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ABSTRACT

Automatic and parallel mesh generation has been highlighted as a bottleneck for large scale

automated Computational Fluid Dynamics analysis. The desire for large scale automated CFD is

driven by the growing computational capabilities in large scale supercomputers. Unfortunately,

as compute clusters grow in size, they also suffer more failures. Left unchecked, the increased

frequency of failures may stymie any efforts to fully utilize these machines.

This work aims to tackle one component required for automated large scale engineering

analysis by developing a fault tolerant mesh generator. The mesh generator uses a novel com-

munication layer written using the transport layer ZeroMQ and is made fault tolerant through an

integrated in-memory checkpoint and recovery strategy. Benefits of using in-memory checkpoints

vs traditional in-disk checkpoints are discussed. By relying on in-memory checkpointing, it is

demonstrated that the mesh generator to be capable of generating Cartesian meshes in parallel.

The generator continues to operate even while the compute cluster it is running suffers failures.

The generator is shown to be high performing, including being capable of generating an 8.6 billion

element mesh in just over 1 minute while creating multiple in-memory checkpoints.
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CHAPTER 1

INTRODUCTION

1.1 Motivation

Today’s supercomputers are built on a dizzying complexity of hardware and layers of

software that all must work in concert to provide a platform for high performance computational

analysis and design. Any one hardware or software component is a link in the proverbial chain

where one weak link defines the chain’s strength. The larger we make our supercomputers, the

longer we make our computational chain, and the more likely it is that our chain will have a weak

link. If any one link fails, the simulation stops.

There is a push currently within supercomputing to reach "exascale" by building a super-

computer which is capable of 1018 FLOPS (floating point operations per second). As of June

2016 the largest supercomputer in the world is the Sunway TaihuLight computer at the National

Supercomputing Center in Wuxi, China. [1]. The Taihulight consists of 10 million compute cores

across 41,000 compute nodes. The Taihulight has a theoretical peak computing capability of 125

petaflops, and Linpack performance of 93 petaflops. However, to reach a machine capable of 1

exaflop, a computer will need to be built with approximately 100 times more compute power.

Exascale supercomputers are expected to exceed the current machines- future machines.

Exascale machines were expected to have millions of cores and tens to hundreds of thousands of
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nodes. [2,3]More recently these estimates have been revised upwards and nowexascalemachines are

expected to contain between 100 thousand and one million nodes. [4] Unfortunately, by increasing

their size, these machines will have more components that could fail. Increasing the number of

hardware components will put extreme scale applications at risk of suffering system failures unless

future hardware is more resilient.

Unfortunately, it does not appear that newer technology suffers less failures. [5–7] A study

published in 2007 evaluated 10 years of failure data from Los Alamos National Laboratory covering

over 24 thousand processors, it summarized “...there is little indication that systems and their

hardware get more reliable over time as technology change”. [8] The Intel Corporation in a patent

granted in 2011 warned that “due to various technology related issues, cores in a many-core

processor will exhibit higher failure rates than single core or dual-core processors.” [9] Evidence

supports this as failure rates have increased at about an 8% rate between hardware generations.

[10, 11] It has even been shown that compute clusters at higher elevation suffer more failures due

to hardware interactions with cosmic-ray-induced neutrons. [12, 13]

Researchers have raised concern that future exascale computers will be less resilient than

current generation high performance computing (HPC) systems, and resilience has been often

highlighted as a critical component of exascale systems. [5,7,14–17] A DARPA funded "ExaScale

Computing Study" finds that an exascale machine is expected to suffer a failure every 35-39

minutes. [3] In 2011, the International Exascale Software Project Roadmapwarned that "insufficient

resilience of the software infrastructure would likely render extreme-scale systems effectively

unusable". [18]
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We don’t have to look to future extreme scale computers to find the impact of fault tolerance.

Between August 2008 and February 2010, Jaguar (the 3rd largest supercomputer on the top 500

at the time) suffered from 2.33 average hardware failures a day. [19] Zheng has given a surprising

analysis at these smaller scales. Assume a hardware node has an average lifetime of 20 years (a

very generous assumption). A job running on 5000 nodes for 400 hours has a failure probability of

99.9989% ! [20]

HPC applications are not only subject to hardware failures, but software bugs as well.

Schroeder et al. reported that while 50% of failures occur because of hardware failures, a substantial

20% come from software bugs. [8]. In order to make effective use of large compute clusters, we

must be able to tolerate some system failures regardless of the source. We must keep the simulation

running.

This work aims to support the future of CFD running on large distributed compute clusters.

The current commonCFDworkflow consists of geometry clean up, mesh generation and computing

numerical solutions to conservation equations describing fluid flow. As Figure 1.1 illustrates, early

stages in the CFD process require much more user effort to prepare geometry and generate the

mesh and much less user effort to run the flow solution. On the contrary, early stages in the CFD

process require relatively small computer resources while numerically computing the solution can

be very computationally expensive. Furthermore, the CFD process is dependent on previous steps.

A practitioner may need to revisit each step in the process after analyzing the flow solution.

The significant user effort required for geometry preparation and mesh generation can limit

the complexity of problems that can be solved quickly. If it is to become common that complex
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Figure 1.1 A common CFD workflow

engineering solutions can be found quickly, the entire computational analysis process must be

automated.

In 2014, a survey study of the state of the art of Computational Fluid Dynamics was

published titled "CFD Vision 2030 Study: A Path to Revolutionary Computational Aerosciences."

The study highlighted mesh generation and adaptivity as a key issue which must be addressed to

achieve robust and reliable CFD simulations. The study states: "Mesh generation and adaptivity

continue to be significant bottlenecks in the CFD workflow, and very little government investment

has been targeted in these areas." [21]

Meshing has been identified as a workflow bottleneck outside of aerospace applications. In

the summer of 2015 the Department of Energy held a workshop on turbulent flow simulation at

the exascale. Among the applied research topics for large scale turbulent flows was nuclear energy.

A review of the workshop cited "meshing is a bottleneck in the workflow at large scales" and "is

expected to be amplified on future architectures." [7]
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Automated CFD analysis will require heavy investment in parallel mesh generation, geom-

etry handling. It will also require coupling the entire CFD process into software frameworks which

can be deployed onto large scale, state of the art machines. These future CFD applications may

need to be resilient at all stages of analysis from geometry, to mesh generation, to simulation, to

post processing. Furthermore, it is expected that disk based read and write speeds will continue

to lag behind main memory read and write speeds. A fully automated CFD package may want

to avoid using permanent storage. The entire CFD analysis workflow, geometry, mesh, solution,

error analysis, mesh adaptation, and post-processing, will all need to be integrated into a software

ecosystem that runs diskless.

1.2 Objective

The primary objective of this work is:

Develop and demonstrate a technique for mesh generation which is capable of running

on compute clusters and recovering from process failures.

There has been no demonstration of a parallel mesh generator with an integrated in-memory

fault tolerance scheme to the author’s knowledge. To accomplish this goal, this work will also

describe a simple messaging system that is capable of detecting failed processes and recovering

from those failures. Additionally, it will describe a fault tolerant checkpointing framework which

is capable of redundantly storing data within a compute cluster to increase resiliency of parallel

applications.
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Many events can cause a computational task to fail including hardware failures such as

Central Processing Units, Graphics Processing Units, Random Access Memory, board, network,

and software. This work focuses on detecting and recovering from single point, and small point

failures. Single point failures are the most common failures in compute clusters accounting for

approximately 70% of all hardware related failures. [13, 19, 22–24]

The mesh generator used in this work generates isotropic Cartesian meshes using an octree

based technique. The mesh generator is implemented for use in parallel with distributed memory

compute clusters. The mesh generator is capable of generating isotropic body fitted grids for

simple 3 dimensional geometries using projection based techniques. Projection mesh generation

techniques are not a mature technology, and this work makes no advancements in this area.

This work assumes that it will be desirable to continue to increase the size and complexity

of problems analyzed by CFD techniques and increasing the capability of CFD analysis. This work,

and the software systems it describes, was developed based on recent predictions about the future

of computer hardware. Critically, this work assumes that future computer hardware will be no more

resilient than today’s hardware and that future communication systems will continue to be faster

than permanent disk based storage schemes.

If automation for large scale capabilityCFD is a goal of the industry then the entire automated

framework must embrace failure as a normal part of operation. Each stage in the CFD workflow:

geometry queries, mesh generation, and computation of the flow solution, must be prepared to react

when failures occur. It should be expected that the majority of failures will occur while the flow

solution is being computed because flow computation will consume the majority of the run time.

Still, a failure during any stage must be anticipated. This work chooses to focus on incorporating
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fault tolerant techniques into the mesh generation stage. Mesh generation can be used as a test bed

to explore for how fault tolerant techniques might be incorporated into other stages in the CFD

workflow.

1.3 Grid Generation

Automated grid generation techniques for Computational Fluid Dynamics simulation have

seen a rise in popularity in recent years. Generating large scale meshes with these methods has,

up to this point, largely been relegated to generating the mesh on a “grid generation” machine. To

handle large meshes, the “grid generation” machines can be equipped with more than 10 times the

memory of average machines. Large meshes often take hours or even several days to generate.

The power of next generation compute clusters will enable simulations using exceptionally

large grids. There has been a growing interest in parallelizing the mesh generation process to

harness the power of the next generation of computing hardware.

1.3.1 Grid Generation with Spatial Trees

The grid generation landscape is filled with a wide array of different techniques spanning

both the structured and unstructured domains. Because of their speed and simplicity, a growing

number of grid generation programs are using tree based methods. Techniques which use spatial

trees can generate elements very quickly by focus on creating Cartesian aligned elements. The most

common spatial tree is the octree. Octree based techniques generate isotropic Cartesian elements.
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In recent years a number of researchers have developed dynamically load balanced parallel

octree methods. Octor [25] and p4est [26] are both examples of parallel octree codes, which

use space-filling curves to repartition and dynamically load balance during the mesh generation

process. Very large scale octree meshes have been generated quickly using parallelization. In 2014

Lintermann et al. demonstrated generating 17 billion elements on a 65 thousand core compute

cluster in 17 seconds. [27]

Cartesian aligned meshes can be generated very quickly; however, high Reynolds number

CFD techniques generally require body fitted grids with anisotropic viscous spacing within the

boundary layer. Some mesh generation efforts have explored hybrid techniques that use Cartesian

aligned elements away from the boundary layer but transition to body fitted anisotropic elements

near the geometry surface.

Betro introduced a hybrid method that relied on an initial surface mesh. The highly

anisotropic viscous layers were generated using an extrusion based technique. The nearbody and

offbody regions of the mesh were connected using a tetrahedral based technique.. [28] Betro did not

use an isotropic octree and instead used a specialized binary tree called a split tree which allowed

for anisotropic elements in the offbody region.

Some grid generation efforts aim to eliminate the need to generate an initial surface mesh.

Hexagrid is one such effort which generates Cartesian elements throughout the domain and then

projects and optimizes elements near the body surface. [29] Hexagrid has seen increased perfor-

mance with the addition of shared and distributed memory parallelism through use of the building

cube method. Boxer Mesh also utilizes a hybrid technique generating Cartesian elements in the
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offbody region and body fitted viscous elements near the surface. [30] Distributed memory paral-

lelization has also been implemented in Boxer Mesh and demonstrated out to 48 processors. [31]

1.3.2 Projection Based Near Body Grid Generation

Many common automatic mesh generation techniques are based on hierarchical trees for

offbody grid generation combined with a near body gridding technique. Some techniques include

cut-cell methods such as in Cart3D, [32] SPLITFLOW, [33] and PHUGG. Other techniques, such

as Hexagrid, [34] project nodes from the offbody mesh onto the geometry. FASTAR [28] was

developed using a type of binary tree called a split-tree. It uses tetrahedral meshing to combine

a hierarchical technique for offbody grids with a body conforming viscous mesh generated using

extrusion.

The proposed work focuses on Cartesian off body grids blended to unstructured body

conforming near body grids. These techniques can be referred to as projection based techniques

since during the near body generation process nodes are projected onto the surface of the geometry.

A common technique during projection based grid generation is to capture sharp geometry

features using explicitly defined geometry. [34–36] With these techniques, explicit points and

curves are captured during the creation of the nearbody grid. The explicit geometry can be a series

of NURBS patches, or more simply, the geometry may be represented by a triangulated surface

mesh. [34, 35]

An alternative approach to explicitly defined geometry is to use implicit geometry. Implicit

geometry can be represented using a distance field where the location of the geometry surface
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is implicitly defined as an isocontour at a specified distance. Distance fields have been common

geometry representations in computer graphics as a morphable geometry representation for anima-

tion. [37,38] Dawes et al. have developed Boxer Mesh to generate grids on geometries represented

implicitly by level sets. [31] They have further used the level sets of the distance function to create

viscous layers in the near body region. [30]

To date, no significant fully automated nearbody projection technique has been demonstrated

as robust to any input geometry. Hexotic cites challenges with sharp geometric angles below 30◦.

[35] In some instances, Hexagrid requires manual labor to clean input surface triangulations. Boxer

Mesh will sacrifice geometry integrity to obtain what they call a “solveable” mesh. Despite these

continuing challenges, nearbody projection techniques have been deployed for use in computational

analysis.

A future fully automated CFD workflow will need to automatically generate very large

meshes in parallel for geometries with arbitrary complexity. The combined grid generation and

flow solver must be capable of simulating compressible and high Reynolds number flows. For this

reason a hybrid approach will be used for this research following a hybrid approach. The offbody

elements will be generated using a parallel octree based technique. The nearbody grid will be

optimized and projected onto the geometry surface to create body conforming grids. Projection

based techniques such as those used with Hexagrid and BoxerMesh are still areas of active research.

This work makes no contributions in this area. Furthermore, this work focuses only on isotropic

grids. Despite this limitation, the projection based nearbody techniquewas carefully chosen because

it has been demonstrated to be capable of supporting anisotropic viscous layers.
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1.4 Fault Tolerance

The term “fault’ will be used as a catch all term to mean any event which causes the

computational environment to be unresponsive. The cause of the failure could be related to the

underlying hardware or software of the compute cluster. Not all faults are recoverable. This work

focuses on faults of a single component, or small number of components, within the compute

system. Small, isolated, failures are the most common type of failure. Full system failures are less

common. Full system failures are not addressed by this work.

The main technique to be studied by this work to achieve a fault tolerant implementation is

fault recovery. In fault recovery techniques, first a fault is detected by the implementation, and then

some method is applied to recover from the fault. Not all faults will be recoverable, for example

a compute cluster which unexpectedly loses power without a backup supply may simultaneously

shut down every compute node killing any application currently running. However, some faults

are recoverable given some additional prior preparation. For example, a common fault recovery

technique used by many parallel simulation codes today is disk based checkpointing, where a copy

of the working state of the application is saved to disk periodically. If a fault brings down the

simulation, a portion of the work can be recovered by restarting the simulation from the last saved

checkpoint.

The following sections cover this two step process (detect fault, recover from fault) in more

detail. This work is focusing on fault recovery techniques for applications running on commodity

hardware using the Message Passing Interface (MPI) as the parallel programming paradigm. [39]

This combination of commodity hardware and MPI has been the work horse for HPC simulations

since the 1990s. [40–42]
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1.4.1 Fault Detection

The first challenge for a fault tolerant application is that the application or the parallel

runtime has to detect that a problem has occurred. Timeouts are a common concept in networking

used to detect a failure within a network. In the context of this work, a timeout is a specified length

of time during which a receiving node in a networkmust send an acknowledgement that the message

was received. If that acknowledgement is not returned to the sending nodewithin the time allotment,

then the sending node assumes that a failure has occurredwith the receiving node. Many researchers

have proposed detecting timeouts during communication in MPI programs. [19, 20, 43–45]

Timeouts could be detected different ways. One method was proposed by researchers from

the University of Illinois at Urbana-Champaign using buddy processors. [19,20] Buddy processors

are two or more parallel tasks which are in charge of keeping track of each other. They periodically

message each other to ensure the buddy is responding to infer functionality. If a parallel task misses

a scheduled status update, its buddy reports the task as being lost.

Other researchers have proposed a ticketing system where each message sent requires a

“ticket” to be sent back confirming receipt of the message. [46–48] If the ticket is not received in a

prescribed amount of time, then the sending process assumes the receiving process has gone bad.

The fault tolerant “heartbeat” has also been used in different fault tolerant implementations.

[44, 45] With a heartbeat, a controlling thread periodically sends a request for a status update both

internally to other threads on the same process and externally to other nodes. If a thread or external

process misses a status update, then that process or thread is determined to have failed. Heartbeat

detection could be centralized, with each node periodically sending update messages to a managing

node. Heartbeat detection can also be decentralized, as is used with buddy processors.
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Some researchers have proposed using fault prediction rather than timeout based fault

detection. Chakravorty et al. have proposed predicting hardware failures by using temperature

sensors on compute hardware. [49] Researchers at IBM have used Bayesian network models based

on logs collected from a 350 node cluster over the period of one year. They were able to predict

hardware failure to within a 70% accuracy. [50]

1.4.2 Checkpointing and Recovery

Checkpointing is a very common fault tolerance algorithm dating back to the 1960’s. [51] In

fact, most large scale HPC applications already implement fault recovery based on checkpointing.

Fun3D for example can write out the flow field and recent history as a restart file periodically. [52] If

a hardware failure kills a job, it can be restarted from the last restart file. This type of fault recovery

is referred to as a disk-based checkpoint since the checkpoint is written to a reliable storage disk.

Checkpointing currently utilizes 75-80% of the I/O traffic on current HPC systems. [53]

However, checkpointing on disk can be prohibitively expensive. A disk based system

checkpoint can take up to 40 minutes for top performing machines depending on the size of the

checkpoint. [8] Large checkpoints can incur an overhead as large as 20-25% of the total running

time [54, 55], and may even be less performing than triple redundant calculations at exascale. [56]

A more efficient checkpointing strategy involves in-memory checkpointing. In-memory

checkpointing creates a checkpoint which is stored in-memory redundantly across compute nodes.

