ADVANCES IN PARALLEL OVERSET DOMAIN ASSEMBLY

By

Cameron Thomas Druyor Jr.

Steve L. Karman, Jr. James C. Newman III

Advance Research, Pointwise Inc. Professor of Computational Engineering
(Chair) (Committee Member)

William T. Jones Craig R. Tanis

Computer Engineer, NASA Langley Assistant Professor of Computer Science
Research Center (Committee Member)

(Committee Member)

ADVANCES IN PARALLEL OVERSET DOMAIN ASSEMBLY

By

Cameron Thomas Druyor Jr.

A Dissertation Submitted to the Faculty of the University of
Tennessee at Chattanooga in Partial Fulfillment of
the Requirements of the Degree of Doctor of
Philosophy in Computational Engineering

The University of Tennessee at Chattanooga
Chattanooga, Tennessee

August 2016

il

Copyright © 2016
By Cameron Thomas Druyor Jr.

All Rights Reserved

il

ABSTRACT

The CFD (Computational Fluid Dynamics) community has long used the Overset Grid
method to enable dynamic simulations with bodies in relative motion. In Overset simulations,
information is transferred between overlapping grids via interpolation. Domain Assembly is the
process that governs the location of intergrid boundaries and how the solution is interpolated across
grids at those boundaries. Performing Domain Assembly in a distributed environment is compu-
tationally expensive and inherently poorly load balanced due to the solver partitioning. Dynamic
load balancing is therefore required to alleviate the imbalance and make very large Overset prob-
lems feasible. In this work, a radically different parallel domain assembly method is introduced.
The new method takes a fundamentally different approach to load balancing, concurrency, and
communication patterns. A detailed discussion is provided that describes the method’s implemen-
tation in YOGA (Yoga is an Overset Grid Assembler). Finally, several case studies are analyzed

and preliminary performance and scaling results are provided.

v

DEDICATION

This work is dedicated to my family. Everything I have accomplished is built on the foun-

dation of their love and support.

ACKNOWLEDGEMENTS

I would like to acknowledge my colleagues at NASA Langley for providing me a supportive
and growth oriented environment. I would like to thank my committee for seeing my project
through to the end, despite being spread across three states. I am particularly grateful for Dr.
James Newman III for all of his hard work to make sure that so many students could graduate at

the same time.

Vi

TABLE OF CONTENTS

ABSTRACT ...ttt ettt et e b e st et e bt e s ab e et e bt e sateeaneetees v

DEDICATTON ...ttt ettt ettt ettt et e be e s bt e e at e et e e sbtesate e bt e beeeateenbeebeesaseenbeeseans v

ACKNOWLEDGEMENTS ..ottt ettt vi

LIST OF TABLES ...ttt et ettt e b e b e sat e ettt esabeeabeebeens X

LIST OF FIGURES ...ttt ettt st ettt st et e bt e st e e abeesbeesateenbeenneas xi
CHAPTER

1. INTRODUGCTION ...ttt ettt ettt e st e ettt e bt e st e sabe e bt e sseesaneenne 1

1.1 ODJECTIVE ..ttt et ettt et e ettt e st e e bt e e st e e sbbeesabeeennbeesabeeenee 3

LT CRAII@N@ES. .. .veeeneieeiiieeiieeeiee ettt ettt ettt et e et e e et eesateeenbeeesaneeeas 3

