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ABSTRACT

In the present dissertation, a finite volume and a finite element model are developed and

tuned for the solution of the fully-coupled two-dimensional Shallow Water and Contaminant trans-

port Equations with arbitrary bed topography and wetting-drying fronts. A Riemann-solver finite

volume scheme, using primitive variables rather than conserved variables, and a semi-discrete

Streamline Upwind Petrov-Galerkin (SUPG) method in finite element context are applied to com-

pare the performance of these two numerical models. The Riemann-solver scheme is based on

the unstructured finite volume discretization using primitive-variable Roe-flux approximation with

an entropy fix. Second-order accuracy in space and time, an implicit scheme based on Newton-

iterative algorithm, and an Euler explicit scheme are applied for the finite volume model. For

the SUPG finite element model, a new exact source-term balancing method is introduced in this

study. This new balancing method satisfies the C-property for both still water and dry regions on

a non-flat bed. Two different stabilization terms are applied to compare their performance for wet-

bed problems and a shock-capturing scheme is implemented to accommodate shock wave fronts.

Linear triangular elements are used to decompose the computational domain and a second-order

backward differentiation (BDF2) implicit method is used for the time integration. The resulting

nonlinear system is solved using a Newton-type method where the linear system is solved at each

step using the Generalized Minimal Residual (GMRES) algorithm. Both finite volume and finite

element formulations are applied to moving-boundary problems on fixed numerical meshes. In
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order to examine the accuracy and robustness of the present scheme to predict the flow variables

and contaminant transport, numerical results are verified by several test cases. These cases include

wet and dry dam break problems, evolution of a dam break wave with an obstacle downstream

of the dam, oscillation of a bead of water in a parabolically-shaped basin, supercritical flow in a

constricted channel, as well as advection and diffusion of contaminant with the flow. The scenario

of contaminant transport in a notional river is also simulated to demonstrate that the present work

can be implemented on practical applications involving flooding and contaminant transport.
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CHAPTER 1

INTRODUCTION

Due to the wide range of engineering applications, finding effective and accurate numerical

methods to solve the shallow water equations (SWEs) has been of increasing interest in the last

decades. Since pollutant dispersion in rivers and coastal regions has serious impact on the ecology,

environment and the human health, the two-dimensional shallow water model has become an

important field of study to predict advection-diffusion of contaminants in free surface flows. In

some works [1, 2] the contaminant transport equation is solved using a decoupled algorithm; that

is, after solving the shallow water equations for the flow variables, the contaminant in the flow

field is computed. These approaches may lead to inaccurate solutions in some cases, e.g., when

the flow rapidly changes in time or in space [3]. In order to improve accuracy and robustness, a

fully-coupled model should be implemented that preserves conservation and prevents numerical

instabilities. The resulting system is a hyperbolic system of coupled nonlinear partial differential

equations. Numerically solving this system is very challenging due to difficulties associated with

discontinuities, irregular bed topography, bed roughness, and wetting-drying fronts.

Preserving the still-water condition for arbitrary bed topography is one of the challenges

encountered when solving the system of shallow water equations. A well-balanced numerical

scheme should satisfy the C-property [4], which requires that the quiescent state is preserved

through exactly balancing the source term and numerical flux.
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Another difficulty in simulating shallow water flows is accurately modeling the wetting-

drying fronts. To represent the transition from wet to dry, the numerical scheme should preserve

mass andmomentum conservation near dry-wet fronts. There are four types ofwetting-drying (WD)

algorithms which are described in [5]. Various numerical methods along with WD algorithms have

been developed to address these challenges and simulate the free surface flows and contaminant

transport properly.

The purpose of this work is to simulate unsteady free surface flows and obtain a reliable

estimation of pollution dispersion in such flows. To this end, a Finite Volume (FV) method

and a Finite Element (FE) scheme are applied to the Shallow Water and Contaminant-transport

Equations (SWCEs). The present finite volume scheme is based on the primitive variables Roe-flux

approximation. In finite element framework, a semi-discrete Streamline Upwind Petrov-Galerkin

(SUPG) is also developed. Numerical solutions for flow variables as well as pollutant transport are

compared for both schemes.

1.1 Two-Dimensional Shallow Water and Contaminant Transport Equations

The two-dimensional shallowwater equations are obtained from depth averaging the incom-

pressibleNavier-Stokes equations, assuming that the pressure is hydrostatic and vertical acceleration

is negligible. In this work, viscosity, turbulence, wind effects, and Coriolis terms are omitted. To

satisfy still-water equilibrium in the presence of a non-flat bed, Rogers et al. [6, 7] presented a

particular formulation based on the free surface elevation ζ (x, y, t). As shown in Figure (1.1), the
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free surface elevation may be written as

ζ (x, y, t) = h(x, y, t) − hs (x, y) (1.1)

where h is the water height and hs is the bottom elevation measured from the still-water surface.

Sivakumar et al. [8] have used a formulation similar to that of Rogers [6, 7]. This special form of

the equations satisfies still-water equilibrium and allows for possible dry regions. In this study,

the formulation in [8] is used and coupled with the depth averaged scalar transport equation.

The resulting system of nondimensional SWCEs for two-dimensional problems may be written in

conservative form as

∂Q
∂t
+
∂F (Q)
∂x

+
∂G(Q)
∂ y

+ S(Q) = 0 (1.2)

The vector of conserved variables (Q), the inviscid flux vectors (F,G) and the source vector (S) are

defined by

Q =




h

h u

h v

h φ




F =




h u

h u2 + 1
2 (h2 − h2

s )

h u v

h u φ




G =




h v

h u v

h v2 + 1
2 (h2 − h2

s )

h v φ




(1.3)
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S =




0

−(h − hs) ∂hs
∂x + τbx

−(h − hs) ∂hs
∂ y + τby

−∇.
(
Kh∇φ

)




(1.4)

where the empirical dispersion matrix is expressed as [3]

K =



Kxx Kx y

Kyx Ky y



(1.5)

Thus, the contaminant transport source term can be written as

∇.
(
Kh∇φ

)
=

∂

∂x

[
h

(
Kxx

∂φ

∂x
+ Kx y

∂φ

∂ y

)]
+

∂

∂ y

[
h

(
Kyx

∂φ

∂x
+ Ky y

∂φ

∂ y

)]
(1.6)

In the present work, bottom friction stresses are computed using the Chezy model [9] and the

Manning coefficient n as follows

C =
R1/6

n
(1.7)

τbx =
g u
√

u2 + v2

C2 (1.8)

τby =
g v
√

u2 + v2

C2 (1.9)
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Figure 1.1 Definitions of free surface variables in shallow water problems

1.2 The Finite Volume Method

Among different numerical schemes, finite volumemethods have been extensively applied to

simulate SWCEs, primarily due to the mass conservation property and lower memory requirements

[10]. Different finite volume methods for shallow water equations are presented in [11]. Some of

thesemethods are numerically unstable and produce oscillatory solutions. These undesirable effects

result from the flux gradients and source terms not being well-balanced. There are many numerical

treatments of source-term presented in the literature to accurately solve either SWEs [8, 12–19] or

coupled SWCEs [3, 20–25]. Li et al. [3] developed a fully-coupled model of shallow water flows

and pollutant transport using a second-order upwind finite volume method. In that work, the HLL

Riemann-solver and an explicit-implicit time integration method was used. Murillo et al. [20, 21]

applied an explicit first-order upwind scheme to solve the coupled shallow water equations and

pollutant transport using Roe fluxes. An approximated flux Jacobian matrix is defined in their

work to treat the source term for arbitrary bed slopes. Murillo et al., also presented a finite volume
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model in [22] to simulate convection and diffusion of solute transport in shallow water flows over

variable bottom topography. These researchers applied a first-order upwind technique, a second

order in space and time and an extended first-order method to solve the non-diffusive terms in

both the flow and solute equations, and a centered implicit discretization to the diffusion terms.

Lorenzo et al. [23] utilized a cell-centered finite volume method to solve the shallow water flow

and scalar transport with tracking of the fluid volume and the free surface elevation in partially wet

cells in order to deal with stationary or moving wet/dry fronts. Benkhaldoun et al. [24] developed a

finite volume non-homogeneous Riemann solver for pollutant transport by shallow water equations

using upwind fluxes and slope limiters. In that work, the pollutant concentration was used as a

monitoring function for mesh refinements. Cea and Cendon [25] proposed an unstructured upwind

finite volume discretization for the bed friction term in two-dimensional shallow water equations

in which the bed friction is a relevant force in the momentum equation.

1.3 The Finite Element Method

Because of its geometric flexibility and high accuracy, the finite element method has also

been applied to the shallow water equations [26–37], . Introducing high-order schemes in finite

element models is straightforward. Additionally, Neumann boundary conditions are imposed

naturally in finite element algorithms. Both the standard Continuous Galerkin (CG) and the

Discontinuous Galerkin (DG) methods have been employed to solve the shallow water equations.

Bunya et al. [26] proposed a wetting and drying treatment for a Runge-Kutta Discontinuous

Galerkin approximation to the SWEs. Lai [32] also developed a DG finite element method using

the HLLC Riemann solver to calculate the numerical fluxes. Xing [33] used a high-order DG
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method for SWEs on unstructured triangular meshes, while maintaining the still water steady state

exactly and preserving the non-negativity of the water height without loss of mass conservation.