Since the communication network is oftenmany times faster than file I/O, in-memory checkpointing

has less of an impact on the performance of the application. In-memory checkpointing has been
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shown to be up to 50x faster than than checkpointing based on a reliable shared Network File

System (NFS) disk. [19]

Checkpointing techniques vary in the number of in-memory and disk based checkpoints that

are created. The simplest in-memory checkpoint technique is similar to a RAID1 disk configuration

where two copies of the data are stored in the cluster. This allows for any one node to fail and the

run is still recoverable. Checkpoints can also be both in-memory and in-disk for further resiliency.

Checkpoints can be application specific or be application agnostic. Many application

agnostic solutions require checkpointing the entire address space of an application. Some of these

techniques virtualize the entire application environment and therefore require little or no application

changes. Co-Check was the first MPI implementation to use virtualization for MPI processes. [57].

Researchers at Illinois have written an implementation of MPI on top of the Charm++ runtime

which virtualizes the entire MPI process and virtual address space associated with the process. [20]

That state is checkpointed redundantly in-memory and in-disk. All of these works can use recover

from failures by reverting the state of the application

Bronevetsky et al. also implemented full application level checkpointing. In their work,

function calls could be placed into a C application’s source code. The function calls identify places

in the code where the application may checkpoint. The entire application is then passed through a

custom precompiler which instrumented the code to save the entire address space of the application.

Berkeley Lab Checkpoint/Restart (BLCR) is a widely used checkpoint / restart library.

BLCR is a high performing checkpoint and restart system which can checkpoint an entire appli-

cation’s working environment including registers, file descriptors, and signal handlers. [58] BLCR
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uses specific assembly code to save state of CPU registers. While this level of integration enables

full environment checkpointing, it does so at the cost of portability as hardware paradigms change.

Techniques which checkpoint the entire application address space can be simple to imple-

ment with legacy applications, but they come at a high memory cost. For example, consider an

implicit PDE solver. A virtualized checkpoint would store the current solution state and the mesh

used for discretization. However, the checkpoint would also contain the jacobian matrix of the

implicit system. The jacobian matrix will likely require much more memory than the solution

state or the mesh. The checkpoint could be made smaller by not storing the jacobian matrix, and

instead recalculating the matrix during restart. However, virtualization techniques will not make

this optimization.

Recovering the state of the entire system from a coordinated checkpoint is a simple recovery

technique, but it in the event of a failure coordinated recovery requires a lot of redundant calculations.

An alternative technique is message logging. With message logging, only the failed process needs

to be recalculated from the previous checkpoint. During execution any messages sent are logged.

In the event of a failure, the failed process is restarted from the previous checkpoint, and any

messages sent since that checkpoint are reapplied from the log. The comparative performance

of these two techniques depends on the rate of failure and the amount of data which needs to be

checkpointed. [59]
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1.4.3 Reliability and Availability

Reliability and availability are two common measures of stability for High Performance

Computing systems. This work will adopt the definitions of availability and reliability from the

work of Torell et al. [60] Availability "...is the degree to which a system or component is operational

and accessible when required for use." While reliability is "is the ability of a system or component

to perform its required functions under stated conditions for a specified period of time."

Availability is simply the ratio of uptime to total time for some interval. Many IT organiza-

tions have goals of reaching well over 99% availability on their services. However, availability is

not the most important measure of stability for HPC systems. Even short interruptions requiring no

repair, such as a memory error which causes a node to reboot, can cause a researchers application

to crash. These short interruptions may not dramatically affect a system’s availability, but instead

they decrease its reliability. It is this reliability that is critical for long running and large scale

simulations.

The serviceable lifetime of a component or system are often reported using Mean Time To

Failure (MTTF) and Mean Time Between Failures (MTBF). These terms are often incorrectly used

interchangeably. While these two metrics are related, they are distinct. Figure 1.2 illustrates these

two concepts.

Common understanding of serviceable lifetime is complicated further by misconceptions

that vendor reported MTBF is a measurement of the expected number of hours a component will

operate before failing. The mean expected lifetime of a hardware component reported by hardware

vendors can be many years long [61–63]. However, these reported measurements are inferred from

necessarily shorter duration tests. An empirically measured mean lifetime of a component would
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be useless information by the time it could be verified. Instead a sample batch of the hardware is

tested and the reported MTBF is the testing length divided by the failure rate. A similar approach

could be used to determine the lifetime of humans by determining the cumulative failure rate of

humans at 25 years. The resulting expected MTBF for a human would be nearly 800 years! [60]

Vendor reported MTBF can still be useful in comparing stability of different hardware components,

however it should not be used in predicting the fault rates in HPC machines.

1.5 Intra-Process Communication

Problems with failure detection and failure recovery have been shown to be solvable in

one form or another, but MPI still remains a major hurdle. The MPI standard defines that default

behavior when MPI has detected a failure is that MPI aborts. [64] That default behavior can be
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changed with the MPI settings MPI_ERRORS_RETURN where an MPI error could be returned

from an MPI call, returning control to the user application. Some researchers have pointed to

this as an indication that MPI in its current standard can be fault tolerant. That conclusion is

not universally agreed upon. Since version 2.2, the MPI standard states: “MPI does not provide

mechanisms for dealing with failures in the communication system ... Whenever possible, such

failures will be reflected as errors in the relevant communication call. Similarly, MPI itself provides

no mechanisms for handling processor failures.” [39, 64, 65] Even if the default behavior is set to

MPI_ERRORS_RETURN the standard does not define how MPI should behave after the error has

been detected; furthermore, not all MPI implementations enforce MPI_ERRORS_RETURN. [66]

TheMPI fault tolerance working group made a proposal for MPI 3 to change this behavior, however

as of MPI 3.1 which was finalized June 4, 2015 this change has not been accepted.

There are different strategies used to circumvent this oversight by the MPI standard. A

portable approach has been proposed by researchers at the University of Tennessee, Knoxville

called Checkpoint-on-Failure. [67] This technique uses double in-memory checkpointing during

the execution of the application and sets the default behavior of MPI to MPI_ERRORS_RETURN.

If an mpi error is detected by a process, that process writes its checkpoints to reliable disk storage

and then exits without making any additionalMPI calls - includingMPI_Finalize(). Exiting without

calling MPI_Finalize() is detected as an error and MPI eventually returns with a failure notification

on every process. The application can then be restarted by resubmitting the job into the queue

system. This technique of checkpoint-on-failure only requires an MPI implementation which is

fully MPI-2.2 compliant and allows for fault tolerance in an application without the overhead of

on-disk checkpointing unless a failure is detected.
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Despite the MPI standard lacking direction for with fault tolerance, there are a myriad of

proposals for extending MPI standard to handle fault tolerance and many implementations of MPI

have already implemented some extensions. These include AMPI [20], FT-MPI [68], LA-MPI [43],

MPICH-V [69], and MPICH-V2 [70]. Additionally there is an MPI working group devoted to fault

tolerance in MPI; [71] though the MPI standard has not adopted any proposals regarding fault

tolerance.

It is not very productive to wait for a fault when studying fault tolerant implementations.

Furthermore, if you want any product to have a particular behavior you must test for that behavior.

The video streaming service Netflix has embraced failures as part of normal operation. Netflix

runs a series of tools collectively called “Simian Army.” These tools intentionally attack running

instances of their video streaming service by deliberately causing different faults to occur. [72]

Zheng, et al. have also decided to proceed in researching fault tolerant algorithms and application

implementations by simulating hardware failures. These researchers inject a DieNow command

into their application at random to test their applications fault recover. The DieNow command

forces a process to stop responding to any communication, but it does not cause an MPI error. This

has allowed researchers to test their application’s fault recovery mechanisms and continue studying

different algorithms and implementations while bypassing MPI’s current undefined behavior.
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1.6 Summary

In-memory checkpointing has emerged as a simple and high performing solution to combat

the growing instability in compute clusters. Currently, the author knows no implementation of fault

tolerant grid generation.

In practice, grid generation is still widely a serial process. The serial nature of mesh

generation has been identified as a bottleneck for large scale computational analysis. Parallel

implementations of grid generation techniques have emerged with varying degrees of success

and scalability. Body fitted projection techniques, like the used for this work, have not been

shown to scale for machines larger than a few tens of cores. Furthermore, scalable parallel

generation of body fitting grids is still an open problem using any technique. The best scalable mesh

generation techniques use tetrahedral dominated mesh generation. Some tetrahedral dominated

mesh generators have been demonstrated to scale using a few hundred cores. [73–75]

Many of the performance hurdles in parallel grid generation stem from improper load bal-

ancing. To mitigate load balancing issues researchers have proposed techniques which dynamically

load balance during the grid generation process. Much of the machinery required to do dynamic

load balancing can be reused in fault tolerant implementations which use double in-memory check-

pointing. In both dynamic load balancing and in-memory checkpointing, the implementation must

be able to communicate pieces of the grid domain through the network.
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CHAPTER 2

THE CURRENT AND FUTURE COST OF FAILURES

No compute machine is made of perfect hardware or software components. Imperfect

systems incur additional cost for High Performance Computing (HPC) organizations in the form of

wasted compute hours. Wasted compute hours waste electricity, and slow the rate of innovation by

extending the cycle for discovery on new science and technology.

Imperfect compute systems also incur risk. The Return to Flight effort following the

Columbia accident in 2003 tasked NASA engineers to establish a process to perform during flight

assessments. Part of this process included personnel, Computational Fluid Dynamics (CFD)

software analysis tools, and HPC hardware positioned and ready to perform high fidelity CFD

analysis inside an 18 hour window. [76] Projects which depend on timely simulation results for

critical decision making may not have the luxury of simply running the simulation again.

On today’s production machines, failures occur often enough that mitigation strategies are

used. Disk based checkpointing and recovery is a common mitigation strategy. Mitigating failures

through disk based checkpointing incurs relatively low overhead, especially on machines with fast

disk arrays. However, as machine sizes grow, so do failure rates. It has been widely projected

that tomorrow’s machines must consider failures as part of normal operation and not an exception.

Sufficient attention must be pid to the failure mitigation strategy or it may consume compute time.

21



This work proposes a parallel grid generation technique which has increased resiliency

from an integrated mitigation strategy. This chapter aims to answer the question of what costs

can be expected by protecting from failures and how much risk can these protections mitigate.

Unfortunately, to answer questions of specific job failures we need to know something about

the current or recent state of the machine before launching the job. There is some work being

done to predict specific hardware failures. Teams have used hardware sensors and recent failure

characteristics to try to predict when specific hardware will fail (often to replace the hardware before

it causes a failure in production). [8, 77, 78]. However, these techniques are still experimental and

not all compute clusters have deployed the required hardware sensors and software monitoring

tools.

This chapter looks to answer questions of the cost of failures from a statistical, rather than

a deterministic approach. A simple model is built to emulate failures on compute clusters. The

model is tuned to to reproduce Mean Time to Failure (MTTF) for known compute clusters. Once

tuned, the model is used to examine the statistical likelihood of failures and the additional costs

incurred on notional computational jobs on small and large clusters.

2.1 A Model of Failure

A simple model is created to explore the likelihood of failures, and the associated costs of

those failures. The model consists of a collection of compute nodes. Each node has a percentage

likelihood of failure per hour, λ. Initially, it is assumed that λ is invariant across time and across

nodes within a system. Then the model is expanded to allow for compute nodes with different
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failure rates which closer matches published data. For both assumptions the value of λ is tuned

until aggregate runs of the model properly predicts the published MTTF of large HPC machines.

The model is then used to simulate a run of a notional compute job at three scales, a small job, a

medium job, and a large job. A series of Monte Carlo simulations are performed using the model

to determine the statistical nature of the number of failures which occur during each job, and how

the total run time of the job responds to these failures.

2.2 Methodologies

The model takes as an input the computational cost in hours that the job must take to

complete, t∗. This is the time the job would take if there were no failures. The simulation iterates

hour by hour ticking down the hours in t∗. At each iteration the simulation computes a different

random percentage, ri, for each compute node. If for any compute node i

ri < λi

the node is considered to have failed and the job needs to be restarted from the last checkpoint. If

a job must be restarted, the additional cost of a restart (Cr) is added to the run cost.

The elapsed simulation time in hours is tracked. When an iteration completes successfully

the elapsed time increases by one hour. If a failure occurs then the elapsed time increases by a

random fraction of an hour as if the job had progressed for some amount of time during the next

hour before failing.
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The cost of creating a checkpoint (Cc) must also be considered and added to the elapsed

running time each time a checkpoint is created. For simplicity all the results shown below are for

applications which checkpoint once an hour.

Currently in-disk checkpointing is an often used method of creating checkpoints. Recover-

ing an application from a failure usually requires restarting the entire application and re-running the

application’s start up. This may include reinitializing any runtime systems used by the application,

such as MPI. With many organizations, restarting a failed job also requires resubmitting a job

through a queueing system. Queue lengths can vary greatly between different organizations and

time spent in a job queue does not waste electricity. However, when lengthy queues are combined

with frequent failures can greatly slow the cycle of discovery for computational researchers.

It has been well documented that in compute clusters that the majority of single point

failures occur on a relatively small number of compute nodes. Additionally, compute clusters are

more likely to suffer a failure, if the machine has suffered a failure recently. [13, 22, 23, 79, 80]

This is why two sets of cases are run, one with λ assumed constant and one with λ assumed to

follow a Weibull distribution curve. Weibull distributions are commonly used to describe failure

rates. A Weibull curve was identified as a suitable match for hardware failure rates in the Titan

supercomputer. [79]

2.3 Model tuning

For the model to be useful it must have a reasonable value for λ, the percentage likelihood

of failure of a node. There are a few choices to determining failure rate. The first is we could
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choose a failure rate based on the manufacture’s reported MTTF for some hardware (perhaps the

CPU or GPU) on a compute node. However, these failures rates are not empirically determined.

Instead MTTF from a manufacturer is typical simply the inverse of the Failures In Time (FIT) for

that hardware during testing. These rates typically do not match reported aggregate failure rates on

compute clusters. Instead, appropriate values of λ can be determined using the simulation itself

while trying to match data taken from real world compute clusters.

Oak Ridge National Laboratory has a long record of operating world class compute clusters.

They have reported failure rates on some of their compute clusters. Recent published data in [79]

describes failures on the Titan supercomputer caused by GPU hardware. During the time period of

the study Titan operated on 18688 compute nodes. The average GPUMTTF across all of Titan was

approximately 44 hours. The study also highlighted that there was temporal coupling on failures in

GPU nodes. The failure rates were shown to match a Weibull distribution with a shape parameter

of 0.64. A shape parameter less than one implies a high infant mortality rate and, indeed, the most

common mode was under 2 hours between two consecutive failures.

Failures due to GPUs are not the only failures which can cause a node to become unrespon-

sive. The MTTF for Titan’s predecessor, Jaguar, is reported to have had a MTTF of 10.3 hours

between 2009 and 2010. [19] Newer studies on hybrid CPU + GPU compute nodes have shown

MTTF of as low as 4.1 hours. [81] Hardware running on the Oak Ridge supercomputers undergo

stress testing to identify bad components before going into production, this may explain why Oak

Ridge clusters exhibit higher MTTF than researchers have experienced on other systems.
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2.3.1 Constant Likelihood of Node Failure

The model developed for this work was tuned to determine appropriate values of λ. First

experiments were run with constant λ across the entire compute system of 18688 nodes. The value

of λ was fixed and then the simulation was run ten thousand times while recording the time to

first failure. After completing all ten thousand simulations the MTTF was computed along with a

confidence interval. The confidence interval was computed by:

xi =
1
n

n∑
i

xi

σi =
1
n

n∑
i

(xi − xn)2

xn − φ
σn
√

n
< x < xn + φ

σn
√

n

A value of φ = 1.96 corresponds to a confidence of 95%. A few iterations of a binary search was

used, and a final value of λ = 1.190e − 4 was found to reproduce a MTTF of 44 hours with a 95%

confidence interval of (44.1, 44.9). Similar experiments were run and λ = 4.94e − 4 produced

MTTF of 10.3 hours with a 95% confidence interval of (10.1, 10.5). Figures 2.1 and 2.2 show the

running average time to failure during the ten thousand runs. In both figures, the black line shows

the current MTTF and the blue shaded region covers the running 95% confidence interval.

Figure 2.3 shows the relationship between λ and MTTF for two systems, one with 18688

nodes and one with 9344 nodes. This experiment was run to help build an understanding of the

response of MTTF as the reliability of each hardware node changes. It is clear that MTTF grows
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Figure 2.1 Mean time to failure convergence history

non-linearly as the reliability of each node decreases. Furthermore, the size of the machine also

greatly impacts the MTTF.

