wloss1 Energy dissipated on DC traction network 

(TN) between braking trains and traction 

trains in CS [kWh] 

Wloss2 Energy dissipated on DC TN between 

rectifiers and traction trains in CS [kWh] 

WM' Active energy of all main transformers in 

reference system (RS) [kWh] 

WT' The total active energy of all rectifier units in 

RS [kWh] 

Wreg-trac' Regenerative braking energy absorbed by 

the adjacent trains in RS [kWh] 

Wres' Total energy consumed by on-board braking 

resistors in RS [kWh] 

Wloss1' Energy dissipated on DC TN between 

braking trains and traction trains in RS [kWh] 

Wloss2' Energy dissipated on DC TN between 

rectifiers and traction trains in RS [kWh] 

WS The active energy of step-down loads [kWh] 

Wtrac Total energy consumption of tracting trains 

[kWh] 

Wreg The total regenerative braking energy of 

braking trains [kWh] 

ηT The efficiency of the rectifier unit 

ηF The efficiency of the EFS 

WTR System-level traction energy consumption 

(STEC) in CS [kWh] 

WTR' STEC in RS [kWh] 

S The rated power of EFS [kW] 

S The collection of S  

Us The collection of Us 

F(S, U0, Us) Optimization objective 

f1(S), 

f2(S,U0,Us) 
Sub-objective functions 
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Usi Start voltage of EFS in the i-th traction 

substation (TS) [V] 

εS Feasible region of S 

0U  Feasible region of U0 

sU  Feasible region of Us 

y The number of years since the installation of 

the EFSs 

Urmax Maximum allowable value of the rail 

potential 

Ut TN voltage 

Utmax Maximum allowable value of the TN voltage 

Utmin Minimum allowable value of the TN voltage 

INTRODUCTION 

HE urban rail power supply system includes regenerative 

braking energy utilization devices, such as the EFS, energy 

storage system (ESS) [1] and bidirectional converter device [2]. 

Since there is no unified and standard method to evaluate the 

energy-saving effect of EFSs, it is common for EFS 

manufacturers to evaluate the energy-saving effect by the ratio 

of the feedback energy and the rectifying energy of a single TS. 

However, auditing energy at a specific substation cannot reflect 

the energy consumption level of the power supply system. An 

index that considers the system-level energy consumption is 

needed. As for the parameter designing of EFS, the system-

level energy-saving effect and the composite cost of the system 

need to be considered. When calculating the composite cost of 

the system, the life span of EFSs, the inflation, and the multiple 

train operation timetables during the life span should be 

considered. Till now, the parameter designing methods include 

the expert empirical method and artificial intelligence (AI) 

algorithm. AI algorithm has advantages such as high efficiency 

and strong global search capability. However, with the 

development of AI algorithms nowadays, there is still space for 

algorithms to improve and evolve. In this paper, only the urban 

rail system with EFSs are discussed. 

In terms of urban rail energy consumption, Tian introduces 

the conception “Energy audit” [3]. The energy audit is to reflect 

the system energy consumption level, and the energy supplied 

by the substations is calculated. In [3], the traction energy, 

braking energy, RBE, substation energy, and energy loss are 

calculated. [4]-[6] audit energy from the aspect of traction 

substation. The system energy consumption is ignored. [7] 

audits energy from the aspect of trains. In [8], the system-level 

energy consumption is analyzed. However, the power flow 

structure of the high speed railway is different from the 

structure of urban rail. In [9], the energy audit index is the main 

substation energy consumption (MSEC), and the system-level 

energy-saving effect is effectively performed. But the index is 

not verified by the actual cases. In [10]-[11], various global 

substation energy consumption methods are proposed, but the 

reversed energy in main substations is neglected, which also 

affects the energy audit. The above research does not consider 

EFSs or does not consider reverse energy at main stations. 

Therefore, a reasonable and global energy audit index is needed 

for energy consumption evaluation and system parameter 

designing, but it needs to be studied further. In this paper, only 

urban rail system with EFSs are discussed. 

The parameter designing is closely related with the energy 

audit index. As for parameter designing of system with EFSs, 

the target is achieving high return on investment (ROI) as well 

as energy-saving effect. To improve the efficiency of system 

parameter designing, Lian uses the genetic algorithm (GA) to 

optimize the EFS rated power. However, the difference in the 

rated power of the EFS before and after optimization was less 

than 0.2 MW [14]. Wlodzimierz takes ROI as the final 

optimization aim, but the rated power of EFS should not be 

continuous values [15]. In [18], to minimize system energy 

consumption in the life span of EFS, particle swarm 

optimization (PSO) is used to obtain the location and rated 

power optimization solution of EFS. However, the starting 

voltage is not considered, which influences the energy-saving 

effect of EFSs directly. 

Salp Swarm Algorithm (SSA) [19] has been widely used 

since it was proposed in 2017. The algorithm simulates the 

behavior of salps and adopts a chain structure. It has only one 

main control parameter, so it is simple to implement [16]-[17]. 