2. LITERATURE REVIEWoiiiiiiiie ettt ettt st s 5

2.1 The Overset/Chimera Methodooovviviiiiiiiiiiii e, 5

B T B € 55 T M % 51T T RSP SRPPR 8

2.2 History of the Overset Grid Method...........coccueeiiiiiiiiiiiiecee e 10

2.2.1 Overset Structured GIIdScooecveeeeiiiieeiiiieeeeiee e e e eaee e 10

2.2.2 Overset Unstructured MeShescccueeeeviiiieeiiiie e 21

2.3 Current State of the Overset Grid Method...........ccceovviiiniiiiniiiiniiiiie e, 28

2.3.1 Computational COSteeeriieeiiiieniieeiieeeite ettt et sbee s e ens 29

2.3.2 Geometric Searching TOOIS........cccceeriiiriiiiiiiieeiie et 30

2.3.2.1 Bounding BOXES......cuviiiiiiiiiieiiie ettt 30

2.3.2.2 Auxiliary MeShes......c.c.ceevuiiiiiiiiiiiiieceiceeceeeee e 32

2.3.2.3 X-TAYS eteeuteeiieniieeie ettt ettt sttt s sttt e 33

2.3.2.4 SPatial TIEES ..ecuvveeuiieiiieeriiieeiieeeite ettt et e s e 35

2.3.3 Load Balancing Strat@iescccueeerrierieeenieeniieeiieesieeeieeesieesneneesveeens 36

2.3.3.1 Spatial Repartitioningccccveeeruieeniieeerieenieeenieesieeesveeseneennnens 37

2.3.3.2 Dynamic Load Balancingcc.ccccevveeeiiiiniiiiniiiniceicceeeeee, 38

vii

2.3.4 PUNDIT: Current State Of the ALtcoeeeeeneeeeeeeeee e 39

2.3.4.1 Load Balancing Implementation..........c...cceceeveerieenueeneeniienneeennnens 41
METHODOLOGIES AND ALGORITHMS ...ttt 42
3.1 Monte Carlo Investigation of Load Balancing Strategies...........cceceeeeeviieniennenne. 42

3.1.1 The SIMUIALOT «...eeeiiiiiiieeiie et e 43

3.1.1.1 Determining Standard Deviationccccevcveeevieeniieeenieeniieeen. 43

3.1.1.2 Generating WOrk UNItS.........ceerieeriiieenieeeriieenieeerieesieeeseeeeeee e 44

3.1.1.3 Running the SIMUlator..........ccccccuiiiriiiieiiiieeeeiiee e 45
3.2 Simulation RESUILSc..eiiiiiiiii e 46

3.2.1 Predictive Load BalanCing...........cccceeveeriiriiiineenienieeieeeeneeeee e 46
3.2.2 Load Balancing via Over-DecompoOSitioncccccueeriieenveenieesneeenneenn. 49
3.2.3 Client-Server Load Balancingcccoecuevivieiniiiiiniieniie e 50
33 Recasting Domain AsSemDbIYcccuiiiiiiiiiiiiiiiie e 52
3.3.1 Latency Hiding via Thread Oversubscription............ccocceeevieeniieennieenneenn. 53
3.3.2 Defining Appropriate Work Units.........coccceceevieniieniinnienienieeeeeeneeeen 54
3.3.3 Processing WOrk UnNitS........cooouiiiiiiiiiiiniieiiieenicceieeste et 55
IMPLEMENTATIONooiiiiiiiiieeet ettt st 56
4.1 Introduction to Stream and ZeroMQceeviiiiieriiiieieiie e 56
4.1.1 MessagePasser::Stream.........ccocuiiiriiiriiiiniieeiie ettt 56
4.1.2 ZEIOMOQ ..ot e e e e e 57

4.1.2.1 GENETIC SEIVET ...ceuvieniiiiiiiiieeiteite ettt ettt 58

4.1.2.2 Sending and Receiving Streamsc.eeeeevvveeerniieeeniieeeennieeeennne 62

4.1.2.3 GeneriC CHENT.......ccueiiiiiiiiieeiieeiee et 63
4.2 PrePIrOCESSINE...cuuieiiiiiiiiieiieeeee ettt st 65

4.2.0.4 Global Mesh System Meta Data..........ccooceeeeiiieniieniieenieeeeeeen, 65

4.2.0.5 Approximate Distance Field.........ccccoovveviiiniiiiniiiiiieiieeieee, 65

4.2.1 Load BalanCer............coouiiiiiiiiiiiiiiiiiecceec e 66

4.2.1.1 Estimating Mesh Density..........cccoceeriiiinieiniieinieeeieeniec e 70

4.2.2 Parallel HOle Mapcooiiiiiiiiiiiiiee e 71

4.2.2.1 Implicit Outer Boundaryccooceeviiiiniiiiniiieieeeeeeee e, 71

4.3 Donor Searching with Dynamic Load Balancing............ccceeeveeviiiiniiienieeeieeen. 73
A.3. 1 VOXEL SEIVET ...eiiiiiiiiiiiiiiieie ettt 73
A.3.2 WOTKET ...ttt ettt ettt 75

