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ABSTRACT 

In terms of mesh resolution requirements, higher-order finite element discretization 

methods offer a more economic means of obtaining accurate simulations and/or to resolve physics 

at scales not possible with lower-order schemes. For simulations that may have large relative 

motion between multiple bodies, overset grid methods have demonstrated distinct advantages over 

mesh movement strategies. Combining these approaches offers the ability to accurately resolve the 

flow phenomena and interaction that may occur during unsteady moving boundary simulations. 

Additionally, overset grid techniques when utilized within a finite element setting mitigate many 

of the difficulties encountered in finite volume implementations. This research presents the 

development of an overset grid methodology for use within a streamline/upwind Petrov-Galerkin 

formulation for unsteady, viscous, moving boundary simulations. A novel hole cutting procedure 

based on solutions to Poisson equation is introduced and compared to existing techniques. A MPI-

based parallel three-dimensional overset grid assembly framework is developed. Order of accuracy 

is examined via the method of manufactured solutions. The potential benefits of using Adaptive 

Mesh Refinement (AMR) in overset grid simulations are explored by combining the overset 

method with an AMR approach. The importance of considering linearization due to the overset 

boundaries within the preconditioning is studied. Numerical experiments are performed comparing 

an ILU(k) preconditioner with two proposed modifications referred to as “triangular inter-grid 

ILU(k)” and “Jacobi inter-grid ILU(k)”. The efficiency gains observed from the proposed 

modifications are also applicable to general parallel simulations on distributed memory machines, 
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regardless of whether an overset grid approach is used. Overset grid results are presented for 

several inviscid and viscous, steady-state and time-dependent moving boundary simulations with 

linear, quadratic, and cubic elements. 
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CHAPTER I 

INTRODUCTION 

Nearly all military air vehicles are subject to carry some form of wing-mounted element. 

Furthermore, these vehicles are typically required to operate with numerous stores (such as 

munitions, fuel tanks, sensor pods, etc.) as well as with various possible configuration layouts. 

During the aircraft-store certification process, the carriage loads, stability and control, flutter 

margin, and store separation trajectories must be ascertained for each layout. In these regards, 

overset (sometimes referred to as Chimera) grids have found great utility. These methods allow 

for discretization for each of the stores to be independently generated, to best resolve the geometric 

complexities and flow physics, and then overlapped onto the grid resolving the aircraft. Hence, the 

various stores may be interchanged with ease for subsequent simulations. Moreover, for 

simulations in which large relative motion between bodies is present, mesh movement algorithms 

typically fail, requiring manual intervention to regenerate the grid and transfer the simulation data 

before proceeding. Overset grids do not suffer from such a breakdown since the moving body grids 

move relative to one another. Similar examples illustrating the need for overset grid approaches 

could have been made for many other application areas in which the interaction between bodies 

moving relative to one another must be accurately resolved. 

Overset grid technology was originally developed for use in finite volume structured-grid 

computational fluid dynamic [1-5] software to simulate the flow around complex configurations 

in the early 1980’s. At that time, the nemesis in performing a calculation over complicated 
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geometry with structured-grids was the construction of an adequate grid on which the governing 

equations could be solved. The development of unstructured-grid technology and simulation 

capabilities in the late 1980’s and early 1990’s somewhat mitigated this burden. However, as 

mentioned above, due to the shortcomings of mesh movement algorithms, overset grid methods 

were extended for use within unstructured-grid simulation techniques [6-8]. The overset grid 

assembly software SUGGAR [9] and PEGASUS [10] have been utilized for numerous finite 

volume solutions to complex, moving boundary aeronautical and hydrodynamic simulations. 

However, difficulties have been found in processing these overlapped grids for viscous 

computations where high stretching occurs as well as with orphan points (i.e., points where a 

proper interpolation stencil cannot be established) in particularly critical regions of the flow. In 

terms of mitigating orphan points, subsequent manual intervention is required in the 

aforementioned software. To this end, a method has been proposed based on scattered data 

interpolation techniques that eliminates the occurrence of orphan points [11], and has been used 

with finite volume and hybrid approaches that utilize multiple solvers. 

Over the past decade, the focal point of considerable research efforts has been the 

development of higher-order discretization methods. These discretization methods allow for 

highly accurate solutions while limiting the mesh resolution requirements. They additionally offer 

the ability to resolve physics at much smaller scales than possible with lower order solution 

methods. The two most prominent higher-order methods for fluid dynamic applications are the 

Discontinuous Galerkin (DG) and the Streamline/Upwind Petrov-Galerkin (SUPG) finite element 

schemes. For the same reasons discussed above, the natural extension of overset grid methods to 

higher-order methods is currently taking place. To this end, a hybrid scheme whereby a finite 

volume scheme was utilized in the near-body field and then an overlapped grid approach used to 
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couple with a DG solver for off-body portions of the domain has been developed [12]. 

Furthermore, a space-time discontinuous Galerkin scheme formulated for structured-grids was 

extended with overset grid capabilities [13, 14], and more recently enhanced with implicit 

boundary conditions to accelerate convergence [15] and a direct hole cutting method for higher-

order meshes with curved elements [16]. 

In this research, an overset grid methodology for use within a SUPG formulation for 

unsteady, viscous, moving boundary simulations has been developed and verified. In addition, a 

parallel overset grid assembly framework has been developed, and implemented for 3D flow 

simulations. 

In the remaining chapters, the methodology and numerical results of the overset approach 

for the SUPG formulation is presented. Chapter II presents the governing equations and 

discretization methods utilized for both space and time integration for the SUPG method. Chapter 

III presents the details of the overset grid methodology. Chapter IV demonstrates the 2D and 3D 

code verification results using the Method of Manufactured Solutions (MMS). Numerical results 

are presented in Chapter V, which include steady-state and time-dependent moving boundary 

simulations of inviscid, laminar and turbulent flows. Finally, Chapter VI offers conclusions and 

summarizes contributions made to the scientific community. 
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CHAPTER II 

GOVERNING EQUATIONS AND DISCRETIZATION 

II.1   Governing Equations 

The conservative law form of the three-dimensional Reynolds-averaged Navier-Stokes 

equations may be written as 

𝜕𝑸(𝑥,𝑡)

𝜕𝑡
+ ∇ ∙ [𝐹𝑒(𝑸) − 𝐹𝑣(𝑸, ∇𝑸)] = 𝑺(𝑸, ∇𝑸)   𝑖𝑛 Ω                              (II.1) 

with the conservative flow variables, inviscid and viscous flux vectors defined as 

𝑸 =

(

  
 

𝜌
𝜌𝑢
𝜌𝑣
𝜌𝑤
𝜌𝐸
𝜌𝜈)

  
 
   𝐹𝑒

𝑥 =

(

 
 
 

𝜌𝑢

𝜌𝑢2 + 𝑝
𝜌𝑢𝑣
𝜌𝑢𝑤

(𝜌𝐸 + 𝑝)𝑢
𝜌𝑢𝜈 )

 
 
 
   𝐹𝑒

𝑦
=

(

 
 
 

𝜌𝑣
𝜌𝑢𝑣

𝜌𝑣2 + 𝑝
𝜌𝑣𝑤

(𝜌𝐸 + 𝑝)𝑣
𝜌𝑣𝜈 )

 
 
 
   𝐹𝑒

𝑧 =

(

 
 
 

𝜌𝑤
𝜌𝑢𝑤
𝜌𝑣𝑤

𝜌𝑤2 + 𝑝
(𝜌𝐸 + 𝑝)𝑤
𝜌𝑤𝜈 )

 
 
 

 

𝐹𝑣
𝑥 =

(

 
 
 
 
 
 

0
𝜏𝑥𝑥
𝜏𝑥𝑦
𝜏𝑥𝑧

𝑢𝜏𝑥𝑥 + 𝑣𝜏𝑥𝑦 + 𝑤𝜏𝑥𝑧 + 𝜅
𝜕𝑇

𝜕𝑥
1

𝜌
𝜇(1 + 𝛹)

𝜕𝜈

𝜕𝑥 )

 
 
 
 
 
 

   𝐹𝑣
𝑦
=

(

 
 
 
 
 
 

0
𝜏𝑥𝑦
𝜏𝑦𝑦
𝜏𝑦𝑧

𝑢𝜏𝑥𝑦 + 𝑣𝜏𝑦𝑦 + 𝑤𝜏𝑦𝑧 + 𝜅
𝜕𝑇

𝜕𝑦
1

𝜌
𝜇(1 + 𝛹)

𝜕𝜈

𝜕𝑦 )
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𝐹𝑣
𝑧 =

(

 
 
 
 
 

0
𝜏𝑥𝑧
𝜏𝑦𝑧
𝜏𝑧𝑧

𝑢𝜏𝑥𝑧 + 𝑣𝜏𝑦𝑧 + 𝑤𝜏𝑧𝑧 + 𝜅
𝜕𝑇

𝜕𝑧
1

𝜌
𝜇(1 + 𝛹)

𝜕𝜈̃

𝜕𝑧 )

 
 
 
 
 

    𝑺 =

(

 
 
 

0
0
0
0
0
𝑆𝑇)

 
 
 
                             (II.2) 

where 𝜌, 𝑝, 𝐸, 𝜅, and 𝑇 denote the density, pressure, specific total energy per unit mass, thermal 

conductivity, and temperature, respectively. Furthermore, 𝑆𝑇  is the source term and 𝜈  is the 

turbulence working variable in the modified Spalart-Allmaras model [17, 18] The pressure is 

related to the state variables via the ideal gas equation of state 

𝑝 = (𝛾 − 1) [𝜌𝐸 −
1

2
𝜌(𝑢2 + 𝑣2 + 𝑤2)]                                         (II.3) 

and assuming air, the ratio of specific heats 𝛾 is 1.4. The viscous stress tensor for a Newtonian 

fluid is given by 

𝜏𝑖𝑗 = (𝜇 + 𝜇𝑇) (
𝜕𝑢𝑖

𝜕𝑥𝑗
+
𝜕𝑢𝑗

𝜕𝑥𝑖
−
2

3

𝜕𝑢𝑘

𝜕𝑥𝑘
𝛿𝑖𝑗)                                        (II.4) 

where 𝛿𝑖𝑗 is the Kronecker delta, 𝜇 and𝜇𝑇 are the dynamic and turbulent eddy viscosity, and as 

usual for indicial notation the indices i, j, and k refer to Cartesian components. The variable 𝛹 has 

been designed to remove the effects of having a negative turbulent working variable. This variable 

greatly enhances the robustness of the turbulence model and is given by 

𝛹 = {
0.05𝑙𝑛(1 + 𝑒20𝜒)          𝑖𝑓 𝜒 ≤ 10
𝜒                                        𝑖𝑓 𝜒 > 10

         𝜒 =
𝜌𝜈̃

𝜇
                           (II.5) 

This variable remains positive or approaches zero as the turbulence working variable 

becomes negative, thus preventing the instability caused by unbounded turbulent eddy viscosity. 
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II.2   Discretization 

The discretization of the governing equations is accomplished using the Petrov-Galerkin 

stabilized finite element method as described in [19]. The Petrov-Galerkin method is formulated 

as a weighted residual method that may be written as 

∫ 𝜑 {
𝜕𝑸(𝑥,𝑡)

𝜕𝑡
+ ∇ ∙ [𝐹𝑒(𝑸) − 𝐹𝑣(𝑸, ∇𝑸)] − 𝑺(𝑸, ∇𝑸)}𝑑Ω(𝑡)

 

Ω(𝑡)
= 0                  (II.6) 

where 𝜑  is a weighting function, and Ω(𝑡)  indicates that for moving domains the spatial 

integration is a function of time. In the Petrov-Galerkin formulation, field variables are assumed 

continuous across element boundaries. Therefore, single-valued data is stored at the nodes of the 

elements and the solution is assumed to vary within each element according to a linear combination 

of basis functions. 

The time-varying spatial integration for higher-order finite element discretization on 

moving domains is somewhat problematic, and differs significantly from procedures typically 

utilized within finite volume implementations. This is due to the fact that the conservation 

equations are satisfied in a weighted integral sense, and the usual constraint that is placed on the 

mesh velocities (i.e., the geometric conservation law (GCL) that requires the numerical approach 

to be able to recover a constant or uniform flow state) is no longer uniquely defined over the set 

of weighting functions. To this end, other approaches have typically been utilized for arbitrary 

Lagrangian-Eulerian (ALE) finite element formulations, each with advantages and disadvantages. 

