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ABSTRACT  

  

  

 This study was conducted to take an in depth look at the newest application programming interfaces 

(API) offered to graphics programmers. With the recent releases of Vulkan (2016) and DirectX 12 (2015) 

from industry giants like the Khronos Group and Microsoft, it’s clear they are pushing for a much lower-

level, closer-to-hardware approach for future graphics programming solutions. These changes can be 

credited to the drastic improvements we’ve seen in graphics processors over the last 5 years. It will take a 

significant amount of time for these API’s to become industry standard. The goal of this research is to verify 

the value and benefits of developing with these API’s as opposed to using the current industry standard 

OpenGL or DirectX 11. Several GPU & CPU benchmark performance tests have brought interesting results. 

Furthermore, many advanced computer graphical techniques and algorithms which are implemented using 

C++ and Vulkan, help to shine a spotlight on the glaring contrast between Vulkan and OpenGL. This 

research attempts to be one of the first validations for advantages or disadvantages the Vulkan API offers in 

comparison to its predecessors.  
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CHAPTER 1 

 INTRODUCTION  

 

As a developer, your application’s programming interface (API) is your most important 

toolset and its documentation is essentially your bible. You will constantly be referring to it and 

keeping tabs on the latest updates. Vulkan and DirectX 12 aim to give the programmer more 

lower-level access to the GPU and CPU cores. This should greatly increase the multithreading 

capabilities for graphics intensive applications. The central focus of this new generation of APIs 

is to increase the amount of draw calls possible while decreasing the amount of overhead for 

the CPU. This could potentially change the way procedural graphics programmers work and 

think, because optimization is no longer an issue that is magically handled behind-the-curtain 

by the API.  

High performance computing infrastructure has been of significant importance in 

solving scientific, engineering and data analysis problems. Practical applications such as 3D 

visualization or 3D modeling software will almost always demand graphically intense 

rendering. As the hardware of desktops and mobile devices continues to improve so does the 

possibility for drastic improvements in number or draw calls from the renderer. (Lindholm, 

2008). For decades OpenGL has become more powerful and accessible enabling graphics 

programmers to build graphically intense applications on standard desktops or even mobile 

devices using OpenGL ES.  

Early this year (2016) the Khronos Group, the consortium behind OpenGL, rolled out Vulkan  
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(previously known as nextGL). Vulkan is intended to provide a variety of advantages over other 

APIs including the industrial standard OpenGL. Most importantly it will offer lower overhead, 

more direct control over the GPU, and lower CPU usage.   

The emergence of this new Vulkan API along with a new ecosystem has excited many 

developers with the belief that it will create new business opportunities for both the graphics 

and computing industry. Vulkan plays a greatly significant part in eliminating expensive driver 

operations, which translates to less CPU overhead thus reducing or completely eradicating 

unexpected frame rate discontinuities or hiccups. Therefore, the evolution of this new approach 

of explicit GPU control will play a critical role in enabling developers to avail the best probable 

experience to clients on multiple platforms. Work for completion of Vulkan 2.0 SDKs for 

Android, windows and Linux is in progress. Furthermore, Google has also upgraded to 

Promoter membership partnering with the Khronos Board in steering Vulkan strategy for both 

the wider android industry. Considerable energy is therefore applied towards driving the 

operation necessary to release to the broader computing world and all platforms (Khronos, 

2015). To make this a success, the Khronos group is planning for Vulkan sessions and 

demonstration at key industrial events throughout the year.   

One key advantage that Vulkan claims to hold over OpenGL includes its capability in 

generating work for the GPU across many CPU threads. This will make Vulkan distinctively 

useful for developers who find themselves CPU-bound. Vulkan enlarges the Khronos 3D APIs 

family by supplementing OpenGL and OpenGL ES, which are two standards which provide 

access to millions of GPUs today. More so, NVIDIA, the leading GPU manufacturer, is said to 

be operating within the confines of Khronos ensuring evolution of Vulkan to meet industrial 

demands (Khronos, 2015).  
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OpenGL uses the high-level language GLSL for writing shaders which forces each 

OpenGL driver to implement its own compiler for GLSL that executes at application runtime 

to translate the program’s shaders into executable code for the target platform. Vulkan will 

instead provide an intermediate binary format called SPIR-V (Standard Portable Intermediate 

Representation), analogous to the binary format that HLSL shaders are compiled into in 

DirectX. This reduces the workload on the drivers made from software vendors. This will also 

in turn allow shader pre-compilation as well as permit application developers to write shaders 

in languages other than only GLSL. Other obvious advantages include cross-platform API 

supported on both mobile devices and high-end graphics cards and better support for modern 

systems that use multithreading. Most of all, having direct control over the GPU will reduce the 

load on CPUs in situations where the CPU is the bottleneck, allowing higher throughput for 

GPU calculations and rendering.  

The introduction of DirectX 12 by Microsoft has also promised to be a graphics API 

which enables a console-like low-level access to the CPU and GPU, thus improving the 

performance for existing graphics cards. It is unlikely that not all graphic cards support each 

feature or attribute of DX 12 due to the fact that the APIs are split into disparate feature levels. 

Nevertheless, the most significant features of DX 12 are supported throughout or across the 

board. Theoretically, it is evident that before people move to DX 12, they should see some 

promising sort of performance uplift. Additionally, DirectX 12 introduces command lists or 

instruction sets which are essentially important in the execution of particular workload on the 

CPU. Since each of the command lists is sufficient in itself, the pre-computation of all the 

necessary GPU commands by the driver up front and in a free threaded manner across any CPU 

core is possible (William, 2008). The sole serial process involved includes submission of the 
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final command lists or instructions set to the GPU, which theoretically is a highly efficient and 

effective process. Execution process of command lists in the GPU take places in a parallel 

manner and therefore serial execution is eliminated hence DirectX 12 increases performance.  

Because DirectX 12 is proprietary to Microsoft, there is always some competition to be 

realized, which means the reinventions of these APIs are surrounded by much promise and hype 

as the release draws near. DirectX 12 was released during Summer 2015. As expected there 

were many proclamations about how this new iteration will offer “astounding” new features 

which will enhance graphics capabilities across all platforms while lowering overhead. They 

were claiming to achieve massively increased framerates. They also claim to have the ability to 

combine performance among GPU’s which would mean a drastic reduction in CPU bottleneck.   

During the DX 11 generation, Nvidia was considered the undisputed leader, but the 

rolling out of DX 12 will provide greatly awaited news for AMD. Under DX 12, the 

organization's GCN architecture which featured the underperforming asynchronous compute 

engines (ACE) will finally operate with tasks such as lighting, physics and post processing. 

These tasks are divided into various queues and time lined independently for executing or 

processing by the GPU. Another big feature in DX 12 that will be of great importance and 

interest to those with iGPU or APU is the Explicit Multiadaptor. With DirectX 12, support for 

numerous GPUs is molded into the Application Program Interface, allowing distinguishable 

and adjacent workloads to be performed and executed in parallel on various GPUs, regardless 

of where they come from; either from AMD, Intel, or Nvidia. Finally, DirectX 12 is expected 

to allow for many GPUs to puddle their memory.  

  So it seems this year, 2016 and for years to come, graphics programmers and game 

developers should have a bunch of new toys to keep them busy. According to recent tech demos 
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performed by seemingly unbiased journalists and tech reviewers alike, DirectX 12 does in fact 

dramatically increase the amount of draw calls possible while utilizing the available hardware. 

This has been tested with processors from Nvidia, AMD, and Intel. If it is true that DX12 and 

Vulkan, the new generation of OpenGL, can achieve much lower overhead while performing 

4X or 5X the normal amount of draw calls, then the Golden Age for advanced graphics 

capabilities has arrived.  

  

1.1 Scope  

The scope of this research is limited to creating simple graphical programs using next 

generation APIs and comparing performance, syntax, and the overall benefits of the API 

concerning optimization. Based on the simple tests and examples, I hope to provide interesting 

results which can verify the potential increase of framerates, timing, and overall performance 

thus presenting a new and more optimum way for building graphics intensive applications in 

the future.   

 

 

1.2 Significance  

There are three major contributions of this work: analysis of the current status in the 

field of computer graphics, high performance optimization of modern hardware, and conducting 

research and test to advance the improvement of future software applications through 

exploitation of next generation APIs. The current paradigm for loading graphics drivers is the 

real problem. A developer should not be forced to draw a primitive with every tick of the GPU. 

At times, they might want to perform a workload of linear algebra through it, while other 
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requests could simply be pushing memory around to set up a later task. More importantly, as 

hardware continues to significantly improve in desktop and mobile devices, it is important or 

programmers to be able to take full advantage of the multiple available cores. The overall 

agenda here is to increase familiarity with these new APIs and the opportunity to greatly benefit 

software developers and programmers alike.   

 

1.3 Research Questions  

   The major questions behind the project are: 

1. What is the optimum way to utilize your hardware when using the latest graphics APIs (Vulkan, 

DirectX 12)?  

2. How significant of an increase in performance can be achieved by using next generation 

graphics APIs? 

 

1.4 Assumptions  

The assumptions we have in this thesis are: 

1. The 3DMark/futuremark test is an effective method for stress testing modern hardware with 

accurate results  

2. Modern GPUs operate closer to a GPU Compute APIs than they did in the 1990s versions of 

OpenGL and DirectX.  

3. The true benefits of next generation APIs may not be realized until they grow in popularity.  

4. The APIs will release updated iterations (Vulkan 1.1, 1.2) throughout 2016,    Here benchmark 

results are limited to 2015 standards. 
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1.5 Limitations  

1. In this study benchmark results are limited to 2015 standards. The next generation APIs 

will eventually release updated iterations (Vulkan 1.1, 1.2) throughout 2016.  

2. Any software applications built using Vulkan before 2016 were using an early look at 

Vulkan (beta) and cannot be considered a prime example of CPU utilization or draw call 

improvements.  

 

1.6 Delimitations  

1. Differentiation of proprietary hardware, software, operating systems, etc.  is not considered.  

2. The benchmark tests will be performed on modern hardware and the latest versions of  

Operating Systems   
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1.7 Definitions  

draw call –   To draw a line, curve, or object on the screen, the application must issue a function 

call to the graphics API(e.g. OpenGL or Direct3D). Draw calls can often be 

expensive, with the graphics API doing significant work for every draw call, causing 

performance overhead on the CPU side.  

Metal -    is a low-level, low-overhead hardware-accelerated graphics and compute API that 

debuted in iOS 8. It combines functionality similar to OpenGL and OpenCL under 

one API.  

 

mental ray -   production quality rendering application capable of achieving high performance 

graphics computing through parallelism on multiprocessor machines developed 

by Mental Images.  

trajectory –   A curve made by collected points of joint locations in time.  

key frame –   “In computer animation, the term key frame has been generalized to apply to any 

variable whose value is set at specific key frames and from which values for the 

intermediate frames are interpolated according to some prescribed procedure.” 

(Parent, 2007) 

overhead –   any  combination  of  excess  or  indirect  computation  time,  memory,                         

bandwidth, or other resources that are required to attain a particular goal or job.  

sequence –   

  

“Here, the overall animation–the entire project–is referred to as the production. 

Typically, productions are broken into major parts referred to as sequences. A 

sequence is a major episode and is usually identified by an associated staging area;  

a production usually consists of one to a dozen sequences.”  
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1.9 Summary  

  

This chapter presents an introduction to the current status of the most popular 

programming APIs being used within the field of computer graphics. Then some brief insight 

and analysis is offered concerning the fresh new graphics programming APIs DirectX 12 and 

Vulkan, which have just recently been launched in 2015/2016. I discuss my observations about 

how these APIs could potentially benefit the field of computer graphics, specifically 

programmers. Also briefly discussed in this introductory chapter are ideas for tests, the scope 

of this project, limitations, delimitations, and my contribution in this thesis. The terms and 

acronyms for the following chapters are defined.  
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CHAPTER 2 

 REVIEW OF RELEVANT LITERATURE  

 

In this chapter, we review the previous work related to recent advancements and 

developments in the field of computer graphics. This chapter consists of four sections. In 

section 2.1, the most popular graphics API, OpenGL is introduced and discussed. In section 2.2 

the inception of the Vulkan API and the purpose it serves for developers. In the third section 

(Section 2.3), we take a look at Mantle, the original API from AMD which helped spark the 

Khronos Group to launch a new APIs. Next in section 2.4 through 2.8, the limitations of each 

API are analyzed, compared, and further discussed. In Section 2.9 we are introduced to SPIR-

V, Vulkan’s answer for shader translation and compilation. The final section presents the 

various pros and cons to be offered from Vulkan and DirectX 12 (Section 2.11). 

 

2.1 OpenGL Overview  

Since OpenGL was released in 1992 by Silicon Graphics Inc., it has been widely 

adopted throughout the entire industry as well as academia. Over the past 20 years, the 

Khronos Group has managed the API, and released many significant updates. OpenGL 

consists of a library of over 500 function calls which perform 3D tasks (Guha, 2014). 