The standard Continuous Galerkin method works properly when diffusion dominates, but

it produces spurious oscillations in the solution for convection-dominated problems. In order to

improve the stability and convergence of the CG method, Brooks and Hughes [38] introduced

the Streamline Upwind Petrov-Galerkin (SUPG) method for incompressible flows. In the SUPG

method, the standard Galerkin weighting functions are modified by adding a streamline upwind

perturbation to the formulation. The SUPG formulation for compressible flows was originally

introduced by Tezduyar and Hughes in [39–41]. SUPG is an accurate method for problems with

smooth solutions, but typically introduces localized oscillations about discontinuities [42]. To

improve this behavior, a discontinuity-capturing term should be added to the formulation to provide

stability near the shock fronts to enhance the robustness. For the SWEs many developments

have utilized the SUPG scheme in conjunction with the stabilization and shock-capturing terms.

Bova and Carey [43] presented a symmetric form of the shallow water conservation system which

can be discretized using SUPG method previously proposed for a symmetric form of the Euler

equation [44]. Heniche et al. [31] developed a CG finite element model which accepts positive and

negative values for the water depth. Takase et al. [27] presented a space-time SUPG formulation

for the SWEs using the stabilization and shock-capturing parameters based on the model applied

to the Navier-Stokes equations in [45–47]. Takase et al. [28] also developed a space-time SUPG

method which combines a stabilization parameter, a compressible-flow shock-capturing parameter

adapted for shallow-water flows, and remeshing. Zhao et al. [29] used a well-balanced two-step
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Taylor-Galerkin scheme with a local bed slope modification in wetting-drying interfaces. Porta et

al. [30] provided a space-time adaptation scheme which permits separate space and time adaptation.

A finite element model may be implemented using either a moving or a fixed computational

grid to accommodate wetting-drying problems. Bates and Horritt [48] presented different moving

and fixed grid models. Deforming mesh schemes for moving boundary problems involves tracking

the exact location of the shoreline, relocating grid points and testing for mesh quality at each

time step. However, this approach results in an inefficient procedure. Bates and Hervouet [49]

presented a finite element algorithm to solve moving-boundary problems on fixed numerical grids,

and consists of identifying partly wet elements, canceling spurious water-surface slope terms in the

momentum equations and rescaling the continuity equation to represent the true volume of water

on the partly wet elements. Aizinger and Dawson [34] described a DG scheme for the SWECs,

and Caleffi and Valiani [50] applied a third-order local DG method to the mathematical model of

passive contaminant transport in open-channel flows.

1.4 The Present Methods

The first purpose of the current research is to extend Sivakumar’s algorithm [8] to develop

a robust finite volume model for solving fully-coupled SWCEs. Sivakumar et al. [8] presented

a modified Roe scheme with an exact source-term balancing method in order to develop a well-

balanced and well-behaved algorithm dealing with non-uniform bed topography and dry regions.

The present scheme is based on the unstructured finite volume discretization for the fully-coupled

SWCEs system, using primitive variable Roe-flux approximation with an entropy fix. Second-order
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accuracy in space and time, nonlinear implicit and Euler explicit schemes are applied in the present

finite volume method.

Secondly, a new well-balanced finite element model is developed based on semi-discrete

SUPG method to solve the two-dimensional fully-coupled SWCEs with the ability to accurately

resolve wetting-drying fronts on arbitrary bed topography. The formulation used in a finite volume

algorithm [8] is now introduced into the finite element framework. Having discussed the disad-

vantage of deforming mesh schemes, simulations are carried out on a fixed computational grid

using an Eulerian method. A discretization for a non-flat bottom is introduced for the first time in

the finite element framework to balance the discrete flux gradients and source term for both still

water and dry regions. Linear second-order triangles are used to decompose the computational

domain. Moreover, this methodology can be easily extended to higher order elements. Implicit

time integration using the second-order backward difference (BDF2) scheme is utilized.

1.5 Outline

In the remaining chapters, the details of developed numerical algorithms for fully-coupled

SWCEs are described. Chapter 2 presents the mathematical model of the applied finite volume

method. In Chapter 3, the implemented SUPG model and the new exact source-term balancing

scheme is explained in detail. Results from several numerical test cases are discussed in Chapter 4.

Finally, conclusions and recommendations for future work are summarized in Chapter 6.
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CHAPTER 2

FINITE VOLUME METHODOLOGY

This chapter describes the finite volume discretization for the SWCEs utilized in the current

work. Additionally, implementation issues are discussed in detail.

2.1 Finite Volume Discretization and Primitive-Variable Roe-Flux for SWCEs

The integral form of equation (1.2) over an arbitrary fixed domain Ω enclosed by ∂Ω, is

given by

∂

∂t

∫
Ω

Q dA +
∮
∂Ω

E.n dl+
∫
Ω

S dA = 0 (2.1)

where E = F î + G ĵ and n is defined as an outward unit normal vector. The spatial domain Ω is

divided into triangular cells and a node-centered finite volume scheme is developed based on the

median dual control volume as shown in Figure (2.1). The surface flux integral for node i and its

neighbor node j may be written as

∮
∂Ω

E.n dl ≈
∑

j∈N (i)

Hi j (2.2)
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Figure 2.1 Illustration of a median dual control volume

Defining θ = u nx + v ny , the flux function H in (2.2) for SWCEs is given by

H = E.n dl = F .nx + G.ny =




h θ

h u θ + 1
2 (h2 − h2

s )nx

h v θ + 1
2 (h2 − h2

s )ny

h φ θ




(2.3)

Therefore, the flux Jacobian for SWCEs based on equation (2.3) is obtained as

∂H
∂Q
= AH =



0 nx ny 0

−u2nx − u v ny + nx h 2 u nx + v ny u ny 0

−v2ny − u v nx + nyh v nx u nx + 2v ny 0

−nxu φ − nyv φ φ nx φ ny u nx + v ny



(2.4)

In the present study to construct a stable scheme, the flux function utilizes Roe fluxes and is

approximated based on the primitive-variable vector defined as q = {h u v φ}T . The transformation
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matrix M for change of variables from conservative to primitive form is given in (2.5).

M =
∂Q
∂q
=



1 0 0 0

u h 0 0

v 0 h 0

φ 0 0 h



M−1 =



1 0 0 0

−u
h

1
h 0 0

− vh 0 1
h 0

−
φ
h 0 0 1

h



(2.5)

Using the primitive variables q, equation (1.2) can be written as

∂Q
∂t
+
∂F (Q)
∂x

+
∂G(Q)
∂ y

+ S(Q) = M
∂q
∂t
+ AM

∂q
∂x
+ BM

∂q
∂ y
+ S(q)

=
∂q
∂t
+ a

∂q
∂x
+ b

∂q
∂ y
+ M−1S(q) = 0 (2.6)

where A = ∂F
∂Q , B = ∂G

∂Q , a = M−1 AM , and b = M−1BM . Thus, the flux Jacobian for the primitive

variables aH is defined as

aH = M−1 AH M =



θ h nx h ny 0

nx θ 0 0

ny 0 θ 0

0 0 0 θ



(2.7)

To evaluate a conservative and well-behaved flux at each control-volume interface, the primitive-

variable Roe scheme is applied as

Hi j =
1
2

[
(HL + HR) − |AH | M

(
qR − qL

)]
=

1
2

[
(HL + HR) − M |aH |

(
qR − qL

)]
(2.8)
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where M and aH are evaluated at Roe-averaged values given by

h = 1
2 (hL + hR)

u = uL

√
hL+uR

√
hR√

hL+
√

hR

v = vL
√

hL+vR
√

hR√
hL+
√

hR
(2.9)

φ =
φL
√

hL+φR
√

hR√
hL+
√

hR

To obtain the flux dissipation matrix M |aH | in equation (2.8), eigenvalues and eigenvectors of aH

are required. Since AH and aH are similar matrices, they have the same set of eigenvalues which

are λk =
(
θ, θ, θ +

√
h, θ −

√
h
)
. The diagonal matrix of eigenvalues, as well as right and left

eigenvectors of aH , are given in equations (2.10) to (2.12).

|Λ| =



|λ1 |

|λ2 |

|λ3 |

|λ4 |



=



|θ |

|θ |

���θ +
√

h���
���θ −
√

h���



(2.10)

Rq =



0 0 1 1

−ny
h 0 nx√

h
−nx√

h

nx

h 0 ny
√

h
−ny
√

h

0 1 0 0



(2.11)
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Rq
−1 =



0 −h ny h nx 0

0 0 0 1

1
2

nx

√
h

2
ny
√

h
2 0

1
2

−nx

√
h

2
−ny
√

h
2 0



(2.12)

Thus, the flux dissipation matrix of Roe approximation in (2.8) is given by

M |aH | = M Rq |Λ| Rq
−1 =

1
2



β+ nx
√

h β− ny
√

h β− 0

u β+ + nx
√

h β− u nx
√

h β− + Ψ1 u ny
√

h β− + Ψ2 0

v β+ + ny
√

h β− v nx
√

h β− + Ψ2 v ny
√

h β− + Ψ3 0

φ β+ nxφ
√

h β− nyφ
√

h β− h |λ1 |


(2.13)

where

β+ = |λ3 | + |λ4 |

β− = |λ3 | − |λ4 |

Ψ1 = h nx
2 β+ + 2 h |λ1 | ny2 (2.14)

Ψ2 = h nxny
(
β+ − 2 |λ1 |

)
Ψ3 = h ny2 β+ + 2 h |λ1 | nx

2

2.2 Spatial Accuracy

In the present study, second order spatial accuracy is constructed by extrapolating the nodal

solutions to the faces surrounding the control volume. Nodal values and gradients are required to
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evaluate qL and qR at each cell interface in equation (2.8) as follows

qL = qi + ∇qi · r i j

qR = qj + ∇qj · r ji

(2.15)

Here i represents the center node of control volume and j is its neighbor point, as shown in Figure

(2.1). r i j is the vector extending from node i to the midpoint of edge i j. Either Green’s theorem [51]

or the least squares method discussed in [52] can be used to compute the gradients at the vertices.