The tuned values of λ can reproduce systemMTTF. However, assuming constant λ does not

reproduce the distribution of failures reported in the literature. Figure 2.4 shows a Quantile-Qualtile

(QQ) plot of the TTF distribution compared to a Weibull curve with shape parameter 0.64. This is

the distribution extracted from failure logs on the Titan supercomputer caused by GPU errors.
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Figure 2.4 Temporal distribution of failures assuming constant likelihood of failure

29



2.3.2 Variable Likelihood of Failure

Not all compute nodes exhibit the same rates of failures in large scale compute systems. In

most systems the majority of failures occur on a small number of nodes. Therefore, assuming that

λ is constant across all compute nodes may be a poor assumption. Tiwari et al. reported that the

distribution of times between failures matches well with a Weibull distribution. [79] It was then

assumed that the failure rates (λ) for nodes may also match a Weibull distribution.
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Figure 2.5 Mean time to failure convergence history

Tuning experiments were run to determine appropriate scale and shape parameters. It was

found that the parameters shape = 0.0765 and scale 8.5e-14 reproduced a MTTF of 44 hours when

run on 18688 nodes. A 95% confidence interval for the MTTF was (43.7, 45.8) after 20,000 runs.
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Figure 2.5 shows the running TTF during the 20,000 iterations. A QQ plot is shown in Figure 2.6

comparing the simulated distribution of times to failure with the reported distribution of times to

failure extracted from failure logs on the Titan supercomputer. As the plot shows, expanding the

model to allow for non-constant failure rates can predict the system mean time to failure and better

match the distribution of times to failure.
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Figure 2.6 Temporal distribution of failures with varying likelihood of failure

Tuning experiments were repeated to determine appropriate scale and shape parameters for

λ distribution which reproduced a MTTF of 10.3 hours. It was found that shape = 0.09600 and

scale = 1.0e-10 was sufficient to emit a MTTF of 10.3 hours on a 95% confidence interval of (10.1,

31



10.5), running averages during the simulation are shown in Figure 2.7. Figure 2.8 shows a QQ plot

of the total system failure rates from the simulation compared to the failure distribution for Titan

as reported. The 10.3 hour MTTF measurement is the reported system time of the supercomputer

Jaguar during 2009, distribution data is not available for comparison of that time frame. In 2012

the Jaguar supercomputer received upgrades, including interconnect and GPU hardware, after the

upgrade the supercomputer was renamed Titan. Due to the similarities of the system (similar size,

operated using similar policies) it is assumed that the distributions are also similar.
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Figure 2.7 Mean time to failure convergence history

Suitable values for likelihood of failure per hour of a node has been determined for both

a constant and variable likelihood of failure. Preparing for failures by creating checkpoints, and

recovering from failures both cost time. The model used in this section to match MTTF rates for

32
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Figure 2.8 Temporal failure distribution with varying likelihood of failure

large systems can be modified to estimate the aggregate increased cost. The next section explores

the impact of failures on notional CFD computations.

2.4 The Cost of Failure

Computational simulations can vary greatly in computational cost scaling from a few

seconds on a laptop to many weeks or months on a large supercomputer. Aeroacoustic simulations

are among the most expensive simulations run with CFD. These simulations must be run time

dependent with high resolution in both the spatial and temporal domains. One such example comes

from 2012 where FUN3D was used to compute noise caused by nose landing gear. [82] The grid

used contained 145 million control volumes and took approximately 1280 compute hours using
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180 dual socket compute nodes. It is estimated that accurate full spectrum noise prediction for

a full aircraft may require at least 1-2 billion control volumes with some researchers anticipating

mesh sizes near 10 billion. [83] Luckily, high performing simulation codes such as FUN3D have

shown good weak scaling performance. If weak scaling holds, it can be assumed that a simulation

of full aircraft noise prediction using 1.4 billion control volumes (roughly 10 times larger than nose

landing gear case) will take 1280 compute hours on 1800 compute nodes. Furthermore, a complex

configuration, may contain deployed slats, flaps, landing gear, and possible flow control. This

fully complex configuration could take as much as 14 billion control volumes. Which with perfect

scaling take approximately 1280 compute hours on a compute cluster of 18,000 compute nodes.

Notional values of compute length and machine size can be used to explore failure characteristics

and the total computational cost of computing early 21st century CFD simulations.

Each notional case was compute twice, once by assuming that each node has the same like-

lihood of failure, and once by assuming that the likelihood of failure obeyed a Weibull distribution

across the system. Appropriate values for the probability of failure were determined in the previous

section using a similar Monte Carlo based model.

2.4.0.1 Cost Evaluation for Constant λ

Figure 2.9 shows the estimated total run time for a job with an expected computational

time of 1280 hours running on 180 nodes. Four plots are shown varying both Cc and Cr . A

checkpoint was created once an hour. Figure 2.10 shows the corresponding failure distribution for

these four cases. The likelihood of failure was set to λ = 5.0e − 4 which corresponds to a MTTF

of approximately 10 hours, as shown in Figure 2.3. Even for this relatively small case the most

34



likely outcome is one failure occurrence during the job’s execution. And the likelihood of a job

encountering more than 6 failures was very unlikely. With this small number of failures the run

time is dominated by the computational cost (1280 hours) when the checkpoint cost is low.

If no checkpointing had been enabled, there was only approximately a 30% chance that the

job would have successfully completed. Even if checkpointing and recovery were set to a very

expensive 60% of the running time every job would have completed within 2560 hours (2× of the

original simulation length). Without fault recovery, there is only approximately a 70% chance that

the job would finish during the same window of 2560 hours.

Next the job was increased to include 18000 nodes. The CFD Vision 2030 report identifies

mesh sizes of 10-100 billion control volumes for aircraft in maneuvering flight. A machine size of

18000 nodes could perform calculations on a 15 billion control volume mesh with approximately

the same number of control volumes per core as the 180 node case. The wall time was held constant

at 1280 hours. Again λ was assumed constant at 5.0e-5. The checkpoint and restart costs were

varied to simulate both inexpensive and expensive checkpoint and recovery costs.

The larger system of 18,000 nodes the probability distribution of failures changes. Figures

2.11 and 2.12 show the projected cost and associated failure distribution for a case running on

18,000 nodes. The same value of λ = 5.0e − 4 was used for these runs. The most likely number of

failures has shifted to between 120 and 200 failures during the run. The total clock time of the run

increased 6% over the base computational cost, even when both creating checkpoints and recovering

from checkpoints takes only seconds per hour. The recovery time Cr must also be considered since

the number of failures has grown.
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Since the computer used was so large, it is nearly impossible that the job with no fault

tolerance considerations would have completed. The number of failures has shifted from a skewed

distribution near 1 on 180 nodes, to a normal distribution with well over 100 failures occurring

during the simulation.

Checkpoint cost dominates the overhead cost of fault tolerance. Creating quick checkpoints

will have the biggest impact on minimizing the increase in run length caused by failures. The

checkpoint and recovery time can be brought down to under a minute then expected time to

complete a simulation would only be approximately 6% more than the base run length. Ignoring

failures on the 180 node case increases the total run time by about 60%. It is statistically extremely

unlikely that the notional 15 billion control volume simulation would complete without some form

of fault tolerance.

36



Restart cost =  1 % of hour
Checkpoint cost =  1 % of hour

Total Run Time (hours)

P
er

ce
nt

ag
e

1293 1294 1295 1296

0
10

20
30

40

1293

Restart cost =  1 % of hour
Checkpoint cost =  60 % of hour

Total Run Time (hours)

P
er

ce
nt

ag
e

2048 2050 2052 2054 2056 2058

0
10

20
30

40

2049

Restart cost =  60 % of hour
Checkpoint cost =  1 % of hour

Total Run Time (hours)

P
er

ce
nt

ag
e

1294 1296 1298 1300

0
10

20
30

40

1294

Restart cost =  60 % of hour
Checkpoint cost =  60 % of hour

Total Run Time (hours)

P
er

ce
nt

ag
e

2048 2050 2052 2054 2056 2058 2060

0
10

20
30

40

2051

Figure 2.9 Simulated run length for 180 nodes
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Figure 2.10 Number of failures for 180 nodes
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Figure 2.11 Simulated cost for 18,000 nodes
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Figure 2.12 Simulated failures for 18,000 nodes
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2.4.0.2 Cost Evaluation Variable Likelihood of Failure

Section 2.3 demonstrated that using constant values for the likelihood of failure (λ) did

not reproduce the distribution for Time To Failure (TTF) reported from the literature. The cost

experiments were conducted again. This time each compute node was assigned a unique value of

λ. The values of λ were taken fromWeibull distributions which were tuned in the previous section

to reproduce a total MTTF of 10.3 hours.

Figure 2.13 shows the distribution of time to solution for a simulation which is takes 1280

hours to compute on 180 nodes. Again 4 cases were run with varying checkpoint and recovery costs.

The average time to completion with these cases is nearly the same as the cases run with a constant

likelihood of failure. However the distributions have changed. The most striking change is shown

in Figure 2.14. In all cases the likelihood of failures decreased. Each case shows approximately a

70% chance of encountering zero failures during the run.

Figure 2.15 shows the time to solution distribution. Figure 2.16 shows the failure distri-

butions. Again both the time to solution and the failure distributions appear to follow normal

distributions. And like the 18000 node case with constant λ, the number of failures ranges from

approximately 100-250 depending on the cost of creating a checkpoint.

While the failure occurrences were very different for the 180 node case, they are almost

unchanged for the 18000 node case. This indicates that the constant λ assumption may be suitable

for large CFD simulations involving billions of control volumes. The constant λ assumption

over predicts failures for smaller simulations, those with under one billion control volumes when

compared to Weibull distributions for λ.
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Figure 2.13 Simulated run length for 180 nodes
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Figure 2.14 Number of failures for 180 nodes
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Figure 2.15 Simulated run length for 18,000 nodes
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Figure 2.16 Simulated failures for 18,000 nodes
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2.5 Summary

Large computational jobs consume many node hours of computational resources. The

likelihood of a failure on the underlying compute system grow when a job requires more node

hours of compute time. Checkpoint and restart based resiliency techniques allow a job to make

progress while operating on imperfect compute systems. These techniques incur additional cost

when checkpoints are created, and incur a different cost when a failure must be recovered from.

Ideal checkpoint and restart implementations would take only the minimum amount of time to

allow the maximum amount of the compute resources to be applied to running the simulation.

Average total time to complete was computed using a simplemodel for failures on a compute

cluster. This model demonstrated that even small overhead costs for checkpointing and restarting

can lead to significant overhead costs. For the notional problem of full aircraft in maneuvering

flight, the overhead cost of protecting against failures could be as small as 6%. Alternatively, it

is statistically extremely unlikely that the simulation would complete at all without some form of

fault tolerance.

Cases were conducted by first assuming that each node in the compute system had the same

likelihood of failure, and then by allowing some nodes to fail more often than other nodes. The

distribution of the failures was tuned to match overall system TTF distributions taken from the Titan

supercomputer. The effects of a variable likelihood of failure had significant impact on parallel

jobs which were running on 180 compute nodes. This suggests that models which assume each

compute node is equally likely to fail may over predict the number of failures which occur on a

system. Assuming each compute node has an equal likelihood of failure was shown to over predict

the number of failures on 180 node clusters during a simulations when compared to a variable
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distribution for the likelihood of failure. The differences between equal likelihood of failure and

variable did not greatly impact simulations running on 18000 node clusters.

At today’s production scales of a few hundred computational nodes failures are still relatively

rare occurrences. Computational jobs on 180 nodes for approximately a month have only a 30%

chance of being affected by a failure during the run. However, when solving larger problems using

larger computers the likelihood of suffering a failure grows until failures cannot be treated as one-off

or rare events. Future simulations, such as those discussed in the CFD 2030 vision, will require

between 10 and 100 billion control volumes. These simulations will require tens of millions of

node hours and the likelihood of suffering at least one failure is well over 99%. At these larger

scales failures occur so regularly that a high performance simulation code must treat the occurrence

of a failure as expected. Simulation codes running at this scale must carefully consider the fault

tolerant strategy used. Codes which use common checkpoint and restart to mitigate the cost of

failures will need to work to keep the cost of creating checkpoints low. Furthermore, simulation

codes must also keep the cost of recovery low.

Typical serial mesh generation techniques will have a difficulty generating meshes large

enough to support simulations with tens or hundreds of billions of control volumes. Instead,

parallel mesh generation techniques, such as the one described in the next chapter, will be a key

component of the CFD workflow.
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CHAPTER 3

PARALLEL GRID GENERATION USING SPATIAL TREES

Grid generation has been identified as a key bottleneck for Computational Fluid Dynamics

(CFD) at large scales. 1 The common CFD workflow requires a human in the loop to discretize the

fluid domain around a geometry. Furthermore, grid generation is widely still a task performed on a

single workstation. Grids are often made by hand, on a workstation. The grids are then often used

in combination with a CFD analysis code that is running in parallel on a compute cluster. A more

desirable workflow would be to generate the grids automatically and in in a distributed memory

parallel environment. This chapter describes a technique which does just that.

The grid generation technique described in this chapter utilizes a hybrid approach to auto-

mated and parallel grid generation. The grids are generated using Cartesian elements away from

the geometry surface. Grid elements near the geometry surface are not Cartesian aligned and are

instead smoothed and projected to create a body conforming nearbody region. The entire process

operates in a distributed memory parallel environment which allows for very large grids to be

generated without the need specialized hardware with above average memory.

1see Section 1.1 for a full discussion.
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3.1 Off Body Generation

The off body grid generation process consists of basically three steps: creating the initial

octree for each partition, subdividing the octree where voxels cross the geometry by progressing

the tree from the top down, and filling out the breadth of the octree to ensure reasonable cell size

gradation by progressing from the bottom of the tree to the top.

3.1.1 Initial Partition Creation

Parallel grid generation begins by creating a large number of work partitions. Each rank

process will be responsible for managing some number of work partitions. Each rank operates at

a minimum one partition; however, it is more typical for each rank to operate 10 or 20 partitions.

Over-decomposing the total work into a large number of partitions has many benefits including

hiding the latency of data movement either from cache or from the network. However, the most

critical benefit is that over-decomposing lowers the load imbalance that could be caused from a

node failure. In the event of a failure, the work assigned to one node can be simply distributed to a

larger number of surviving nodes.

Each partition contains an octree. The root voxel in every partition’s tree has the same

extent box. The extent box is large enough to encompass the entire domain which is to be meshed.

Each partition begins subdividing voxels which cross the geometry surface level by level down

to some initial starting depth, typically 7 or 8. This work is done redundantly on each partition.

Each partition is identical once the initial refinement completes. The partitions then perform some

collective communication sharing what number of leaf voxels each partition has. The partitions
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then take ownership of only a small number of voxels by deleting any voxel to which they are not

assigned. At the end of this ownership phase each leaf voxel in the mesh is uniquely owned by only

a single partition. This is the starting place for the parallel offbody generation. Ownership of a leaf

voxel is determined by its location along a space filling curve.

3.1.2 Space Filling Curves

Space filling curves are widely used with cartesian aligned mesh generation. In particular,

Z-order curves, or Morton curves, have been shown to have nice compact properties for octree data

structures [25, 26, 31, 84]. Figure 3.1 shows two example Morton curves. Notice that the curve

exhibits a Z pattern. Morton curves are sometimes called Z curves because of this pattern. A

Morton curve is defined hierarchically and never self intersects.

Morton curves are created by assuming an implicitly defined cartesian background grid

which spans the domain of the mesh. Each location on the background grid has a unique coordinate

(x, y, z). The x, y, and z components of the coordinate can be encoded to determine that coordinate’s

location along a curve which passes through each point on the grid. The encoding of coordinate

data to a Morton curve is a Morton Id.

Morton Ids for this work were stored in 64 bit integers. The x, y , and z coordinates on the

background grid were allowed 21 bits each. The x, y, z coordinates on the background grid are

implicit, and not stored. Instead the coordinates are interleaved, and the resulting Morton Id fits

into a 64 bit integer (with 1 bit to spare). Therefore, the background grid is always a discretized

cube where each side is 263 long. The root voxel in the octree has a spacing that is always 2097152
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Figure 3.1 Two dimensional Morton curve

units long on the implied background grid. The physical distance of the root voxel changes to

accommodate the physical domain which needs to be meshed. The spacing width is cut in half as

the depth increases. At a depth of 21, the width of a voxel is 1 unit long in the background grid.

This puts a maximum depth limit of 21 in the octree. This limit could be raised in future work by

increasing Morton Ids to 128 bit integers. The maximum tree depth would then be 42.

The compact representationMorton Ids means that arrays of Morton Ids consume very little

memory. Compact Ids can be communicated, saving bandwidth when voxels need to be shared

across the network or if voxels need to be written in checkpoints. A voxel can be reconstructed

using the root domain’s axis aligned bounding box, the Morton Id of the voxel, and the depth

in the tree of the voxel. This means that the entire mesh, or part of a mesh, can be stored very
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compactly. During the mesh generation process each voxel’s axis aligned bounding box is also

stored using double precision float point numbers. This bounding box stores the voxel’s position

in physical space, not the integer based background grid. The bounding box in physical space is

used to compare the voxel to the geometry. However, double precision bounding boxes consume

48 bytes of data each, while the voxel can be stored using Morton Id and depth using only 12 bytes.

(0,0,0) (1,0,0)

(1,1,0)(0,1,0)

(0,0,1) (1,0,1)

(1,1,1)(0,1,1)

0 1

2 3

4 5

6 7

Figure 3.2 Morton curve through three dimensional voxel

Figures 3.2 shows a simple cube which is one unit wide. The x, y, z coordinates are marked

for each node on the cube. Figure 3.3 then shows how the bits of each coordinate are interleaved

to create the encoded Morton Id. Notice that each coordinate can be described using only a single

bit (since the cube’s domain is only [0, 1]3). The resulting Morton Id is 3 bits long. The Morton Id

has encoded the entire coordinate into a single number.
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Figure 3.3 Conversion of physical coordinates to Morton Ids

Each voxel stores theMorton Id of the voxel’s lower leftmost corner. The voxel also contains

the depth of the voxel in the tree. The depth can be used to determine the width of the voxel in the

background cartesian grid. Width (w) of a voxel is given by:

w = 221−d

The width can be used to determine the voxel’s range along the Morton curve. The Morton Id of

the lower left corner of the voxel can be decoded to determine the x, y, z coordinate of that corner.

Then the coordinates can be incremented by w and re-encoded to determine the Morton Id of the

upper right corner of the voxel. Any point inside the voxel will have a Morton Id that is between

the Morton Id of the voxel’s lower left and upper right corners. This means that all children voxels

will have Morton ranges that are within their parent’s range.
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The Morton curve is also used to partition the offbody mesh following the work of Tu

et al. [25] Each partition is responsible for a range along the Morton curve. Leaf voxels are

assigned to partitions based on the Morton curve which passes through each leaf voxel’s lower left

corner. The curve is evenly divided into a series of segments, one segment for each partition.

A compressed map of the Morton Id ranges for each partition can be created and stored

on each rank. The map has a length of number of partitions + 1 and each entry consumes only 8

bytes. Even if the mesh was divided across a million partitions, each rank would only allocate 8

megabytes to storing the entire map.