4.3.2.1 Building A Work VOXelccccoviiriiiiiiiniiniicieeccceeeeeeeen 76

4.3.2.2 Finding donors and identifying hole points..........ccccccevvueervureennnen. 78

4.3.2.3 DISIDULING ..eeeeivieeiiieeiie ettt ettt s esaae e 80

4.3.3 GIIA SEIVET ...ttt sttt s 81
4.3.4 Donor ColleCtOr SEIVETuiiiiiiiiiiiiiiieiieeeite ettt 82

viii

4.4 POSEPIOCESSINGcouviiiiiiiiiiieieeiieee et s 83

4.4.1 Interpolation iN YOZAeeevuieeriieiiiiieiiieeiieesite ettt 83

A4 1T Math..oooiiiiiee s 84

4.4.1.2 IMplementationccceeerueeeriieenieeeieeerteeeieeesreeeieeesaeeeaeeenaeeas 84

4.4.1.3 VerifiCatiON.....ccccueiiiiiiiiiieiieeeiteeieeee ettt 85

Ai4.2 TTACET ..ottt ettt ettt et e et e st e sttt et e e eeeaeees 86

5. RESULTS ettt sttt e sb e st e ettt sbt e st be e b e eanes 88
5.1 StOre SePATAtION CASEvveeeeuiiieeesiiiee et e eeitee e et ee e et e e e sateeeesnbeeeesabeeessaneeeenns 88

5.2 Hart IT ROTOT CaSE......eeiiiiiiiiieiiieeite ettt s 92

5.3 Distributed Electric Propulsion Case.........c.ccooveeiiineenieniieiieeeenieeeeeenee e 96

6. CONCLUSION ..ottt st et et sttt et st st e beenaeeeas 102
6.1 Technology EXPIOTation.........coouiiiiiiiiiiiiiieeieeiee et 102

6.2 FUture WOTKoooooiii e 103

6.2.1 FEATUTES ..ottt e 103

6.2.2 PerfOormancec.ccovueeriiiiiiieiiceicee e 103
REFERENCES ...ttt ettt ettt ettt et e sbte et eebeenaae e 104
VT A ettt ettt et e b e h e e et e e bt e e bt e e ate e bt e bt e eat e e bt e beeshteenbeebeenaeeas 107

X

5.1

5.2

53

54

LIST OF TABLES

Effect of dynamic WOIK UNIE SIZINEcc.eeriiriiiniieniienieeieeeeeie et 91
TIMANG TESUILS ..eeneiieiiie ettt ettt et e st e et e e st eeeateesbee e st e e sabeeesnseesnsaeenaneas 95
Timing results (K CIUSTET) .ooouuiiiiiiiiiiiii et 101
Timing results (PIeIAdES) ...ccuviiriiiiiiieiiie ettt st 101