OpenGL can be accessed from applications written in various programming languages and it 

can be run across various operating systems. It was essentially the first API to popularize 3D 

graphics programming across the software industry. It has always been a high-level language 

in that it frees the programmer from having to perform low-level tasks such representing 
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triangles in the rasterizer, or rendering them to the window. There is no doubt its ease of use 

has made graphics programming much more accessible over the years.  

Under the hood, OpenGL normally focuses on the drawing of graphics into the frame 

memory buffers and also the reading of the back values already stored in the frame buffer 

(Guha, 2014). It is very unique in the sense that its designs support the drawing of the 3D 

geometry such as polygons, lines and the points which are collectively referred to as 

PRIMITIVES, and also the drawing of the bitmaps and images. The commands in the 

OpenGL are processed in the same order as they are received by the inner state machine, but 

the completion of the commands in some cases can be delayed as a result of the intermediate 

processes causing the buffering of the OpenGL commands. The execution of out-of-order 

OpenGL commands is always not permitted (Guha, 2014). Also the execution of in-order 

normally applicable to queries frame buffer and state read operations. These commands only 

return results in consistency to the complete execution of the preceding commands. The 

interpretation of the data which is passed to any command of OpenGL is only possible once it 

is copied in the memory of OpenGL at times when it is needed. Any successive change to the 

data on this application does not affect the data as long as it has been stored by the OpenGL 

(Dobersberger, 2015).  

 

2.2 The Origin of Vulkan   

Vulkan was initially unveiled by the Khronos Group in March 2015, and version 1.0 was 

finally released in January 2016. I was present for the initial presentation at the Game Developer’s 

Conference in San Francisco, and I was able to participate in a Q & A with Piers Daniell, Nvidia 

software engineer and GPU expert. As mentioned before, Khronos is a non-profit industry 

https://www.khronos.org/
https://www.khronos.org/
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consortium founded fifteen years ago by some of the biggest names in the graphics industry, 

including AMD, Nvidia, Intel, and Sun Microsystems. Even if you haven’t heard of Khronos, 

you’ve most likely heard of some of their industry standard APIs, such as: OpenGL, OpenGL ES, 

WebGL, OpenCL, SPIR, and glTF.  

Unlike its predecessors, Vulkan is designed from the ground up to run on diverse 

platforms, ranging from mobiles and tablets, to gaming consoles and high-end desktops. The 

underlying design of the API is layered, or should we say modular, so it enables the creation of 

a common, yet extensible architecture for code validation, debugging, and profiling, without 

impacting performance. According the Piers Daniell , Khronos claims the layered approach 

will deliver a lot more flexibility, catalyze strong innovation in cross-vendor GPU tools, and 

provide more direct GPU control demanded by sophisticated game engines.  

What is so special about Vulkan is that it is the only multi-platform solution, meaning 

it is envisioned as an API for the masses, from kids gaming on smartphones, to their parents 

designing buildings and games on workstations.  

In theory, Vulkan could be used in parallel computing hardware, to control tens of 

billions of GPU cores, in tiny wearables and toy drones, in 3D printers, cars, VR kits, and just 

about anything else with a compatible GPU inside.  

  

2.3 Overview of AMD’s Mantle  

To fully understand the origin of Vulkan, it’s important to know of the API Mantle, 

which sparked the revolution for a lower-level graphics programming (Keckler 8). Mantle 

refers to the API developed by AMD which provides the tools for low-level rendering 

functionality for the developer. It began as an alternative to Direct3D and OpenGL. Mantle was 
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first announced in 2013 at a press conference providing DICE with a console like rendering 

API for reducing CPU overhead in games (Dobersberger, 2015). AMD has constantly been 

working in conjunction with other game developers in providing them with the Mantle API. 

However, in 2015, AMD announced that there would be no more public SDK thus availing the 

API to selected partners. This action left developers with the option of focusing on Vulkan API 

or DirectX 12 which were later specified the same year. Additionally, the Mantle API was the 

foundation for the Vulkan API that operates for numerous hardware platforms and vendors. 

AMD supports the open and cross platform Vulkan API by providing parts of the Mantle API 

like reducing driver overhead and power consumption. Mantle also supports multiple core 

CPUs and features such as split frame rendering. Since most real time rendering applications 

require addressing almost similar features of graphics accelerator, APIs were developed to 

provide for portability of the applications allowing sending of commands to various graphic 

devices (William, 2008). Microsoft’s strategies for switching to a universal windows platform 

are largely documented and DirectX 12 is on the forefront of this shift. Development of DirectX 

12 is aimed at improving game performance, releasing creativity and maximizing code sharing 

between pc and Xbox. In D3D11, all things were finely grained and fundamentally all states 

were orthogonal objects, for example the rasterizers, pixel shader and the assembler 

(fabrication) state. This approach nevertheless, did not couple well with contemporary and 

recent hardware as present graphics cards face the tendency of merging certain operations or 

handling them differently to what direct 11 is compatible and agreeable with. This clearly 

indicates that the drivers will not determine things until states are complete, leading to bigger 

overhead and therefore lesser draw calls (William, 2008).  
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Vulkan and DirectX 12 seek to mend this by applying Pipeline State Objects (PSO), 

whereby they are provided on a distinctive thread and assembled in real time.  According to 

Mark and William (# 21), the entire graphics pipeline is integrated and thus the drivers and 

hardware translate the Pipeline State Objects into whatever the state is expected. The greatest 

advantage of Microsoft’s updated API is essentially gaining dominance over the Graphical 

Processing Unit (Dobersberger, 2015). Application and game developers are capable of 

controlling how the GPU’s resources are allocated. DirectX 12 significantly changes things 

over the previous guarded, therefore enabling it to aim or target multiple GPUs as well as 

providing vast performance boosts.  It is impossible for developers and programmers to make 

use of multiple sets (array) of threads to supply these GPUs as they share individualistic and 

independent memory location. That implies that each can be allocated its own assets depending 

on what is required from them, while still sharing the same information once the programmers 

decide too by establishing up special and unique memory space. Thus far, multiple GPU layouts 

can be managed two ways within DX 12, creating the curiosity how developers will opt to 

harness the functionality. It is evidently clear that should the new techniques and technologies 

manifest to be well accepted among developers and programmers, they will offer extremely 

compelling justifications to consider while pursuing multiple Graphical Processing Unit setups, 

especially where high resolution and Virtual Reality gaming are the goals. Connected (Linked) 

to the final application seems like an individual GPU, but programmers may generate their own 

queues for every processor. Additionally, each graphical processing unit can possess local 

assets and resources while at the same time the card can both access and read the memory from 

a different card (Dobersberger, 2015).  
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On the other hand Vulkan is a modern cross platform graphics and compute API 

currently in development by the Khronos group. Vulkan which is a low overhead, close-to-

metal API for 3 dimensional graphics and compute applications is fundamentally a different 

approach to graphics than OpenGL (Khronos, 2015). Vulkan is expected to provide several 

advantages over all other GPU APIs, facilitating higher ranking cross sectional platform 

support, appropriate support for multiple threaded processors, lower CPU loading, and 

Operating System agnosticism. Moreover, it should make easier the development of drivers 

allowing the pre compilation of drivers comprising the application of shaders written or coded 

in diverse languages (Lindholm, 2008). Unlike its predecessor, Vulkan is designed to run on 

several platforms traversing from tablets and mobiles, high-end desktops to gaming consoles. 

In order for a low-level API to be successful, it should be layered to enhance the creation of 

ordinary, but yet an extensible architecture or framework for code validation, profiling and 

debugging, without affecting performance. Vulkan permits applications to get closer-to-

hardware, therefore eliminating the necessity for a huge quantity of memory and 

error/inaccuracy management, in addition to shading language sources (Dobersberger, 2015).  

Figure 2.1 provides an example for how draw calls are issued to the GPU via the classic 

OpenGL model. Looking closely to both Vulkan and DirectX 12 APIs, it is evident that both 

are moving towards providing developers with better performance by utilizing the CPUs and 

GPUs, therefore meaning Mantle is essentially their spiritual predecessor.  
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Figure 2.1 Classic OpenGL Model (Khronos Group, 22) 

  

2.4 OpenGL’s Limitations  

Over two years ago the Khronos group launched the AZDO (Approaching Zero Driver 

Overhead) initiative. They were given the task of creating a modern graphics and compute API 

that addressed OpenGL’s biggest issues, including:  

• Creating a common API for all platforms (desktop, console, mobile & embedded)  

• Mapping closely to modern GPU architectures  

• Providing a console-like, low-overhead, explicit API  

  

Advances in OpenGL, such as the AZDO initiative and the VK_KHR_no_error extension, 

demonstrated that it was possible for a lot of the CPU overhead usually associated with the API to be 

avoided. Creating a brand new OpenGL focused on those ideas could have given developers a decent 

performance boost. However, this route has not been without issues. For example:  

https://www.khronos.org/assets/uploads/developers/library/2014-gdc/Khronos-OpenGL-Efficiency-GDC-Mar14.pdf
https://www.opengl.org/registry/specs/KHR/no_error.txt
https://www.opengl.org/registry/specs/KHR/no_error.txt
https://www.opengl.org/registry/specs/KHR/no_error.txt
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• Buffer allocation and synchronization would still be done by an opaque driver. Stalling and buffer 

ghosting would still occur in vendor specific ways  

• States would still be global. Developers would need a clear understanding of how each IHV’s  

GPU state is set to ensure OpenGL state is configured efficiently  

• Efficient multi-threaded command submission would have been tricky to solve in an OpenGL-like 

API. Figure 2.2 shows a recent comparison of multi-threading capabilities on the CPU between 

Vulkan and OpenGL 4.1 

  

  

  

Figure 2.2 Vulkan vs OpenGL: Multi-threading  

Source: Imagination Technologies (Smith, 2015) 

  

 

2.5 Vulkan Relevance to Developers  

According to Piers Daniell, hardware manufacturers seem to agree that providing an API 

where memory allocations, state setting, and call validation are developer controlled will enable 

better run-time performance while making driver behavior much more predictable across 

platforms. This should drastically reduce maintenance costs (Daniell, 2015). 

http://blog.imgtec.com/powervr/how-to-improve-your-renderer-on-powervr-based-platforms
http://blog.imgtec.com/powervr/how-to-improve-your-renderer-on-powervr-based-platforms
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However, software vendors appear to be less certain. Nvidia and AMD have spent years 

optimizing their OpenGL and DirectX drivers. Approaching equivalent or better performance will 

require software developers to invest significant resources to designing and optimizing their rendering 

engines for explicit APIs, for example efficiently caching state. Additionally, existing middleware will 

need to continue supporting older APIs for a long time. For now, Vulkan will be yet another standard to 

implement and support, which will increase the total cost of maintaining rendering engine code.  

The restrictions that affect the big engines creates an interesting opportunity for the development 

of new middleware that can be more flexible. Figure 2.3 shows Protostar, a Vulkan demo built using 

Unreal Engine 4. It has been discussed among engine developers (Unity, Unreal, etc.) that today the only 

way to remain on the cutting edge of graphics APIs is by starting from a clean slate. It could take a long 

time before the big engines approach the same efficiency.  

  

Figure 2.3 Protostar: Vulkan-Supported Unreal Engine Demo (Smith, 2015) 

  

So one of the fundamental questions is who will this API be most relevant to? Engines will 

definitely support it, but those who have to support old APIs may be slow to evolve. It’s likely that 

http://blog.imgtec.com/wp-content/uploads/2016/03/ProtoStar-Unreal-engine.jpg
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projects with the simplest use cases will be the first to benefit. 2D rendering engines that spend a lot of 

time on screen could support the API to reduce power consumption.  

Developers targeting closed systems will also have a lot to gain in the short-term from the lower 

overhead offered by the API. For example, programmers working on in-car navigation systems with 

tight CPU, GPU and memory budgets.  

 

2.6 Quality of Development Tools  

According the Khronos Group’s presentation at SIGGRAPH 2015 (Khronos, 2015), software 

vendors do agree that the quality of development tools can have a more significant impact on an API’s 

success than the API itself. For example, software engineers often single out Sony’s platforms and APIs 

first as they have (according to Daniell) the industry’s best tools. OpenGL development has historically 

been quite difficult. There are now a wealth of utilities maintained by platform owners, IHVs, ISVs and 

the community, but it has taken years to reach this stage.  

With the advent of Vulkan, the Khronos group has put more thought into developing tools than 

with previous standards. The loader layer design, for example, enables developers to use Khronos 

supplied debugging layers, those provided by 3rd parties or custom solutions. Unfortunately, Vulkan – 

like OpenGL – lacks canonical utilities for many debugging tasks, such as analyzing and replaying call 

streams. Unless the Khronos creates working groups specifically for tools in parallel to the design of 

new APIs, it’s unlikely this will change.  