The range that each partition is responsible for can be rebalanced during generation. A

rebalance is done by counting up the number of leaf voxels in the entire mesh and assigning an equal

number of voxels to each partition. A new compressed map is generated showing the new Morton

Id range of each partition. Rebalancing voxels across partitions then becomes simple. Partitions

simply use an RPC to send voxels which are no longer inside the partition’s assigned range to the

new owner. Partitions also receive any new voxels that exist in the partition’s Morton range. Figure

3.4 shows an outline of this process.
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Figure 3.4 Rebalancing algorithm
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3.1.3 Top Down Subdivision

The Octree begins to refine once all the partitions have been instantiated. The tree is refined

level by level with all partitions completing refinement to a depth before the next depth adaptation

begins. Only voxels which cross the geometry are refined during the top down subdivision step.

The mesh generator simply loops over the leaf voxels at the depth which is to be refined and asks

the geometry object if there is geometry within a voxel’s extent box. The only way for a voxel to

be at the current depth of interest is if its parent voxel was crossing the geometry.

Refining level by level allows rebalancing to occur between depths. Rebalancing between

depths is not to load balance for computational time. The entire top down process consumes only

a fraction of the total running time. Instead load balancing is done in order to to load balance the

memory consumed and lower the peak memory used.

The initial partitioning is created to equally distribute leaf voxels for a very coarse mesh.

As the mesh is refined level by level only voxels near the geometry will be refined. The partitions

quickly becomes imbalanced as some partitions will almost certainly have been assigned a region

of space which has more geometry than other partitions. If the process does not rebalance the

imbalance will become worse and worse as the grid refines until a small number of partitions are

responsible for the vast majority of the grid. In many cases this can cause a partition to run out of

memory while other partitions store only a fraction of the mesh.

A load balancing ratio is monitored during top down generation. This ratio is computed as

r =
average number of leaf voxels per partition

number of leaf voxels in largest partition
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If this load balancing ratio falls below a threshold, generally between 0.8 and 0.9, then the partitions

are rebalanced using the method described earlier.

Figures 3.5 and 3.6 demonstrate a fictional array of Morton Ids which has been partitioned

into 3 sections. The three arrows in the figure denote what Ids each partition is responsible for. For

example, partition 0, shown by the orange arrow, is responsible for all voxels in the Morton range

[0,40). Initially the load balancing ratio was r = .92. If the mesh is refined in the region between

Morton Ids 30 and 40 all, of the new cells will be created on partition 0. The work becomes

unevenly distributed and the load balancing ratio drops to r = .63. The mesh can be rebalanced by

reassigning the range each partition is responsible for. After rebalancing the load balancing ratio

rises to r = 1.0, a perfect balance.

0 10 20 30 40 50 60 70 80 90 100

0 10 20 30 40 50 60 70 80 90 10032 34 36 38

0 10 20 30 40 50 60 70 80 90 10032 34 36 38

Figure 3.5 Rebalancing in Morton space
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Figure 3.6 A well balanced partition

3.1.4 Geometry

Geometry can be represented in many forms, including Computer Aided Design (CAD),

Non-uniform Rational Basis Splines (NURBS), Stereo Lithography (STL), and signed distance

fields. The mesh generator is not designed to work with any specific geometry input. Instead,

the mesh generator interacts with the geometry through an abstract interface. Any object which

implements this interface must answer the questions shown in the code listing 3.1.

Listing 3.1 The interface required by a geometry object.

bool doesExtentContainGeometry(const Extent<double> &e) = 0;
int getStatusAtPointWithRadius(const Point<double> &p, double r) const = 0;
Point<double> getClosestPointOnSurface(const Point<double >& p) const = 0;

Each function is targeted to a specific mesh generation function. During top down subdi-

vision only voxels with extent boxes containing geometry are subdivided. Deleting voxels internal
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to the geometry is done with a flood fill which is seeded with the in or out status of points in the

mesh domain. Finally, points are placed on the surface by using the closest point on the geometry’s

surface. So long as the geometry can be used to answer these simple questions, the mesh generation

can generate a mesh on that geometry.

3.1.4.1 Stereo Lithography Collections

Most examples in this work were done with a geometry object based on a collection of

triangular facets read in from a Stereo Lithography (STL) file. The functions listed above are all

implemented to allow for STL collections to be used for mesh generation. STL collections can be

output from many CAD programs or 3 dimensional sculpting applications. The STL format is a

common format used in 3D printing.

An STL collection simply contains a collection of triangles. There is no requirement in

the STL file format that the collection defines a surface mesh. There is no adjacency information

connecting one facet to any neighboring facets. The collections are not required to be watertight,

or even manifold. STL collections which represent geometry are often optimized to minimize the

number of triangles in the collection. Because of this, the collections are generally unsuitable as

surface meshes for computational simulation. The collections often have facets with very high

aspect ratios as well as extreme changes in facet size. Figure 3.7 shows an example STL collection

with both high aspect ratio triangles and regions of extreme gradation in facet size.

During top down subdivision, the geometry must quickly answer if an extent box contains

geometry. The triangular facets are stored in an Alternating Digital Tree (ADT) which allows for
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Figure 3.7 A faceted geometry surface

logarithmic query time of all the facets within an extent box to quickly determine if a facet exists

within a voxel’s extent box. The other two functions for determining status and projecting points

onto a surface are more difficult.

One major difficulty when dealing with STL collections is floating point imperfections in

the surface description. It is common for STL collections to have small imperfections in the surface

they describe since it is not a strict requirement that STL surfaces be manifold.

3.1.5 In Out Testing

The geometry must be able to determine if a query point in space is inside or outside the

geometry. This information is used by the grid generator to determine what voxels will remain

in the computational domain and which voxels are not required. The STL based geometry class
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determines in and out status by castingmultiple rays from a query location, and counting the number

of intersections each ray makes with the facets of the STL collection.

From a query point in space, rays are cast along each axis line. The rays extend past out

of the meshing domain. The number of intersections with the ray and the geometry along each

ray is added up. If the number of intersections along each line is odd, then the point is inside the

geometry. If the number of intersection points is even, or zero, then the point is outside the surface.

Figure 3.8 diagrams these two cases.

Figure 3.8 Even and odd intersections for ray casting

STL collections often have geometric imperfections such as gaps and regions of overlap.

Geometry with these imperfections are sometimes referred to as "dirty" geometry. It is desirable
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that the mesh generation process be tolerant to these issues. Primarily this means that in and out

test of the STL collection should be robust.

Ray casting techniques can produce erroneous results if the casted ray passes through an

ambiguous region of the geometry. Figure 3.10 shows a ray which passes at a tangent to the

surface of the geometry. In this example, three rays will report that the query point is outside the

geometry, however, one ray will report that the point is inside the geometry. Geometric features,

gaps, overlaps, and numerical error can all cause ray casting algorithms to fail.

Figure 3.9 Surface tangent ray casting

A more robust algorithm for in-out testing can be built by recognizing that all causes of

errors in ray casting only create local regions of ambiguity. Furthermore, the mesh generator does

not need to know the in and out status of specific points. Instead, the mesh generator is only trying

to determine if a voxel is inside or outside the geometry. Consider Figure 3.10. The mesh generator
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needs to know if the green voxel is inside or outside the geometry. To determine the status the

in-out test will cast rays from inside the green voxel. If the rays are cast from the voxel’s centroid

then rays will be in disagreement with 3 rays determining that the voxel is outside the geometry,

but one ray determining inside. It does not appear that the algorithm has much confidence in its

answer. This lack of confidence implies that the ray casting algorithm is locally ambiguous.

Figure 3.10 Surface tangent ray casting at voxel discretization

Notice that the selection of the voxel’s centroid as the end point of the rays was arbitrary,

but is also the source of the problem. Any point within the voxel is equally valid to determine if the

voxel is inside or outside the domain. If the initial algorithm cannot determine a confident status it

can try again using a new query point. Figure 3.11 shows that even a slight change in the location

of the query point yields no ambiguity that the query point is outside the geometry.
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Figure 3.11 Shifted ray casting

In all cases where the results of the in-out query are not confident, the procedure is the

same: try a different origin point for the rays. This assumes that any imperfections in the geometry

representation are small.

3.1.6 Detecting Ambiguity with Ray Casting

Detecting ambiguity is possible since multiple rays are being cast simultaneously. The

outcome of the rays is compared. If there is not a unanimous decision the result is considered

ambiguous. However, it is possible with dirty input geometry that even if all the rays determine the

same in-out status, the status could still be incorrect. If confidence in the test was only determined

by a unanimous decision of ray casting then the answer would be reported as confident - and

incorrect. This is because the individual ray casting algorithm can suffer from errors.

Ray casting techniques can suffer from numerical error. Some researchers have proposed

using arbitrary precision arithmetic to mitigate numerical error. [85,86] However, these techniques
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still assume that the underlying geometry is generally free from imperfections. And these techniques

can be slow on modern computer architectures. [87] Work has been done for mesh generation with

dirty geometry. Wang et al. determines in-out status by user selection of cells in the fluid domain

region. [88] Lahur et al. states that they use ray casting; however, they do not specify what algorithm

they use or how they handle cases with overlaps and gaps. [34, 89, 90].

The ray casting algorithm used in this work was designed to try to detect when a ray is

intersecting a triangle where the intersection test may be erroneous. The confidence in the outcome

of the ray casting is reported along with the determined in-out status. If a result is not confident

it can be thrown out and the in-out test for a voxel can be retried. The ray triangle intersection

algorithm which was selected is based on the work by Möller et al. [91, 92]. A point (T) on a

triangle described by three vertices (V0,V1,V2) is given by:

T (u, v) = (1 − u − v )V0 + uV1 + vV2

where (u, v) are barycentric coordinates, each on the range [0,1], and t is the distance along the

ray’s direction. A point on a ray can be described as

R(t) = O + tD

where O is the origin or the ray, and D defines the normalized direction the ray points. If the ray

and triangle intersect, they do so when

R(t) = T (u, v)

65



O + tD = (1 − u − v )Vo + uV1 + vV2

Which can be cast as the following linear system:

[
− D, V1 − V0, V2 − V0

] 
t
u
v


= O − V0 (3.1)

and solved for the barycentric coordinates on the triangle (u, v) and the distance from the ray’s

origin t.

The technique creates a coordinate system u, v using two of the triangle’s edges. The

location of the intersection with the ray and the triangle is determined on this coordinate system.

If the intersection occurs at a location where both u and v are on the interval [0,1] then the ray and

the triangle intersect.

Let the edges of the triangle be defined by E1 = V1 − V0, E2 = V2 − V0, and allow the

substitution T = O − V0. The solution to 3.1 can be obtained using Cramer’s rule:



t
u
v


=

1
| − D , E1, E2 |



| T, E1, E2 |
| −D, T, E2 |
| −D, E1, T |


From linear algebra, substitutions can be made using: |A, B,C | = −(A × C) · B = −(C × B) · A

yielding the final form for computing the intersection of the ray and the triangle.



t
u
v


=

1
(D × E2) · E1



(T × E1) · E2
(D × E2) · T
(T × E1) · D


If the barycentric coordinates (u, v) are outside the interval [0,1], or t < 0 (the triangle is

behind the plane normal to the ray), then the ray and triangle do not intersect. However, if one of

the coordinates u or v have values close to 0 or 1, then the ray intersects the triangle close to the
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edge of the triangle. For a surface triangulation with small gaps and small regions of overlap, a

ray passing very close to the edge of a triangle may mean that the ray passes close to one of these

imperfections. Figure 3.12 shows two cases. The ray in the first case intersects the triangle near

the triangle’s center. There is little doubt that there is geometry at that intersection point. However,

the second case shows a ray which intersects very near one edge of the triangle. This case can be

marked as ambiguous. Ambiguous ray intersections can be retried using a different origin point of

the ray. If the triangle represents a sharp feature in the geometry, or the triangle is near some small

imperfection such as a gap or overlap, a small change in the ray’s origin point may yield a different

answer.

u,v u,v

Figure 3.12 Triangle ray intersection

In most cases all the rays agree whether a point is inside or outside the domain. However, it

is possible that one or more rays intersect the surface at a tangent, as shown in Figure 3.10. In-out
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status could be determined for the point by taking the most often found outcome of the rays. In

Figure 3.10 the most often found outcome was that the point is outside the surface.

Allowing the rays to vote to determine the in-out status is a good solution when the surface

is well behaved. However, the problem is compounded by imperfections commonly found in STL

files which may have small gaps or regions of overlap between surface triangles.

3.1.7 Deleting Internal Elements

The next stage in mesh generation is removing voxels which are inside the geometry. Voxels

which cross the geometry are tagged as crossing during top down subdivision. All voxels which

do not cross the geometry are left as untagged. Some of these untagged voxels will be inside the

geometry and should be deleted. Figure 3.13 shows an example mesh divided into four partitions.

The orange voxels are tagged as crossing, all other voxels are untagged.

Each partition can query the geometry to determine if a point in space is inside or outside

the geometry. However, it is inefficient to query the geometry for each voxel. If the status of one

voxel in a region is known, then a painting or flood fill algorithm can be used to mark the rest of

the voxels in that region.

The painting algorithm iterates through the voxels until it reaches a voxel with an untagged

status. The algorithm then queries the geometry to determine if the voxel is inside or outside

geometry. Once the status of the geometry is known the seed voxel and the seed tag are passed to

the painting algorithm to successively spread that mark to the neighboring voxels. The painting

algorithm does not spread to voxels which already have a tag, so the algorithm does not spread
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Figure 3.13 Geometry and domain partitioning

to voxels already tagged as crossing the geometry. Listing 3.2 shows pseudocode for the painting

algorithm.
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Listing 3.2 The painting algorithm.

void paintTagFromSeed(seed_voxel , seed_tag){
Queue process;
process.push(seed_voxel)
while(not process.empty()){

auto voxel = process.front();
tree[voxel].tag = seed_tag;
for(auto neighbor : tree[voxel].neighbors())

if(tree[neighbor].tag == UNTAGGED)
process.push(neighbor)

process.pop();
}

}

The painting algorithm can fail if the geometry is not closed surface, but small imperfections

in the geometry are allowed. But these imperfections must be small with respect to the isotropic

spacing of the mesh in the region of the imperfection. Figure 3.14 shows a curved geometry with

a small gap. If the mesh spacing is coarse, this gap does not cause a problem for the painting

algorithm. However, if the mesh spacing is small, the painting algorithm will fail.

The painting algorithm only operates on a local partition. It does not communicate tags

across partition boundaries. Each partition has access to the geometry and determines in-out status

for each untagged voxel in the partition without communication. After all voxels have been tagged,

the voxels with the in tag are deleted.
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Figure 3.14 Feature imperfections and voxel spacing

3.2 Filling the Tree Bottom Up

Once top down subdivision is complete, the mesh has appropriate isotropic spacing near

the geometry, but mesh spacing grows too quickly away from the geometry. Gradation is enforced

by traversing the tree from the bottom layer of the tree and climbing up.

An example of a mesh which has undergone top down refinement can be seen in Figure

3.15. Notice that the mesh has large cells adjacent to much smaller cells. High gradation creates

problems for many simulation techniques. Rules on cell growth rates must be enforced both locally

within a partition and across partition boundaries.

Smooth cell size gradation is enforcedwith two characteristics. The first characteristic is that

no cell has more than one hanging node per edge. This restriction is common among hierarchical
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Figure 3.15 Top-down mesh with invalid hanging nodes

mesh generators and is referred to as a 4:1 neighbor gradation (2:1 in 2D), or sometimes simply

the balancing rule. A violation of the balancing rule is illustrated in Figure 3.16. The large voxel

on the right in Figure 3.16a has three neighboring voxels on the same side. The large voxel’s left

side has two hanging nodes. The balancing rule requires that each voxel side has at most only one

hanging node. The balancing rule is being satisfied if all voxels are within 1 depth of all their

neighboring voxels. A violation of the balancing rule can be resolved by subdividing any voxels

which are too large (at too shallow a depth). Figure 3.16b shows the same set of voxels after a
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subdivision refinement has been performed on the largest voxel. Now each voxel has at most one

hanging node on any given side, and the balancing rule is now being satisfied.

(a) A violation of the balancing rule. (b) The balancing rule enforced by subdivision.

Figure 3.16 Hanging node rule violation and resolution

The second quality characteristic attempts to control the growth rate of cell sizes. Typical

best practices for mesh generation have been to use geometric growth rates to control cell sizes.

Growth factors between 10 and 20% are commonly used. [93, 94]. Octree Cartesian techniques

can only exhibit discrete cell sizes. If the mesh contains a cell of length d the mesh may also

contain cells of length 1
2d or 2d. The mesh will not contain cells with length 1.15d. Because

of discrete cell sizes, octree Cartesian meshes cannot produce cell sizes which vary as smooth as

general unstructured meshing techniques. Cartesian meshes can specify layer thicknesses. These

can be used to approximate continuous growth rates. Figure 3.17 shows a layer which is four cells

thick.
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Figure 3.17 Thickness parameter enforcement

A region of a mesh with the same size cells is referred to as a layer. A layer thickness can

be used to describe the minimum number of adjacent cells that must be within a layer before the

cell spacing can change. Figure 3.18 shows cell spacing as a function of distance assuming the

cell spacing is 1.0 at a distance of 0. Ideal cell spacing is shown for a 15% and a 20% growth

rate. The voxel spacing (shown in green) grows in discrete jumps as spacing doubles from 1.0 to

2.0 to 4.0 and onward. If the layer is required to have a minimum of 5 cells, then the cell spacing

is conservatively below a 20% growth rate. Increasing the minimum layer thickness to 7 cells

conservatively matches a growth rate of 15%. Growth rates of 10% can be conservatively obtained

by using layers with a minimum of 10 cells.