In the present algorithm, ∇q in (2.15) is computed via Green’s theorem as follows

∫
Ω

∇q dΩ =
∫
∂Ω

q · n dA (2.16)

Noting that the area of integration is made up of discrete pieces, the gradient at vertex i is computed

as follows

∇qi =
1
Ωi

∑
j∈N (i)

1
2

(
qi + qj

)
ni j (2.17)

where Ωi is the area of median dual surrounding node i.

2.3 Temporal Discretization

The time derivative term appearing in equation (2.1) is approximated with a general expres-

sion given by (
V
∆Qn

∆t

)
i
=

(
V
∆t

)
i

[(
1 + ψ

) (
Qn+1

i −Qn
i

)
− ψ

(
Qn

i −Qn−1
i

)]
(2.18)
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where n represents the time iteration. By choosing ψ = 0 and ψ = 1
2 , first and second-order time

accuracy will be achieved, respectively.

2.4 Time Advancement Approach

Utilizing the temporal and spatial discretization previously discussed, equation (2.1) may

be written as

V
∆Qn

∆t
+ Rn+1 = 0 (2.19)

where R =
∮
∂Ω

E.n dl+
∫
Ω

S dA. For an implicit scheme, the nonlinear equation (2.19) must be

linearized about solution qn, and using a Newton-iterative algorithm [53] the discrete equations

become

[(
V
∆t

)
i

(
1 + ψ

)
M̂

]
∆qn+1,m

i +
∑

j

δl


(
∂Hi j

∂qL

)n+1,m

∆qn+1,m
i +

(
∂Hi j

∂qR

)n+1,m

∆qn+1,m
j


=

−
*.
,

(
V
∆t

)
i

[(
1 + ψ

) (
Qn+1

i −Qn
i

)
− ψ

(
Qn

i −Qn−1
i

)]
+

∑
j

Hn+1
i j δl + Vi Sn+/

-
(2.20)

In the above formulation m represents the Newton iteration, and ∆qn+1,m
i =

(
qn+1,m+1

i − qn+1,m
i

)
.

It should be noted that, based on equation (2.5), the matrix M is singular for dry regions (h = 0)

and must be replaced by M̂ = M + ε diag(0, 1, 1, 1). Numerical results depend strongly on the

parameter ε . The smaller this parameter is, the more accurately results are obtained. This indicates

the necessity of using the smallest possible ε while still retaining solution stability.

In the current work, the resulting sparse linear system in equation (2.20) is solved at each

Newton iteration using the Gauss-Seidel stationary iterative method.
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2.5 Flux Jacobian Calculations

Implicit solution algorithms require the construction of flux Jacobians which can be con-

structed either analytically or numerically. Numerical approximations can be obtained using

finite-difference or by a complex Taylor series expansion. Numerical flux Jacobians using finite-

difference is estimated by perturbing each component of the solution variable by a small amount

δ and calculating the difference between the flux vectors evaluated at the perturbed and unper-

turbed quantities. Thus, the forward finite-difference approximation for the Jacobians are defined

as follows [54, 55]
∂H
∂qL
≈

H(qL+δ,qR)−H(qL,qR)
δ

∂H
∂qR
≈

H(qL,qR+δ)−H(qL,qR)
δ

(2.21)

The use of complex variables to evaluate derivatives of real functions was first introduced by

Squire and Trapp [56]. Subsequently, Whitfield and Taylor [57] utilized this method for Jacobian

evaluation in advanced computational fluid dynamic solvers. This method can be evaluated by

perturbing the independent variable in the complex plane (q + ĩδ) as

∂H
∂qL
=

Im[H(qL+ĩδ,qR)]
δ

∂H
∂qR
=

Im[H(qL,qR+ĩδ)]
δ

(2.22)

where ĩ in the above equation denotes the imaginary number
√
−1. The advantage of this technique,

over finite-difference estimates, is that equation (2.22) does not possess subtractive cancellation
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errors and, therefore, represents an exact second-order approximation to the Jacobian. The dis-

advantage of using the complex variable approximation is that complex arithmetic is more com-

putationally expensive than using real numbers. Therefore, in the present work, flux Jacobians in

equation (2.20) are approximated by finite-difference numerical Jacobians with δ = 10−7.

2.6 Boundary Conditions

Boundary conditions in the present study are imposed by evaluating the Roe-flux approx-

imation through those faces of the control volume which lie on the boundary, and applying the

normal solution procedure to obtain flow variables. For an inviscid solid wall θ = u nx + v ny is

set to zero in evaluating flux vector. Inflow and outflow boundaries are modeled via characteristic

variable boundary conditions. The governing equations in the normal direction to the boundary η

is given by

∂Q
∂t
+
∂H
∂η
+ S = 0 (2.23)

For primitive variables q, this can be written as

∂q
∂t
+ aH

∂q
∂η
+ M−1S = 0 (2.24)

Using a similarity transformation, matrix aH is diagonalized as aH = RqΛR−1
q where Λ and Rq

have been defined previously. Multiplying both sides of equation (2.24) by R−1
q and evaluating R−1

q

at some constant conditions (R−1
q0 )

∂W0

∂t
+ Λ

∂W0

∂η
+ R−1

q0 M−1S = 0 (2.25)
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whereW0 = R−1
q0 q is the vector of characteristic variables. SinceΛ is a diagonalmatrix, the resulting

partial differential equations in (2.25) is a decoupled system and can be written as four uncoupled

scalar equation, each of which is a nonlinear wave equation. From the theory of characteristics,

information propagates along characteristic lines, at speeds determined by the eigenvalues

λk =
∂η

∂t
(2.26)

Therefore, equation (2.25) can be written as a total derivative

dW0

dt
+ R−1

q0 M−1S = 0 (2.27)

Discretizing equation (2.27) on the boundary

W0,b = W0,r − R−1
q0 M−1S ∆t (2.28)

Here W0,r is the characteristic variable evaluated at the appropriate reference state which is depen-

dent on the sign of the eigenvalues on the boundary. W0,b refers to the boundary state, and should

be calculated to obtain the solution vector qb.

qb = Rq0W0,r − M−1S ∆t (2.29)

Once qb is known, the numerical flux on the boundary can be evaluated.
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2.7 Dry Regions

As mentioned previously, there are various types of wetting-drying algorithms that have

been used for moving boundary problems. In many shallow water solvers, to treat zero depth, either

a small minimum depth hmin is applied to dry regions during the solution process, or dry cells

are removed from the computational domain. Both of these procedures could introduce errors in

computations of flow variables and contaminant transport.

The present primitive formulation is well behaved at h = 0, while all cells are included

in the computational domain, and there is no need to enforce a minimum depth for dry regions.

However, the time integration may produce small negative heights or negative contaminants. In

order to be physically consistent, and to avoid a negative square root, negative heights and negative

contaminants are reset to zero.

2.8 Source Term Balancing

The still-water state, often referred to as the lake at rest solution, is defined by

u = v = 0 and h − hs = 0 (2.30)

where u and v are velocity components, andh and hs have been defined in Figure (1.1). A well-

balanced numerical scheme should satisfy the above C-property [4] through exactly balancing

the source term and numerical flux. The present finite volume method satisfies the still-water

equilibrium, while the source term on a dry bed is only balanced for a flat bottom. To balance the

flux integral and source term for dry regions, the method introduced in [8] is implemented for a

20



non-flat bed. The x- and y-momentum equations for a dry non-flat bed are reduced

−

∮
∂Ω

h2
s

2
nx dl +

∫
Ω

hs
∂hs

∂x
dΩ ≈ −

∮
∂Ω

h2
s

2
nx dl + h̃s1

∫
Ω

∂hs

∂x
dΩ = 0 (2.31)

−

∮
∂Ω

h2
s

2
ny dl +

∫
Ω

hs
∂hs

∂ y
dΩ ≈ −

∮
∂Ω

h2
s

2
ny dl + h̃s2

∫
Ω

∂hs

∂ y
dΩ = 0 (2.32)

For each node, the above two scalar equations are solved for h̃s1 and h̃s2 to maintain an exact balance

in the x- and y-directions, respectively. The calculation process of h̃s1 and h̃s2 is performed only

once, prior to starting the solution, and these values will be used in computing the source term on

all control volumes.
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CHAPTER 3

FINITE ELEMENT METHODOLOGY

In this chapter, a stabilized finite element methodology based on a semi-discrete SUPG

method is described and implemented into the SWCEs. Since the SUPG method is not compatible

for cases with a non-flat bottom, a new algorithm for addressing wetting-drying fronts is introduced.

