

ii

SOFTWARE FRAMEWORK FOR

PROTECTION RELAY TESTING

By

Jason Caleb Johnston

A Thesis

Submitted to the Faculty of the

University of Tennessee at Chattanooga

in Partial Fulfillment of the Requirements

for the Degree of Master of Science

 in Electrical Engineering

University of Tennessee at Chattanooga

Chattanooga, Tennessee

December 2011

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UTC Scholar

https://core.ac.uk/display/51197419?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

iii

ABSTRACT

A software application is presented in this thesis that was designed to provide the

framework for comprehensive automated testing of power system protection relays. This

application was implemented using a model protection system that was designed to simulate

actual relaying operations performed in the electric power system. The implemented application

provided automated testing functionality that performed phase instantaneous over-current

protection and phase distance protection testing. The modularity of the implemented software

application provides the framework for the automated testing of a relay’s complete protection

abilities. Automated testing using this application was performed by driving the outputs of an

Omicron CMC 256 relay test set to provide input signals to a GE Multilin D90-Plus Distance

Protection System; though the framework is applicable to a wide variety of protective relays.

iv

ACKNOWLEDGEMENTS

 The author desires to express his gratitude for the people who helped make this thesis

possible. Sincere appreciation is expressed to Dr. Stephen Craven for helping to make submittal

of this thesis possible under the time restraints required to complete the degree at hand in the

desired time frame. Sincere gratitude is also expressed to Pat Caldwell for bestowing knowledge

of the GE Multilin D90-Plus and ABB circuit breaker simulator.

v

TABLE OF CONTENTS

ACKNOWLEDGEMENTS iv

LIST OF FIGURES vii

LIST OF ABREVIATIONS ix

LIST OF SYMBOLS x

I. INTRODUCTION 1

The Electric Power System 2

Protective Relaying 3

 Protective Relaying Architecture 6

 Quantifying Protective Relay Performance 9

 Protective Relay Configuration and Testing 10

II. PRIOR ART 14

III. SOFTWARE FRAMEWORK IMPLEMENTATION 19

Protection Equipment 19

Protection System Model 22

Automated Protection System Testing 27

Phase Instantaneous Over-current Protection 33

Phase Distance Protection 34

IV. EXECUTION RESULTS 37

 Phase Instantaneous Over-current Protection Testing Results 37

Phase Distance Protection Testing Results 40

V. CONCLUSION 44

REFERENCES CITED 48

APPENDIX

A. FORWARD DECLARATIONS AND STRUCTS 50

vi

B. FUNCTIONALITY FOR INTERFACEING WITH OMICRON

CMC 256 53

C. WRAPPER FUNCTIONS THAT CONTAIN EXECUTABLE

COMMANDS 56

D. FUNCTIONS THAT CREATE AND EXECUTE LINKED LIST

OF STATES 61

E. MAIN METHOD TO SET UP TESTS AND ISSUE COMMANDS

TO BEGIN EXECUTION 67

VITA 73

vii

LIST OF FIGURES

1 Fault waveform for A phase current 4

2 Single phase protection relay control circuit 7

3 Digital protective relaying system 9

4 Relay testing demonstration 12

5 Omicron state configuration 15

6 Omicron distance testing GUI 16

7 Protection testing model 23

8 GE Multilin D90-Plus Contacts 24

9 Schematic of simulated protection system 26

10 Code used to obtain control of CMC 256 28

11 Function used to issue commands to relay test set 29

12 Define and output an analog voltage quantity 30

13 Define and output an analog current quantity 30

14 Automated relay testing flowchart 32

15 Create linked list of states for Phase IOC testing 33

16 Execute phase IOC testing 34

17 Mho characteristics for phase distance protection 35

18 Phase instantaneous over-current protection testing 39

19 Default relay settings for mho characteristic circle 40

viii

20 Impedance coordinates that define fault locations 42

21 Mho circle defined by relay operation 42

ix

LIST OF ABBREVIATIONS

AC, Alternating current

DC, Direct current

CT, Current transformer

VT, Voltage transformer

ADC, Analog-to-digital converter

ROM, Read only memory

PROM, Programmable read only memory

ms, Millisecond

s, Second

RMS, Root mean squared

GUI, Graphical user interface

API, Application programming interface

IOC, Instantaneous over-current

x

LIST OF SYMBOLS

Hz, Hertz

Vdc, Volts direct current

Vrms, Volts root mean squared

V, Volts

A, Ampheres

Ω, Ohms

1

CHAPTER I

INTRODUCTION

The electric power system entails a vast infrastructure that provides the delivery of power

to the end user. This system provides vital resources that have become accepted as necessities

for the functioning of modern society. Due to the strong emphasis placed on the need for readily

available power, outages in the electric power system are intolerable. To provide reliability and

mitigation of the effects of failure, protection systems are integrated into the electric power

system.

 Protection systems provide methods for preventing power system failures and reducing

the damage incurred in the event of a failure. However, protection mechanisms are only utilized

in the event of a power system disturbance. Since the design of the power system stresses strong

system reliability, it is rare that corrective action from these protection mechanisms is invoked.

Furthermore, since these devices protect critical system assets, it is imperative that they operate

correctly and in a timely manner when corrective action is required. To ensure reliable

operation, routine testing is performed on protection system devices.

 The bulk of the logic operations required to trigger a response in a protection system are

performed by protection relays. Testing of these relaying devices is performed using relay test

sets that simulate actual signal quantities that would be seen by a relay’s inputs in a typical

energized power system. However, these relay test sets do not come packaged with automated

testing software, but rather with software components that are designed to provide the greatest

2

ease of use to the end user, typically a power engineer or field technician. Thus, these software

packages typically provide a graphical interface to the user that is used to define individual test

cases. This method of relay testing may provide the simplest method of performing testing, but

lacks the ability to perform comprehensive relay testing.

The Electric Power System

 The electric power delivery system is an intricate arrangement of components that

provides the functionality required for power generation, transmission, distribution, and

operation. The components required for this functionality are as follows [1]:

 Generation

o Generators

 Transmission

o Media structures and power lines

o Transformers

o Protection – circuit breakers, relays, sensors

 Distribution

o Media – structures, power lines, cabling

o Distribution transformers

o Protection – circuit breakers and relays

 Operation – monitoring and management

The capital investment in this system amounts to an enormous sum, as the generation

alone involves large scale site operations dependent upon one or multiple power generators that

require a substantial energy source, often nuclear or fossil fuels, to complete the power

generation process. The transmission of power utilizes extensive spans of high voltage power

lines supported by large steel structures. High voltage transformers are required for the

transmissions of power from the generation source to local distributors, where high voltage

transformers are also required to step down the voltage to a level that can be distributed to the

end consumer. These components all require protection equipment to protect the high dollar

3

investments that make up the electric power delivery system. Also, this complex system requires

constant maintenance and monitoring that effectively comprises the work force in the power

industry [1].

 The primary operating conditions of the electric power system consist of normal

operation, prevention of electrical failure, and mitigation of the effects of electrical failure.

Normal operation infers the absence of equipment failure, personnel mistakes, or natural disaster.

The design of the electric power system is dictated primarily by the need to meet normal

operating requirements; which is comprised of supplying sufficient power to meet the existing

load plus a certain additional amount of the anticipated future load. However, additional

provisions must also be included in the design to minimize damage to equipment and time of

service interruptions when failures occur in the system [2].

Protective Relaying

Disruptions in a power system can include numerous occurrences such as loss of power,

voltage sags, and over voltages; these events can stem from consequences of natural events,

physical accidents, equipment failure, and human error [3]. A type of electrical failure with the

utmost severity in a power system is created by a short circuit; generally called a “fault.” A short

circuit is characterized by a sudden and significant increase in current, or a transient current;

however fault currents depend on the impedance in the system between the fault location and the

generation sources, as well as the pre-fault current flowing in the system and the voltage

waveform’s amplitude at the instance that the fault occurs [4]. System faults generally include

significant changes in system quantities; some of these quantities include: current, voltage, phase

angle, power factor, impedance, frequency, and temperature [3]. With the exception of

temperature, all of these quantities can be derived from voltage and current measurements.

4

Furthermore, faults can occur concurrently on all three phases or individually as a phase to

ground fault. An example of a phase to ground fault is shown in Figure 1. In this figure the A

phase current is subject to a significant increase in amplitude while the other phase currents

maintain a constant magnitude. All values of current in the system can be seen to subsequently

return to zero when the fault is removed from the system. Moreover, small disturbances can

occur regularly in a power system that are not severe enough to pursue corrective action. A

possible way to distinguish power system disturbances is as follows [5]:

 Load disturbances:

o Fluctuations in system quantities caused by varying loads

 Event disturbances:

o Faults occurring on a transmission line attributed to equipment malfunction

 Generally caused by lightening or other natural events

o Residual disturbances from protective relay actions following severe system

disruption

o System fluctuations caused by generators going offline due to malfunction

Figure 1 Fault waveform for A phase current

5

Continual operation of the electric power system in the presence of a fault presents

functional hazards. Once a fault occurs in a system, the faulty element needs to be isolated from

the rest of the system to minimize the effect of the event on the rest of the system. Means of

promptly removing a faulty element from the system include: protective relaying, circuit

breakers, and fuses. The aforementioned protective equipment is used concurrently to

effectively minimize the effects of a fault [2]. Furthermore, the system cannot be returned to

normal operation until the faulty section of the system is de-energized, allowing the abnormal

operating condition to clear itself; although the use of alternate circuits, reserve generators, and

automatic restoration equipment can mitigate the damage and loss of service caused by the faulty

element [5].

Relay controlled circuit breakers are included in the system design in a manner that

allows each major component, including but not limited to: generators, transformers, and

transmission lines, to be completely disconnected from the system. Circuit breakers are able to

withstand the greatest short-circuit current that may flow through them and then interrupt this

current. Fuses are also over-current protection devices that allow the disconnecting of a circuit

due to causing the pathway to be severed by the passage of over-current through the device. [3]

The primary function of protective relaying is to ensure the immediate removal of any

element of a power system that experiences a short circuit, or begins to operate in any abnormal

manner that could potentially damage or interfere with the operation of the rest of the system.

This task is aided by circuit breakers that are able to effectively disconnect the faulty component

when instructed to do so by the relaying equipment [2].

Additional functionality provided by protective relaying includes determining the

distance from the protective relay to a fault that has occurred in the system; known as line

6

distance protection [4]. This functionality utilizes phasor comparisons between voltage and

current in the system and knowledge of the line impedance to indicate the distance to the fault.

Furthermore, the ability to calculate the distance to a fault introduces qualitative measurements

of the effectiveness of fault prevention and mitigation services in the system, as well as

providing information about the effectiveness of the protective relaying itself [6].

Protective Relaying Architecture

The protective relay system measures system quantities from the power system, such as

AC voltages and currents. These quantities have been stepped down by current transformers

(CTs) and voltage transformers (VTs) from large magnitudes to smaller, more feasible values, to

be read by electric monitoring equipment. Protection equipment in the electric power system

continuously measures certain system quantities and determines if these values are within a

specified threshold range that is computed and programmed into protection equipment by a

protection engineer. If a measured quantity is outside of a specified threshold then a decision

must be made by the protection equipment on how to properly handle the abnormal operating

conditions. Typical action taken to protect the system generally consists of instructing circuit

breakers to open to isolate a section of the system [5].