The first approach is a fully conservative space-time formulation [20-22]. In space-time 

discretization, instead of a semi-discrete approximation, the basis functions are now dependent on 

both space and time, and the integration is then performed over the space-time slab.  This 

formulation automatically satisfies the geometric conservation law, however, at a greater 
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computational expense. The integration of the conservation equations is now over the (d+1) 

dimensional space-time slab, and additionally incurs twice the number of degrees-of-freedom for 

the same temporal order as compared with a semi-discrete formulation. This is due to the 

discontinuous in time nature of the space-time approach. The second approach utilizes the 

kinematic description of the continuum [23, 24], and is commonly found in structural mechanics 

applications with finite deformations. Similar to the transformation of the conservation equations 

between material (Lagrangian) and spatial (Eulerian) coordinates, the transformation to another 

set of coordinates (e.g., ALE) is possible. Hence, the governing equations are related to each other 

in the various descriptions through a mapping and, therefore, the deformation gradient tensor and 

its determinant are required. Furthermore, a GCL condition must additionally be satisfied in order 

to obtain a constant solution in the physical domain. Inherent in this formulation is the requirement 

that an explicit mapping be provided between the reference and the physical domains in order to 

obtain the deformation gradient tensor (i.e., the mapping derivatives) and its determinant. 

Unfortunately, in moving boundary problems, where the volume mesh is being adapted to reflect 

changes in boundary displacements, explicit or analytical mappings are usually not possible. Thus, 

only the mesh positions are known at the current time iteration and not the functional form of its 

time dependence. With this scenario in mind, using a semi-discrete discontinuous Galerkin 

formulation, Mavriplis and Nastase [25] attempted to derive expressions by which the mesh 

velocities could be determined such that the resulting scheme was both GCL compliant and 

retained the design order of temporal accuracy. The approach of [25] was to compare the discrete 

GCL statement derived for a semi-discrete formulation to the equivalent expression in a space-

time formulation which is known to automatically satisfy the GCL. Integrals involving the mesh 

velocities could be identified and determined, but the actual mesh velocities could not. In the 
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current work a semi-discrete formulation is implemented and a similar approach to that of [25] 

could be adopted. 

The Reynolds transport theorem for a moving domain (or multidimensional Leibniz 

integration rule) expresses that the material derivative of the integral may be written as 

𝜕

𝜕𝑡
∫ 𝜑𝑸𝑑Ω(𝑡)
 

Ω(𝑡)
= ∫

𝜕(𝜑𝑸)

𝜕𝑡
𝑑Ω(𝑡)

 

Ω(𝑡)
+ ∮ 𝜑𝑸𝑽𝑔 ⋅ 𝒏̂𝑑Γ(𝑡)

 

Γ(𝑡)
                        (II.7) 

where 𝑽𝑔 = 𝒙𝑡 and 𝒏̂(𝒙, 𝑡) = (𝒏̂𝑥, 𝒏̂𝑦, 𝒏̂𝑧) represent the mesh velocity and the outward pointing 

normal to the domain boundaries, respectively. Utilizing the divergence theorem and the product 

rule Eq. (II.7) may be recast as 

∫ 𝜑
𝜕𝑸

𝜕𝑡
𝑑Ω(𝑡)

 

Ω(𝑡)
=

𝜕

𝜕𝑡
∫ 𝜑𝑸𝑑Ω(𝑡)
 

Ω(𝑡)
− ∫ 𝜑∇ ∙ (𝑸𝑽𝑔)𝑑Ω(𝑡)

 

Ω(𝑡)
− ∫ 𝑸 [

𝜕𝜑

𝜕𝑡
+ 𝑽𝑔 ∙ ∇𝜑]

 

Ω(𝑡)
𝑑Ω(𝑡)             

(II.8) 

The term in brackets in the last integral represents the substantial derivative of the 

weighting function. This term is identically zero for the basis functions since they move in time 

with the mesh. Stated another way, these functions are independent of time in the Lagrangian 

coordinates. On substitution into Eq. (II.8) yields 

𝜕

𝜕𝑡
∫ 𝜑𝑸𝑑Ω(𝑡)
 

Ω(𝑡)
+ ∫ 𝜑∇ ∙ [𝐹̅𝑒(𝑸) − 𝐹𝑣(𝑸, ∇𝑸)]𝑑Ω(𝑡)

 

Ω(𝑡)
− ∫ 𝜑𝑺(𝑸, ∇𝑸)𝑑Ω

 

Ω(𝑡)
= 0   (II.9) 

where the convective fluxes for dynamic grids are now written as 
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𝐹𝑒 = 𝐹𝑒 − 𝑸𝑽𝑔 

𝐹𝑒
𝑥
=

(

 
 
 
 

𝜌(𝑢 − 𝑥𝑡)

𝜌𝑢(𝑢 − 𝑥𝑡) + 𝑝

𝜌𝑣(𝑢 − 𝑥𝑡)

𝜌𝑤(𝑢 − 𝑥𝑡)

(𝜌𝐸 + 𝑝)(𝑢 − 𝑥𝑡) + 𝑝𝑥𝑡
𝜌𝜈(𝑢 − 𝑥𝑡) )

 
 
 
 

   𝐹𝑒
𝑦
=

(

 
 
 
 

𝜌(𝑣 − 𝑦𝑡)

𝜌𝑢(𝑣 − 𝑦𝑡)

𝜌𝑣(𝑣 − 𝑦𝑡) + 𝑝

𝜌𝑤(𝑣 − 𝑦𝑡)

(𝜌𝐸 + 𝑝)(𝑣 − 𝑦𝑡) + 𝑝𝑦𝑡
𝜌𝜈(𝑣 − 𝑦𝑡) )

 
 
 
 

    

𝐹𝑒
𝑧
=

(

 
 
 
 

𝜌(𝑤 − 𝑧𝑡)

𝜌𝑢(𝑤 − 𝑧𝑡)

𝜌𝑣(𝑤 − 𝑧𝑡)

𝜌𝑤(𝑤 − 𝑧𝑡) + 𝑝
(𝜌𝐸 + 𝑝)(𝑤 − 𝑧𝑡) + 𝑝𝑧𝑡

𝜌𝜈(𝑤 − 𝑧𝑡) )

 
 
 
 

                                         (II.10) 

For the results shown in the current work, the mesh moves as a rigid body with the 

geometry and thus the volume of the elements remain constant. This is the typical approach used 

in numerical studies of store-separation sequences or launch vehicle stage-separation events. 

Furthermore, since the motion of these bodies is prescribed, the mesh positions and grid velocities 

are analytic functions of time. In this case, for semi-discrete formulations, the GCL is no longer 

necessary. Additionally with this analytically prescribed motion, methods based on the kinematic 

descriptions of the continuum discussed above may be utilized. On the other hand, elastically 

deforming bodies requires general mesh motion and would indeed need enforcement of the GCL. 

The weighting function for Petrov-Galerkin methods consists of two parts. Similar to a 

standard Galerkin discretization the first part is the same basis functions used to represent the 

primary variables over the element. The second contribution to the weighting function is a 

stabilizing term that provides dissipation along preferential directions to eliminate odd-even point 
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decoupling that often occurs with the standard Galerkin scheme. In the present work, the 

Streamline/Upwind Petrov-Galerkin (SUPG) method is used in defining the weighting function as 

𝜑 = 𝑁𝑖[𝐼] + [𝑃] = 𝑁𝑖[𝐼] + (∇𝑁𝑖 ∙ 𝐴)[𝜏],      𝑖 = 1⋯𝑛                      (II.11) 

where 𝑛 is the number of Lagrangian basis function for an element, 𝑁𝑖 are the 𝑖𝑡ℎ Lagrangian basis 

function for the element, [𝐼] is the identity matrix with the dimension of the flow variables, 𝐴 is 

the linearization of the convective fluxes for dynamic grids given in Eq. (II.10), and [𝜏] is obtained 

using the following definition 

[𝜏]−1 = ∑ |∇𝑁𝑖 ∙ 𝐴|
𝑛
𝑖=1 + [𝑉]          |∇𝑁𝑖 ∙ 𝐴| = [𝑇]|Λ|[𝑇]

−1                   (II.12) 

Here, [𝑇]  and |Λ|  are the right eigenvectors and absolute value of eigenvalues, 

respectively, of the matrix on the left hand side. For viscous flows, [𝑉] represents the linearized 

contributions from the viscous terms that are added to the stabilization matrix to maintain the order 

of accuracy as the Reynolds number is decreased and viscous terms become dominant, and has 

been found to be critical for robust and accurate simulations. Note that many alternative 

stabilization matrices can be derived using flux functions often used in finite volume schemes. 

Specially, flux functions such as flux-vector splitting can be written as a sum of contributions 𝐹+ 

and 𝐹− whose eigensystems have positive and negative eigenvalues, respectively. Using these 

definitions, the absolute value matrix |∇𝑁𝑖 ∙ 𝐴| in Eq. (II.12) can be replaced by the difference of 

the positive and negative linearized flux matrices. Advantages of this approach are that 

differentiability, positivity, and total enthalpy conservation can be maintained [26, 27]. 

The preceding equations may be cast into an isoparametric space using the Jacobian matrix 

of transformation 𝐽(𝝃)for each element. In this formulation, the element geometry 𝒙 is transformed 
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using the same basis functions, expressed in natural coordinate 𝝃, as those utilized for the primary 

variables, namely 

𝒙 = ∑ 𝑁𝑖(𝝃)𝒙𝑖
𝑛
𝑖=1          𝐽(𝝃) =

𝜕𝒙

𝜕𝝃
                                            (II.13) 

where 𝒙𝑖 is the global coordinate corresponding to the 𝑖𝑡ℎ basis function of the element. 

The gradient operators and integrals transform according to ∇= 𝐽−1∇𝝃 and 𝑑Ω = |𝐽|𝑑Ω̃, 

respectively. Here, J  denotes the determinant of the Jacobian matrix of transformation. For an 

isoparametric element, using integration by parts, the resulting weak statement of Eq. (II.9) may 

be written as 

𝜕

𝜕𝑡
∫ 𝑁𝑖𝑸|𝐽|𝑑Ω̃
 

Ω̃
− ∫ 𝐽−1∇𝝃𝑁𝑖 ∙ (𝐹𝑒 − 𝐹𝑣)|𝐽|𝑑Ω̃

 

Ω̃
+ ∮ 𝑁𝑖(𝐹𝑒 − 𝐹𝑣) ∙ 𝒏̂|𝐽

∗|𝑑Γ̃
 

Γ̃
− ∫ 𝑁𝑖𝑺|𝐽|𝑑Ω̃

 

Ω̃
+

𝜕

𝜕𝑡
∫ [𝑃]𝑸|𝐽|𝑑Ω̃
 

Ω̃
+ ∫ [𝑃][𝐽−1∇𝝃 ∙ (𝐹𝑒 − 𝐹𝑣) − 𝑺]|𝐽|𝑑Ω̂

 

Ω̃
= 0                            (II.14) 

where 𝐽∗  corresponds to the Jacobian of the transformation for element boundaries. Note that 

because the field variables are assumed to vary continuously in the interior of the domain, the 

surface integral vanishes on the boundaries of the interior elements and needs only be evaluated 

on the physical boundaries of the domain. On these domain boundaries, appropriate boundary 

conditions are strongly enforced by incorporating them into the surface integral. Under the 

assumption that the mesh moves as a rigid body with the geometry, the determinant of the Jacobian 

matrix of transformation is constant. Additionally, the grid velocities and mesh positions are 

analytically prescribed. Therefore, standard temporal discretization may be utilized for Eq. (II.14). 

In the current work, the BDF2 time integration scheme is used.  
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CHAPTER III 

OVERSET METHDOLOGY 

III.1   Overset Boundary Condition and Discretization 

When multiple grids overlap, each will have faces that require data from another grid in 

order to complete the discretization. In finite volume implementations, nodes at which this data is 

interpolated are referred to as fringe points and a stencil from a donor grid must be found such that 

bilinear in two-dimensions (trilinear in three-dimensions) or higher interpolation may be 

accomplished. These fringe points are then used to supply the needed data in order to evaluate the 

fluxes through these overlapped faces using a discretization scheme consistent with interior faces. 

In a finite element implementation, this data may be found directly from the donor cell basis 

functions. Furthermore, the consistent discretization of the fluxes across the faces in the overset 

region naturally appears in the element equations. That is, the boundary integral in Eq. (II.14) that 

typically vanishes on the faces of interior elements for a Petrov-Galerkin method must now be 

evaluated, and constitutes a flux boundary condition. Additionally, unlike finite volume 

implementation, as long as all faces on overset boundaries lie within the cells of donor grids, no 

orphan points would exist. For planar interface, this would simplify to a patched-grid boundary. 

