
AN EVALUATION OF LOW COST FPGA-BASED SOFTWARE DEFINED RADIOS

FOR EDUCATION AND RESEARCH

A Thesis

Presented for the

Master of Science Degree

The University of Tennessee at Chattanooga

Abhilash M. Purani

April 23, 2010

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UTC Scholar

https://core.ac.uk/display/51197381?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

ii

To the Graduate Council:

I am submitting herewith a thesis written by Abhilash M. Purani entitled “An Evaluation

of Low Cost FPGA-Based Software Defined Radios for Education and Research.” I have

examined the final electronic copy of this thesis for form and content and recommend

that it be accepted in partial fulfillment of the requirements for the degree of Master of

Science, with a major in Electrical Engineering.

 Dr. Stephen Craven
 Major advisor

We have read this thesis
And recommend its acceptance:

Dr. Ahmed Eltom

Dr. Clifford Parten

 Accepted for the Council:

 Dr. Stephanie Bellar
 Interim Dean of the Graduate School

iii

ABSTRACT

The purpose of this study is to evaluate a low-cost Software Defined Radio (SDR)

platform for educational and research purposes. An evaluation of existing SDR platforms

and design techniques was performed, identifying low cost hardware and software

suitable for a laboratory environment. The idea behind the project is to provide

undergraduate students with a generic hardware platform so that they can perform simple

radio communication experiments.

This paper compares and evaluates the existing research projects and educational

lab experiments done for SDR. Basic AM and FM radios are created and simulated on the

hardware. The detailed procedure to create a design and download the design onto the

hardware has been documented, and tutorials are created for step-by-step procedures to

perform the experiments. With their ease of use and low cost, Spartan3E FPGA board

and Simulink are the best choices for conducting low frequency radio communication

experiments.

iv

ACKNOWLEDGEMENT

First and foremost I would like to offer my sincere gratitude to my advisor Dr.

Stephen Craven, who guided me and encouraged me throughout this thesis. He has been a

very friendly advisor and a constant source of inspiration. He was always accessible and

willing to help, and without whom this thesis would not have been possible.

I would also like to thank Dr. Ahmed Eltom and Dr. Clifford Parton for their

interest in the project and for being a part of my committee. I thank the Department of

Electrical Engineering at University of Tennessee at Chattanooga for providing me with

the lab, and all the necessary equipments required for this project.

I would also like to thank all the lab-mates for making the lab a vey congenial

environment to work in, and their helping hand towards my thesis.

Finally, I would like to thank my parents, my family members and all my friends

for believing in me and motivating me throughout this journey.