However, SSA has defects such as easily falling into local 

optimum, low optimization accuracy, and slow convergence 

speed. The "No-Free-Lunch" theorem indicates that no 

algorithm can be applied to all optimization problems [20]. To 

obtain better results, [21]-[23] introduce adaptive parameters to 

accelerate evolution. In [21] and [24], the chaotic map is 

introduced to optimize the population initialization process. In 

[25] and [26], the spiral flight search (SFS) strategy and Levy 

flight strategy are introduced and have a positive effect on the 

evolution process. Other strategies, including hybrid 

locomotion [27], PSO [28], quantum-behaved and wavelet 

mutation[29], opposition-based learning [30] can also 

accelerate evolution speed. There are no cases which apply the 

SSA algorithm in urban rail design, not to mention the 

improved SSA algorithm. For SSA algorithm, it has room for 

improvement in areas such as population initialization, 

population selection, and random variation disturbance.  

The main contributions of this paper can be summarized as 

follows: 

1) An energy audit index, which is system-level energy 

consumption (STEC), is proposed. It counts energy from the 

system level. It is proved to be more effective than MSEC and 

can avoid the fluctuation of step-down loads through the field 

test. Therefore, it can be widely used in urban rail system with 

EFSs. 

2) The optimization parameter designing model of the system 

with EFSs is built. The composite cost is the optimal object. 

The install and maintenance cost of EFSs, the life span of EFSs, 

the inflation, and the multiple train operation timetables during 

the life span are considered. 

3) The modified SSA (MSSA) is proposed, which introduces 

Tent chaotic mapping, global adaptive inertia weight, and 

differential mutation algorithm. Numerical tests show that it has 

better performance than PSO and SSA. 

4) The case study shows that by using MSSA, the composite 

cost can save 29.47% 1.43%, and 3.50% compared to the 

reference system without EFSs, PSO, SSA respectively. 

5) The influence of U0 and Us is analyzed in the case studies. 
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The composite cost of MSSA without U0 and Us is 3.49% more 

than the composite cost of MSSA with U0 and Us. It can be 

shown that U0 and Us should be taken into account when 

designing the parameters. It can guide the subway design 

institutions on system designing. 

This paper is organized as follows: Section II first analyzes 

the energy flow in the power supply system in urban rail; then 

the energy audit index is proposed; the rationality of STEC is 

verified through the field test data. In section Ⅲ, the parameter 

designing model is proposed, which aims to minimize the 

composite cost of the system when EFSs reach their life span. 

In section IV, PSO and SSA are introduced, and the MSSA is 

proposed. In section V, numerical tests are carried out and the 

performance of PSO, SSA, and MSSA is compared. In section 

VI, the influence of U0 and Us is first analyzed in the case. Then 

the results of RS, PSO, SSA, MSSA with rated power as the 

optimization parameter and MSSA with all parameters of 

parameter designing model as optimization parameters are 

analyzed. 

ENERGY AUDIT AND PARAMETER DESIGNING MODEL 

In the urban rail of China, the structure of the power supply 

system contains main substation (MS)s, traction substation 

(TS)s, step-down substation (SS)s. The most applied structure 

of power supply system is: MSs transfer AC 110kV to AC 35 

kV and connect the AC 35 kV buses. The buses then connect to 

the TSs and SSs. In TSs, the rectifiers convert AC 35kV to DC 

1500V and are connected to DC 1500V buses. The buses 

connect to the traction network (TN), the rail, and the EFSs. 

EFSs can feed energy from the DC bus to AC 35 kV side. The 

step-down loads obtain energy from step-down transformers. In 

SSs, there are only step-down loads. The step-down loads 

include lighting, air conditioning system, electric lifts, and so 

on. 

It is worth mentioning that U0 should be lower than Us to 

avoid the rectifier and EFS working together, or the efficiency 

of the power supply system will decrease. Us can be set 

manually and change automatically with the voltage fluctuation 

on the AC side.  

Energy audit can reflect the system energy consumption level 

[3]. To evaluate energy consumption and design system 

parameter, a reasonable index of energy audit is necessary. 

A.  Energy audit index 

The energy audit can be implemented at main substation 

(MS)s or TSs. To compare these two methods, the power supply 

system without EFSs is defined as the reference system (RS). 

Correspondingly, the power supply system with EFS installed 

is defined as the contradistinction system (CS).  

The schematic diagram of the energy flow of RS is shown in 

Fig. 1. The energy of MSs (WM') has 2 flow directions: rectifier 

units (WT') and step-down loads (WS'). The energy from 

rectifies units is ηTWT'. After the loss of traction 

network(Wloss2'), the ηTWT' will flow to tracting trains. Besides, 

tracting trains will also receive energy from braking trains(Wreg-

trac'). After supplying the kinetic energy, auxiliary energy 

consumption and power loss of trains, the remaining energy is 

Wreg. Wreg has 2 flow directions: the on-board braking 

resistors(Wres') and tracting trains(Wreg-trac'). The loss during the 

process is Wloss2'. The energy loss on the AC cables is ignored. 