This algorithm computes a modified bottom topography which is utilized in the source term.

3.1 Finite Element Discretization

To apply the finite elementmethod, the computational domain is divided into non-overlapping

triangular elements. The finite element approximation is expanded as a series of Lagrangian basis

functions ψk and dependent variables Q̂k , for element e as

Q(x, y) =
npe∑
k=1

Q̂e
kψ

e
k (x, y) (3.1)

Basis functions are defined based on the reference triangular element (0 ≤ ξ, η ≤ 1). Thus,

a mapping from the reference to the physical element is required. The reference-to-physical

transformation and the corresponding Jacobian of transformation J for a two-dimensional element
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is given by

x =
npe∑
k=1

x̂e
kψ

e
k (ξ, η) (3.2)

y =

npe∑
k=1

ŷe
kψ

e
k (ξ, η) (3.3)

J =



∂x
∂ξ

∂x
∂η

∂ y
∂ξ

∂ y
∂η



(3.4)

3.2 Streamline Upwind Petrov-Galerkin (SUPG) Discretization

The semi-discrete SUPG formulation of the governing equation (1.2) is written as

∫
Ω

W
(
∂Q
∂t
+
∂F
∂x
+
∂G
∂ y
+ S

)
dΩ +

nel∑
e=1

∫
Ωe

δs

(
∂Q
∂t
+
∂F
∂x
+
∂G
∂ y
+ S

)
dΩ

+

nel∑
e=1

∫
Ωe

νShock

(
∂W
∂x

∂Q
∂x
+
∂W
∂ y

∂Q
∂ y

)
dΩ = 0 (3.5)

where the weighting-function W is defined using the same basis functions as for the dependent

variables (W = ψ). The second and third terms are added stabilization and shock-capturing terms,

respectively. The weak form of SWCEs after integration-by-parts on a typical element e is given by

∫
Ωe

W
(
∂Q
∂t
+ S

)
dΩ −

∫
Ωe

(
∂W
∂x

F +
∂W
∂ y

G
)

dΩ +
∫
Γe

W
(
F · nx + G · ny

)
dΓ

+

∫
Ωe

δs

(
∂Q
∂t
+
∂F
∂x
+
∂G
∂ y
+ S

)
dΩ +

∫
Ωe

νshock

(
∂W
∂x

∂Q
∂x
+
∂W
∂ y

∂Q
∂ y

)
dΩ = 0 (3.6)
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In this study, two different definitions for the stabilization parameter δs are applied to evaluate the

stabilization term in equation (3.6), and are denoted as δs1 and δs2.

3.2.1 Stabilization Parameter δs1 and Shock-Capturing Parameter νshock

The stabilization and shock-capturing parameters are defined based on [27] and evaluated

using

δs1 = τt

(
∂W
∂x

A +
∂W
∂ y

B
)

(3.7)

νshock = τshock
(
uint

2
)

(3.8)

τt =

[
1
τ12 +

1
τ22

]− 1
2

(3.9)

τ1 =



npe∑
k=1

(
c

�����
∇h
‖∇h‖

· ∇Wk

�����
+ |U · ∇Wk |

)

−1

(3.10)

τ2 =
∆t
2

(3.11)

τshock = τ1
*.
,

���∇
2h���

max ��∇2h��
+/
-

(3.12)

uint =

√
c2 + ‖U ‖2 (3.13)

Here uint represents an intrinsic velocity. To calculate ���∇
2h��� for each element, after evaluating

the first derivative via Green’s theorem applied in equation (2.17), the second derivative at each

element is computed using basis functions

∇2h =
npe∑
k=1

(∇h)k
(
∇ψ

)
k (3.14)
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3.2.2 Stabilization Parameter δs2

Another definition for the stabilization parameter is taken from [58] which is defined as

δs2 =

(
∂W
∂x

A +
∂W
∂ y

B
)

[τa] (3.15)

Here [τa] is a matrix given by

[τa] = *
,

npe∑
k=1

�����
∂Wk

∂x
A +

∂Wk

∂ y
B

�����
+
-

−1

(3.16)

�����
∂Wk

∂x
A +

∂Wk

∂ y
B

�����
= T |Λ| T−1 (3.17)

T andΛ represent thematrix of right eigenvectors and diagonalmatrix of eigenvalues of ���
∂Wk

∂x A + ∂Wk

∂ y B���,

respectively. The eigensystem for SWCEs are evaluated as

T =



0 0 Ha Ha

−
Ny

Ha
0 h Nx + u Ha −h Nx + u Ha

Nx

Ha
0 h Ny + v Ha −h Ny + v Ha

0 1 φ Ha φ Ha



(3.18)

T−1 =



h (u Ny−v Nx )
Ha

−h Ny
Ha

h Nx

Ha
0

−φ 0 0 1

Ha−θa
2 Ha

2
Nx

2 Ha
2

Ny

2 Ha
2 0

Ha+θa
2 Ha

2 −
Nx

2 Ha
2 −

Ny

2 Ha
2 0



(3.19)
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|Λ| =



|θa |

|θa |

|θa + Ha |

|θa − Ha |



(3.20)

with

θa = u Nx + v Ny (3.21)

Ha =

√
h (N2

x + N2
y ) (3.22)

Nx =
∂Wk

∂x (3.23)

Ny =
∂Wk

∂ y (3.24)

3.3 Time Integration Scheme

Equation (3.5) can be written in a differential equation form, with the discretized spatial

residual R and mass matrix M , as

M
∂Q
∂t
+ R(Q) = 0 (3.25)

Applying the second-order backward difference (BDF2) scheme to (3.25), the unsteady residual is

obtained as

Rn+1
uns =

M
∆t

(
3
2

Qn+1 − 2Qn +
1
2

Qn−1
)
+ R

(
Qn+1

)
= 0 (3.26)

where Rn+1
uns represents the unsteady residual at time step n + 1. The implicit scheme requires

linearization of equation (3.26). The resulting linear system at each Newton iteration is solved
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using the Generalized Minimal Residual (GMRES) algorithm [59] with an ILU(0) preconditioner.

The linearized incremental equations may be expressed as

(
∂Runs

∂Q

)m,n+1

∆Qm,n = −Rm,n+1
uns (3.27)

In the above formulation n and m denote the time iteration and Newton iteration, respectively. It

should be noted that the matrix
(
∂Runs

∂Q

)
becomes singular for dry regions (h = 0) and must be

replaced with
(
∂Runs

∂Q

)
+ ε diag(0, 1, 1, 1).

3.4 Boundary Conditions

Flux boundary conditions are strongly enforced via the surface integral in equation (3.6).

For an inviscid wall, a zero normal velocity condition (θ = u nx + v ny = 0) is imposed in the

evaluation of the flux vector on the wall. Characteristic inflow and outflow conditions are applied

on the appropriate boundaries.

3.5 Wetting and drying

In general, the numerical model solves SWCEs over wet regions where fluid is present.

However, accommodating dry regions plays a crucial role in modeling shallow water flows with

drying and flooding applications. As previously noted, the present study focuses on using fixed

computational grids. Using fixed grid models to simulate moving boundary problems in a finite

element framework leads to the existence of wet, dry, and partially-wet elements as shown in Figure

(3.1). Mass and momentum conservation should be properly considered for all types of elements,

otherwise this may lead to numerically unstable oscillations in the wetting-drying fronts.
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Figure 3.1 Existence of fully-wet, fully-dry, and partially-wet elements in fixed grid models

In the present work, a new algorithm is developed to accommodate dry and partially-wet

elements through exactly balancing the source term and flux gradients. The algorithm is explained

in details in the following section.

3.6 Exact source-term balancing

The nondimensional formulation given in equation (1.2) satisfies the still-water equilibrium

for fully-wet elements in finite element discretizations and, therefore, source-term treatment should

be focused on fully-dry and partially-wet elements.

3.6.1 Dry elements

The continuity equation is satisfied for a typical dry element. However, the x- and y-

momentum equations reduced to

∫
Ωe

W
∂ (h u)
∂t

dΩ −
∫
Ωe

[
∂W
∂x

(
h u2 +

h2 − h2
s

2

)
+
∂W
∂ y

h u v
]

dΩ

+

∫
Γe

W
[(

h u2 +
h2 − h2

s

2

)
nx + h u v ny

]
dΓ −

∫
Ωe

W
[
(h − hs)

∂hs

∂x

]
dΩ = 0 (3.28)
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∫
Ωe

W
∂ (h v )
∂t

dΩ −
∫
Ωe

[
∂W
∂x

h u v +
∂W
∂ y

(
h v2 +

h2 − h2
s

2

)]
dΩ

+

∫
Γe

W
[
h u v nx +

(
h v2 +

h2 − h2
s

2

)
ny

]
dΓ −

∫
Ωe

W
[
(h − hs)

∂hs

∂ y

]
dΩ = 0 (3.29)

Note that the stabilization and shock-capturing terms, as well as friction terms, are omitted in the

dry elements. Applying the dry state (h = u = v = 0) to equations (3.28) and (3.29) yields

∫
Ωe

(
h2

s

2
∂W
∂x

)
dΩ +

∫
Γe

W
(
−h2

s

2
nx

)
dΓ +

∫
Ωe

W
(
hs
∂hs

∂x

)
dΩ = 0 (3.30)