Protective relays have separate circuits for measuring AC quantities and for issuing

protective actions to be performed by other protection equipment. The relay controls a circuit

breaker by completing a DC circuit that consists of a battery connected to both the relay and trip

coils in the circuit breaker, as shown in Figure 2. During normal operation the circuit breaker is

closed which permits load currents to flow in the system and the relay contacts in the DC circuit

are open preventing current flow into the breaker’s trip circuit. When the relay detects a fault, it

closes its contacts in the DC circuit allowing current to flow to the circuit breaker’s trip coils.

7

When a relay permits current to flow to the breaker’s trip coils, the circuit breaker opens,

preventing load currents from flowing; thus de-energizing the connected power system and

removing the fault from the system. When the circuit breaker operates, the current in the DC

circuit is also interrupted, allowing the relay to remove itself from the circuit; thus making the

relay ready to operate again for the next fault [7].

Figure 2 Single phase protection relay control circuit [3]

Furthermore, since phase-to-ground faults can occur on any of the individual phases in a

power system, a protective relay system, comprised of relaying equipment for monitoring each

individual phase, is required to ensure total system protection. Additionally, a relay monitoring

each individual phase allows for detection of phase to phase faults and other multiple phase fault

occurrences.

The digital protective relaying system shown in Figure 3 demonstrates the manner in

which input samples are obtained and processed by relays. This procedure begins with the

measurement of analog quantities in the electric power system, performed through digital

8

sampling. Analog quantities, such as voltages and currents, are measured from VTs and CTs to

provide insulation from the large magnitudes seen in the power system [8]. The input signals

used, which can vary depending on protection and control functions being implemented, are

specified by protection engineers to be sampled by the relaying equipment. The sampled values

are instantaneous quantities from the measured waveform that are converted to a digital form,

generally an 8 or 16 bit word, by an analog-to-digital converter (ADC) [9]. It can be seen in

Figure 3 that the current and voltage quantities are first processed by a digital filter and other

types of signal conditioning techniques to remove noise that is not pertinent to the relay decision

making [8]. The sampling clock, seen as input to the A/D (ADC) module in Figure 3, determines

the rate that samples are collected. A sampling clock can have frequencies between 240 and

2000 Hertz [8], depending upon the time constraints imposed by the need to conduct operational

decisions [9]. The digital data is then used by a microprocessor to produce phasor

representations of the measured quantities, which subsequently are processed by algorithms

stored in the relay’s ROMs or PROM that perform the functionality required for making relaying

decisions [9]. Additionally, protection contacts on the relay supply digital input to the

microprocessor, including information such as the state of the attached circuit breaker or other

pertinent logic operands, to be used by relaying algorithms to determine relay operation.

Furthermore, the relay’s protection contacts can provide digital outputs to other devices in the

protection system such as breakers or other monitoring devices.

9

Figure 3 Digital protective relaying system [10]

Quantifying Protective Relaying Performance

 The reliability of protective relaying equipment is dependent upon two aspects:

dependability and security. According to the ANSI/IEEE standardized device function numbers

(IEEE C 37.2), the dependability of a relay is, “the degree of certainty that a relay or relay

system will operate correctly;” and the security of a relay, “relates to the degree of certainty that

a relay or relay system will not operate incorrectly.” Therefore, the reliability of a relay is a

function of its ability to operate correctly when required, and avoid unnecessary operation for

small disturbances and varying load [3].

 Dependability of a relay can be tested simply by ensuring that a relay will perform its

duties as expected when the operating thresholds are exceeded. However, security is more

difficult to determine due to the inherent fluctuations of a nearly infinite range of transient

currents; thus it can be difficult to provide a complete and thorough testing of a device’s

operation when subjected to these conditions [3].

10

 Each protection relay is responsible for monitoring a specific region of the power system.

Occasionally they may properly operate in response to a fault outside of this specified region, in

which case it is providing backup protection to other protection systems outside of its primary

operating area, known as a backup zone. Selectivity of a relay is the process of configuring and

implementing a relay for its specified region in such a way that it operates as fast as possible for

events inside its specified zone, and in addition providing delayed operation in its specified

backup zone. The delay of operation for events in its backup zone is a configured relay setting

that provides coordination with relays outside of its primary zone to enable a second line of

defense should a relay in a nearby zone fail to clear a fault [3].

 Speed of operation of a relay is highly important, however, instantaneous operation can

increase the likelihood of operating incorrectly. The term instantaneous operation indicates that

no delay period is specified in the relay’s operation settings before performing corrective action.

These operations are generally performed within 50 ms of detection of a fault, or less. Time

coordinated relays operate typically on the order of 0.2 s to 1.5 s [3]. Thus, one should expect

relay operation triggered by an event in its primary zone to occur within the first few cycles

subsequent to measuring fault conditions; with a cycle length for a 60 Hz relay being defined as

16.67 ms.

Protective Relay Configuration and Testing

Implementations of protective relay systems require the following procedures to ensure

proper operation [9]:

 Relay bench testing

 Programming of specified settings

 Verification of proper wiring

 Functional tests of the entire protection system

11

 Periodic relay testing once the device is in service

Functional tests performed on a relay before connecting to an energized load are

performed to verify that the relay operates properly, that it maintains its role in the overall

protection scheme of the systems design, and that quantitative measurements are correct.

However, since relay operation is largely controlled by software algorithms, functional testing

may merely consist of ensuring that a relay operates per design specifications. Furthermore,

since software is applied uniformly across individual relay models, it is common practice to

perform required testing only once on a specific model to verify that the software performs

properly and the hardware operates in accordance with design specifications. Thus, successive

implementations may refrain from bench testing assuming that manufacturer’s testing is

sufficient to properly verify hardware operation [9].

Protective relaying operation is largely dependent upon settings which are electronically

programmed into the relaying device by protection engineers; therefore testing of the

programmed settings is especially important to detect human error. Relay settings are required

that identify phase rotation, CT and VT ratios, and to enable or disable various functionalities of

the relay. In addition, electronic inputs to the relaying equipment will also define configuration

and logic that determines relay behavior. These configuration settings are tested by applying

sample system quantities and verifying that the relay operates in accordance with that of the

configuration parameters. These sample quantities are supplied to the relay using a relay test set,

like the Omicron CMC 256 pictured in Figure 4. This test set provides the capability of

simulating secondary values seen by a relay monitoring an energized load. Various types of

functionality testing can be performed on the relay pictured in Figure 4 using this relay test set,

12

which can simulate a wide range of operating conditions that would be present in an energized

power system.

Figure 4 Relay testing demonstration

Once a relay is put into operation in a power system, periodic testing is employed to

ensure that protection system reliability is maintained, and to reduce the in-service time of failed

yet undetected equipment. Scheduled maintenance of protective relays ensures that any failed

components are replaced or repaired and provides one method for computing the probability of

mean time between failures. Furthermore, to optimize system availability it is necessary to

determine the optimal duration between system inspections. This can be determined by

computing the average availability time of the protection system, taking into account that the

system is unavailable for protection during testing [11]. Moreover, various changes in system

13

elements also incite the need for field testing. Firmware upgrades are occasionally supplied by

the manufacturer to remedy software issues that may be discovered after deployment, or simply

to enhance a device’s operational features. When the firmware on a protection element is

updated, all such devices on that system should be updated in conjunction with that element [9].

In addition, thorough testing should be performed on all updated devices to ensure that all

software updates have been applied properly and that the new software does not contain any

issues that could provoke incorrect device operation.

14

CHAPTER II

PRIOR ART

Various software packages and relay test sets exist for conducting relay testing to ensure

correct relay settings and operation. Relay test sets are packaged with software interfaces that

enable the user to perform this testing. Additionally, several third party software vendors

provide software packages aimed at minimizing the time required to perform relay testing.

The Omicron CMC 256 relay test set provides the user with the ability to test relaying

equipment through simulation of operating conditions that occur in the electric power system

[12]. These operating conditions are individually configurable by the user by interfacing with a

software GUI provided by Omicron with the CMC 256 test set. This software interface permits

the configuration of individual test cases that must be executed serially. These test cases consist

of a collection of individually configured states that execute sequentially. Each state is defined

by three phase voltage and current pairs that are produced by the CMC 256 for a specified

interval of time. Furthermore, multiple test cases can be combined to create user generated test

plans [12].

The ability to execute a sequence of states allows the user to simulate one or several over-

current events that may occur in a power system. This testing is accomplished by first creating a

pre-fault state to simulate a power system operating under normal conditions, which provides

normal voltage and current values to a relay for a specified length of time. A screen shot of this

state designed using Omicron’s Test Universe [13] GUI is labeled “Normal (pre-fault)” in Figure

15

5. Next the user designs a fault condition that will potentially provoke action from the relay’s

protection outputs; this state is labeled “Fault” in Figure 5. In this “Fault” state it can be seen

that the current on an individual phase increases to a significantly higher value while the current

on the other two phases remains constant; thus modeling a phase to ground fault. This condition

is applied for a specified length of time or until the relay attempts to open a circuit breaker, in

which case a post fault condition configured by the user is supplied to the relay by the test set.

Figure 5 Omicron state configuration [14]

This testing functionality is capable of testing a single fault condition for each pre-fault

and fault pair of defined states. However, since there are limitless possibilities of fault

occurrences in a power system, there is no feasible way to test a multitude of these cases with

16

any degree of granularity due to the cumbersome approach of creating these individually defined

states using a GUI.

Distance protection testing schemes provided to the user through the Test Universe GUI

are subject to a similar shortcoming. Phase distance protection settings are programmed into the

relay by designating impedance characteristics that constitute abnormal functionality in the

system within a specified distance from the relaying equipment. The software interface used to

control the CMC 256 test set allows a user to pick one or several coordinates in a plot of

resistance versus reactance, as shown by the point chosen in Figure 6, and outputs the

corresponding analog quantities that would allow the relay to see these impedance values in the

system once a “run test” command is issued after the desired coordinates are chosen. This

cumbersome method of distance testing also prevents the possibility of performing a thorough

analysis of the systems operation for a wide range of impedance quantities.

Figure 6 Omicron distance testing GUI [14]

17

Relay test sets produced by Doble Engineering provide software interfaces, similar to that

provided by Omicron, packaged with their test sets. Doble’s software GUI provides testing

templates that are predefined test plans able to perform common testing procedures, such as

analysis of over-current and impedance protection, with user defined values. Using this GUI,

multiple testing templates can be chosen by the user to execute successively; with details of the

testing plans and their respective results capable of being recorded into a database to establish a

detailed test history [15].

There exist third party software vendors that provide automated relay testing applications.

These applications provide easier means of performing the basic testing functionality that is

supplied by relay test sets such as the CMC 256. Thus, testing procedures generated by these

third party applications are implemented to determine reliability, accuracy limits, levels of

deterioration of components, correctness in relay wiring connections, properly programmed

settings, and if a fatal failure exists in the relay under test [16]. Third party vendor applications

are designed to increase the speed of the initial set up required for testing, and to minimize user

interaction. The goal accomplished by these software packages is testing reliability that reduces

system downtime required to perform testing and reduced skills required for performing relay

tests [16].

Enoserv, a software development firm for power applications, provides an automated

relay testing application designed to decrease labor time required for relay testing; claiming that

the power industry is struggling to balance preventative maintenance with other projects due to a

limited supply of man-hours [17]. Thus, this software is only designed to perform relay tests that

are typically performed through manual testing schemes created with a relay test set’s GUI;

however Enoserv provides software capable of interfacing with relay test sets produced by

18

several manufacturers, including Omicron and Doble. The provided software is capable of

performing the same relay testing schemes regardless of the test set manufacturer, with the

ability to compile a database of the tests performed and their respective results. Furthermore,

additional tests can be created by software users through a menu-driven method [17].

