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ABSTRACT

The CFD (Computational Fluid Dynamics) community has long used the Overset Grid

method to enable dynamic simulations with bodies in relative motion. In Overset simulations,

information is transferred between overlapping grids via interpolation. Domain Assembly is the

process that governs the location of intergrid boundaries and how the solution is interpolated across

grids at those boundaries. Performing Domain Assembly in a distributed environment is compu-

tationally expensive and inherently poorly load balanced due to the solver partitioning. Dynamic

load balancing is therefore required to alleviate the imbalance and make very large Overset prob-

lems feasible. In this work, a radically different parallel domain assembly method is introduced.

The new method takes a fundamentally different approach to load balancing, concurrency, and

communication patterns. A detailed discussion is provided that describes the method’s implemen-

tation in YOGA (Yoga is an Overset Grid Assembler). Finally, several case studies are analyzed

and preliminary performance and scaling results are provided.
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CHAPTER 1

INTRODUCTION

A typical finite-volume computational fluid dynamics (CFD) solver uses a single, contigu-

ous mesh to discretize the computational domain (structured solvers typically have multiple blocks,

but they are abutting and form a single contiguous domain). This requirement causes two problems.

First, generating a single grid for a complex domain, particularly using a structured grid technique,

can be challenging. Second, and perhaps more importantly, solving problems with multiple bodies

in relative motion is difficult on a single grid unless the relative motion is small. However, both

of these issues can be alleviated if the computational domain is spanned by multiple grids that

are allowed to overlap forming a composite patchwork of grids covering the entire domain. The

methodology of overset, or overlayed, grids is often referred to as the Chimera [1] technique due

to its hybrid approach combining grids of separate components. With this approach, overall grid

generation can be simplified and grid quality can be improved because individual bodies, or even

components of complicated bodies, can be meshed separately. When considering moving bodies in

relative motion, each body can be represented by its own grid. As such, the entire grid for a given

body is allowed to move with the body independent of the grids of other bodies. This provides for

robust support of the full range of motion within the domain.

The advantages of overset grids do not come for free, however. A single, continuous solu-

tion is still desired for the domain, but the domain is covered by a patchwork of unrelated grids.
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These component grids must be associated with one another, in a process known as domain assem-

bly, such that information can propagate across the domain. Numerous techniques and methodolo-

gies have been developed to perform domain assembly. However, the process is computationally

expensive and can represent a large portion of the overall simulation cost for dynamic simulations

with bodies in relative motion, because the domain must be reassembled between each time step.

Additionally, the process has proven difficult to efficiently parallelize. Therefore, domain assembly

is still an active area of research. the concept, consider a simple store separation problem as shown

in Fig. 1.1a, where the wing and the store each has its own grid as shown in Fig. 1.1b. Because the

bodies have their own individual meshes and the domain assembler facilitates information transfer

between them, the bodies can move independently.

(a) Wing and store geometries (b) Composite mesh system

Figure 1.1 Wing and store geometry

Each component grid contributes to the solution, so there must be some mechanism for in-

formation to pass between component grids. Because fluid dynamics problems are boundary value

problems by construction, boundary conditions can be used to control how information enters and

leaves the computational domain. A flow solver may have multiple boundary conditions to address
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different physical constraints, such as inlet, outlet, wall boundary, or constant pressure conditions.

Carefully chosen boundary conditions can also be used to transfer information between compo-

nent grids in overset simulations, but this raises the following questions. How is the boundary

information obtained, and where should the boundaries be defined? In essence, assembling overset

domains is simply answering both of these questions. Unfortunately, neither of these questions can

be answered without performing 3-Dimensional (3D) geometric searches. These searches can be

quite expensive, particularly in a parallel context on partitioned domains.

1.1 Objective

The primary objective of this work is to develop a new dynamic load balancing strategy for

performing domain assembly that scales to accommodate large mesh systems and large numbers

of processors. Other domain assembly codes exist, but only one existing code scales beyond a

small number of processors. The present work introduces a new load balancing strategy that is

fundamentally different from any existing domain assembly code.

1.1.1 Challenges

In serial, donor searching —finding which cells contain a given point— drives the cost of

domain assembly. In a distributed environment, potential donors for a given point will live on

different processors, so the problem becomes much more difficult. In addition to performing the

actual donor search, the domain assembler must somehow gather the necessary grid information

from different processors. A particular partition may overlap with any number of partitions on other

processes, so the domain assembler must determine what grid information needs to be transferred
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between processors (and perform the communication) in order to set up donor searches. The

amount of donor searches a particular processor will perform is unknown at the outset of the

domain assembly. Furthermore, the work will be dependent on how the component grids overlap,

so some processes will perform a large number of searches, and some processes will perform

very few. Therefore some kind of load balancing must be introduced to insure that all processors

have work to do. Even when load balancing is introduced, the actual cost of the work for each

processor is difficult to predict, so significant imbalances can still occur. Roget and Sitaraman [2]

introduced a dynamic load balancing scheme that measures the actual cost for each process and

uses the measurement to improve load balancing for domain assembly in subsequent time steps

(i.e., load balancing occurs one time per domain assembly based on “yesterday’s weather”). In

contrast, the method proposed in this work performs load balancing continuously during each

domain assembly via a combination of over decomposition and a client server model. The proposed

method is therefore fundamentally different from any existing domain assembly method.
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CHAPTER 2

LITERATURE REVIEW

2.1 The Overset/Chimera Method

The Chimera technique simplifies the grid generation process by allowing component grids

to be created independently. There is a range of restrictions associated with using overset grids,

however, so care must still be taken when creating the individual grids. For example, grids should

be of similar resolution in regions of overlap to minimize interpolation error. Additionally, regions

of overlap must be sufficiently large. Specifically, enough points must exist in the region to build

interpolation stencils of the appropriate size for the desired interpolation scheme. However, the

flexibility afforded by allowing multiple component grids to cover a geometric body makes it much

easier to create grid systems for large scale complex configurations. For example, the Overset

method made it possible to perform a complex simulation of the integrated Space Shuttle vehicle

(orbiter, solid rocket bosters, and external tank). [3]

The Chimera method affords a great deal of flexibility during the grid generation process,

but it does impose some additional requirements on the flow solver. First, the flow solver must

support a new interpolation boundary condition that allows information to propagate from one

component grid to the next. Second, the flow solver must be able to exclude certain control vol-

umes from computation that are designated to be outside the computational domain. An external

domain assembly process is responsible for providing the solver with a classification for each
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control volume and the identities and weights of donors that the solver needs to calculate the in-

terpolated value. Because the driving concepts of the overset method are applicable to both cell

centered and cell-vertex centered schemes, the author has chosen to use the term control volume

to preserve generality and avoid confusion.

Control volumes are classified according to their update method. Control volumes that are

internal to the computational domain are referred to as solve or in control volumes because the flow

solver solves for their values just as it would for control volumes on a contiguous grid. Control

volumes that are designated as external to the computational domain are referred to as hole or out

control volumes. Control volumes on the boundary between solve and hole regions are designated

as receivers, receptors, or fringes and are updated by interpolation. Control volumes that are the

source of interpolated solution data for receivers are termed donors, and receivers for which an

appropriate donor has not been found are termed orphans.

There are two broad categories of Overset techniques: explicit and implicit hole cutting.

Explicit hole cutting uses the geometry to cut a hole in any mesh that overlaps with the geometry,

and Implicit hole cutting uses some cell-wise criterion to determine where holes should be cut

(e.g., cell volume). Figure 2.1 demonstrates an explicit hole cut in a structured curvilinear grid

by a circular piece of geometry. The domain assembler has identified nodes that are internal to

the geometry and marked them as hole points. The assembler also marked the nodes along the

hole boundary as receivers and the remaining nodes as solve points. The solver will update the

solution at the receivers with interpolated information from the component grid associated with

the circular geometry (not shown). Note that the nodes classified in this illustration are appropriate

for a cell-vertex centered scheme. If the grid was being prepared for a cell centered scheme, the
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classification would be done on a cell-wise basis instead. Using the information provided by the

domain assembler, the flow solver will ignore all of the points in the hole region, and solve for

values at all of the points in the solve region. The hole boundary points, which are marked as

receivers, will be updated at each iteration by using the interpolated solution values from the grid

that is associated with the circle geometry. In this case, there is only one fringe layer, but there can

be multiple fringe layers (e.g., second order or higher interpolation requires two or more layers for

finite volume discretizations).

Figure 2.1 Explicit cut on a structured grid

The domain assembler is responsible for determining the status of each control volume,

identifying donors, and calculating weights for each of the donors. These tasks require 3D geo-

metric searching operations to find control volumes in different component grids that live in the

same physical neighborhood. Geometric searching in 3D can be expensive, and is, in fact, the most

computationally intensive aspect of the assembly process. [2], [4] Geometric searching algorithms

typically use either a spatial data structure or connectivity information to accelerate the search.
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2.1.1 Grid Types

Meshes can be lumped into two broad categories: structured and unstructured. Structured

meshes, as shown in Fig. 2.2, have an implied cell ordering and typically come in two forms:

curvilinear (Fig. 2.2a) and Cartesian (Fig. 2.2b). All structured meshes are defined by the number

of nodes along each axis in computational coordinates (ξ, η, ζ) and a metric of transformation to

physical coordinates (x, y , z). Uniform Cartesian meshes are special cases whose transformation

metrics are unity i.e., the physical coordinates are the same as the computational coordinates. This

property makes geometric searching trivial on Cartesian meshes, i.e., O(1). Figure 2.2b specifi-

cally depicts Adaptive Mesh Refinement (AMR), [5] which involves multiple Cartesian meshes of

different resolutions nested inside each other. Both curvilinear and Cartesian meshes are structured,

and they often appear together; but the author makes the distinction for clarity.

(a) Structured curvilinear mesh (b) Nested Cartesian meshes

Figure 2.2 Structured meshes

The term “unstructured mesh” is a vague term that simply means that the mesh does not

have an implied cell ordering, so some auxiliary mapping must exist to associate cells with each
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other. This can cause some confusion when the term is intended to mean something more specific,

so again the author makes the distinction where necessary for clarity. Most of the time, researchers

specifically mean either a mesh with only tetrahedral elements, or a mesh with tetrahedra, pyra-

mids, prisms, and hexahedra, i.e., the “four basic” element types. Using this subset of element

types restricts the number of faces, edges, and nodes that a given element in a mesh can contain.

Figure 2.3a shows an unstructured mesh that contains only triangles. An arbitrary polyhedral mesh,

i.e., a general unstructured mesh, does not place restrictions on the number of faces an element can

contain. The mesh in Fig. 2.3b shows a general unstructured mesh, which has non-basic elements

highlighted in red (in 2D, the two basic element types are triangles and quadrilaterals). All of the

cells in the mesh in Fig. 2.3c are quadrilaterals, but hanging nodes are introduced where cell faces

do not match one-to-one. Meshes generated by using hierarchical techniques have these features.

(a) Unstructured triangular mesh (b) Polyhedral mesh (c) Mesh with hanging nodes

Figure 2.3 Unstructured Mesh Examples
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2.2 History of the Overset Grid Method

Benek et al. [1] first introduced the Chimera grid technique (now commonly known as

Overset) in the early 1980s for steady state problems on multi-block structured grids. The method

uses interpolation to transfer solution data between overlapping grids. The method was later ex-

tended to unstructured meshes and time-dependent problems with bodies in relative motion. The

method can be expensive in terms of computational cost and user input (particularly for time de-

pendent problems with bodies in relative motion). Since its inception, the overset method has been

adapted to solve a wide variety of engineering problems and has evolved to meet the demands of

drastic changes in computer hardware and flow solver methods. The remainder of this section is

dedicated to describing many contributions that have helped increase automation, reduce compu-

tational cost, and evolve the overset method.

2.2.1 Overset Structured Grids

In the original overset implementation, Benek et al. [1] created hole boundaries in compo-

nent grids explicitly. They first created level curves around pieces of geometry by marching along

the computational axis that was normal to the surface as shown in Fig. 2.4. Once the boundary

curve was constructed, a search was required to determine which points were inside the boundary

curve, i.e., the points that will be cut. This method produced very accurate holes, but the process

can become expensive for complex systems in three dimensions.

The initial goal of the overset method was to reduce the complexity of the grid generation

process, but it was later extended by Meakin and Suhs [6] to unsteady simulations of multiple

bodies in relative motion. Using overset grids allowed the individual bodies to move independently
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Figure 2.4 Level curves in a structured mesh

without affecting the quality or connectivity of any of the component meshes. However, the cost of

searching for hole points at each time step was very high. To reduce the cost of searching for hole

points in dynamic simulations, Meakin and Suhs [6] reduced the search space by only searching

the subset of points on either side of the hole boundary from the previous time step.

Because holes do not need to be exact in many cases, low-cost approximations can be used

to improve the efficiency of the method. Early overset implementations such as DCF3D [4] and

PEGSUS [7] added this capability by allowing user-defined geometric “cutters.” These cutters

were simple analytical shapes, chosen by the user, to approximate pieces of the geometry. Be-

cause determining if a point lies inside an analytical shape is simple, their use resulted in dramatic

performance increases. Figures 2.5a and 2.5b show a store geometry and its approximation using

analytic shapes.