Ever since Vulkan’s release, there are already a number of tools available and many more on the 

way developed by Khronos. Platform owners such as Google and Valve are planning to provide cross-

vendor tools for their operating systems. Useful community maintained tools, such as RenderDoc, have 

allowed developers to debug Vulkan across a variety of operating systems and GPUs.  

https://github.com/baldurk/renderdoc
https://github.com/baldurk/renderdoc
https://github.com/baldurk/renderdoc
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It is still unclear however if fully accurate GPU performance timing will be exposed through 

Vulkan. Unfortunately it doesn’t seem to have hasn’t happened yet, but it will hopefully be addressed 

through an extension in the future. Good tools are obviously essential for Vulkan to succeed. Hopefully 

we will see better tools which enable you to find a more legible debugging workflow to suit necessary 

requirements.  

 

2.7 Optimizing Graphics Performance  

Today, GPUs in mobile devices are continuously becoming increasingly powerful. The 

greatest concern in the mobile space is the lifespan of the battery and one of the most significant 

consumers of battery include the external memory access (Lindholm, 2008). Modern mobile games 

apply post-processing implementations (effects) in numerous ways and while the Graphical 

Processing Unit itself is able of performing this, the bandwidth obtainable to the GPU is typically 

not. Demand for impressive graphics in mobile applications has given rise to ever-more cogent and 

powerful GPUs and current graphics APIs like Vulkan. Through the use of these advancements, 

programmers are capable of writing cleaner, well-articulated and more efficient implementations 

of computer graphics algorithms than ever before. Mantle was a relatively young industry-backed 

API that aimed at providing functional portability across systems equipped with computational 

accelerators such as Graphical Processing Units. A standard or benchmark conforming Mantle 

program can be operated on standard conforming/matching Mantle implementation. However, the 

issue of performance portability is not addressed by AMD’s Mantle API. Therefore, transformation 

of a multithreaded graphics program in order to achieve higher performance on a device might have 

certainly lead to lower performance on other devices, since performance may significantly depend 

on low level details namely; data layout and space mapping. In addition to popularity of certain 



 

21 

 

GPU architectures, some GPUs’ optimizations have become hallmarks of GPU computing (Dally, 

2010).    

  

2.8 GPU Accelerated Computing  

GPU accelerated computing refers to the application of a graphics processing unit (GPU) 

in conjunction with a Central Processing Unit (CPU) to accelerate analytics, scientific, engineering, 

enterprise and consumer applications. GPU accelerators were pioneered by NVIDIA in 2007 have 

gained popularity in powering energy efficient and effective datacenters like universities, 

government labs, enterprises and businesses internationally. In a wide scope, GPUs are hastening 

applications in stages or platforms varying from tablets, mobile phones, cars, robots and drones. 

GPU accelerated computing therefore, offers unprecedented application performance and operation 

by offloading computer intensive segments of the applications to the GPU, while the prevailing 

code still executes on the CPU. From both users’ and developers’ perspective, applications simply 

execute or run significantly faster (Dally, 2010).  

Most CPU’s are comprised of two to eight cores optimized for sequentially serial processing 

whereas the GPU possesses a massively parallel structure or architecture composed of thousands 

of tiny and efficient cores designed for controlling multiple tasks concurrently (Dally, 2010). GPUs 

have several thousands of cores to manage parallel workloads effectively and efficiently. GPU 

computing is made possible today because the majority of today’s advanced GPUs do much more 

than render graphics  
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2.9 SPIR-V - Transforming the Shader Ecosystem   

One of the key features of Vulkan is the ability to setup a new pipeline for graphics. Usually the 

pipeline for 3D graphics involves the compiling of shaders. In Vulkan the only way to pass in a shader is 

by way of SPIR-V. SPIR-V is a new standard defined by Khronos as an “intermediate shader 

representation”. It is a portable representation which can be used across all platforms. It will support a 

wide variety of high-level shader languages including GLSL. One of the recurring complaints about 

OpenGL is the inconsistent compiling of GLSL shaders between implementations. In addition to GLSL, 

Vulkan can support OpenCL C kernels, as well as basic shader in C++. Future domain-specific languages, 

frameworks and tools are another option.  

Khronos even mentions the possibility of developing new experimental languages.   

It’s too early on to say whether or not Vulkan and SPIR-V will become industry standards, but 

the idea of immediate portability across a multitude of different devices is appealing to any ISV. Since 

there will be no need for every hardware platform to feature a high-level language translator, developers 

will deal with less of them. An individual ISV can generate SPIR-V using a single tool set, thus 

eliminating portability issues of the high-level language. SPIR-V is simpler than a typical high-level 

language, making implementation and processing easier (Lorach, 2014). Performance will be improved 

in a number of ways, depending on how Vulkan is implemented:  

 No more compiler front-end, a lot of processing can be done offline  

 Optimization passes can settle faster, optimizations executed offline  

 Multiple source shaders reduce to the same intermediate language instruction stream  
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2.10 How Does Vulkan Compare to OpenGL?  

 

Table 2.1 Vulkan vs. OpenGL 

OpenGL Vulkan 

Originally created for graphics 

workstations with direct renderers, split 

memory. 

A better match for modern platforms, 

including mobile platforms with unified 

memory and tiled rendering support. 

 
 

Driver handles state validation, 

dependency tracking, error checking. This 

may limit and randomize performance. 
 

The application has direct and 

predictable control over the GPU via an 

explicit API. 

 
 

Obsolete threading model does not allow 

generation of graphics commands in 

parallel to command execution. 

API designed for multi-core, multi-

thread platforms. Multiple command 

buffers can be created in parallel. 

 
 

API choices can be complex, syntax 

evolved over twenty years. 
Removal of legacy requirements 

simplifies API design, simplifies usage 

guidance, and reduces specification size. 

 
 

Shader language compiler is a part of the 

driver, and it only supports GLSL. The 

shader source has to be shipped. 

SPIR-V is the new compiler target, 

enabling front-end language flexibility 

and reliability. 

 
 

Developers have to take into account 

implementation variability between 

vendors. 

Due to the simpler API and common 

language front-ends, more rigorous testing 

will increase cross-vendor compatibility. 

 

Source: Nvidia (Daniell, 2015) 
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2.11 Pros and Cons  

  

Potential Benefits of next generation API’s 

 Better use of multi-core CPUs  

 More draw calls = more on-screen detail  

 Highers min/mix/avg framerates  

 More efficient use of GPU hardware  

 More efficient use of integrated (CPU) hardware  

 Reduced system power draw  

 Allows for new architecture designs previously considered impossible due to technical 

limitations of past OpenGL/DirectX APIs  

  
There are a number of attributes that should make Vulkan and SPIR-V popular amongst 

programmers, and Khronos is often iterating over these features. The idea of using the same skills and 

toolset to build for various platforms is appealing, especially now that the hardware performance gap 

between different devices is closing.  

According to the Khronos Group, the following advantages are made possible by SPIR-V:  

• The front-end compiler remains the same for developers across multiple platforms. This 

eliminate portability issues across ISV’s  

• Runtime shader compiler time will always be minimal because the driver only has to process 

SPIR-V  
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• Developers receive an additional level of IP protection, because there is no need to distribute 

shader source code   

• Drivers are simpler and more reliable since there is no need to include front-end compilers  

• Developers can issue command buffers and can tweak memory allocation accordingly to 

better fit their application’s approach.   

 

One example of a developer taking advantage of this is Imagination Technologies who displayed 

one of the most impressive tech demos portraying improved graphical performance (Figure 2.4). In a 

presentation at SIGGRAPH, they explained how Vulkan was used to batch draw calls into a block of 

memory they called “tiles”, and the renderer was able to draw multiple “tiles” at a time, drastically 

increasing the amount of draw calls. When the frame is drawn, depending where the “tile” it can be 

moved or transformed. On the other hand, in OpenGL, all draw calls are dynamic, meaning they are 

submitted with each frame no matter what is in the field of view. It is not possible to reuse or cache 

draw calls which are already executed.   
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Figure 2.4  Imagination Technologies Vulkan Tech Demo (Smith, 2015) 

 

Because of this, several calls must be issued into kernel mode in order to validate or alter the state 

of the driver. In Vulkan, pre-processed command buffers are in place to deduce CPU overhead and there 

is never a need to compile during a render loop.  

Another major benefit is parallel buffer generation, which enables Vulkan to harness the power 

across all CPU cores. OpenGL was conceived before processor contained multiple cores.  

Over the past 4-5 years, the industry has gone from dual cores to quad cores to even 8 or 10 CPU cores. 

It just makes sense for a graphics API to have to ability to maximize a CPU’s potential if necessary.  

Unfortunately, there are a few cons to this approach, some of which are rather significant. For those 

developers eager to jump on the lower-level API bandwagon, it would be wise to consider these:  

 Verbose code and increased complexity  

 Still early in its lifespan  

 Level of industry support  
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 Vulkan may not be as relevant or effective on some platforms (desktops)  

 

Until Software leaders are able to simplify the process of allocating memory for parallel processing 

in Vulkan, developers will have to write numerous lines of additional code. In chapter 3 you can see why 

it takes over 500 lines of code just to write a simple “Hello Triangle” in Vulkan and C++. In order to 

take advantage of the great features Vulkan offers, the programmer must take an in depth look at the 

function calls and their uses. For example, to even begin drawing to a window first the display must be 

created, memory must be allocated for resources and the 3D pipeline (shaders, state machine), and then 

command buffers must be initialized (Lorach, 2014).  

Needless to say, if a developer wants to use Vulkan to its full potential it will entail a fair amount of 

code setup work. It is likely that over time this process will be made easier. But currently the API is only 

at version 1.0 meaning the widespread market has yet to even adopt using it commercially. As of March 

2016 there is only a few games which are running on Vulkan and most of those had to use a Beta 

version.  

As more software vendors see the performance benefits, industry support should not be an issue; 

After all, this is a Khronos standard. Mobile software and hardware evolve more quickly, and it may 

take a few more quarters before we see Vulkan making an impact on desktop platforms. While Vulkan 

can do wonders in a CPU-bound setting, especially with multi-core mobile SoCs, these performance 

gains will be limited on desktop platforms (Lorach, 2014). Desktops handle multi-core processors with a 

greater level of efficiency, and most graphically demanding applications are GPU-bound.  
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2.12 Summary  

In this chapter, the practicality of Vulkan is discussed and the pros and cons of transitioning to the 

new API are considered. SPIR-V, the shader language handler is introduced and discussed as well.  There 

are definite benefits to be seen in Vulkan over OpenGL but is it worth the extra work involved? 
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CHAPTER 3  

METHODOLOGY  

 

This chapter presents theories and methods used to examine the abilities of DirectX 12 and 

Vulkan. The test methodology used for performance testing is further explained and the data in question 

is presented here. Also in this chapter, we make an effort to obtain an accurate assessment of the 

relationships between the current API (OpenGL) and the newer APIs in question (DirectX 12, Vulkan). 

   

3.1 CPU Overhead Reduction  

  
  

  Frame rendered in 29ms    Core 1 overloaded with 

most of the work  

  29ms = 34 frames per 

second  

  DirectX work(red/blue) 

consumes disproportionate 

time   

  Cores 7 and 8 unused    This is “high” API 

overhead  

  

Figure 3.1 Command Buffers in DirectX 11 (AMD) 
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Multithreaded graphics in OpenGL & DX11 do not allow for multiple tasks to be 

scheduled simultaneously without adding considerable complexity to the design. In theory, this 

means that a great number of GPU resources are spending time idling with no task to process 

because the command stream simply can’t keep up. This in turn means that GPUs running on 

DirectX 11 or OpenGL will never be fully utilized. This leaves a deep well of untapped 

performance and potential that programmers should be able to reach (Moammer, 2015). In order 

to get the most out of GPU performance, we will implement simple C++ programs for rendering 

images in Vulkan & DirectX 12. The difference in CPU work vs. GPU work will be documented. 

The data in question is shown in Figures 3.1 and 3.2. This data was gathered from an AMD 

processor using a program called Geekbench which is a widely used CPU benchmarking tool 

(Moammer, 2015). 

  

 
Figure 3.2 Command Buffers in DirectX 12 (AMD) 

 

      

   Frame rendered in 15 ms   
  

   API work (red and blue) very modest  
vs.  code   

   15 ms =  66  frames per second     
This is low API overhead 

  

   All 8 cores utilized   
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3.2 Benchmarking Test Methodology 

3.2.1 Ashes of Singularity 

 

  As stated before, DX12’s approach as a new graphics API is very similar to that of Vulkan. 

Because it is tough to find any games or application which fully utilized Vulkan, for our 

benchmark test we use a game that was built in DX 12 as well as in DX 11. Ashes of Singularity 

is a real-time strategy computer game which boasts the first game released with full DirectX 12 

support. In chapter 5 (Figure 5.3) you can see the results of a Fraps framerate benchmark test 

performed on both Nvidia and AMD advanced graphics processors. For diverse results, we tested 

two separate advanced GPUs at 3 different resolution settings (1080p, 1440p, 2160p). The 

separate GPUs used in this test were AMD’s R9 290X and Nvidia’s Geforce GTX 970ti. 