The enforcement of both the balancing rule and layer thickness occurs simultaneously and is

handled in a bottom up sweep. The technique begins at the deepest level of the octree corresponding

to cells of the smallest spacing. An extent box is created around each of these cells. Each extent
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Figure 3.18 Thickness parameter compared to geometric growth rate

box is enlarged using the gradation parameter n described above. Once enlarged, all extent boxes

are used for refinement until all cells inside the extent boxes match the smallest spacing. This
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step creates a layer of the smallest cells. Listing 3.3 shows how layers are created within a single

partition.

Listing 3.3 An example supervisor function which refines the mesh.

void OctTree::createLayers(int num_layers) {
double offset = 0.25 / 1 << 21;
for (int depth = getMaxDepth(); depth > 1; depth--) {

double depth_spacing = 1 << depth;
double layer = num_layers * depth_spacing + offset;
for (auto& voxel : voxels) {

if (not voxel.isLeaf())
continue;

if (voxel.depth != depth)
continue;

Extent refinementBox = voxel.extent;
refinementBox.lo -= Point(layer, layer, layer);
refinementBox.hi += Point(layer, layer, layer);

refine(refinementBox , depth - 1);
}

}
}

After all the cells in the smallest layer have been created, the balancing rule is enforced on

all voxels adjacent to the newly created layer. This is done by enlarging extent boxes for all cells at

the smallest spacing. When enforcing the balancing rule, extent boxes are only enlarged enough to

capture neighboring cells. Neighboring cells are subdivided until they satisfy the 4:1 requirement.

Now, there are no cells at the smallest spacing that are adjacent to any cell that is greater than 8

times its size, and each layer of cells of the same size has the proper thickness. The process is
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repeated at each depth of the tree beginning at the deepest level of the tree and proceeding to the

highest.

3.3 Nearbody Grid Creation

Nearbody grid generation begins by removing all voxels crossing the geometry and by

additionally removing voxels near crossing voxels. The resulting cavity contains space for both

the geometry and for the nearbody mesh which will be created. Any voxel remaining in the mesh

which is exposed to this cavity is marked as exposed and added to a list of voxels which will make

up the nearbody mesh. Neighboring voxels in the vicinity of exposed voxels are also added to

the growing list of voxels which will make up the nearbody mesh. Each partition then begins the

process of converting voxels to nearbody cells.

The nearbody grid is an unstructured graph. The graph is stored using a collection of cells,

unlike the offbody grid which is stored as simply cartesian extent boxes. For simplicity only one

type of cell is allowed in the nearbody. This cell is simply a collection of the 26 possible nodes

which may exist in a voxel, the node ordering is shown in Figure 3.19.

Translating from the offbody to the nearbody occurs in three stages. First nearbody cells

are initialized. Then the nodes are generated and marked in their owning cells. Finally, non-local

graph information is transferred to neighboring partitions.

The array of nearbody cells is initially allocated based on the number of voxels being

exported. Each cell begins with all its adjacent nodes being marked as uninitialized. Up to this

point, no nodes have been generated. It is unknown which of the potential 26 nodes in each cell will
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Figure 3.19 Potential voxel nodes
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exist. Each cell will always have 8 corner nodes. But a cell may need additional nodes depending

on the size of the neighboring cells. Some cells will need mid-face and mid-edge nodes to match

with corner nodes of neighboring smaller cells.

Once the cell array is allocated and initialized, the nodes are created. The process iterates

to each voxel being exported and checks the 8 corners of the cell associated with that voxel. If a

corner node is still marked as uninitialized, then the node must be created. The coordinate value

of that node is determined based on the extent box of the voxel. The coordinate is appended to

the list of node coordinates, and the index of that coordinate is recorded. The newly created node

coordinate and index are then passed recursively down the octree to each voxel containing the node’s

coordinate. If the node reaches a voxel where one of the 26 voxel nodes has the same coordinate

value then the node’s index is marked for that cell’s local node. There is no risk of getting an

incorrect comparison between a voxel’s local node and the input coordinate. The minimum edge

length of the mesh is known and can be used to a tolerance for the floating point comparison.

Once all the voxel corners have been processed many cells will have mid-edge and mid-face

nodes. However, not every possible combination of mid-edge and mid-face nodes are allowed. For

simplicity, a rule is then applied. Any face adjacent to an edge with a mid-edge node is required

to have a mid-face node. An example of this is shown in Figure 3.20. One sweep through the

nearbody cells is required to check for any missing mid-face nodes. If any are found, they are

created and set using the same octree based method that was used for generating the original nodes.

Some vertices will exist in multiple partitions. These vertices are said to have remote-

residency (that is they also reside on non-local partitions). During the nearbody projection stage only

one partition will "own" vertex. That partition will be responsible for computing that vertex’s new

79



Figure 3.20 Mid-face and mid-edge nodes

coordinate location and notifying other partitions when that location changes. To facilitate updating

information on non-remote partitions, every partition which contains a vertex also maintains a list

of remote residencies for that vertex. The residencies are stored as partition identifier and local

vertex identifier pairs. No global node identifier is generated. It is not needed by any part of the grid

generation process. It is easier to map directly from a vertex local index to the remote partition -

remote identifier pair than it is to map from local index, to global index, then to a remote partition’s

local index.

This remote residency information must be generated. Each partition exports a list of local

vertices which are in voxels marked as having non-local residency or those voxels’ neighbors. The

list contains both each vertex’s coordinate location, and the local vertex identifier. These lists

are broadcast to all other partitions. The receiving partitions process each vertex, by passing the

coordinate down the local octrees to determine what local vertex shares the same coordinate. When

a shared coordinate is found, the mapping between local vertex and remote residency is created.

When a node has multiple residencies, the partition with the lowest partition number is assigned

the owner.
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Figure 3.21 Remote node residencies

3.4 Body Conforming Grid Using Projection

Prismatic elements are created once the the nearbody voxels are translated to the nearbody

mesh data structure. These prismatic elements are created beginning from the exposed faces of the

nearbody voxels. These faces are duplicated creating initially degenerate prismatic elements. All

the nodes which will be projected onto the surface mesh are tagged as SURFACE. All the nodes

in the nearbody mesh which are also contained in cartesian locked voxels in the offbody mesh

are tagged as FROZEN. All other nodes in the nearbody mesh are tagged as INTERIOR. During

surface optimization FROZEN nodes will not be allowed to move. Nodes labeled INTERIOR will

be allowed to move to increase the quality of adjacent elements, both voxel elements and prismatic

elements. Nodes tagged as SURFACE will be allowed to move to optimize both quality of adjacent

elements and to ensure that the geometry is captured.
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Nodesmarked SURFACEwill be projected onto the geometry. The position of surface nodes

is projected onto the geometry using algebraic smoothing. A new node’s location is computed as

the weighted average of the node’s previous location and a distance weighted average of the node’s

adjacent surface faces. This is given by:

pn+1 = (1 − ω)pn + ω

∑
i fidi

di

where pn, pn+1 is the node’s old and new location, ω is a relaxation weight (usually set to 0.5),

f is the centroid of an adjacent surface element, and d is the distance between the node and the

face centroid. This smoothing step is repeated four times. The final step of projection is to move

SURFACE nodes to the closest point on the geometry using the getClosestPointOnSurface()

function implemented in the geometry wrapper.

The smoothing technique does not capture sharp geometric features. Projection techniques

which include geometric feature capturing have been explored by other researchers, and it remains

an area of active research. [30, 34, 90] This work makes no contribution in this area and mostly

follows the work of Lahur et al. [34]

The location of SURFACE nodes is fixed once they are moved directly onto the geometry

surface. The last step of nearbody mesh generation is to smooth nodes marked INTERIOR.

Algebraic smoothing is used again for interior nodes.

pn+1 = (1 − ω)pn + ω

∑
i cidi

di
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For interior nodes adjacent volume element centroids (c) is used instead of adjacent face centroids.

3.5 Adding Resiliency

The grid generation process must be broken into sections where checkpoints can be inserted

in order to operate within this fault tolerant model. If a fault has been detected than the process can

restart from the last checkpoint.

3.5.1 Resilient Units

Figure 3.22 shows an overview of the parallel grid generation process. The process is

split into four categories: Setup, Off Body Generation, Near Body Translation, and Near Body

Optimization. These high level categories can be broken down further. The highlighted steps

Gradation Loop, and Optimization Loop are, the two single most expensive operations in the grid

generation process consuming 65 and 11 percent respectively of the total running time.

Minimizing the longest elapsed time between checkpoints will minimize the amount of

potential work lost in the event of a failure. Figure 3.23 shows where creating checkpoints have

been inserted into the process.
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Figure 3.22 Parallel grid generation overview
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3.5.2 Supervisors

Each communication operation has the potential to throw a timeout exception. Commu-

nication operations must be prepared to capture these exceptions and perform the required fix. A

simple pattern can be used to manage these operations which may fail, the supervisor pattern.

The supervisor pattern has two components: a set of worker agents, and a supervisor. The

role of the supervisor is to monitor the operation of the agents, and if an agent fails the supervisor

is responsible for recovering from the failure. The supervisor pattern is simply implemented in the

mesh generation code using timeouts. Pseudocode for a supervisor pattern is shown in Listing 3.4.

The outer function refineToDepth is responsible for refinement, including recovering from any

failures which occur during refinement. The delegated method refineToDepth_agent is only

responsible for the logic of refinement; it is not fault tolerant.

When the supervisor function returns, it guarantees that the refinement operation was

completed. It also guarantees that the progress has been saved in a checkpoint.

Listing 3.4 An example supervisor function which refines the mesh.

void refineToDepth(Mesh& mesh, Geometry* geometry , int depth){
bool successful = false;
while(not successful){
try {
mesh.refineToDepth(geometry , depth);
mesh.createNewCheckpoint(vault);
successful = true;

}
catch(TimeoutException& e){
Messenger::recover();
mesh.rollbackToLatest(vault);

}
}

}
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CHAPTER 4

FAULT TOLERANCE: METHODOLOGIES AND ALGORITHMS

4.1 Introduction to Multiple In-Memory Checkpointing

Checkpoint and restart is a common strategy used by high performance applications. A

checkpoint is a set of working data needed by an application. If the application was to halt

unexpectedly a checkpoint must contain any data needed for the application to resume calculation

from the point where the checkpoint was created. Typically the checkpoint is written to permanent

storage; this is called in-disk checkpointing. If the application fails during execution, it is simply

restarted beginning from the latest checkpoint file. Unfortunately, read and write bandwidth to

file systems is much slower than network bandwidth. Disk based checkpointing may become

prohibitively slow if failures become more commonplace. As shown in chapter 2, simulations of

full aircraft in maneuvering flight man suffer hundreds of failures during computation.

Of the many strategies which can be employed to increase resiliency of large scientific

systems, multiple in-memory checkpointing was selected to be used in this work rather than in-disk

checkpointing. With in-memory checkpointing, the data in the checkpoint is stored inmainmemory

on the compute nodes which are running the application. Multiple in-memory checkpointing stores

multiple copies of the checkpoint data on different nodes within the network. Take a look at Figure

4.1 as an example. This is a double in-memory backup since a backup of each work unit is stored
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twice. Once on the processes which owns the work unit, and once on an adjacent process. If these

processes are properly mapped onto different compute nodes, then this backup strategy is able to

survive a failure on any single compute node. It could even survive multiple simultaneous failures

so long as the surviving processes were either A and C, or B and D.

A

A D

B

B A

D

D C

C

C B

Working 
Partition

Checkpoint 
Fragment

Figure 4.1 Double in-memory checkpointing

The remainder of the chapter discusses how the software developed for this work implements

a multiple in-memory checkpointing strategy. The software must be able to redundantly store

checkpoint data, detect failures, recover the messaging layer after a failure, and finally retrieve

checkpoint data if a complete set of data survives a failure.
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4.2 Software Overview

In-memory checkpointing is a critical component of a fault tolerant software package which

was developed for this work. The package can be used to develop parallel applications which are

more resilient to failures within the compute network. The software package is made of a fault

tolerant messaging system and a multiple in-memory checkpointing library.

The package is sensitive to communication latencieswithin the network andwill report that a

process has failed if communication with the process stops. The failure is passed to the application

layer which can then attempt to recover. The package aides in that recovery by determining

what processes remain and what checkpoint data those processes contain. The application can

then rollback to when the checkpoint was created if a complete checkpoint exists. If a complete

checkpoint did not survive the failure, the program will exit.

The software framework is split widely into two user facing modules. The first is called

Messenger which manages the message passing on behalf of the end user’s application. The

second module is called Vault, and it manages the redundant storage and retrieval of checkpoints

as requested from the user application.

4.2.1 Messenger

Messenger is the user facing module which delivers messages between processes on behalf

of the user application. Parallel scientific code is often written to the MPI standard, so it was

desirable to make the API of Messenger similar to MPI. Messenger maintains the abstractions of
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rank and size borrowed fromMPI communicators. Point to point messages can be sent between any

two processes within the network. Additionally, collective communications are also implemented.

Messenger supportsmoremessaging types than is common inMPI.Most notably, Messenger

supports Remote Procedure Calls (RPC). A user application can register a function using a unique

identifier referred to as the channel. Any other process within the network can then remotely call

that function. Messenger doesn’t know anything about the function so the user application can

register any function. Using an RPC protocol make it easier to use algorithms where the runtime

communication pattern is highly dynamic making it difficult to precisely match send and recv calls.

Messenger expects that each communication sent by the user application will be completed

within a reasonable timeout length. If the message is not completed by the end of the timeout, an

exception is thrown to the user application notifying the user application that a process has failed

and recovery must be initiated. The user can then call the recover function within Messenger which

blocks until the abstractions of rank and size are again valid. A process’ rank may change during a

recovery. This is to ensure that the set of ranks is always the interval [0-size).

4.2.2 Vault

Storing and retrieving checkpoints is handled through a module named Vault. Checkpoints

stored in Vault can be partitioned into pieces called fragments. A full checkpoint is made of an

arbitrary number of fragments. Each fragment is assigned a unique identifier. If a checkpoint is

partitioned into n fragments, all fragments [0-n] must survive a failure for the checkpoint to be
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complete. Vault allows any user process to store a fragment and manages redundantly storing the

fragments, in-memory, throughout the network of compute nodes.

All fragments which make up a checkpoint must be stored in memory before a failure

occurs, or the application will not be able to recover. It is the responsibility of the user application

to create fragments, and to give the fragments to Vault so they can be properly stored.

4.3 Data Structures

Checkpoint fragments are implemented in a specific C++ data structure called a Stream.

Stream allows checkpoint fragments to be flexible in what data is stored, and are still simple to use.

Each Stream stores data in a linked-list. Each element in the list is a tuple containing a pointer

to a contiguous block of memory and the size, in bytes, of the block. Each block of memory can

have a different size so that any data structure can be stored within a Stream regardless whether it

is structured or unstructured data. Objects are stored and retrieved with a First In First Out (FIFO)

strategy and Stream overloads the left and right shifting operators for convenience. A simple

example use of these operators is shown in listing 4.1. Notice that after the variable b is pushed

into the stream its value is changed. However, the value is pulled back out of the Stream is the

unchanged value. That is because data is copied when it is pushed into a Stream. Stream works

with any C++ Plain Old Data (POD) type without modification and also has support for std::vector

types of POD as well, as shown in Listing 4.2.
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Listing 4.1 A simple usage of stream to push integers into a Stream, then extract them out.

MessagePasser::Stream stream;
int b = 5;
stream << b;
b = 7; // invalidate b, testing that the data was copied
int a;
stream >> a;
REQUIRE(a == 5);

User defined data types can be made to work with Stream. There are two ways of making

a user defined type work with Stream. If a type is contiguous in memory then nothing has to be

done to make it work with Stream. When an instance of that type is pushed into a Stream it will

be copied using a memmove. Many simple data structures, such as 3 dimensional points, fall under

this category.

Listing 4.2 Stream also works with std::vector of POD

MessagePasser::Stream stream;
std::vector<int> input = {1,2,3};
std::vector<int> output;
stream << input;
input.assign(3,9);
stream >> output;
REQUIRE(( output == std::vector<int>{1,2,3} ));

More complex user types must know how be packed into a stream and how to be unpacked

from a stream. The user defined type can describe how the object should be packed and unpacked

by defining functions for the left and right shifting operators. An example of a user type (called
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MyClass) which has added support for stream is shown in Listing 4.3. Notice that thememory layout

of this class is not contiguous because the class contains a data field of the type std::vector,

therefore, simply a call to memmove would only perform a shallow copy. If the stream was then

communicated across the network, the remote process would not receive the complete state of the

object. The MyClass type has defined both the input and extraction operators which describe how

to perform a deep copy. Listing 4.4 demonstrates how stream can be used to store and retrieve an

instance of the MyClass type using a stream.

Listing 4.3 An example of adding the stream input and extraction operators to a generic user class.

class MyClass {
public:

int a;
std::vector<int> vec;
double d;

MyClass(int a, const std::vector<int>& vec, double d)
: a(a), vec(vec), d(d){}

inline friend MessagePasser::Stream & operator <<(
MessagePasser::Stream &stream, const MyClass& myClass){

return stream << myClass.a << myClass.vec << myClass.d;
}
inline friend MessagePasser::Stream & operator >>(

MessagePasser::Stream &stream, MyClass& myClass){
return stream >> myClass.a >> myClass.vec >> myClass.d;

}
};
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Listing 4.4 Storing and retrieving instances of MyClass with Stream.

MyClass sending(9, {1,2,3}, 5.5);
MessagePasser::Stream stream;
stream << sending;
MyClass recving;
sending.a = 9001;
sending.vec[0] = 9001;
stream >> recving;
REQUIRE(recving.a == 9);
REQUIRE((recving.vec == std::vector<int>{1,2,3}));
REQUIRE(recving.d == 5.5);

4.4 Messenger Implementation

The first step in fault recovery is detecting that a problem has occurred. Unfortunately,

standard MPI does not offer any reliable strategies for detecting failures. This was the primary

motivating reason to develop a messaging platform specifically designed with fault tolerance in

mind. The following section discusses the implementation details of Messenger.