∫
Ωe

(
h2

s

2
∂W
∂ y

)
dΩ +

∫
Γe

W
(
−h2

s

2
ny

)
dΓ +

∫
Ωe

W
(
hs
∂hs

∂ y

)
dΩ = 0 (3.31)

For a non-flat and arbitrary bed topography, equations (3.30) and (3.31) are not satisfied in dry

elements. In order to balance the discrete form of the momentum equations for all elements, a

modified bottom topography h̃s = {h̃s1, h̃s2} can be computed for element e such that

∫
Ωe

W
(
h̃s1

∂hs

∂x

)
dΩ = −

∫
Ωe

(
h2

s

2
∂W
∂x

)
dΩ +

∫
Γe

W
(

h2
s

2
nx

)
dΓ (3.32)

∫
Ωe

W
(
h̃s2

∂hs

∂ y

)
dΩ = −

∫
Ωe

(
h2

s

2
∂W
∂ y

)
dΩ +

∫
Γe

W
(

h2
s

2
ny

)
dΓ (3.33)

Since h̃e
s =

npe∑
k=1

h̃skψk , the nodal values of h̃s must be calculated through solving the momentum

equations for all elements simultaneously. However, h̃s1 and h̃s2 for the x- and y-directions may be

computed separately as the equations above are de-coupled. The resulting system has the following
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form for each direction

[LHS]ξ
{
h̃s

}
ξ
= [RHS]ξ (3.34)

with

LHSi, j =

∫
Ωe

Wi W j

(
∂hs

∂xξ

)
e

dΩ

RHSi = −

∫
Ωe

(
h2

s

2

)
e

∂Wi

∂xξ
dΩ +

∫
Γe

Wi

(
h2

s

2

)
e
nxξ dΓ (3.35)

where ξ represent the direction, i.e., ξ = 1 is for x-direction and ξ = 2 is for y-direction. The

second term in RHSi is evaluated for boundary edges only. The evaluation of nodal balancing
{
h̃s

}
ξ
is performed only once, and may be performed at the beginning of the solution procedure.

3.6.2 Partially-wet elements

In partially-wet elements, where water depth is zero at some nodes and is non-zero at

others, the interpolated depth in the element will not represent the real water surface. Thus,

further consideration is required to prevent a spurious water surface in partially-wet elements. Such

elements can be included or excluded from the computations, however, both approaches result in an

incorrect mass of water in the domain. By excluding partially-wet elements from the computations,

an artificial barrier is assumed at the last wet node, as in Figure (3.2a), which changes the actual

location of the shoreline and excludes some mass of water from the calculations. With including

those elements within the numerical solution, a volume of air will be treated as mass of water

as illustrated in Figure (3.2b). Since in the present study all types of elements are included in
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the computational domain, spurious oscillations in wetting-drying fronts are unavoidable. For

cases with arbitrary free surface elevations, the error may be reduced by using mesh refinement.

However, for still-water conditions on non-flat bed, the water surface level can be accurately

retrieved by applying modifications to the momentum equation. The x-momentum equation in

(3.28) for still-water condition (u = v = 0) is given by

−

∫
Ωe

(
h2

2
∂W
∂x

)
dΩ +

∫
Ωe

(
h2

s

2
∂W
∂x

)
dΩ +

∫
Γe

(
W

h2

2
nx

)
dΓ

−

∫
Γe

(
W

h2
s

2
nx

)
dΓ −

∫
Ωe

(
W h

∂hs

∂x

)
dΩ +

∫
Ωe

(
W hs
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Introducing h̃s, equation (3.36) may be rewritten as

−
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)
dΩ = 0 (3.37)

By substituting equation (3.32) into equation (3.37), to meet the still-water condition for partially-

wet elements will require

∫
Ωe

(
W h

∂hs

∂x

)
dΩ = −

∫
Ωe

(
h2

2
∂W
∂x

)
dΩ +

∫
Γe

(
W

h2

2
nx

)
dΓ (3.38)

To satisfy the equality in equation (3.38), the only modification for partially-wet elements will be

∂hs

∂x
=
∂h
∂x

or
∂ζ

∂x
= 0 (3.39)
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(a) Element exclusion approximation (b) Element inclusion approximation

Figure 3.2 Partially-wet elements treatment in fixed grid models

That is, the water surface gradient in the x-direction should be forced to zero at partially-wet

elements in order to eliminate the spurious water surface. In a similar manner, since the momentum

equations are decoupled, it can be shown that the water surface gradient in the y-direction should

be forced to zero as well. Resulting in the condition

∂hs

∂ y
=
∂h
∂ y

or
∂ζ

∂ y
= 0 (3.40)
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CHAPTER 4

NUMERICAL RESULTS

This chapter presents the various test cases that have been used to validate the developed

finite volume and finite element methodologies. The influence of arbitrary bed topography, dry

regions, as well as advection and diffusion of contaminant are considered to examine the stability

and robustness of the present schemes. Dam-break test cases are simulated to highlight the shock-

capturing feature in wet or dry regions with arbitrary bed topography. The pollution transport test

cases are presented to demonstrate advection and diffusion of contaminant within the flow.

4.1 Finite Volume Results

In order to verify the current finite volume method (FVM), several test cases are considered.

Wet and dry dam break problems, oscillation of a bead of water in a parabolically-shaped bowl,

and supercritical flow in a constricted channel are simulated to verify performance of the current

algorithm with zero contaminant. Other test cases are discussed to verify advection and diffusion

of contaminant with the flow. The simulation of contaminant transport in a notional river is

also simulated to demonstrate that the present work can be implemented on practical applications

involving flooding and pollutant transport.
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4.1.1 Dam-Break

Dam-break problems are traditional test cases for shallow water models. In the current

work, this test case consists of a nondimensional region spanning from 0.0 to 1.0, having uniform,

but dissimilar left and right water levels separated by a wall located at x = 0.5, as shown in Figure

(4.1). The wall is removed at t = 0, which produces a left-running rarefaction wave and a right-

running discontinuous shock wave. Exact solutions for this Riemann problem are given in Toro [11]

for both wet-bed and dry-bed scenarios. A two-dimensional grid is used, with a streamwise mesh

spacing of ∆s = 0.0025, and the computed heights and velocities along the horizontal centerline

of the domain are compared to the exact solutions. No bottom friction is imposed for dam-break

cases.

Initially, a wet-bed dam-break problem is considered with the water level 1.0 and 0.05 for

the left and right states, respectively (hL = 1.0, hR = 0.05). The initial discontinuity at x = 0.5

should move to the location x = 0.75 at time t = 0.2366. As shown in Figure (4.2), the current

finite volume scheme predicts height and velocity accurately for both rarefaction and shock waves.

Small overshoots are visible which are typical of upwind schemes.

A dry-bed dam-break problem with moving wet/dry interface is also considered. A water

level of 1.0 on the left and a dry-bed on the right (hL = 1.0, hR = 0.0) is the initial condition for

this test case. Many solution techniques are not capable of simulating this particular problem, as

the system of equations has a singular point at h = 0. As shown in Figure (4.3), although the water

depths are accurately captured, the horizontal velocity is sensitive to the choice of ε . Recall, this

parameter is responsible for masking the singularity in the inverse of the transformation matrix.
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Figure 4.1 The traditional dam-break problem

(a) Water Surface, ∆s = 0.0025.

(b) Horizontal Velocity, ∆s = 0.0025.

Figure 4.2 Numerical and theoretical solutions for the wet-bed dam-break problem at t = 0.2366
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(a) Water Surface, ∆s = 0.0025.

(b) Horizontal Velocity, ∆s = 0.0025.

Figure 4.3 Numerical and theoretical solutions for the dry-bed dam-break problem at t = 0.2366

Figure 4.4 Geometry and gauge locations for the triangular obstacle case
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4.1.2 Dam Break over a Triangular Obstacle

This test case simulates the evolution of a dam break wave over a triangular obstacle. The

experimental data was obtained at the Recherches Hydrauliques Lab Chatelet in coordination with

the Université libre de Bruxelles (Belgium) [60]. As illustrated in Figure (4.4), themodel consists of

a reservoir and a channel separated by a dam, and a triangular obstacle downstream of the dam. The

slopes of triangular obstacle are symmetric. At t = 0, the water level is 0.75 m in the reservoir and

zero in the rest of the channel (dry bed). All boundaries are considered as walls except for the free

outlet, and the Manning roughness coefficient is n = 0.0125 s.m−1/3. The computational domain

for this test case is a two-dimensional rectangular channel discretized with a uniform unstructured

grid. To validate the accuracy of the numerical scheme, experimental and numerical results are

compared at the measurement locations. Table (4.1) and Figure (4.4) display the location of each

gauge. Figure (4.5) presents the numerical and experimental water depth (h) as a function of time

at the various gauge locations. Additionally included in this Figure are the finite volume numerical

results from Brufau [60]. A direct comparison of the present results with Brufau [60] is shown in

Figure (4.6). In this Figure the water depth along the spatial domain at various time snapshots may

be observed. The results presented demonstrate excellent agreement with both experimental data

and with Brufau [60].