 

3.2.2 Talos Principle Test 

 

One of the first games to offer Vulkan support was the The Talos Principle from Croteam (Stephen 

W. Keckler). This provided a good opportunity for a simple benchmark test for applications running on 

Vulkan compared to its OpenGL supported counterpart. For this testbed we used an Nvidia 970ti GPU 

along with the beloved Windows 8.1 Operating System. This OS showcases the game on a platform that 

is unable to support DirectX 12. The main goal here was to witness the difference between an OpenGL 

version of a game next to its cloned Vulkan version. The test results are presented and analyzed in chapter 

five. 
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3.2.3 CPU Diagnostics Test  

  In effort to answer the first research question we conducted a diagnostics test across the 

CPU (Intel i7-4790k). The tool used to perform the test was the CPU diagnostics test from Microsoft 

Visual Studio. It analyzes the program during run-time and estimates what percentage of the program is 

utilizing the CPU and its multiple cores. This test examined two 3D applications. One of the applications 

tested was a simple 3D game built in OpenGL using C++ for a recent project in my Computer Graphics 

class. The other application is a rudimentary 3D scene built in Vulkan using C++. The test result for this 

experiment helped to magnify the extreme difference in driver overhead between the 2 APIs. 

  

The Computer used for the following tests has the following characteristics.  

 

Table 3.1 Benchmark PC Specs  

Motherboard  Asus Z97-A  

CPU  Intel Core i7 4790k 3.6 GHz Quad Core  

RAM   4x Kingston DDR3 – 1600 8GB  

GPU  Nvidia GeForce GTX 970 4GB  

OS  Windows 8.1  
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 Multi-threaded GPU theories 

  

 Submitting tasks from multiple queues may add complexity to scheduling  

 Some GPUs can only process one command stream at a time  

 This could possibly make it difficult to keep GPU resources fully utilized  

 Lack of prioritization for more urgent tasks  

  

  
 

Figure 3.3 Traffic Light Analogy 

 

In the past, other technologies have attempted to improve the idle GPU-space situation by 

enabling prioritization of certain tasks over others. Graphics pre-emption allowed for prioritizing 

tasks but just like multithreaded graphics in DX11 it did not solve the fundamental problem. As it 

could not enable multiple tasks to be handled and submitted simultaneously independently of one 

another. A crude analogy for this theory, would be that what graphics pre-emption does is merely 

add a traffic light (Figure 3.3) to the road rather than add an additional lane (Moammer, 2015). 

 

3.2.4 Draw Call Overhead Test 

 In an OpenGL renderer, when drawing a numerous amount of dynamic objects to the screen 

simultaneously, I have witnessed performance bottleneck which in turn can cause a screen tearing effect. 
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In order to test the difference in draw call overhead between the two APIs, we tested our basic Vulkan 

renderer (Appendix C, page 77), against our OpenGL renderer. The Vulkan GPU numbers are measured 

as the difference between a vkCmdWriteTimestamp at the start and at the end of the render 

command buffer. For a draw call measurement in OpenGL we used 

glBeginQuery/glEndQuery(GL_TIME_ELAPSED) which pairs around the render loop. This 

does not entirely account for GPU idles when it is starved between draw calls, but it is how we measured 

draw calls for this particular test.  

 

  

3.3 Explicit GPU Control  

The new Vulkan interface is designed to be as close to the architecture of modern GPUs as 

possible. This means that both the code size and the amount of work going on in user and kernel 

space for the Vulkan driver is very small and therefore will be more efficient than OpenGL. For 

example, there are no glUniform*() equivalent entry points in Vulkan; instead, writing to GPU 

memory is the only way to pass data to shaders.  

When you call glUniform*(), the OpenGL driver typically needs to allocate a driver 

managed buffer and copy data to it, the management of which incurs CPU overhead. In Vulkan, 

you simply map the memory address and write to that memory location directly (Boudier, 2015).  

Figure 3.4 presents a chart showing the difference in CPU usage between Vulkan and OpenGL for 

The Talos Principle demo.  
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Figure 3.4 CPU Usage: Vulkan vs OpenGL  

  

 

3.3.1 Leaner, More Explicit Driver  

  

On the front end, driver overhead is greatly decreased in comparison to OpenGL due to the 

API being designed around hardware. This is where the opportunity arises to deliver more draw 

calls and hardware vendors can achieve better stability and faster driver boot up time.  

In Vulkan, higher level control of the GPU needs to be accomplished by the application. 

The driver is essentially non-existent and basically does what the code tells it to do. While this 

may result in more verbose application code, the benefit therein lies in not having to work around 

the driver (e.g. shader pre-processing in OpenGL). Vulkan is clearly designed to resemble 

modern command buffer-based APIs. Low-level software engineers and engine programmers 

should see immediate speed-up benefits due to ease of portability and a familiar programming 

http://blog.imgtec.com/wp-content/uploads/2015/03/oglesvsvulkan1.png


 

36 

 

interface. Over time Vulkan should provide more efficient renderers for game engines, 3d 

modeling software, image editors, etc.  

Another major advantage for this API is that less CPU-confined jobs take place when a 

draw call is issued. Any CPU-related issues when making a large amount of draw calls will initially 

be taken care of.  

However the main benefit here for developer is that programming 3D graphics will 

become much more predictable. For example: when you call glBlendFunc() in OpenGL, 

different things can happen depending on the underlying graphics architecture that is running that 

code. Some GPUs could delay setting up the blending until the first time the bound shader is 

used; others might not. This makes achieving consistent performance across different GPU 

vendors quite difficult (Boudier, 2015).  

Vulkan should make solving this problem easier because the entry points to the API are 

designed to allow the driver to do work in consistent places. When you fill in a struct describing 

some state using Vulkan, you know that there is no driver work going on; the code is all 

application code. The API is designed to fit as best as it can to all GPU vendor’s architectures so 

there are fewer opportunities for unknown performance hiccups. The glBlendFunc() problem 

becomes obsolete because the blend function is specified in a struct during pipeline setup. The 

driver work will happen early, when the function to create the pipeline is called, instead of 

sometime during rendering causing a stutter.  

Actually, a lot of the Vulkan API is aimed at being able to specify everything up-front if 

possible. For example you can record a list of render commands and state setting commands into a 

command buffer and replay that every frame with just one call. The driver has more opportunities to 

optimize this usage case because it knows it can do more work when creating the command buffer, 
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rather than when executing it. Another consequence of the explicit nature of Vulkan is that there is no 

resource renaming (or ghosting) behind the application’s back – multibuffering needs to be performed 

explicitly. Multi-buffering is the process whereby a graphics driver may have a number of frames being 

processed at the same time.  

The data attached to those frames (e.g. uniform data and attached textures) needs to be kept 

around until the frame it is bound to is complete; this will need to be performed by the application. 

On the plus side, the data that you know will not be modified between frames (e.g. brightness or 

contrast) can be specified as const for possible optimizations (Boudier, 2015).  

Vulkan reimagines how well a graphics program can utilize hardware by using something 

called render pass. This implicitly decreases the amount of work needed to be done without the 

application knowing about it. A render pass consists of a framebuffer state (as opposed to a 

specific render memory address) which loads render targets in and out of the GPU at the front 

and back of each render. This structure is the key feature that allows graphically intense 

application to run at extremely high efficiency on advanced graphics architectures (e.g. Kepler, 

Maxwell). According to PowerVR, this functionality has already been a major factor for solving 

latency problems for VR-compatible software.  

In OpenGL during rendering, several things can cause implicit flushes of tile buffers to main 

memory; a bandwidth heavy operation that’s usually unnecessary. In Vulkan, the only time such a 

flush can happen is between render passes, making it obvious to both the application and the driver. 

More importantly – it tells the GPU exactly what an application wants to do with each render target. 

Command buffers can be created on a different thread to the thread they are submitted on. This 

means rendering commands could be created on all cores of a CPU (Smith, 2015). There is no extra 
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work or locking required to do this – a feature that was not previously possible with OpenGL. This 

may be of use to games which need to recreate their render commands quite often (e.g. Minecraft).  

Vulkan gives you the advantage of knowing exactly the state that you are setting. Take for 

example the glActiveTexture() function in OpenGL: it is not obvious whether this function will 

change the state globally for all shaders or maybe change the state just for the current shader 

program. In Vulkan, this is explicitly defined: you know that when you bind your resources, it is 

changing the state for the bound command buffer because that is the first parameter to the 

function.  

A common pattern in Vulkan is to set the initial parameter to all entry points as a representation 

of the state which you are changing in the following function call. For example:  

vkCmdBindDescriptorSet(commandBuffer, VK_PIPELINE_BIND_POINT_GRAPHICS,  

textureDescriptorSet[0], 0);  
vkQueueSubmit(graphicsQueue, 1, &commandBuffer, 0, 0, fence); 

vkMapMemory(staticUniformBufferMemory, 0, (void **)&data);  
// ... vkUnmapMemory(staticUniformBufferMemory);  

  

  

3.2.2 Explicit Memory Management  

When you call glTexStorage() in OpenGL, the driver automatically has to allocate memory 

for a one or two-dimensional texture array. The method and the allocation of memory take place 

behind the curtain.  

In Vulkan however, the memory allocation is done by the application. This means that the 

application knows more about what type of memory it is using and more importantly how much 

memory it is using, which should be useful for applications that are memory-bound. This is in 

contrast to receiving an “out of memory” error in OpenGL and needing to reduce resource usage 

by an unknown value. Explicit memory management in Vulkan allows applications to use 
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custom allocation strategies. For example to allocate all memory up-front and avoid any 

allocations during rendering (Boudier, 2015).  

3.3 Synchronization - Fence, Semaphore, Event 

  Outsourcing overhead between the GPU and CPU is one of the key features found in Vulkan. 

This is handled using three synchronization tools known in Vulkan as fences, semaphores, and events. 

Semaphores and Fences are very similar synchronization tools with a few key differences. Fences 

are used for synchronization from GPU to CPU, while semaphores are for syncs within the GPU only. 

Semaphores are specifically used to sync queue submissions, either the same queue or a separate one. 

Fences can only be waited on by the CPU, while semaphores can only be waited upon by the GPU. Both 

fences and semaphores can be signaled from the GPU. Another difference between the two is fences must 

be reset manually, while semaphores will reset automatically after being waited on. 

An event type is much more general. They can be set, reset and checked by both the CPU and 

GPU, however they can only be waited on by the GPU. Events are limited to only working within a single 

queue. Events differ from fences and semaphores especially, because they can be used for syncing within 

a command buffer. 

 

3.4 Loading Vulkan Functions    

It is clear that applications cannot yet fully rely on the Vulkan library because even after 

version 1.0 release in January, the library has been updated on 4 occasions. Even when it is 

included in an official Android API level, applications that want to run on earlier platform versions 

(e.g. with a fallback to OpenGL ES) are not able to directly link against the API. In both cases, 
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applications need to load Vulkan dynamically, and handle the possibility that it might not be 

present:   

   
void* vulkan_so = dlopen("libvulkan.so", RTLD_NOW | RTLD_LOCAL);  
if (!vulkan_so) {   
    LOGD("Vulkan not available: %s", dlerror());      
return false;   
}   

   

Function pointers for the global Vulkan commands (those that do not take a dispatchable 

object as their first parameter) and vkGetInstanceProcAddr had to be loaded dynamically 

(Hajdarbegovic, 2015):   

   
PFN_vkEnumerateInstanceExtensionProperties      
vkEnumerateInstanceExtensionProperties =   
        reinterpret_cast<PFN_vkEnumerateInstanceExtensionProperties>(              
dlsym(vulkan_so, "vkEnumerateInstanceExtensionProperties"));   

   
PFN_vkEnumerateInstanceLayerProperties vkEnumerateInstanceLayerProperties =      
reinterpret_cast<PFN_vkEnumerateInstanceLayerProperties>(          dlsym(vulkan_so, 
"vkEnumerateInstanceLayerProperties"));   

   
PFN_vkCreateInstance vkCreateInstance =      
reinterpret_cast<PFN_vkCreateInstance>(   
        dlsym(vulkan_so, "vkCreateInstance"));   

   
PFN_vkGetInstanceProcAddr vkGetInstanceProcAddr =      
reinterpret_cast<PFN_vkGetInstanceProcAddr>(          
dlsym(vulkan_so, "vkGetInstanceProcAddr"));   

   

All other Vulkan commands and the commands in the VK_KHR_swapchain and  

VK_KHR_device_swapchain extensions can be obtained in the same way; function pointers 

obtained this way can be used with any Vulkan instance. Alternately, vkGetDeviceProcAddr and 

any commands that take VkInstance or VkPhysicalDevice as their first parameter can be obtained 

by calling vkGetInstanceProcAddr. The function pointers returned are specific to the instance used 

to retrieve them, and avoid a dispatch indirection. Similarly, commands that take a VkDevice, 
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VkQueue, or VkCommandBuffer as their first parameter (except vkGetDeviceProcAddr) can be 

obtained from vkGetDeviceProcAddr, are specific to a particular device, and avoid a dispatch 

indirection (Hajdarbegovic, 2015).   