In an effort to reduce the cost of searching for donors, implementations such as PEGSUS [7]

replaced exhaustive donor searches with cheaper, but still robust searches based on a “stencil-walk”

method. Stencil-walk methods are a class of methods that use connectivity information to walk

from one cell to the next. There are many ways to implement these methods for different classes
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(a) Store geometry (b) Approximation with geometric
cutters

Figure 2.5 Geometric cutters

of meshes, but they are conceptually equivalent. Figure 2.6 illustrates the path of a stencil-walk

based search in both structured and unstructured-grid contexts. This approach greatly reduced the

cost of finding appropriate donors, but the cost was still of the same order as the flow solver. [6]

(a) Stencil-walk on structured mesh (b) Stencil-walk on an unstructured
mesh

Figure 2.6 Stencil-walk method

Meakin [4] introduced the concept of inverse maps to facilitate fast conversion from physi-

cal coordinates (x,y,z) to computational coordinates (ξ,η,ζ) of any component grid. This is accom-

plished by mapping the independent computational spaces of the component grids to a collection

of auxiliary Cartesian grids. Because the maps are based on Cartesian grids, the donor search
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becomes an O(1) operation. To completely map each point in a component grid, each cell of the

auxiliary grid must contain only a single point. To achieve this one to one mapping, the underlying

Cartesian auxiliary grids may need to be extremely fine. This can lead to a high memory footprint.

Meakin [4] introduced approximate inverse maps to reduce memory requirements. Approximate

inverse maps do not require a one to one mapping, so they can be built upon coarse auxiliary Carte-

sian grids. Each cell in the map may contain multiple points from a component grid, but it is only

associated with one of them. Because the approximate inverse map does not contain exact matches,

a local search will be required, but this search should be short because the starting location will be

near the target. A local walking search will be significantly shorter than a global walking search.

In fact, using approximate inverse maps was shown to be several times faster than using global

walking searches. [4] Figure 2.7 shows a coarse inverse map over a structured component grid.

Figure 2.7 Inverse map

In the early 1990s, flow solvers were adapted to run on distributed memory machines, so

researchers began exploring methods for parallelizing the domain assembly process to keep pace.

In the first parallel implementation, inverse maps were used to determine which processes needed

13



to be queried to find donors for points that were marked as receptors. [8] This initial approach

was improved by taking advantage of information from the previous time step. A lookup table

containing potential donors was created by marching ±1 in one or more of the indices of the donor

grid. In this way, many donor searches could be completed by searching a small section of the

lookup table instead of using the standard walking search, and the regular donor search could be

used in case of failure.

In addition to the computational cost of domain assembly algorithms, the amount of user

input required to set up a case was very high; user input for assembly of aircraft, pylon, and

external store grids was often thousands of lines long. [9] Codes such as Beggar [9] were developed

to attack this aspect of the problem. Beggar automatically used solid grid surfaces as cutters.

This process was based on boundary conditions, which removed the requirement for the user to

explicitly choose surface patches as cutters. For every component grid, Beggar would first identify

cells that intersected surface patches, then perform a flood fill to mark the interior cells as holes.

Beggar used an octree spatial data structure to store surface elements, which sped up the cutting

process. An octree is a spatial data structure that is commonly used for geometric searching. It is

based on an axis-aligned hexahedron. This hexahedron can be subdivided into 8 equal children,

which can be recursively subdivided until the desired resolution is reached. Figure 2.8 shows a

2-Dimensional (2D) representation of an octree (a quadtree) and its logical structure.

While using the solid grid surfaces as cutters helped to automate the domain assembly pro-

cess, it was still computationally expensive. In an effort to combine the computational benefits of

geometric cutters with the automation of using boundary surfaces as cutters, Meakin introduced

Cartesian “hole-maps”. [4] To generate hole-maps, first, Cartesian grids are created that span the
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(a) Representation of quadtree in
space

(b) Logical tree structure

Figure 2.8 Quadtree

space of each geometric entity and each component grid. Then, cells of the Cartesian maps that

reside inside solid surfaces, or inside the component grids are flagged. These maps serve as approx-

imations of the geometry and component grids. The maps can be used to determine in/out status of

any x, y , z coordinate in constant time, i.e., O(1). Figure 2.9a shows an auxiliary mesh that spans

the space of a store geometry. This mesh can be used as an approximation for the geometry (i.e., a

hole map) by flagging all the internal or intersecting cells (as shown in Fig. 2.9b).

(a) Auxiliary Cartesian mesh (b) Hole map

Figure 2.9 Hole map
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While hole-maps facilitate quick in/out evalutations, they can become costly in terms of

memory in cases where very high resolution is required to capture the geometry. Consider two

bodies in close proximity, as in Fig. 2.10a. A hole-map would need very small cells in order to

differentiate between the two bodies. For a Cartesian hole-map, the entire map would need to have

that resolution, which could be costly. For hole-maps based on tree structures, such as the quadtree

in Fig. 2.10b, the effect of the resolution requirements can be mitigated to an extent, but the cost

can still be high if the required resolution is fine enough.

(a) Two bodies in close proximity (b) Quadtree based hole map

Figure 2.10 Issue with bodies in close proximity

In addition to hole-maps, Chui and Meakin [10] also introduced a method to automatically

“optimize” hole boundaries to have minimum overlap. Starting with an initial hole boundary, the

method locally expanded or contracted the boundary to reduce overlap and eliminate orphans (i.e.,

receivers with no valid donors). The method was shown to generate high quality hole cuts with

significantly less user input, even for applications that involved bodies in relative motion.
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Meakin [11] incorporated Adaptive Mesh Refinement (AMR [5]) into the overset method,

which improved the flexibility and efficiency of the method. In overset simulations using AMR,

many of the donor searches are performed on off-body Cartesian meshes. This reduces the overall

cost of the donor search operation due to the convenient properties of Cartesian meshes discussed

earlier.

Meanwhile, a new spatial data structure called an Alternating Digital Tree (ADT) [12] facil-

itated very efficient geometric searching, which codes such as CFD-FASTRAN [13] incorporated

to speed up donor searches. This data structure is particularly useful for performing geometric

searches over unstructured grids. The ADT was originally developed to improve advancing front

grid generation, but it has proven to be quite valuable in the realm of Overset domain assembly as

well.

Solvers with integrated domain assembly (e.g., Beggar [14]) could hide some of the hole

cutting cost by overlapping the grid assembly with the flow solver at each iteration. Parallelization

efforts for Beggar began with a hybrid approach in which the solver used coarse-grained parallelism

at the component grid level, and the assembly was done on a single process, but overlapped with

the solver to partially hide the cost. This concept served as a springboard for further developments,

and was later extended by using multiple processes to complete the assembly during each flow

step. [15] Because the entire grid was stored on these processes separate from the flow solver,

dynamic load balancing was used to improve efficiency (without changing the partitioning of the

solver).

The Overture framework, which was the result of 15 years of development upon its Fortran-

based predecessor, CMPGRD, [16] was an object-oriented environment written in C++ for solving
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PDEs on overset domains. [17] The primary purpose of Overture was to provide all of the func-

tionality of the previous Fortran implementation, but provide the user with higher level tools that

would simplify the process as much as possible. The user could manipulate objects, such as com-

ponent grids, at a high level; and the framework would handle the low level hole cutting details

by using existing methods. With this layer of abstraction, the underlying details of the assembly

process could be changed without affecting code that relied on the assembly.

During the 1990s, most parallel overset methods employed coarse parallelism over a col-

lection of component grids, where the number of component grids was on the order of the number

of processors. This approach was extended by using AMR to generate large numbers of off body

grids, which could be grouped by size (along with near-body grids) to improve load balancing. [18]

Better load balancing was possible because the number of grids was 10–20 times higher than the

number of processes. This approach to load balancing worked well for simulations where the

number of processes was small, but the grid-to-process ratio is difficult to maintain on large scale

simulations with many thousands of processes.

Drawing from the concepts of common ray casting [19] and hole-maps, Meakin introduced

the Object X-Rays method. [20] This method combines the robustness of traditional ray casting

methods with the efficiency of a 2D uniform Cartesian grid. When casting a ray from a given point,

the parity of the number of intersections of the ray with any closed set of surfaces indicates if the

point is inside or outside of the surface set. The cost of ray casting is proportional to the number of

points in question and somewhat to the number of points defining the surfaces. The X-Rays method

reduces this cost by casting rays from a 2D uniform Cartesian grid as opposed to each potential 3D

target point. The Cartesian grid is placed below the hole-cutting objects and normal to a specific
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coordinate direction. A normal ray is cast from each point in the plane with a magnitude sufficient

to fully intersect the hole-cutting surfaces. Information pertaining to the intersections of each ray

and the hole-cutting surfaces is stored for every point on the plane as shown in Fig. 2.11 and the

result is analogus to common X-Ray imaging. When hole-cutting, the status of a 3D target point

can be determined by projection of the target onto the 2D Cartesian grid followed by examination

of the pre-computed ray casting results stored at the verticies of the encompassing 2D grid element.

This method virtually eliminates the memory costs associated with 3D hole-maps as only planar

data is stored. However, the robustness of the ray casting method is impacted by the resolution of

the Cartesian grid.

Figure 2.11 X-rays

PEGASUS 5, which was a new code to replace PEGSUS version 4 (the spelling was

changed when the new code was adopted), incorporated a Cartesian hole map in conjunction with

a line of sight algorithm. [21] These additions improved the automation and robustness of the hole

cutting process. The efficient ADT data structure was also used to accelerate geometric searches.

The new code employed coarse-grained parallelism based on component meshes as other codes
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had done earlier. PEGASUS 5 obtained a speedup factor of 33 on 48 processors for a large test

case (79 component grids). [21]

Researchers at NASA Ames compiled a collection of internally developed tools for as-

sembling structured components called the Chimera Components Connectivity Library (C3LIB).

[22], [23] This library provided an API for all of the common functions needed to perform do-

main assembly for structured grids (i.e., creation of Object X-Rays, multiple stencil-search meth-

ods, and functions to determine interpolation stencils for query points). In the context of explicit

hole-cutting on structured grids, it is extremely cheap to find donors in Cartesian grids, but it is

comparatively expensive (about a factor of 100) [22] to locate donors in curvilinear grids. In sys-

tems with curvilinear grids near the body and Cartesian grids in the off-body, the largest cost in

the donor search process is attributed to the query points in the Cartesian grids (whose donors

are in the curvilinear near-body grids). Chan [22] introduced a method of ordering query points

along paths to reduce the number of global searches required during the donor search process. The

method takes advantage of the fact that the donors for adjacent query points will be close, i.e., if

the donor is known for a particular query point, that donor will be a good starting location for a

stencil-walking search. Consider an unordered collection of query points as shown in Fig. 2.12a.

Performing a global search for each of these points would be expensive, so it is desirable to reduce

the number of global searches if possible. Those points can be ordered along path segments such

that each point is adjacent to the previous point on the path as shown in Fig. 2.12b. The paths can

be constructed by starting at a point, e.g., point A in Fig. 2.12b, and adding one of its neighbors to

the path segment. This process continues until a query point is reached that has no unvisited neigh-

bors, then the path segment terminates. The overall cost of the donor search is reduced because

20



global searches are only required for the first query point along each of the path segments. Chan

recognized that the number of global searches could be reduced further by allowing jumps in the

paths. Instead of terminating, e.g., segment A in Fig. 2.12b, Chan allowed the segment to jump

to any point that was adjacent to any point on the path. In Fig. 2.12c, the path is allowed to jump

to point B because it is adjacent to the path. This reduces the number of required global searches

from three to one in this example.

(a) Collection of query points (b) Disjoint path segments (c) With jumps

Figure 2.12 Organizing query points

2.2.2 Overset Unstructured Meshes

In the early 2000s, overset techniques were extended to unstructured meshes and quickly

gained popularity. Nakahashi et al. [24] introduced implicit hole cutting (a term coined later by

Lee and Baeder [25], [26]), in which they defined inter-grid boundaries based on a distance-to-the-

wall criterion. Each node was assigned a value based on the distance from the node to the nearest

solid surface in its containing component mesh. After assigning a distance to each node, the
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domain assembly code searched for cells in other component meshes that contained the node via a

stencil-walk algorithm. Figures 2.13a and 2.13b show stencil-walk paths for a donor search on an

unstructured quad mesh. The red dot represents a query point in another component mesh, and the

green dot represents the starting location of the stencil-walk. Stencil-walk algorithms terminate

upon reaching a mesh boundary, so they can easily fail if the domain is not convex. Figure 2.13a

shows an example of this failure mode. Additional logic can be added to the search to allow it

to walk along boundaries, but the search cost could become very high for complicated geometries

and robustness can still be an issue. Nakahashi et al. [24] augmented composite grid systems by

adding subsidiary grids inside of bodies and outside the computational region. By adding these

grids, they could guarantee that the augmented domain was a convex hull, therefore removing all

failure modes of the stencil-walk algorithm.