1.1

2.1

22

2.3

2.4

2.5

2.6

2.7

2.8

29

2.10

2.11

2.12

2.13

2.14

2.15

2.16

LIST OF FIGURES

Wing and StOTE ZEOMELIYccuueeruuiiiiiieiiieeeite ettt ettt e et e e st e e bte e s bt e e abeesbeeenaneas 2
Explicit cut on a Structured @rid.........ceouieeiiieriieeieeeee e 7
Sructured MESNEScooviiiiiiii et 8
Unstructured Mesh EXamplesoc.oooiiiiiiiiiiiiiiiiceecee et 9
Level curves in a structured MESh..........cocueiiiiiiiiiiiiieneeeeeceeeeeeeee e 11
GEOMEGIIIC CULLETS ...ueeieieeitee et et ee ettt e ettt e st e et e e st e e s bt e e sabee e bt e e eabeeebbeesabeeebaeesaneeeas 12
Stencil-walk MEthOdc.c.eoiiiiiiiiii e 12
LN R 10 | PSP UPRRRPPRPt 13
L0 11T Lo (TSRS 15
5 () (35 1121 o BRSPS 15
Issue with bodies In ClOSE PrOXIMILYeeeurteriierriieeriee ettt ettt e 16
X rTAY Sttt eutteeeutte ettt e et e ettt e et e e ht e e ab e e e hb e e ettt e ab e e e bt e e sa bt e e bt e e e bte e hte e e bt e e hteeebeeennbeesbteenaneas 19
Organizing QUETY POINES....cc.ueeeiuieerieeerireeniteeestreesteeeseeesseeessseessseeessseessseeessseesssesessseessseesns 21
Unstructured neighbor WalKing..........occcooiiiiiiiiiiiiiiiiciccceeeecceeee e 22
Implicit cut based on distance to the Wall...........ccccooeviiiiiiiiiiniiii e, 23
Bounding boxes around a StOre EOMELTYeeevuiierieieriiiiniieeritee et 27
Non-overlapping bounding DOXESc..eeeuiiiriieiiiieriie ettt 31

X1

2.17

2.18

2.19

2.20

2.21

222

3.1

32

33

34

3.5

3.6

3.7

3.8

4.1

4.2

4.3

5.1

5.2

53

54

Overlapping bounding DOXESc.c.cevuiiriiiiiiiiiiieeeeeeeeeeee e 32
Oriented bOUNAING DOXESveeeiiieiiieeiiieiie ettt ettt e et e e sbeeeaaeesaseeens 32
X-TAYS ON SLOTE ZEOMCIIY ...veeeeuerieeeriireeeeieiteeeeitreeesaeraeesannseeeessseeesssseeesassseeessssseeessnsseeesnns 34
AAPLIVE X-TAYS ..evvteniieniieetteiee st ettt ettt et et e st s e e bt esbee st e e bt e sb e e st e e st enbeesaneeeneeneens 35
LoD AT ettt ettt ettt e e b 36
Spatial Decomposition VOIUIME.ccccuiiiriiiiiiieiiieeieesee ettt e 38
INOrmMal dISTIIDULION ..ottt ettt e 45
N1 o) (S0 [0 16 N SR SPROPSRTP 46
SAMPIE 10AA 2. e s 47
IMbalance trend...........eooiiiiiiiiii e 48
Over decomposition rend ©.........cocooiiiiiiiiiiiiiieee e 49
Over decoOMPOSItION tTENA 2.......ceeiuiiiiiiiiiiieeiie ettt ettt ettt e et e e sabeeesabeesaseeeas 50
Dynamic trenNd ©1......cccueiiiiiiiieeieeeeeee ettt ettt et et e st e e nb e eaaeennaeas 51
DynamicC rend 2.......cc.cooiieiiiiiiiieeieeeeee et s 52
Hole map Memory redUCHIONccccuiiiiiieiiiieiie ettt ettt eebee e 73
INterpOolation CONVEIZENCEcceeuviieeriiieeieiiieeeeitee e ettt e e ettt e e sibe e e e sttt e e sesbeeeesbaeeessseeeeenns 86
Tracing SCIEENSNOL ...c..eeiuiiiiiiiiiiiece e e et 87
Store separation Surface MESHESccueeviiiiiiiiiiiiieeieece e 88
Hole map for StOre SEPATatiONccc.eeiuieriiriiiiieiieeee ettt 89
WING MESH SHCE ..ttt sttt s 90
StOTE MESI SIICE ...t sttt 90

Xii

5.5

5.6

5.7

5.8

59

5.10

5.11

5.12

Improved 10ad balanCing...........cocveeiiiiiiniiiiiieeeecee e 92
Hart IT GEOMEBLIYeeeiiieiiiieeie ettt ettt et e st e et e st eesnbeessaeenaneas 93
FUSEIAZE SIICE 1 ...ttt 94
FUSEIAZE SIICE 2 ...t 94
SHice near NUD ..ot 95
JODY GEOIMEITY «..eeiiiieiie ettt sttt e s e e nee s 96
JODY UL STICE ..ottt et ettt e st e e 98
FaIring 1 SHCE.....eeiuiieiiieieee ettt st 99