Based on Fig. 1., the relationship between system energy in 

RS is shown as (1).  
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Fig. 1.  Schematic diagram of energy flow of RS. 
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The schematic diagram of the energy flow of CS is shown in 

Fig. 2. Compared with Fig. 1, Wreg has a more flow direction: 

EFS (WF/ηF). This part of energy will flow to rectifier units, 

step-down loads, and MSs (WR). 

The relationship between system energy in CS is shown as 

(2). The energy loss on the cables is ignored. 
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Fig. 2.  Schematic diagram of energy flow of CS 
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When the MSEC is the index of energy audit, WM and WM' 

are the energy consumption values of CS and RS. The 

difference between the energy consumption of CS and RS is the 

energy saving of CS [1]. 

When the STEC is the index of energy audit, WTR and WTR' 

are the energy consumption values of CS and RS. In CS, WTR is 

shown in (3). In RS, WTR' is WT'. The difference between WTR' 

and WTR is the energy saving of CS. 

TR T F=M S RW W W W W W= − − +        (3) 
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B.  Comparison of MSEC and STEC 

Compared with simulation data, field test data is closer to real 

data. To compare the performance of MSEC and STEC, a field 

test is carried out in a subway of Shenzhen. In this subway line, 

there are 1 MS, 6 TSs, and 3 step-down substation (SS)s. The 

topology is shown in Fig. 3. EFSs are set at TS④, TS⑤, TS⑦, 

TS⑧, and TS⑨, with the rated power of 2MW. The substation 

positions are shown in TABLE I. The train is composed of 6 

sections, with the highest speed limit of 80km/h and the weight 

of 328.6t. The energy consumption of the main station and the 

traction energy consumption of all TSs were monitored. The 

monitor period for CS and RS is 7 days. 

TS

SS

1

2

3

4

5

6

7

8

9
EFS

 
Fig. 3.  Topology of the subway in Shenzhen. 

 
TABLE I 

 SUBSTATION POSITIONS OF THE SUBWAY IN SHENZHEN 

Station Position (km) Station Position (km) 

① 0.697 ⑥ 10.797 

② 2.642 ⑦ 11.593 

③ 3.442 ⑧ 14.577 

④ 4.883 ⑨ 15.942 

⑤ 9.194   

 

Fig. 4. shows the energy consumption in CS (Day1~7) and 

RS (Day8~14). Day 2, 3, 9, and 10 are weekend days, and other 

days are workdays. In Fig. 4., to distinguish between the step-

down loads in CS and the step-down loads in RS, WS' is the 

step-down loads in RS, and WS is the step-down loads in CS. 

WS and WS' are calculated from (1) to (3). 

In CS, the difference between the maximum WTR and 

minimum WTR is 13, 052 kWh. The difference between the 

maximum WS and minimum WS is 22, 383 kWh. In RS, the 

difference between the maximum WTR' and minimum WTR' is 8, 

034 kWh. The difference between the maximum WS' and 

minimum WS' is 46, 311 kWh. The fluctuation of step-down 

loads is greater than the fluctuation of STEC, causing the 

MSEC to have a wild fluctuation. Applying STEC can avoid 

the influence of fluctuation of step-down loads. Therefore, 

STEC, rather than MSEC, should be the energy audit index. It 

is also worth mentioning that utilizing STEC needs the data of 

all TSs and MSs. If there are data collecting system in the 

subway project, it will be easy to collect the data. And it takes 

short time to collect data in simulation results. 

 

 
Fig. 4.  Energy consumption in CS and RS. 

 
 

C.  Parameter designing model 

Taking into account the life span of EFSs, from the 

perspective of the economics of the power supply system, the 

overall cost of the system should be calculated when the life 

span of the EFS is reached. The parameter designing model is: 
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where F(S, U0, Us) is the optimization objective. It is the 

comprehensive cost of the system when the EFS life span is 

reached. It is composed of sub-objective functions f1(S) and 

f2(S,U0,Us); S={Si | i=1,2…N}. Si is the rated power of the EFS 

in the i-th TS. N is the number of TSs. U0 is the no-load voltage 

of the rectifier units. Us={Usi | i=1,2…N }. Usi is the start voltage 

of EFS in the i-th TS. εS, 
0U  and 

sU  are the feasible 

region of S, U0, and Us. 

The sub-objective function f1(S) is the total cost of the system 

when the life span of EFSs is reached. It is: 

1

1 1 1

( ) ( ) ( )
N Y N

y y

ins i mt i

i y i

f c S r c S r
= = =

= + S     (5) 

where cins (Si) is the cost of installing the EFS in the i-th TS with 

the rated power of Si. cmt (Si) is the annual cost of maintaining 

the EFS in the i-th TS with the rated power of Si. r is the 

currency inflation coefficient. y is the year from the installation 

of the EFSs. Y is the EFS life span in years. 

EFS installation cost cins(S) is: 

0( )ins cc S c p S= +
              (6) 

where c0 is the fixed cost, which is 700,000 RMB. pc is the unit 

rated power cost, which is 400,000 RMB/MW. εS={0.5x | 

x=0,1,2,3,4,5,6} (MW). 