v

TABLE OF CONTENTS

CHAPTER PAGE

I. Abstract iii

II. Acknowledgement iv

III. List of figures vi

IV. List of tables vii

V. List of abbreviations viii

1. Introduction 1

2. Background 4

3. Design entry methods 14

4. Hardware platform comparison 27

5. Lab experiments and results 34

6. Conclusion 40

Bibliography 41

Appendix A.1 MATLAB code for AM modulation 45

Appendix A.2 AccelDSP code for AM modulation in MATLAB 47

Appendix A.3 System Generator instructions 48

vi

LIST OF FIGURES

1. Figure 2.1 Basic block diagram of SDR 6

2. Figure 2.2 USRP classic board 9

3. Figure 2.3 TIMS at electrical communications laboratory at UTC 12

4. Figure 3.1 AccelDSP process flow 19

5. Figure 3.2 AM modulation AccelDSP script code 19

6. Figure 3.3 AM modulation AccelDSP function file 20

7. Figure 3.4 AccelDSP window with RTL report for AM modulation 22

8. Figure 3.5 AM radio using Simulink 23

9. Figure 3.6 FFT of input radio stations 24

10. Figure 3.7 Input plot (a) and Output plot (b) of AM demodulation

 with Simulink 25

11. Figure 4.1 USRP with daughterboards 29

12. Figure 4.2 Spartan 3E Starter Board 30

13. Figure 5.1 AM modulation in System Generator 35

14. Figure 5.2 Modulating signal 36

15. Figure 5.3 Carrier signal 36

16. Figure 5.4 Modulated signal observed with System Generator 36

17. Figure 5.5 Modulated signal on oscilloscope 37

18. Figure 5.6 ASK modulation 38

19. Figure 5.7 ASK modulated signal 39

vii

LIST OF TABLES

1. Table 2.1 SDR projects comparison 13

2. Table 4.1 USRP versus Spartan 3E comparison 31

3. Table 4.2 SDR projects comparison 32

viii

LIST OF ABBREVIATIONS

ADC – Analog to Digital Converter

ASIC – Application Specific Integrated Circuit

ASK – Amplitude Shift Keying

DAC – Digital to Analog Converter

DSP – Digital Signal Processing

FPGA – Field Programmable Gate Array

GPL – General Public License

HDL – Hardware Description Language

HPSDR – High Performance Software Defined Radio

IF – Intermediate Frequency

MBD – Model Based Design

MIMO – Multi Input Multi Output

OSSIE - Open-Source Software Communications Architecture Implementation –

Embedded

PSoC – Programmable System on Chip

RF – Radio Frequency

RTL – Register Transfer Level

ix

SDR – Software Defined Radio

USRP – Universal Software Radio Peripheral

WARP – Wireless Open Access Research

1

Chapter 1

Introduction

Communication is a way of exchanging information between two entities. Since

the invention of radio, communication has expanded and the world has come closer.

Currently, radio communication has become an essential part of everyday life. Radio

communication exists around us in the form of television, radio receiver, cellular phones

and many such devices.

The term Software Defined Radio (SDR), as the name suggests, is a radio

communication technology in which the radio receiver is implemented using software, or

some similar reconfigurable medium, thus reducing the amount of hardware required.

Since an SDR can be programmed to adjust its own parameters, it can adapt to changing

conditions and standards.

This thesis discusses a low cost software defined radio using a Field

Programmable Gate Array (FPGA) board for educational purposes. The FPGA is an

integrated circuit which can be dynamically configured according to the design. It can be

programmed through a hardware description language (HDL) such as Verilog (VHDL).

An HDL is a language used to describe electronic and digital logic circuits. The Register

Transfer Level (RTL) concept is used in HDLs to create high-level representations of a

circuit, from which a lower-level representation can be derived. Because HDLs are

difficult to learn, use, and verify, high level design environments have been created that

enable the description and simulation of hardware such as MATLAB or Simulink.

2

The goal of the project is to define a generic platform using SDR technology so

that the students can build and simulate their own radios. This thesis discusses various

design entry methods used for creating SDRs and simulating them, avoiding HDLs while

leveraging skills that undergraduate engineering students already know.

Chapter 2 is a literature review. It discusses the background of the project and the

existing technologies in the SDR field. It discusses the workings of an SDR and its

various aspects. It also discusses the advantages and constraints of SDR. The subsequent

sections in the chapter discuss existing SDR projects used for educational and research

purpose and the available communication lab facilities at University of Tennessee at

Chattanooga (UTC).

 Chapter 3 considers actual design and coding methods. It discusses various

design entry methods for SDR. It describes AM and FM radio designs which were

created and simulated on MATLAB as well as AccelDSP. The detailed description of

creating and simulating an AM radio in MATLAB and with AccelDSP is discussed in

detail in the subsequent sections. Chapter 4 presents hardware platform comparisons. It

compares the hardware selected for this project, the Xilinx Spartan 3E Starter Kit Board,

with most commonly used hardware for SDRs such as the USRP board. It describes the

features of both the mentioned boards. A comparison between the educational research

projects used in universities is also presented.

All the lab experiments and results are discussed in Chapter 5. Discussed there is

the AM radio and ASK modulation design created using System Generator and its

implementation in hardware. The simulation output is compared with the output taken

3

from FPGA board. Chapter 6 is the final chapter in which conclusions are made for this

thesis.