Xiii

CHAPTER 1

INTRODUCTION

A typical finite-volume computational fluid dynamics (CFD) solver uses a single, contigu-
ous mesh to discretize the computational domain (structured solvers typically have multiple blocks,
but they are abutting and form a single contiguous domain). This requirement causes two problems.
First, generating a single grid for a complex domain, particularly using a structured grid technique,
can be challenging. Second, and perhaps more importantly, solving problems with multiple bodies
in relative motion is difficult on a single grid unless the relative motion is small. However, both
of these issues can be alleviated if the computational domain is spanned by multiple grids that
are allowed to overlap forming a composite patchwork of grids covering the entire domain. The
methodology of overset, or overlayed, grids is often referred to as the Chimera [1] technique due
to its hybrid approach combining grids of separate components. With this approach, overall grid
generation can be simplified and grid quality can be improved because individual bodies, or even
components of complicated bodies, can be meshed separately. When considering moving bodies in
relative motion, each body can be represented by its own grid. As such, the entire grid for a given
body is allowed to move with the body independent of the grids of other bodies. This provides for
robust support of the full range of motion within the domain.

The advantages of overset grids do not come for free, however. A single, continuous solu-
tion is still desired for the domain, but the domain is covered by a patchwork of unrelated grids.

1

These component grids must be associated with one another, in a process known as domain assem-
bly, such that information can propagate across the domain. Numerous techniques and methodolo-
gies have been developed to perform domain assembly. However, the process is computationally
expensive and can represent a large portion of the overall simulation cost for dynamic simulations
with bodies in relative motion, because the domain must be reassembled between each time step.
Additionally, the process has proven difficult to efficiently parallelize. Therefore, domain assembly
is still an active area of research. the concept, consider a simple store separation problem as shown
in Fig. 1.1a, where the wing and the store each has its own grid as shown in Fig. 1.1b. Because the
bodies have their own individual meshes and the domain assembler facilitates information transfer

between them, the bodies can move independently.

(a) Wing and store geometries (b) Composite mesh system

Figure 1.1 Wing and store geometry

Each component grid contributes to the solution, so there must be some mechanism for in-
formation to pass between component grids. Because fluid dynamics problems are boundary value
problems by construction, boundary conditions can be used to control how information enters and

leaves the computational domain. A flow solver may have multiple boundary conditions to address

different physical constraints, such as inlet, outlet, wall boundary, or constant pressure conditions.
Carefully chosen boundary conditions can also be used to transfer information between compo-
nent grids in overset simulations, but this raises the following questions. How is the boundary
information obtained, and where should the boundaries be defined? In essence, assembling overset
domains is simply answering both of these questions. Unfortunately, neither of these questions can
be answered without performing 3-Dimensional (3D) geometric searches. These searches can be

quite expensive, particularly in a parallel context on partitioned domains.

1.1 Objective
The primary objective of this work is to develop a new dynamic load balancing strategy for
performing domain assembly that scales to accommodate large mesh systems and large numbers
of processors. Other domain assembly codes exist, but only one existing code scales beyond a
small number of processors. The present work introduces a new load balancing strategy that is

fundamentally different from any existing domain assembly code.

1.1.1 Challenges

In serial, donor searching —finding which cells contain a given point— drives the cost of
domain assembly. In a distributed environment, potential donors for a given point will live on
different processors, so the problem becomes much more difficult. In addition to performing the
actual donor search, the domain assembler must somehow gather the necessary grid information
from different processors. A particular partition may overlap with any number of partitions on other

processes, so the domain assembler must determine what grid information needs to be transferred

between processors (and perform the communication) in order to set up donor searches. The
amount of donor searches a particular processor will perform is unknown at the outset of the
domain assembly. Furthermore, the work will be dependent on how the component grids overlap,
so some processes will perform a large number of searches, and some processes will perform
very few. Therefore some kind of load balancing must be introduced to insure that all processors
have work to do. Even when load balancing is introduced, the actual cost of the work for each
processor is difficult to predict, so significant imbalances can still occur. Roget and Sitaraman [2]
introduced a dynamic load balancing scheme that measures the actual cost for each process and
uses the measurement to improve load balancing for domain assembly in subsequent time steps
(i.e., load balancing occurs one time per domain assembly based on “yesterday’s weather”). In
contrast, the method proposed in this work performs load balancing continuously during each
domain assembly via a combination of over decomposition and a client server model. The proposed

method is therefore fundamentally different from any existing domain assembly method.