Siemens Corporation has also designed an automated relay testing platform. The goal of

this software platform was to dynamically design relay tests dependent upon system specific

behavior. This software leverages a software generation tool for controlling the test case

generation process. The relay testing platform designed by Siemens Corporation utilized a relay

test set that was managed by a control program capable of waveform production and event

identification, as well as data collection and result comparison. This testing scheme was

conducted on a motor over-current protection device [18], which performs similar operations to

the aforementioned relaying devices. Test generation provided by this software platform

effectively provoked operation of a relay for each of its protective functions, but did not perform

a rigorous testing of the relays operation for every scenario that could occur.

Software interfaces provided by relay test set manufacturers are designed to promote

usability and visually appealing interfaces. In addition, testing schemes provided through

manufacturer’s software may commonly be provided in the form of pre-structured templates,

which do not provide the testing variability required to perform comprehensive analysis of each

protection function provided by a relay. Furthermore, third party software applications can

perform automation of the testing schemes provided in manufacturer’s software; however, this

software fails to implement a more complete and comprehensive testing procedure than that

which is typically performed, it merely removes the time required to set up and perform typical

testing procedures.

19

CHAPTER III

SOFTWARE FRAMEWORK IMPLEMENTATION

 Digital protection relay functionality is provided through the interfacing of a

microprocessor, an AC signal data acquisition system, memory components containing relaying

algorithms, contact inputs to control the relay, and contact outputs to control other components in

the protection system [19]. These components were all concurrently placed under testing to

perform a thorough analysis of the relay’s operational characteristics. Since the relay’s

operational characteristics are defined by the algorithms and settings programmed into the

relay’s memory modules, this functionality was carefully studied and automated testing

procedures were designed to determine the accuracy and reliability of relaying operations.

Testing procedures were performed through the manipulation of inputs into relaying system and

the measurements of its respective outputs were compared to the expected results stated in

manufacturer specifications.

Protection Equipment

An electric power system simulation was created that provided inputs to a model

protection system, comparable to secondary quantities in a power system that would be obtained

from current and voltage transformers. The modeled protection system consisted of a line

distance protection relay that was connected to a circuit breaker simulator. The power system

simulation was provided by a relay test apparatus, which was capable of simulating three phase

secondary voltage and current quantities.

20

The protective relaying device under test was a General Electric Multilin D90-Plus Line

Distance Protection System. This microprocessor based device exhibits a modular design with

each individual module sharing a common bus. Thus, it is a scalable platform that consists of

protection, control, automation, monitoring, communication, digital fault recorder, and security

functionality. As its name suggests, the core feature of this protective relaying device pertains to

sub-cycle distance functionality, which provides a high degree of sensitivity and selectivity for

all types of faults. The distance function provides five zones of phase and ground distance

protection, thus providing flexibility in monitoring primary zones of protection or coordinating

with other relaying devices to provide backup protection for nearby protection zones. The D90-

Plus also provides over-current protection functionality for phase, neutral, and ground faults,

which can run in parallel with distance protection or can be programmed to provide primary

protection [20]. The functionality of the D90-Plus is similar to the latest offerings from other

major vendors, including ABB and SEL.

Analog input signals to the D90-Plus are sampled at 128 samples per power system cycle;

which occur every 16.67 ms for the 60 Hz power system under test. Current and voltage signals

are filtered before sampling is performed. DC components are removed from current signals

through digital filtering along with removing noise from both the voltage and current signals

[20].

The modeled protection system utilized an ABB circuit breaker simulator test accessory

to complete the relay’s trip circuit. The circuit breaker simulator was powered by 110 Vdc in a

similar manner to that of a station battery providing power to its protection equipment. This

device accepted inputs from the D90-Plus and simulated the operations that would be performed

21

when a breaker’s trip coils or close coils were energized. Outputs from the breaker simulator

were used to notify the relay of the breaker’s operation and current state.

Operation of the breaker simulator can be controlled solely by relay outputs or by user

interaction through buttons on the breaker which controlled its state. The ability to manually

control the state of the breaker provides full control over the breaker’s simulation and allows for

the modeling of situations such as those that require manual operation of a breaker for de-

energizing a line or system. The breaker simulator also includes functionality that would prevent

it from opening when instructed to do so by a relay or other protection logic to simulate the

effects of a breaker failure.

The relay test apparatus used to simulate an electric power system consisted of an

Omicron CMC 256 relay test set, capable of producing three phase voltage and current values up

to 300 V and 25 A respectively. The CMC 256 provides the ability to individually configure AC

current and voltage signals to model three phase quantities supplied to a relay from instrument

transformers. These signals are essentially analogous to that of secondary voltage and current

values seen in a three phase power system. Furthermore, an auxiliary DC supply is also

provided, capable of modeling a substation’s DC power source. Moreover, this relay test set

provides functionality capable of measuring AC voltages up to 600 Vrms [21]. This capability

allows for a secondary measurement source should the relay metering quantities presented in

primary values not suffice or to explicitly read secondary voltages to verify that VT ratios have

been properly programmed into the relay. The CMC 256 is comprised of ten of these analog

inputs, which can also be used as binary inputs. This functionality allows for measuring when a

relay’s trip or close circuit is energized to verify when a breaker should operate. Finally, four

binary outputs are also supplied by the CMC 256 which are essentially switches that close to

22

simulate a high binary output. Additionally, wetting of these outputs, achieved by applying a

voltage to a binary output, can be performed when used in conjunction with the auxiliary DC

voltage supply.

Protection System Model

 A simulation of a power protection system was designed using the aforementioned

equipment to provide a working model of the actual operation of a protection system when

applied to a three phase power system. The relay test set was capable of providing voltage and

current quantities to the relay that were analogous to quantities that would be provided to a relay

from current and voltage transformers. The relay was connected to the test set in a fashion that

allowed it to receive voltage and current quantities and make decisions about whether corrective

action was needed based upon the values received at its inputs. The relay provided outputs as

well as accepted inputs from a circuit breaker simulator that allowed the modeling of the

operational signals that would be produced in the event of a fault and the response the relay

would receive from protection equipment under these circumstances. The relay’s connections to

the circuit breaker simulator enabled the real time simulation of protective action that would be

taken be taken in the event of a fault; in addition it provided means of testing the relay’s ability

to monitor a circuit breaker’s state and operation.

 A schematic of the complete system model is contained in Figure 7. This schematic

demonstrates the connections provided from the CMC 256 test set as analog signal inputs to the

D90-Plus relay, as well as the connections between the relay and the test set used for logic

processing. The schematic also includes the wiring of the circuit breaker that enabled its

operation as well as the communication of its operating state to the relay.

23

OMICRON CMC 256-6

GE MULTILIN D90-PLUS

ABB BREAKER
SIMULATOR

TR
IP

TR
IP

C
LO

SE

C
LO

SE

5
2

a

5
2

b

V
-

V
+

1

0

POWER

IC INIA IB V
C

V
N

V
A

V
B

J1
a

J1
b

J2
a

J2
b

J3
a

J3
b

J1
0

a

J1
0

b

J1
1

a

J1
1

b

J1
2

a

J1
2

b
AUX DC

+

-

Binary Outputs

Analog/Binary Inputs

1 2 3 4 5 6

1 2 3 4

E5
a

E5
b

E7
a

E7
b

E2
b

E2
a

E1
b

E1
a

Figure 7 Protection testing model

24

 It can be seen in Figure 7 that the analog signal quantities produced by the CMC 256

were output on one port from the test set and fanned out into eight connections to be provided to

the D90-Plus. The wiring of these signals to the relay’s input connections corresponds to the

actual wiring connections that would be provided from instrument transformers as shown in

Figure 8. It can be seen in Figure 8 that the current transformers in a three phase power system

are directly connected to the inputs J1, J2, and J3 respectively, with each input to the relay also

tied to the neutral line. Figure 8 also demonstrates the wiring connections provided from voltage

transformers in a three phase power system to the J10, J11, and J12 contact inputs of the D90-

Plus. In the same manner as the contact inputs for the current, each voltage contact input is also

tied to the neutral line.

Figure 8 GE Multilin D90-Plus Contacts [19]

25

 The CMC 256 was wired into the model protection system in a manner that allowed it to

read the breaker’s status. This wiring configuration, shown in Figure 7, consisted of connections

between the test set’s binary inputs and the relay’s protection inputs that read the status of the

breaker. The circuit used by the CMC 256 to read the breaker’s status was completed by

connecting the unit to the breaker’s 52b output. However, this connection could have been

bypassed by establishing a connection with the auxiliary DC source and the relay’s 52b

protection input; wiring would typically be connected in this manner in a protection system, as

demonstrated in Figure 9. However, it was desirable to read the breaker’s status directly to

verify the readings obtained by the relay.

The D90-Plus provided configurable logic sources that were capable of controlling the

relay’s protection outputs. One of these logic sources was routed to the relay’s E7 contact input

and was employed by the CMC 256 to enable user control over the breaker’s close circuit. This

control allowed the CMC 256 to energize the relay’s close coil by wetting a binary output, using

the auxiliary DC source from the test set, and applying it to the relay’s E7a protection contact

input, as shown by the connections in Figure 7.

The protection system model was designed to utilize the exact contacts on the D90-Plus

that would receive and transmit signals during normal operation in an energized power system.

This model was designed to simulate to the system shown in Figure 9. In this system the D90-

Plus is connected directly to instrument transformers from a three phase power system, providing

secondary voltage and current values to the relay. These analog values are sampled by the D90-

Plus and processed by relay logic. The circuit breakers in this system, shown on the transmission

bus in Figure 9, are connected to the relay’s protection contacts in the manner displayed in the

breaker configuration, also contained in Figure 9. This breaker configuration consists of the trip

26

circuit and close circuit connected to the relay’s protection outputs, and the breaker’s 52a state

signaling output connected to the relay’s protection input contact. In the system shown in Figure

9, a DC voltage of 110 V to 125 V is supplied to the circuit breaker from a power source that

would be provided at the equipment’s location.

GE MULTILIN D90-PLUS

BREAKER
CONFIGURATION

TR
IP

TR
IP

C
LO

SE

C
LO

SE

5
2

A

5
2

B
V

-

V
+

IC INIA IB V
C

V
N

V
A

V
B

J1
A

J1
B

J2
A

J2
B

J3
A

J3
B

J1
0

A

J1
0

B

J1
1

A

J1
1

B

J1
2

A

J1
2

B

E5
A

E5
B

E2
B

E2
A

E1
B

E1
A

VTs

CTsCircuit Breakers

Protected
Equipment

Connected as shown in
Breaker Configuration

Figure 9 Schematic of simulated protection system

27

The protection system model contained in Figure 7 was able to successfully simulate the

operation of the protection system shown in Figure 9. The CMC 256 provided the signal

quantities that would be produced by the instrument transformers shown in Figure 9, and these

values were sampled and processed using the same relay configuration detailed in Figure 9. The

wiring connections between the relay and the circuit breaker were the same in the simulation

model as they are in the modeled system with the addition of a second measurement across the

52a contact of the breaker to ensure that the relay determines the correct state of the breaker.

The only additional functionality seen in the simulation model was the additional configuration

of logic inputs to the relay that enabled a manual breaker close signal to be generated when the

relay received a high binary signal on these inputs. This functionality was included in the

protection system model to allow for automated tests to be continuously performed while

utilizing the same breaker.