  

Note: This alternative process reflects a beta version of the Vulkan code base; the 

Windows implementation should now have updated to the finally required 

behavior. I was able to use dlsym to obtain vkGetInstanceProcAddr, and 

through that obtain function pointers for all other core and extension commands. A 

call to vkGetDeviceProcAddr was able to return device specific function pointers 

which help to avoid dispatch overhead.   

 

 

  

Figure 3.5   Vulkan AMD Error  
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3.4.1 Window System Integration   

For my Vulkan examples I used the VK_surface and VK_swapchain extensions to allow  

Vulkan to render to onscreen windows represented by Windows win32 API. Figure 3.5 is a 

screenshot of a common error which occurred when using an AMD GPU. The functionality of 

VK_swapchain seems to clash with AMD’s Fiji architecture. 

In future versions of Vulkan there should be no need to call any SetupWindow() functions on 

the window directly when using Vulkan; all queries and configuration can be done through the  

VkSurface object and VkSwapchain creation.  The vkCreateSurface function in the  

VK_surface extension is used to create the VkSurface from an ShowWindow().   

Surface properties and swapchain creation have some platform specific behaviors on Windows:   

▪  VkSurfacePropertiesKHR::currentExtent is the default size of the window; a  

swapchain with this size will not be scaled during presentation.   

▪  VkSwapchainCreateInfoKHR::minImageCount should be set to 3 for best   
performance on current Android devices when attempting to render at the display  

refresh rate.   

▪  If VkSwapchainCreateInfoKHR::imageExtent is not the same as   

VkSurfacePropertiesKHR::currentExtent, the swapchain images will be scaled 

to  the window size during presentation. The scaling filter is not specified, but is 

bilinear or   

better. If the image and surface aspect ratios are different, images will be scaled non‐ 

uniformly rather than letterboxed.    

▪  On Windows there is no performance advantage to setting   

VkSwapchainCreateInfoKHR::clipped to VK_TRUE , though there may be on other 

platforms.    
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3.5 Summary  

This chapter was a presentation of the overall methodological approach for investigating 

Vulkan and DirectX 12. This approach fits our research design because we have meticulously 

analyzed the contrast between OpenGL and Vulkan. The user or developer should have a decent 

understanding of the high level concepts involving the Vulkan programming process. Additionally 

some key differences were noted about Vulkan’s CPU advantages over OpenGL.  
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CHAPTER 4  

IMPLEMENTATION  

This chapter demonstrates and briefly exhibits what it is like to begin writing code in Vulkan. 

The brief demonstration consists of writing a simple working program which creates a pipeline and 

draws a triangle. Furthermore, in section 4.2 we present several high-performance rendering 

techniques which are often used today for high performance graphics rendering. These algorithms 

were written solely using C++ and Vulkan. The methods of implementation are discussed and results 

are analyzed.  

 

4.1 Vulkan PsuedoCode Overview  

  One of the issues with previous APIs like OpenGL and DirectX 11 is that they are not a 

good abstraction of modern graphics hardware, resulting in unnecessarily complex drivers that 

sort-of guess what the software actually wants to achieve with its given architecture. A few years 

ago when AMD began working on Mantle, the main goal was to alleviate the bottleneck of a 

graphics driver by offering a low-level API and a simplified driver that doesn’t get in the way. 

As stated before, Vulkan is essentially an evolution of Mantle. Sinc the SDK for Vulkan has been 

released (early 2016), it has become more evident that similar implementations and method calls 

of its predecessor Mantle have carried over with a few changes in its naming conventions. After 

viewing a few demos and taking a look at Vulkan’s programming guide (Daniell, 2015), you can 

manage to write a “Hello Triangle” demo in C++. The experiment ended up calling for over 500 

lines of code. Some past experience with DirectX or OpenGL will really help to understand the 

code.  
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  The first task a graphics programmer must do is load the function entry points from the .dll. 

You set up a helper function that initializes function pointers, much like when using GLEW or 

OpenGL. These helper functions can be instantiated in a header file (i.e. Vulkan.h). In the past, 

Mantle functions used a gr prefix. Many Vulkan methods have the same name while simply 

replacing the gr with vk.  

  Vulkan is initialized by calling vkInitAndEnumerateGpus() with some information that 

describes your application such as the version, the engine name, or the application name.  

 

  

Figure 4.1 Vulkan Basic Triangle  

  

See Appendix A for my C++ source code implementations. Also the complete source code for this 

triangle is at: github.com/jshiraef/VulkanTester (See VulkanExampleBase.cpp & triangle.cpp)  

  While sticking to the high level concepts, Figure 4.2 is a simple flowchart which presents 

the steps necessary to draw this triangle in Vulkan. First a display must be created to enable 
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some sort of window presentation. This is done by using Vulkan’s Window System Integration 

(WSI). WSI is an extension which ties the Vulkan display data to whatever windowing systems 

that is provided by the current operating system. The next step is to setup your resources. For 

drawing a simple triangle the only resources needed are vertex data and an index buffer 

(Appendix A p. 76). In C++ this is taken care of by placing basic vertex data within a struct 

and allocating memory (VkMemoryAllocateInfo & VkMemoryRequirements). All 

memory in Vulkan is automatically handled via the asynchronous queue.   

  

4.1.1 Pipeline State Objects  

  Finally it’s time to setup the 3D pipeline. To understand the 3D pipe you must instantiate 

the pipeline state object (PSO). The pipeline state object consists of shaders and separate 3D 

states. This is where SPIR-V, the translator for all shader languages, is applied and compiled 

into machine code. The PSO is the object which represents all static states in the entire 3D 

pipeline (Shaders, vertex data, rasterization, colors, depth, etc). A PSO can be initialized by 

instantiating a vkPipelineLayoutCreateInfo object (See triangle.cpp). A key feature 

of the pipeline state object is that all shader data and state data are compiled ahead of drawtime. 

The data is pre-baked into the PSO.  

  Another unique feature of the pipeline state object is that they can be cached for reuse if 

necessary, and they also can contain multiple entry points to be called-on as needed. As multiple 

threads are launched and properly synchronized in Vulkan, the reusability of PSOs and other 

resources should bring about a significant timing advantage for advanced GPUs. 
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 There is also dynamic state which contains data the can be changed very quickly. These 

changes will not affect the pipeline state. (This data can consist of viewport transformations, 

color blending, polygon offsets, stencil masks, etc).   

 

Figure 4.2 Simplified Overview of Graphics Pipeline  

            

4.1.2 Command Buffers  

            Next the developer must record the commands for rendering a triangle within a designated 

command buffer. A command buffer will typically consist of starting a render pass, binding your 

resources (e.g. vertex buffers, pipeline state object, descriptor sets), modifying your dynamic state, 

draw calls, and ending the render pass (See Figure 4.2 for flowchart visualization). These command 

buffers are designed to be multithreaded-friendly and recording them is meant to be very fast.   

Lastly, a queue submission command buffer must be issued. This is where commands for 

the GPU are scheduled. Queue execution is set to be cheap for the processor and is always 
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asynchronous. Additionally, vkSemaphore can be used to synchronize dependencies between 

command buffers. The presentation is now ready to be made using the WSI extension.  

  

 

 

  

4.2 Implementing Vulkan - Advanced Techniques and Algorithms  

 

4.2.1 Global Illumination 

 During creation of high quality renders, thorough understanding and comprehension of 

global illumination acts as a vital or pivotal step in that process (Dutre, 2006). Developers must 

therefore familiarize themselves thoroughly on the operation and execution with global 

illumination. Global illumination refers to the process which stimulates indirect lighting such as 

  

Figure 4.3   Building Command Buffers   
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color bleeding and light bouncing. In order to achieve the best of its effect, global illumination 

wholly relies upon the use of photons in mental ray. Basically, a photon refers to the particle that 

is accountable for light energy (Dutre, 2006). Once a photon has been emitted, it comes in contact 

with the surface in the scene inheriting that surface’s color as well as the energy value. Upon 

bouncing up the first surface, the photon carries those energy values or packets to the next surface 

it comes in contact with, and continuously bounces until its absorption creating an indirect 

illumination effect. This technique of using global illumination gives a developer the capability of 

capturing indirect illumination, which demonstrates clearly the real world occurrences where light 

reflects or bounces off everything in its propagation path it is entirely absorbed. For instance, cracks 

at the lower part of a door causes light to penetrate into the room or red walls reflecting light from 

the light source can cause the floor to have a red hue. Therefore, the use of global illumination to 

achieve these kinds of effects creates a much greater level of believability and realism in the 

renderer.   

During the rendering process with mental ray, developers need to turn on emission of 

photons for both the render settings and the light source. Failure to complying with this process, 

indirect lighting effects will not be applied to the render. Typically, every object will cast/throw 

and receive photons but not all objects really have to both cast and receive photons for the developer 

to achieve the desired look. While reducing render times or fine tuning the outlook for global 

illumination, developers must specify precisely which objects ought to cast or receive photons. For 

example, the developer can arrange and organize only certain particular items within their scene to 

receive global illumination. A common happening with global illumination is that the renders may 

come out splotchy and speckled creating a smooth effect. However, this can be relatively easy fix. 

Increasing the bounces or photon emission level from the light source will create a smoother cleaner 
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indirect lighting effects. Increasing the number of photons emitted therefore will noticeably incline 

the rendering time (Dutre, 2006).  

Global illumination can also be defined as the technique for modeling how light is reflected 

and bounces off of surfaces. Modeling indirect lighting allows for events that make the virtual or 

simulated world seem connected and more realistic since objects influence each other’s appearance. 

For a long time, real-time graphics applications and video games were limited only to direct 

lighting. On the contrary, calculations necessary for indirect lighting were deemed to be slow hence 

were only applied in non-real-time situations such as computer graphics animated films. Most 

global illumination algorithms require extra preprocessing before actual rendering which can often 

slow run-time performance. In Vulkan, this shouldn’t be an issue because the pipeline is setup and 

compiled before run-time preferably on multiple cores. In the past developers have sought for a 

way to work around the limitation by calculating indirect light for surfaces and objects which are 

known before time to be stationary. During global illumination, the number of lights, its direction, 

position and other attributes can be altered while indirect lighting updates accordingly. Likewise, 

alteration of the material’s properties of items (objects) such as color, the amount of light absorption 

or emitted is made possible (Dutre, 2006).   

While pre computed real-time global illumination results to soft shadows, typically they 

will be more coarse-grained compared to those achieved with Baked Global Illumination (GI) 

unless the scene be very small (Dutre et al 96-134). It should be noted that while pre computation 

of real-time global illumination does the last lighting at run time, iteratively it is carried out over 

many frames. Therefore, when a big change is made to the lighting, more frames will be taken for 

the global illumination to fully take effect. Although global illumination for real time applications 

is relatively faster, Baked GI would produce a better run-time performance for constrained target 
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platform. The major limitation of Baked Global Illumination and Pre computed Real-time Global 

Illumination is that static or stationary objects are not includes in pre computation. This implies 

that objects in motion cannot bounce or reflect light onto adjacent objects and vice versa (Dutre, 

2006). The source code for Figure 4.4 can be found in Appendix B. 

 

  

Figure 4.4  Global Illumination Vulkan Example 

  

 

4.2.2 Deferred Rendering 

Also referred to as deferred shading is a technique that differs from forward shading or forward 

rendering. Deferred rendering postpones light’s computation to the image space and to end of the 

rendering pipeline, similarly posting processing techniques (Lauritzen, 2010). The underlying ideas of this 

technique imply that if the pixel does not get to the screen then there is no need in shading it. When a pixel 

gets into the image space the developer knows that it is going to be visible therefore they can calculate 
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safely all the lights’ influence on it. According to Lauritzen and Andrew (1-34), shading is made much 

faster by this concept coupled with the per pixel accuracy. On the contrary, this technique introduces series 

of issues which forward rendering does not have. For instance, it is quite difficult when dealing with 

transparencies as handling large numbers of materials requires storage of more information in the q-buffer 

which can easily blot the video memory when using OpenGL. Deferred shading is commonly comprised 

of two passes namely geometry pass and lighting pass. Geometry pass involves rendering the scene and 

retrieving all kinds of geometrical information from the objects that we store in a collection of textures 

known as the g-buffer. The geometric information of a scene stored in the G-buffer is then later used for 

more complex lighting calculations (Lauritzen, 2010).  