CHAPTER 2

LITERATURE REVIEW

2.1 The Overset/Chimera Method

The Chimera technique simplifies the grid generation process by allowing component grids
to be created independently. There is a range of restrictions associated with using overset grids,
however, so care must still be taken when creating the individual grids. For example, grids should
be of similar resolution in regions of overlap to minimize interpolation error. Additionally, regions
of overlap must be sufficiently large. Specifically, enough points must exist in the region to build
interpolation stencils of the appropriate size for the desired interpolation scheme. However, the
flexibility afforded by allowing multiple component grids to cover a geometric body makes it much
easier to create grid systems for large scale complex configurations. For example, the Overset
method made it possible to perform a complex simulation of the integrated Space Shuttle vehicle
(orbiter, solid rocket bosters, and external tank). [3]

The Chimera method affords a great deal of flexibility during the grid generation process,
but it does impose some additional requirements on the flow solver. First, the flow solver must
support a new interpolation boundary condition that allows information to propagate from one
component grid to the next. Second, the flow solver must be able to exclude certain control vol-
umes from computation that are designated to be outside the computational domain. An external
domain assembly process is responsible for providing the solver with a classification for each

5

control volume and the identities and weights of donors that the solver needs to calculate the in-
terpolated value. Because the driving concepts of the overset method are applicable to both cell
centered and cell-vertex centered schemes, the author has chosen to use the term control volume
to preserve generality and avoid confusion.

Control volumes are classified according to their update method. Control volumes that are
internal to the computational domain are referred to as solve or in control volumes because the flow
solver solves for their values just as it would for control volumes on a contiguous grid. Control
volumes that are designated as external to the computational domain are referred to as hole or out
control volumes. Control volumes on the boundary between solve and hole regions are designated
as receivers, receptors, or fringes and are updated by interpolation. Control volumes that are the
source of interpolated solution data for receivers are termed donors, and receivers for which an
appropriate donor has not been found are termed orphans.

There are two broad categories of Overset techniques: explicit and implicit hole cutting.
Explicit hole cutting uses the geometry to cut a hole in any mesh that overlaps with the geometry,
and Implicit hole cutting uses some cell-wise criterion to determine where holes should be cut
(e.g., cell volume). Figure 2.1 demonstrates an explicit hole cut in a structured curvilinear grid
by a circular piece of geometry. The domain assembler has identified nodes that are internal to
the geometry and marked them as hole points. The assembler also marked the nodes along the
hole boundary as receivers and the remaining nodes as solve points. The solver will update the
solution at the receivers with interpolated information from the component grid associated with
the circular geometry (not shown). Note that the nodes classified in this illustration are appropriate
for a cell-vertex centered scheme. If the grid was being prepared for a cell centered scheme, the

6

classification would be done on a cell-wise basis instead. Using the information provided by the
domain assembler, the flow solver will ignore all of the points in the hole region, and solve for
values at all of the points in the solve region. The hole boundary points, which are marked as
receivers, will be updated at each iteration by using the interpolated solution values from the grid
that is associated with the circle geometry. In this case, there is only one fringe layer, but there can
be multiple fringe layers (e.g., second order or higher interpolation requires two or more layers for

finite volume discretizations).

T\
AR

111 e Receiver point
— Solve region
Hole region
— Cutting geometry

[:L////

Figure 2.1 Explicit cut on a structured grid

The domain assembler is responsible for determining the status of each control volume,
identifying donors, and calculating weights for each of the donors. These tasks require 3D geo-
metric searching operations to find control volumes in different component grids that live in the
same physical neighborhood. Geometric searching in 3D can be expensive, and is, in fact, the most
computationally intensive aspect of the assembly process. [2]' [4] Geometric searching algorithms

typically use either a spatial data structure or connectivity information to accelerate the search.