As an example shown in Figure III.1, the convective flux on the overlapped faces may be 

viewed as a Riemann problem, and determined from any approximate Riemann solver. In the 

current work, the convective flux is split into contributions  
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𝐹𝑒̅ = 𝐹𝑒̅
+
(𝑸𝐿) + 𝐹𝑒̅

−
(𝑸𝑅)                                                 (III.1) 

where 𝑸𝐿 and 𝑸𝑅 represent the left and right states, and the extension of the van Leer flux-vector 

splitting [28, 29] scheme for dynamic meshes [30] is utilized. For van Leer flux vector splitting, 

when the Mach number normal to the face is greater than unity (i.e. 𝑀𝑛 > 1), the convective fluxes 

as given in Eq. (II.10) are utilized based on the appropriate upwind state. For flow where the 

magnitude of the normal Mach number is less than unity, the van Leer fluxes are given by 

𝐹𝑒̅
±
∙ 𝒏̂ =

(

 
 
 
 
 
 
 
 
 
 

𝑓𝑚𝑎𝑠𝑠
±

𝑓𝑚𝑎𝑠𝑠
± (

−𝑈̅ ± 2𝑎

𝛾
𝒏̂𝑥 + 𝑢)

𝑓𝑚𝑎𝑠𝑠
± (

−𝑈̅ ± 2𝑎

𝛾
𝒏̂𝑦 + 𝑣)

𝑓𝑚𝑎𝑠𝑠
± (

−𝑈̅ ± 2𝑎

𝛾
𝒏̂𝑧 + 𝑤)

𝑓𝑚𝑎𝑠𝑠
± (

−(𝛾 − 1)𝑈̅2 ± 2(𝛾 − 1)𝑈̅𝑎 + 2𝑎2

𝛾2 − 1
+
𝑢2 + 𝑣2 + 𝑤2

2
+
−𝑈̅ ± 2𝑎

𝛾
𝑽𝑔 ∙ 𝒏̂)

𝑓𝑚𝑎𝑠𝑠
± 𝜈 )

 
 
 
 
 
 
 
 
 
 

 

𝑓𝑚𝑎𝑠𝑠
± = ±𝜌𝑎 (𝑀𝑛 ± 1)

2 4⁄                                        (III.2) 

with 𝑎 denoting the speed of sound, and the following definitions 

𝑀𝑛 =
𝑈

𝑎
           𝑈 = [(𝑢, 𝑣, 𝑤)𝑇 − 𝑽𝑔] ∙ 𝒏̂                                   (III.3) 

For stationary meshes the mesh velocity is zero, and the above reduces to the standard van 

Leer fluxes. The diffusive fluxes appearing in the boundary integral of Eq. (II.14) is found by 

averaging the contributions from the left and right states as 
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𝐹𝑣 =
1

2
(𝐹𝑣(𝑸𝐿 , ∇𝑸𝐿) + 𝐹𝑣(𝑸𝑅 , ∇𝑸𝑅))                                (III.4) 

where ∇𝑸𝐿 and ∇𝑸𝑅 represent the gradients of the left and right states, respectively. 

When the grid moves a new set of donor cells must be determined for each host face, and 

the residual calculation proceeds as described above. As discussed in the following section, for 

implicitly treating the overset boundaries, the linearization stencil continuously changes. 

 

 

Figure III.1 Illustration of flux boundary condition for overset boundaries 

 

 

III.2   Linearization 

For stationary meshes the dependencies between nodal degrees of freedom of the meshes 

may be established during pre-processing when the donor cells are found for each quadrature point 

on the overset boundaries. Unfortunately, for moving meshes, this dependency changes each 

iteration. The compressed row storage scheme used in the current work would continuously require 

updating. To avoid this costly updating, the exact Jacobian matrix is split into two contributions 

and stored separately as 𝐴 = 𝐴̃ + 𝑂 . The first contribution 𝐴̃  appearing on the diagonal sub-

matrices of 𝐴  represents the linearization without regards to the dependencies due to overset 

L

L

Q

Q

R

R

Q

Q



15 

 

boundaries (i.e. intra-grid dependency). Thus, the compressed row storage for this contribution 

does not change for moving meshes. The second contribution 𝑂 appearing on the off-diagonal sub-

matrices of 𝐴 represents the linearization with respect to the donors from other grids at the overset 

boundaries (i.e. inter-grid dependency). The sparse pattern of this contribution does change from 

iteration to iteration for dynamic meshes. The cost of re-computing the compressed row storage of 

this contribution is trivial owing to its limited size. The sum of these contributions results in an 

exact linearization over the overset grids. As an example, the structure of the Jacobian matrix of a 

16-airfoil overset grid case, whose mesh is subsequently shown in Figure III.22(d), is illustrated 

in Figure III.2. 

 

 

Figure III.2 Illustration of Jacobian matrix for the 16-airfoil overset grid case 

 

 

At each time iteration, in order to eliminate temporal discretization errors, the time-

dependent residuals are converged to a specified tolerance using discrete-Newton relaxation. In 
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the sub-iterations, the systems of equations are solved using a modified generalized minimal 

residual (GMRES) method [31] with preconditioning. Both intra-grid and inter-grid dependencies, 

𝐴̃ and 𝑂, are utilized in matrix-vector products within GMRES, which means, overset boundaries 

are treated as implicit boundary conditions. For the preconditioner, there are various choices that 

have significant effects on the rate of convergence of the linear system. ILU(k) and two 

modifications to this preconditioner are evaluated in following section. 

 

III.3   Preconditioner 

With the aid of Figure III.3, three preconditioners are considered here. The first 

preconditioner is the incomplete LU decomposition of the intra-grid linearization 𝐴̃, and is referred 

to as “Intra-grid ILU(k)” in this section. Inter-grid linearization 𝑂 is ignored in the intra-grid 

ILU(k) because its large bandwidth makes incomplete LU decomposition prohibitively expensive. 

As the number of overset grids used in the simulation increases, the portion of inter-grid 

linearization 𝑂  with respect to the complete linearization 𝐴 also increases; therefore, ignoring 

inter-grid linearization 𝑂  in the preconditioner may ultimately slow down the convergence of 

GMRES. However, this preconditioner has been used successfully by Galbraith [15]. In order to 

investigate the importance for the preconditioner to include inter-grid linearization, two 

modifications to the intra-grid ILU(k) are constructed. 

The first modification includes three variants: 𝐿(𝑈 + 𝐿−1𝑂𝑈), (𝐿 + 𝑂𝐿𝑈
−1)𝑈 and (𝐿 +

𝑂𝐿𝑈
−1)(𝑈 + 𝐿−1𝑂𝑈), where 𝑂𝐿 and 𝑂𝑈 are the lower and upper triangular part of the inter-grid 

dependency 𝑂. This modification is referred to as “triangular inter-grid ILU(k)” in this research. 
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The second modification is utilizing the intra-grid ILU(k) inside Jacobi iterations, which 

results in a preconditioner that approximates 𝐿𝑈 + 𝑂 ≈ 𝐴. It is referred to as “Jacobi inter-grid 

ILU(k)” in this research. The implementation of the “Jacobi inter-grid ILU(k)” is described in 

Figure III.4. 

 

 

Figure III.3 Structure of the Jacobian matrix for an arbitrary 3-overlapping-grid case 

 

 

𝐴 = 𝐴̃ + 𝑂 

𝐴̃ = ቎

𝐴̃1 0 0

0 𝐴̃2 0

0 0 𝐴̃3

቏    Intra-grid linearization 

𝑂 = ൥

0 𝑂12 𝑂13
𝑂21 0 𝑂23
𝑂31 𝑂32 0

൩    Inter-grid linearization 

𝑂𝐿 = ൥
0 0 0
𝑂21 0 0
𝑂31 𝑂32 0

൩     𝑂𝑈 = ൥
0 𝑂12 𝑂13
0 0 𝑂23
0 0 0

൩ 

𝐿𝑈 ≈ 𝐴̃    Incomplete LU decomposition of intra-grid linearization 

𝐿 = ൥
𝐿1 0 0
0 𝐿2 0
0 0 𝐿3

൩      𝑈 = ൥
𝑈1 0 0
0 𝑈2 0
0 0 𝑈3

൩ 

𝐿 + 𝑂𝐿𝑈
−1 = ቎

𝐿1 0 0

𝑂21𝑈1
−1 𝐿2 0

𝑂31𝑈1
−1 𝑂32𝑈2

−1 𝐿3

቏      𝑈 + 𝐿−1𝑂𝑈 = ቎

𝑈1 𝐿1
−1𝑂12 𝐿1

−1𝑂13
0 𝑈2 𝐿2

−1𝑂23
0 0 𝑈3

቏ 
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Figure III.4 Pseudo code of the “Jacobi inter-grid ILU(k)” preconditioner 

 

 

To evaluate the effectiveness of the three preconditioners, simulations are carried out for 

the 16-airfoil overset grid case, whose mesh is subsequently shown in Figure III.22(d), and 

Jacobian matrix illustrated in Figure III.3. The freestream has a Mach number of 0.2, angle-of-

attack of 2°, and the flow is assumed inviscid. The CFL number ramps up from 1 to 2000 in 100 

iterations. At each pseudo time iteration, GMRES is used to reduce the residuals of linear system 

by 10 orders of magnitude. The fill-level for the incomplete LU decomposition for the intra-grid 

Jacobian matrix is set to 1 in all three preconditioners. Note that for triangular inter-grid ILU(k), 

the variant 𝐿(𝑈 + 𝐿−1𝑂𝑈) is used; for Jacobi inter-grid ILU(k), the number of Jacobi iterations of 

3 and 5 are tested. 

All the simulations have the same convergence history, as shown in Figure III.5. As shown 

in Figure III.6 and Figure III.7, the two modified preconditioners considerably reduce the number 

of GMRES search directions required. However, extra computation per GMRES search direction 

are needed. Compared with intra-grid ILK(k), the triangular inter-grid ILU(k) uses the least CPU 

time. The Jacobi inter-grid ILU(k) with 3 iteration also uses less CPU time at later stage of the 

Applying preconditioner 𝒙 = (𝐿𝑈 + 𝑂)−1𝒃 

by solving (𝐿𝑈 + 𝑂)𝒙 = 𝒃 for x using Jacobi iterations 

𝒙0 = 0 

do 𝑖 = 1, 𝑛 

solve 𝐿𝑈𝒙𝑖 = 𝑏 − 𝑂𝒙𝑖−1 for 𝒙𝑖 

end do 

𝒙 = 𝒙𝑛 
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simulation. This is due to the fact that as the GMRES search directions increases, the saving in 

computing the Arnoldi iterations for GMRES finally overcomes the extra cost of performing an 

“intra-grid ILU(k)” in each Jacobi iteration. This study clearly shows the inter-grid linearization 

plays an important part in the efficiency of the preconditioner. For illustrative purpose, the Mach 

contours for this 16-airfoil case are shown in Figure III.8. 

 

 
Figure III.5 Convergence histories of 16-airfoil overset grid case 

 

 

 
Figure III.6 Convergence histories of the linear system at pseudo time iteration 40 



20 

 

     

          (a) Number of GMRES search directions                                  (b) CPU time 

Figure III.7 Number of GMRES search directions and CPU time in each pseudo time iteration 

 

 

 

Figure III.8 Mach contours of the 16-airofoil overset grid case 

 

 

It is worth noting that, due to the similarity in the structures of the Jacobian matrices, by 

making the analogy between intra/inter-grid linearization and intra/inter-computational-node 

linearization, these two modified preconditioners can also be extended as a parallel preconditioner 
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for distributed memory machines, regardless whether an overset grid approach is used. While the 

“triangular inter-computational-node ILU(k)” preconditioner is inherently serial in nature, because 

of its triangular structure, the “Jacobi inter-computational-node ILU(k)” preconditioner is readily 

parallel. 

 

III.4   Overset Grid Assembly 

Various methods have been utilized for hole cutting within overset grid schemes [9, 10, 16, 

32-35]. An overview of the history and current state of the overset gird methods has been given by 

Cameron [36]. The dynamic hole cutting method used in this research is conducted in two-stages. 

The first stage identifies invalid cells (and corresponding nodes), which are cells that intrude or 

are interior to a geometry. The second phase represents the cell selection process among the valid 

cells. A MPI-based parallel 3D overset grid assembly module following this procedure is 

developed. 