Automated Protection System Testing

Control of the CMC 256 through a GUI may suit a vast majority of user’s needs for

controlling the relay test set to produce protection system testing, however Omicron also

provides a software library that can be used by several programming languages to control a CMC

256. This software library provides a list of commands capable of performing the vast majority

of operations that can be carried out using the CMC’s GUI. The availability of a software library

for controlling a CMC 256 test set enables the use of additional logic capabilities to perform

exhaustive relay testing and detailed operational analysis.

The software library provided by Omicron for interfacing with the CMC 256 test set,

referred to as the CM Engine, was developed in Visual C++. Using the CM Engine, a C++

application was designed to perform extensive testing of the protection system model contained

28

in Figure 7. The aforementioned software application interfaced with the CM Engine by creating

functionality wrappers in C++ that encapsulated the Visual C++ methods required to obtain

control of the CMC 256 test set and issue commands for execution. The CMEngineWapper.cpp

file, located in Appendix A, contains the methods used to encapsulate this functionality.

An example of how the methods defined in CmEngineWrapper.cpp were used to obtain

control of the CMC 256 is shown in Figure 10. The “CM” data structure, defined in wrapper.h

and contained in Appendix A,was passed as an input parameter to methods that were used to

obtain control of the CMC 256 for execution. This data structure contained a variable, “Engine,”

that held an instance of a CM Engine object and a “deviceID” variable to uniquely identify the

desired CMC 256 to be placed under control. The “Engine” variable from the CM structure was

first passed to the engine_object function to create an instance of a CM Engine object. Next, the

variables from the CM structure were passed to a lock_CMC function, which assigns a unique

identifying number to the “deviceID” variable if the CMC can be obtained for execution. If the

CMC is not available then a return value of “-1” from this function will indicate that it is not

accessible. Once the CMC is locked for execution, all commands that are executed using the

CM Engine application programming interface (API) are issued using the “Exec” function

defined in CmEngineWrapper.cpp, which is shown in Figure 11.

CM *cmc= (CM *) malloc (sizeof(CM));
//create Engine instance before passing Engine variable to lock the CMC

 engine_object(&cmc->Engine);
 //modifys the device ID used to reference the CMC, returns -1 if function fails
 fail=lock_CMC(cmc->Engine, &cmc->deviceId);
 //check to see if CMC was locked for sending commands before continuing
 if(fail<0)
 exit(0);

Figure 10 Code used to obtain control of CMC 256

29

// Send command to CMC and read return value
LPTSTR Exec(LPCTSTR szCmd, CM *CMC)
{
 try {
 return (CMC->Engine)->Exec(CMC->deviceId, szCmd);
 } catch(_com_error ex) {

_tprintf(_T("Failed to execute engine command:%s\n%s"),
 (LPTSTR)szCmd,(LPTSTR) ex.Description());

 }

 return _T("");
}

Figure 11 Function used to issue commands to relay test set

The “Exec” function shown in Figure 11 is used for every command issued to the CMC

256. This function utilizes an executable instance of the CM Engine object that is stored in the

CM structure’s “Engine” variable. This executable instance, referenced through a method also

named “Exec,” accepts parameters consisting of a unique identifier specifying a CMC and a

formatted string that contains a command, provided in the CM Engine API, that defines an

operation to be performed. The method prints an error message to the screen if the command is

not contained in the CM Engine API; otherwise an acknowledgement of a completed command

received from the CMC test set is used as a return value from the function.

Operations performed by the CMC 256 are issued through formatted commands provided

by the CM Engine API, and occasionally require multiple commands to be issued to the test set

to initialize operational parameters and define functional characteristics before the operations can

be performed. In an effort to produce a modular software application, basic functionality that is

commonly performed by the CMC 256 test set was encapsulated into software methods so that

the functionality could be initiated from a single function statement. This encapsulated

functionality can be found in the wrapperFunctions.cpp file located in Appendix C. An example

of methods that define voltage and current outputs are shown in Figure 12 and 13 respectively.

30

In each method an API command must be formatted appropriately to configure an analog output

followed by a subsequent formatted command to turn on the analog output. Each of these device

commands are executed using the “Exec” function described in Figure 11. Other functionality

included in the wrapperFunctions.cpp file consists of controlling binary logic outputs of the

CMC test set as well as reading binary inputs to the test set that were used to determine the status

of the circuit breaker simulator.

//sets an individual voltage output
void Vphase(int output, double angle, double amplitude, CM *CMC)
{
 double frequency=60;
 CString phase,turnOn;
 phase.Format(_T("out:ana:v(1:%d):a(%f);f(%f);p(%f)"),output,amplitude,

frequency,angle);
 turnOn.Format(_T("out:ana:v(1:%d):on"),output);
 Exec(phase,CMC);
 Exec(turnOn,CMC);
}

Figure 12 Define and output an analog voltage quantity

//configure an individual phase current amplitude
void Iphase(int output,double angle, double amplitude, CM *CMC)
{
 double frequency=60;
 CString phase,turnOn;
 phase.Format(_T("out:ana:i(1:%d):a(%f);f(%f);p(%f)"),output,amplitude,

frequency,angle);
 turnOn.Format(_T("out:ana:i(1:%d):on"),output);
 Exec(phase, CMC);
 Exec(turnOn, CMC);
}

Figure 13 Define and output an analog current quantity

The majority of the protection system testing functionality designed using the CM Engine

library is contained in the faultStates.cpp file, which is located in Appendix D. The

faultStates.cpp file utilizes the “state” data structure defined in the wrapper.h header file to create

a linked list of states that are capable of imitating the states that are individually created using the

31

CMC 256 GUI interface. This data structure contains variables to hold all output quantities used

for formatting CM Engine API commands as well as a structure pointer to allow the

implementation of a linked list. This linked list of states is capable of growing dynamically to

model a large variety of scenarios capable of occurring in the electric power system. Methods

for defining these states included in the faultStates.cpp file provide a degree of variability in the

amount of required input parameters used to configure states. Individual states can be

configured with equal magnitudes for all three phases and equal separation between phase

angles, or quantities for each phase can be individually configured. Each state is added to the

end of the linked list when its quantities are configured. The variability in the control of state

configuration allows for individual states to be configured dynamically with the capability of

performing general to more specific testing.

The faultStates.cpp file contains a function called “exec_states” that executes the states

contained in the linked list. This function executes each state in the linked list by outputting

current and voltage quantities for a specified length of time or until the CMC 256 accepts a

binary input acknowledging that the breaker simulator operated. This function retains the

quantities provided to the relay that incited protective relaying action and this data is formatted

and output to a file to tabulate the testing results. This function is capable of testing a relay’s

phase instantaneous over-current (IOC) protection scheme and distance protection scheme. The

execution logic of the relay testing software application is detailed in software flowchart shown

in Figure 14.

32

Start

Test

Configure
signal

quantities and
create state

Phase Distance ProtectionPhase IOC Protection

Add state to
linked list

Yes

Execute
Linked

List

Linked list
complete

No

Generate
Waveforms

Circuit Breaker
Tripped?

Output
current

amplitude
to file

End

More
iterations?

Yes

No

More states?

Time out?

No

Yes

Yes

Output -1 to
file

No

Generate
Waveforms

Circuit Breaker
Tripped?

Output
coordinates
inside MHO
circle to file

More states?

Time out?

Yes

No

No

Output
coordinates

outside MHO
circle to file

Yes
Yes

No

No

Yes

Figure 14 Automated relay testing flowchart

33

Phase Instantaneous Over-current Protection

The phase IOC protection functionality provided by the D90-Plus features a set of

comparators that accept current phasors as inputs and determines if the signal quantities are

outside the normal operating range, specified by programmed relay settings. This over-current

protection scheme analyzes the current signals from all three phases and energizes the relay’s trip

circuit if the current magnitude on any of the phases exceeds a specified limit.

The logical design of a comprehensive testing of the D90-Plus’ over-current protection

scheme is detailed in Figure 14. This flowchart demonstrates the methodical approach to

analyzing the reliability and precision of the D90-Plus’ over-current protection features. The

automated testing scheme features a dynamically allocated list of states that iteratively applies a

current signal of increasing magnitude with a fine grained step size to the D90-Plus’ analog

signal inputs. The code used to create this linked list of states is shown in Figure 15. The list of

states is then executed by looping over the “exec_states” command shown in Figure 16. When

the states are executed, the current input quantities applied to the relay’s signal inputs continue to

increase in magnitude until the relay’s trip coils are energized or until the theoretical value of trip

current is surpassed. This test was performed a multitude of times to verify the reliability of the

D90-Plus and to analyze the precision at which it operates.

//Phase IOC testing
 //set up states with 3 phase I & V to execute at speed of 100ms
 for(i=.9; i<1.1;i+=.001)
 {
 for(j=0;j<3;j++)
 {
 I[j]=i;
 V[j]=1.5;
 }
 numStates=addState(&IOCinit_State,V,I,vAngle,iAngle,100);
 }

Figure 15 Create linked list of states for Phase IOC testing

34

 for(j=0;j<1000;j++)
 {
 Istep=exec_states(IOCinit_State,0,cmc);
 fprintf(csvIOC, "%f\n", *Istep); //records value of A phase current
since current is equal across all phases
 Sleep(300); //allow mechanical operation of Omicron's CMC to reset
 }

Figure 16 Execute Phase IOC testing

 Relay settings that are configured by the end user define the operational characteristics of

the device. These relay settings allow for variations in relay operation ranging from the level of

signal amplitude that indicate faulty system operations to the type of event that will provoke

corrective action from the relay. Due to the nature of variability in device operation depending

upon user defined settings, it is desirable to verify these settings have been correctly

programmed through complete and rigorous device testing.

 The settings used for the testing of the D90-Plus primarily consisted of default settings

programmed by the manufacturer. These settings must be manually configured and produce the

only source of automation throttling in the testing design. Therefore, the majority of the D90-

Plus’ settings were left in their default state to produce automated testing concepts, however the

developed software platform could perform detailed analysis regardless of any combination of

settings programmed into the relay.

 Phase Distance Protection

 Phase distance protection is provided by the D90-Plus using phasor comparators that

analyze the ratio of voltage at the relaying point to the measured current. Since the impedance of

a transmission line is proportional to its length, the apparent impedance that is observed through

this ratio is compared with information about the line impedance to determine the distance from

35

the relay to an event occurrence [22]. Impedance characteristics in a system are modeled using a

mho diagram which consists of a plot of the resistance versus reactance of a transmission line.

Relay settings for phase distance protection are defined using mho characteristics to model the

impedance of a system that is seen by the relay during the occurrence of a fault state.

 The mho characteristic circle encompasses all values of measured transmission line

impedance that are considered fault conditions; thus any measured impedance that falls inside

the circle should initiate a breaker trip command. The mho characteristic circle is shown in

Figure 17 in the forward direction orientation. The configurable relay settings that govern its

distance protection characteristics include direction, RCA , and reach. The RCA setting specifies

the characteristic angle of the distance protection, which is offset by 180° should the reverse

direction setting be chosen. The reach of the mho circle is shown in Figure 17, which is entered

in secondary ohms and configured at an offset angle specified by the RCA setting.

Figure 17 Mho characteristics for phase distance protection [20]

36

 The logical steps executed to perform testing for the D90-Plus’ distance protection

functionality are detailed in Figure 14. Executable states were defined in a similar fashion to that

performed for the testing of phase IOC. These states were then passed to the same function that

executed the states in the over-current test, however with a different flag to notify the function to

format execution results in a different fashion and output them to a separate file.