(a) Failed walking search (b) Successful walking search

Figure 2.13 Unstructured neighbor walking

After finding the containing cells, the assembler then compared the distance value of the

point to the interpolated value of the containing cell to determine which piece of geometry was

nearest. The search point was marked as either in or out if it was closer to its geometry or the
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geometry associated with the containing cell respectively. In order to determine the distance to the

geometry of the containing cell, the values of the cell’s vertices were interpolated at the location

of the search point. Therefore, a byproduct of implicit hole cutting is that the donor stencils

are already calculated (i.e., a separate donor search phase is not required). Once all nodes were

classified, the cells were marked as in, out, or fringe. If all nodes of a cell were marked as in, the

cell would also be marked as in, likewise for out nodes. If one or more of the cell’s vertices were

marked as in and one or more of its vertices were marked as out, then the cell was marked as a fringe

cell. This information was then used to determine which nodes would become receptors. Nodes

that were marked as out and were also vertices of a fringe cell were marked as receptors. This

guaranteed at least one node of overlap between component grids. Using a distance-to-the-wall

as the hole cutting criterion, a domain assembler produces inter-grid boundaries that lie halfway

between component meshes. Figure 2.14 shows a representation of two meshes that have cut each

other based on distance-to-the-wall.

Figure 2.14 Implicit cut based on distance to the wall
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Implicit hole cutting can also use criteria other than distance-to-the-wall to determine where

the inter-grid boundaries should be defined. Lee and Baeder originally used cell volume. [25]

Löhner et al. generalized the concept by introducing the term “dominant mesh criterion”. [27] The

dominant mesh criterion is some cell-wise criterion that can come from an arbitrary source and is

used to define intergrid boundaries (i.e., a donor cell will have a lower value for the dominant mesh

criterion than its receiver). For their work, they used the criterion:

s = dp × hq (2.1)

where d is the distance-to-the-wall, h is the cell size, and p and q are tunable parameters. When

p = 1 and q = 0, the scheme reduces to distance to the wall. They also improved the efficiency

of the method by using a fast distance to the wall calculation, and using incremental interpolation

between time steps. If the relative motion of bodies is small from iteration to iteration, it is likely

that the interpolation boundaries at a given iteration will be similar to those at the next iteration.

Under this assumption, a domain assembly code can use donors from a given iteration as seeds for

the walking search of the next, which could greatly reduce the number of steps needed to reach the

correct donor.

To handle overlaps in near-body regions where the grid spacing is small, hole-maps, x-rays,

and other approximation methods require high resolution. Because this level of detail may not be

required for cutting holes in off-body meshes with larger spacings, Noack divided near-body and

off-body assembly into two separate tasks that could use resolution appropriate for each task. [28]
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He used an octree structure to speed up the hole cutting process, and an octree of different resolu-

tion to provide starting locations for a stencil-walk based donor search. He also incorporated an it-

erative process for reducing overlap based on a prescribed “donor suitability function,” which gave

control similar to implicit methods (though with a much different approach). Noack released an

overset domain assembly code called SUGGAR [29] and an associated library called DiRTlib. [30]

SUGGAR used binary trees to reduce the memory overhead associated with the octree structures

that it originally used. [29] It was later enhanced to handle small gap regions via a direct cut

approach. [31] Noack later wrote a new version (SUGGAR++), which was the first commercial

product that targeted a wide variety of structured and unstructured solvers. [32] SUGGAR++ was

capable of operating on distributed memory systems, and it used a Spatial Decomposition Volume

repartitioning scheme [32] to improve load balancing. The SDV scheme is described in detail in

2.3.3.1.

Sitaraman et al. [33] introduced PUNDIT, a general parallel domain assembler, that op-

erated on the same partitions as the solver. PUNDIT (Parallel UNsteady Domain Information

Transfer) introduced the flexibility to transfer domain information between multiple solvers with

potentially different mesh types (structured, unstructured, Cartesian). PUNDIT was designed to

operate in parallel by using the native partitioning scheme of the solver(s) involved in the assem-

bly. The module has a number of other distinguishing features. PUNDIT accesses grid and solution

data directly through pointers, which are provided when each solver is “registered.” This reduces

memory overhead. PUNDIT also uses several techniques to reduce the search space for the im-

plicit hole cutting problem. Oriented bounding boxes are created around grid partitions by using

25



inertial bisection, then those are divided into “vision space bins.” Figure 2.15 shows the bound-

ing box concept. Depending on the orientation of an object, an axis-aligned bounding box may

contain much more empty space than necessary (Fig. 2.15a). This can be reduced by orienting

the bounding box so as to minimize its volume (Fig. 2.15b). The cells in each partition are then

reordered to make identifying each cell that lies in a particular bin cheaper. With these in place,

oriented bounding boxes are shared among all processors, then each process can identify lists of

potential receivers at the same time as determining where the incoming oriented bounding boxes

overlap with its grid(s). Once potential receivers are identified, lists of those are exchanged, and

donor searches are performed. The donor search algorithm uses the vision space bins to initialize a

short stencil-walk. The processes of making near-body to near-body connections and near-body to

off-body connections is separated to accommodate adaptive Cartesian off-body grid generation and

take advantage of the inherent efficiencies if meshes of that type are used in the simulation. PUN-

DIT showed linear speedup on up to 12 processes, but the speedup quickly dropped off due to load

imbalance imposed by the flow solver partitioning. PUNDIT originally used cell size, which they

called “resolution capacity,” as the dominant mesh criterion, but this was later updated to include

the influence of wall distance. [33] Recently, Roget and Sitaraman [2] implemented a new donor

search strategy based on EIM (Exact Inverse Maps) and explored dynamic load balancing. The

EIM method was shown to be more efficient than the ADT method. Dynamic load balancing im-

proved scalability (out to hundreds of cores) for the ADT method. Sitaraman presented results of

applying dynamic load balancing to the EIM method. [34] The grid assembly process was shown

to take 21% of the solver time per time step on 8192 cores for a large test case.
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(a) Axis aligned bounding box (b) Oriented bounding box

Figure 2.15 Bounding boxes around a store geometry

Zagaris et al. [35] developed another in-core parallel assembly to tackle the distributed

assembly problem. This method performed explicit hole cutting and used axis-aligned bounding

boxes to identify regions of potential overlap. This method used both “virtual grids” (i.e., auxiliary

structured Cartesian grids) and octrees as tools to reduce search space during the hole cutting and

donor searching processes. The method did not scale well in parallel, but the assembly process

represented less than 10% of the overall solution for the problems presented in the original paper.

[35] In a subsequent paper, Zagaris et al. [36] presented a caching strategy that drastically improved

the performance of their donor search algorithm. Their strategy leveraged the fact that points that

are close in physical space may be close in index space as well. When a donor cell was identified

for a query point, its neighbors were added to the front of the cache, that was implemented as a

doubly linked-list. The donor search for the next query point started by checking the cells in the

cache and would revert to the standard search if there was a “cache miss.” For the cases examined,

the cache miss rate was very low, and overall performance improvements of 2x or greater were

observed.
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2.3 Current State of the Overset Grid Method

As stated, there are two motivations for using an overset approach: (1) to simplify the

process of creating structured grids of high quality on complex bodies and (2) to handle bodies

in relative motion. Thanks to improvements to both structured and unstructured grid generation

over the last 30 years, the primary benefit of the overset grid approach is to handle relative motion.

In a dynamic, moving body simulation with a single grid spanning the computational domain,

the grid must deform as the bodies move. This can cause elements to become highly skewed or

even inverted, affecting accuracy, convergence rates, and stability. One option to mitigate these

issues is to remesh the grid as the bodies move, however, this approach comes at a price (e.g.,

the size of the linear system changes if nodes are added or removed, refinement can cause load

balancing issues, etc.). The overset approach requires less from the solver. The solver need only

be able to ignore a list of control volumes, and apply Dirichlet boundary conditions for another

list of control volumes by using interpolated data. Because linear interpolation is typically used,

conservation is not strictly enforced, which can be a problem for certain applications. Conservative

interpolation is possible, but is more computationally expensive and more difficult to implement.

Inaccuracies caused by inappropriate donors are also possible. However, judicious application of

overset best practices (e.g., grids have similar resolution in overlap regions, sufficient overlap exists

between bodies in close proximity) minimizes the effect of these issues and leads to high quality

solutions for problems that would otherwise be intractable. As modern engineering problems

continue to increase in size and scope, the overset method will likely see even wider application.

In the following subsections, we examine computational cost, geometric searching techniques, and

load balancing strategies.
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2.3.1 Computational Cost

At the most abstract level, the overset domain assembly problem has very few logical

pieces. Prior to the assembly, there is a collection of separate, but overlapping, meshes that cover

a domain on which we would like to obtain a flow solution. These meshes must be somehow asso-

ciated with one another such that information can propagate across the domain. This is typically

achieved through interpolation. For the flow solver to operate on the composite domain, it only

needs four pieces of information: (1) a list of control volumes to be excluded from computation

(i.e., blanked), (2) a list of receiver control volumes that should be updated with interpolated data,

(3) IDs of donor control volumes for each receiver, and (4) normalized weights for each of the

donors. The job of the domain assembler is to determine this information. To that end, the domain

assembler needs to accomplish two results, both of which require expensive geometric searching.

Every control volume must be assigned a status (e.g., in, out, receiver). For each receiver, donors

must be identified (along with appropriate weights). Note that these are two results of any domain

assembly process, but they need not be two separate operations (e.g., implicit hole cutting achieves

both in one step).

The amount of geometric searching makes this process extremely intensive, and the com-

plexity of the problem only increases in parallel (distributed memory). The domain assembler

would ideally operate on the same partitions that are used by the flow solver. However, this par-

titioning is typically chosen to balance the workload for the solver, which is likely to be vastly

different than that of the assembler. Even if the initial partitioning takes the assembly process into

account, the load can still become imbalanced because the work load can change dramatically over

the course of the simulation as the component meshes move.
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2.3.2 Geometric Searching Tools

The main factor driving the cost of the overset domain assembly process is geometric

searching. A detailed study of the 30 year history of the overset methodology reveals a rich set of

tools to efficiently perform the assembly process. The following is a list of geometric searching

tools encountered in the history section for convenience.

• Bounding boxes

• Auxiliary meshes

• X-rays

• Spatial trees

• Walking algorithms

There are three factors that influence the high cost of geometric searching: the number of

searches performed, the size of the search domain, and the method of searching. Each of the listed

tools targets one or more of these aspects to reduce the cost of searching and are described in the

following subsections.

2.3.2.1 Bounding Boxes

Bounding boxes are both simple and extremely powerful. They can be used to remove

entire grids from the search space of a given operation. For example, consider two component

grids that do not overlap as shown in Fig. 2.16. With no a priori knowledge of the domain, an

assembler performing implicit hole cutting would need to compare each control volume in each
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component grid against each control volume in the other. An entire grid can be removed from the

search space in one step if bounding boxes defined for the two components do not overlap. Explicit

hole cutting also benefits from this concept. If a bounding box around a piece of geometry does

not intersect the bounding box of a given mesh, then that mesh can be removed from the search

space of the cutting geometry.

Figure 2.16 Non-overlapping bounding boxes

Because simple bounding boxes are aligned with the Cartesian axes, they excel when the

major axes of the objects they represent mimic the Cartesian axes, but this is not always the case.

Consider two meshes whose bounding boxes overlap, but the meshes themselves have no overlap

as shown in Fig. 2.17. Bounding boxes can be oriented to eliminate the overlap as shown in Fig.

2.18.

31



Figure 2.17 Overlapping bounding boxes

Figure 2.18 Oriented bounding boxes

2.3.2.2 Auxiliary Meshes

Auxiliary meshes are additional meshes that are created by the domain assembler that are

not part of the composite domain, but are used to aid in the assembly. Structured Cartesian meshes,

and their rotated counterparts, are typically used due to their convenient property that a geometric

search is an O(1) operation. Auxiliary meshes can be leveraged for several different aspects of

the domain assembly process, from quickly determining in/out status to providing approximate

starting locations for stencil walks. The hole map method is built upon auxiliary meshes that have

each cell tagged as inside, outside, or crossing the geometry. Because point containment searches
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are trivial on hole maps, they can be used to quickly determine if points in a domain are internal to

the geometry.

Inverse maps also rely on auxiliary meshes that are constructed around each component

mesh. Each cell of the auxiliary meshes that contains one or more control volumes from its com-

ponent mesh is associated with one of those control volumes. The inverse maps can be used to

quickly identify a control volume that is in the neighborhood of a query point. That control vol-

ume can then be used as a starting location for a stencil-walk, which can be significantly cheaper

than a stencil-walk that starts from a less ideal location.

PUNDIT uses the EIM method (Exact Inverse Map), which is closely related to the original

inverse map. Whereas each cell in an inverse map is associated with a single control volume, each

cell in an EIM is associated with every control volume and boundary face that overlaps with it. This

allows the stencil search to be completely localized to a single cell of the EIM, which improves

the efficiency and robustness of the method. [2] PUNDIT also uses auxiliary meshes to reduce the

number of query points and reduce the search space for donor searches.

2.3.2.3 X-rays

X-rays can be an efficient means of representing geometry for performing minimum hole

cuts, but the cost can go up dramatically if the body has features that are aligned with the rays.