To avoid any confusion in terminology, in this section, a “mesh” is the spatial discretization 

used for a simulation. For an overset simulation, a “mesh” consists of multiple “grids. As the 

Wing/Finned-Store (WFS) configuration shown in Figure III.9(a), the mesh contains a body fitted 

grid for the store, and another grid for the wing. When carrying out a simulation on distributed 

memory machines, after domain decomposition, a “grid” is deposed into one or multiple “blocks”, 

as shown in Figure III.9(b); block 1 is assigned to a MPI rank, and block 2 is assigned to another 

MPI rank. All the “blocks” on the same MPI rank form a “partition”. In this research, the overset 

grid assembly and the flow solver operate on the same partition. 
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                   (a) A mesh and its grids                                     (b) A grid and its blocks 

Figure III.9 Illustration of mesh, grid and block 

 

 

III.4.1   Point Search Algorithm 

A basic functionality needed by the overset grid assembly is a robust and efficient point 

search algorithm, needed to identify the cell of a specific block, which encloses a point with given 

coordinates. The adopted method is a “stencil walking” type of algorithm, which begins by taking 

an initial guess of the enclosing cell denoted as current_cell. Then the relative position of the point 

with respect to current_cell is calculated. If the point is outside of current_cell, then the 

neighboring cell in the correct direction with respect to current_cell is set to be the new 

current_cell. The procedure continues until the enclosing cell is found. The algorithm is illustrated 

in Figure III.10, where 𝝃 represents element-wise natural coordinate, 𝒙𝑜 and 𝝃𝑜 are the global and 

natural coordinates of the point to be located, respectively. Furthermore, 𝑛 is the number of basis 

functions of the element, and 𝒙𝑖 is the global coordinate corresponding to the 𝑖𝑡ℎ basis function of 

the element. 
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Figure III.10 Pseudo code of stencil walking algorithm 

 

 

The stencil walking algorithm starts from the initial cell, and traverses the block until it 

contacts the enclosing cell. However, as a scenario illustrated in Figure III.11, in the search for the 

target point O, if choosing location B as the initial guess, the algorithm would fail because of the 

gap along the traversing path. The solution to this problem is based on an intuitive fact: if a point 

is enclosed by a block, then there would be no gap between the point and the nearest surface of the 

block. Therefore, the solution is to find the surface of the block that is nearest to the target point 

O, which is illustrated as location A in Figure III.11, and use it as the initial guess. Note that 

surfaces of a block include all its boundary surfaces, as well as surfaces exposed by domain 

decomposition. 

An efficient nearest neighbor search algorithm is needed to accelerate locating the nearest 

surface to a point. To this end, an octree is built for the surfaces of each block, which is based on 

the approach used by Taylor [37], where it was originally used for calculating point-to-wall 

Pick initial current_cell 

do 

Calculate 𝝃𝑜 by solving ∑ 𝒙𝑖𝜙𝑖(𝝃)
𝑛
𝑖=1 = 𝒙𝑜 for 𝝃 using Newton’s method 

if 𝝃𝑜 is inside of element, then 

enclosing_cell = current_cell 

else 

current_cell = neighbor of current_cell on the direction of 𝝃𝑜 

end if 

while ( current_cell ≠ enclosing_cell ) 
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distance needed in turbulence modeling. Note that the octree for the surface of a block is generated 

and stored only on the MPI rank that owns the block. 

 

 

Figure III.11 Influence of different initial guesses on stencil walking algorithm 

 

 

III.4.2   Block Profile 

Many procedures in the overset grid assembly require identifying the location of a point. 

Some of them (e.g. finding the donor cell for a Gauss quadrature point on an overset boundary) 

need the exact point location, including the enclosing cell and the natural coordinate of the point 

in that cell, while others only need to know if the point is inside or outside of a specific grid or 

block (e.g. identifying points that are inside a geometry, determining the overlap region of two 

blocks, etc.). While the first group of procedures requires a point search algorithm, the latter 

requires a simpler algorithm. 

For procedures that only require determining whether a point is inside or outside a specific 

grid, block or geometric entity, an axis-aligned auxiliary Cartesian mesh for each block is built, as 

a way to provide information of the block profile. Depending on its location (with respect to the 
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block and the grid that owns the block), each cell of a Cartesian mesh has one of several statuses, 

which include but are not limited to: “inside block”, “outside block but inside grid”, “outside grid 

and geometry”, “inside geometry”, “on geometric boundary”, “on non-geometric boundary”, “on 

decomposition surface”, etc., as illustrated in Figure III.12. In this research, the Cartesian meshes 

are 3D meshes in implementation. The status of every Cartesian cell is stored. However, a more 

memory efficient approach exists. PEAGSUS [10] uses a pseudo 3D Cartesian mesh to profile the 

geometry for cutting minimal hole. The Cartesian mesh is a 2D mesh in implementation, but store 

the 3rd dimension of the geometry as a function of the other two dimensions, in this way, memory 

usage is greatly reduced. 

Noting that the blocks are distributed over multiple MPI ranks, as the example previously 

discussed for the store grid of the WFS configuration, and now shown in Figure III.13(a, b), the 

procedure of generating Cartesian meshes for blocks belonging to a specific grid used in this 

dissertation is described in the following paragraphs. 

1) Lower and upper bounds of the coordinates of the grid are determined. A global 

Cartesian mesh enclosing this grid is generated virtually. That is, the lower and upper 

bounds of the coordinates, the spacing, and the index system is determined, however, the 

actual mesh is not generated. 

2) For each block belonging to the grid, a local Cartesian mesh, which encloses the 

block and is a portion of the global Cartesian mesh for the grid, is generated on each 

corresponding MPI rank. Note that a local Cartesian mesh may contains some of the same 

cells found in remote Cartesian meshes (e.g. Cartesian meshes built on remote MPI ranks 

for other blocks that belong to the same grid). 
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3) The surfaces of the block (e.g. geometric and non-geometric boundaries, 

decomposition surfaces) are located in the local Cartesian mesh, and the enclosing 

Cartesian cells are marked with corresponding status. 

4) If a marked cell in the local Cartesian mesh is also contained by a remote 

Cartesian mesh, then the cell is marked in the remote Cartesian mesh accordingly. At this 

stage, only the cells with “on geometric/non-geometric/decomposition surface” status have 

been marked. All the marked Cartesian cells at this stage are depicted in Figure III.13(c, d) 

for the store grid example. 

5) The Cartesian mesh contains two type of cells at this stage: the marked cells, and 

the unmarked cells, which are isolated into multiple regions by the marked cells. For each 

region, a seed cell is chosen, and a point search for its central point is performed in the 

local and remote blocks. If the central point is located, depending on whether it is located 

on the local or a remote block, the seed cell is marked as “inside block” or “outside block 

but inside grid” respectively. If the point is not located, depending on whether the region 

is bordered by marked cells with the status of “on geometric boundary” or “on non-

geometric boundary”, the seed cell is marked with the status of “inside geometry” or 

“outside grid and geometry” respectively. Finally, each region is marked with the same 

status as its seed cell. Intersecting planes of the resulting Cartesian meshes for the store 

grid are shown in Figure III.13(e, f). 

6) After a local Cartesian mesh is built for each block on the corresponding MPI 

rank, portions of certain Cartesian meshes can be sent to other MPI ranks, to provide block 

profile on those MPI ranks if needed. 
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(a) Full view 

 

(b) Focused view 

Figure III.12 Cartesian auxiliary mesh for a block for the store grid 
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                  (a) Block 1 for the store grid                              (b) Block 2 for the store grid 

      

          (c) Marked Cartesian cells for block 1                (d) Marked Cartesian cells for block 2 

                                

        (e) Slice of Cartesian mesh for block 1                   (f) Slice of Cartesian mesh for block 2 

Figure III.13 Block profile for the store 

On Decomposition 

Surface 

On Geometric 

Boundary 

On Non-Geometric 

Boundary 
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As Beatrice and Jayanarayanan [35] note, if a point is enclosed by a Cartesian cell with a 

status of “on geometric surface” or “on non-geometric surface”, then whether the point is inside 

or outside of the corresponding grid cannot be determined by using the Cartesian mesh alone and, 

thus, a point search for the point is needed. If the point search is able to locate the point in the grid, 

then the point would be “inside the grid”; otherwise, depending on the status of the enclosing 

Cartesian cell is “on geometric surface” or “on non-geometric surface”, the point would be “inside 

the geometry” or “outside the grid and geometry”, respectively. As the example illustrated in 

Figure III.12(b), point A and B are enclosed by the same Cartesian cell with the status of “on 

geometric boundary”. A point search would be able to locate point A inside the grid, but would 

fail to locate point B inside the grid, which means point A is “inside the grid”, and point B is 

“inside the geometry”. Beatrice and Jayanarayanan [35] also note that, in order to uniquely 

determine the status of a point enclosed by a Cartesian cell with a status of “on geometric surface” 

or “on non-geometric surface”, the Cartesian cell should not have the statuses of “on geometric 

boundary” and “on non-geometric boundary” at the same time. The requirement can be translated 

into two further requirements imposed on the grid and Cartesian mesh respectively: 1) the 

geometric boundaries and the non-geometric boundaries of the same grid should not contact; 2) 

for a grid that satisfies the first requirement, the corresponding Cartesian mesh should have a 

resolution that is high enough, such that none of the Cartesian cells would contact a geometric 

surface and a non-geometric surface of the grid at the same time. 
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III.4.3   Identify Invalid Cells 

Invalid cells refer to the cells that are completely or partially inside of geometric 

components, and nodes contained by the invalid cells referred to as invalid nodes. Invalid cells and 

nodes need to be identified and excluded from computational domain. 

Invalid cells and nodes can be identified by using the geometric boundaries to perform a 

direct cut on the grid. The approach is explained by the 2D example depicted in Figure III.14. In 

this example, geometric boundary node 2 would be identified to be enclosed by cell A by a point 

search, and therefore cell A would be considered invalid and added to the list of invalid cells, and 

the edges of cell A that intersect the geometric boundaries are added to the list of intersected edges. 

Once cell A has been identified, its neighboring cells (cell B, C, and D) are visited to determine if 

any edge of these cells intersects the geometric boundaries as well and, if so, the corresponding 

cells and intersected edges would also be added to the list of invalid cells and the list of intersected 

edges, respectively. This process is repeated until no additional invalid cell or intersected edge is 

identified. Then for each intersected edge (shown in blue dashes), each of its nodes is identified as 

inside or outside of the geometric component, by using the information of the surface normal of 

the corresponding intersecting geometric boundary and the location of intersecting point on the 

edge, and those that are inside of the geometric component are marked as invalid nodes (shown in 

blue dots) and added to the list of invalid nodes. Subsequently, nodes that are connected to the 

invalid nodes by non-intersected edges are identified (shown in red dots) and added to the list of 

invalid nodes, and this process is repeated until no additional invalid node is identified. 
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Figure III.14 Identification of invalid nodes/cells using direct cut 

 

 

Direct cut is able to identify all the invalid cells and nodes precisely [38], but 3D direct cut 

on arbitrary meshes requires a more complicated implementation than the one illustrated in the 2D 

example, and therefore is not used in the 3D overset grid assembly in this research. In this research, 

nodes inside of geometric components are identified by using auxiliary Cartesian meshes 

combined with point searches as described in section III.4.2, and considered to be invalid nodes. 

Cells that contain any of these invalid nodes are considered to be invalid cells. Note for a cell that 

is partially inside of a geometric component, it is possible that none of its containing grid nodes is 

inside the geometric component. Therefore, some invalid cells or nodes might not be identified by 

this approach in this situation. However, although possible, this situation has not appeared in any 

test case in this research. If this situation was to occur, a direct cut would be needed to precisely 

identify all the invalid cells and nodes. 
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III.4.4   Cell Selection Methods 

After the invalid cells have been identified and removed from the computational domain, 

there may still exist some regions with excessive overlap between grids. A cell selection procedure 

must then be performed in order to minimize the extent of overlap. This reduction in the overlap 

region removes unnecessary computation from the flow solver. 

Three types of cell selections are discussed in this section: an existing method that uses a 

distance function, an existing Implicit Hole Cutting (IHC) method, a newly proposed modified 

IHC, and a proposed method referred to herein as Elliptic Hole Cutting (EHC). 

 

III.4.4.1   Cell Selection Using Distance Function 

Regions in the vicinity of geometries are places where many detailed flow phenomena take 

place, and body fitted grids usually have high quality in these regions. Therefore, a continuous 

selection of cells from these body fitted grids is preferred. Cell selection using a distance function 

is based on the notion that, in the region close to a particular geometry, the body fitted grid for the 

geometry will have a lower value of distance to the geometry than to any other geometries. For a 

node in the overlapping region with multiple body fitted grids, the nearest geometry is determined, 

and the node is selected only if it belongs to the body fitted grid for the geometry. The effectiveness 

of this cell selection method will be demonstrated by an example presented in section V.2.1. 