An overview of the design of the Messenger package is shown in Figure 4.2. It is important

to note that, as shown in this figure, a simulation code using this package only interacts with the

topmost layer of the package. This topmost layer, simply called Messenger, is the public facing

API.
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Figure 4.2 Internal layout of Messenger
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4.4.1 Messenger, the API Layer

The topmost layer of the messaging package is known as Messenger, this is the only layer

that directly interacts with the simulation code. The full public interface of the Messenger API is

shown in Listing 4.5.

Listing 4.5 The interface of Messenger module.

class MessengerZMQ {
public:

friend class ChannelZMQ;
static void initialize();
static void finalize();
static int rank();
static int size();
static void barrier();
static void send(MessagePasser::Stream &s, int destination);
static void recv(MessagePasser::Stream &s, int source);
template <typename T> static void send(const T & a, int destination);
template <typename T> static void recv(T & a, int source);
template <typename T> static void send(const std::vector<T> &a,

int destination);
template <typename T> static void recv(std::vector<T> &a, int source);
template <typename T> static void broadcast(T &a, int source);
template <typename T> static void broadcast(std::vector<T>&a, int source);
template <typename T> static std::vector<T> gather(T& a, int destination);
template <typename T> static std::vector<T> allGather(T&a);
template <typename T> static T max(T t);
template <typename T> static T min(T t);
template <typename T> static T sum(T t);
static ChannelZMQ registerChannel(int channel,

std::function<void(MessagePasser::Stream)>);
static std::vector<int> channelsInUse();
static void recover();

};

Adeveloperwho is familiarwithMPI can see some common concepts: send, recv, broadcast,

gather, allgather, and barrier. In fact, the only functions which may look foreign are the final
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3: registerChannel, channelsInUse, recover. Messenger uses registerChannel and

channelsInUse to support Remote Procedure Calls (RPC). The last function, recover, tells

Messenger to recover the messaging package after a failure. The recover function will be discussed

in detail later.

The communication routines in Messenger are templated so that they can take many data

of different types. The caveat is that the type passed must be contiguous in memory and therefore

can be communicated by copying the object byte by byte. Many common C++ data structures

cannot be communicated in this way. In fact, perhaps the most useful data structure in C++,

std::vector, does not fit this description. Specialized functions for send, receive, and broadcast

were all written to ensure that std::vector can be used easily and efficiently with Messenger.

These routines in turn assume that the data stored in vector are simply copyable. This may sound

like a dangerous assumption that would astonish a user of the MessengerAPI and cause all manner

of hard to find bugs. Luckily, this is not the case. The C++ templating system ensure strong typing

that is checked at compile time. The data structures passed to Messenger are checked at compile

time using std::is_trivially_copyable to ensure that simple memmove copies are sufficient.

The C++ compiler will refuse to compile if the object passed to Messenger does not meet these

requirements. This strong typing is checked both on objects passed to Messenger directly, or

indirectly through astd::vector of that object. The user has the option of packing complex data

structures which cannot be trivially copied into a stream. The stream can then communicated

using Messenger message passing calls.

Messenger supports Remote Procedure Calls (RPC) in addition to supporting simple data

communication through message passing. A user can register a function to enable it for remote
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calling. By registering a function the user receives a Channel object in return. The Channel object

is how the user application makes remote function calls. Channel objects have only one function,

send, which sends a Stream to a specific rank. The send command will trigger Messenger to

communicate the data stored in the input Stream to the rank specified. The receiving rank will

then pass along the Stream to the function which was registered on the Channel.

Messenger is only the publicly facing API of the messaging package. The functions of

Messenger ensure that the type checking occurs at compile time, and then they delegate the

communication to lower level objects at runtime. Internally Messenger only stores pointers to

the lower level messaging subsystems, ZPI, and CallbackRouter. We will ignore these two

subsystems for now and instead jump right to a discussion of ZMQ Socket which is the lowest

layer in the messaging package. The discussion will then circle back around to discuss both the

messaging subsystem ZPI and the RPC subsystem CallRouter.

4.4.2 ZMQ Socket Layer

The entire messaging package was written on top of ZeroMQ, an open source messaging

library which supports distributed messaging. [95] ZeroMQ can be configured to run over many

different communication protocols, however for this work only TCP is used. ZeroMQ has some

significant benefits over simply using TCP sockets directly. ZeroMQ sockets can be started up in

any order. The send call can be posted before the receive call, or vice versa. Critically, messages

sent via ZeroMQ are guaranteed to arrive in full and intact or not at all. This guarantee relieves

Messenger from having to verify the integrity of received messages.
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ZeroMQ supports multiple communication paradigms; however, the only one used by the

messaging package is a simple client server strategy. The basic outline of a client server exchange is

shown in figure 4.3. In a simple client server interaction the client sends an initial communication

called a request to a server. The server takes that request, performs some action to process the

request and sends back a reply. Finally, the client sends back an acknowledgement of the reply. This

is the basis of all the communication within the messaging package. Ultimately all communication

goes through a ZeroMQ socket and is sent in this client server manner.

Client Server

send request

process 
request

send reply

acknowledge
reply

Figure 4.3 A client server interaction

ZeroMQ’s C bindings have been wrapped into theZMQ Socket layer of Messenger. The

ZMQ Socket layer was split into two modules: ZMQServer and ZMQClient. Each process must
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have a server running which is ready to accept incoming requests from clients at any time. These

servers are called ZMQServer. Both subsystems ZPI and CallbackRouter run a ZMQServer. The

server will receive requests from a specific port. ZMQServer is running for each communication

subsystem on each process across the compute cluster. When a message is sent from one process to

another, the sending process creates a ZMQClient. The client connects to the receiving server and

sends the message. The receiving server processes the message and then replies with the size of the

message. The sending client receives the reply, and returns a 0 in acknowledgement. If the sending

client receives the reply, the original message can be freed frommemory. Once the receiving server

receives the final acknowledgement it can proceed to process the next incoming message.

The ZMQ Socket layer of the messaging package wraps up the underlying ZeroMQ library

calls and additionally adds two pieces of functionality. First, both the client and the server socket in

the ZMQ Socket layer can convert from Stream data types to the data types required by ZeroMQ.

Secondly, ZMQ Socket clients and servers can be configured to simulate failures. Before any send

or receive call on either the server or the client sockets, they first make a call into FailureDirector

to see the socket should simulate a failure. The FailureDirector has only one public function

shouldFail which simply returns true if the socket should fail, and false if it should not. The

FailureDirector can be configured to fail randomly, when it receives a network communication,

or when a particular file exists. If a socket is told it should fail, the socket immediately enters into

a loop where it gets stuck until either the program exits, or a wakeUp message is sent to it.1

1This wake up message is useful to cleanly shut down processes at the program’s exit which are simulating failures.
Otherwise they have to be killed manually from the command line, which can be tedious in a compute cluster.
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Both the client and server wrappers in the ZMQ Socket Layer have simple interfaces.

A socket is constructed with the IP address and port number which they should communi-

cate through. The client socket will bind to this IP address and port number and then be-

gin listening. Client sockets will connect to servers through IP address and port number and

send requests. The server socket supports three methods: recv_request, send_reply, and

have_incoming_request. The client socket supports three similar methods: send_request,

recv_reply, and have_incoming_reply. The send and receive calls are written to support com-

municating data through pairs of pointers and byte lengths, as well as supporting communicating

Stream objects directly.

The have_incoming functions are used when polling on the socket. These functions take a

length of time in milliseconds that they will listen for an incomingmessage. If a message is received

during that time, or if a message was already pending, the function immediately returns so that the

message can be processed. If there is no incoming message, then the thread calling this function

sleeps for the full amount of time that was requested. Figure 4.4 shows two simple diagrams. The

top shows a case where the calling thread sleeps for the full amount of time allowed. In the bottom

case, the calling thread sleeps for a short amount of time, before it is waken up by an incoming

message. The calling code can then immediately begin processing the incoming message.

Without have_incoming, the calling code would have to poll often in order to decrease

the latency in the messaging system. Unfortunately, polling too often would starve other threads

of needed compute resources slowing down the entire system. Using have_incoming allows both

messaging subsystems ZPI and CallbackRouter to be responsive to incoming messages and also

to be efficient with the available compute resources.
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Figure 4.4 Efficient socket polling
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ZMQ Socket is the heart of the messaging package. It detects failures, and actually makes

the networking calls. The socket layer also can be configured to simulate failures. This is the point

of entry for simulated failures will will be used in the next chapter to test resiliency. No other part

of the simulation code or the messaging system knows if a failure is real or simulated.

4.4.3 ZPI, for Message Passing

ZPI is one of the two subsystems of the messaging package. ZPI, as its name suggests,

supports the MPI-like messaging. No part of ZPI is exposed to the user and instead is only

accessed by Messenger. ZPI (which loosely stands for ZeroMQ Passing Interface) only has two

public functions, send, and recv. The declarations of these functions are shown below:

void send(const void *a, size_t byte_length , Address address, int source);
void recv(void *b, size_t byte_length , int source);

The send and receive functions onlywork on contiguous data structures. All communication

sent by the user is split into a series of send and receive functions. ZPI’s simple public interface

is supported by the messaging package’s most complex implementation. The following discussion

will walk through first the process ZPI goes through to send a message, and then go through the

more complicated process of receiving one.

Sending a message through ZPI is relatively simple. The calling code (Messenger) calls

send with the appropriate pointer, message length, ip-address and port number, and the rank of the

calling process. When the calling thread posts the send call, the call will block until the send is
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complete. Internally ZPI starts up a ZMQ Client Socket which then connects to the IP address

and port number of the receiving process. ZPI sends first a message header which contains the

sending processes rank and an integer tag, and then sends the message as a request to the receiving

processes ZMQ Server Socket from the newly created client socket. The client socket waits

to get a reply from the receiving server socket, then replies in turn with an acknowledgement

completing the send. Execution is then returned all the way back to the code which originally

called Messenger.

ZPI is configured with a timeout length. After the message has been sent, the sending thread

waits using have_incoming_reply for the timeout length. As soon as the reply is received, the

sending thread sends back an acknowledgement and the function returns. If the receiving process

has died, then the reply will never be received by the sending thread. The sending thread will

continue to wait for the timeout length. At that time, the send call from ZPI will throw and

TimeoutException. This exception must be caught in the calling stack above the send call, or

it will kill the entire process. Figure 4.5 shows how a send command travels down the messaging

system’s layers and out to the network.

From the perspective of the simulation code, the receiving side is very similar. The

simulation code calls the appropriate recv call within Messenger. That sending thread blocks

until the receive has finished. However, internally the recv call in ZPI requires more effort.

TCP networking requires a client socket to know the IP address and port number of the

server socket where a request will be sent. The IP addresses and port numbers used for Messenger

are initialized before the start of the run. The list of IP addresses can usually be found in files
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Figure 4.5 Messenger executing a send

written by the queueing system on the compute cluster.2 Port numbers must also be known both

by the sending and receiving sockets. There are only a limited number of ports which can be

used and only one socket can be listen to a port at a time (that socket is said to be "bound" to the

port). Furthermore, it is common in modern compute clusters to run multiple processes on a single

compute node and therefore many processes may share the same network interface, and must share

the same port space.

Ports are a limited resource. On large systems there are not enough ports to open a receiving

port for each incoming message type. ZPI and CallbackRouter each use only one port to receive

communication. This is not symmetric with the sending side of the communication where any

2For example, PBS (the portable batch system) writes the list of computers being used during a job to a file which
is accessible on the root node of a parallel job. The file can be found using the $PBS_NODEFILE environment variable.
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number of client sockets could be sending data simultaneously. On the receiving side, both ZPI

and CallbackRouter can each process one incoming message at a time. Multiple server sockets

cannot be launched on the same port to handle concurrent incoming messages. Any concurrency

in receiving calls with ZPI must be managed internally.

When a ZPI recv function is called it creates a ReceiveRequest and stores it in a binary

tree. The ReceiveRequest contains a pointer to the buffer where the incoming message should

be copied. It also stores a timestamp of when the request was made, and copy of the expected

header (source rank of the incoming message, and a tag). Finally, the ReceiveRequest contains

a condition variable which is used to notify different threads as the status of the request changes.

Once the request is stored, the thread which made the receive call waits on the condition variable.

The receive request is now the responsibility of the thread which manages all incoming messages

for ZPI.

ZPI creates a separate thread on each rank at launch which is responsible for processing all

the incoming messages. This thread is called the listening thread and it has 3 jobs.

1. Receive incoming messages sent to the port number it is assigned to listen to.

2. Match those incoming messages with ZPI::recv calls.

3. Report when a ZPI::recv call has been waiting more than the configured allowable timeout

length.

On startup, the listening thread creates a ZMQ Server Socket which will receive all incoming

messages on the port number assigned to ZPI. All remote instantiations of ZPI in the compute

cluster will communicate with a given process through that server socket. The listening thread
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processes a simple loop shown in Figure 4.6. First, the thread uses have_incoming_request to

check for incoming messages or wait a short while for one to be received from the network. If a

pending message exists it is processed.

The listening thread processes an incoming message by reading the message in two parts,

the header and the message body. A PendingMessage struct is created each time ZPI receives a

message. The PendingMessage stores the header, a pointer to the message, and a timestamp of

when the message was received. The PendingMessge is stored in a binary tree which is sorted by

the header of the message so that the message can be quickly retrieved later.

Once the incoming message is processed by storing its associated PendingMessage, the

listening thread then tries to match any RecvRequests with the current list of PendingMessages.

The listening thread traverses the tree which stores the PendingMessages. It checks those headers

against the tree which stores the ReceiveRequests. When a match is found, the data from the

incoming message is copied into the buffer that was given by the user. Then the condition variable

in the ReceiveRequest is notified that the receive has been fulfilled. The thread which created the

original receive call is woken up, and the function can return, giving control back to the simulation

code.

Once all matches have been made for the current collection of incoming messages and

receive requests, the listening thread checks if any of the remaining pending messages or receive

requests have timed out. The listening thread iterates through first the receive requests, then the

pending messages, and checks their recorded timestamps against the current time. If the elapsed

time is greater than the allowable time than the request or message has timed out. When a receive

request times outt an exception is thrown on the thread which posted the original receive call.
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Figure 4.6 The ZPI listen thread
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Timeouts on pending messages are not reported. Instead, the message is simply erased. Erasing

an incoming message will cause a timeout later for the receive call which expects that incoming

message.

4.4.4 Callback Router, Remote Procedure Calls

Remote Procedure Calls within Messenger are done through the CallbackRouter sub-

system. Remote procedure calls are not as common in HPC applications as message passing. They

can be a powerful tool for building distributed applications. Simply put, remote procedure calls are

when one process calls a function on a different process. This is done by sending a message to the

remote process and having some mechanics in place so that the message triggers the appropriate

function call.

A callback is simply a function which stored like data and the function is then "called" at

some later time. The most common form of callbacks are done through function pointers. C++

has a larger set of approaches for storing callbacks. Most notably C++ supports std::function

which can generically store any callback, whether it is a lambda, functor, bound member function,

or the traditional function pointer.

The CallbackRouter subsystem is simpler than its sister package ZPI. However, like ZPI,

at the heart of CallbackRouter is a listening thread efficiently polling a ZMQ Server Socket.

CallbackRouter is how the RPC Channel objects are supported. Each Channel has a unique

number, called a channel number. By assigning a unique channel number, an arbitrary number

functions can be registered simultaneously. The registered functions are saved in a binary tree which
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is sorted by the associated channel number. Each remote procedure call send from a Channel’s

send command is prepended with the channel number. This allows for Messenger to quickly find

the associated function for a particular message. Every Channel object cleans up when it goes

out of scope. The registered function is automatically removed from Messenger and the channel

number can be used again for a different purpose.

Messenger allows for channels to be registered eitherwith a specific known channel number,

or it can dynamically find an open channel. Dynamically finding an open channel requires that

every rank will register the channel. If a dynamic channel number is requested the root node finds

an open channel, and then broadcasts the channel number to all other ranks. Dynamic channels

offer a quality of life simplification for users of Messenger. However, if a large number of channels

are being created and destroyed often, the additional broadcasts may become costly.

The CallbackRouter subsystem uses one port number per process, just like the ZPI

subsystem. All incoming remote procedure requests come in through that port. These messages

contain a message header that contains channel number that the message is being sent to. When

a callback is registered it is bound to a particular channel. The callbacks are then stored in a

binary tree, sorted on channel number. An overview of the steps take by CallbackRouter’s listen

function are shown in Figure 4.7.

The listen thread in CallbackRouter isn’t the only thread managed by the subsystem.

CallbackRouter also launches multiple threads forming a thread pool. All the threads in the

thread pool share a single queue of callbacks which need to be run. When the listen thread receives

an incoming message, it finds the callback for the channel the message was sent on and queues that

callback along with the received message. The thread pool works on calling the callbacks stored in
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the queue. Threads in the thread pool sleep when the queue is empty, they are woken again when

work enters the queue. The thread pool automatically load balances the work of executing the

callbacks because of the shared single queue. The shared queue with multiple worker threads also

enables dynamic load balancing while executing the callback functions. The messaging system

will not be bogged down by execution of a single long RPC since the listening thread used by

CallbackRouter does not actually execute the callback.

4.4.5 Summary

Two communication paradigms are supported through this messaging system. The first is

a fairly standard message passing system which matches explicit sends and receives. The second

is a less common strategy based on remote function calls. Both systems are implemented using

ZeroMQ configured over TCP. The entire messaging system is sensitive to failures through the

use of communication timeouts. Furthermore, the ZeroMQ socket wrappers at the lowest level

of the messaging package can simulate failures by simply refusing to return from either a send or

recv function. The rest of the messaging system can then respond to these failures by reporting

exceptions to the above software layers. Eventually these exceptions make it to the simulation code

where a decision can be made on how to proceed.