Figure 2.19 shows an x-ray slice through a three-finned store geometry that has a vertical tail. The

coarse x-ray representation captures the general shape of the geometry, but completely misses the

vertical tail feature. To capture this feature for hole cutting, a much higher resolution set of x-rays

is needed, which is expensive. For geometries that have multiple identical features, such as the
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fins on the store, it is possible to solve this problem by manually creating multiple x-rays with

different orientations. However, for complex geometries, this can require significant user expertise

and effort. [20] Chan et al. [37] introduced adaptive x-rays to reduce the manual effort required to

perform hole-cutting using x-rays. Figure 2.20a shows a top view of the same three-finned store

geometry. The rays in Fig. 2.19 were fired from a uniform 2D Cartesian grid. If finer Cartesian

grids are inserted into this coarse grid, a higher resolution can be achieved without incurring the

cost of increasing the resolution across the entire region. Figure 2.20b shows the adapted Cartesian

grid, in which a ray will be fired from the center of each cell.

Figure 2.19 X-rays on store geometry
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(a) Top view of three-finned store (b) Adapted x-ray plane

Figure 2.20 Adaptive x-rays

2.3.2.4 Spatial Trees

There are many varieties of spatial trees, but two are particularly noteworthy in the context

of overset domain assembly: the Octree and the Alternating Digital Tree (ADT) [12]. The Octree,

decribed in section 2.2.1, is simple to implement and offers a convenient way to store points.

Storing objects other than points in an Octree, however, is complicated by the fact that those

objects may lie in more than one octant. The ADT provides an elegant solution to this problem

by treating an N-dimensional region (e.g., a bounding box) as a single point in 2N-dimensions.

For example, Fig. 2.21 shows a 1D region [xmin, xmax] represented as a point in 2D. The ADT is

logically a binary tree (i.e., a digital tree), in which each child is half the size of its parent. The

parent is split along the jth axis, where j is determined by

j = l%N (2.2)
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where l is the level in the tree and N is the dimension of the space. A 2D ADT, for example, would

be alternately split along the x and y dimensions (hence, Alternating Digital Tree).

Searching the tree is therefore straightforward, because only one floating point comparison

(the current dimension) must be made to determine which child to visit at each level of the tree.

Inserting new objects into the ADT is O(logn). The ADT also provides an efficient method for

removing nodes from the tree. Consider a node in the tree that needs to be removed as the root of a

sub-tree. All elements in that sub-tree are contained by the root, therefore any leaf of the sub-tree

can be promoted to replace the root. This flexibility can be useful in dynamic simulations in which

it is cheaper to update the ADT than rebuild it.

Figure 2.21 1-D ADT

2.3.3 Load Balancing Strategies

For time dependent simulations with bodies in relative motion, the domain connectivity

needs to be updated at every physical time step, therefore the parallel efficiency of the domain

assembler is critical. The domain is typically partitioned such that each partition has a similar
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number of control volumes, based on the assumption that the amount of work associated with

each control volume in the domain is roughly the same. Unfortunately, this assumption does not

hold for the domain assembly process. Control volumes in regions of component meshes that do

not overlap with other meshes will require zero work, while control volumes in overlap regions

will require expensive geometric searching. There are two ways to address this load balancing

challenge.

2.3.3.1 Spatial Repartitioning

One approach to alleviating the load imbalance imposed by the partitioning of the flow

solver is to repartition in a way that is amenable to the assembly process. SUGGAR++ reparti-

tions with Noack’s Spatial Decomposition Volume technique. [32] In this technique, the domain

is partitioned based on prescribed regions of space based on the geometry and its potential motion

rather than control volume connectivity. To illustrate this, consider a case with rotating blades as

shown in Fig. 2.22. The motion of the blades is known a priori, therefore, it is possible to partition

the mesh to improve the performance of the assembly process. Figure 2.22b shows a cylindrical

partition that contains nodes and cells from the blade meshes and the background mesh. If the

amount of work associated with each cylindrical shell is similar, then better load balancing can be

achieved. Furthermore, as the blades rotate, donor searches within each cylindrical partition will

likely be local, which can reduce communication costs. SUGGAR++ was shown to perform mea-

surably better when using Spatial Decomposition Volume partitioning than when using a standard

flow solver partitioning (ParMETIS in this case). [32] The improved performance was attributed

to better load balancing across MPI ranks.
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(a) Composite system (b) One partition highlighted

Figure 2.22 Spatial Decomposition Volume

2.3.3.2 Dynamic Load Balancing

In a large scale dynamic simulation, the assembler can not feasibly maintain its own parti-

tioning or completely repartition at every time step. However, the assembler may distribute certain

aspects of the assembly process, while leaving the solver partitioning intact. Roget and Sitara-

man [2] implemented a dynamic load re-balance algorithm in PUNDIT that showed very promis-

ing results. In their method, there are two types of rebalancing: static and dynamic. For the first

iteration, no work history exists, therefore a static balance must be performed using an estimate of

the amount of work that each process would have. The number of query points in potential overlap

regions is used to estimate the load. PUNDIT identifies these regions as part of its profiling step

prior to load balancing. The estimated load for each process is computed, which is then used to

calculate the average load among all processes. Then, iteratively, a fraction of the load from the

most heavily loaded process is transferred to the least loaded process such that one of them reaches

the average load. This is repeated until all processes are near the average load. In subsequent itera-

tions, the load balancing process is the same, except that the load for each process is determined by
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directly measuring the total time to perform the assembly process. Sitaraman recently combined

dynamic load balancing with the EIM method in PUNDIT and showed further reductions in the

domain assembly cost. Running a large case on over 8,000 cores, he demonstrated assembly costs

of roughly 20% of the cost of the flow solver time step. [34]

2.3.4 PUNDIT: Current State of the Art

Roget and Sitaraman recently implemented an adaptive load balancing algorithm in PUN-

DIT [2]. Their method is the highest performing and most scalable domain assembler implemented

to date, and is considered the current state of the art for the purposes of this work. This section will

provide a high level view of the operations of PUNDIT, and some details about its load balancing

method in order to set up an appropriate context for describing the differences in YOGA.

PUNDIT performs domain assembly in the following steps.

• hole profiling

• query point identification

• mesh-block profiling

• donor search

• point type assignment

• interpolation
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Hole profiling: hole maps are created as an approximate representation of each geometric

body. This step accounts for only a small fraction of the overall running time, so no more detail is

required here.

Query point identification: determines which points have potential overlap with points in

other component meshes. Once identified, query points, and their associated cell connectivity

information are transferred between processors intelligently in order to load balance (described at

the end of this subsection).

Mesh-block profiling: after each process gets the query points and cells for which it is

responsible, it preprocesses the cells. There are two different donor search methods in PUNDIT,

and they perform different preprocessing. The ADT method puts all of the cells into ADT’s, and

the EIM method builds Cartesian maps and neighbor connectivities. This step accounts for a large

portion of the overall cost of an iteration, and is necessary to speed up the donor searching step.

Donor search: each process identifies candidate donor cells for each query point. This

step accounts for the majority of the computation cost of an iteration and is the core operation of

domain assembly.

Point-type assignment: classify points as hole points, solve points, or receptors. If there

are conflicts, or undesirable interpolations, those are resolved during this stage. For example, any

receptor that is also a donor and is not a mandatory receptor, will be changed to a solve point.

Interpolation: PUNDIT calculates donor interpolation weights via the Newton-Raphson

technique [33].
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2.3.4.1 Load Balancing Implementation

Performing donor searches is the core operation within domain assembly, therefore PUN-

DIT estimates processor loads initially based upon the number of query points (a donor search

must be performed for every query point). Note that the load balancing assigns query points (and

connectivities) to processors in such a way that donor searches will be performed locally.

The initial estimation does not account for the increased overhead induced by the load

balancing process. To account for this, PUNDIT measures the actual load imbalance during each

iteration, and uses that to adjust the load balancing of subsequent iterations. This adaptive re-

balancing was shown to improve wall clock time significantly [34].
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CHAPTER 3

METHODOLOGIES AND ALGORITHMS

This chapter introduces a new method for assembling large Overset grid systems in parallel.

A new dynamic load balancing strategy lies at the heart of the method, so several load balancing

concepts are first explored to provide context and motivation for the choices made for this work.

Then a description of how the domain assembly process was recast to fit the load balancing strategy

is given. Finally, implementation details are provided, and specific technologies that enabled this

work are discussed.

3.1 Monte Carlo Investigation of Load Balancing Strategies

There are two load balancing concepts that are critical to this work: over-decomposition

and dynamic load balancing. An MPI parallel load balancing simulator was developed for this

work to explore the characteristics of both concepts. Specifically, the simulator demonstrates the

effect of introducing uncertainty to work size estimation on computational cost in terms of total

wall clock time. The simulator creates simulated “work units” as a series of integers generated

according to a normal distribution. The work units are distributed amongst the MPI processes in

the simulation. A worker performs a work unit by simply sleeping for the duration defined by

the work unit. For non-dynamically load balanced simulations, all work units are assigned up

front, and for dynamically load balanced simulations, each process requests a new work unit upon
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completion of the previous work unit. Note that, in the case of dynamic load balancing, different

processes will likely perform different numbers of work units.

3.1.1 The Simulator

The load balancing simulator is parameterized on the following quantities:

• Work units per process

• Static vs dynamic

• Confidence interval

The first two quantities are straightforward. By controlling the number of work units per process,

the user can simulate a range of degrees of over-decomposition. The second quantity allows the

user to switch between static and dynamic load balancing. The third quantity is used to control

how accurately the work loads are predicted. The user supplies this interval as a percentage of the

ideal load and a confidence level (e.g., 90% of work units will be within 10% of the ideal load).

The confidence interval is then used to determine an appropriate standard deviation that the work

server can use to generate work units according to a normal distribution.

3.1.1.1 Determining Standard Deviation

The user provides a confidence interval, but a standard deviation, σ, is needed to calculate

the appropriate normal distribution. The normal distribution function f (x,σ2) gives the probability
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that a normal variate assumes the value between x0 and x1.

f (x,σ2) =
1

σ
√

2π

∫ x1

x0

e−
x2

2σ2 (3.1)

The simulator uses x0, x1, and the value of f (x,σ2) to solve an inverse problem to determine

standard deviation σ that will match the confidence interval provided by the user. The simulator

uses the bisection method to obtain an approximation for σ. At each step, the simulator evaluates

the integral with the current guess for σ using the composite trapezoidal rule.

3.1.1.2 Generating work units

The amount of work for a given work unit is calculated by

W =
P
N

(1 + E) (3.2)

where P is the predicted workload for each process, N is the number of work units per process, and

E is the error in the prediction. The error is calculated based upon a normal distribution, centered

about zero, with a variance of σ2 (which was calculated from the user’s confidence interval).

E = N (0,σ2) (3.3)
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Figure 3.1 Normal distribution

3.1.1.3 Running the simulator

The load balancing simulator is written to be launched in an MPI environment to allow

the user to perform simulations on different numbers of processes. The simulator, written in C++,

performs a single representative simulation based on the chosen normal distribution. Monte Carlo

simulations are then performed by running the simulator many times (driven by a Python script)

with the same distribution to obtain statistical trends.
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3.2 Simulation Results

3.2.1 Predictive Load Balancing

In predictive load balancing, each process is given a work unit that is predicted to have

the same amount of work. Hence, if the prediction is very accurate then the actual load balancing

will be close to ideal. However, the greater the uncertainty in the workload prediction, the more

imbalanced the workload will be. Consider a simulation in which there is a 90% probability of a

given work unit will be within 10% of the ideal load. Figure 3.2 shows the result of a single run of

the simulator with 8 processes. The load imbalance for this run is relatively small.

Figure 3.2 Sample load 1

Consider a second scenario in which the confidence interval is wider (i.e., the uncertainty

in the predicted work loads is higher). Figure 3.3 shows the result of a simulation with a 90%

probability that a given work unit will be within 50% of the ideal load. For this case, the load

imbalance is more pronounced due to the increased uncertainty.

Since the simulator generates work units based on a normal distribution, there is variance

between each simulation. The results of a single simulation are not necessarily indicative of all
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Figure 3.3 Sample load 2

other simulations. Therefore, it is important to analyze the results of multiple simulations. Figure

3.4 shows how the mean and maximum overhead costs are affected by the uncertainty in load

predictions.
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Figure 3.4 Imbalance trend
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3.2.2 Load Balancing via Over-Decomposition

Dividing the work such that each worker has more than one work unit is called over-

decomposition. Figure 3.5 shows how over-decomposition can reduce overhead of simulations

with high uncertainty in load prediction.

Figure 3.5 Over decomposition trend 1

The more fine grained the over-decomposition, the better load balancing can be achieved.

Figure 3.6 shows several different levels of over-decomposition.
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Figure 3.6 Over decomposition trend 2

3.2.3 Client-Server Load Balancing

Over-decomposition can drastically improve load balancing for work that can be divided

into arbitrarily small units. However, it is often not feasible to divide real problems into small

enough units to achieve sufficient load balancing. Dynamic load balancing offers a solution in

this scenario. Instead of assigning each worker all of its work units up front, a load balancer can

give out work units as workers become available. The load balancing simulator runs a server that

generates all the work units for the simulation, and each worker queries the server when it finishes

its previous work unit. Figure 3.7 shows how dynamic load balancing improves load balancing for

simulations with five work units per worker. Furthermore, figure 3.8 shows that dynamically load
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balanced simulations can achieve similar performance with an order of magnitude less work units.