 

III.4.4.2   Cell Selection Using Implicit Hole Cutting 

Denoting a sampling point as any valid mesh node or a quadrature point on an overset 

boundary, the original Implicit Hole Cutting (IHC) method [34] determines all potential donor 
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cells from the various overset grids that enclose this sampling point. Among the potential donor 

cells and the cell from which the sampling point originates, only the cell with the highest 

cell_quality is kept, and the remaining cells are blanked-out. cell_quality is a user-defined metric 

such as the inverse of cell volume, aspect ratio, etc. The most promising feature of this cell 

selection technique is its simplicity. Many hole cutting algorithms need the user to specify the 

priority of each overset grid to be selected. This priority can become difficult to specify when 

numerous grids reside in the same region. IHC does not need specification of such priority. 

Unfortunately, the simplicity of this method may produce unwanted results. Specifically, 

the cells selected may become randomly distributed between the various overset grids and (i.e., 

the final grids are not “continuous”), therefore, reduces the efficiency of solving the system of 

equations. An example of this problem with original IHC is depicted in Figure III.15. The body 

fitted grids for four airfoils overlapping a background grid is shown in Figure III.15(a). The four 

airfoil grids are identical to each other, with cell volume from 10-5 on the wall boundaries to 10-2 

on the outer boundaries. The background grid has a uniform cell volume of 10-2. Defining the 

cell_quality as the inverse of the cell volume, the cell selection approach successfully chooses the 

cells from the nearest airfoil grid as illustrated in Figure III.15(b). However, in the regions 

overlapped by multiple grids away from the airfoil bodies, the cells are selected more randomly, 

because the cell_quality from different grids are very close. Considering the impact on solution 

efficiency with such grids, the cell selection process has been modified to favor selecting cells 

from the same grid within a local scope. To this end, an iterative process is developed to give a 

higher grid_priority_factor at each sampling point to the grid that has been selected by more 

nearby sampling points, and the potential donor cell with the highest 

grid_priority_factor*cell_quality is kept for this sampling point. Utilizing this improved cell 
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selection method, Figure III.15(c, d) show the overset grids after the first iteration and the final 

mesh, respectively. 

 

     

(a) No hole-cutting                            (b) Original IHC 

     

               (c) Modified IHC, after first iteration              (d) Modified IHC, final mesh 

Figure III.15 Hole-cutting using original and modified IHC 

 

 

III.4.4.3   Elliptic Hole Cutting 

The implicit hole cutting method, using the modification discussed above to favor mesh 

continuity, may be utilized to construct overset grids that are more amenable to efficient solution 
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of the systems of governing equations. As an alternative to this technique, a new method based on 

the solutions to Poisson equation over each overset grid, referred to as elliptic hole cutting (EHC), 

is introduced. In this method, a Poisson equation is solved on each grid and may be written as 

∇2𝑇 + 𝑠 = 0                                                             (III.5) 

where, due to similarity to the equation governing heat conduction, 𝑇 is referred to as the pseudo-

temperature and 𝑠 is the source term. The pseudo-temperature is used as the criterion for cell 

selection. That is, at each sampling point, only the potential donor cell with the highest pseudo-

temperature is kept. For computational efficiency, the Poisson equation is solved using a node-

centered, first-order finite volume scheme. To solve this elliptic equation, the boundary conditions 

and source term must be specified on each grid. 

To illustrate this method, the body fitted grids for two airfoils are utilized and are shown 

in Figure III.16 after the invalid cells have been removed. Dirichlet boundary conditions are 

specified for invalid nodes, and for nodes in non-overlapping regions. Although arbitrary, invalid 

nodes are set to a value of -1, whereas nodes in non-overlapping regions are specified as +1. The 

overset boundaries are treated as Neumann boundary conditions. Using the heat equation analogy, 

these are specified as adiabatic wall boundary conditions ∇𝑇 ∙ 𝒏̂ = 𝑇𝑛 = 0. Figure III.17 illustrates 

the specified boundary conditions for the two airfoil example. The green areas are computational 

domains for the Poisson equations; the red and blue areas are imposed with Dirichlet boundary 

conditions 𝑇 = 1, and 𝑇 = −1 respectively, and the overset boundary of grid 2 is specified as 

adiabatic wall. Many possibilities exist for the choices of the source terms. In the current work two 

choices are explored. The first uses the source term to favor cell_quality (in the current work, it is 

the inverse of the cell volume), and is given by 
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𝑠 = 𝑠global_min +
𝑐 − 𝑐local_min

𝑐local_max − 𝑐local_min
(𝑠global_max − 𝑠global_min) 

𝑠global_max =
𝛼

𝐴
              𝑠global_min = −

𝛼

𝐴
                                      (III.6) 

where 𝑐 represents the cell_quality of the sampling point (i.e., average of the cell_quality of the 

cells from which this sampling point originates), 𝑐local_min and 𝑐local_max  are the minimal and 

maximal cell_quality of the sampling point as well as all the potential donor cells. A is a 

characteristic area defined as the average of the areas of all grids. 𝛼 is a constant chosen by the 

user and assumed as 4 in current work. Another possibility is to specify the source term to favor 

specific grids, and is given by 

𝑠 = {
𝑠max  for prefered grids
𝑠min for other grids

                                            (III.7) 

In the current work, the values of 𝑠min and 𝑠max are left for the user to specify. The source 

terms, in favor of cell_quality, are shown in Figure III.18 for each grid used in the current 

demonstration. Using the elliptic hole cutting method, on each grid, the solution to Poisson 

equation is shown in Figure III.19. Figure III.19(a, b) depict a three-dimensional view, where the 

pseudo-temperature is the third dimension for this two-dimensional example, illustrating the 

solution using the aforementioned boundary conditions and source terms. To illustrate the cell 

selection process from the solutions to the Poisson equation, Figure III.19(c) presents an overlay 

of the solutions on the final overset mesh. As a comparison, Figure III.20(a-c) shows the overset 

grids produced for the current example with the original implicit hole cutting method, the modified 

implicit hole cutting method, and the elliptic hole cutting method, respectively. As seen, the elliptic 

hole cutting method generates overset grids with a higher degree of continuity within each grid. 
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          (a) Grid 1                                                     (b) Grid 2 

Figure III.16 2-airfoil overset grids after removing invalid cells 

 

 

     

          (a) Boundary conditions for grid 1                (b) Boundary conditions for grid 2 

Figure III.17 Boundary conditions for EHC 
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(a) Source terms for grid 1                      (b) Source terms for grid 2 

Figure III.18 Source terms for EHC 

 

 

 
                  (a) Grid 1                                  (b) Grid 2.                              (c) Grid 1 and 2 

Figure III.19 Solutions to Poisson equation in EHC 

 

 

   
              (a) Original IHC                       (b) Modified IHC                            (c) EHC              

Figure III.20 Comparison of different hole cutting methods in the 2-airfoil overset grid case 
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The previous example selected for discussion and demonstration only involved two grids 

and is relatively benign. A more challenging demonstration is shown in Figure III.21, and consists 

of 16 identical airfoil grids overlapping on a background grid. The overset grids using the implicit 

hole cutting, modified implicit hole cutting and the elliptic hole cutting methods are shown in 

Figure III.22. As seen in Figure III.22(a), the original implicit hole cutting selects cells based only 

on cell quality and, therefore, in regions away from the airfoils becomes randomly distributed 

between the various grids. The modified implicit hole cutting method that favors cells from the 

grid within a local scope constructs an improved overset grid as shown in Figure III.22(b). Figure 

III.22(c, d) illustrate the overset grids using the elliptic hole cutting method based on source terms 

favoring cell quality and airfoil grids, respectively. As can be observed, the constructed overset 

grids using this method produces continuous grids with smooth transitions. 

 

 

Figure III.21 16 airfoil grids overlapping on a background grid 
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                            (a) Original IHC                                             (b) Modified IHC 

     

                   (c) EHC, in favor of cell quality               (d) EHC, in favor of airfoil grids 

Figure III.22 Comparison of different hole cutting methods for the 16 airfoil overset grid case 

 

 

A potential drawback of the EHC procedure, like in IHC, is the large amount of point 

search operations required. This problem is illustrated in Figure III.23. The pseudo-temperatures 

𝑇1  and 𝑇2  are first solved on grid-1 and grid-2, respectively. Subsequently, 𝑇1  and 𝑇2  must be 

compared for every grid node within the overlapped region. As depicted in Figure III.23(b), for 

each node of grid-1 in the overlapped region, the corresponding 𝑇2  at the node must be interpolated 
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based on its location in grid-2. A similar process is required for each node of grid-2 in the 

overlapped region. In a parallel implementation on distributed machines, if the two grids are 

mapped to different MPI ranks, extra communication between the MPI ranks would be needed in 

order to perform the point search. Considering the large amount of grid nodes in the overlapped 

region, the added communication cost would not be trivial. In order to minimize the amount of 

point search operations in EHC an alternative procedure has been devised. In this modified 

process, once 𝑇1 and 𝑇2 have been solved within their respective grids, the corresponding pseudo-

temperatures for the other grid in the overlapped region are additionally solved via the solution of 

a Poisson equation. For example, as shown in Figure III.23(c), this can be accomplished by 

interpolating 𝑇2 only at the boundary of the overlapped region from grid-2 to grid-1. Thereafter, 

an additional Poisson problem may be used to determine 𝑇2 on grid-1. The number of grid nodes 

that need to be searched is significantly reduced (number of boundary nodes versus interior nodes 

of the overlapped region). As should be evident, although this modification greatly reduces the 

amount of point search operations, it incurs the added cost of solving extra Poisson equations. In 

the current implementation, the cost associated with solving the extra Poisson equations in the 

modified EHC is commensurate with that of the added point search operations in the original EHC. 

However, the modified EHC is much more scalable by trading communication cost for 

computation cost and, thus, more suitable for large scale problems. However, the modified EHC 

cannot use the source term that favors cell quality as given in Eq. (III.6) for the Poisson equation, 

because that requires point searches for the nodes in the interior of the overlapped region, followed 

by interpolating the source term at these nodes, which is intentionally avoided in modified EHC 

to achieve better parallel performance. 
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A qualitative demonstration of the modified EHC is depicted in Figure III.24. Figure 

III.24(a) show the 9 separate grids generated about each letter of the word “SimCenter” and the 

background grid. The modified EHC is utilized to construct the overset grid assembly as shown in 

Figure III.24(b). As seen, despite having numerous grids overlapped within the same regions, the 

final overset grid assembly possesses smooth transitions between the various grids. 

 

 

(a) Overset grids 

     

                             (b) Original EHC                                       (c) Modified EHC 

Figure III.23 Illustration of original and modified EHC 
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(a) Grids prior to hole-cutting 

 

(b) Final assembled grids 

Figure III.24 Hole-cutting of “SimCenter” using modified EHC 

 

 

By using cell selection approaches previously described, the overlap minimization can 

become an automated procedure, without the need for user input. However, there are some distinct 

advantages for the EHC approach. Like IHC, EHC can yield a mesh in favor of a user-chosen mesh 

quality metrics. This may be accomplished by devising corresponding source terms for the Poisson 

equation. Additionally, EHC yields a continuous cell selection in the vicinity of geometries, like 

the cell selection approach based on the distance function. Moreover, if parallelization is preferred, 

the modified EHC, which limits communication by eliminating point searches in the interior of 

the overlapped regions, is a viable approach. Finally, although the method requires solutions to 



44 

 

Poisson equations, which may be computationally expensive particularly on anisotropic grids, 

these solutions do not need to be fully converged to construct the overset grids. Typically, only a 

few orders of magnitude of reduction in the residual is required. 

Note that, in this research the modified IHC and EHC are only implemented for 2D 

simulations, while the 3D overset grid assembly only utilizes the distance function approach. 

However, the 3D overset grid assembly is a general framework, and other implementations of cell 

selection approaches are possible. 

 

III.5   Dynamic Solution Strategy 

In the case of multiple bodies moving relative to one another, the regions of overset change 

at each instant of time. Hence, the hole cutting is performed dynamically and the nodes that are 

active may be different as the simulation proceeds. Therefore, if a node that has been previously 

absent from the solution (i.e. blanked-out) is introduced into the computational domain, no data is 

available to construct the time history of the solution required for temporal discretization. In order 

to provide sufficient information for temporal integration, the solutions at previous time instances 

(e.g. previous two time instances for BDF2 scheme) for this node must be re-initialized by 

interpolating from the donor cells at previous time instances. 