 

  

Figure 4.5 Deferred shading  

 



 

53 

 

On the other hand, a lighting pass involves use of textures from the G-buffer where a 

developer renders a screen-filled quad and calculates the scene’s lighting for each fragment using 

stored in the G-buffer; that is, the developer iterates over the G-buffer pixel by pixel. Instead of 

taking each object all the way from the vertex shader to the fragment shader, developers decouple 

its advanced fragment process to a later stage. The lighting calculations remain exactly the same 

but this time all the input variables required are taken from the corresponding G-buffer textures 

instead of the vertex shader (Lauritzen, 2010). A major advantage of this approach is that 

whatever fragment ends up in the G-buffer is the actual information that ends up as a screen 

pixel, as the depth test already concluded this fragment information as the top-most fragment. 

This ensures that for each pixel, the developer’s process in the lighting pass is done once 

therefore saving them a lot of unused render calls. Furthermore, deferred rendering opens up the 

possibility for further optimizations that allow us to render a much larger amount of light sources 

than developers would be able to use with forward rendering. In OpenGL, deferred shading had a 

few disadvantages. The G-buffer required developers to store a relatively large amount of scene 

data in its texture color buffers which usually consumes a significant amount of memory, 

especially since scene data like position vectors require a high precision (Lauritzen, 2010).  

However when this technique was implemented in Vulkan it was simple to distribute the texture 

color buffers across multiple cores without stalling memory or framerate (See 

buildDeferredCommandBuffer()  & prepareMultiThreadedRenderer()in 

Appendix C, p 77 - 78). Figure 4.5 shows a screenshot of the deferred shading example built in 

C++ and Vulkan. 
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4.2.3 Instancing 

For advanced real-time computer graphics, it is sometimes necessary to render multiple 

copies of the exact same mesh repeatedly throughout a scene. For example when creating a 

detailed environment there may be a need for thousands of trees, blades of grass, or buildings. This 

can be accomplished through the practice of geometric instancing, which means rendering 

numerous copies of the same exact mesh in one scene simultaneously. This can be represented 

using a repeated geometry shader without appearing too repetitive. Each instance can be issued 

different attributes (e.g. color or position) in effort to decrease the spectacle of repetition. Figure 

4.6 a simple example of instancing while rendering the same mesh in C++ and Vulkan with 

differing uniforms all within one single draw command. This saves significant performance when 

the same mesh had to be rendered multiple times. 

 

  

Figure 4.6 Mesh Instancing   
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See Appendix c page 85 for Instancing source code. The complete source code for this example 

can be viewed at github.com/jshiraef/VulkanTester/instancing  

  

4.2.4 Bump mapping 

 

 Bump mapping, also referred to normal mapping, is much like texture mapping. The 

difference is that texture mapping involves adding color to a polygon, while bump mapping adds 

what appears to be surface roughness. This process encompasses lighting calculations that lead to 

introduction of perturbations on the surface of the object. The object going through this process 

remain unchanged even the whole surface is evenly made bumpy (Dobashi, 2002). There is no 

modification on the surface geometry of the object in question. An advantage of bump mapping is 

that it can add minute details to objects which would otherwise require a large number of 

polygons. Obviously the polygon is still physically flat but appears to be rigid.  

  

4.2.5 Parallax Occlusion Mapping  

Parallax Occlusion Mapping refers to a method that is used reducing a geometric 

representation’s complexities by encoding outside/surface detail in a texture. The height-map 

representation is typically the surface information for replacement of the geometry. When 

rendering the model, all the details concerning the surface are reconstructed in the pixel shader 

from the height-map texture information (Tatarchuk, 2006). The primary idea behind parallax 

occlusion mapping (POM) is relatively simple. Computation of the effects of motion parallax for a 

surface is done by applying a height map and offsetting each pixel in the height map using the 

geometric normal and eye vector. As the geometry is moved away from its original or former 

position using that ray, a parallax is achieved. This technique explains that all the highest points on 



 

56 

 

the height map would be moved the farthest along that ray while the lower extremes would seem 

to be stationary. To obtain satisfying result or outcomes for true perspective simulation, a developer 

would have to shift every pixel in the height map using both geometric normal and the view ray. 

Essentially parallax occlusion mapping is a replicated displacement mapping approach that takes 

place in texture space (Tatarchuk, 2006).    

Parallax mapping in Vulkan can fully utilize the programmable GPU pipeline to offer 

interactive and responsive rendering rates. Recent algorithms have variety of significant 

improvements and advancement over the earlier techniques. Application of this method can be used 

in animation of objects as it fits correctly within established artwork pipelines of computer games 

as well as effects rendering. Implementation of the current algorithms makes effective and efficient 

use of current GPU pixel conduits and texturing hardware or equipment for interactive and 

responsive rendering. This algorithm thus provides scalability for a given range of existing GPU 

products (McGuire, 2005). Parallax mapping is an enhanced version or model of Normal Mapping 

in computer graphics which changes the behavior of lighting as well as creating illusion of 3-D 

details on plain polygons. Parallax mapping hence offsets surface coordinates which are used in 

assessment of textures with dispersed colors and normals. In implementing parallax mapping, the 

developer requires a heightmap surface or texture. The height map in every pixel contains statistics 

about elevation of the surface. The predominant duty of parallax mapping methods involves 

modifying the texture coordinates in a way that plain surfaces will appear like 3-D.  

Parallax Occlusion Mapping simply interpolates between results of Normal Mapping. (See  

Figure 4.7. For interpolation POM uses depth of the layer after intersection (0.375, where Normal 

Mapping has stopped), previous H(T2) and next H(T3) depths from heightmap. As you can see from 

the image, the result of Parallax Occlusion Mapping interpolates in on the intersection of view 
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vector V and the line between heights H(T3) and H(T2). Intersection Tp is close enough to real point 

of intersection (marked with green).  

  

Figure 4.7  Parallax Occlusion Mapping Diagram  

 

 

Parallax Occlusion Mapping is therefore an alternative advancement for Bump Mapping. 

POM is aimed at producing better outputs in comparison to Relief Parallax Mapping which 

provides better and excellent outcomes than Steep Parallax Mapping (McGuire, 2005). However, 

the POM results are unsatisfactorily worse compared to results for Relief Parallax Mapping or 

Steep Parallax Mapping. Additionally, Parallax Occlusion Mapping basically interposes between 

outcomes of normal mapping as well as producing desirably better results with comparatively small 

quantities of samples/specimen from heightmap. Notwithstanding, Parallax Occlusion Mapping 

(POM) may skip finer details of the heightmap more than normal mapping producing incorrect 

outputs for abrupt or sudden changes of variables in the heightmap (Tatarchuk, 2006).    

Like normal mapping, parallax mapping simulates geometry on a flat surface. In addition 

to normal mapping a heightmap is used to offset texture coordinates depending on the viewing 

angle giving the illusion of added depth.  
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Figure 4.8  Parallax Occlusion Mapping  
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CHAPTER 5 

TEST RESULTS AND ANALYSIS 

 

The data presented in this chapter are the results of diagnostics and performance tests mentioned 

in chapter 3. These tests were conducted in effort to validate the performance and optimization 

improvements which can be achieved when transitioning to Vulkan or DirectX 12. 

 

 

  

  

  

Figure 5.1   OpenGL 3DEngine CPU Utilization   
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These results were pulled from personal screenshots after running a Microsoft Visual Studio 

CPU diagnostics test. Figure 5.1 shows the percentage of CPU usage while running an OpenGL 

application which was a simple 3D game I made in C++ and OpenGL as a project for my Computer 

Graphics class. It is evident that almost half (45%) of the application’s code is CPU bound. This is 

a large amount of overhead and could very easily contribute to CPU bottleneck. 

 

  

 

  

On the other hand, when running a simple 3D Scene built in C++ and Vulkan, less than 2 

percent of the application is using the CPU as shown in Figure 5.2. This was a result of the exact 

  

  

Figure 5.2   Vulkan 3D Scene  CPU Utilization   
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same MSVS diagnostics test running immediately after the previous one. This makes it clear that 

any Vulkan application will not be CPU bound unless work is specifically allocated and 

distributed amongst CPU cores. To view my code which implements multi-threading in Vulkan 

see prepareMultiThreadedRender() (Appendix C, page 81) The complete source code 

for this Vulkan scene can be viewed at github.com/jshiraef/VulkanTester/VulkanScene.   

  

5.2 Ashes of Singularity Test Results 

 

   

Figure 5.3 Ashes of Singularity Test  
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It was unexpected to discover that performance for Nvidia drivers using DirectX 12 was 

actually slightly worse than its performance with DirectX 11. Theoretically, this could be because this 

new architecture of utilizing CPU overhead is not being fully exploited yet by Nvidia. But because  

AMD has been working on “Mantle” for so long, its current GPU architecture seems to be ahead 

of the game for exploiting the increased optimization potential of the new graphics API’s 

(Vulkan, DirectX 12).  

What these test results have indicated, along with other publications, is that AMD GPUs 

consistently showed significantly greater performance gains than their Nvidia counterparts and in 

many instances the AMD cards matched or outperformed more expensive Nvidia offerings. As has 

been the case with many benchmark tests registering a performance loss when Nvidia hardware is 

running the DX12 version of the benchmark compared to DX11. I have learned from further 

research that this was down to a hardware feature called Asynchronous  

Shaders/Compute.  

Asynchronous Shaders/Compute, also known as Asynchronous Shading is one of the more 

useful hardware features in Vulkan and DirectX 12. This feature allows tasks to be submitted and 

processed by shader units inside GPUs (something Nvidia calls CUDA cores and AMD dubs 

Stream Processors ) simultaneous and asynchronously in a multi-threaded fashion.  

One would’ve thought that with multiple thousands of shader units inside modern GPUs that 

proper multi-threading support would have already existed in DX11. In fact one would argue that 

comprehensive multi-threading is crucial to maximize performance and minimize latency  

(Moammer, 4). But the truth is that DX11 only supports basic multi-threading methods that can’t 

fully take advantage of the thousands of shader units inside modern GPUs. This means that until now 

it has never really been possible for GPUs to reach their full potential.    

http://wccftech.com/oxide-games-dev-replies-ashes-singularity-controversy/
http://wccftech.com/oxide-games-dev-replies-ashes-singularity-controversy/
http://wccftech.com/oxide-games-dev-replies-ashes-singularity-controversy/
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5.2.1 Asynchronous Shaders 

  

 Next generation APIs can process multiple command streams in parallel 

 Enabled by Asynchronous Compute Engines  

 Each queue can submit commands without waiting for other tasks to complete  

 Independent command streams can be interleaved on the GPU Shaders and execute simultaneously  

o This increases utilization and performance by filling gaps in the pipeline  

  

  

  
  

Figure 5.4 Asychronous Shaders Merging 

  

 

To enable asynchronous shaders, the GPU must be built from the ground up to support it.  

In AMD’s Graphics Core Next based GPUs this feature is enabled through the Asynchronous 

Compute Engines integrated into each GPU. These are structures are built directly into the GPU 

itself. And they serve as the multi-lane highway by which tasks are delivered to the stream 

processors.  
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5.3 Talos Principle Results  

  

  
  

Figure 5.5  Talos Principle Results  

To be fair, this is an extremely early look at Vulkan performance; The developers Croteam 

obviously originally made The Talos Principle to run most efficiently in DirectX 11, which explains 

the significant gap in increased framerate. Furthermore The Talos Principle is not a title that’s 

designed to exploit the CPU utilization and draw call improvements that are central to Vulkan. As 

expected, in Figure 5.5 we see that Vulkan’s performance here does not in any way stack up to the 

DirectX 11 version. The interesting takeaway here is that a simple 3D game built by a small team 

of developers using a beta version of Vulkan managed to gain an overall performance increase over 

OpenGL. Overall the visual quality did not appear to display any significant differences. The 

Vulkan version did crash once the first time it was booted up. In the future, it will be very interesting 
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to see what a large AAA team of developers can do with the power of Vulkan and its increased 

scalability.  

 

5.4 Draw Call Overhead Results 

A normal inner drawing loop for OpenGL looks like this: 

for (Mesh* i : meshList){ 

   glBufferSubData(...)  // Mesh-specific Uniform Data 

   glBindTexture(...) 

   glDrawElementsBaseVertex(...) 

} 

and with Vulkan: 

for (Mesh* i : meshList){ 

   vkCmdPushConstants(...)  // Mesh-specific Uniform Data 

   vkCmdBindDescriptorSets(...)  // Texture 

   vkCmdDrawIndexed(...) 

} 

 

The shaders used here were basically identical and as simple as possible. Both implementations 

rendered the specified amount of objects, each consisting of 2 draw calls (with different textures) with 

44 triangles in total. Here are the results: 
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Table 5.1 Draw Call Overhead 

Object Count ms/frame Vulkan ms/frame OpenGL 

256 0.57 0.84 

1k 0.95 2.50 

4k 3.18 8.33 

16k 12.94 30.86 

64k 47.44 123.62 

 

Impressively, the Vulkan implementation ran about 2 ½ times faster. Especially since the Nvidia 

OpenGL driver it is competing with is quite well optimized and we are only using a single thread for 

building the Vulkan command buffer yet. 