2.1.1 Grid Types

Meshes can be lumped into two broad categories: structured and unstructured. Structured
meshes, as shown in Fig. 2.2, have an implied cell ordering and typically come in two forms:
curvilinear (Fig. 2.2a) and Cartesian (Fig. 2.2b). All structured meshes are defined by the number
of nodes along each axis in computational coordinates (£, 17, {) and a metric of transformation to
physical coordinates (x, y, z). Uniform Cartesian meshes are special cases whose transformation
metrics are unity i.e., the physical coordinates are the same as the computational coordinates. This
property makes geometric searching trivial on Cartesian meshes, i.e., O(1). Figure 2.2b specifi-
cally depicts Adaptive Mesh Refinement (AMR), [S] which involves multiple Cartesian meshes of
different resolutions nested inside each other. Both curvilinear and Cartesian meshes are structured,

and they often appear together; but the author makes the distinction for clarity.

nue)
A1)
111\
[][]
[[]]
[1]]
~
(a) Structured curvilinear mesh (b) Nested Cartesian meshes

Figure 2.2 Structured meshes

The term “unstructured mesh” is a vague term that simply means that the mesh does not

have an implied cell ordering, so some auxiliary mapping must exist to associate cells with each

other. This can cause some confusion when the term is intended to mean something more specific,
so again the author makes the distinction where necessary for clarity. Most of the time, researchers
specifically mean either a mesh with only tetrahedral elements, or a mesh with tetrahedra, pyra-
mids, prisms, and hexahedra, i.e., the “four basic” element types. Using this subset of element
types restricts the number of faces, edges, and nodes that a given element in a mesh can contain.
Figure 2.3a shows an unstructured mesh that contains only triangles. An arbitrary polyhedral mesh,
i.e., a general unstructured mesh, does not place restrictions on the number of faces an element can
contain. The mesh in Fig. 2.3b shows a general unstructured mesh, which has non-basic elements
highlighted in red (in 2D, the two basic element types are triangles and quadrilaterals). All of the
cells in the mesh in Fig. 2.3c are quadrilaterals, but hanging nodes are introduced where cell faces

do not match one-to-one. Meshes generated by using hierarchical techniques have these features.

(a) Unstructured triangular mesh (b) Polyhedral mesh (c) Mesh with hanging nodes

Figure 2.3 Unstructured Mesh Examples

2.2 History of the Overset Grid Method

Benek et al. [1] first introduced the Chimera grid technique (now commonly known as
Overset) in the early 1980s for steady state problems on multi-block structured grids. The method
uses interpolation to transfer solution data between overlapping grids. The method was later ex-
tended to unstructured meshes and time-dependent problems with bodies in relative motion. The
method can be expensive in terms of computational cost and user input (particularly for time de-
pendent problems with bodies in relative motion). Since its inception, the overset method has been
adapted to solve a wide variety of engineering problems and has evolved to meet the demands of
drastic changes in computer hardware and flow solver methods. The remainder of this section is
dedicated to describing many contributions that have helped increase automation, reduce compu-

tational cost, and evolve the overset method.

2.2.1 Opverset Structured Grids

In the original overset implementation, Benek et al. [1] created hole boundaries in compo-
nent grids explicitly. They first created level curves around pieces of geometry by marching along
the computational axis that was normal to the surface as shown in Fig. 2.4. Once the boundary
curve was constructed, a search was required to determine which points were inside the boundary
curve, i.e., the points that will be cut. This method produced very accurate holes, but the process
can become expensive for complex systems in three dimensions.

The initial goal of the overset method was to reduce the complexity of the grid generation
process, but it was later extended by Meakin and Suhs [6] to unsteady simulations of multiple

bodies in relative motion. Using overset grids allowed the individual bodies to move independently

10

L\ | I 7

Figure 2.4 Level curves in a structured mesh

without affecting the quality or connectivity of any of the component meshes. However, the cost of
searching for hole points at each time step was very high. To reduce the cost of searching for hole
points in dynamic simulations, Meakin and Suhs [6] reduced the search space by only searching
the subset of points on either side of the hole boundary from the previous time step.