Table 4.1 Gauge locations for the triangular obstacle case

Gauge number x(m) y (m)
G4 19.5 0.0
G10 25.5 0.0
G11 26.5 0.0
G13 28.5 0.0
G20 35.5 0.0
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(a) G4 (b) G10

(c) G11 (d) G13

(e) G20

Figure 4.5 Measured and computed water depth at gauge locations for the triangular obstacle case
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(a) t=3 sec (b) t=5 sec

(c) t=10 sec (d) t=20 sec

Figure 4.6 Computed water depth profile in different times for the triangular obstacle case
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4.1.3 Parabolic Basin

In order to highlight the stability and robustness of the present FVM in accommodating

wetting-drying fronts on a non-flat bed, oscillations of a bead of water in a parabolically-shaped

basin is considered. This test problem and an analytical solution are given in [61]. In this case,

there is no bottom friction inside the basin and all boundaries have the Dirichlet condition. The

exact solution for the free-surface elevation is given by

ζ = h − hs =

√
1 − A2

1 − A cos(ωt)
−

r2

a2

(
1 − A2

(1 − A cos(ωt))2 − 1
)
− 1 (4.1)

where t is the elapsed time, r =
√

x2 + y2, A =
a4−r4

0
a4+r4

0
and ω =

√
8/a. The still-water surface

elevation, defined by ζ = 0, has unit depth at the centerline r = 0 with a circular shoreline located

at r = a. The computational domain shown in Figure (4.7) is a square ranging from −1.0 to 1.0

in both x- and y- directions and an isotropic unstructured mesh is used to discretize the domain.

As shown in Figure (4.8), the water level is initialized with the exact solution at t = 0, which

intersects the bottom at r = r0. In this study, a = 0.75, r0 = 0.60 and the bottom topography of

the parabolic bowl is defined by hs = 1 − r2/a2. Furthermore, the period of oscillation is given as

T = 2π/ω ≈ 166.608.

As shown in Figures (4.9) and (4.10), the computed solution is indistinguishable from the

theoretical solution. Figure (4.9) depicts the surface elevation at the center of the parabolic basin

as a function of period. Even after 10 periods have elapsed, excellent agreement with the analytical

solution is observed. Figures (4.10a) and (4.10c) illustrate the surface elevation across the center
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line of the parabolic basin at time 10T and 11.3T , respectively. In these Figures, the wetting-drying

fronts can be clearly seen. Furthermore, Figures (4.10b) and (4.10d) show the water depth contours

on the two-dimensional mesh at the aforementioned times.

Figure 4.7 The computational domain and initial water surface contours for the oscillating
parabolic basin case

Figure 4.8 The initial solution for the oscillating parabolic basin case
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Figure 4.9 Water surface oscillation in the parabolic basin at selected points

(a) Water surface at t = 10T . (b) Water depth contours at t = 10T .

(c) Water surface at t = 11.3T . (d) Water depth contours at t = 11.3T .

Figure 4.10 Numerical and theoretical solutions of water depth in the parabolic basin
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4.1.4 Supercritical Flow in a Constricted Channel

The steady state flow in a constricted channel, with a Froude number of 4.0, is considered

to demonstrate performance of the current FVM in simulating supercritical flows. This test case

was previously considered experimentally [62] and computationally [63,64]. The problem domain

is a 0.61 m wide channel transitioning to a 0.3 m wide channel at a convergence angle of 6◦. The

two-dimensional unstructured mesh used for this simulation is shown in Figure (4.11a). Friction

stresses and variation in bed slope are neglected in the present computations. For this supercritical

flow, an oblique hydraulic jump is formed due to the change in cross-section. An effective numerical

scheme should be capable of capturing these discontinuities.

Figure (4.11b) displays the water depth contours in the channel as well as the shock angle.

The inclined walls produce an attached wave at an angle of 19.9◦ relative to the incoming flow

direction which compares well with the analytical results of 19.68◦ presented in Figure (4.11c) [64].
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(a) Unstructured mesh (31543 triangular elements).

(b) Computed water depth contours.

(c) Analytical results.

Figure 4.11 Supercritical flow in a constricted channel
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4.1.5 Pollutant Advection

The test problem from [3] is considered to demonstrate the ability of the present FVM in

simulating contaminant transport. This test case is described as pure advection of a contaminant in

a square domain. In the present work, the topology is assumed to be smooth and flat and there are

no frictional forces. The computational domain is a 9km×9km square channel, which is discretized

with a nonuniform unstructured grid. A uniform flow with u = v = 0.5 m/s and h = 0.2485 m is

imposed on the entire domain. The initial pollutant concentration is defined by the superposition

of two Gaussian distributions centered at x1 = y1 = 1400 m and x2 = y2 = 2400 m, and is given as

φ = φ1 e
−

d1
2

σ12 + φ2 e
−

d2
2

σ22 (4.2)

d1 =

√
(x − x1)2 + (y − y1)2 (4.3)

d2 =

√
(x − x2)2 + (y − y2)2 (4.4)

The above constants are chosen to be

φ1 = 10 φ2 = 6.5 σ1 = σ2 = 264 (4.5)

Inflow and outflow conditions are applied appropriately on the boundaries. The exact solution

consists of the pollutant concentration moving diagonally across the domain with the constant

speed of u = v = 0.5 m/s while retaining the initial distribution shape. Figure (4.12) illustrates the

computed results compared to the theoretical solution at different times.
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4.1.6 Pollutant Diffusion

The diffusion of a Gaussian distribution of contaminant in still water is considered here

to examine the accuracy of the current FVM in numerically simulating the diffusion of pollutant.

A square domain ranging from −2.0 to 2.0 with a flat and smooth bottom is assumed as the

computational domain. Considering a constant water depth of h = 0.01 at rest, the velocity

components are zero. The initial distribution of contaminant is a Gaussian distribution centered at

x0 = y0 = 0.0 with the maximum value of 1.0 and standard deviation of σ = 0.1 and is given by

φ(x, y, 0) = e−
(x−x0)2+(y−y0)2

σ2 (4.6)

The analytical solution for this problem given in [65] may be expressed as

φ(x, y, t) =
σ2

4 D t + σ2 e[− (x−x0)2

4 D t+σ2 −
(y−y0)2

4 D t+σ2 ] (4.7)

where the diffusion coefficient in all directions is D = 0.01. Computations are carried out on a

uniform unstructured grid with ∆x = ∆y = 0.02, and integrated over the nondimensional time

interval [0,15]. Shown in Figure (4.13) are the numerical and theoretical contaminant distributions

at various time snapshots. Figures (4.13b), (4.13d) and (4.13f) illustrate the contaminant contours

on the two-dimensional mesh. Furthermore, Figure (4.14) depicts the numerical and analytical

rates of diffusion of the contaminant at two points within the domain. As can be observed for this

validation case, excellent agreement is obtained.
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(a) Contaminant distribution at t = 0. (b) Contaminant contours at t = 0.

(c) Contaminant distribution at t = 4800 sec. (d) Contaminant contours at t = 4800 sec.

(e) Contaminant distribution at t = 9600 sec. (f) Contaminant contours at t = 9600 sec.

Figure 4.12 Contaminant distribution in the square cavity test case
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(a) Contaminant distribution at t = 0. (b) Contaminant contours at t = 0.

(c) Contaminant distribution at t = 7.5. (d) Contaminant contours at t = 7.5.

(e) Contaminant distribution at t = 15. (f) Contaminant contours at t = 15.

Figure 4.13 Contaminant distribution in different times for the pollutant diffusion test case
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(a) x = 0 , y = 0

(b) x = 0.5 , y = 0

Figure 4.14 Contaminant level in selected points for the pollutant diffusion test case
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4.1.7 Pollutant Transport in a Notional River following a Flood

A scaled river model is designed to demonstrate the ability of the present FVM for real-

world problems and to simulate contaminant transport over complex and irregular topography. As

shown in Figure (4.15), the river geometry consists of three inlets, two outlets, seven islands, and

the bathymetry varies within the domain. The computational domain is decomposed into 183524

triangular elements and the wall boundary condition is imposed on the land and island boundaries.

The river is initially at steady state with pollutant source located at (0.495,0.535), having a radius of

0.005, and a nondimensional concentration of 20. The Manning roughness coefficient is assumed

to be n = 0.0155. At t = 0, a flood wave is released from inlet 1 and flows through the river

and spreads the contaminant through the river system. As shown in Figure (4.15) and Table (4.2),

several gauge stations are placed to record the flow variables at different times within the time

interval of t = [0, 1.5]. The contours in Figure (4.15) illustrate the bottom topography.

Figure (4.16) displays the predicted water surface level and velocity components created by

the flood wave at the gauge locations. The flow is originally at a steady state prior to the arrival

of the flood wave. As seen, an abrupt change occurs in the water surface and velocity components

once the flood wave reaches the gauge points, where the water surface rises and oscillates. Since

in this case the flood wave is continuously applied at inlet 1 during the simulated time, the flow

approaches a steady state as is evident from results at the gauges. Velocity components respond

differently at the gauge locations due to the bathymetry of the river around those points. At gauges

1 to 3, velocity components approach a steady state more quickly. However, at gauge 4, which is

located in a wide region connecting the flooded area by a narrow canal, more time is required for

the velocity components to reach a steady state.
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Figure 4.15 The notional river geometry, bottom topography contours and gauge locations

Figures (4.17) to (4.19) illustrate the spatial distribution of water surface and contaminant

over the entire domain at distinct computational times. A comparison between the polluted area

before and after the flood indicates that, depending on the flow depth and velocity, the pollution

can contaminate many remote locations in the river system. This may be readily seen in Figures

(4.18b), (4.18d) and (4.18f), that as the contaminant approaches outlet 1, which is not capable of

evacuating the entire pollutant, large amounts enter the small channel towards gauge 4 as well as

travel upwards towards inlet 2. Finally, as seen in Figure (4.18f) at t = 1.5, high concentrations of

the pollutant remain trapped in the vicinity of the islands directly below inlet 2.
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Table 4.2 Gauge locations for the notional river case

Gauge number x(m) y (m)
G1 8.533e-01 3.304e-01
G2 5.012e-01 5.620e-01
G3 4.012e-01 6.354e-01
G4 3.474e-01 3.537e-01

(a) G1 (b) G2

(c) G3 (d) G4

Figure 4.16 Water surface and velocity in different locations for the notional river case
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(a) Water depth at t = 0. (b) Pollutant distribution at t = 0.