Figure 3.7 Dynamic trend 1
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Figure 3.8 Dynamic trend 2

3.3 Recasting Domain Assembly

The previous section demonstrated the potential advantages of combining over-decomposition

and dynamic load balancing in an ideal case. This section is dedicated to describing how the do-

main assembly process can be recast to realize these advantages, which is the primary distinguish-

ing feature of this work.

Domain assembly requires intensive communication because a significant fraction of the

global grid system may need to be transferred. Reducing the amount of communication overhead

is therefore desirable. By its nature, dynamic load balancing already amortizes the grid communi-

cation cost because workers request small amounts of grid information when they begin each work
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unit. If each worker only had a single work unit, all necessary grid information would have to be

communicated at the same time.

3.3.1 Latency Hiding via Thread Oversubscription

If a single thread is running on each logical core, the core will be idle any time that thread

is blocking for communication. If, however, multiple threads are running on each logical core

(i.e., the core is oversubscribed), the operating system can hide some of the communication cost

by switching out the blocked thread with another thread. This increases CPU utilization, thereby

improving performance.

Domain assembly will only be amenable to oversubscription if it is first decomposed into

several orthogonal operations. For this work, three such operations were identified that need to

be performed on each process. First, each process owns a partition of the global mesh system,

and is therefore responsible for providing grid information related to its partition upon request.

Second, each process must participate in donor searching, because it represents the bulk of the

computational cost. Third, each process is responsible for collecting candidate donor information

for nodes that it owns. In this work, the root is a special node because it has one additional

responsibility: running the load balancer that is responsible for distributing work units. Each of

these operations can be performed completely independently of the others, and can therefore run on

three separate threads for each process (four on the root). There is no shared mutable state between

the threads, so the operating system can easily schedule the threads to increase CPU utilization.
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3.3.2 Defining Appropriate Work Units

Identifying candidate donors for points in overlap regions is the most expensive operation

during domain assembly and is therefore the most critical operation to efficiently parallelize. A

domain assembly work unit can be defined in the following way. Given a set of query points and

the appropriate grid information, a worker should yield a list of candidate donors for each point

in the set. Here, the appropriate grid information is the set of all cells in the grid system that

might contain any of the query points. Three challenges immediately present themselves. The first

challenge is data locality. For a given set of query points, the cells that are required to perform the

donor search are distributed across multiple processes, so communication of grid information is

required. The second challenge is: how are query points and the necessary cells identified to begin

with? The third challenge is related to the second and is: how does the load balancer send work

units to workers?

Because every worker requests work units from the load balancer, the load balancer needs

to be capable of fulfilling those requests quickly to avoid leaving workers idle. Work units should

therefore be as lightweight as possible. An AABB (Axis Aligned Bounding Box) can be described

by the coordinates of its minimum and maximum points, so its storage is compact (48 bytes), and

sufficient to describe a domain assembly work unit: any point inside the AABB is a query point,

and any cell that overlaps with the AABB is a potential candidate donor. Given a set of AABBs

that describe the work units of the domain assembly problem, the load balancer can fulfill requests

very efficiently.
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3.3.3 Processing Work Units

When a worker receives an AABB that describes a work unit, the worker must first collect

all of the points and cells that overlap with the AABB. Because the worker knows the AABB of

each partition in the mesh system (defined during preprocessing), it can select which partitions

possibly contain points and cells required for the current work unit. Then the worker requests a

grid fragment from each process that owns a relevant partition. The request simply contains the

AABB of the work unit, and the reply is the set of points and cells that overlap the AABB. After

the worker receives all of the grid fragments it needs, it can then perform all of the donor searches

necessary for the work unit. Finally, the worker sends candidate donor information for each point

in the work unit to its respective owner.
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CHAPTER 4

IMPLEMENTATION

The previous chapters described a new approach to dynamic load balancing for domain

assembly at a conceptual level. This chapter details a specific implementation of that approach

in a new parallel domain assembly code YOGA (Yoga is an Overset Grid Assembler). YOGA

performs domain assembly in three phases which are, in order of execution: preprocessing, donor

searching, and post processing. The phases are discussed in order, but first, a brief deviation is

required. YOGA relies on, and cannot be sufficiently described in the absence of, two fundamental

components: the data structure MessagePasser :: Stream, and the ZeroMQ messaging library.

Therefore, these components must be introduced at the outset of the discussion.

4.1 Introduction to Stream and ZeroMQ

4.1.1 MessagePasser::Stream

Complex objects cannot be communicated across the network directly, and thus need to be

deconstructed into communicable pieces on the sender and reconstructed by the receiver. Mes-

sagePasser::Stream is a class created at NASA Langley that facilitates the marshaling and unmar-

shaling of C++ objects via templated operators (<< and >> respectively). In the example below,

an integer and a vector are copied into a MessagePasser::Stream with the << operator, and then

back out with the >> operator.
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1MessagePasser::Stream stream;
2int a = 5;
3std::vector<double> vec1 = {0.5, 0.6};
4

5stream << a;
6stream << vec1;
7

8int b;
9std::vector<double> vec2;
10stream >> b; // now a == b
11stream >> vec2; // now vec1 == vec2

Through template constraints, these operators will automatically work for POD (plain old

data) and vectors of POD. We can use these operators to easily overload the << and >> operators

for more complex data.

MessagePasser::Stream is a critical abstraction that makes it possible to preserve orthogo-

nality between communication logic and other parts of the code. Specifically, there are multiple

client-server relationships in YOGA, but there is only one generic implementation of a client and

one generic implementation of a server. Because the client and server operate purely on Streams,

they are completely agnostic to the type of data that they handle.

4.1.2 ZeroMQ

A side effect of performing load balancing inside of a single iteration is that a number of

activities (which require communication) must be happening simultaneously and asynchronously.

There are multiple messaging libraries that can facilitate asynchronous multithreaded communi-

cation, but the ZeroMQ message queueing library was chosen for this work (note that the MPI

standard defines semantics for multithreaded communication, but support for this feature set is

limited and implementation specific).
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ZeroMQ is a low latency message queuing library that provides the user with a simple, but

powerful socket programming interface. By removing complexities such as automatic reconnec-

tion, fair queueing, and asynchronous I/O, ZeroMQ allows the user application to focus on the task

at hand rather than getting bogged down in communication details.

While there are several types of ZeroMQ sockets available, the REQ-REP socket pair is the

simplest, and was sufficient for this work. A client creates a REQ socket and connects it to the REP

socket of a server. Each communication between a client and server is synchronous and symmetric.

The client calls zmq_send() to make a request from the server, then calls zmq_recv () to wait for

the reply. The server calls zmq_recv () to accept a request from a client and calls zmq_send() to

fulfill the request. The following subsections demonstrate how REQ and REP sockets are used to

create the basic client-server relationship used throughout YOGA.

4.1.2.1 Generic Server

The first communication abstraction in YOGA is the server. There is only one server im-

plementation in YOGA, and it is sufficiently general to support each type of server needed for this

work. Below, is the declaration of the templated server class.
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1template <typename Worker>
2class Server {
3public:
4Server(Worker& w,int channel);
5~Server();
6void stop();
7private:
8bool isRunning;
9Worker& worker;
10int serverChannel;
11int portNumber;
12zmq::context_t context;
13std::future<void> serverFuture;
14

15void run();
16bool isThereAMessage(zmq::socket_t& s);
17};

The public interface for the Server class in YOGA is extremely simple, and consists only

of a constructor, destructor, and stop function. In YOGA, different types of tasks are assigned to

different "channels," which are associated with different port numbers for socket communication

under the hood. Note that the Server launches a std :: f uture in order to have the server running

asynchronously from the calling thread. If the destructor or the stop method are called, the Server

will shut down, and its thread will be joined.

One of the goals of this class is decouple the communication logic from the business logic

of YOGA. The Server knows about ZeroMQ, and all of the required details of sending data be-

tween processes, but it is agnostic to the type of data it handles. The Server class is therefore

templated on a a "Worker" who is responsible for everything in the problem domain. The server

keeps a reference to its worker so that it may call upon the worker when necessary. The implemen-

tation of the Server’s constructor is below:
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1template <typename T>
2ZMQMessager::Server<T>::Server(T &w, int channel)
3:isRunning(true),
4worker(w),
5serverChannel(channel),
6portNumber(getPortNumber(MessagePasser::Rank(),serverChannel)),
7context(1),
8serverFuture(std::async(std::launch::async,&Server::run,this))
9{ }

The constructor stores a reference to the worker, sets the communication channel, deter-

mines the correct port number to use, creates a ZeroMQ context, and finally launches a separate

thread via std :: launch :: async. The thread is bound to the server’s run() member function,

which starts immediately upon being launched. The run() function handles all of the communica-

tion of the server, and is shown below:

1template <typename T>
2void ZMQMessager::Server<T>::run(){
3zmq::socket_t socket(context,ZMQ_REP);
4bindSocketToPort(socket,portNumber);
5while(isRunning){
6if(isThereAMessage(socket)){
7auto requestStream = receiveStream(socket);
8auto result = worker.doWork(requestStream);
9sendStream(socket,result);
10}
11else{
12std::this_thread::sleep_for(std::chrono::milliseconds(1));
13}
14}
15socket.close();
16}

The run() function creates a ZeroMQ socket, binds it to a port, and then starts running.

The Server avoids busy waiting by sleeping until a message is received. When a message comes

in, the Server receives the request as a Stream and passes that Stream off to the Worker. When

the Worker completes its tasks, it returns a reply in the form of another Stream. The Server
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sends the reply Stream back to the client. Because the server only deals with objects of type

MessagePasser :: Stream, it is completely decoupled from the worker and the contents of the

messages it handles. The run() function also maintains a single level of abstraction (communicat-

ing streams over a socket) by wrapping the ZeroMQ details in functions. For example, the server

must bind the socket to the specified port before it can start waiting for messages, which is done in

the following function:

1void ZMQMessager::bindSocketToPort(zmq::socket_t& s,int portNumber){
2std::string bindString = "tcp://*:" + std::to_string(portNumber);
3try {
4int zero = 0;
5s.setsockopt(ZMQ_LINGER ,(void*)&zero,sizeof(int));
6s.bind(bindString.c_str());
7}
8catch(...){
9throw std::logic_error("Caught zmq error during bind");
10}
11}

While the server is waiting for client requests, it alternates between sleeping briefly, and

checking for new messages via isT hereANewMessage() which wraps the ZeroMQ mechanics

for message polling:

1template <typename T>
2bool ZMQMessager::Server<T>::isThereAMessage(zmq::socket_t& s){
3zmq::pollitem_t items [] = { {(void*)s, 0, ZMQ_POLLIN , 0} } ;
4zmq::poll(items, 1, 0);
5return (bool) (items[0].revents & ZMQ_POLLIN);
6}
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4.1.2.2 Sending and Receiving Streams

The Server and Client classes handle requests in terms of MessagePasser::Stream variables

via the methods sendStream and receiveStream. These are the functions that actually interact

with ZeroMQ. The sendStream function is shown below.

1void ZMQMessager::sendStream(zmq::socket_t& socket,
2MessagePasser::Stream& s){
3do{
4auto frame = extractMessageFrameFromStream(s);
5socket.send(frame, s.empty()? 0 : ZMQ_SNDMORE);
6}while(not s.empty());
7}

If the Stream contains multiple objects, each object is extracted and placed into a frame

that is then “sent” over the zmq :: sockett . Note that ZeroMQ does not actually send the message

until the last frame is “sent” in order to preserve the semantics that messages are received in their

entirety or not at all. The flag ZMQ_SNDMORE is used to tell ZeroMQ that more message frames

are coming, and the last frame is marked with 0. The extractMessageFrameFromStream, as

its name suggests, builds a zmq :: messaget from the next item in a stream (shown below).

1zmq::message_t ZMQMessager::extractMessageFrameFromStream(MessagePasser::
Stream &s){

2std::vector<char> buffer;
3if(not s.empty())
4s >> buffer;
5zmq::message_t m(buffer.size());
6memcpy(m.data(),buffer.data(),buffer.size());
7return m;
8}

The complementary function receiveStream receives an incoming ZeroMQ message, un-

packs each frame of the message, adds the frame to a Stream, then returns the Stream. The
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receiveStream functions is shown below.

1MessagePasser::Stream ZMQMessager::receiveStream(zmq::socket_t& socket){
2MessagePasser::Stream s;
3do {
4zmq::message_t m;
5socket.recv(&m);
6s << unpackMessageIntoChars(m);
7}
8while(isThereMore(socket));
9return s;
10}

The unpack MessageIntoChars function simply extracts the bytes from a ZeroMQ mes-

sage frame into a vector of chars and returns the vector (shown below).