 The execution of the defined states was also performed in a similar fashion to the over-

current testing, however, if a breaker failed to trip for an individual state, the signal quantities

provided in the state were flagged as quantities that did not provoke protective action from the

relay and were formatted appropriately for output to file. The phasor signal quantities produced

by the CMC 256 test set were converted to rectangular coordinates before being output to file for

plotting purposes. Additionally, if a state produced signal quantities that energized the trip

circuit then these phasors were also converted to rectangular coordinates and flagged as values

that fall within the defined mho characteristics, and output to file.

37

CHAPTER IV

EXECUTION RESULTS

 This chapter leverages the developed software framework for exhaustive over-current and

line distance protection testing. The implemented protection testing schemes were performed

using the software platform that also formatted their respective results in a desirable manner.

The results produced by these implemented testing schemes are discussed in this chapter.

 The ability to control the CMC 256 relay test set using commands issued by a user

defined program allowed for the flexibility of designing test cases to rigorously test relay

operation and the ability to perform verification of relay logic for an entire protection scheme.

This flexibility was extended to the user through Omicron’s CM Engine software library, and

this programming library was used to lay the framework for a relay testing application that could

perform a comprehensive verification of a relay’s protection logic. The presently implemented

testing procedures include a rigorous analysis of the D90-Plus’ over-current protection precision,

and a comprehensive test of its distance protection logic for the relay’s default settings.

Phase Instantaneous Over-current Protection Testing Results

 The precision of the D90-Plus’ over-current protection logic was tested using the model

protection system in Figure 7 to simulate the relays protective operation in the event of a current

magnitude applied to its inputs that exceeds the rated current amplitude. This simulation was

performed by modeling a transmission system consisting of purely resistive transmission lines.

This was accomplished by creating “in phase” voltage and current signals with each of the three

38

phases evenly separated by 120°, at a frequency of 60 Hz. In phase quantities were chosen to

model an ideal system where line reactance was negligible.

 The primary settings that govern the relay’s over-current protection scheme include:

phase CT ratio, phase CT secondary, and pickup. The CT ratio and CT secondary settings are

required to calculate the primary current values in the system given the secondary input values

supplied to the relay. The pickup setting is used to specify the phase IOC pickup level in per unit

values [19]. The per unit values specify the percentage of the CT primary value that will

designate a trip state. The CT primary value is calculated using the following equation [20]:

CT Primary = Phase CT Ratio x Phase CT Secondary (4.1)

The default settings of the D90-Plus designated a CT ratio of one and CT secondary of 5 A.

Since the CT ratio was equal to one, the secondary current signals provided to the D90-Plus were

of equal magnitude to that of the primary current signals. The phase over-current testing was

performed using a pickup value of 0.2; therefore one could accept the theoretical trip value for

phase over-current protection to be equal to 1 A for these relay configuration settings.

 The test was executed by first iteratively defining states of equal voltage magnitude with

a 1 mA increase in current amplitude between the values of ± 10 % of the theoretical fault

current magnitude. For these testing purposes the theoretical fault current was designed to be 1

A and thus the states ranged in a current amplitude of 900 mA to 1.1 A. Signal quantities from

each state were iteratively applied to the relay’s analog inputs for 100 ms, or until the circuit

breaker was opened by the relay’s protection logic; at which point the fault current was cleared

from the system and the breaker was closed. Individual signals were applied for 100ms since the

operation time for over-current detection was rated at less than 16 ms, and ample execution time

was desirable to determine the exact value at which the relay would recognize over-current.

39

When the relay recognized a fault and energized the trip circuit, the current amplitude at which

the relay recognized a fault was recorded and the state execution was restarted; beginning again

at an initial value of 900 mA. This process was repeated for 1000 trials to determine the

precision at which the relay recognized current amplitude that exceeded its rated value for

normal operating conditions. The value of trip current discovered in each test is plotted in Figure

18.

Figure 18 Phase instantaneous over-current protection testing

 The maximum current amplitude allowed by the D90-Plus before energizing the

breaker’s trip coils was discovered to be 999 mA. Out of 1000 trials this amplitude was reached

291 times before the trip circuit was energized. The furthest from the rated trip current value that

the relay issued protective action occurred in the 10th trial, where the trip circuit was energized

when an amplitude of 997 mA was applied to the relay’s signal inputs.

 The D90-Plus exceeded the rated accuracy for over-current protection in all of the trials

performed. The D90-Plus’ over-current protection is specified to have an accuracy of ± 0.5 % of

0.9965

0.997

0.9975

0.998

0.9985

0.999

0.9995

0 200 400 600 800 1000 1200

T
ri

p
 c

u
rr

e
n

t(
A

)

Trial #

40

the signal reading or ± 1 % of the rated fault current; with the greater of the two being defined as

the minimal required accuracy. Therefore, for the settings used in this test the minimal accuracy

rating was required to be ± 10 mA, but the D90-Plus exceeded even the rated accuracy of ± 0.5%

of the signal reading; which for this test was between the range of 4.985 and 4.995 mA. For

1000 trials the relay never allowed the fault current to exceed the rated limit and operated within

at least 0.3 % of the rated value.

Phase Distance Protection Testing Results

 The model protection system contained in Figure 7 was used to simulate event

occurrences in a power system that would elicit relaying operations to provide phase distance

protection. A comprehensive testing scheme was designed to determine the D90-Plus’ reaction

to input signals that produced impedance quantities that correlated with mho circle

characteristics defined by default relay settings, as shown in Figure 19. These settings defined a

forward direction mho circle with an RCA of 85°, at a reach of 1.7 Ω.

Figure 19 Default relay settings for mho characteristic circle

41

 The comprehensive distance testing was performed by producing impedance phasor

quantities to perform sweeps across polar curves throughout the mho circle shown in Figure 19.

The granularity of iterations performed consisted of a radial distance varying by 0.05 Ω and

polar angles increasing by 1°. Since the mho circle defined by default relay settings is forward

directional and only exists in the first two quadrants, the functionality to define states in the third

and fourth quadrant was removed from the software testing program through the use of program

comments. The range of coordinates tested created a semi-circle in the first two quadrants with a

radius of 2, centered about the origin.

 The test states for phase direction testing were designed keeping current amplitude

constant at a value of 1.324 A, and voltage phase angles constant at a value of 0°, 120°, and

-120° for A, B, and C phase respectively. Voltage signals were varied in magnitude from 0 to

2.6V, and for each variation in magnitude 360 states were created that allowed current phase

angles to be evenly separated by 120° between each phase and incremented by 1°. Signal

quantities defined for each state were input to the relay for a duration of 100 ms, or until the

relay’s trip circuit was energized.

 The comprehensive testing used to determine each point that is defined by mho circle

characteristics was plotted in Figure 20. Each point in Figure 20 was determined by whether the

relay issued a trip command to the breaker when the impedance value of that state was present in

the system or if the breaker stayed closed for the 100 ms duration. The plot in Figure 20 closely

resembles the mho characteristics defined in Figure 19 with the addition of a few states that

tripped the breaker that are outside of the mho characteristic circle. These points are

undetectable in Figure 20 due to the close concentration of plotted points; however Figure 21

displays solely the points that incited action from the relay due to the occurrence of a distance

42

fault. There are also discrepancies between the observed mho characteristic circle and relay

defined characteristics occurring near the origin due to voltage signal levels below threshold.

Figure 20 Impedance coordinates that define fault locations

Figure 21 Mho circle defined by relay operation

 The plotted mho characteristic circle is observed to have a reach of 1.7 Ω, and the

orientation of the characteristic circle is tilted at an 85º angle. These observations correlate with

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

1.60

1.80

2.00

2.20

-2 -1.8 -1.6 -1.4 -1.2 -1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

R
e

a
c
ta

n
c
e

 (
S

e
c
o

n
d

a
ry

 O
h

m
s
)

Resistance (Secondary Ohms)

Distance Fault

Non-Fault

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

1.60

1.80

-1.4 -1.2 -1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1 1.2

R
e

a
c
ta

n
c
e

 (
S

e
c
o

n
d

a
ry

 O
h

m
s
)

Resistance (Secondary Ohms)

43

the mho circle characteristics defined by the D90-Plus’ default distance protection settings.

Figure 20 clearly shows that around the origin there were several polar curves that did not exhibit

fault characteristics in the system, although the relay’s defined mho circle characteristics exist in

the first two quadrants about the origin. These occurrences are due to voltage levels applied in

the system approaching or falling below the minimum voltage threshold that can be read by the

relay; the minimum voltage threshold is rated at a value of 100 mV.

Figure 21 displays several points that exist outside of the characteristic mho circle,

however these states incited protective relaying action when these quantities were present in the

system. These extraneous points are within a nearby region of the mho characteristic circle;

however they are clearly outside of its defined region. These extraneous faults may indicate an

issue with the relay settings; however, as this thesis focuses on the software framework,

determining the source of these extraneous faults is beyond its scope.

The phase IOC protection provided by the D90-Plus operated correctly in every trial

performed; exceeding the minimum accuracy level in each case. In these IOC tests the minimum

accuracy level according to manufacturer specifications was rated to be ± 1 % of 1 A; however

in each test the relay issued corrective action before 1 A was supplied to its contacts, within an

accuracy level of 0.3 %. Furthermore, the D90-Plus exhibited well defined operational

characteristics for its phase distance protection functionality; however, during a comprehensive

test across its entire protection range, it operated outside of its specified fault region on

approximately 0.5 % of the tests and did not operate inside its specified region at numerous

points when voltage supplied to its inputs was below the rated input threshold. The lack of

protective action performed inside the fault region was as expected when the input voltage

threshold was not met; however, the source of the extraneous fault sources was not determined.

44

CHAPTER V

CONCLUSION

 Protection relaying systems provide a significant source of safety and security in the

electric power system. Protection systems introduce additional expenditure in a system’s design

and are only needed in the rare occurrence of system disturbances. However, the failure

mitigation services provided by these protection systems are vital to a power system’s fault

recovery schemes.

 Relay test sets, like the Omicron CMC 256 are commonly used to verify the reliability of

protection relay functionality provided by an electric power protection system. These relay test

sets generally include application software provided to the user in a GUI form to facilitate testing

of protection relays. Relay test set software is fully capable of simulating fault occurrences in a

power system; however, they are often unable to easily perform comprehensive relay testing due

to the immense range of system disturbances that may occur. This issue was successfully

addressed by a software platform that utilized commands provided by the CM Engine software

library to control a CMC 256 relay test set. This software library bestowed a complete range of

relay testing functionality to the programmer, thus enabling additional logic and automation

features to be included in protection relay testing schemes.

 Automation of protection relay testing was developed using C++ to perform

comprehensive testing on prominent relaying features. The software platform provided modular

functions that remove the overhead required for controlling and issuing commands to the CMC

45

256; thus enabling new test plans to be easily implemented. Test plans for phase IOC and phase

distance protection were implemented that successfully performed thorough analysis of these

protection features supplied by a GE Multilin D90-Plus protection relay.

A phase IOC protection testing scheme was created using a model protection system and

simulating granularly increasing current amplitude until the relay’s trip circuit was energized.

This test plan was executed iteratively for 1000 trials to rigorously test the reliability and

precision of the D90-Plus’ over-current protection ability. For all 1000 trials the D90-Plus

operated properly, performing with significantly greater precision than the rated accuracy limit in

every trial.

The D90-Plus’ phase distance protection functionality was also rigorously tested through

an automated testing scheme. This test design consisted of analyzing a complete range of

impedance phasors that would provoke protective action from the D90-Plus. This range was

defined by the relay’s default settings which provided characteristics for a mho circle diagram.