4

Chapter 2

Background

A Software Defined Radio (SDR) is a technology used for radio communication

which implements the components required for the radio system with software or

programmable hardware. As defined by the IEEE P1900.1 group, SDR can simply be

defined as a radio in which some or all of the physical layer functions are software

defined [1]. Joseph Mitola is quoted as saying, "A software radio is a radio whose

channel modulation waveforms are defined in software. That is, digital waveforms are

generated and converted to analog form using a Digital to Analog Converter (DAC) at the

transmitter and at the receiver, they are converted to digital form using Analog to Digital

Converter (ADC) and demodulated using the software" [5]. An SDR can be implemented

on a Digital Signal Processing (DSP) engine, such as General Purpose (GP)

microprocessors, Programmable System on Chip (PSoC), Application Specific Integrated

Circuits (ASICs), Field Programmable Gate Arrays (FPGAs), or specialized co-

processors.

SDR technology was proposed in the early 1990s by Joseph Mitola [5]. It was

initially used for military radio systems. The main purpose for implementing this

technology was to incorporate multiple radio channels within a specified frequency

bandwidth. Since the early 1990s, there has been much advancement in SDR. Now, SDR

supports analog as well as digital radios and their respective communication standards

and protocols.

Currently, a radio exists in almost all electronic devices which are used for

communication, such as cell phones, televisions, computers and vehicles. When it comes

5

to functionality, traditional hardware-based radios have some limitations. Functions like

modulation type and frequency band have to be changed manually thus making them less

flexible. Also, with the development of radio standards, older hardware becomes

obsolete, and the new product becomes expensive.

Analog radio has fixed parameters like modulation type, frequency and

bandwidth. Digital radio has two more fixed parameters in addition to the parameters

mentioned for analog radio, which are source coding and channel coding [2]. However,

all the above mentioned parameters are programmable in SDR. It also has programmable

configuration control, along with the support of software upgrades and new modulation

standards.

2.1 Important aspects of SDR

Features of SDR are discussed in detail below [3].

• Reconfigurable: SDR provides a reconfigurable architecture, which enables

multiple communication standards to coexist on generic hardware. Thus, it allows

new wireless features and capabilities to be added to existing radio systems

without the requirement of new hardware.

• Reprogrammable: SDR can be dynamically reprogrammed with different

protocols and waveforms. In case of mobile communication, software

functionality can be upgraded over the air, which is convenient and beneficial to

both the subscribers and the service provider.

• Multi-featured: SDR allows multi-mode, multi-standard, multi-band features to

coexist on a single device.

6

As shown in Fig.2.1, the basic block diagram of an SDR receiver consists of three

stages [2]. The signal reception is done by the antenna. The first section is the Radio

Frequency (RF) front end where the signal is received and down converted to

Intermediate Frequency (IF) by mixing the incoming frequency with local oscillator

frequency. The IF section samples the signal using an Analog to Digital Convertor

(ADC).

Figure 2.1 Basic block diagram of SDR

Finally, the baseband section, which consists of either a DSP or FPGA,

demodulates and filters the signal. The software or the code is downloaded into the DSP

or FPGA hardware, and it produces the output in accordance with the parameters

ADC DSP/

FPGA

RF front end IF Baseband

Local Oscillator

Antenna

7

(modulation type and frequency band) mentioned in the software. For low frequency

radios, everything can be done in FPGA, excluding ADC and antenna/power amplifier.

FPGAs typically operate in the 50-200MHz range. Because of the parallel nature

of digital hardware FPGAs can sustain a very high throughput, permitting the

transmission and reception of complex radio waveforms. Though GPPs can operate at a

much higher clock frequency, even up to several giga-hertz, the serial nature of software

execution severely limits their throughput to much below that of FPGAs.

Adaptive radio takes adaptive actions and enhances its performance by

monitoring its behavior, using SDR technology [1]. Cognitive radio uses adaptive radio

and SDR to change its behavior and achieve defined objectives. Intelligent radio is a type

of cognitive radio with the capability of machine learning. It learns about the

environment and configures itself so as to minimize interference and maximize

throughput.