On the other hand, a node that has been an invalid node in previous time instances cannot 

be re-initialized and thus, during the overset grid assembly for current time instance, the node 

should be blanked-out. 
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III.6   Adaptive Overset 

The benefits of Adaptive Mesh Refinement (AMR) have been well established and these 

methods have been utilized for both steady and unsteady simulations. Moreover, AMR may have 

an even greater impact when used within an overset grid methodology. The primary motivations 

behind the original development of overset grid approaches were to ease the burden of grid 

generation and to allow for applications where large relative motion between bodies was present. 

In terms of grid generation, these methods allow for discretization of each component to be 

independently generated, as to best resolve the geometric complexities and flow physics, and then 

overlapped onto the grid resolving the far field. However, for moving boundary simulations with 

large relative motion, as the bodies separate, the disparity between the cell volumes in the 

overlapped grids typically become pronounced. Hence, important flow features may become 

distorted or lost when crossing the overset boundaries. Combining adaptive mesh refinement with 

an overset grid methodology mitigates these difficulties. 

In the current work, the adaptive grid methodology developed by Behzad [39] has been 

incorporated into the overset grid approach for 2D applications. This adaptive grid methodology 

utilizes constrained approximation and is capable of performing multi-level h-, p-, and hp-

refinement and de-refinement. This methodology allows for hanging-nodes and may be utilized 

with any continuous Galerkin formulation. Furthermore, adjoint-based adaptation is available for 

steady flows, while feature-based adaptation can be used for both steady and unsteady cases. 

Further details concerning the adaptive grid methodology may be found in the cited reference. For 

the preliminary results shown herein, the combined capabilities can perform dynamic hole cutting 

using the modified EHC on adaptively h-refined grids. The ability to perform de-refinement on 

overset grids has not been added. 
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The results presented for the adaptive overset capabilities have been selected for 

demonstration purposes only. Within the current work only adaptive refinement has been 

implemented. 

 

III.6.1   Steady Multiple Airfoils 

The first case is concerned with the steady, inviscid flow over three airfoils in close 

proximity. The freestream has a Mach number of 0.2 and 0° angle-of-attack. The boundaries of 

the three airfoil grids in relation to the far field grid is shown in Figure III.25. Second-order (P1) 

elements are used for the simulation. The initial assembled overset grids and Mach number 

contours are shown in Figure III.25(a). As seen, the resolution in the region between the airfoils is 

not sufficient. As previously discussed, the relevance of such a case stems from the fact that overset 

grid technology was originally developed to allow separately generated grids to be overset prior 

to simulation. Although each grid may be adequate to resolve the flow about the isolated body, 

once overlapped the discretizations between bodies may no longer be capable of resolving the 

interaction. Additionally, in order to obtain a valid grid after hole cutting, the cells sizes in the 

various grids must be such that at least one layer of overlap exists. If the airfoils are moving relative 

to one another, like in the case of retracting high-lift devices, the initial resolution would constrain 

the extent of possible motion. The multi-level h-refined overset grids, and Mach number contours, 

are shown in Figure III.25(b). Unlike in the original overset grids, the interaction between the 

airfoils and the overset boundaries are well resolved. Utilizing the adaptive overset capabilities, 

the airfoils may be essentially moved to the point of contact. 
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Figure III.25 Multiple airfoil overset grids before hole cutting 

 

 

     

       (a) Initial overset grids and Mach contours    (b) Adapted overset grids and Mach contours 

Figure III.26 Mesh and Mach contours in the multiple airfoil overset grid case 

 

 

III.6.2   Unsteady Inviscid Triangular Wedge 

To illustrate the use of adaptive overset grids to resolve features that propagate across 

overset boundaries, the unsteady inviscid flow over a triangular wedge is simulated. Once again, 

second-order (P1) elements are used and the freestream Mach number is 0.2 with 0° angle-of-
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attack. Figure III.27 depicts entropy contours on the original and multi-level h-adapted overset 

grids, respectively. It should be Note that the flow is assumed to be inviscid and, hence, the entropy 

is used to highlight the vortical flow. For the non-adaptive overset grids the vortices dissipate 

quickly, whereas in the adaptive overset grids they are adequately resolved far downstream. 

 

    

(a) Initial overset grids and entropy contours     (b) Adapted overset grids and entropy contours 

Figure III.27 Unsteady vortex shedding over a triangular wedge 
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CHAPTER IV 

CODE VERIFICATION 

Previous attempts to study the order of accuracy of overset grid schemes have been 

performed by Galbraith [40] using a discontinuous Galerkin finite element formulation for steady 

channel flow, and by Meakin [41] in finite volume implementations. In the current work, the order 

of accuracy of the Petrov-Galerkin overset scheme is assessed using the method of manufactured 

solutions based on a comprehensive set of guidelines [42]. The method of manufactured solutions 

is a general procedure for generating nontrivial exact solutions to a PDE or system of PDEs. 

 

IV.1   2D Code Verification 

For the 2D code verification, the following trigonometric functions are used to derive the 

forcing functions and boundary conditions 

𝜌 = 𝜌0{1 + 0.2 cos[𝜋(𝑐1𝑥 − 𝑠1𝑦)] + 0.2 cos[𝜋(𝑠1𝑥 + 𝑐1𝑦)]}

𝑢 = 𝑢0{1 + 0.2 cos[𝜋(𝑐2𝑥 − 𝑠2𝑦 + 0.1)] + 0.2 cos[𝜋(𝑠2𝑥 + 𝑐2𝑦 + 0.1)]}

𝑣 = 𝑣0{1 + 0.2 cos[𝜋(𝑐3𝑥 − 𝑠3𝑦 − 0.1)] + 0.2 cos[𝜋(𝑠3𝑥 + 𝑐3𝑦 + 0.1)]}

𝑇 = 𝑇0{1 + 0.2 cos[𝜋(𝑐4𝑥 − 𝑠4𝑦 − 0.1)] + 0.2 cos[𝜋(𝑠4𝑥 + 𝑐4𝑦 − 0.1)]}

          (IV.1) 

where 𝜌0, 𝑢0,  𝑣0, and 𝑇0 corresponded to the freestream conditions for a flow with angle of attack, 

Mach number, and Reynolds number of 15°, 0.2, and 102, respectively. The terms 𝑐𝑖  and 𝑠𝑖  

correspond to cosine and sine function of 0°, 40°, 80°, and 120°, respectively. 
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The order of accuracy is evaluated over a sequence of refined meshes for linear (P1), 

quadratic (P2), and cubic (P3) polynomial bases. The coarsest meshes used in this refinement are 

shown in Figure IV.1(a-c) for the single grid, the zero-layer non-matched (i.e., zonally patched) 

grids, and the overlapping grids, respectively. The contours of the manufactured solutions using 

P3 elements for the temperature field in laminar cases are shown for the corresponding grids in 

Figure IV.1(d-f). As seen, even for the coarsest meshes, smooth transitions occur between the 

overlapped boundaries for both zero-layer non-matched and overset grids. Only considering 

density and temperature for brevity, Figure IV.2 illustrates that the slope of the error during 

refinement on each of the grids is maintained for both inviscid and laminar flows, and matches the 

order of accuracy for the utilized elements. That is, reference slopes of approximately 2, 3, and 4 

for linear, quadratic, and cubic elements, respectively. 
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                                 (a) Single grid                   (d) Single grid, laminar, P3 elements 

     

                 (b) Zero-layer non-matched grids     (e) Zero-layer, laminar, P3 elements 

     

                           (c) Overlapping grids            (f) Overlapping, laminar, P3 elements 

Figure IV.1 Coarsest grids for assessing order of accuracy using MMS and temperature 

contours 
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Figure IV.2 Order of accuracy for inviscid and laminar flow using P1, P2, and P3 elements 

 

 

IV.2   3D Code Verification 

For the 3D code verification, the following trigonometric functions are used to derive the 

forcing functions and boundary conditions 

               (a)  Inviscid, density                                                      (c)  Laminar, density 

             (b)  Inviscid, temperature                                    (d)  Laminar, temperature 
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𝜌 = 1.0 ∗ [1.0 + sin(𝜋𝑥) cos(𝜋𝑥) sin(𝜋𝑦) cos(𝜋𝑦) sin(𝜋𝑧) cos(𝜋𝑧)]

𝜌𝑢 = 0.5 ∗ [1.0 + sin(1.5𝜋𝑥) cos(1.5𝜋𝑥) sin(1.5𝜋𝑦) cos(1.5𝜋𝑦) sin(1.5𝜋𝑧) cos(1.5𝜋𝑧)]

𝜌𝑣 = 0.5 ∗ [1.0 + sin(1.5𝜋𝑥) cos(1.5𝜋𝑥) sin(1.5𝜋𝑦) cos(1.5𝜋𝑦) sin(1.5𝜋𝑧) cos(1.5𝜋𝑧)]

𝜌𝑤 = 0.1 ∗ [1.0 + sin(1.5𝜋𝑥) cos(1.5𝜋𝑥) sin(1.5𝜋𝑦) cos(1.5𝜋𝑦) sin(1.5𝜋𝑧) cos(1.5𝜋𝑧)]

𝜌𝐸 = 3.0 ∗ [1.0 + sin2(𝜋𝑥) sin2(𝜋𝑦) sin2(𝜋𝑧)]

    

(IV.2) 

The order of accuracy is evaluated over a sequence of refined meshes for a unit cube with 

prismatic elements for linear (P1) and quadratic (P2) polynomials. Both single grids and overset 

grids are considered. Note that the order of accuracy for linear and quadratic tetrahedral elements 

in non-overset approach have been previously verified with the current software [37]. The 

sequence of meshes for the single grid results range from 512 to 262144 nodes, with the coarsest 

mesh shown in Figure IV.3(a). The overset approach, with the coarsest mesh shown in Figure 

IV.3(b), has a corresponding sequence of meshes ranging from 853 to 307187 nodes. Contours of 

temperature and z-component of velocity on the second finest grids are shown in Figure IV.4 for 

the center plane in the z-direction. In Figure IV.4(b, d), the overset boundaries are indicated. As 

seen, smooth transitions occur across the overset boundaries. Figure IV.5 illustrates that the slope 

of the error during refinement for both the single grid and overset grid computations are 

maintained, and matches the design order of accuracy for the linear and quadratic elements. That 

is, a slope of approximately 2 for the P1 computations, and a slope of approximately 3 for the P2 

computations. 
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(a) Single grid                                      (b) Overset grids 

Figure IV.3 Coarsest grids used for assessing order of accuracy using MMS 

 

 

 

                    (a) Temperature on single grid        (b) Temperature on overset grids 

 
                       (c) z-Velocity on single grid          (d) z-Velocity on overset grids 

Figure IV.4 Computed manufactured solutions for 3-D Euler equations using P1 elements on 

central z plane 
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(a) P1 elements 

 

(b) P2 elements 

Figure IV.5 Observed order of accuracy 
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CHAPTER V  

RESULTS 

V.1   2D Results 

V.1.1   Steady-state Turbulent NACA0012 Airfoil Simulations 

To assess the performance of the overset method for a more realistic flow, the steady 

turbulent flow over a NACA 0012 airfoil was examined. The modified one-equation Spalart-

Allmaras turbulence model is used [19]. The freestream angle-of-attack, Mach number, and 

Reynolds numbers are 3°, 0.2, and 106, respectively. The single, zero-layer non-matched, and 

multi-layer overset grids for the upper surface of the airfoil are shown in Figure V.1. The 

overlapping regions in the two overset cases extend from the airfoil surface to the far field. Note 

that, for the zero-layer non-matched overset grids, the upstream and downstream grids do not 

match each other on the overset interface, neither inside the boundary layer nor in the far field. 

Illustrated in Figure V.2 is the x-component of velocity versus wall distance at two chord-

wise locations. The chord-wise locations are slightly upstream and downstream of the overlapped 

region (𝑥 = 0.24 and 𝑥 =  0.32). Figure V.2(a, b, c) show the profiles obtained from single and 

overset grid simulations with P1, P2 and P3 elements. As seen, the profiles are nearly 

indistinguishable for the single grid and the two overset grid simulations for all orders. With close 

inspection only minute differences can be observed for the P1 profiles, but all essentially coalesce 

for P2 and P3 results. 
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              (a) Single grid               (b) Zero-layer non-matched grids  (c) Multi-layer overset grids 

Figure V.1 Meshes used in the steady turbulent NACA0012 airfoil simulations 

 

 

 
(a) P1 elements                                  (b) P2 elements 

 
(c) P3 elements 

Figure V.2 x-velocity profiles using P1, P2, and P3 elements for turbulent flow over NACA0012 

airfoil 
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V.1.2   Unsteady Sinusoidally Oscillating Airfoil 

Two cases have been selected to demonstrate the overset method for moving boundary 

problems in which a hole in the overset mesh is generated prior to simulation. In both cases, the 

flow is assumed to be inviscid, the motion of the airfoil is prescribed, and the grids move as rigid 

bodies. Furthermore, analytic grid velocities are utilized based on the prescribed motion. 