(c) Water depth at t = 0.31. (d) Pollutant distribution at t = 0.31.

(e) Water depth at t = 0.34. (f) Pollutant distribution at t = 0.34.

Figure 4.17 Distribution of water depth and contaminant for the notional river case
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(a) Water depth at t = 0.41. (b) Pollutant distribution at t = 0.41.

(c) Water depth at t = 0.53. (d) Pollutant distribution at t = 0.53.

(e) Water depth at t = 0.64. (f) Pollutant distribution at t = 0.64.

Figure 4.18 Distribution of water depth and contaminant for the notional river case
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(a) Water depth at t = 0.8. (b) Pollutant distribution at t = 0.8.

(c) Water depth at t = 1.0. (d) Pollutant distribution at t = 1.0.

(e) Water depth at t = 1.5. (f) Pollutant distribution at t = 1.5.

Figure 4.19 Distribution of water depth and contaminant for the notional river case
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4.2 Finite Element Results

In this section, computational results of the developed finite element method are presented.

For validation and verification, these results are compared to those obtained from analytical so-

lutions and with the previously discussed finite volume method. All test cases utilize the same

computational mesh, the same time step, and the same initial and boundary conditions in the

simulations.

4.2.1 Dam-Break

The dry-bed and wet-bed dam break problems previously introduced are solved using the

current FEM and compared to the present FVM and theoretical solutions. For this test case, the

time step is selected as ∆t = 0.0001. At nondimensional time t=0.2366 the water surface elevation

and horizontal velocity are shownwith twomesh resolutions in Figure (4.20) for the wet-dam break.

The FEM stabilization parameter δs1 more accurately predicts the location of the shock front as

the mesh is refined, however, the overshoots around the discontinuity become more pronounce.

The FEM stabilization parameter δs2 appears to suppress these oscillations, however the horizontal

velocity is over-predicted as the discontinuity is approached. Furthermore, this over-prediction

becomes more evident on the finer grid.

Figure (4.21) depicts the results for the dry-dam break test case at the same time instant

as was shown for the wet-dam break, but only for the finer mesh resolution using the stabilization

parameter δs1. This figure shows thewater surface elevation and horizontal velocity for two different

values of ε . Recall, ε is the parameter used to avoid the singularity at zero water elevation. In terms

of the water surface elevation, the FEM and FVM produce comparable results that are relatively
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insensitive to the selected value of parameter ε . However, this is not the case for the horizontal

velocity. As seen, as the value of ε becomes smaller, more accurate results are obtained. Moreover,

from the profiles shown in Figure (4.21c) and (4.21d) it is apparent that the FVM approaches the

theoretical solution faster than the FEM as ε is reduced. The sensitivity of the solution accuracy

due to this parameter for the FEM requires more investigation, particularly in the context of mesh

refinement.

4.2.2 Dam-Break Flow over a Triangular Obstacle

The geometry for this test case has been previously shown in Figure (4.4). For the simula-

tions, the uniform mesh spacing and time step are selected to be 0.1 and 0.004, respectively. Again,

the FEM stabilization parameter δs1 is utilized. As seen in Figures (4.22) and (4.23), comparable

results and similar behavior between the FVM and FEM are observed. However, some notable

differences are present. The water rise from the dam-break occurs sooner for the FEM on the

frontal face of the triangular obstacle, as indicated in Figures (4.22b) and (4.22c). The behavior is

reversed for the FVM at the apex of the triangular obstacle and downstream as shown in Figures

(4.22d) and (4.22e), respectively.

Spatially, this behavior is readily seen in Figure (4.23) which displays the water height as

a function of axial location for different time snapshots. Typically, numerical dissipation causes

an inviscid solution to behave similar to one that has physical viscosity and, therefore, smear the

discontinuity and cause it to appear upstream spatially or later temporally. From this observed

behavior, the discrepancies between the computed results may be indicative of the FVM possessing

more numerical dissipation than the FEM for this given discretization.
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4.2.3 Parabolic Basin

In order to examine the performance of the new source-term balancing scheme introduced

in the current FEM, the parabolic bowl case is considered and initialized with still water, i.e.

ζ = 0. Since the water is at rest, there is no motion in the bowl, and the water level should remain

unchanged at each time step. Figure (4.24) indicates that the residual maintains machine zero as the

equations are integrated in time and, therefore, the source-term balancing scheme does not disturb

equilibrium. Note, this verification is necessary in order to ensure that the governing equations are

satisfied both temporally and spatially for any implemented method.

The parabolic basis is again used for validation of the present FEM in accommodating

moving wetting-drying interfaces with a non-flat bottom. The water surface is initialized with

the exact solution given in equation (4.1), and a time step of ∆t = 0.001 is utilized. In Figure

(4.25), computed results are compared with both analytical and the current FVM solutions. Once

again, comparable accuracy is observed between the two methodologies. Furthermore, regardless

of numerical method used, based on the discretization utilized, error exists for wetting-drying

problems due to the spurious water surface in partially-wet elements. Figures (4.25d) and (4.25f)

illustrate this error where the bead of water intersects the parabolic bowl. In these figures, no

discernable conclusions may be made concerning the superiority of one methodology over the

other as the accuracy with the exact solution differs at the time snapshots. However, these errors

are reduced as the mesh is refined in the vicinity of the interface.
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(a) Water Surface, ∆s = 0.01 (b) Horizontal Velocity, ∆s = 0.01

(c) Water Surface, ∆s = 0.0025 (d) Horizontal Velocity, ∆s = 0.0025

Figure 4.20 The present FEM and FVM solutions for the wet-bed dam-break problem at t =
0.2366
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(a) Water Surface, ε = 10−3 (b) Water Surface, ε = 10−5

(c) Horizontal Velocity, ε = 10−3 (d) Horizontal Velocity, ε = 10−5

Figure 4.21 The present FEM and FVM solutions for the dry-bed dam-break problem at t = 0.2366
(∆s = 0.0025)
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(a) G4 (b) G10

(c) G11 (d) G13

(e) G20

Figure 4.22 The present FEM and FVM solutions for the dam break flow over a triangular obstacle
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(a) t=3 sec (b) t=5 sec

(c) t=10 sec (d) t=20 sec

Figure 4.23 The present FEM and FVM solutions for the dam break flow over a triangular obstacle

Figure 4.24 Residual for parabolic basin test case at rest
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(a) t=4T/6 (b) details of solutions near the wet-dry interface in (a)

(c) t=5T/6 (d) details of solutions near the wet-dry interface in (c)

(e) t=T (f) details of solutions near the wet-dry interface in (e)

Figure 4.25 The present FEM and FVM solutions for the parabolic basin case (∆s = 0.0125)
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4.2.4 Pollutant Advection

To examine the capability of the present FEM in simulating pollutant transport, the cavity

test case introduced in Section 4.1.5 is repeated. The comparison of the two numerical methodswith

the exact solution is shown in Figure (4.27). Figures (4.27a) and (4.27b) illustrate the contaminant

distribution at two time snapshots indicating qualitatively similar behavior. Furthermore, as seen in

Figure (4.27c) both methods appear to have similar amounts of error. This is not the case as shown

in Figure (4.27d) which is a near field view of the contaminant. To further examine the error in the

presented methodologies, the total errors are computed based on the definition given in [66]. For

pure advection, as described in [66], the total error may be defined as

ETOT =
[
σ

(
qE

)
− σ

(
qN

)]2
+

(
q̄E − q̄N

)2
+ 2

(
1 − ρ

)
σ

(
qE

)
σ

(
qN

)
(4.8)

where qE and qN are the exact and numerical solutions respectively, σ is the variance, and ρ is

the correlation coefficient between qE and qN . If the exact and numerical solutions are perfectly

correlated then ρ = 1, and the only error in the simulation is due to dissipation. Thus, the dissipation

error may be defined as

EDISS =
[
σ

(
qE

)
− σ

(
qN

)]2
+

(
q̄E − q̄N

)2 (4.9)

Furthermore, a dispersion error is introduced for ρ , 1 and therefore may be defined by

EDISP = 2
(
1 − ρ

)
σ

(
qE

)
σ

(
qN

)
(4.10)
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Using these definitions, Table (4.3) quantitatively indicates that the FEM possesses significantly

less dissipation errors, as well as smaller dispersion errors than the FVM for the given discretization.