1std::vector<char> ZMQMessager::unpackMessageIntoChars(zmq::message_t& m){
2return std::vector<char>((char*)m.data(),(char*)m.data()+m.size());
3}

4.1.2.3 Generic Client

The second communication abstraction in YOGA is the client. The Client class in YOGA

is similar in spirit and complementary to the Server class. The declaration for the Client is below.
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1class Client{
2public:
3Client(int channel);
4void connectToServer(int id);
5void disconnectFromServer(int id);
6void stop();
7MessagePasser::Stream makeRequest(int serverId,MessagePasser::

Stream& request);
8private:
9int serverChannel;
10zmq::context_t context;
11zmq::socket_t socket;
12};

Similarly to the Server, the Client constructor takes a channel as input, which is used to

determine communication port numbers internally. The Client also has a simple public interface.

The user can connect it to a server (based on id, which is analogous to mpi rank), disconnect from a

server, stop (close the socket), and make a request to a server to which it is connected. The request

function is below.

1MessagePasser::Stream ZMQMessager::Client::makeRequest(
2int serverId,
3MessagePasser::Stream& request){
4sendStream(socket,request);
5return receiveStream(socket);
6}

The makeRequest() function simply takes a stream, sends it across the socket layer to the

server, and returns the servers response stream back to the caller. MessagePasser :: Stream

allows the client to send messages of arbitrary size and type, hence this is the only client imple-

mentation in YOGA.
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4.2 PreProcessing

Preprocessing is the first of the three phases of Overset domain assembly in YOGA. This

phase is responsible for creating the load balancer, hole maps, and mesh metadata that are neces-

sary for performing the donor searching phase in a load balanced setting.

4.2.0.4 Global Mesh System Meta Data

Each process in YOGA needs to know how many geometric bodies, component grids, and

partitions are in the global mesh system. Each process also needs bounding boxes for each of those

entities. This information is generated by a series of extent box exchanges between processes and

then stored in an object with the following public interface:

1int numberOfBodies()const;
2int getComponentIdForBody(int i) const;
3int numberOfComponents() const;
4int numberOfPartitions() const;
5Parfait::Extent<double> getBodyExtent(int id)const;
6Parfait::Extent<double> getComponentExtent(int id)const;
7Parfait::Extent<double> getPartitionExtent(int id) const;

Note that Par f ait is an in house library at NASA Langley that provides some grid related

utilities (e.g., Extent, which is an implementation of an AABB).

4.2.0.5 Approximate Distance Field

YOGA uses distance to the wall to determine intergrid boundary locations. If the flow

solver does not provide distance to the wall for each node, YOGA will generate an approximate

distance field. In order to generate a distance field for each partition, each process needs to know

the locations of the surface nodes of each body. The ParellelSur f ace class gathers the surface
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nodes for each component grid via the following static function.

1template <typename MeshType>
2static std::vector<Parfait::Point<double>> getSurfaceNodesForComponent(

MeshType& m,int component){
3std::vector<Parfait::Point<double>> allPoints;
4auto myPoints = getLocalSurfacePointsInComponent(m,component);
5MessagePasser::AllGatherv(myPoints,allPoints);
6return allPoints;
7}

For a particular component grid, each process creates a vector of the points in its partition

that belong to the surface for that component. Then all the vectors are combined on every process

by means of a wrapper for MPI_Allgatherv . The vector of local points is built by:

1template <typename MeshType >
2static std::vector<Parfait::Point<double>>

getLocalSurfacePointsInComponent(MeshType& m,int component){
3auto isNodeInThisSurface = generateNodeMask(m,component);
4std::vector<Parfait::Point<double>> myPoints;
5for(int i=0;i<m.numberOfNodes();++i)
6if(isNodeInThisSurface[i])
7myPoints.push_back(m.getNode(i));
8return myPoints;
9}

4.2.1 Load Balancer

In YOGA, a load balancer is responsible for generating work units for the donor searching

phase. Multiple load balancing strategies were explored throughout the development of YOGA,

and each implementation derives from the following abstract base class:
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1class LoadBalancer{
2public:
3virtual int getRemainingVoxelCount() = 0;
4virtual Parfait::Extent<double> getWorkVoxel() = 0;
5};

The abstraction for a load balancer is simply to provide the next work unit upon request

and to tell how many work units remain. YOGA’s current load balancer employs auxiliary Carte-

sian grids to recursively subdivide the domain into appropriately sized work units. Work units are

stored in a priority queue as an estimated cost paired with an AABB (Axis Aligned Bounding Box):

1typedef Parfait::Extent<double> Extent;
2typedef std::pair<int,Extent> Pair;
3class Compare{
4public:
5bool operator() (Pair& A,Pair& B){return A.first < B.first;}
6};
7std::priority_queue <Pair,std::vector<Pair>,Compare> workVoxels;

The priority queue orders the work units based one the Compare functor, which simply

compares the estimated size of two work units. By ordering the work units by estimated size, the

load balancer can ensure that the most expensive work units are completed first, and the smaller

work units can fill in the gaps at the end.

As shown in the constructor below, the load balancer begins by creating an N3 Cartesian

grid, and estimating the cost of each cell. Then it determines which cells have potential overlap,

creates work units from them, and pushes the work units into the priority queue.
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1template <typename MeshType >
2CartesianLoadBalancer::CartesianLoadBalancer(MeshType& mesh,
3MeshSystemInfo& info,
4int number_of_ranks ,
5int N)
6{
7Parfait::CartBlock block(getExtentOfSystem(info),N,N,N);
8auto nodeCountPerCell = MeshDensityEstimator::

tallyNodesContainedByCartCells(mesh,block);
9auto is_in_overlap_region = createCellMask(info,block);
10for(int i=0;i<block.numberOfCells();++i){
11if(1 == is_in_overlap_region[i])
12workVoxels.push(std::make_pair(nodeCountPerCell[i],block.

createExtentFromCell(i)));
13}
14refine(mesh, info);
15}

The last call in the constructor, re f ine(), initiates the recursive subdivision of the work

units in the priority queue. The load balancer lives on the root, but must communicate with every

process to obtain mesh density estimates each time it refines, so it is unfortunately long. The cur-

rent version of refinement is listed below.
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1template <typename MeshType >
2void CartesianLoadBalancer::refine(MeshType& mesh, MeshSystemInfo& info) {
3int targetNodesPerVoxel = 50000;
4bool needRefinement = true;
5while(needRefinement) {
6int refineFlag = 0;
7std::vector<int> refineDimensions;
8Parfait::Extent<double> refineCell;
9if (MessagePasser::Rank() == 0) {
10int density = workVoxels.top().first;
11if(density > targetNodesPerVoxel) {
12refineFlag = 1;
13int targetChunkCount = std::max(2,density/

targetNodesPerVoxel); // at least cut the voxel in
half

14refineDimensions = calcRefineDimensions(targetChunkCount ,
workVoxels.top().second);

15refineCell = workVoxels.top().second;
16workVoxels.pop();
17}
18}
19MessagePasser::Broadcast(refineFlag ,0);
20if(1 == refineFlag) {
21MessagePasser::Broadcast(refineDimensions ,0);
22MessagePasser::Broadcast(refineCell ,0);
23Parfait::CartBlock block(refineCell ,refineDimensions[0],

refineDimensions[1],refineDimensions[2]);
24auto nodeCountPerCell = MeshDensityEstimator::

tallyNodesContainedByCartCells(mesh,block);
25if(MessagePasser::Rank() == 0) {
26for (int i = 0; i < block.numberOfCells(); ++i)
27workVoxels.push(std::make_pair(nodeCountPerCell[i],

block.createExtentFromCell(i)));
28}
29}
30else{
31needRefinement = false;
32}
33}
34}

The cost of a work unit is approximated by the number of nodes contained in its AABB.

Work units are subdivided until all of them have less than 50k nodes. This should be a tunable pa-

rameter in future work, but was found to be sufficient for the cases in the current study. Refinement

is initiated in a while loop that terminates when the work unit at the front of the priority queue (i.e.,
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the largest) is below the threshold. At each iteration, the root process inspects the work unit at the

front of the queue to check its node count. If the node count is above the threshold, it determines

how to subdivide the work unit (i.e., the dimensions of the Cartesian grid). The root process then

pops the old work unit off the queue, and broadcasts the AABB and calculated dimensions to all

processes. Each process then constructs a Cartesian grid based on that recipe. Finally, a node count

for each cell of this new Cartesian grid is obtained from the MeshDensit yEstimator , and new

work units are pushed into the queue.

4.2.1.1 Estimating Mesh Density

The load balancer in YOGA uses estimates of mesh density in overlap regions to improve

the quality of its work distribution. YOGA has a class, MeshDensit yEstimator , that performs

this function. It has a single public static function (listed below) that is to be called on every pro-

cess. This function takes a mesh and a Cartesian grid, and returns a vector of integers on the root

process with the total number of nodes contained in each cell of the Cartesian grid.

1template <typename MeshType >
2static std::vector<int> tallyNodesContainedByCartCells(MeshType& mesh,

Parfait::CartBlock& block){
3auto localTally = tallyNodesLocally(mesh,block);
4return collectAndSumOnRoot(localTally);
5}

Each process first tallies the number of nodes in each Cartesian cell (based on its local

partition). Then each process sends its local tally to the root, who combines them to obtain the

final estimate.
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4.2.2 Parallel Hole Map

The final preprocessing step that YOGA performs is to create hole maps, which are used

to approximate geometric bodies. The hole maps contain Cartesian grids whose cells are tagged

as “in” “out” or “crossing” (this is how the geometry is approximated). They are constructed in

parallel in the following steps:

• Tag crossing cells locally

• Communicate crossing cell ids

• Flood fill in/out statuses

When YOGA constructs hole maps, the extent box for each piece of geometry is already known,

and the resolution for each hole map is already set. Each process creates bounding boxes for

its surface elements, then tags any cells in the corresponding Cartesian grid that intersect each

bounding box. Once all processes have marked crossing cells locally, a parallel max is performed

on the tags so that all processes have the same cells tagged as crossing. Once each process has the

same view of the hole map, the remaining unmarked cells of the hole maps can be marked as “in”

or “out” with no further communication via a flood fill algorithm.

4.2.2.1 Implicit Outer Boundary

The cells of the hole map that intersect the geometry are marked first, then the remaining

cells are classified as in or out. If the hole map is constructed such that the geometry does not cross

any of the cells in the outermost layer of the hole map, those cells can be used as seeds to a flood
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fill algorithm to mark all of the “in” cells (in the computational domain). All remaining cells must

be in the hole region, and are therefore marked as outside the domain.

While it is convenient to have an “extra” layer of cells in the hole map to use as seeds to

the flood fill algorithm, it is not strictly necessary. In fact, the total number of cells in the hole map

can be reduced by about 40% with no loss in the resolution of the approximated geometry (thereby

reducing the storage and computational cost to build the hole map). The key is to simply let the

outer layer exist implicitly. Then the cells in the actual layer can be used as seeds, but just need to

be first checked that they are not already marked as crossing cells.

If symmetry planes exist, any hole map cells that intersect symmetry planes are ineligible

to be seeds, which prevents the flood fill from marking the cells inside symmetric geometries (e.g.,

wings or fuselages) improperly.
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Figure 4.1 Hole map memory reduction

4.3 Donor Searching with Dynamic Load Balancing

In YOGA, dynamic load balancing is applied only to donor searching because the cost

of Overset domain assembly is dominated by donor searching. There are four orthogonal actors

during this phase: voxel server, grid server, donor finder, and donor collector. Each of which will

be discussed in the following subsections.

4.3.1 Voxel Server

The work units for donor searching are defined by the load balancer, but they are actually

distributed by the voxel server. The voxel server is implemented via the generic ZeroMQ server
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discussed in section 4.1.2.1, and is instantiated on the root process by:

1ZMQMessager::Server<decltype(voxelServer)>(voxelServer ,
2MessageTypes::WorkRequest);

As discussed in section 4.1.2.1, the generic server only requires that the object (e.g., voxelServer)

has a function doWork () that takes as input and also returns a MessagePasser :: Stream. The

implementation of the V oxelServer class is shown below in its entirety.

1class VoxelServer{
2public:
3VoxelServer(LoadBalancer& L)
4:loadBalancer(L)
5{ }
6MessagePasser::Stream doWork(MessagePasser::Stream& stream){
7MessagePasser::Stream reply;
8reply << loadBalancer.getRemainingVoxelCount();
9reply << getNextVoxel();
10return reply;
11}
12private:
13LoadBalancer& loadBalancer;
14Parfait::Extent<double> getNextVoxel(){
15return 0 < loadBalancer.getRemainingVoxelCount() ?
16loadBalancer.getWorkVoxel() :
17Parfait::ExtentBuilder::createEmptyBuildableExtent(
18Parfait::Extent<double >());
19}
20};

When a work unit is requested, the V oxelServer first asks the LoadBalancer how many

work units remain. If there are any remaining work units, it asks for the next work unit and puts

it into the reply Stream. If there are no work units remaining, V oxelServer puts an empty Extent

into the reply Stream instead.
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4.3.2 Worker

Each process creates a Worker object that is responsible for actually performing the work

associated with each work unit. The Worker has a single function, which it launches in a separate

thread, and it is listed below.