The sub-objective function f2(S, U0, Us) is the total traction 

electricity cost when the EFS life span is reached. It is: 

2 0 TR 0

1

( , , ) ( , , )
Y

y

y y

y

f U W U E r
=

= s sS U S U    (7) 

where WTRy(S, U0, Us) is the actual traction energy consumption 

of the whole line in the y-th year corresponding to the 

configuration of S, U0, Us. Ey is the electricity price in the y-th 

year. 

Constraints include TN voltage, rail potential, and no-load 

voltage. They are: 
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where Ur is the rail potential.  

OPTIMIZATION ALGORITHMS 

In this section, three optimization algorithms are introduced 

and compared numerical tests.  

Particle Swarm Optimization (PSO) uses particle simulation 

to achieve the optimization goal. Salp Swarm Algorithm (SSA) 

is an intelligent optimization Algorithm for simulating salp 

organisms. MSSA is first proposed in this paper. It introduces 

Tent chaotic mapping, global adaptive inertia weight, and 

differential mutation algorithm, and will be illustrated in part C 

of this Section. 

Both PSO and SSA take population as the basic unit for 

optimization, so there are similarities in the definition as below: 

The population X is a collection of individual xi, namely X = 

{xi | i=1,2 … N}. N is the number of individuals in the 

population. The individual is defined as xi=(xi
1 xi

2,…, xi
D). xi

j is 

the variable on the j-th dimension. D is the number of 

dimensions. t is defined as the number of iterations. xi
j(t) is the 

variable on the j-th dimension of individual xi at the t-th 

iteration. Individuals have upper limit ub and lower limit lb. 

The dimensions of ub and lb are consistent with individuals. 

The value of the individual is defined as the position of the 

individual. The objective function value of the individual is 

defined as the fitness of the individual. 

A.  PSO 

In the PSO algorithm, in addition to the location, the 

variables of the individual also include the velocity, Vi= (Vi
1, 

Vi
2, …, Vi

D). The dimension of the upper limit and the lower 

limit of Vi (Vmax and Vmin) is also D. In the t-th iteration, the 

individual with the best fitness among all the individuals is 

Pg(t). For individual xi, up to the t-th iteration, the xi with the 

best fitness is defined as Pi(t). 

In each iteration, the velocity and location are updated as: 

1 1 2 2( 1) ( ) [ ( ) ( )] [ ( ) ( )]

( 1) ( ) ( 1)

i i i i g i

j j j j j j

i i i

j j j

V t V t c r P t X t c r P t X t

x t x t V t

 + = + − + −


+ = + +

 (9) 

where ω is the inertia weight value. c1 and c2 are called 

acceleration factors, which are non-negative values. r1 and r2 

are random numbers in [0,1]. Vi
j(t),Pi

j(t) and Pg
j(t) are the values 

of Vi(t),Pi(t) and Pg(t) in the j-th dimension respectively. 

B.  SSA 

The salp swarm algorithm is to simulate the aggregation 

behavior of salps, which form a chain of salps and then hunt 

and move. The salp chain is made up of two types of salps: 

leaders and followers. The leaders are the salps at the head of 

the chain. Those slaps at the back of the chain are followers. 

In the salp algorithm, food source F is defined as the 

individual with the best fitness among all individuals. The food 

source of the t-th order is F(t). 

Taking the minimization problem as an example, the process 

is shown in Fig. 5. The steps of the SSA algorithm are  

1) Initialize the population. For all individuals, the positions 

are random numbers between the upper limit and the lower 

limit. Calculate the fitness of all individuals and sort them. The 

individual with the smallest fitness is the food source F(t). t=1, 

because one iteration has been completed. 

2) The population position is updated. The leader position is 

updated as: 

1 2 3

1 2 3

( ) [( ) ]  0.5
( +1)

( ) [( ) ]  0.5

j j j ji

j

j j j j

F t c ub lb c lb c
x t

F t c ub lb c lb c

+ − +
= 

− − + 

≥
 (10) 

where i=1, that is, the number of leaders is 1. It ranks first in the 

population. j=1,2…D. Fj(t), ubj and lbj are F(t), ub, and lb in the 

j-th dimension respectively. c2 and c3 are random numbers in 

[0,1]. c2 affects the step length of the leader's movement. c3 

determines whether the leader moves forward or backward to 

the food source. T is the maximum number of iterations. c1 is 

the coefficient of the moving length. It is: 

( )
2

4 /

1 2
t T

c e
−

=              (11) 

The position of the follower is: 
1( +1) 0.5( ( ) ( ))i i i

j j jx t x t x t−= +         (12) 

where i≥2, and is the order of followers in the population. 

j=1,2…D. 

3) Calculate the fitness of all updated individuals. Sort the 

individuals. Update F(t). Increase t by 1. 

4) When the iteration accuracy requirement is reached or t=T, 

the iteration ends; otherwise, go to 2) to continue the iteration. 