 

V.1.2.1   Sinusoidally Pitching Airfoil 

The forced pitching oscillation of a NACA 0012 airfoil [43] has been used as a benchmark 

case for many unsteady dynamic mesh code validation studies. The pitching of the airfoil about its 

quarter chord is analytically prescribed as 

𝛼(𝑡) = 𝛼𝑚 + 𝛼0 sin(𝜔𝑡)                                                   (V.1) 

where the mean angle-of-attack 𝛼𝑚  and amplitude-of-oscillation 𝛼0  are 2.89° and 2.41°, 

respectively. The non-dimensional circular frequency is defined in terms of the reduced frequency 

𝑘 and freestream Mach number 𝑀∞ as 𝜔 = 2𝑘𝑀∞. In the present results, 𝑘 and 𝑀∞ are assumed 

to be 0.0808 and 0.6, respectively. The single grid and multi-layer overset grids used for 

comparisons are shown in Figure V.3. Although multiple layers of overlap can be seen in Figure 

V.3(b), only minimal overlapping is required for this pitching motion. Shown in Figure V.4 is the 

time histories of the coefficient of lift for both the single grid and overset grid simulations using 

P1 elements. Good agreement is observed between the different discretizations, indicating 

acceptable accuracy for the overset method on moving meshes. 
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                                        (a)  Single grid                          (b)  Overset grids 

Figure V.3 Single and overset grids used for the sinusoidally pitching airfoil simulations 

 

 

 
Figure V.4 Time histories of the CL for the sinusoidally pitching airfoil simulations with P1 

elements 

 

 

V.1.2.2   Sinusoidally Pitching and Plunging Airfoil 

The NACA 0012 airfoil meshes shown in Figure V.3 are additionally used to examine a 

forced pitching and plunging response. In this case, multiple layers of overlap are required to 

account for the airfoil movement due to plunging. Plunging and pitching of the airfoil about its 

quarter chord is analytically prescribed as 
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𝛼(𝑡) = 𝛼𝑚 + 𝛼0 sin(𝜔𝑡)

ℎ(𝑡) = ℎ0 sin(0.5𝜔𝑡)
                                                      (V.2) 

where the mean angle-of-attack 𝛼𝑚 and amplitude-of-oscillation 𝛼0 are 0° and 5°, respectively. 

The reduced frequency is the same as previously defined, and the freestream Mach number is 0.4 

in this case. The plunge amplitude ℎ0 is 0.4·c, where c is the chord length of the airfoil. To illustrate 

the extent of the motion, Figure V.5 depicts the overset grid boundaries at the maximum and 

minimum pitching and plunging positions. Comparison of the time histories of the coefficient of 

lift, for the single grid and the multi-layer overset grid simulations, are shown in Figure V.6 using 

P3 elements. Once again, excellent agreement is observed in the time histories. 

 

 
Figure V.5 Extent of motion of airfoil grid in the sinusoidally pitching and plunging airfoil 

simulation 

 

 

 
Figure V.6 Time histories of the CL for the sinusoidally pitching and plunging airfoil 

simulations using P3 elements 
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V.1.3   Dynamic Hole Cutting for Relative Body Motion 

To demonstrate the previously discussed dynamic hole cutting procedure, the simulation 

of a triangular wedge passing a NACA0012 airfoil using P2 elements has been carried out. The 

purpose of the simulation is to demonstrate the ability of the current method in dealing with large 

relative motion between multiple bodies. Note that modified IHC is used in the simulation. As 

discussed, when a previously blanked-out node is introduced into the computational domain, its 

donor cell at each previous time instance is used to re-initialize the solution at that time instance. 

The Mach number and angle-of-attack of the freestream are 0.1 and 0°, respectively. The airfoil is 

stationary, while the triangle is moving upstream at a constant Mach number of 0.1. Separate grids 

are used to discretize the far field, the triangular wedge, and the airfoil geometry. As seen in Figure 

V.7, four non-dimensional time instances are selected to display the relative body motion. Figure 

V.7(a-d) depicts the three overlapping grids after the dynamic hole cutting has been performed, 

whereas Figure V.7(e-h) show entropy contours at the corresponding time instances. It should be 

noted that the flow is assumed to be inviscid and, hence, the entropy is used to highlight the vortical 

flow. The interaction between the triangular wedge and airfoil can be clearly seen in this sequence 

of figures. Although this particular simulation is academic in nature, it exemplifies the type of 

simulations that requires higher order spatial accuracy with overset grid capability. Higher spatial 

accuracy is required to preserve and propagate the vortices over relatively large distance to capture 

the interaction. 
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    (a) Overset grids (t=3)                               (e) Entropy contours (t=3) 

 
        (b) Overset grids (t=20)                           (f) Entropy contours (t=20) 

 
        (c) Overset grids (t=34)                                  (g) Entropy contours (t=34) 

 
      (d) Overset grids (t=49)                                 (h) Entropy contours (t=49) 

Figure V.7 Overset grids after hole cutting and entropy contours from P2 simulation at various 

time instances 
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V.2   3D Results 

V.2.1   Steady-State Turbulent Wing/Pylon/Finned-Store Simulations 

Steady-state turbulent simulations of a wing/pylon/finned-store (WPFS) configuration on 

single grid and overset grids are carried out using third order (P2) tetrahedral elements. The WPFS 

configuration consists of a delta wing with 45° of leading edge sweep and a NACA-64A010 airfoil 

section. Connected to this wing is an ogive-flat-ogive pylon. Under the pylon is an ogive-cylinder-

ogive store with four fins, which have a NACA-0008 airfoil section and a swept angle of 60°, 

located at 45°, 135°, 225°, and 315° with respect to the centerline of the pylon. There is a gap of 

0.07 meters between the pylon and store. Dimensions and orientations of this geometry are 

depicted in Figure V.8. The simulations assume a freestream angle-of-attack, Mach number and 

Reynolds number of 0°, 0.6 and 106, respectively. 

Quadratic tetrahedral elements are used in the simulations. The single grid contains 

1,536,985 quadratic P2 tetrahedral elements with 2,073,761 nodes. The overset grids contain 

1,557,030 quadratic P2 tetrahedral elements with 2,102,028 nodes. Note that all element 

boundaries are linear, and no mesh curving is performed. Both the single grid and the overset grid 

simulations are carried out using 500 CPU cores. 

Both the single grid and overset grids have viscous layers which have a spacing on wall of 

approximately 2×10-5 meters normal to the surface and extend approximately 0.6 meters into the 

freestream. The overset grids include a body fitted grid for the wing/pylon geometry, which 

extends to far field, and another body fitted grid for the finned-store geometry. Note that the single 

and overset grids use the same surface discretization on the geometries. The single grid and the 

overset grids are shown in Figure V.9 to Figure V.11. Note that for visualization purpose, each 
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quadratic tetrahedral element is broken into four linear tetrahedral and two linear pyramid elements 

such that all degrees of freedom can be visualized. 

 

 

Figure V.8 The WPFS geometries 

 

 

Dimensions in Meters 
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(a) Single grid, plane x = 11                            (b) Single grid, plane z = 6.5 

     

       (c) Overset grids, before HC, plane x = 11  (d) Overset grids, before HC, plane z = 6.5 

     

        (e) Overset grids, after HC, plane x = 11       (f) Overset grids, after HC, plane z = 6.5 

Figure V.9 Single and overset grids for steady-state turbulent WPFS simulations 

 

 



66 

 

     

                 (a) Frontal part, single grid                                  (b) Frontal part, overset grids 

     

                  (c) Rear part, single grid                                     (d) Rear part, overset grids 

Figure V.10 Grids in the gap region between the pylon and store (plane z = 6.5) 

 

 

     

                          (a) Single grid                                                 (b) Overset grids 

Figure V.11 Grids in the gap region between the pylon and store (plane y = -1.24) 
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The flow simulations utilize the modified one-equation Spalart-Allmaras turbulence model 

[19], an ILU(k) (with a fill-level of 2) preconditioned GMRES to solve the linear systems, and 

third order elements in the SUPG discretization. Steady state solutions are achieved, with the L2 

norm of the density and turbulent working variable being reduced to 10-15 and 10-14, respectively. 

Excellent agreement between the single grid and overset grid simulations is observed in 

general. This agreement is evident in comparison of the Cp distributions on the WPFS geometry 

shown in Figure III.12, and at span-wise locations in Figure V.13. The Mach number contours are 

illustrated in Figure V.14 at the same span-wise locations as Figure V.13. In the gap region 

between the pylon and store, where the two grids overlap inside a very tight space as seen in Figure 

V.10 and Figure V.11, the Cp and Mach number agree well as indicated in Figure V.15. The only 

substantial difference is that the overset grid simulation predicts a larger separation area towards 

the rear part of the store. The cause of this discrepancy is speculated to be the large size of the 

overset boundary discretization, as shown in Figure V.10(d), along with the intense convection 

across the overset boundaries in this region. 
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(a) Single grid, -z direction                              (b) Overset grid, -z direction 

     

(c) Single grid, +y direction                              (d) Overset grid, +y direction 

     

(e) Single grid                                                 (f) Overset grid 

Figure V.12 Cp on the surface of the WPFS geometries 
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               (a) z = 6.2, single grid                                       (b) z = 6.2, overset grid 

     
                (c) z = 6.5, single grid                                     (d) z = 6.5, overset grid 

     
                 (e) z = 6.8, single grid                                  (f) z = 6.8, overset grid 

Figure V.13 Cp contours on various span-wise locations 



70 

 

     
                    (a) z = 6.2, single grid                                        (b) z = 6.2, overset grid 

     
                   (c) z = 6.5, single grid                                        (d) z = 6.5, overset grid 

     
                     (e) z = 6.8, single grid                                         (f) z = 6.8, overset grid 

Figure V.14 Mach contours on various span-wise locations 
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                    (a) Cp, single grid                                                  (b) Cp, overset grid 

     
                    (c) Mach, single grid                                                  (d) Mach, overset grid 

     
                    (e) Entropy, single grid                                       (f) Entropy, overset grid 

Figure V.15 Mach, Cp and entropy contours in the gap between the pylon and store (y = -1.24) 
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Figure V.16 shows Cp plots at various azimuthal locations of the store. 𝜙 =  0°  and 𝜙 =

 180°  locations are the top and bottom of the store, respectively, 𝜙 ∈ (0°, 180°) is the outboard 

side of the store, and 𝜙 ∈ (180°, 360°) is the inboard side of the store. Again excellent agreement 

is found in most azimuthal locations. Some discrepancies at locations 𝜙 =  0°  and 𝜙 =  330° , as 

shown in Figure V.16(a, l), indicate the larger separation area towards the rear part of the store 

predicted by the overset simulation. 

Figure V.17 illustrates Cp plots at various y-locations of the pylon. The location y = -0.45 

is towards the wing, y = -0.8 is approximately the middle of the pylon, and y = -1.15 is towards 

the pylon-store gap. Figure V.18 shows Cp plots at various z-locations (span-wise locations) of the 

wing. The location z = 6.2 and z = 6.8 are 0.3 from the store centerline towards the inboard and 

outboard of the wing, respectively. Again excellent agreement is observed between two 

simulations. Note, the oscillations in the Cp plots for both the single and overset grid simulations 

are due to the linear representations of the geometries while using quadratic elements for the 

solutions. 
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                                       (a) 0°                                                                    (b) 30° 

     
                                      (c) 60°                                                                   (d) 90° 

     
                                     (e)120°                                                                  (f)150° 

     
                                    (g) 180°                                                                  (h) 210° 

     
                                   (i) 240°                                                                  (j) 270° 

     
                                    (k) 300°                                                                  (l) 330° 

Figure V.16 Cp plots at various azimuthal locations on the store 
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                                (a) y = -0.45                                                              (b) y = -0.8 

 

(c) y = -1.15 

Figure V.17 Cp plots on inboard/outboard sides of the pylon 

 

 

 

     

                                (a) z = 6.2                                                           (b) z = 6.8 

Figure V.18 Cp plots at various span-wise locations on the wing 
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Figure V.19 shows the x-velocity profiles along y-direction at various x-locations 

downstream of the store. Note that the wing is installed at the y = 0 plane, and the store is installed 

at the y = -1.77 plane, and the trailing edge of the store is at location (x, y, z) = (12.22, -1.77, 6.5). 