To gain a better understanding of how the total frame times came together, let's take a look at the 

CPU time spent in the draw loop and the GPU time used: 
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Table 5.2 Draw Call Overhead: CPU vs. GPU 

Object Count ms CPU Vulkan ms CPU OpenGL ms GPU Vulkan ms GPU OpenGL 

256 0.13 0.56 0.06 0.08 

1k 0.48 2.04 0.12 0.42 

4k 2.06 7.74 0.55 5.92 

16k 8.90 30.41 2.87 28.57 

64k 35.99 123.14 10.3 121.13 

 

Apparently Vulkan's timing advantage is actually closer to 3x when looking at CPU time only. 

GPU time looks very high on the OpenGL side, but that's merely a measuring benchmark since the GPU 

is idling a lot between draw calls, and it is measured as time between GPU-side execution of first and 

last draw call.  Lastly we switched the low-polygon mesh for a 6.5 triangle version and reran the tests: 

 

Table 5.3 Draw Call Overhead: High Polygon count 

Object 

Count 

ms Frame 

Vulkan 

ms Frame 

OpenGL 

ms CPU 

Vulkan 

ms CPU 

OpenGL 

ms GPU 

Vulkan 

ms GPU 

OpenGL 

1k hipoly 71.12 108.92 0.49 2.10 70.25 106.87 

1k hipoly 84.95 107.32 0.49 2.09 84.09 105.27 

1k hipoly 81.66 108.15 0.49 2.09 80.80 106.10 
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As you can see, the Vulkan version produced quite some performance variation when it was 

within the GPU limit. This was not happening during previous tests. Surprisingly, there is almost no 

frame-to-frame variation, performance only changes when restarting the application. One would have to 

guess that memory allocation is randomly placing or fragmenting the vertex data or the command buffer 

in some cases more and in some cases less fortunate areas. It is interesting to see from a very basic 

render test, Vulkan delivers a better performance here as well. These results were unexpected 

 

5.5 Takeaways  

  The landscape for computer graphics programming is quite different than it was in the 90’s 

when OpenGL was released. GPUs have been improved unimaginably over the past decade. The 

industry has called for another advanced API standard, and the Khronos Group has answered with 

Vulkan. OpenGL will still remain the most popular 3D API for years to come and it will continue 

to see benefits from future driver optimizations. Developers who want to transition from OpenGL 

to Vulkan will witness a huge departure from their comfort zone. Switching to multi-core enable 

programming is a profound paradigm shift, and one which requires the developer to think very 

differently. Switching to Vulkan or DX12 can certainly offer a runtime benefit for your game or 

application, because now any jobs can be executed simultaneously. However one must consider the 

work it will take to overcome issues such as code complexity or interlocking of threads. 

While OpenGL’s state machine has done wonders for 3D applications it is no longer the 

most efficient approach to advanced graphics programming. Instead of making function calls to a 

huge state machine, you will be designing a rendering pipeline to hopefully be compiled and cached 

at once. This will allow the GPU to fully maximize its potential by optimizing, storing, or accessing 

whatever it is told to. An immediate benefit which can be exploited when switching to Vulkan is a 
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massive increase in draw calls. However, the only way to truly harness impressive performance 

gains is to become a master of multi-threading & resource management.  

 

5.5 Summary  

This chapter presented several benchmark performance tests. It was discovered that Vulkan 

and DirectX 12 do provide a performance benefit over OpenGL. A CPU diagnostics test was also 

analyzed for both Vulkan and OpenGL 3D applications. The results indeed proved that a Vulkan 

application is not CPU bound in any way. While there are few application which have been 

completed that fully utilized Vulkan we were able to run a framerate benchmark tests for 2 games. 

According to the benchmark results, it is clear Vulkan does increase performance and optimization, 

however currently the margin of improvement is minimal. It is worth noting the applications used 

in the benchmark tests were built on beta versions of their API’s.  
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CHAPTER 6 

CONCLUSION 

 

This thesis has aimed to provide an in-depth look at two new computer graphics API’s. It 

seems the industry standard in the field of computer graphic might be headed down a new path for 

creating software with advanced graphical capabilities. A few demonstrations of advanced 

computer graphics techniques were presented, and an attempt was made to present a novel approach 

for measuring and assessing the API’s performance benefits. This analysis should make it easy for 

a programmer or developer to assess the difficulties of transitioning to Vulkan or DirectX 12. 

Furthermore, this research and methodology should hopefully clarify the value of these next 

generation APIs, and spark intrigue for future projects or ideas.    

  

 

6.1 Future Work  

The first idea for future work which comes to mind would be to test the portability of these 

new API’s by converting previous projects built in OpenGL to see how they run in Vulkan.  The 

process of porting code from OpenGL to Vulkan has proven to be time consuming, but will 

hopefully become a simpler process as more tools are developed and future versions are released. 
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APPENDIX A 

DATA STRUCTURES 
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  In this section, the core data structures used for Vulkan and OpenGL rendering 

techniques are listed in detail. These are references for Chapter’s 3 & 4. 

  Triangle Data Struct: 

struct { 

        VkBuffer buf; 

        VkDeviceMemory mem; 

        VkPipelineVertexInputStateCreateInfo vi; 

        std::vector<VkVertexInputBindingDescription> bindingDescriptions; 

        std::vector<VkVertexInputAttributeDescription> attributeDescriptions; 

    } vertices; 

 

    struct { 

        int count; 

        VkBuffer buf; 

        VkDeviceMemory mem; 

    } indices; 

 

    struct { 

        VkBuffer buffer; 

        VkDeviceMemory memory; 

        VkDescriptorBufferInfo descriptor; 

    }  uniformDataVS; 

 

    struct { 

        glm::mat4 projectionMatrix; 

        glm::mat4 modelMatrix; 

        glm::mat4 viewMatrix; 

    } uboVS; 

 

    struct { 

        VkPipeline solid; 

    } pipelines; 

 

    VkPipelineLayout pipelineLayout; 

    VkDescriptorSet descriptorSet; 

    VkDescriptorSetLayout descriptorSetLayout; 

 

    VulkanExample() : VulkanExampleBase(ENABLE_VALIDATION) 

    { 

        width = 1280; 

        height = 720; 

        zoom = -2.5f; 

        title = "Vulkan Example - Basic indexed triangle"; 

        // Values not set here are initialized in the base class constructor 

    } 
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 Instancing Struct: 

 struct { 
        VkPipelineVertexInputStateCreateInfo inputState; 

        std::vector<VkVertexInputBindingDescription> bindingDescriptions; 

        std::vector<VkVertexInputAttributeDescription> attributeDescriptions; 

    } vertices; 

 

    struct { 

        vkMeshLoader::MeshBuffer example; 

    } meshes; 

 

    // Number of mesh instances to be rendered 

    uint32_t instanceCount; 

 

    struct UboInstanceData{ 

        // Model matrix for each instance 

        glm::mat4 model; 

        // Color for each instance 

        // vec4 is used for memory alignment  

        // GPU aligns at 16 bytes 

        glm::vec4 color; 

    }; 

 

    struct { 

        // Global matrices 

        struct { 

            glm::mat4 projection; 

            glm::mat4 view; 

        } matrices; 

        // Seperate data for each instance 

        UboInstanceData *instance;       

    } uboVS; 

 

    struct { 

        vkTools::UniformData vsScene; 

    } uniformData; 

 

    struct { 

        VkPipeline solid; 

    } pipelines; 
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VULKAN FUNCTIONS 
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Appendix B. Vulkan Functions 

 

These are functions from the Vulkan example of deferred shading (chapter 4.2.2). To view the 

entire deferred.cpp source code see github.com/jshiraef/VulkanTester 

void buildDeferredCommandBuffer() 

    { 

        VkResult err; 

 

        // Create separate command buffer for offscreen  

        // rendering 

        if (offScreenCmdBuffer == VK_NULL_HANDLE) 

        { 

            VkCommandBufferAllocateInfo cmd = 

vkTools::initializers::commandBufferAllocateInfo( 

                cmdPool, 

                VK_COMMAND_BUFFER_LEVEL_PRIMARY, 

                1); 

            VkResult vkRes = vkAllocateCommandBuffers(device, &cmd, 

&offScreenCmdBuffer); 

            assert(!vkRes); 

        } 

 

        VkCommandBufferBeginInfo cmdBufInfo = 

vkTools::initializers::commandBufferBeginInfo(); 

 

        // Clear values for all attachments written in the fragment sahder 

        std::array<VkClearValue,4> clearValues; 

        clearValues[0].color = { { 0.0f, 0.0f, 0.0f, 0.0f } }; 

        clearValues[1].color = { { 0.0f, 0.0f, 0.0f, 0.0f } }; 

        clearValues[2].color = { { 0.0f, 0.0f, 0.0f, 0.0f } }; 

        clearValues[3].depthStencil = { 1.0f, 0 }; 

 

        VkRenderPassBeginInfo renderPassBeginInfo = 

vkTools::initializers::renderPassBeginInfo(); 

        renderPassBeginInfo.renderPass =  offScreenFrameBuf.renderPass; 

        renderPassBeginInfo.framebuffer = offScreenFrameBuf.frameBuffer; 

        renderPassBeginInfo.renderArea.extent.width = offScreenFrameBuf.width; 

        renderPassBeginInfo.renderArea.extent.height = offScreenFrameBuf.height; 

        renderPassBeginInfo.clearValueCount = clearValues.size(); 

        renderPassBeginInfo.pClearValues = clearValues.data(); 

 

        err = vkBeginCommandBuffer(offScreenCmdBuffer, &cmdBufInfo); 

        assert(!err); 

 

        vkCmdBeginRenderPass(offScreenCmdBuffer, &renderPassBeginInfo, 

VK_SUBPASS_CONTENTS_INLINE); 

 

        VkViewport viewport = vkTools::initializers::viewport( 

            (float)offScreenFrameBuf.width, 
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            (float)offScreenFrameBuf.height, 

            0.0f, 

            1.0f); 

        vkCmdSetViewport(offScreenCmdBuffer, 0, 1, &viewport); 

 

        VkRect2D scissor = vkTools::initializers::rect2D( 

            offScreenFrameBuf.width, 

            offScreenFrameBuf.height, 

            0, 

            0); 

        vkCmdSetScissor(offScreenCmdBuffer, 0, 1, &scissor); 

 

        vkCmdBindDescriptorSets(offScreenCmdBuffer, VK_PIPELINE_BIND_POINT_GRAPHICS, 

pipelineLayouts.offscreen, 0, 1, &descriptorSets.offscreen, 0, NULL); 

        vkCmdBindPipeline(offScreenCmdBuffer, VK_PIPELINE_BIND_POINT_GRAPHICS, 

pipelines.offscreen); 

 

        VkDeviceSize offsets[1] = { 0 }; 

        vkCmdBindVertexBuffers(offScreenCmdBuffer, VERTEX_BUFFER_BIND_ID, 1, 

&meshes.example.vertices.buf, offsets); 

        vkCmdBindIndexBuffer(offScreenCmdBuffer, meshes.example.indices.buf, 0, 

VK_INDEX_TYPE_UINT32); 

        vkCmdDrawIndexed(offScreenCmdBuffer, meshes.example.indexCount, 1, 0, 0, 0); 

 

        vkCmdEndRenderPass(offScreenCmdBuffer); 

 

        blit(offScreenFrameBuf.position.image, textureTargets.position.image); 

        blit(offScreenFrameBuf.normal.image, textureTargets.normal.image); 

        blit(offScreenFrameBuf.albedo.image, textureTargets.albedo.image); 

 

        err = vkEndCommandBuffer(offScreenCmdBuffer); 

        assert(!err); 

    } 

 

 

Multi-threading Render function : 

 

 // Create threads and initialize  
    void prepareMultiThreadedRenderer() 

    { 

        VkResult err; 

 

        renderThreads.resize(numThreads); 

        uint32_t index = 0; 

        for (auto& thread : renderThreads) 

        { 

            // Command pool 

            VkCommandPoolCreateInfo cmdPoolInfo = 

vkTools::initializers::commandPoolCreateInfo(); 

            cmdPoolInfo.queueFamilyIndex = swapChain.queueNodeIndex; 

            cmdPoolInfo.flags = VK_COMMAND_POOL_CREATE_RESET_COMMAND_BUFFER_BIT; 
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            err = vkCreateCommandPool(device, &cmdPoolInfo, nullptr, 

&thread.cmdPool); 

            assert(!err); 

 

            // Command buffer  

            // Use secondary level command buffers 

            thread.cmdBuffers.resize(swapChain.imageCount); 

            VkCommandBufferAllocateInfo cmdBufAllocateInfo = 

                vkTools::initializers::commandBufferAllocateInfo( 

                    thread.cmdPool, 

                    VK_COMMAND_BUFFER_LEVEL_SECONDARY, 

                    (uint32_t)thread.cmdBuffers.size()); 

 

            err = vkAllocateCommandBuffers(device, &cmdBufAllocateInfo, 

thread.cmdBuffers.data()); 

            assert(!err); 