Population initialization based 

on Tent mapping；t=1

Update position of leaders；
update position of followers 

based on global inertial weight

Sort individual fitness, update 

F (t)

Perform differential variation  

on the non-optimal individuals

Start

EnterN, D, T, ωi,, ωf, α, ub, lb, ε

Calculation fitness

Calculate their fitness

Sort individual fitness, update 

F (t)

t increases by 1; Update ω(t), 

Ps(t)

Is the iteration error is not 

greater than ε or t= T?

End

Initialize the population；
t=1

Update position of leaders 

and  followers

Sort individual fitness, 

update F (t)

Start

EnterN, D, T,  α, ub, lb, ε

Calculation fitness

t increases by 1

Is the iteration error  not 

greater than ε or t= T?

End

SSA MSSA

Sort individual fitness, 

update F (t)

Calculation fitness

Sort individual fitness, update 

F (t)

Calculation fitness

Output：
WTR

Input：
S,U0,Us

AC/DC power 

flow 

calculation of 

power supply 

system

 
Fig. 5.  Algorithm flow charts of SSA and MSSA. 

 

 

C.  MSSA 

The improvements of MSSA include the following three 

aspects: 

    1)  Tent chaos mapping 

In the SSA, the initialization of the population is directly 

related to the efficiency of the algorithm. If the initialization of 
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the population is better, much iteration time can be saved. In 

SSA, the initialization of the population is achieved by random 

numbers.  

The chaotic sequence has the characteristics of randomness, 

ergodicity, and regularity, and the salp populations produced by 

it have good diversity. The chaotic sequence generated by the 

Tent map is introduced to initialize the population. It is [21]: 

1

, 0.5

(1 ), 0.5

(1) ( )

i i

j ji

j i i

j j

i i

j j j j j

y y
y

y y

x ub lb y lb




+

  
 = 

− 


= − +

≥        (13) 

where, μ∈(0,2], and is the chaotic parameter. The larger the μ 

is, the more chaos the system will be. It is set as 2. yi
j is the 

chaotic sequence in [0,1]. 

    2)  Global inertial weight 

The population success rate can be introduced as a feedback 

parameter to adaptively adjust the inertia weight factor [22]. 

From (12), it can be seen that the position of followers is only 

determined without considering the influence of the latter 

follower on the former follower and the changes in the fitness 

of the population. Therefore, the global inertial weight factor ω 

and the population success rate Ps are used to adaptively adjust 

the position of the followers. The Ps of the t-th iteration 

population, Ps(t) is: 

1

1
( ) ( , )

N

s

i

P t S i t
N =

=              (14) 

where S(i,t) is the success value of individual xi. When the 

fitness of xi(t) is better than the fitness of Pi(t), S(i,t)=1, 

otherwise S(i,t)=0. At the beginning of the iteration, the 

individuals are scattered and the exploration ability is strong. 

Therefore, the success value of the individual is mostly 1, and 

the success rate of the population Ps(t) is also high. At the end 

of the iteration, the individuals of the population gradually 

gather, and the Ps(t) gradually decreases. The position of 

followers is: 

          
1( 1) 0.5( ( ) ( ) ( ))i i i

j j jx t t x t x t −+ = +      (15) 

where ω(t) is the global adaptive adjustment coefficient: 
2( / )( ) ( ) ( ) t T

i f i st P t e     −= + −      (16) 

where ωi is the initial inertia weight coefficient. ωf is the final 

inertia weight. α is the nonlinear control parameter. 

    3)  Differential mutation 

In the standard SSA algorithm, ignoring the mutation of non-

optimal individuals may make it easy to fall into the local 

optimum during the process of the algorithm. The introduction 

of differential mutation can decrease the probability of local 

optimum [22]. The equation is: 
1 2( ) ( ) ( )i r r

j j j jx t F t x x= + −          (17) 

where β is the coefficient of mutation, which is 0.5. r1 and r2 

are the serial numbers of any two individuals. r1≠r2. i is the 

serial number of the non-optimal individual. i≠r1 and i≠r2. If 

the fitness of the individual is worse than the fitness value of 

the individual before the mutation, the individual remains 

unchanged. 

In this paper, half of the salp individuals are selected as the 

leaders to enhance the algorithm's global search ability and 

randomness in the early stage of the iteration. The process of 

MSSA proposed in this paper is as below and shown in Fig. 5. 

1) Initialize the population. Enter N, D, T, ωi, ωf, α, ub, lb 

and iteration precision ε. Ps(1)=0. Use Tent chaos mapping to 

generate initial values for all individuals. Calculate the fitness 

of all individuals and sort them. F(t) is obtained. t=1. 

2) The population position is updated. Update the position of 

the leader by (10). Update the position of the follower by (15). 

3) Calculate the fitness of all updated individuals and sort 

them. Update F(t). 

4) Perform differential mutation by (7) for non-optimal 

individuals. Calculate fitness for all individuals after mutation, 

and retain individuals with better fitness. 

5) Sort all individuals and update F (t). 

6) t is increased by 1. Update ω(t) and Ps(t). When the 

iteration accuracy is no bigger than ε or t=T, the iteration ends; 

otherwise, go to 2) to continue the iteration. 