Impedance phasors in this range were tested using polar coordinates with a radial distance

granularity of 0.05 Ω and an angle granularity of 1º. Testing sweeps were performed across

polar curves up to a radius of 2 Ω which was well beyond the entire region defined by default

mho characteristics. This test design discovered that the operation of the D90-Plus was well

defined throughout the mho characteristic region, however there were several extraneous

operations that occurred in nearby outlying regions. These extraneous operations were more

prominent in the negative resistance quadrant and occurred across a 45º range and throughout a

large range of radial distance from the origin. In the positive resistance quadrant the extraneous

operations occurred entirely within the first 20º from the origin, across a smaller range of radial

distance from the origin.

46

These rigorous relay testing schemes provided automated testing functionality that

verified relay reliability and accuracy. These test plans consisted of a comprehensive list of

scenarios that may exist in a power system and be seen by a relaying device. These testing

schemes were designed by implementing a software application framework for performing

automated comprehensive testing of all relaying functionality. The implemented application

performed comprehensive testing of a relay’s over-current and distance protection. However, the

designed software application provides a degree of modularity that enables further additions of

testing schemes utilizing the same underlying logic functionality.

These implemented testing procedures provide a more comprehensive testing scheme

than that currently implemented by third party software vendors for relay test sets. The

aforementioned testing procedures reduce the time incurred when performing relay testing as

well as providing a simpler method for executing these tests; thus reducing skilled input required

from testing personnel. Moreover, these implemented procedures perform a more thorough

analysis of the relay’s protection abilities than that tested by third party applications or by

Omicron’s supplied testing software.

Automation of relay testing scenarios was enabled through the use of a model protection

system, and driven through outputs of a CMC 256 relay test set controlled through interfacing

the designed software platform with the CM Engine software library provided by the test set’s

manufacturer. Automated testing procedures were only implemented that tested primary

relaying functionality, however the software developed for these automated testing procedures

produced the framework for a comprehensive protection relay testing design. This software

provides modular functionality that can be used to build a relay test plan that thoroughly assesses

a relay’s entire protection ability.

47

The designed software platform provides the framework for future work. In addition to

the implementation of supplementary relay testing schemes, future work could include the design

of a database that stores successive testing information as well as test results so that changes in a

protection system’s functional ability could be tracked. Furthermore, the incorporation of IEC

61850 into the software framework would coordinate relay testing schemes with the current

substation communication standards as well as promote testing interoperability between relaying

equipment from different vendors.

48

REFERENCES CITED

[1] R. Yaqub, “Introduction to the Smart Grid,” presented at The University of Tennessee at

Chattanooga, Chattanooga, TN, Jan. 2011.

[2] C. R. Mason, “Philosophy of Protective Relaying,” in The Art & Science of Protective

Relaying, New York: Wiley, 1956, ch. 1, pp. 1-9.

[3] J. L. Blackburn, “Introduction and General Philosophies,” in Protective Relaying

Principles and Applications, 3
rd

 ed. Boca Raton, FL: CRC Press, 2007, ch. 1, pp. 31-34,

48-56.

[4] P. M. Anderson, “System Characteristics,” in Power System Protection, New York: Wiley,

1999, ch. 5, sec. 5.1, pp. 148.

[5] P. M. Anderson, “Introduction,” in Power System Protection, New York: Wiley, 1999, ch.

1, sec. 1.2-1.5, pp. 4-11.

[6] W. A. Elmore, “Protection Against Transients and Surges,” in Protective Relaying Theory

and Applications, New York: CRC Press, 2004, chap. 7, sec. 3.2, pp.109

[7] P. M. Anderson, “Protection Measurements and Controls,” in Power System Protection,

New York: Wiley, 1999, ch. 2, sec. 2.1, pp. 17-19.

[8] P. M. Anderson, “Relay Characteristics,” in Power System Protection, New York: Wiley,

1999, ch. 3, sec. 3.3, pp.74-77.

[9] J. L. Blackburn, “Microprocessor Applications and Substation Automation,” in Protective

Relaying Principles and Applications, 3
rd

 ed. Boca Raton, FL: CRC Press, 2007, ch. 15,

pp. 579-80, 589-90, 597-600.

[10] A. G. Phadke and J. S. Thorp, “Introduction to computer relaying,” in Computer Relaying

for Power Systems, 2md ed. West Sussex, England: Wiley, 2009, ch. 1,sec. 1.3, pp. 7.

[11] P. M. Anderson, “Markov Modeling of Protective Systems,” in Power System Protection,

New York: Wiley, 1999, ch. 28, pp.1208-10, 1226-28.

[12] CMC 256 Plus – The Reference, Omicron, Klaus, Austria, 2011

[13] Software Overview, Omicron, Klaus, Austria, 2011

49

[14] Omicron Test Universe version 2.30. Klaus, Austria:Omicron, 2009

[15] Doble Protection Testing Software Suite, Doble Engineering, Watertown, MA, 2008

[16] P. Revuru, (1997, Feb). Protective Relay Maintenance [Online]. Available:

http://www.electricity-today.com/et/Feb97/febrelay.htm

[17] Enoserv, “Enoserve RTS” [Online]. Available: http://enoserv.com/ENOSERV-RTS-relay-

testing-software.html

[18] N.I. Santoso and J.Y. Avins, “Real-time software testing for microprocessor based

protective relays,” Power Delivery, vol. 9, no. 3, pp. 1359-1367, July, 1994.

[19] J. J. Kumm, M. S. Weber, E. O. Schweitzer, III, and D. Hou, “Philosophies for Testing

Protective Relays,” proceedings of the 48th Annual Georgia Tech Protective Relaying

Conference, Atlanta, GA, May 1994.

[20] D90-Plus Line Distance Protection System Instruction Manual, GE Multilin, Ontario,

Canada, 2010.

[21] CMC 256plus: 6 Phase Current + 4 Phase Voltage Test Set and Universal Calibrator

Technical Data, Omicron, Klaus, Austria, 2011

[22] Alstom Grid, “Distance Protection,” in Network Protection & Automation Guide. Stafford,

UK: Alstom Grid, 2011, pp. 172.

http://enoserv.com/ENOSERV-RTS-relay-testing-software.html
http://enoserv.com/ENOSERV-RTS-relay-testing-software.html

50

APPENDIX A

FORWARD DECLARATIONS AND STRUCTS

51

//wrapper.h
#ifndef wrapper_h //prevent functions from being defined multiple times on multiple
includes
#define wrapper_h

#include <iostream>
#include <math.h>
#include <atlstr.h> //include to use Cstring without requiring MFC being turned on
#include <atlbase.h> //included for VB wrapper functions, this header file automatically
imports windows.h
#include <stdio.h>
#import "CMEngAL.tlb"

//struct used to hold information about the CMC
struct CM
{
 CMEngine::ICMEngine* Engine; //instance used to create deviceID
 long deviceId; //used to reference the CMC
};

struct state
{
 double Vall, Iall, angle, frequency; //used for the generic settings of I & V
 double Vangle[3], Iangle[3];
 double voltages[3]; //3 entry arrays for the case where individual phases need to
be customized
 double currents[3];
 int time; //time to next state or time-out time in ms
 int binaryAck; //store the state of the relay, if binary input from CMC high then
relay trip circuit is energized
 struct state *next; //used to create linked list
};

/////forward declarations for CMEngine wrapper functions////
void engine_object(CMEngine::ICMEngine** g_pEngine);
int lock_CMC(CMEngine::ICMEngine* g_pEngine, long* g_nDevId);
int unlock_CMC(CMEngine::ICMEngine* g_pEngine, long g_nDevId);
LPTSTR Exec(LPCTSTR szCmd, CM *CMC);

/////forward declarations for CMEngine functionality////

 ////Output////
void Vout(double amplitude, CM *CMC);
void Vout(int output, double amplitude, CM *CMC);
void Vout(int output, double amplitude,double frequency, CM *CMC);
void Vphase(int output, double angle, double amplitude, CM *CMC);
void Vphase(double angle, double amplitude, CM *CMC); //create same phase between each
signal
void Vstep(int output, double initialAmp, double finalAmp, CM *CMC);
void Iout(int output, double amplitude, double frequency, CM *CMC);
void Iphase(double angle, double amplitude, CM *CMC);
void Iphase(int output,double angle, double amplitude, CM *CMC);
void Istep(int output, double initialAmp, double finalAmp, CM *CMC);
void Voff(int output, CM *CMC);
void Ioff(int output, CM *CMC);

52

void allOff(int output, CM *CMC);
 ////Input///
LPTSTR Vrms(int input, double range, int integration_period, CM *CMC);
LPTSTR BinIn(int input, CM *CMC);
int decodeBinary(LPTSTR binResult);
void closeBreaker(CM *CMC);

////forward declarations for States////
int addState(state **init_state, double voltage, double current, double phaseAngle, int
time);
int addState(state **init_state, double Vphases[], double Iphases[], double vAngle[],
double iAngle[], int time);
double* exec_states(state *init_state, int testSelect, CM *CMC);
void print_states(state *init_state);

#endif

53

APPENDIX B

FUNCTIONALITY FOR INTERFACEING WITH OMICRON CMC 256

54

//CMEngineWrapper.cpp
//file creates functions to lock and unlock the CMC for ease of use
#include "wrapper.h"

//create an instance of CMEngine type to instantiate g_pEngine
void engine_object(CMEngine::ICMEngine** g_pEngine)
{
 //Create Engine Object
 HRESULT hr = S_OK;
 hr = CoCreateInstance(__uuidof(CMEngine::CMEngine),
 NULL,
 CLSCTX_INPROC_SERVER,
 __uuidof(CMEngine::ICMEngine),
 reinterpret_cast<void **> (g_pEngine));

 if (FAILED(hr))
 {
 _tprintf(_T("Couldn't create engine object, possible soln's include:\n-
Change Common Language Runtime support to /clr \n \
 -check pointers for g_pEngine, ensure g_pEngine is instantiated and
returned to main"));
 getchar();
 exit(0);
 }

}
//returns a value of 1 if the CMC can be locked
int lock_CMC(CMEngine::ICMEngine* g_pEngine, long* g_nDevId)
{
 try
 {
 // Search for CMCs and lock the first CMC for use
 g_pEngine->DevScanForNew(false);
 _bstr_t szResult; //_bstr_t is a C++ class wrapper for the Visual Basic
string type
 szResult = g_pEngine->DevGetList(CMEngine::lsUnlockedAssociated);

 if (szResult.length() == 0)
 {
 _tprintf(_T("No CMC available\nPress ENTER to continue ...\n"));
 getchar();
 CoUninitialize();
 return -1;
 }

 //print out version info to show that it is communicating and can be locked
 _tprintf(_T("DevGetList (CMC Device Info): %s\n\n"), (LPTSTR) szResult);
 // Extract ID of the first CMC and lock it
 _stscanf_s((LPTSTR) szResult, _T("%d"), g_nDevId);
 g_pEngine->DevLock(*g_nDevId); //Lock CMC
 return 1;

 }
 catch(_com_error ex)
 {

55

 _tprintf(_T("CMEngineError: %s\nPress ENTER to continue ...\n"), (LPTSTR)
ex.Description());
 getchar();
 exit(0);
 }
}

//returns a value of 1 if the CMC is successfully unlocked
int unlock_CMC(CMEngine::ICMEngine* g_pEngine, long g_nDevId)
{
 try
 {
 g_pEngine->DevUnlock(g_nDevId);
 return 1;
 }
 catch(_com_error ex) {return -1;}
}