SDR technology was initially developed for military applications. However, now

it is available for use in analog and digital radio communication applications like

Wireless Local Area Network (WLAN), Bluetooth, Global Positioning System (GPS),

radar, Wideband Code Division Multiple Access (WCDMA), and General Packet Radio

Service (GPRS), as well as mobile communication.

Although SDR has many advantages, it also faces some challenges, like power

consumption on the hardware board [4]. Also, the speed of ADC and DAC becomes an

issue for some wideband and high frequency radio applications. However, with the use of

specialized high speed ADC and DACs, the former issue is overcome. The example of

8

that is High Performance Software Defined Radio (HPSDR). Lastly, the high initial cost

of SDR is also a point of concern.

2.2 Existing educational and research SDR projects:

The software and hardware projects below are available for academic use:

1. GNU Radio is a free software development toolkit that provides user the ability to

build and implement SDR systems using low-cost external RF hardware and

commodity processors [7]. It supports development of signal processing

algorithms using prerecorded or generated data, avoiding the need for actual RF

hardware. It allows the user to understand and use the radio spectrum cleverly. It

is widely used in hobbies, academics, and commercial environments to support

wireless communications research as well as to implement real-world radio

systems. GNU Radio is licensed under the GNU General Public License (GPL),

version 3.

The user can develop and implement high throughput radios using the Python

programming language and C++ in an environment, which is application-

development friendly. Some GNU radio applications include Digital Radio

Mondiale (DRM), software GPS, distributed sensor networks, amateur radio

transceivers, ad hoc mesh networks, and Multiple Input Multiple Outputs

(MIMO) processing [8].

2. High Performance Software Defined Radio (HPSDR) is an open source project

which encourages developers to experiment with new techniques and devices

9

without the use of replacing the entire set of boards [9]. It provides USB 2.0

interface for data communication and high speed ADC and DACs for High

Frequency (HF) radio receiver. The commonly used ADCs are 16-bit with the

speed of 130 Msps and the DACs used are 24-bit with maximum sampling

frequency rate of 50 KHz. It has a modular approach, which enables each module

to be designed and modified by an individual or a group of SDR enthusiasts.

3. The Universal Software Radio Peripheral (USRP) is a data acquisition (DAQ)

system allows users to create a software radio using any computer with a USB2 or

Gigagbit ethernet port. USRP is a creation of GNU radio project [8], [10].

Figure 2.2 USRP classic board [10]

Various plug-on daughterboards allow the USRP and USRP2 to be used on

different radio frequency bands. The entire design of the USRP family is open

source. It supports various software platforms, including GNU radio, Open-

Source Software Communications Architecture Implementation – Embedded

(OSSIE), and Simulink.

10

4. Open-Source Software Communications Architecture Implementation –

Embedded (OSSIE) is an open source SDR development effort based

at Wireless@Virginia Tech [11]. The OSSIE project is written in C++ with Linux

as the primary operating system. OSSIE is distributed under the GNU General

Public License 2.0.

5. Open SDR is involved in providing open source and open source architecture

solutions for SDRs. It is acknowledgeable in areas like framework software,

waveform design, and hardware platforms related to SDRs [12]. It provides

support for OSSIE SCA framework. Current research work includes developing

an interface from Beagle Board expansion interface with GNU radio USRP

daughterboards. The Beagle Board is an Open Multimedia Application Platform

(OMAP) 3 based single-board computer, which has capabilities for portable and

mobile multimedia applications that are ideal for SDR software development.

6. Software Defined Radio for All (SDR4all) is based on the concept of SDR with

the aim to revolutionize the way research and teaching is being done [13], [27].

The general idea is to enable students/researchers to test their ideas and

algorithms on real transmissions while still keeping the simplicity of a high level

programming language environment. It bridges the gap between simulation and

theory for reducing the innovation cycle.

It comprises a hardware part, which is a USB port, and a software part.

The USB port is used for RF sampling and processing, while the software drives

the radio transceiver’s physical layer. SDR4all enables the implementation of

11

algorithms that will be tested with real transmissions using actual hardware

transceivers.