D.  Comparison of optimization methods  

To compare the performance of these optimization 

algorithms using numerical tests, six benchmark functions are 

selected as in TABLE II. The dimension is the n in the 

functions. The range is the domain of x. The optimal values are 

all 0, which means that the closer to 0 the fitness value, the 

better.  

PSO and SSA are used as control algorithms. Among the 

functions, F1(x)~ F5(x) are single-peak functions，which are 

used to test the calculation accuracy and convergence speed of 

algorithms. F6(x) is a multi-peak function, which is used to test 

the global optimization ability of algorithms. In all algorithms, 

the population size is 30. The iteration number is 500. 30 

independent simulation experiments are carried out to avoid the 

deviation caused by the randomness of the algorithm. Parameter 

selection is shown in TABLE III. The average values and 

standard deviations are calculated by the 30 independent 

experiments. 

All simulations were run using a personal computer with an 

Intel(R) Core (TM) i9-9900K CPU @ 3.60 GHz and 12 GB of 

RAM. Numerical tests are carried out in Matlab. 
TABLE II 

 BENCHMARK FUNCTIONS 

Function 
Dimen
sion(n) 

Range 
Optimal 
value 

2

1

1

( )
n

i

i

F x x
=

= 
 

30 [-100,100] 0 

2

1 1

( )
nn

i i

i i

F x x x
= =

= + 
 

10 [-10,10] 0 

2

3

1 1

( )
n i

j

i j

F x x
= =

 
=  

 
 

 

10 [-100,100] 0 

4( ) max{ ,1 }iF x x i n=  
 

10 [-100,100] 0 

1
2 2 2

5 1

1

( ) [100( ) ( 1) ]
n

i i i

i

F x x x x
−

+

=

= − + −
 

10 [-30,30] 0 

2

6

1

1

1
( ) 20exp( 0.2 )

1
            exp( cos(2 )) 20

n

i

i

n

i

i

F x x
n

x e
n



=

=

= − −

− + +





 

10 [-20,20] 0 

 
TABLE III 

PARAMETER OF FUNCTIONS 
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Function Parameter 

PSO ω=0.9；c1=c2=0.5 

MSSA ωi=0.1, ωf=0.9, α=0.09 

The average value and standard deviation of the optimal 

value are calculated. The results of numerical tests are shown 

in TABLE IV. MSSA results are significantly better than PSO 

and SSA in both mean value and standard deviation, indicating 

that MSSA has a low degree of dispersion and good stability. 

Fig. 6. shows some convergence curves of three optimization  

algorithms. The convergence speed of MSSA is better than that 

of the other two algorithms. 
TABLE IV 

NUMERICAL TEST RESULTS 

Funct
ion 

Indicators PSO SSA MSSA 

F1(x) 
Average 0.1776 1.334E-07 1.865E-35 

Standard 
deviation 

0.3375 1.741E-07 1.719E-35 

F2(x) 

Average 0.6660 5.281E-05 2.135E-18 

Standard 
deviation 

0.9314 1.317E-04 2.083E-18 

F3(x) 

Average 3.195E-07 4.645E-07 6.486E-35 

Standard 
deviation 

4.792E-07 8.380E-07 7.104E-35 

F4(x) 

Average 1.206E-06 2.129E-05 4.717E-18 

Standard 
deviation 

8.823E-07 4.123E-06 2.659E-18 

F5(x) 

Average 6.458 13.771 6.909 

Standard 
deviation 

9.107 18.567 0.267 

F6(x) 

Average 2.382E-02 9.973E-03 6.930E-05 

Standard 
deviation 

2.406E-02 3.735E-03 5.148E-05 

 

  
(a) F1(x)  

  
(b) F2(x)  

 
(c) F3(x)            

  
       (d) F4(x) 

Fig. 6.  Some convergent curves. 

CASE STUDY 

A subway in Chengdu is taken as an example. The topology 

of the subway is shown in Fig. 7. It can reflect the actual 

geographic location of TSs and SSs. In Fig. 7., the number of 

the TS is Ti. The number of the SS is Si. The train operation 

curves are shown in Fig. 8. Parameters of the subway line are 

shown in TABLE V. The substation positions are shown in 

TABLE VI. The abovementioned parameters and figures are 

the input of later simulations. 

The subway simulation software is DCTPS, which is 

developed by the authors’ research group. It was written in 
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C++. And the AI algorithms are added into DCTPS to carry out 

subway simulations. 

 

TS

SS

T1

T2

T3

T4

T5

T6

T7

T8

T9

T10

T11

S1

S2

 
Fig. 7.  Topology of the subway in Chengdu. 

 

 
(a) Course from T1 to T11 

 
(b) Course from T11 to T1 

Fig. 8.  Train operation curves. 