// Send command to CMC and read return value
LPTSTR Exec(LPCTSTR szCmd, CM *CMC)
{
 try {
 return (CMC->Engine)->Exec(CMC->deviceId, szCmd);
 } catch(_com_error ex) {
 _tprintf(_T("Failed to execute engine command:%s\n%s"),
(LPTSTR)szCmd,(LPTSTR) ex.Description());
 }

 return _T("");
}

56

APPENDIX C

WRAPPER FUNCTIONS THAT CONTAIN EXECUTABLE COMMANDS

57

//wrapperFunctions.cpp
//functions provided to execute CMC commands for ease of use
#include "wrapper.h"

//Configures a single voltage output with a default phase angle of 0
void Vout(int output,double amplitude,double frequency, CM *CMC)
{
 //convert parameters into LPCTSTR to be sent to the CMC for execution
 CString configure;
 CString turnOn;
 configure.Format(_T("out:ana:v(1:%d):a(%f);f(%f)"),output,amplitude,frequency);
 turnOn.Format(_T("out:ana:v(1:%d):on"),output);
 //send commands to CMC
 Exec(configure, CMC);
 Exec(turnOn, CMC);
}

//sets all Voltage outputs with same amplitude varying by the phase angle specified
void Vphase(double angle, double amplitude, CM *CMC)
{
 double frequency=60;
 CString phase1,phase2,phase3;
 CString turnOn;
 phase1.Format(_T("out:ana:v(1:1):a(%f);f(%f);p(0)"),amplitude,frequency);
 phase2.Format(_T("out:ana:v(1:2):a(%f);f(%f);p(-%f)"),amplitude,frequency,angle);
 phase3.Format(_T("out:ana:v(1:3):a(%f);f(%f);p(%f)"),amplitude,frequency,angle);
 Exec(phase1,CMC);
 Exec(phase2,CMC);
 Exec(phase3,CMC);
 Exec(_T("out:ana:on"),CMC);
}

//sets an individual voltage output
void Vphase(int output, double angle, double amplitude, CM *CMC)
{
 double frequency=60;
 CString phase,turnOn;
 phase.Format(_T("out:ana:v(1:%d):a(%f);f(%f);p(%f)"),output,amplitude,frequency,an
gle);
 turnOn.Format(_T("out:ana:v(1:%d):on"),output);
 Exec(phase,CMC);
 Exec(turnOn,CMC);
}

//steps a voltage output while keeping the waveform's phase
void Vstep(int output, double initialAmp, double finalAmp, CM *CMC)
{
 double frequency=60;
 CString configure_init,configure_final;
 CString turnOn;
 turnOn.Format(_T("out:ana:v(%d):on"),output);
 configure_init.Format(_T("out:ana:v(%d):a(%f);f(%f)"),output,initialAmp,frequency)
;
 configure_final.Format(_T("out:ana:v(%d):a(%f);f(%f)"),output,finalAmp,frequency);
 Exec(configure_init,CMC);
 Exec(turnOn,CMC);

58

 getchar(); //will be changed to Sleep(ms)
 Exec(_T("out:ana:pmode(diff)"), CMC); //keep the phase when future on commands
are applied
 Exec(configure_final,CMC);
 Exec(turnOn,CMC);
}

void Voff(int output, CM *CMC)
{
 //convert parameter into LPCTSTR to be sent to the CMC for execution
 CString turnOff;
 turnOff.Format(_T("out:ana:v(%d):off"),output);
 //send command to CMC
 Exec(turnOff, CMC);
}

//output current on all phases with same parameters
void Iout(int output, double amplitude, double frequency, CM *CMC)
{
 //convert parameters into LPCTSTR to be sent to the CMC for execution
 CString configure;
 CString turnOn;
 configure.Format(_T("out:ana:i(1:%d):a(%f);f(%f)"),output,amplitude,frequency);
 turnOn.Format(_T("out:ana:i(1:%d):on"),output);
 //send commands to CMC
 Exec(configure, CMC);
 Exec(turnOn, CMC);
}

//output current separated by specified phase angle
void Iphase(double angle, double amplitude, CM *CMC)
{
 double frequency=60;
 CString phase1,phase2,phase3;
 phase1.Format(_T("out:ana:i(1:1):a(%f);f(%f);p(0)"),amplitude,frequency);
 phase2.Format(_T("out:ana:i(1:2):a(%f);f(%f);p(-%f)"),amplitude,frequency,angle);
 phase3.Format(_T("out:ana:i(1:3):a(%f);f(%f);p(%f)"),amplitude,frequency,angle);
 //send commands to CMC
 Exec(phase1, CMC);
 Exec(phase2, CMC);
 Exec(phase3, CMC);
 Exec(_T("out:ana:on"), CMC);
}

//configure an individual phase current amplitude
void Iphase(int output,double angle, double amplitude, CM *CMC)
{
 double frequency=60;
 CString phase,turnOn;
 phase.Format(_T("out:ana:i(1:%d):a(%f);f(%f);p(%f)"),output,amplitude,frequency,
angle);
 turnOn.Format(_T("out:ana:i(1:%d):on"),output);
 Exec(phase, CMC);
 Exec(turnOn, CMC);
}

//take an initial current and step it up by a given value

59

void Istep(int output, double initialAmp, double finalAmp, CM *CMC)
{
 double frequency=60;
 CString configure_init,configure_final;
 CString turnOn;
 configure_init.Format(_T("out:ana:i(%d):a(%f);f(%f)"),output,initialAmp,frequency)
;
 configure_final.Format(_T("out:ana:i(%d):a(%f);f(%f)"),output,initialAmp,frequency
);
 turnOn.Format(_T("out:ana:i(%d):on"),output);
 Exec(configure_init, CMC);
 Exec(turnOn, CMC);
 Exec(_T("out:ana:pmode(diff)"), CMC); //keep the phase when future on commands
are applied
 Exec(configure_final, CMC);
}
void Ioff(int output, CM *CMC)
{
 //convert parameter into LPCTSTR to be sent to the CMC for execution
 CString turnOff;
 turnOff.Format(_T("out:ana:i(%d):off"),output);
 //send command to CMC
 Exec(turnOff, CMC);
}

void allOff(int output, CM *CMC)
{
 CString Ioff, Voff;
 Ioff.Format(_T("out:ana:i(%d):off"),output);
 Voff.Format(_T("out:ana:v(%d):off"),output);
 Exec(Ioff,CMC);
 Exec(Voff,CMC);
}

//send signal to E7 contact on relay using wetted binary output to initiate close circuit
void closeBreaker(CM *CMC)
{
 allOff(1, CMC); //clear the fault
 Sleep(100); //wait 100ms to account for mechanical action then close the breaker
 Exec(_T("out:bin(1):set(0b0001)"),CMC); //close the breaker
 Sleep(50); //wait for the relay to close then turn off close command
 Exec(_T("out:bin(1):off(1)"),CMC);
}

//configure and read rms voltage
//The following ranges are available for the CMC 256 or newer test set: 100mV, 1V, 10V,
100V and 600V
//integration period specified in seconds, required to wait specified amount of time
before result can be returned
LPTSTR Vrms(int input, double range, int integration_period, CM *CMC)
{
 _bstr_t voltage; //variable to store value of voltage
 //convert parameters into LPCTSTR to be sent to the CMC for execution
 CString configure, rms, getV;
 configure.Format(_T("inp:ana(%d):def(v,%f)"),input,range);
 rms.Format(_T("inp:ana(%d):rms?(%f)"), input, integration_period);
 getV.Format(_T("inp:ana:get?(%d)"),input);

60

 //send commands to CMC
 Exec(configure, CMC);
 Exec(rms, CMC);
 //wait integration period before reading measurement, sleep function takes
millisecond arg
 Sleep(integration_period*1000);
 voltage=(LPTSTR)Exec(getV, CMC);
 return voltage;
}

//configure specified binary input as potential free
//returns result in string "<module index>, <binary input>"
LPTSTR BinIn(int input, CM *CMC)
{
 _bstr_t binInput;
 CString bin_config;
 //configure specified input from binary input module 1 to read potential free
input (pf)
 bin_config.Format(_T("inp:bin(1:%d):def(pf)"),input);
 Exec(bin_config,CMC);
 binInput=Exec(_T("inp:bin(1):get?"),CMC); //read input from binary module 1
 return binInput;
}

int decodeBinary(LPTSTR binResult)
{
 CString strip=(LPTSTR)binResult;
 wchar_t firstNum; //hold the value to strip off of the beginning of the string
which may vary depending on the binary input definition
 int atoi;
 firstNum=strip.GetAt(0); //determine what the input module is from the definition
of Omicron's Binary Inputs
 strip.TrimLeft(firstNum); //remove leading 1 stating binary input module
 strip.TrimLeft(_T(",")); //remove other excess characters
 strip.TrimRight(_T(";"));
 atoi=_wtoi(strip); //convert LPTSTR to int
 return atoi;
}

61

APPENDIX D

FUNCTIONS THAT CREATE AND EXECUTE LINKED LIST OF STATES

62

//faultStates.cpp
//functions to create states to be executed by the CMC
#include "wrapper.h"
#include <ctime>
//#include "time.h"
#define _USE_MATH_DEFINES //defined to allow the use of pi constant M_PI
#include <cmath> //included for trig functions
using namespace std;

//create a state to be executed by the CMC. phase angles are equally spaced with
magnitudes the same across all phases. time is in ms
int addState(state **init_state, double voltage, double current, double phaseAngle, int
time)
{
 int numStates=1; //counter to determine the number of states
 state *currentState, *head;
 currentState=(state*)malloc(sizeof(state));
 head=*init_state; //copy 1st state into temp state that points to begining of
linked list

 //define state variables
 currentState->Vall=voltage;
 currentState->Iall=current;
 currentState->angle=phaseAngle;
 currentState->frequency=60;
 currentState->time=time;

 if(*init_state==NULL)
 {
 *init_state=currentState; //current state becomes first state in list
(generally the pre-fault state)
 (*init_state)->next=NULL;
 }
 else
 {
 //traverse list
 while(head->next !=NULL)
 {
 numStates++;
 head=head->next;
 }
 numStates++;

 //add current state to end of list
 currentState->next=NULL;
 head->next=currentState;
 }
 return numStates;
}

//individually define I & V magnitudes for a state. time is in ms. Returns the number of
states in the linked list
int addState(state **init_state, double Vphases[], double Iphases[], double vAngle[],
double iAngle[], int time)
{
 int numStates=1; //counter to determine the number of states

63

 state *currentState, *head;

 currentState=(state*)malloc(sizeof(state));
 head=*init_state; //copy 1st state into temp state that points to begining of
linked list

 //define state variables
 currentState->voltages[0]=Vphases[0];
 currentState->voltages[1]=Vphases[1];
 currentState->voltages[2]=Vphases[2];
 currentState->currents[0]=Iphases[0];
 currentState->currents[1]=Iphases[1];
 currentState->currents[2]=Iphases[2];
 currentState->Vangle[0]=vAngle[0];
 currentState->Vangle[1]=vAngle[1];
 currentState->Vangle[2]=vAngle[2];
 currentState->Iangle[0]=iAngle[0];
 currentState->Iangle[1]=iAngle[1];
 currentState->Iangle[2]=iAngle[2];
 currentState->time=time;
 currentState->Vall=-1; //all 3 outputs declared separately so these variables are
not used
 currentState->Iall=-1;

 if(*init_state==NULL)
 {
 *init_state=currentState; //current state becomes first state in list
(pre-fault state)
 (*init_state)->next=NULL; //dereferencing a double pointer to modify a
struct variable
 }
 else
 {
 //traverse list
 while(head->next !=NULL)
 {
 numStates++;
 head=head->next;
 }
 numStates++;