7. The Software Defined Radio (SDR) Transceiver project is a senior design team

project, using USRP board, from the Electrical and Computer Engineering

students at California State University, Northridge (CSUN) [14]. The main

objective is to create a High Frequency (HF) transceiver capable of operating in

the 1.8 to 29.7 MHz range using SDR rather than building a traditional hardware

transceiver. The use of SDR in the project gives flexibility in design and reduces

the overall cost.

8. Wireless Open Access Research (WARP) is a scalable and extensible

programmable wireless platform developed at Rice University [15], [26]. It

encourages researchers to build and prototype the next generation of wireless

networks using their own ideas and making use of the open access platform. The

other goal is to educate students about real-time wireless communication (via

WARPLab) and real-time wireless communication (via WARP workshop). The

WARPLab is a framework bringing together MATLAB and WARP. The use of

Xilinx FPGA with WARP Lab allows physical layer and network layer protocols

to be implemented on a single platform.

2.3 Communication lab using TIMS at The University of Tennessee at Chattanooga:

An SDR platform available for academic use should be able to integrate into existing

communication curricula and labs. At UTC the communications lab, as in many other

engineering schools, is built around the TIMS system.

12

Telecommunications Instructional Modeling System (TIMS), developed by EMONA

instruments, is a flexible and versatile communications trainer that incorporates all of the

instruments required to perform communications laboratory experiments required in a

university level course [6]. TIMS realizes the electrical circuit using a block diagram

approach as it is the simplest way to understand the circuit. The electrical communication

laboratory at the University of Tennessee at Chattanooga (UTC) provides students a

hands-on experience on implementing various radio designs and viewing the results on

the scope [16]. TIMS provides an open and networkable architecture so that students can

build their own designs and make adjustments.

Figure 2.3 TIMS at electrical communications laboratory at UTC [16]

TIMS has a separate hardware card for each block in the block diagram, which

represents the function of that block. It is the most efficient educational approach to teach

telecommunication systems lab to students.

The Table 2.1 below summarizes the mentioned educational and research SDR projects.

13

Table 2.1 SDR projects comparison

Project Required Hardware Programming

Method

Cost ($)

GNU Radio USRP Python 100 to 150

HPSDR Mercury and

Penelope receiver

and exciter

Flex-Radio

PowerSDR

3800 to 4300

USRP USRP classic,

USRP2

GNU radio, C++ 700

OSSIE USRP, Textronics

test equipment

C++ 900 to 1100

Open SDR OMAP3 processor GNU radio, C++ 150

SDR4All Radio card: USRP Matlab, DLL N/A

SDR Transceiver USRP Python 700

WARP Xilinx FPGA Matlab 250 to 300

14

Chapter 3

Design Entry Methods

There are several ways in which SDRs can be designed. This chapter discusses

and compares the different design entry methods used for designing and simulating SDRs

with an emphasis on ease of use. The sub-sections discuss these tools in detail.

3.1 MATLAB

MATLAB is a high-level technical computing language and interactive

environment for algorithm development, data visualization, data analysis, and numeric

computation [18]. It enables users to develop solutions for technical computing problems.

MATLAB is used in a wide range of applications, including signal and image processing,

communications, control design, test and measurement, financial modeling and analysis,

and computational biology.

Features of MATLAB include:

• Mathematical functions for linear algebra, statistics, Fourier analysis, filtering,

optimization, and numerical integration

• Functions for integrating MATLAB based algorithms with external applications

and languages, such as C, C++, Fortran, Java, COM, and Microsoft Excel

3.2 Simulink

Simulink is an environment for multi-domain simulation and Model-Based

Design (MBD) for dynamic and embedded systems [18]. Model-based design is a method

of resolving control system design issues mathematically as well as visually. Simulink

15

provides an interactive graphical environment and a customizable set of block libraries to

design, simulate, implement, and test a variety of time-varying systems, including

communications, controls, signal processing, video processing, and image processing.