 
TABLE V 

 PARAMETERS OF THE SUBWAY LINE 

Simulation parameter Value 

Rectifier unit rated power 3.6MW 

Contact network resistance 0.0172Ω/km 

Rail resistance [31][32] 0.02Ω/km 

Rail-earth resistance 15Ωkm 

Maximum train speed 100km/h 

Train weight 462t 

 
TABLE VI 

 SUBSTATION POSITIONS OF THE SUBWAY IN SHENZHEN 

Station Position (km) Station Position (km) 

T1 0.451 T6 11.304 

S1 1.717 T7 13.006 

T2 2.367 T8 15.772 

T3 3.920 T9 17.442 

T4 6.452 T10 20.082 

T5 8.246 T11 21.909 

S2 9.688   

 

A.  Impact factors of STEC 

To study the impact factors of STEC, U0 and Us are chosen 

as parameters. WTR under different Us and U0 is shown in Fig. 

9, where 
0U  is [1600V, 1680V], 

sU  is [1700V, 1760V]. 

The results are based on simulation. When U0 is unchanged, 

WTR and Us are positively correlated. When Us is constant, WTR 

and U0 show an overall positive correlation trend, but they are 

not completely positively correlated. 

It can be derived from (2) and (3) that WTR is: 

TR trac F reg F reg-trac
T T

F res F loss1 loss2 R
T

1 1
( )

1
         

W W W W

W W W W

 
 

 


= − + −

+ + + +

     (18) 

 
Fig. 9.  WTR under different Us and U0 
 

 

When the train operation timetable remains unchanged, both 

Wtrac and Wreg remain unchanged. ηT should be higher than 0.98 

and ηF should be higher than 0.95 so the coefficient of Wreg-trac 

is small and this item can be ignored. 

When U0 remains unchanged and Us increases, the operation 

time of EFSs decreases and the feedback power decreases. WR 

may decrease. Since EFS also has the function of controlling 

the TN voltage, the decrease of the operation time of EFSs 

means the TN voltage increases. Wres will increase and (Wloss1+ 

Wloss2) will decrease. The results in Fig. 9. show that when Us 

increases from 1750V to 1780V, the increase of Wres is greater 

than the decrease in WR and (Wloss1+ Wloss2), so WTR increases. 

When Us remains unchanged and U0 increases, the TN 

voltage increases and the difference between Us and U0 

decreases, so EFSs start more. The increase of feedback energy 

means that WR may increase, and on-board braking resistors are 

also easier to start, and Wres will increase. The current required 
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to transmit the same power becomes smaller, and (Wloss1+ 

Wloss2) will decrease. Fig. 9. shows that when U0 increases from 

1600V to 1700V, WTR shows an overall increasing trend. 

However, the WTR of 1620V is less than the WTR of 1600V, 

indicating that the decrease in (Wloss1+ Wloss2) is greater than the 

increase in WR and Wres. 

The above analysis shows that when the Us is unified for the 

entire line in [1750V, 1780V], the lower the Us is, the smaller 

the WTR is. Due to the uneven distribution of regenerative 

braking energy across the line, independent optimizing Us for 

each EFS is necessary. U0 should not be as low as possible. 

Since the adjustment of U0 is generally achieved by adjusting 

the transformer tap, it is hard for each TS to adjust U0. 

Therefore, U0 should be selected as a unified parameter for 

optimization. 

B.  Optimal Parameter design 

Except for parameters in TABLE V, other simulation 

parameters are shown in TABLE VII. The operation timetable 

of trains is shown in TABLE VIII, where the initial stage of the 

operation is 3 years. The recent stage of the operation is 7 years.  

 
TABLE VII 

PARAMETERS OF SIMULATION 

Simulation 
parameter 

Value 
Simulation 
parameter 

Value 

EFS life span 10 year Urmax 120V 

cmt ¥1000 RMB/year Utmax 1800V 

r 1.02 Utmin 1000V 

εS 
{0.5x |x=0,1,2,3,4,5,6} 

(MW) 
Ey 

¥0.75 
RMB/kWh 

 
TABLE VIII 

OPERATION TIMETABLE OF TRAINS 

Departure interval 
Daily duration in 

initial stage/h 

Daily duration in 

recent stage/h 

8 pairs/h 14 3 

10 pairs/h 4 11 

16 pairs/h 0 4 

 

There are five schemes: RS, SSA, PSO, MSSA Case1, 

MSSA Case2. To verify the energy-saving and investment-

saving effects of EFS, the RS is set as a control group, and U0 

is 1660V. Simulations with SSA and PSO are also control 

groups to compare different algorithms, and the parameters are 

S, U0, and Us. According to the analysis of section A, U0 and Us 

should be optimization parameters. To verify it, experiments 

applying MSSA with only S as the optimization variable is 

carried out. It is defined as MSSA Case1. In MSSA Case1, Us 

is 1720V. U0 is 1660V. MSSA with Us, U0, and S as 

optimization variables is defined as MSSA Case2.  

The iteration processes are shown in Fig. 10. Due to the 

introduction of Tent chaos mapping, the initial value of MSSA 

Case1 decreases by 0.39% and 0.55% respectively compared 

with that of PSO and SSA. The initial value of MSSA Case2 

decreases by 0.58% and 0.74%. 

The evolution rate of MSSA Case2 is faster than MSSA 

Case1, which proves the necessity of US and U0 as optimization 

variables. 