 //add current state to end of list
 currentState->next=NULL;
 head->next=currentState;
 }
 return numStates;
}

//takes the head of the linked list and executes all states pointed to by the head node
//tests Phase IOC if testSelect=0 and Phase Distance if testSelect=1
//If IOC trips breaker, function returns address to current value for all "in phase"
quantities, returns 3D array for individually configured phases
//outputs to file 3D array for phase Distance testing, 1st entry is 1 for coordinates
inside MHO circle, and -1 for outside

64

//next two entries contain the x and y coordinates of the impedance for plotting MHO
CIRCLE
//returns -1 if IOC fails to trip breaker or on completion of Phase Distance Testing
double* exec_states(state *head, int testSelect, CM *CMC)
{
 int DistanceTesting=testSelect; //if set to one, function outputs to file
cordinates in MHO graph, if 0 return instance of IOC values
 int readBinary;
 int counter=0; //counter used for timing the length of states and the repetition
of checking for breaker opening
 int state=1; //counter to determine which state trips the breaker
 head->binaryAck=0; //declare that current state has not tripped the breaker
 double x,y; //used to perform polar to rectangular conversion
 double *funcReturn;
 double *coords=(double*)malloc(3*sizeof(double)); //hold the polar coordinates
for the MHO plot
 double fail=-1.0; //return value when the Phase IOC fails to trip breaker
 double pass=1.0; //return value upon completion of Distance testing
 clock_t start_time; //timer variable used in specifying length of time per state

 FILE * csv=fopen("mhoCircle.csv","w"); //open file to plot MHO circle coordinates
 if(csv==NULL)
 {
 printf("file could not be opened\n");
 funcReturn=&fail;
 return funcReturn;
 }

 //check to see if breaker is closed
 readBinary=decodeBinary(BinIn(1,CMC));
 if(readBinary==1)
 {
 printf("Breaker already opened\n");
 closeBreaker(CMC); //reset the breaker to begin testing
 }

 while(head != NULL)
 {
 counter=0; //set timer to 0
 head->binaryAck=0; //declare that current state has not tripped the
breaker
 if(head->Vall==-1 || head->Iall==-1) //if true -> individual phase
amplitudes are configured
 {
 Vphase(1, head->Vangle[0], head->voltages[0], CMC);
 Vphase(2, head->Vangle[1], head->voltages[1], CMC);
 Vphase(3, head->Vangle[2], head->voltages[2], CMC);
 Iphase(1, head->Iangle[0], head->currents[0], CMC);
 Iphase(2, head->Iangle[1], head->currents[1], CMC);
 Iphase(3, head->Iangle[2], head->currents[2], CMC);
 }
 //I & V are in phase
 else
 {
 Vphase(head->angle, head->Vall, CMC);
 Iphase(head->angle, head->Iall, CMC);
 }

65

 readBinary=decodeBinary(BinIn(1,CMC)); //read before the beginning of loop
then read every millisecond
 start_time=head->time + clock(); //start_time holds the maximum time that
will elapse before moving to next state
 while(start_time > clock()) //execute state for specified length of time
 {
 counter++;
 if(counter%10000==0) //check for binary input approximately every
milisecond
 readBinary=decodeBinary(BinIn(1,CMC));

 if(readBinary==1) //relay acknowledges fault
 {
 head->binaryAck=1;
 closeBreaker(CMC); //clears the fault and energizes the
relay's close circuit
 //record the coordinates in the MHO circle
 if(DistanceTesting==1)
 {
 coords[0]=1.0;
 coords[1]=(head->voltages[0])/(head->currents[0]);
 coords[2]=(head->Vangle[0])-(head->Iangle[0]);
 coords[2]=(coords[2]*M_PI)/180; //convert degrees to
radians
 x=coords[1]*cos(coords[2]);
 y=coords[1]*sin(coords[2]);
 fprintf(csv,"%f,%f,%f\n",coords[0],x,y);
 break; //break out of the inner while loop that was
used as a timer
 }
 //return current amplitude if Phase IOC testing tripped the
breaker
 else if(head->Vall==-1 || head->Iall==-1) //true if
individual phases are configured
 return head->currents;
 else
 return &(head->Iall); //return fault current value

 }
 }

 //record coordinates of state outside of MHO circle
 if(DistanceTesting==1 && head->binaryAck==0) //return coordinates outside
of MHO circle
 {
 coords[0]=-1.0;
 coords[1]=(head->voltages[0])/(head->currents[0]);
 coords[2]=(head->Vangle[0])-(head->Iangle[0]); //perform
rectangular to polar conversion
 coords[2]=(coords[2]*M_PI)/180; //convert degrees to radians
 x=coords[1]*cos(coords[2]);
 y=coords[1]*sin(coords[2]);
 fprintf(csv,"%f,%f,%f\n",coords[0],x,y);
 }

 head=head->next;

66

 state++; //increment state counter (primarily used for debugging)
 }

 fclose(csv);
 if(DistanceTesting==1)
 {
 funcReturn=&pass;
 return funcReturn;
 }
 else //Phase IOC states failed to trip the breaker
 {
 funcReturn=&fail;
 return funcReturn;
 }
}

//print out info from each state
void print_states(state *init_state)
{
 state *head=init_state;
 int i=1;
 while(head != NULL)
 {
 printf("State %d:V:%f,T:%f\n", i,head->Vall,init_state->time);
 head=head->next;
 i++;
 }
}

67

APPENDIX E

MAIN METHOD TO SET UP TESTS AND ISSUE

COMMANDS TO BEGIN EXECUTION

68

//main.cpp
///////CMEngine Test Code//////
/*
Before compiling:
 Under Configuration Properties->General:
 -Make sure Common Language Runtime support is set to /clr
 -Make sure Character set is changed to the option "Use Unicode Character
Set"

Additional Details:
 -C++ wrappper class for VB strings _bstr_t is used instead of native C++ strings
(you can thank Omicron for that!)
 -_bstr_t strings require _tprintf(_T("")) (included in atlbase.h) instead of
printf to properly print LPTSTR strings (in a VC++ fashion)
*/

//include forward declarations and CMEngine functions class, as well as CMfunctions
wrapper class
#include "wrapper.h"

void main()
{
 //struct holds device instances
 CM *cmc= (CM *) malloc (sizeof(CM));
 //linked list struct contains quantities at each state
 state *IOCinit_State=(state*) malloc(sizeof(state));
 IOCinit_State=NULL; //list of states is empty until defined
 state *Dist_init_State=(state*) malloc(sizeof(state));
 Dist_init_State=NULL; //list of states is empty until defined

 FILE * csvIOC=fopen("phaseIOC.csv","w");
 int numStates; //used to hold return value from add_State to hold the number
of entries in the linked list
 int fail; //check to see if CMC was locked for execution
 double *Istep; //used for return value for phase IOC testing
 //counters for looping over MHO circle
 double mag;
 int ang;
 //counters for phase IOC
 double i;
 int j;
 double *Coord=(double*)malloc(3*sizeof(double)); //Array to hold MHO coordinates,
should they need to be returned to main
 double V[3]={0,0,0}; //at (0,0) V=0 and incresases uniformly in all directions
 double I[3]={1.324,1.324,1.324}; //I magnitude stays constant for Distance
testing
 double vAngle[3]={0,-120,120}; //V angle stays constant for Distance testing
 double iAngle[3]={0,-120,120}; //at x=0 I angle is 0,-120,120 for phase A,B, & C
respectively and increases in clockwise direction

 //create Engine instance before passing Engine variable to lock the CMC
 engine_object(&cmc->Engine);
 //modifys the device ID used to reference the CMC, returns -1 if function fails
 fail=lock_CMC(cmc->Engine, &cmc->deviceId);
 //check to see if CMC was locked for sending commands before continuing
 if(fail<0)

69

 exit(0);

 Exec(_T("out:aux(1):a(110)"),cmc); //turn breaker simulator on

 //Distance testing
 numStates=addState(&Dist_init_State,V,I,vAngle,iAngle,300); //first state at (0,0)
has only 1 set of phase angles to be tested
 for(mag=0.1;mag<2.6;mag+=0.1) //loop over the voltage values in MHO circle
 {
 V[0]=mag;
 V[1]=mag;
 V[2]=mag;
 iAngle[0]=0;
 iAngle[1]=-120;
 iAngle[2]=120;

 //because signs swap on phase angles in Omicron, a different or loop is
used for either side of the axis to be consistent
 for(ang=0; ang<180; ang++)
 {
 iAngle[0]++;
 iAngle[1]++;
 iAngle[2]++;
 //MHO circle lies primarily in upper two quadrants so the lower 2
are not tested, but they could uncomment the statement below should they want to test
reverse directional faults
 //numStates=addState(&Dist_init_State,V,I,vAngle,iAngle,100);
//begin after 0 degrees since angles are reversed and swept over to 0
 }
 //swap phase angle signs to stay consistent with Omicron software
 iAngle[0]-=360;
 iAngle[1]-=360;
 iAngle[2]-=360;
 for(ang=0; ang<180; ang++)
 {
 iAngle[0]++;
 iAngle[1]++;
 iAngle[2]++;
 numStates=addState(&Dist_init_State,V,I,vAngle,iAngle,100);
 }
 }
 Coord=exec_states(Dist_init_State,1,cmc); //perform distance testing, Coord
receives -1 upon completion

 //Phase IOC testing
 //set up states with 3 phase I & V to execute at speed of 100ms
 for(i=.9; i<1.1;i+=.001)
 {
 for(j=0;j<3;j++)
 {
 I[j]=i;
 V[j]=1.5;
 }
 numStates=addState(&IOCinit_State,V,I,vAngle,iAngle,100);
 }

70

 for(j=0;j<1000;j++)
 {
 Istep=exec_states(IOCinit_State,0,cmc);
 fprintf(csvIOC, "%f\n", *Istep); //records value of A phase current since
current is equal across all phases
 Sleep(300); //allow mechanical operation of Omicron's CMC to reset
 }

 allOff(1,cmc);
 //Exec(_T("out:aux(1):off"),cmc); //once turned off you have to use def(>0) and
restart machine

 fclose(csvIOC);
 unlock_CMC(cmc->Engine, cmc->deviceId); //release control of the Omicron CMC256-6

 //Memory cleanup, release Engine instance
 (cmc->Engine)->Release(); //parenthesis used just to clarify the struct reference
 CoUninitialize();
 free(cmc);
 free(IOCinit_State);
 free(Dist_init_State);
 free(Coord);

}

71

VITA

 Jason Johnston attended UTC for his undergraduate degree in Computer Engineering.

After honing software development skills he discovered a passion for more abstract coding

practices. He worked with a previous UTC Computer Science department head, Dr. Andrew J.

Novobilski, using a parallel programming environment made available through GPU cores on an

Nvidia graphics card and accessed by the CUDA API to implement Bayesian networks. As a

graduate student he attended a parallel programming course with the Computational Engineering

department at UTC and gained a desire to further his skills in this area. He also has a strong

desire to pursue a career in hardware design and development after taking courses with Dr.

Stephen Craven on hardware description languages. At the time of his thesis submittal he was

employed as an intern with the Power Quality group at Tennessee Valley Authority. Working

primarily outside of his desired field of study in this power engineering environment he kept

himself occupied teaching himself Python and performing various other software development

tasks.