4.5 Vault Implementation

Vault is the multiple in memory checkpoint package which was written to support this

work. An overview of the internal structure of the package is shown in Figure 4.8. Notice that only
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two components of the vault package are exposed to the simulation code. For the simulation code

to use the checkpointing package, it must only need to create a Vault object where checkpoints

can be stored. The simulation code must create checkpoint fragments which it then stores in the

Vault. This section discusses the internal operation of how the checkpointing package works.

BackupPlan

Abstract

Vault

Checkpoint

Fragment

Simulation Code

creates stores fragments

creates

Messenger

configured with

made of

NearestNeighbor

Figure 4.8 Internal layout of Vault

4.5.1 Vault, the API layer

Vault itself is a C++ object which must be made by the simulation code. Each rank

must make a Vault object. Vault communicates with other remote instances using both message

passing and RPC strategies.

113



The Vault object exposes only a small number of functions used to store and recover

checkpoints. The listing of these functions is shown below. There are three steps to storing a

checkpoint using Vault; start the checkpoint, add fragments, end storing the checkpoint. The

start and end functions are synchronous across the entire compute system. When a fragment is

added locally, it could be sent to any number of remote processes. Vault must ensure that remote

instances are prepared to receive fragments when a local process tries to store them. The start

function initializes the channels used to store fragments from remote processes. Once the channels

are initialized, a barrier is called across the entire system. When the barrier is completed the

start function returns. The application code can they begin to store checkpoint fragments. The

application code stores all the fragments for the current checkpoint and then calls the end function.

The end function does not return until the local instance of Vault receives an acknowledgement

for each fragment which was redundantly stored remotely. Vault’s public interface is shown in

Listing 4.6.

Listing 4.6 The interface of Vault

void startCheckpoint(BackupPlan *backupPlan , int checkpoint_id , int channel);
void endCheckpoint(int checkpoint_id);
void addFragment(int checkpoint_id , int fragment_id , Stream s);
Checkpoint* getCheckpoint(int id);
std::vector<int> getListOfCurrentCheckpoints() const;
void eraseCheckpoint(int checkpoint_id);

In between the start and end calls, the simulation code can store checkpoint fragments. The

fragment identifiers across the system must be unique, and all together the fragments identifiers

must be complete between 0 and the maximum fragment identifier. However, it does not matter
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in which order the fragments are stored, or on what rank a fragment is stored. Furthermore, the

simulation code does not need to know how many fragments will be created when it starts storing

fragments. It is only when recovering from a failure that the simulation code has to report how

many fragments there are in a given checkpoint.

Checkpoint fragments are stored in a Stream. The checkpointing package does not need

to know how to parse the streams. It only communicates them, stores them, and retrieves them on

behalf of the simulation code. It is up to the simulation code to know how to create and parse them.

Vault registers an RPC channel for each checkpoint. It will use this channel to send

fragments that are to be stored redundantly within the system. Vault creates a Checkpoint object

for each checkpoint. It stores references to these checkpoints in a binary tree which is sorted on the

checkpoint identifier. In turn each checkpoint stores a binary tree of fragments sorted by fragment

identifier. When vault receives a fragment through the add fragment call it, stores the fragment in

the appropriate location, overwriting an old fragment if one existed with the same checkpoint and

fragment identifier.

The user application may choose to have one fragment created for each rank, or if the

domain is over-decomposed, there may be more. It is common in MPI applications to have each

rank work on one partition of the overall problem, so one fragment per rank would seem natural.

However, this approach alone may not be ideal. Consider a problem running on n computational

units. Likewise the problem is partitioned equally onto n work units. Now a failure occurs. The

number of computational units will drop to m. Typically there will be a load imbalance trying to

map n equally sized work units onto only m compute units. A few strategies exist to combat this
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problem, which will be discussed later. Generally it is better if the user application can dynamically

repartition to load balance.

4.5.2 Backup Plans

Each checkpoint must be configured with a BackupPlan which tells Vault how to

redundantly store checkpoints. BackupPlan is an abstract interface with only one function

getKeeperOfFragment. This function takes in a fragment identifier and returns a list of which

ranks should store the fragment. Vault then sends any incoming fragments to the ranks it is told

by the plan. Figure 4.8 shows one example plan: the NearestNeighbor plan. This plan stores

fragments on the current rank, as well as the rank to the left (rank - 1) and the rank to the right

(rank + 1). More complex backup plans could also be implemented without changing any of the

underlying code in the Vault.

4.6 Recovering from failures

The work of detecting unresponsive ranks and redundantly storing checkpoints is all done

in preparation so that the system can recover when a failure occurs. This section walks through

the process of recovering beginning with the messaging system throwing an exception signaling a

failure.

Once an exception has been raised, it will travel up the call stack until caught by an

appropriate level in the simulation code which is prepared to handle the recovery. The rank which
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detected the failure will stop all incoming or outgoing communication. This will cause a chain

reaction of failures until eventually the entire remaining system will report failures.

When a failure occurs, there are two steps to recovering. The first is recovering themessaging

system to a useable state. This means returning the messaging system to a state where the rank and

size abstractions are again valid. This probably means that the messaging system needs to relabel

certain processes to makes sure that the ranks are complete on the interval [0,size). Many rank

assignments will change after a recovery; so, if the simulation code maintains state based on rank,

that state will no longer be valid. In addition to rank and size, Channels which are still registered

also need to be remapped onto the new rank and size to that they can continue to function. The

second phase of recovery is to actually recover the simulation code to a state where it can continue

executing.

When the simulation code catches the exception, it can then perform any action it needs to

perform in order to clean up the state of its application and prepare for rolling back to whatever state

the application last stored a checkpoint. Then the simulation code initiates a recovery by calling

Messenger::recover.

The recovery phase for messenger begins by opening a new server socket on each rank.

This server socket uses a new port number which is distinct and is only used for recovery. The root

process starts listening for incoming messages from any still remaining non-root processes. The

non-root processes connect to the root process and send a message notifying root that the process

is still very much alive, and will be available to continue working. The root process keeps this
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window open for a configurable amount of time.3 Any rank which fails to register during this

window is considered dead. Dead ranks are not assigned a rank number for the next phase of work.

Once the registration window’s time has elapsed, the root process then assigns new rank numbers

to the remaining processes. Finally, the root rank broadcasts the list of old rank numbers, new rank

numbers, IP addresses and port numbers to all the remaining processes. Once a process has this

information it can begin sending messages on behalf of the simulation code.

Astute readers will have noticed that there is no redundancy built into the system for a

failure on the root rank. In that case, the entire system cannot recover and the application will

crash. Luckily, as shown in Chapter 2 on sufficiently large systems like the ones where fault

tolerance is an issue, it is simultaneously statistically likely that at least one node will fail while

being very unlikely that a specific node (say the root node) will fail.4 A fully redundant system

could be implemented with a succession plan that accounts for the root rank failing. If a non-root

node attempts to communicate with the root node during recovery and the communication times out

then the node may assume that the root has failed. The node may then attempt to resend the message

to rank 1. If rank 1 detects a failure with the root node (rank 0) it could assume the responsibility

of root node and open the communication window. If rank 1 also proves unresponsive, the system

could fall back to rank 2, then 3, until a surviving rank is found.

Once the messaging system has recovered, the simulation code can begin attempting to

recover. Each process can query Vault to determine if a copy of each checkpoint fragment

has survived the failure. Vault checks if a recovery is possible by gathering all the fragment

3[With current testing on approximately 10 nodes, 30 seconds seems to be sufficient.]
4See 2 for a full discussion.
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identification numbers onto the root process and checking if they span the space expected by the

checkpoint. The checkpoint is considered complete if at least one copy of each fragment exists

somewhere on the recovered system.

Vault reports that a complete copy of a checkpoint exists if there is enough data to recover.

Each rank of the simulation code can then query Vault to see which fragments that process is

responsible for retrieving from Vault and restarting. Vault only assigns any given fragment to

a single rank and tries to equally assign fragments across the remaining ranks. At this point the

simulation code can request fragments by their identifier. It is up the the simulation code to know

how to use the fragments to recover the system. The simulation code may decide to rebalance since

the compute hardware would have changed. If the problem was sufficiently over-decomposed the

simulation code may be satisfied with the basic load balancing performed by Vault.

4.7 Summary

This chapter described a multiple in memory checkpointing framework. The framework

can store user defined fragments which are pieces of a complete system checkpoint. The check-

pointing framework redundantly stores these fragments in main memory on different processes

throughout the compute system. The system is configurable, allowing the user to decide what level

of redundancy to use.

Storing and retrieving checkpoints are only two components to increasing resiliency through

multiple in memory checkpointing. Another critical component is detecting when compute hard-

ware has failed. Two messaging paradigms were developed to accomplish the task of detecting
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failures. One is based on standard message passing. The second is based on the less common

strategy of remote procedure calls. Both strategies were implemented using ZeroMQ configured

over TCP. ZeroMQ allows for detecting failures using message timeouts. Though MPI is more

common in high performance compute clusters, ZeroMQ was chosen as the underlying messaging

technology because ZeroMQ easily supports timeouts. MPI has a lower latency as discussed in the

next chapter.
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CHAPTER 5

RESULTS

5.1 Load Balancing for Size

Dynamic load balancing of the offbody mesh was implemented using space filling curves.

There are generally two reasons to dynamically load balancing for distributed computer applications.

The primary reason to load balance is to evenly distribute access to some limited resource. Often

in HPC applications load balancing is used to lower total wall clock time by minimizing the total

amount of time where compute resources are idle. However, for this work load balancing is done

not to minimize wasted cpu time. Instead, load balancing is a means to generating very large grids

with poor initial partitions.

Static load balancing in mesh generation often gives poor initial partitions for storing the

mesh which is to be generated. For any but trivial cases, it is very challenging to know precisely

how to partition the mesh domain so that the each partition will end up with an equal portion of

the mesh.1 The challenge is especially acute for mesh generation techniques which make use of

refinement. An initial partitioning may be suitable for an initial mesh. But if the mesh is refined in

1In fact, a priori domain partitioning presents a chicken and egg problem. If you knew precisely how much mesh
was needed in each region of the domain, part of the grid generation problem has already been solved.
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a non-uniform manner, the partitioning will become imbalanced. If the imbalance is large enough

it could cause a partition to run out of memory while there is still memory available on other nodes.
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(a) (b)

(c)

Figure 5.1 Mesh rebalancing to minimize peak memory (a) Initial mesh generated and partition
(b) Additional mesh refinement (c) A rebalanced mesh
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5.2 Communication Performance

Performance experiments were conducted to compare bandwidth performance of the com-

munication layer Messenger. A message was sent from one node (named the client node) to

another node in the network (the server node). Upon receipt of the message the server node simply

returned the message back. The client node recorded the time it took to send the message and to

receive the reply. The experiment (also known as the ping pong test) was conducted over a range

of message sizes from 8 bytes to 1 GB. For each message size 100 cycles of send - receive were

conducted. The median elapsed times were recorded.

The experiments were conducted on the NASALangley K3 cluster which uses an Infiniband

interconnect. The experiment was repeated for three different communication software libraries.

The first is MPICH 3.0, an open source implementation of the MPI standard. MPICH was

configured to run over the K3 cluster’s infiniband interconnect using RDMA. The MPI tests were

conducted using pairs of matching MPI_Send and MPI_Recv. The second software library was

ZeroMQ version 4.0.4. ZeroMQ was configured to run over the Infiniband interconnect using TCP

since ZeroMQ does not support the RDMA protocol. The ZeroMQ tests were conducted using a

client socket on one node, and a server socket on the other. The final software package tested was

the Messenger software developed for this research. Messenger also uses ZeroMQ client and

server sockets configured over TCP. Messenger also maintains both MPI-like abstractions, and

manages recovering those abstractions in the event of failure. Maintaining these abstractions incurs

overhead. Quantifying this overhead was the primary goal of the communication performance

experiments.
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Figure 5.2 shows the timing results for all three performance experiments. MPI out per-

formed both native ZeroMQ and Messenger across all message sizes. Figure 5.3 shows the

slowdown factor for both native ZeroMQ and Messenger with respect to MPI. Native ZeroMQ

starts out approximately 8 times slower thanMPI but the gap falls as themessage size increases. The

performance difference between Messenger and MPI is much larger. The gap with Messenger

being about 100 times slower than MPI, the gap falls as message size increases. At a message size

of 1 GB Messenger is approximately 10 times slower than MPI. This indicates that latency may

be impacting bandwidth at smaller message sizes.
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Figure 5.3 Performance slowdown of Messenger compared to MPI

5.3 In-Memory vs. In-Disk Checkpoint Performance

Performance of in-disk and in-memory checkpointing were explored. A series of experi-

ments were conducted using 8 compute nodes. A checkpoint fragment was created on each node

and then checkpointed. The size of the fragment varied from 1MB to 1GB. Timing data to store

the checkpoint was recorded.

Messenger and Vault, described in Chapter 4 were used to perform the in-memory

checkpointing. The double in-memory backup strategy RoundRobinBackup was used; therefore,
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one copy of each fragment was stored on the host node and one was communicated to a neighboring

node.

The in-disk checkpointing experiments were using Messenger’s RPC functionality. Each

node sent their fragment through a registered RPC on the root node. The root node then wrote

each fragment to a binary checkpoint file. The binary checkpoint file was written to permanent

storage through fwrite(). File access of the cluster nodes is done through the Luster file system

configured over Infiniband. [96]

Timing results for both in-memory and in-disk checkpointing is shown in Figures 5.4 and

5.5. Across all fragment sizes the in-memory checkpointing out performed in-disk checkpointing.

The performance differences between in-memory and in-disk checkpointing are small for fragment

sizes below 16 MB. However, at 40 MB and above in-memory checkpointing performs much better

than in-disk; in-memory exhibits more than a 5× speedup over in-disk at 50 MB before settling

down to approximately 4.5× for checkpoint sizes between 50 MB and 1 GB.
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Figure 5.5 In-memory checkpointing speedup
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5.4 Global Refinement Top Down

Weak scaling experiments were conducted to determine performance of the Top Down

portion of the algorithm. The mesh was globally refined within a unit cube. Experiments were

performed using node counts of 1, 8, and 64 which corresponds to 16, 128, and 1024 cores

respectively. On one node, using 16 cores, the unit cube was refined to a tree depth of 9 yielding a

mesh spacing of 1.2x10−3 and 134 million total cells. Each successive experiment then increased

the depth by 1, increasing the total cell count by a factor of 8 each time. The final mesh contained

8.6 billion elements.

The experiments were run on NASA Langley Research Center’s K3 cluster. Each node in

the cluster consists of two Intel™ E5-2670 Sandybridge 8 core 2.6 GHz processors. Each node

also maintains 32 GB of main memory. The goal of this work was not a parallel implementation

for flops performance. Instead the mesh generation process was made parallel so that very large

meshes could be generated. Because of this the 32 GB per node on the K3 cluster is the primary

resource which is desirable. The K3 cluster’s interconnect uses the 4X FDR Infiniband which

supports up to 56 Gbit/sec throughput. However, since ZeroMQ is configured to run over TCP and

will not benefit from the Infiniband’s support of Remote Direct Memory Access (RDMA).

Table 5.1 shows the running time, total cell count and parallel efficiency for the three

experiments. The single node case generated cells at a rate of approximately 400 thousand cells per

second, per core. That rate drops to approximately 340 thousand cells per second per core across

1024 cores. The rate of generation is consistent with other efforts from the literature. The parallel

mesh generator p4est has been shown to generate at a rate of 110 thousand cells per second per
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core across 220 thousand cores. [26]. Lintermann et al. demonstrated a rate of 12 thousand cells

per second per core across 65 thousand cores. [27]

Table 5.1 Parallel efficiency with checkpointing disabled

core count total cell count running time efficiency total memory used
16 0.13 × 109 20.5 s 1.0 19 GB
128 1.07 × 109 23.2 s 0.88 154 GB
1024 8.60 × 109 25.1 s 0.80 1.25 TB

Weak scaling experiments were repeated with checkpointing enabled to measure the effects

of checkpointing. Each case began with the mesh refined down to a depth of 4 during the setup

phase. Then one checkpoint was stored after each depth in parallel. A total of 5 checkpoints were

created on the single node case, 6 checkpoints on the 8 node case, and 7 checkpoints on the 64 node

case. The backup strategy used was a double in memory strategy where each checkpoint fragment

was stored locally on the owning host node, and one copy was stored on a single adjacent node.

Figure 5.6 compares weak scaling with and without checkpointing enabled. Table 5.4 shows

the running time efficiency and total memory used with checkpoints enabled. The scaling efficiency

drop from 0.80 to 0.48 across 1024 cores indicating that creating and storing checkpoints is less

scalable than the general top down algorithm. The total memory used with checkpoints enabled

increased by approximately 6% over the baseline case with no checkpointing.
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Figure 5.6 Parallel efficiency of top-down grid generation

The small memory overhead is due to the compact form which the offbody mesh is stored.

An offbody checkpoint fragment. The size of an offbody checkpoint fragment is given by:

checkpoint size = 48 bytes + 16 bytes ∗ number of cells

Each offbody checkpoint fragment stores the root domain of the mesh in double precision (48

bytes), then for each leaf node in the tree the fragment contains the morton Id (8 bytes) hte depth

of the leaf in the tree (8 bytes) and a flag marking if the leaf cell is in, out, or crossing the geometry

(4 bytes).
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Table 5.2 Parallel efficiency with checkpointing enabled

core count total cell count running time efficiency total memory used
16 0.13 × 109 29.5 s 1.0 19.6 GB
128 1.07 × 109 51.7 s 0.57 162 GB
1024 8.60 × 109 61.1 s 0.48 1.32 TB

The working memory of a partition stores an extent box in double precision for each node in

the full tree as well as the in, out, or crossing flag. A very compact form of the offbody mesh can be

stored redundantly for resilience while the working memory is uncompressed and high performing.