Table 4.3 Dissipation and Dispersion errors for the pollutant advection case

Numerical Method ρ Dissipation Error Dispersion Error Total Error
FVM 0.995 8.075e-05 3.119e-02 3.127e-02
FEM 0.997 4.441e-09 1.765e-02 1.765e-02

4.2.5 Isolated Building Benchmark

The benchmark problem from [67] is considered to again validate the current FV and

FE methodologies with experimental data. In this problem, a dam-break flow with a building

downstream of the dam is simulated. As shown in Figure (4.26), the problem domain consists

of a reservoir and a channel with a gate between them located at x = 0, and a single building

downstream of the gate. The wall boundary condition is imposed for all boundaries except the

outflow boundary. A water depth of 0.4 m in the upstream reservoir and a thin layer of 0.01 m in

the downstream channel are implemented as the initial condition at t = 0. The Manning coefficient

is n = 0.01 s.m−1/3 and the parameter used to avoid singularities in dry regions is ε = 0.001. The

water level is recorded at each time step in several gauges located as seen in Figure (4.26). Table

(4.4) gives the exact location of each gauge.

This test case was also simulated by six different institutions and their results are compared

to the experimental data in [67]. The experiments were carried out in the laboratory of the Civil

and Environmental Engineering Department of the Université Catholique de Louvain (UCL) in

Belgium. The experimental results are obtained within the first 30 seconds after the dam breaks
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(a) Plan view

(b) Cross section

Figure 4.26 The problem geometry for the isolated building test case

and hence the numerical results are also computed within the same time interval. The time step

used in the current simulation is ∆t = 0.01. To validate the numerical results of the present work,

the water-level history at each gauge is compared to the experimental results.Additionally, results

from other simulation codes, as presented in [67], are also shown for comparative purposes.

The water height as a function of time at gauge 6 is shown in Figure (4.28). This gauge is

placed upstream of the dam in order to monitor the water level drop within the reservoir. As seen in

Figure (4.28a), both of the current solution methodologies match the experimental data very well.

Furthermore, similar agreement is also observed from the simulation techniques found in [67] and
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Table 4.4 Gauge locations for the isolated building case

Gauge number x(m) y (m)
G1 2.65 1.15
G2 2.65 -0.60
G3 4.00 1.15
G4 4.00 -0.80
G5 5.20 0.30
G6 -1.87 1.10

given in Figure (4.28b). Note, in this and similar figures, the gauge locations are indicated in an

insert for reference.

For gauge 1, as shown in Figure (4.29), the water height is affected by waves reflecting from

the upper wall as well as the oblique face of the building. This can be observed in the experimental

data by the arrival of the water from the reservoir at approximately 1 sec, instantaneously raising

the water level to approximately 0.06 m, immediately followed by a reflection from the upper

surface doubling the height. Subsequently, the influence of the building can be observed by the

irregular water surface for the remainder of the simulation. Discrepancies between the two solution

methodologies and the experimental data are apparent in Figure (4.29a), and may indicate that

greater mesh refinement and a much smaller time step could be required to resolve this interaction.

However, as seen in Figure (4.29b), other simulation software incurred similar discrepancies for

this gauge location. Overall, the current FVM and FEM schemes appear comparable in accuracy

to those in [67].

For gauge 2 shown in Figure (4.30), which is directly below gauge 1, the experimental

data again indicates the arrival of the water from the reservoir at approximately 1 sec. However,

this gauge location illustrates the effect of the building in producing a hydraulic jump. The FVM

predicts this hydraulic jump at a much later time than the FEM, which may indicate that the FVM
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possesses more dissipation and dispersion errors for the given discretization. Comparing Figure

(4.30a) using the current methodologies, and Figure (4.30b) with the other simulation software,

many of those schemes only predict the initial water rise and are not capable of resolving the

hydraulic jump.

Depicted in Figure (4.31) are the simulated results for gauge 3. This gauge location is

between the upper wall and an oblique building face. The building face is directed away from the

gauge. As such, Figure (4.31b) illustrates the reflections of the waves off of these surfaces of the

integrated time. However, the water level rise from the initial wave from reservoir is more uniform

in nature. This behavior is similarly predicted by all the software presented in [67].

Similar to gauge 1, Figure (4.32) for gauge 4 demonstrations the arrival of the initial water

from the reservoir followed by the interaction of the waves emanating from the building wall. The

current methodologies do not adequately capture this interaction from the initial reflection from

the building as seen in Figure (4.32a). This may indicate that greater mesh resolution is required

in this region. In Figure (4.32b) only one code appears to predict this reflection reasonably well,

however, the water height and subsequent interaction is vastly under predicted.

Finally, the computed results at gauge 5 are presented in Figure (4.33). This gauge is

located directly downstream of the building and is greatly affected by the wake. As seen in Figure

(4.33a), the FEM appears to predict the water heights more accurately than the FVM in this region.

Furthermore, Figure (4.33b) indicates that most of the software used in [67] do not capture the

water height fluctuations that are dominant in the wake. This again may be observed in Figure

(4.34) which presents the experimental and computed velocities at gauge 5. The current FVM in
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Figure (4.34a), and those presented from the other software in Figure (4.34b), illustrates under

prediction of the water velocity and with very little variation over the integration time.

As a qualitative illustration of the complex wave pattern resulting from the dam-break flow

impacting a downstream building, the computed water depth contours are shown in Figure (4.35)

at several time snapshots. As is apparent in Figure (4.35a) at 1 sec, the water from the reservoir

has reached gauges 1 and 2. Figure (4.35b) illustrates the wave pattern shortly after the isolated

building is impacted and the reflection from the upper wall has occurred. In this figure, the separate

waves can be clearly seen. At a time of 10 seconds, presented in Figure (4.35c), the large wave,

described as a hydraulic jump in the discussion of Figure (4.30), is observed approaching gauge 2.

Finally, in Figure (4.35d), the reservoir is at half the initial water height and the flow is seen to be

interacting with the wall and building geometry.
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(a) Contaminant distribution at t = 4800 sec (b) Contaminant distribution at t = 9600 sec

(c) Details of solutions at t = 9600 sec (d) Details of solutions at t = 9600 sec

Figure 4.27 The present FEM and FVM solutions for the contaminant transport case
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(a) G6 - present work

(b) G6 - other works

Figure 4.28 The experimental and numerical water depth at G6
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(a) G1 - present work

(b) G1 - other works

Figure 4.29 The experimental and numerical water depth at G1
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(a) G2 - present work

(b) G2 - other works

Figure 4.30 The experimental and numerical water depth at G2
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(a) G3 - present work

(b) G3 - other works

Figure 4.31 The experimental and numerical water depth at G3
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(a) G4 - present work

(b) G4 - other works

Figure 4.32 The experimental and numerical water depth at G4
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(a) G5 - present work

(b) G5 - other works

Figure 4.33 The experimental and numerical water depth at G5
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(a) G5 - present work

(b) G5 - other works

Figure 4.34 The experimental and numerical velocity at G5
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(a) t=1 sec (b) t=3 sec

(c) t=10 sec (d) t=20 sec

Figure 4.35 The computed water depth contours near the building
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CHAPTER 5

CONCLUSIONS

A primitive-variable Riemann solver and a semi-discrete SUPGmethod were developed and

validated for the fully-coupled shallow water and contaminant transport equations. The primitive-

variable model is an extension of the finite volume approach proposed in [8] and in particular

focuses on ability to simulate contaminant transport. In the finite element framework, a new source-

term balancing scheme is introduced to accommodate arbitrary bed topography and wetting-drying

fronts. Utilizing various test problemswith flat and non-flat beds, dry regions, and still-water surface

it was demonstrated that the developed numerical schemes accurately simulate flow properties as

well as pollutant advection and diffusion. Additionally, the finite volume model was used for

the pollutant transport following a flood, and indicated that the algorithm is stable and robust in

simulating the flow dynamics and contaminant transport in real-world cases.

The present numerical schemes are implemented on fixed computational meshes. Hence,

simulating wetting-drying interfaces in a FEM context leads to the existence of partially-wet ele-

ments which are sources of numerical errors. In the present work, this type of error is eliminated

for still-water problems and may be reduced for moving boundary problems by using mesh refine-

ment. Since a node-centered paradigm is applied in the present FVM, partially-wet elements do

not present numerical difficulties.
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CHAPTER 6

FUTURE WORK

The current work presents the development and validation of two numerical methodologies

to predict the flow and pollutant transport using the fully-coupled shallow water and contaminant

transport equations. To continue this research, amore detailed analysis of the error sources is needed

in order to investigate their impact on solution accuracy. To improve solution accuracy, the current

FEM is readily extendable to higher orders of spatial accuracy. The path forward for higher order

spatial accuracy is not feasible with the FVM. Furthermore, adaptive mesh refinement (h-, p-, and

hp-adaptation) techniques should be explored within the FEM context. Additionally, higher-order

temporally accurate schemes should be investigated. From the results presented for the isolated

building case in Section 4.2.5, the water heights and velocities exhibited high frequency variations

both spatially and temporally. Solution accuracy may be greatly increase by investigating higher-

order methods as a result. The focus of the current research was the development and validation of

both FVM and FEM methodologies for this particular flow regime. However, the computational

efficiency, particularly for the current FEM, should be considered and improved. Although outside

the focus of the current research, the embarrassingly parallel nature of the finite element solution

methodology could be exploited for significant simulation time reductions.
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