As show in the plots, the main discrepancies of the x-velocity profiles occur between the wing and 

the store. For locations of x = 12.22 and x = 13.22, the discrepancies are again due to the larger 

separation area on the store predicted by the overset simulation. Once again, as is evident from 

Figure V.9(f), for other downstream locations the coarser spacing (overset grid for the store has a 

coarser spacing downstream of the store than the single grid), as well as the disparities in cell sizes 

between the wing grid and the store grid at the overset boundaries, are also the causes of the 

discrepancies in the velocity profiles. 

 

 

             

              (a) x = 12.22                 (b) x = 13.22                (c) x = 14.22                 (d) x = 15.22 

Figure V.19 x-velocity profiles along y-direction at various x-locations downstream of the 

store 
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V.2.2   Sinusoidally Pitching Wing 

The forced pitching oscillation of an ONERA M6 wing is simulated to examine the three-

dimensional overset methodology for moving boundary problems. The wing is pitching about the 

z-axis located at approximately 60% of the root chord length, and is analytically prescribed as 

𝛼(𝑡) = 𝛼𝑚 + 𝛼0 sin(𝜔𝑡)                                                  (V.3) 

where the mean angle-of-attack 𝛼𝑚  and amplitude-of-oscillation 𝛼0  are 2.89° and 2.41°, 

respectively. The non-dimensional circular frequency 𝜔  is defined in terms of the reduced 

frequency 𝑘 and the freestream Mach number 𝑀∞ as 𝜔 = 2𝑘𝑀∞. In the present results, 𝑘 and 𝑀∞ 

are 0.0808 and 0.6, respectively. Furthermore, analytic grid velocities are utilized based on the 

prescribed motion, and the non-dimensional time step is selected to have approximately 75 time 

instances per pitching cycle. 

The single grid and overset grids used for comparisons are depicted in Figure V.20. Two 

configurations of overset grids are investigated. The first configuration in Figure V.20(b) has a 

pre-cut hole in the stationary background grid and, thus, hole cutting is not performed for this 

configuration. The second overset configuration in Figure V.20(c) has no hole in the background 

grid, and dynamic hole cutting is performed at each time instance. In all simulations, linear P1 

tetrahedral elements are utilized. 

Note that for the second overset configuration, although the overset boundary of the wing 

grid is a perfect cylinder, the axis of the cylinder is not the rotational axis of the wing grid. 

Moreover, the background grid also rotates clock-wise about the same rotational axis as the wing 

grid at approximately 6° per time step. Therefore, different overlapping between the wing grid and 

background grid occurs at each time instance and, thus, different nodes are excluded from 
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simulation at each time instance. This configuration is a quantitative examination of the potential 

error introduced by the solution re-initialization approach described in section III.5. Also note that, 

although the invalid cells have not been blanked out, as shown in Figure V.21, these cells are 

isolated from the rest of the cells included in the simulation and, thus, will not influence the 

computed value of the lift coefficient. 

 

 

(a) Single grid 

     

                           (b) Overset grids, pre-cut                    (c) Overset grids, dynamic cut 

Figure V.20 Single and overset grids used for the sinusoidally pitching ONERA M6 wing 
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Shown in Figure V.22 are the time histories of the coefficient of lift for the single grid and 

the two overset grid simulations. As seen excellent agreement is observed between the different 

configurations and, therefore, indicates that for this simulation the accuracy is not diminished by 

using the overset grid approach or the approach for solution re-initialization. 

 

 
Figure V.21 Overset grids for the ONERA M6 wing after hole cutting at various time 

instances 

 

 

 
Figure V.22 Time histories of CL for the sinusoidally pitching ONERA M6 wing 
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V.2.3   Laminar Wing/Finned-Store Separation 

One of the primary interests for the development of overset grid capabilities is the 

simulation of unsteady moving boundary problems such as store separation. This case simulates 

the unsteady viscous flow for a wing/finned-store (WFS) configuration, in which the store has 

been released and is moving in a prescribed motion. The dimensions of the WFS configuration is 

depicted in Figure V.23, noting that the geometry of the store is the same as that of the WPFS 

configuration used in section V.2.1. The wing once again has 45° of leading edge sweep and a 

NACA-64A010 airfoil section. However, it has a different span from the WPFS configuration. 

The flow is assumed laminar, with a Reynolds number of 103. The freestream has zero 

degree of angle-of-attack, and Mach number of 0.6. The prescribed trajectory of the store is 

depicted in Figure V.24. 

 

 

Figure V.23 The WFS geometries 

 

 

Dimensions in Meters 
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Figure V.24 Prescribed trajectory of the store 

 

 

The same meshing strategy as the WPFS case is used for the WFS case. As shown in Figure 

V.25, a body fitted grid is generated for the wing, which extends to the far field. Another body 

fitted grid is generated for the finned-store. Both grids have a viscous spacing of 2×10-2 normal to 

the wall. Quadratic P2 tetrahedral elements are used in the simulation, but all element boundaries 

are once again linear. That is, no mesh curving is performed. The grids contain 365,125 P2 

tetrahedral elements and 506,030 nodes, and the simulation is carried out using 68 CPU cores. 

 

 
Figure V.25 Mesh for the WFS configuration 
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The overset grids after hole cutting for the first and last time instance of the simulation are 

depicted in Figure V.26. Note that like the WPFS case, each quadratic tetrahedral element is 

divided into four linear tetrahedral and two linear pyramid elements for visualization purpose. 

 

     

                         (a) t = 50, plane x = 11                               (b) t = 50, plane z = 6.5 

     

                       (c) t = 2000, plane x = 11                            (d) t = 2000, plane z = 6.5 

Figure V.26 Overset grids after hole cutting at various time instances 
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The reference length 𝐿𝑟𝑒𝑓 is chosen to be the diameter of the store, which is 1 meter, the 

reference velocity 𝑉𝑟𝑒𝑓 is the speed of sound in the freestream, and the reference time is defined 

as 𝑇𝑟𝑒𝑓 = 𝐿𝑟𝑒𝑓 𝑉𝑟𝑒𝑓⁄ . The non-dimensionalized time step used in this unsteady simulation is 10, 

and 200 time iterations are computed, with the non-dimensionalized time range of 𝑡 ∈ (0, 2000). 

A steady-state simulation of the flow about the WFS geometries with the store in captive position 

is carried out and used as the initial solution (𝑡 = 0) for the unsteady wing/store separation 

simulation. The store rotates about the z-axis at 71% of the centerline of the store. The translating 

and rotating motion of the store is prescribed as a function of the non-dimensional time 𝑡 as 

(
𝑥
𝑦
𝑧
) = 0.5 ∗ (

4 × 10−7

−4 × 10−6

4 × 10−7
) ∗ 𝑡2

𝑎𝑛𝑔𝑙𝑒 =  5 × 10−9 ∗ 𝑡3 − 15 × 10−6 ∗ 𝑡2

                              (V.4) 

Figure V.27 depicts the shaded Cp contours on the WFS geometries from different vantage 

points at two time instances during the store motion. Figure V.28 shows Cp and Mach contours at 

various time instances on a stream-wise plane (x = 11) passing through the wing and the fins of 

the store. The interference effects between the fined store and the wing can be clearly seen in the 

earlier time instances. Illustrated in Figure V.29 are, once again, the Cp and Mach contours, 

however, at span-wise planes inboard (z = 6.5), middle (z = 6.89), and outboard (z = 7.3) of the 

store centerline at various time instances during the motion. At all the time instances, smooth 

transitions of the contours across the overset boundaries are observed. 
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                            (a) t = 50, -z view                                               (b) t = 2000, -z view 

             
                            (c) t = 50, +x view                                            (d) t = 2000, +x view 

           
                            (e) t = 50, +y view                                          (f) t = 2000, +y view 

Figure V.27 Cp on the surface of the wing and store at various time instances 
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                         (a) t = 50, Cp                                                    (b) t = 50, Mach 

     
                        (c) t = 1400, Cp                                            (d) t = 1400, Mach 

     
                        (e) t = 2000, Cp                                           (f) t = 2000, Mach 

Figure V.28 Cp and Mach contours on plane x = 11 at various time instances 
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                      (a) t = 50, z = 6.5, Cp                                          (b) t = 50, z = 6.5, Mach 

     
                    (c) t = 1400, z = 6.89, Cp                                   (d) t = 1400, z = 6.89, Mach 

     
                        (e) t = 2000, z = 7.3, Cp                                   (f) t = 2000, z = 7.3, Mach 

Figure V.29 Cp and Mach contours on various z planes at various time instances  
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CHAPTER VI  

CONCLUSION 

VI.1   Summary and Contributions 

In this research, the viability of using an overset grid approach within a streamline/upwind 

Petrov-Galerkin formulation for unsteady, viscous, moving boundary simulations has been 

established. Using the method of manufactured solutions, the order of accuracy has been verified 

up to fourth order for inviscid and laminar flow in the two-dimensional implementation, and up to 

third order for inviscid flow in the three-dimensional framework. 

A MPI-based parallel three-dimensional overset grid assembly framework has been 

developed. Additionally, a novel cell selection approach named elliptic hole cutting (EHC) based 

on solutions to the Poisson equation has been introduced. Like implicit hole cutting, EHC is able 

to yield a mesh in favor of certain mesh quality metrics by devised corresponding source terms for 

the Poisson equation. However, the cell selection for EHC is continuous, and similar to the 

approach based on the distance function. Additionally, if parallelization is needed, the modified 

EHC is a viable choice. 

Two modifications to the ILU(k) preconditioner, which consider both intra-grid and inter-

grid linearization and are referred to as “triangular inter-grid ILU(k)” and “Jacobi inter-grid 

ILU(k)” respectively, have been constructed. Compared with the intra-grid ILU(k), which only 

considers the intra-grid linearization, both of these modifications effectively reduce the number of 
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GMRES search directions. This reduction indicates the importance of considering inter-grid 

linearization in the preconditioner. The “Jacobi inter-grid ILU(k)”, which utilizes an intra-grid 

ILU(k) inside Jacobi iterations, can be extended as a parallel preconditioner on distributed memory 

machines. This may be viewed as making the analogy between intra/inter-grid linearization with 

intra/inter-computational-node linearization, due to the similarity in the structures of their Jacobian 

matrices. 

The potential benefits of using adaptation in overset grid simulations are explored by 

combining the overset with an adaptive mesh refinement approach. As discussed, the need to 

resolve flow phenomena that propagate in an unsteady simulation, when the movement of the 

bodies is not known a priori, and/or when grids have disparate cell volumes at the overset 

boundaries, the ability to adaptively refine is critical for solution accuracy. 

Finally, overset grid results are presented for several inviscid and viscous, steady-state and 

time-dependent moving boundary simulations with linear, quadratic, and cubic elements. For the 

two-dimensional cases and the three-dimensional WPFS case, verification of the overset grid 

results are performed by comparing with single grid solutions. The single grid solver has been 

previously validated in the literature. The two-dimensional triangular edge passing an airfoil, and 

the store separation in the three-dimensional WFS case, exemplify examples where overset 

capabilities are required to perform the simulation. 

 

VI.2   Recommendations for Future Work 
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1) The test cases in this research do not involve strong discontinuities in the flow field. 

Extending the current overset grid capabilities with shock-capturing schemes would 

significantly expand the range of applications. 

2) For the overset grids with zero overlapping, the overset interface has different 

discretizations from the grids on two sides of the interface. The numerical fluxes integrated 

on the two sides of the interface will not be locally conservative. While the order of 

accuracy of the solutions is confirmed by the method of manufactured solutions, the 

mechanism for global conservation is not completely understood. It would be interesting 

to investigate the order of accuracy of the numerical fluxes on the overset boundaries in 

the zero overlapping situations, and develop a numerical flux integration method for 

overset boundaries that guarantees desired order of accuracy of flux boundary conditions. 

3) Due to the difference in the computation and communication pattern between the flow 

solver and the overset grid assembly, domain decomposition is difficult, if not impossible, 

to be load-balanced for the flow solver and overset grid assembly at the same time. 

Furthermore, for overset grid simulations of moving bodies, the initial domain 

decomposition is certain to create load imbalance over time. A dynamic load balancing 

framework for distributed memory machines would be a valuable asset. 

4) Develop mesh morphing capability for stabilized finite element formulation, and combine 

with the overset approach, for the simulations of fluid structure interactions with the 

structures deforming elastically. 

5) Using h-, p- and hp-adaptation in combination with overset grid simulations offers many 

benefits. In a dynamic overset moving body simulation without mesh adaptation, flow 
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phenomena will evolve with time with inadequate resolution, and the disparities between 

grids may become pronounced. Extending the current three-dimensional overset 

capabilities with adaptive refinement may mitigate these issues.  
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