5.5 Full Case Scalability

Scaling experiments were conducted to determine the performance of the entire mesh

generation process including top-down, bottom-up, as well as, generation and projection of the

nearbody mesh. A body fitting mesh was generated around a unit sphere with the total mesh

domain being [−10, 10]3. Scaling experiments were run on the K3 cluster with 16, 128, and 1024

cores. The mesh was initially refined to a spacing of 0.04 during setup phase. Then the mesh was

refined to spacings of 2.4 × 10−3, 1.2 × 10−3, and 6.1 × 10−4. The initial scaling experiments were

conducted with checkpointing disabled to establish a baseline understanding of the performance of

the implementation.

Cells were computed at a rate of 1,250 cells per second per core for the 16 core case. 870

cells per second per core on 128 cores, and 140 cells per second per core across 1024 cores.

132



Table 5.3 Parallel efficiency with checkpointing disabled

core count total cell count running time efficiency total memory used
16 19.4 × 106 16m37s 1.0 8.09 GB
128 76.8 × 106 11m29s .70 32.8 GB
1024 305 × 106 35m50 s .11 140 GB

Weak scaling experiments were repeated with checkpointing enabled. All the parameters

were the same from the previous case. The only difference was that this time checkpoints were

created. The RoundRobinBackup was used which is a double in-memory checkpointing system.

One copy of each fragment was saved on the host node, and one copy was sent to node with the

next highest rank.

The base case of 16 cores was run only on a single node. RoundRobinBackup directs

checkpoints of rank (size-1) to be sent to rank 0. Since there is only one rank, the send copy of

each checkpoint fragment is being sent back to the host node. There is no resiliency being added

in this case. If any component of node 0 dies the job is forfeit. However, it is still a valuable case

to explore performance. The results of the study is shown in 5.4.

Overall there was only a small impact on run time by enabling checkpointing. The single

node, 16 core, baseline case showed no change in the run time and still generated 1,250 cells per

second per core. At 128 cores the time increased slightly and the overall cell generation rate fell

from 870 cells per second per core to 840. The run time was most impacted across 1024 cores,
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Table 5.4 Parallel efficiency with checkpointing enabled

core count total cell count running time efficiency total memory used
16 19.4 × 106 16m37s 1.0 20.1 GB
128 76.8 × 106 11m51s .70 144 GB
1024 305 × 106 37m24 s .11 544 GB

which increased by 94 seconds. The cell generation rate fell from 140 cells per second per core to

133.

While the run time was not greatly impacted by creating checkpoints, the memory con-

sumption increased dramatically and shown by Figure ??. In section 5.4 only the offbody Cartesian

mesh representation was used. The mesh in this form has a compact representation using Morton

Ids and this compact representation is used to create and store checkpoint fragments.

However, the current case includes a nearbody mesh elements which are not Cartesian

aligned and are not compactly stored for checkpoints. Furthermore, the nearbody mesh stores

much more information than is used in the offbody, Cartesian, mesh. A checkpoints fragment

for the nearbody mesh also stores node status flags, and topological adjacencies such as node to

neighboring cell, and node to neighboring surface cell.
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Figure 5.7 Memory requirement with and without checkpointing

5.5.1 Hurricane Strong Scaling Study

Strong scaling experiments were conducted on a body conforming case. A 14.6 million

element mesh was generated around an STL surface of the Katrina hurricane. The mesh was

generated on the K2 cluster at NASA Langley Research Center. Each node in the cluster consists

of two Intel™X5675 Westermere 6 core 3.07 GHz processors. Each node contains 24GB of ram.

The mesh was generated on a single node of 12 cores as the baseline case. The number of nodes

was then doubled successively up to 32 nodes, for a total of 384 cores. The Figure 5.8 shows the

partitioned nearbody mesh while running on 32 nodes and Figure 5.9 shows a close up view of the

body conforming mesh near the eye of the hurricane.
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Figure 5.8 The partitioned nearbody of a hurricane

The baseline case on a single K2 node generated the 14.6 million element grid in 38 minutes

32 seconds. On 32 nodes (384 cores) the mesh was generated in 3 minutes 12 seconds. The mesh

generator created 13 checkpoints during each case. Figure 5.10 shows speedup from 12 to 384

cores. At 384 cores mesh was generated 12 times faster than using only a single node of 12 cores.

Additional experiments were performed using 32 nodes to measure the time and memory

cost of creating checkpoints and recovering from failures. First, the mesh was generated while all

checkpointing was disabled total memory used was recorded along with the total run length. Then,

checkpointing was reactivated and again the mesh was generated while measuring memory used

and run length. Finally, the mesh was generated with checkpointing enabled and a single point

failure on node 1 was triggered during a random communication. The mesh generator detected
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Figure 5.9 Close up of the mesh in the eye of the hurricane

the failure, recovered the messaging system, then recovered the mesh, and continued generation.

Again, run length and total memory was recorded. The run lengths and total memory used were

recorded in table 5.5 and a scaling plot is shown in Figure 5.10.

Table 5.5 Strong scaling experiments

Running Time Total Memory Used
Checkpointing Disabled 184s 4.3 GB
Checkpointing Enabled 192s 11.8 GB
Single Node Failure 225s 11.4GB

Similar to the test case described in 5.5, thememory requirement increases by approximately

a factor of 3. Just like in the last case, the memory requirement is dominated by the unstructured

mesh in the nearbody region of the domain. The nearbody region cannot be compressed using

the Morton curve technique which is used in the offbody. The total memory required to complete
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Figure 5.10 Strong scaling experiments for a hurricane mesh

the run with a node failure is 400 MB lower than the case without memory. There is data stored

once per node redundantly (such as the geometry), this data does not migrate during a failure.

The majority of the memory footprint is consumed by the mesh and checkpoint data. This data is

migrated during recovery of a failure. Detecting and recovering from the failure only increased the

run length by 33 seconds.
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5.6 Recovery

The fault tolerant framework redundantly stores backups as described by the configured

BackupPlan. The BackupPlan decides how many copies of a fragment are created, and where

those fragments are stored. The simplest BackupPlan is a double in-memory backup strategy

which is implemented by RoundRobinBackup. RoundRobinBackup stores each fragment twice,

once on the rank which created the fragment, and once on an adjacent rank. Double in-memory

strategies store enough copies of the data to recover from any single point failure.

However, rank 0 is a critical centralized location from within the compute network where

recovery is managed. When any rank detects a failure it attempts to recover by coordinating with

rank 0. If rank 0 is the rank which suffers a failure there is no way for the rest of the compute nodes

to coordinate a recovery. This is a limitation of the implementation of the fault tolerant system. It

would be possible to extend the recovery procedure to include a succession plan. That way if rank

0 failed another node could coordinate the recovery.

Resilience experiments were run to demonstrate the effectiveness of the fault tolerant

framework. Eight nodes were used to generate a mesh using the technique described in chapter 3.

Verification files were written for each offbody and nearbody partition. The offbody regression files

contained the sorted Morton Ids of each leaf voxel in the partition. The nearbody files contained

the sorted list of points of each partition.

Initially the mesh was generated with failures disabled and the verification files which were

written were saved. The code was then altered so that it could be failed on command for specific

ranks. If a rank was chosen to fail it would do so by simply calling exit(0). A failing rank

would not communicate in any way with the rest of the compute nodes. The rest of the system was
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unaware that the process would die. The remaining nodes were allowed to progress and complete

generating the mesh. If the process completed, verification files were again written and these new

files were compared with the verification files from the run where no failures occurred. A run was

considered to have successfully completed if there was no difference in the two sets of verification

files.

Table 5.6 shows a matrix of runs which were completed and the status of the run. A Xat

entry (i, j) demonstrates that nodes i and j were simultaneously failed and the run recovered and

completed successfully. A × denotes that the run was not successful.

Table 5.6 Double in-memory recovery matrix

0 1 2 3 4 5 6 7
0 × × × × × × × ×

1 X × X X X X X
2 X × X X X X
3 X × X X X
4 X × X X
5 X × X
6 X ×

7 X

There are two types of failures from which the framework was unable to recover. First,

note that all cases where node 0 failed were not recovered. This is an expected outcome since

there is no redundancy in the framework for the task of coordinating recovery. The second type of

failure which was not recovered is when two adjacent nodes failed simultaneously. In these cases
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the fragments which were generated on node n and stored on nodes n and n + 1 were lost when

both nodes went down. There was not enough information to recover from the failure, and the case

exited. In all other cases where only a single node failed were successfully recovered. The double

backup allows for recovering from these types of failures. As discussed in Chapter 1, single node

failures are critically important since they are the most common errors.

5.7 Supersonic Sphere

For demonstration an inviscid mesh was generated. The mesh contained 1.3 million nodes.

The sphere has unit diameter. The sphere is traveling at Mach 1.53. Fun3D was used to perform

this inviscid calculation. [52] A density plot is shown in Figure ?? with a corresponding mesh in

Figure 5.13. The initially mixed element mesh contained quadrilateral faces which were non-flat.

The smoothing technique described in chapter 3 does not attempt to ensure flat faces. The mesh

was converted to only have tetrehedra using Fun3D and following the work of Dompierre et al. [97]
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Figure 5.11 Supersonic sphere solution obtained from Fun3D

Figure 5.12 Tetrahedral elements used with Fun3D
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Figure 5.13 Sphere grid near the geometry
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CHAPTER 6

CONCLUSIONS AND FUTURE WORK

The fields of computational science progress on two fronts: numerical algorithms, and

computational hardware. However, progress on these fronts is not independent. Algorithms must

be developed through an understanding of the strengths and weaknesses of the computational

hardware on which the algorithm will be run. High fidelity Computational Fluid Dynamics (CFD)

runs on large scale compute clusters. As the compute clusters grow in scale, and in complexity, the

failure rates will also grow. Precautions must be taken in our CFD algorithms to ensure efficient

utilization of large scale HPC clusters.

Rapid turn around for high fidelity CFD analysis may require a parallel software ecosystem

which can start with geometry and end with engineering output. This means that mesh generation,

flow solution, mesh adaptation, and post processing may all have to exist in parallel and the entire

ecosystemwill need to be fault tolerant. Thiswork demonstrated oneway the piece of this ecosystem

may operate.

6.1 Contributions

This work made novel contributions to the young field of parallel mesh generation. This

work developed and demonstrated a novel communication system which was developed using
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ZeroMQ but that maintained MPI abstractions of rank and size. Additionally, this work extended

the communication system to include Remote Procedure Calls. The communication system was

used to implement a multiple in-memory checkpoint/recovery system. Finally, and critically, the

communication system, and the checkpoint/recovery system were integrated into a novel parallel

mesh generation application which is capable of running on a compute cluster suffering failures.

6.2 Summary

This work was motivated in Chapter 2 using a relatively simple model of failures for large

scale HPC clusters. The model was tuned using published data for real world supercomputers of

large scales. The model demonstrated that computational jobs running on a small number of well

maintained nodes will not suffer many failures. However, as the complexity of the engineering

problem grows, and more compute nodes are utilized, the failure rates can grow dramatically. The

CFD Vision 2030 report has identified some grand challenge problems that may require 10-100

billion control volumes. These problems include: full flight aircraft in maneuvering flight, aircraft

with full engine simulation, or a space vehicle launch sequence. [21] Computer systems running

these simulations may require tens of thousands of nodes for weeks at a time. For interesting, large

computational problems, system failures cannot be ignored and must be treated as normal operation

or the run time of these computational jobs will be dwarfed by checkpoint and recovery times.

Chapter 3 described a parallel grid generation technique which used octrees to create

Cartesian meshes. Regions of these meshes can be projected down onto a geometry surface

creating a body fitting mesh. The technique was designed to run on standard compute cluster
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hardware. The technique is can be dynamically load balanced so that very large meshes can be

generated without the need for specialized compute nodes with large amounts of main memory.

The communication and in-memory checkpoint restart system was described in Chapter 4.

The messaging system was designed to support two communication strategies: message passing,

and remote procedure calls. The messaging system detects failures in the system by reporting

failures when a message times out. These failures can trigger the messaging system to recover.

Chapter 4 also described the in-memory checkpoint and restart technique. The exact checkpointing

strategy is extendable and is capable of supporting an arbitrary number of in-memory checkpoints

including both double and triple in-memory copies.

Finally, a series of experiments were run on the fault tolerant mesh generation application

and including the messaging and checkpoint / recovery modules. Experiments on the in-memory

checkpointing module demonstrated faster times to store a checkpoint fragments using double

in-memory checkpointing than to write those checkpoints into permanent storage. Performance

experiments on the communicationmodule demonstrated much slower bandwidth than either native

ZeroMQ point to point messages, or messages sent with MPI.

While generating body conforming meshes the parallel efficiency of the application fell to

11% over 1024 cores. The addition of in-memory checkpointing did not affect the application’s

performance while generating body conforming meshes. However, the in-memory checkpointing

system did negatively affect the parallel efficiency of generating purely Cartesian meshes.

The next section discusses future work including some key proposed changes to the check-

pointing system which may increase performance. Even so, ideal raw performance should not

be the only metric of success when running on unreliable systems. Section 5.5.1 demonstrated
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generating a mesh while suffering a node failure. The mesh generator was able to successfully

generate the mesh with only a 22% overhead over the non-fault tolerant case. Furthermore, adding

13 checkpoints over the entire process only increased the run length by 8%. If the failure rate of

the entire system is 22% or greater, the fault tolerant implementation has a lower expected total run

time. Chapter 2 showed that failure rates that high are already commonplace for long running jobs

on 180 nodes. If failure rates continue to increase it will become critical to look at performance of

applications from a statistical nature taking into account failure rates.

6.3 Future Work

This work was simply a first step in achieving a fully automated and fault tolerant CFD

workflow and still much work remains. The development and evaluation of the integrated grid

generation technique presented here identified key elements of what techniques should be explored

in the future.

6.3.1 Mesh Generation

Parallel mesh generation techniques with integrated checkpointing systems may benefit

from exploring compression techniques for storing arbitrary unstructured meshes. The compact

Cartesian mesh representation using Morton curves was shown to be very beneficial in limiting

the amount of memory required to store redundant checkpoints in memory. The body conforming

region of the mesh has so far required much more memory to store redundantly.
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Furthermore, this work only demonstrated body conforming mesh generation for simple

smooth geometries. The Cartesian meshes generated with this technique may prove suitable for

immersed boundary methods, or with Lattice-Boltzmann techniques to handles geometry configu-

rations with arbitrary complexity.

6.3.2 Communication

The bandwidth results comparingMessenger to nativeZeroMQandMPI point toMessenger

having a high constant or nearly constant overhead cost for each message. As the message size

grows this overhead cost is being amortized over the additional time to communicate the large

message through the network. Future work with Messenger could work to decrease the number

of times data is copied during the communication of a message.

Timeout violations were detected on messages sent by the application layer and this tech-

nique has been proven useful. However, relying only on monitoring application communications

does have drawbacks. False failures can be reported if there are work imbalances within the system.

One node may finish work quickly and post a communication. If the neighboring node has more

work it may not respond to the communication quickly enough and an erroneous error will be

reported. Future work may want to augment failure reporting to more than monitoring communica-

tion from the application. The communication layer would continue to monitor timeout violations

for application communications, but would then double check if a timeout was detected. When a

timeout violation is detected by a node, the node may send a separate query to the communication

layer on the suspect remote node. The communication layer could be configured to respond quickly
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when these verification queries were received. This system of "trust but verify" would continue

to monitor communication sent by the application layer, but verify that the node has failed. That

way false positives are not reported simply for work imbalances. This approach could be a hybrid

between a timeout ticketing system and a heartbeat based failure detection system.

A current limitation of the messaging module is that rank 0 cannot be allowed to fail. If

any other node dies the recovery operation is coordinated by rank 0. If rank 0 dies there is no

succession plan for another rank to coordinate the recovery. A simple improvement could be made

simply allowing another rank to take over the root node’s responsibilities. If a failure is detected

with node 0, all the surviving nodes could communicate with rank 1 to coordinate recovery, then

rank 2, and so on.

Another potential failure which was not explored with this work is a "zombie" process.

That is when a node is detected to have failed. But then starts communicating again at some

later point. This type of failure was not explored in this work. Zombie processes may start send

communication which would need to be ignored by the surviving nodes after a failure. Messenger

could incorporate a epoch number into its current message header. If a node received a message

with an invalid epoch number it could simply discard the message.
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6.3.3 Checkpoint / Recovery

An optimal checkpoint interval was proposed by Young in 1974 based on average MTTF

and time to create a checkpoint [98]. The interval is given by:

I =
√
2 × MTTF × C

where C is the time it takes to complete a checkpoint. Additionally, the temporal coupling in

failures on large scale machines suggests that techniques which dynamically alter the time between

checkpointsmay be beneficial. Other fault tolerance researchers have explored "lazy-checkpointing"

to exploit this temporal coupling. The current checkpointing strategy is rigid in its approach to

taking checkpoints. Vault takes a full checkpoint each time one is requested. Future work with

mesh generation resiliency may benefit from a more flexible way of determining when a machine

is likely to fail, and to increase or decrease the checkpoint frequency accordingly.

6.4 Conclusion

High Performance Computing is not doomed to grind to a halt as computer systems increase

in scale. However, software design strategies which are suitable on machines that fail only once a

month are not suitable when failures occur on the order of hours or minutes. Precautions must be

made to treat failures as a normal part of operating on large scale systems.

Large CFD problems run today require computation on the order of one hundred thousand

node hours. This puts CFD at a tipping point since today’s large systems are also reporting
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mean failure rates on the order of one hundred thousand node hours. Over the next two decades,

grand challenge problems in CFD are expected to require mesh sizes exceeding 10 billion control

volumes. [21] At current failure rates, CFDworkflows will be plagued by failures. The total number

of node hours for large CFD jobs may increase while the average node hours to failure does not.

Predictions for future compute systems do not appear to offer relief. [4] Over the next decade, CFD

software efforts that hope to address the grand challenge problems described in the CFD 2030

report should incorporate significant fault tolerance techniques.

This work has demonstrated that resiliency can be integrated into a parallel mesh generation

software package. Mesh generation is just one component required for an automated, large scale,

CFD workflow. Hopefully, this work adds to the discussion of how to create robust, 21st century,

computational science tools.
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