 

            // Push constant block 

 

            // Color 

            // todo : randomize 

            thread.pushConstantBlock.color = glm::vec3(1.0f, 1.0f, 1.0f); 

             

            // Model matrix 

            float rot = (float)(rand() % 360); 

            float deltaT = (float)(rand() % 255) / 255.0f; 

 

            glm::mat4 modelMat = glm::translate(glm::mat4(), glm::vec3((float)index 

* 4.0f - (float)(numThreads-1) * 2.0f, 0.0f, 0.0f)); 

            modelMat = glm::rotate(modelMat, -sinf(glm::radians(deltaT * 360.0f)) * 

0.25f, glm::vec3(1.0f, 0.0f, 0.0f)); 

            modelMat = glm::rotate(modelMat, glm::radians(rot), glm::vec3(0.0f, 

1.0f, 0.0f)); 

            modelMat = glm::rotate(modelMat, glm::radians(deltaT * 360.0f), 

glm::vec3(0.0f, 1.0f, 0.0f)); 

            thread.pushConstantBlock.model = modelMat; 

 

            thread.thread = std::thread([=] { threadUpdate(index); }); 

            index++; 

 

            // Viewport and scissor rect are shared 

            VkViewport viewport = vkTools::initializers::viewport((float)width, 

(float)height, 0.0f, 1.0f); 

            VkRect2D scissor = vkTools::initializers::rect2D(width, height, 0, 0); 

 

            // Fill command buffers 

            for (uint32_t i = 0; i < thread.cmdBuffers.size(); ++i) 

            { 

                // Inheritance infor for secondary command buffers 

                VkCommandBufferInheritanceInfo inheritanceInfo = 

vkTools::initializers::commandBufferInheritanceInfo(); 

                inheritanceInfo.renderPass = renderPass; 

                inheritanceInfo.framebuffer = frameBuffers[i]; 
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                VkCommandBufferBeginInfo beginInfo = 

vkTools::initializers::commandBufferBeginInfo(); 

                beginInfo.flags = VK_COMMAND_BUFFER_USAGE_RENDER_PASS_CONTINUE_BIT; 

                beginInfo.pInheritanceInfo = &inheritanceInfo; 

 

                vkBeginCommandBuffer(thread.cmdBuffers[i], &beginInfo); 

 

                vkCmdSetViewport(thread.cmdBuffers[i], 0, 1, &viewport); 

                vkCmdSetScissor(thread.cmdBuffers[i], 0, 1, &scissor); 

 

                vkCmdBindPipeline(thread.cmdBuffers[i], 

VK_PIPELINE_BIND_POINT_GRAPHICS, pipelines.phong); 

 

                // Update shader push constant block 

                // Contains model view matrix 

                vkCmdPushConstants( 

                    thread.cmdBuffers[i], 

                    pipelineLayout, 

                    VK_SHADER_STAGE_VERTEX_BIT, 

                    0, 

                    sizeof(ThreadPushConstantBlock), 

                    &thread.pushConstantBlock); 

 

                // Render mesh 

                VkDeviceSize offsets[1] = { 0 }; 

                vkCmdBindDescriptorSets(thread.cmdBuffers[i], 

VK_PIPELINE_BIND_POINT_GRAPHICS, pipelineLayout, 0, 1, &descriptorSet, 0, NULL); 

                vkCmdBindVertexBuffers(thread.cmdBuffers[i], VERTEX_BUFFER_BIND_ID, 

1, &meshes.ufo.vertices.buf, offsets); 

                vkCmdBindIndexBuffer(thread.cmdBuffers[i], meshes.ufo.indices.buf, 

0, VK_INDEX_TYPE_UINT32); 

                vkCmdDrawIndexed(thread.cmdBuffers[i], meshes.ufo.indexCount, 1, 0, 

0, 0); 

 

                vkEndCommandBuffer(thread.cmdBuffers[i]); 

            } 

        } 

 

        for (auto& thread : renderThreads) 

        { 

            thread.thread.join(); 

        } 

 

    } 

 

    void buildCommandBuffers() 

    { 

        VkCommandBufferBeginInfo cmdBufInfo = 

vkTools::initializers::commandBufferBeginInfo(); 

 

        VkClearValue clearValues[2]; 

        clearValues[0].color = defaultClearColor; 

        clearValues[1].depthStencil = { 1.0f, 0 }; 
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        VkRenderPassBeginInfo renderPassBeginInfo = 

vkTools::initializers::renderPassBeginInfo(); 

        renderPassBeginInfo.renderPass = renderPass; 

        renderPassBeginInfo.renderArea.offset.x = 0; 

        renderPassBeginInfo.renderArea.offset.y = 0; 

        renderPassBeginInfo.renderArea.extent.width = width; 

        renderPassBeginInfo.renderArea.extent.height = height; 

        renderPassBeginInfo.clearValueCount = 2; 

        renderPassBeginInfo.pClearValues = clearValues; 

 

        VkResult err; 

 

        for (int32_t i = 0; i < drawCmdBuffers.size(); ++i) 

        { 

            // Set target frame buffer 

            renderPassBeginInfo.framebuffer = frameBuffers[i]; 

 

            err = vkBeginCommandBuffer(drawCmdBuffers[i], &cmdBufInfo); 

            assert(!err); 

 

            // The primary command buffer does not contain any rendering commands 

            // These are stored (and retrieved) from the secondary command buffers 

 

            vkCmdBeginRenderPass(drawCmdBuffers[i], &renderPassBeginInfo, 

VK_SUBPASS_CONTENTS_SECONDARY_COMMAND_BUFFERS); 

 

            // Execute secondary command buffers 

            for (auto& renderThread : renderThreads) 

            { 

                // todo : Make sure threads are finished before accessing their 

command buffers 

                vkCmdExecuteCommands(drawCmdBuffers[i], 1, 

&renderThread.cmdBuffers[i]); 

            } 

 

            vkCmdEndRenderPass(drawCmdBuffers[i]); 

 

            VkImageMemoryBarrier prePresentBarrier = 

vkTools::prePresentBarrier(swapChain.buffers[i].image); 

            vkCmdPipelineBarrier( 

                drawCmdBuffers[i], 

                VK_PIPELINE_STAGE_ALL_COMMANDS_BIT, 

                VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT, 

                VK_FLAGS_NONE, 

                0, nullptr, 

                0, nullptr, 

                1, &prePresentBarrier); 

 

            err = vkEndCommandBuffer(drawCmdBuffers[i]); 

            assert(!err); 

        } 

    } 

 

    void draw() 

    { 
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        VkResult err; 

        VkSemaphore presentCompleteSemaphore; 

        VkSemaphoreCreateInfo presentCompleteSemaphoreCreateInfo = 

            

vkTools::initializers::semaphoreCreateInfo(VK_FENCE_CREATE_SIGNALED_BIT); 

 

        err = vkCreateSemaphore(device, &presentCompleteSemaphoreCreateInfo, 

nullptr, &presentCompleteSemaphore); 

        assert(!err); 

 

        // Get next image in the swap chain (back/front buffer) 

        err = swapChain.acquireNextImage(presentCompleteSemaphore, &currentBuffer); 

        assert(!err); 

 

        VkSubmitInfo submitInfo = vkTools::initializers::submitInfo(); 

        submitInfo.waitSemaphoreCount = 1; 

        submitInfo.pWaitSemaphores = &presentCompleteSemaphore; 

        submitInfo.commandBufferCount = 1; 

        submitInfo.pCommandBuffers = &drawCmdBuffers[currentBuffer]; 

 

        // Submit draw command buffer 

        err = vkQueueSubmit(queue, 1, &submitInfo, VK_NULL_HANDLE); 

        assert(!err); 

 

        err = swapChain.queuePresent(queue, currentBuffer); 

        assert(!err); 

 

        vkDestroySemaphore(device, presentCompleteSemaphore, nullptr); 

 

        submitPostPresentBarrier(swapChain.buffers[currentBuffer].image); 

 

        err = vkQueueWaitIdle(queue); 

        assert(!err); 

    } 

 

  

 Instancing functions (chapter 4.2.3): 

 
void prepareUniformBuffers() 

    { 

        instanceCount = pow((INSTANCING_RANGE * 2) + 1, 3); 

        uboVS.instance = new UboInstanceData[instanceCount]; 

 

        VkResult err; 

 

        // Vertex shader uniform buffer block 

        uint32_t uboSize = sizeof(uboVS.matrices) + (instanceCount * 

sizeof(UboInstanceData)); 

 

        createBuffer( 

            VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT, 

            uboSize, 

            nullptr, 

            &uniformData.vsScene.buffer, 
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            &uniformData.vsScene.memory, 

            &uniformData.vsScene.descriptor); 

 

        VkBufferCreateInfo bufferInfo = vkTools::initializers::bufferCreateInfo( 

            VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT, 

            uboSize); 

 

        // Colors and model matrices are fixed 

        float offset = 5.0f; 

        uint32_t index = 0; 

        for (int32_t x = -INSTANCING_RANGE; x <= INSTANCING_RANGE; x++) 

        { 

            for (int32_t y = -INSTANCING_RANGE; y <= INSTANCING_RANGE; y++) 

            { 

                for (int32_t z = -INSTANCING_RANGE; z <= INSTANCING_RANGE; z++) 

                { 

                    // Instance model matrix 

                    uboVS.instance[index].model = glm::translate(glm::mat4(), 

glm::vec3(x * offset, y * offset, z * offset)); 

                    uboVS.instance[index].model = 

glm::rotate(uboVS.instance[index].model, deg_to_rad(-45.0f), glm::vec3(0.0f, 1.0f, 

0.0f)); 

                    // Instance color (randomized) 

                    uboVS.instance[index].color = glm::vec4((float)(rand() % 255) / 

255.0f, (float)(rand() % 255) / 255.0f, (float)(rand() % 255) / 255.0f, 1.0); 

                    index++; 

                } 

            } 

        } 

         

        // Update instanced part of the uniform buffer 

        uint8_t *pData; 

        uint32_t dataOffset = sizeof(uboVS.matrices); 

        uint32_t dataSize = instanceCount * sizeof(UboInstanceData); 

        err = vkMapMemory(device, uniformData.vsScene.memory, dataOffset, dataSize, 

0, (void **)&pData); 

        assert(!err); 

        memcpy(pData, uboVS.instance, dataSize); 

        vkUnmapMemory(device, uniformData.vsScene.memory); 

 

        updateUniformBufferMatrices(); 

    } 

 

    void updateUniformBufferMatrices() 

    { 

        // Only updates the uniform buffer block part containing the global matrices 

 

        // Projection 

        uboVS.matrices.projection = glm::perspective(deg_to_rad(60.0f), (float)width 

/ (float)height, 0.001f, 256.0f); 

 

        // View 

        uboVS.matrices.view = glm::translate(glm::mat4(), glm::vec3(0.0f, 0.0f, 

zoom)); 
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        uboVS.matrices.view = glm::rotate(uboVS.matrices.view, 

deg_to_rad(rotation.x), glm::vec3(1.0f, 0.0f, 0.0f)); 

        uboVS.matrices.view = glm::rotate(uboVS.matrices.view, 

deg_to_rad(rotation.y), glm::vec3(0.0f, 1.0f, 0.0f)); 

        uboVS.matrices.view = glm::rotate(uboVS.matrices.view, 

deg_to_rad(rotation.z), glm::vec3(0.0f, 0.0f, 1.0f)); 

 

        // Only update the matrices part of the uniform buffer 

        uint8_t *pData; 

        VkResult err = vkMapMemory(device, uniformData.vsScene.memory, 0, 

sizeof(uboVS.matrices), 0, (void **)&pData); 

        assert(!err); 

        memcpy(pData, &uboVS.matrices, sizeof(uboVS.matrices)); 

        vkUnmapMemory(device, uniformData.vsScene.memory); 

    } 
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APPENDIX C 

ADDITIONAL CREDITS/ATTRIBUTIONS 
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ADDITIONAL CREDITS/ATTRIBUTIONS  

• Cubemap used in cubemap example by Emil Persson(aka Humus)  

• Armored knight model used in deferred example by Gabriel Piacenti  

• Textures used in some examples by Hugues Muller  

• Sascha Willems Vulkan tutorials and examples 

• Vulkan scene model (and derived models) by Dominic Agoro-Ombaka   

• Vulkan and the Vulkan logo are trademarks of the Khronos Group Inc.  

• OpenGL Mathematics (GLM)  

• OpenGL Image (GLI)  

• Open Asset Import Library  

• Tiny obj loader  

  

  

  

  
  

  

  

 

  

 

 

 

 

 

 

 

 

 

http://www.humus.name/
http://opengameart.org/users/piacenti
http://www.yughues-folio.com/
http://www.agorodesign.com/
http://www.khronos.org/
https://github.com/g-truc/glm
https://github.com/g-truc/gli
https://github.com/assimp/assimp
https://github.com/syoyo/tinyobjloader
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