1void work(){
2ZMQMessager::Client voxelClient(MessageTypes::WorkRequest);
3voxelClient.connectToServer(voxelServerId);
4while(true){
5MessagePasser::Stream emptyStream;
6auto reply = voxelClient.makeRequest(voxelServerId ,emptyStream

);
7Parfait::Extent<double> e;
8int nLeft;
9reply >> nLeft;
10if(0 >= nLeft) {
11voxelClient.stop();
12break;
13}
14reply >> e;
15auto workVoxel = WorkVoxelBuilder::build(meshSystemInfo ,e);
16auto receptorsAndHoles = voxelDonorFinder.

getCandidateDonorsAndHoleIds(workVoxel ,e,holeMaps);
17auto candidateDonors = receptorsAndHoles.first;
18auto holes = receptorsAndHoles.second;
19DonorDistributor::distribute(candidateDonors);
20HolePointDistributor::distribute(workVoxel , holes);
21}
22}

First, the worker creates a Client, and connects it to the VoxelServer. Then it enters a

while loop, in which the work is actually done. Each iteration, the worker first makes a request

to the work server. The reply contains an integer (the number of remaining work units), and a

bounding box (the region of space for which the worker should perform domain assembly). If

there are no remaining work voxels, the worker is finished, and it exits the while loop. Other-

wise, it gets the bounding box out of the reply stream, and passes it to the buildWorkV oxel ()
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function, which is responsible for gathering all of the required grid information the correct pro-

cesses. The buildWorkV oxel () function returns a WorkV oxel, which contains all of the data

required to identify candidate donors and hole points. The worker then passes the WorkV oxel

to the V oxelDonorFinder :: getCandidateDonors() function, which identifies hole points and

candidate donors. The DonorDistributor is then responsible for sending donor information to the

correct processes. Likewise, the HolePointDistributor determines which processes own each of

the hole points, then sends them.

4.3.2.1 Building A Work Voxel

The helper class WorkV oxelBuilder has a single public static function:

1static WorkVoxel build(MeshSystemInfo &info, Parfait::Extent<double> &e) {
2std::map<int, VoxelFragment > fragments;
3for (int id:getIdsOfServersToQuery(info,e))
4fragments[id] = requestFragmentFromGridServer(id,e);
5return createWorkVoxelFromFragments(fragments ,e);
6}

Given metadata for the mesh system and an AABB, the WorkV oxelBuilder will identify

grid servers to query, request a grid fragment from each, then combine the grid fragments into

a WorkV oxel. Determining which grid servers to query is simply a matter of checking AABB

intersections with each partition (partitions are tied to servers):
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1static std::vector<int> getIdsOfServersToQuery(MeshSystemInfo& info,
2Parfait::Extent<double >& e){
3std::vector<int> ids;
4for (int i = 0; i < info.numberOfPartitions(); ++i)
5if (e.contains(info.getPartitionExtent(i)))
6ids.push_back(i);
7return ids;
8}

Querying a grid server is straightforward:

1static VoxelFragment requestFragmentFromGridServer(int id, Parfait::
Extent<double >& e){

2ZMQMessager::Client gridClient(MessageTypes::GridRequest);
3gridClient.connectToServer(id);
4MessagePasser::Stream request;
5request << e;
6auto reply = gridClient.makeRequest(id, request);
7VoxelFragment fragment;
8reply >> fragment;
9gridClient.disconnectFromServer(id);
10return fragment;
11}

The WorkV oxelBuilder first creates a client and connects it to the designated grid server.

Then it packs the AABB into a request stream and sends the stream to the server. When it receives

the reply stream from the grid server, the WorkV oxelBuilder unpacks it into a grid fragment, and

returns the fragment.

After the WorkV oxelBuilder collects all relevant grid fragments, it combines them into

a WorkV oxel (i.e., the data structure that contains all the grid information necessary for donor

searching and hole point identification).
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1static WorkVoxel createWorkVoxelFromFragments(std::map<int,VoxelFragment
>& fragments , Parfait::Extent<double >& e){

2WorkVoxel workVoxel(e);
3for (auto &pair:fragments) {
4auto &fragment = pair.second;
5workVoxel.addNodes(fragment.transferNodes);
6}
7for (auto &pair:fragments) {
8auto &fragment = pair.second;
9workVoxel.addTets(fragment.transferTets);
10workVoxel.addPyramids(fragment.transferPyramids);
11workVoxel.addPrisms(fragment.transferPrisms);
12workVoxel.addHexs(fragment.transferHexs);
13workVoxel.addCellIds(fragment.transferCellIds);
14workVoxel.addTriangles(fragment.transferTriangles);
15}
16return workVoxel;
17}

4.3.2.2 Finding donors and identifying hole points

Once a work voxel is constructed, the real work can begin. For each node in the work

voxel, a list of candidate donors must be created. Additionally, nodes which lie inside a piece of

geometry should be identified. The following function performs both tasks.
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1template <typename HoleMapType >
2std::pair<std::vector<Receptor>,std::vector<int>> VoxelDonorFinder::

getCandidateDonorsAndHoleIds(WorkVoxel &workVoxel ,

Parfait::Extent<double> &extent,

std::vector<HoleMapType > &holeMaps){
3

4auto outOfVoxelNodeIds = getIdsOfNodesOutsideVoxel(workVoxel);
5auto candidateDonors = buildCandidateDonorList(workVoxel);
6

7removeCandidatesWhoAreFartherFromTheSurface(workVoxel.nodes,
candidateDonors);

8

9auto potentialHoleNodeIds = getIdsOfHoleNodes(workVoxel ,holeMaps);
10auto actualHoleIds = getActualHoleIds(potentialHoleNodeIds ,

candidateDonors);
11auto candidateReceptors = buildCandidateReceptors(workVoxel ,

candidateDonors);
12

13return std::make_pair(candidateReceptors ,actualHoleIds);
14}

A work voxel must contain all cells that overlap with the voxel. Some of those cells may

have nodes that are outside of the voxel and are therefore the responsibility of another work voxel.

They must be therefore identified and ignored. Next, all candidate donors are found for each node

in the work voxel. The candidate donor list for each node contains all cells that contain the node,

but since YOGA uses distance to the wall to determine where interpolation boundaries should exist

not all donors are relevant. Specifically, nodes should only interpolate from donors who are closer

to a piece of geometry than the node itself.

Hole nodes—nodes that lie inside a solid surface—are identified by using a method pro-

posed by Sitaraman [38]. First, approximate hole maps are used to identify potential hole nodes.

Then, actual hole nodes are easily identified based on the following observation: any potential hole

nodes that have donors from the grid associated with the solid surface must be outside the surface.
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Finally, candidate donors and hole node ids are packaged up and returned.

4.3.2.3 Distributing

The DonorDistributor class is responsible for sending candidate donor lists to the owner

of each node that has at least one donor candidate.

1static void distribute(std::vector<Receptor >& receptorUpdates){
2auto ownerToReceptors = mapReceptorsToOwners(receptorUpdates);
3

4for(auto& stuffForOwner:ownerToReceptors){
5int messageType = DonorCollector::Receptors;
6int owningRank = stuffForOwner.first;
7auto& receptors = stuffForOwner.second;
8ZMQMessager::Client client(DciUpdate);
9client.connectToServer(owningRank);
10MessagePasser::Stream stream;
11stream << messageType;
12stream << receptors;
13client.makeRequest(owningRank ,stream);
14client.disconnectFromServer(owningRank);
15}
16}

First, the DonorDistributor maps receptors to their owners. Then, for each owner, the

DonorDistributor creates a client, connects it to the appropriate server, packs the receptors into a

request stream, and sends the request to the server.

The HolePointDistributor performs the same task for the hole ids.
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1static void distribute(WorkVoxel& workVoxel , const std::vector<int>&
holeNodes){

2auto ownerToHoles = mapHolesToOwners(workVoxel ,holeNodes);
3

4for(auto& x:ownerToHoles){
5int messageType = DonorCollector::Holes;
6int owningRank = x.first;
7auto& holes = x.second;
8ZMQMessager::Client client(DciUpdate);
9client.connectToServer(owningRank);
10MessagePasser::Stream stream;
11stream << messageType;
12stream << holes;
13client.makeRequest(owningRank ,stream);
14client.disconnectFromServer(owningRank);
15}
16}

4.3.3 Grid Server

Each process runs a server that can be queried by any process asynchronously during do-

main assembly. The GridFetcher class is responsible for fulfilling these queries, and its code is

listed below:
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1template <typename MeshType >
2class GridFetcher{
3public:
4GridFetcher(const MeshType& m,PartitionInfo& info,int rank) :
5mesh(m),
6partitionInfo(info),
7my_rank(rank)
8{ }
9MessagePasser::Stream doWork(MessagePasser::Stream& stream){
10Tracer::beginEvent("GridServer: fetching fragment");
11Parfait::Extent<double> e;
12stream >> e;
13VoxelFragment fragment(mesh,partitionInfo ,e,my_rank);
14MessagePasser::Stream result;
15result << fragment;
16Tracer::endEvent("GridServer: fetching fragment");
17return result;
18}
19private:
20const MeshType& mesh;
21PartitionInfo& partitionInfo;
22int my_rank;
23

24};

When the GridFetcher receives a request, it first unpacks it into a bounding box. Then it

creates a V oxelFragment, which contains all of the nodes and cells that overlap with the bounding

box (on this particular partition). Finally, the GridFetcher packs the fragment into a Stream and

sends it back to the client.

4.3.4 Donor Collector Server

The DonorCollector class is responsible for gathering and storing candidate donors and

hole ids. It fits the generic server template, and its doWork () function is listed below.
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1MessagePasser::Stream doWork(MessagePasser::Stream& request){
2int messageType;
3request >> messageType;
4if(Receptors == messageType) {
5std::vector<Receptor> newReceptors;
6request >> newReceptors;
7storeDonorUpdate(newReceptors);
8}
9else if(Holes == messageType){
10std::vector<long> holePoints;
11request >> holePoints;
12holeNodes.insert(holeNodes.end(),
13holePoints.begin(),
14holePoints.end());
15}
16MessagePasser::Stream emptyReply;
17return emptyReply;
18}

This server is slightly different from the others. First, it handles more than one type of

request based on an integer tag that is prepended to the request stream. Second, its reply is always

empty. The clients are just pushing data to the server, so an empty reply is sufficient to indicate

that the data was received.

4.4 Post Processing

4.4.1 Interpolation in Yoga

The initial version of YOGA uses barycentric coordinates to compute donor weights on

tetrahedral meshes. The design and data structures in YOGA are flexible enough to handle other

element types, but general interpolation is beyond the scope of this work and is therefore not

covered here.
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4.4.1.1 Math

Consider a tetrahedron with vertices vn = (xn, yn, zn). The barycentric coordinates λn of a

point p can be calculated by



λ1

λ2

λ3



= T−1 ∗ (p − v4), λ4 = 1 − λ1 − λ2 − λ3 (4.1)

where T is the 3X3 matrix:

T =



x1 − x4 x2 − x4 x3 − x4

y1 − y4 y2 − y4 y3 − y4

z1 − z4 z2 − z4 z3 − z4



(4.2)

4.4.1.2 Implementation

The function that calculates barycentric coordinates in YOGA is based on the above de-

scription, and follows it nearly verbatim. Note that YOGA uses the Eigen library for all its linear

algebra, [39].
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1template <typename TetType, typename PointType >
2std::array<double, 4> calculateBarycentricCoordinates(const TetType &tet,

const PointType &point) {
3

4std::array<double, 4> x = {tet[0][0], tet[1][0], tet[2][0], tet[3][0]};
5std::array<double, 4> y = {tet[0][1], tet[1][1], tet[2][1], tet[3][1]};
6std::array<double, 4> z = {tet[0][2], tet[1][2], tet[2][2], tet[3][2]};
7

8Eigen::Vector3d p;
9p << point[0], point[1], point[2];
10

11Eigen::Vector3d v4;
12v4 << x[3], y[3], z[3];
13

14Eigen::Matrix3d T;
15T << x[0] - x[3], x[1] - x[3], x[2] - x[3],
16y[0] - y[3], y[1] - y[3], y[2] - y[3],
17z[0] - z[3], z[1] - z[3], z[2] - z[3];
18

19auto lambdas = T.inverse() * (p - v4);
20

21return {lambdas[0], lambdas[1], lambdas[2], 1.0-lambdas[0]-lambdas[1]-
lambdas[2]};

22}

4.4.1.3 Verification

A correct implementation of interpolation based on barycentric coordinates must have sec-

ond order accuracy. The order property of the interpolation accuracy in YOGA was demonstrated

with a mesh refinement study. An Overset system was constructed, which consisted of a uniform

receptor grid contained by a background uniform donor grid. The same receptor grid was used

with a series of six donor grids of different resolutions. The nonlinear function

f (x, y, z) = 6 sin(x) + 12 cos(y) +
1
2

ez − 0.3; (4.3)
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was calculated on the donor grid, then interpolated to the receptor grid. Then the largest interpola-

tion error (compared to the exact solution), and the longest edge in the donor grid were measured.

The following log log plot shows that the interpolation in YOGA is second order.