Because holes do not need to be exact in many cases, low-cost approximations can be used
to improve the efficiency of the method. Early overset implementations such as DCF3D [4] and
PEGSUS [7] added this capability by allowing user-defined geometric “cutters.” These cutters
were simple analytical shapes, chosen by the user, to approximate pieces of the geometry. Be-
cause determining if a point lies inside an analytical shape is simple, their use resulted in dramatic
performance increases. Figures 2.5a and 2.5b show a store geometry and its approximation using
analytic shapes.

In an effort to reduce the cost of searching for donors, implementations such as PEGSUS [7]
replaced exhaustive donor searches with cheaper, but still robust searches based on a “stencil-walk”
method. Stencil-walk methods are a class of methods that use connectivity information to walk
from one cell to the next. There are many ways to implement these methods for different classes

11

<

(a) Store geometry (b) Approximation with geometric
cutters

Figure 2.5 Geometric cutters

of meshes, but they are conceptually equivalent. Figure 2.6 illustrates the path of a stencil-walk
based search in both structured and unstructured-grid contexts. This approach greatly reduced the

cost of finding appropriate donors, but the cost was still of the same order as the flow solver. [6]

nu
1\
1A
| | T
[[I]]
/1]
N

(a) Stencil-walk on structured mesh (b) Stencil-walk on an unstructured
mesh

Figure 2.6 Stencil-walk method

Meakin [4] introduced the concept of inverse maps to facilitate fast conversion from physi-
cal coordinates (x,y,z) to computational coordinates (£,17,{) of any component grid. This is accom-
plished by mapping the independent computational spaces of the component grids to a collection
of auxiliary Cartesian grids. Because the maps are based on Cartesian grids, the donor search

12

becomes an O(1) operation. To completely map each point in a component grid, each cell of the
auxiliary grid must contain only a single point. To achieve this one to one mapping, the underlying
Cartesian auxiliary grids may need to be extremely fine. This can lead to a high memory footprint.
Meakin [4] introduced approximate inverse maps to reduce memory requirements. Approximate
inverse maps do not require a one to one mapping, so they can be built upon coarse auxiliary Carte-
sian grids. Each cell in the map may contain multiple points from a component grid, but it is only
associated with one of them. Because the approximate inverse map does not contain exact matches,
a local search will be required, but this search should be short because the starting location will be
near the target. A local walking search will be significantly shorter than a global walking search.
In fact, using approximate inverse maps was shown to be several times faster than using global

walking searches. [4] Figure 2.7 shows a coarse inverse map over a structured component grid.

— Geometry

— Component Grid

===1 — Inverse Map

Figure 2.7 Inverse map

In the early 1990s, flow solvers were adapted to run on distributed memory machines, so
researchers began exploring methods for parallelizing the domain assembly process to keep pace.
In the first parallel implementation, inverse maps were used to determine which processes needed

13

to be queried to find donors for points that were marked as receptors. [8] This initial approach
was improved by taking advantage of information from the previous time step. A lookup table
containing potential donors was created by marching +1 in one or more of the indices of the donor
grid. In this way, many donor searches could be completed by searching a small section of the
lookup table instead of using the standard walking search, and the regular donor search could be
used in case of failure.

In addition to the computational cost of domain assembly algorithms, the amount of user
input required to set up a case was very high; user input for assembly of aircraft, pylon, and
external store grids was often thousands of lines long. [9] Codes such as Beggar [9] were developed
to attack this aspect of the problem. Beggar automatically used solid grid surfaces as cutters.
This process was based on boundary conditions, which removed the requirement for the user to
explicitly choose surface patches as cutters. For every component grid, Beggar would first identify
cells that intersected surface patches, then perform a flood fill to mark the interior cells as holes.
Beggar used an octree spatial data structure to store surface elements, which sped up the cutting
process. An octree is a spatial data structure that is commonly used for geometric searching. It is
based on an axis-aligned hexahedron. This hexahedron can be subdivided into 8 equal children,
which can be recursively subdivided until the desired resolution is reached. Figure 2.8 shows a
2-Dimensional (2D) representation of an octree (a quadtree) and its logical structure.

While using the solid grid surfaces as cutters helped to automate the domain assembly pro-
cess, it was still