After 16 generations, the evolution of SSA halts. After 5 

generations, the evolution of PSO halts. However, after 39 

generations, MSSA can still evolve, which indicates that the 

introduction of global inertia weight and difference of mutation 

can significantly improve the evolution of the algorithm in the 

later iteration. 

 
Fig. 10.  Iteration process. 

 

The final objective function values and sub-objective 

function values of the five schemes are shown in TABLE IX. 

Compared to the RS, MSSA Case2 can save composite cost by 

29.47%when EFSs reach the life span. Compared with PSO, 

SSA, and MSSA Case1, the composite cost of MSSA Case2 is 

1.43%, 3.50%, and 3.49% less, respectively. 
TABLE IX 

PARAMETER OPTIMIZATION CONFIGURATION RESULTS 

Scheme 
f1(S) / 

106 RMB 

f2(S, U0, Us) / 106 

RMB 

F(S, U0, Us) / 106 

RMB 

RS 0 444.04 444.04 (100%) 

PSO 15.80 301.93 317.74 (72%) 

SSA 10.41 314.13 324.54 (73%) 

MSSA Case1 11.52 312.96 324.49 (73%) 

MSSA Case2 11.52 301.65 313.17 (71%) 

 

The final parameter configurations of the four schemes are 

shown in TABLE X. The results of PSO and MSSA Case2 are 

compared. The distance between T3-T4, T7-T8, and T9-T10 of 

this line is relatively large. In these sections, there is less chance 

for the adjacent vehicles to absorb regenerative braking energy. 

Therefore, EFSs can absorb regenerative braking energy more 

effectively. The TN voltage can be better controlled. The 

energy-consuming of on-board braking resistance decreases, so 

a better energy-saving effect is achieved. As can be seen from 

TABLE X, MSSA Case2 sets EFSs at T2, T5, T6, T8, T9, and 

T10. The suboptimal solution of the four optimization schemes, 

PSO, sets EFS at T1, T2, T3, T7, T8, and T9. Since the station 

spacing between T1-T3 is not the maximum, EFS in T1, T2, 

and T3 will increase the investment cost of the system while the 

energy-saving effect will be limited. As can be seen from 

TABLE IX, although the f2(S, U0, Us) of PSO is close to that of 

MSSA, the f1(S) of PSO is 37.12% larger than that of MSSA. 

The results of MSSA Case1 and MSSA Case2 are also 

compared. The f1(S) of MSSA Case1 is the same as the f1(S) of 

MSSA Case2. In MSSA Case1, EFSs are set at T1, T2, T4, T5, 

T8, and T11. There are two more EFSs than MSSA Case2 in 

the T1~ T5 section. It indicates that when US and U0 are set as 

the unit values, regenerative braking energy can be feedback by 

EFS more effectively. In MSSA Case2, the EFS rated power of 

T10 is 1.5MW and its US is 1750V. In the section where the 

EFSs are set continually, a slightly higher US can be configured 

to share the regenerative braking energy with other adjacent 
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EFSs. 
TABLE X 

FINAL PARAMETER CONFIGURATIONS OF THE FOUR SCHEMES 

Scheme  PSO SSA MSSA Case1 MSSACase2 

  S/MW U0/V Us/V S/MW U0/V Us/V S/MW U0/V Us/V S/MW U0/V Us/V 

T1 3 

1680 

1700 0 

1680 

- 1.5 

1660 1720 

0 

1680 

- 

T2 3 1700 3 1760 2 3 1700 

T3 3 1700 0 - 0 0 - 

T4 0 - 0 - 2 0 - 

T5 0 - 2.5 1760 3 2 1700 

T6 0 - 1.5 - 0 1 1700 

T7 3 1700 3 1760 0 0 - 

T8 3 1700 0 - 2 2.5 1700 

T9 3 1750 2.5 1760 0 3 1700 

T10 2 1700 0 - 0 1.5 1750 

T11 0 - 0 - 2.5 0 - 

CONCLUSION 

In this paper, the energy audit index is proposed, and the 

parameter designing model for power supply system in urban 

rail which takes the composite cost of the system as the object 

when the life span of EFSs reaches is built. MSSA is proposed 

for the solution of the model. Here are the conclusions: 

1) The STEC can reflect the system-level energy 

consumption level and avoid the influence of the fluctuation of 

step-down loads through a field test. 

2) MSSA has a faster convergence speed than SSA and PSO 

in the numerical experiments and the actual subway project. 

Compared with the reference system without EFS, MSSA can 

save 29.47% of the overall cost when EFS reaches its life 

period. Compared with PSO, SSA, the comprehensive cost of 

MSSA can be saved by 1.43%, 3.50%, respectively. 

3) The start voltage of EFS and no-load voltage should also 

be taken into account when designing system parameters. The 

composite cost of MSSA which takes EFS rated power, start 

voltage and no-load voltage of rectifier units as optimization 

parameters is 3.49% less than the composite cost of MSSA 

which only takes EFS rated power as the optimization 

parameter. 
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