Figure 4.2 Interpolation convergence

4.4.2 Tracer

Obtaining and analyzing performance data for multithreaded and distributed codes can be

cumbersome. There are a number of tools available to instrument code and visualize the data, but

they often place requirements on compilation that interfere with third party libraries (etc.).
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Google Chrome has a built in tool called Trace Viewer for analyzing website performance

(at microsecond resolution). The Trace Viewer takes json data as input, so it can visualize perfor-

mance data from any source that can generate fits a simple format. Matthew O’Connell at NASA

Langley developed a simple tool to let users easily leverage Trace Viewer in their applications.

Specifically, the following two functions can be used to record the beginning and end of events in

an application. These functions are terse enough not to be a distraction, require only the inclusion

of a single header, and are thread safe.

1Tracer::beginEvent("Grid client: requesting grid");
2// do work
3Tracer::endEvent("Grid client: requesting grid");

Figure 4.3 Tracing screenshot
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CHAPTER 5

RESULTS

5.1 Store Separation Case

The first test case is a very coarse grid system for a dynamic store separation simulation

(about 100 thousand nodes). Due to the small size of the grid system, this case could be easily run

on a standard workstation in a matter of seconds, which was quite useful during the early stages of

YOGA’s development.

Figure 5.1 shows the surface meshes of the wing and store for this case.

Figure 5.1 Store separation surface meshes
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Figure 5.2 shows the hole maps that YOGA constructed to approximate both bodies. Recall

that hole maps provide a very efficient way to check if a cell might intersect a solid body.

Figure 5.2 Hole map for store separation

Figure 5.3 shows a slice of the wing mesh with the cells colored by status. This figure

showcases the fact that YOGA uses distance to the wall as its criterion for determining interpolation

boundaries. The wing mesh is only responsible for computing the flow solution in the blue region,

so it can ignore the nodes and cells in the other regions. The strip of red cells signifies the boundary

between the region active and non-active nodes. If any vertices of a cell are receptors, the cell is

marked red.

Figure 5.4 shows the statuses of the cells in the store mesh. Note that the shape and location

of the interpolation boundary matches that in Figure 5.3, but the active and non-active regions are

reversed. This is exactly the intended behavior of an Overset domain assembler that is based on
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Figure 5.3 Wing mesh slice

distance to the wall. As noted by Nakahashi [24], using distance to the wall as a cutting criterion

guarantees at least one node of overlap at intergrid boundaries.

Figure 5.4 Store mesh slice
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Figure 5.5 shows a visualization of timing data from two different runs of this case. YOGA

initially used a static value of 50,000 as the target number of nodes to be contained by each voxel.

While this strategy works well for large cases with plenty of work for each process, it can lead

to large imbalances for small cases like this one. Figure 5.5a demonstrates imbalance caused by

static target work voxel size. YOGA now calculates the target number of nodes per voxel T by:

T =
N
2P

(5.1)

where N is the number of nodes in the global mesh system and P is the number of partitions (i.e.,

processes). Figure 5.5b shows the effect of calculating target voxel size dynamically. In this case,

the total wall clock time of the Overset domain assembly was reduced by more than a factor of 2:

Table 5.1 Effect of dynamic work unit sizing

time (s)

Static 4,2
Dynamic 1.8
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(a) Static target voxel size

(b) Dynamic target voxel size

Figure 5.5 Improved load balancing

5.2 Hart II Rotor Case

Overset grid systems are often used in rotorcraft simulations, so it seems appropriate to

include such a test case. This particular case features a small 4 million node grid system with

5 component meshes: one for each of the blades, and one for the fuselage which also acts as the

background grid. Figure 5.6 shows the configuration of the fuselage and blades.

92



Figure 5.6 Hart II geometry

Figure 5.7 shows a slice of the fuselage mesh with the cells colored by region. It is clear that

the fuselage mesh is dominated by the blade meshes in the vicinity of the blades. The interpolation

boundaries caused by the other two blades are similar, as shown in Figure 5.8. Finally, Figure 5.9

contains a zoomed in view of the region near the hub. The interpolation boundary exists midway

between the blade roots and the hub as expected.

Table 5.2 shows how the total wall clock time changes for Overset domain assembly for

this case with respect to the number of cores. These cases were run on a machine with Intel Xeon

X5660 processors. One of the design goals of YOGA is to perform well when mesh systems have

approximately 50k nodes per partition (and one partition per processor core). Note that strong

scaling is calculated as:

t1/(N ∗ tN ) ∗ 100 (5.2)
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Figure 5.7 Fuselage slice 1

Figure 5.8 Fuselage slice 2

where t1 is the wall clock time cost of performing the work on a single core (extrapolated from

the 12 core case), N is the number of cores, and tN is the cost of performing the same work on N

cores.
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Figure 5.9 Slice near hub

Table 5.2 Timing results

Total Worker Worker Nodes Strong
cores time (s) time (s) percentage per core (thousands) scaling

12 39.3 35.3 90 312 100
24 19.7 17.6 89 156 100
36 13.5 11.7 86 104 97
48 10.4 9.0 86 781 94
60 8.6 7.4 86 62 91
72 6.8 5.6 82 51 96
84 7.1 6.0 85 45 79
96 5.6 4.5 80 39 88

108 5.0 4.1 82 35 87
120 4.5 3.4 76 31 87
132 4.9 3.7 76 28 73
144 4.3 3.4 79 26 76
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5.3 Distributed Electric Propulsion Case

The first two test cases chosen for this work are both small grids with simplified geometry,

so a third test case is necessary explore how YOGA behaves in a realistic production environment.

The geometry for this case is a configuration of three propellers and their fairings, shown below in

Figure 5.10. The five-blade propeller was designed specifically for distributed electric propulsion

applications by Joby Aviation [40]. This case presents challenges in terms of both size and difficult

geometry. The mesh system is much larger than the previous cases and contains approximately 115

million nodes and 680 million elements. Additionally, a tiny gap exists between each propeller and

its fairing, which makes creating a quality interpolation boundary in that region challenging.

Figure 5.10 Joby Geometry

YOGA produces high quality hole cuts for this configuration. Because YOGA uses distance

to the wall as its cutting criterion, the interpolation boundaries lie midway between bodies. Figure
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5.11a contains a series of slices of the mesh system with only the interpolation boundary cells

selected. The boundaries are clean and located between bodies as expected. In Figure 5.12b a slice

of the meshes for two of the propellers is added to show the solve regions (blue) for both propellers

and the regions with inactive cells (white). Recall that the cells in inactive regions are inactive

because the solution will be obtained on a different mesh which is closer to the geometry. Figure

5.11c then shows a zoomed in view of a region between two blades. Note that the interpolation

boundary is slightly curved due to the shape of the distance field.

Figure 5.12 demonstrates that YOGA can handle small gap regions. First, Figure 5.12a

shows a slice of one of the fairing grids. The fairing grid is responsible for the solution in the

blue region, but is dominated by the propeller grid in the white region. The bright green square

highlights a region at the bottom of the interface between the propeller and the fairing. The zoomed

in view of that region in Figure 5.12b reveals that YOGA creates a high quality interpolation

boundary in the small gap region between the propeller and the fairing.

Table 5.3 demonstrates that YOGA’s dynamic load balancing scheme is still effective for

large scale mesh systems. The table starts at 96 cores because the size of the mesh system necessi-

tates a large amount of memory. When the mesh system is divided into 96 partitions, each partition

contains over 1 million nodes, which far exceeds the partition size of a typical CFD case. YOGA

takes over ten minutes to perform Overset domain assembly on 96 cores largely because its grid

servers are designed to operate efficiently on smaller more realistic partitions. While YOGA’s raw

performance is less than ideal, its dynamic load balancing —which is the primary focus of this

work— does its job quite well. YOGA scales well on up to 1032 cores, which is the maximum job

size available on NASA Langley’s mid-range computer system.
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(a) Interpolation boundaries

(b) Hole cuts for left and right propellers

(c) Gap between blades

Figure 5.11 Joby multi slice
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(a) Hole cut for fairing 1 (b) Gap region

Figure 5.12 Fairing 1 slice

At the conclusion of this work, a limited opportunity arose to run a performance trial at

NASA’s Pleiades supercomputer. Table 5.4 shows the results of the trial. Performance analysis

reveals several scalability concerns that arise at core counts beyond those tested during YOGA’s

development.

At small scales, the cost of constructing the load balancer gets cheaper as more cores are

added, but the scaling eventually stalls out and the trend reverses. At 96 cores, constructing the

load balancer constitutes only 7.3% of the total time, but that balloons to 21.7% at 4000 cores. The

poor scaling of this phase is driven by the communication cost of estimating mesh density, which

requires global communication. The initial implementation uses blocking collective communica-

tions because they were simple to implement and did not incur a large cost at smaller scales. Now

that performance analysis has specifically identified mesh density estimation as a communication
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bottleneck at larger scales, it can be an optimization target for future work. The load balancer is

completely decoupled from the rest of YOGA, so it can be optimized in isolation.

The cost of processing work units also flatlines above 1000 cores, and starts to increase

above 3000 cores. Performance data implicates two bottlenecks. First, the dynamic load balancer

creates more work units than necessary based on the number of cores when the default of 50k

would suffice. The adaptive ability was added to balance small cases (as discussed in section 5.1),

but becomes prohibitive for large cases. This behavior can be changed with one or two lines of

code. Second, Tracer output reveals that the majority of workers make requests to one particular

grid server. The grid server becomes overloaded, and its response time goes up, causing many

workers to block. A brief investigation of the grid server’s partition immediately highlights the

cause. The partition is part of the background grid, contains very large cells, and is toroidally

shaped. Due to the partition’s size and shape, its AABB overlaps with nearly every work unit, even

though only a small number of work units actually intersect the partition itself. Now that this issue

has been identified, it can be tackled in future work by reducing grid server response time for false

positives.

Post processing —actually creating intergrid boundaries and selecting donors from candidates—

is trivially inexpensive at small scales, so very little development effort was dedicated to making

it efficient. YOGA is based on the concept that premature optimization is wasteful. Now that per-

formance data shows a dramatic increase in cost on large cases, YOGA’s post processing should

be optimized. The cost is specifically driven by a single routine that resolves statuses for ghost

nodes (i.e., nodes along partition boundaries). The communication uses blocking collective com-

munication because the implementation was very simple, and performance was not at issue at the
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tested scale. Txhe whole process is less than 100 lines of code and can be easily replaced with a

less wasteful communication strategy in future work —now that performance data motivates the

upgrade.

Table 5.3 Timing results (K cluster)

Total Worker Worker Nodes Strong
cores time (s) time (s) percentage per core (thousands) scaling

96 619.0 541.0 87 1197 100
144 425.1 371.6 87 798 97
384 134.7 103.2 77 299 115
768 70.6 47.9 68 150 110

1032 59.3 39.0 66 111 97

Table 5.4 Timing results (Pleiades)

Total Worker Worker Build load Post Nodes Strong
cores time (s) time (s) percentage balancer (s) Processing per core (thousands) scaling

96 471.6 405.7 86 34.2 3.6 1197 100
192 237.4 200.0 84 18.5 3.4 598 99
384 97.1 76.5 79 10.4 4.0 299 121
768 59.2 42.5 72 6.1 4.8 150 100

1536 47.3 22.3 47 10.1 7.0 75 62
1920 49.6 22.4 47 11.2 10.5 60 48
2496 47.3 22.3 47 10.1 7.0 46 38
3072 61.8 27.7 45 13.4 14.0 37 24
4000 65.0 26.4 41 14.1 19.9 29 17
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CHAPTER 6

CONCLUSION

Dynamic load balancing is necessary to perform Overset domain assembly on large num-

bers of processors. A radically different approach to dynamic load balancing for Overset domain

assembly has been presented in this work. The approach was implemented and tested in a new

assembly code called YOGA (Yoga is an Overset Grid Assembler).

YOGA is capable of producing high quality interpolation boundaries both small and large

grid systems, as demonstrated by the selected test cases. Additionally, YOGA can handle chal-

lenging grid systems in which bodies are in very close proximity, and very precise hole cuts are

necessary.

YOGA’s dynamic load balancing strategy effectively reduces wall clock time of Overset

domain assembly for small and large cases. Scalability issues at large scales with thousands of

cores have been identified for future work.

6.1 Technology Exploration

Additionally, this work serves as a technology demonstration. YOGA is designed to be

called from a fluid solver that is running in an MPI environment, but it uses both MPI and Ze-

roMQ for communication. ZeroMQ is not widely used in the CFD community, but it offers several

compelling features. First, ZeroMQ can easily handle communication from multiple asynchronous
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threads simultaneously. This is the key feature that enabled the new dynamic load balancing ap-

proach in YOGA. Second, a ZeroMQ client and server do not have to be written in the same

language. This could be an enabling technology for connecting multiple simulation codes (e.g., in

multi-physics simulations) and also within CFD codes that have mixed language elements.

6.2 Future Work

6.2.1 Features

• Expose interface to C/Fortran

• Support mixed element grids

• Support cell centered codes

• Support structured grids

• Support Overset surface grids.

6.2.2 Performance

• Optimize communication in mesh density estimation

• Reduce grid server response times for false positives

• Optimize post processing communication pattern

• Augemented ADT’s [41]

• Explore usage of accelerators (GPU/Phi)
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