Simulink provides library blocks with predefined functionality. These blocks are

graphically positioned, configured, and connected by the user. Simulink is integrated with

MATLAB, providing immediate access to an extensive range of tools that lets designers

develop algorithms, analyze and visualize simulations, create batch processing scripts,

customize the modeling environment, and define signal, parameter, and test data. In

Simulink, each block represents a function and it is separately realized while running the

simulation. However, the core of the function block is essentially written in MATLAB.

Features of Simulink include:

• Extensive and expandable libraries of predefined blocks

• Embedded MATLAB Function blocks for bringing MATLAB algorithms into

Simulink and embedded system implementations

• Graphical debugger and profiler to examine simulation results and then diagnose

performance and unexpected behavior in your design

• Full access to MATLAB for analyzing and visualizing results, customizing the

modeling environment, and defining signal, parameter, and test data

• Model analysis and diagnostics tools to ensure model consistency and identify

modeling errors

3.3 AccelDSP

16

 AccelDSP synthesis tool is a high-level MATLAB language-based tool for

creating DSP-focused hardware designs for Xilinx FPGAs [17]. It provides automated

floating-to-fixed-point conversion, generates synthesizable Hardware Description

Language (HDL) code, creates a testbench for verification, and generates a fixed-point

C++ model or System Generator block from a MATLAB algorithm

Developers with little FPGA design experience can quickly create FPGA

implementations of DSP algorithms in much less time than required with traditional

Register Transfer Level (RTL) HDL techniques.

Features of AccelDSP include:

• DSP modeling which allows designing, architectural exploration, and debugging

of high-level DSP algorithms with MATLAB for Xilinx FPGAs

• Automated floating- to fixed-point conversion

• Integration with System Generator, discussed below, where generated blocks can

be connected into a larger design in System Generator

3.4 System Generator

System Generator for DSP is a high-level tool for designing high-performance

DSP systems using FPGAs [17]. It allows a user to develop highly parallel systems with

advanced FPGAs. It provides system modeling and automatic code generation from

Simulink and MATLAB. It also integrates the Register Transfer Level (RTL) HDL,

embedded, IP, MATLAB and hardware components of a DSP system.

Features of System Generator include:

17

• DSP modeling: It builds and debugs high-performance DSP systems in Simulink

using a special Xilinx Blockset that contains hardware descriptions of functions

for signal processing (e.g., FIR filters, FFTs), error correction (e.g., Viterbi

decoder, Reed-Solomon encoder/decoder), arithmetic, memories (e.g., FIFO,

RAM, ROM), and digital logic.

• Automatic code generation of HDL from Simulink: It produces hardware designs

using target-specific Xilinx IP cores from the Xilinx Blockset. System Generator,-

supports blocks generated from the AccelDSP synthesis tool, and supports custom

HDL inclusion.

• Hardware co-simulation: It supports the execution of generated hardware modules

on the FPGA, automatically importing the results into Simulink. Thus, results for

the compiled System Generator blocks are computed on the FPGA rather than

being emulated in software.

• Hardware / software co-design of embedded systems: It allows simultaneous

design of both hardware and software to be implemented in a desired function.

System Generator provides a shared memory abstraction of the HW/SW interface,

automatically generating the DSP co-processor, the bus interface logic, software

drivers, and software documentation for using the co-processor.

The two most popular design methods use C and HDL. C is most commonly used in

programming USRP boards for GNU radio. C requires programming skills, which are

generally not available to Electrical Engineering students. Although, HDL is an efficient

way of programming FPGAs, it is not a topic that is generally covered in undergraduate

studies.

18

3.5 AM radio example:

This section discusses the AM radio designs which were created using AccelDSP

and Simulink in detail.

3.5.1 AM radio with AccelDSP:

The initial work of this project began with MATLAB. Creating basic AM radios

was the initial task. To demonstrate the simulation of radio in MATLAB, a sample input

signal was modulated and demodulated using the MATLAB code. The code was

generated using the mathematical equations of AM. The output was viewed on the virtual

oscilloscope as well as verified audibly with the PC sound card. The next step was to

implement the radio on hardware. AccelDSP was chosen to create the relevant Hardware

Description Language (HDL) from the MATLAB code. Though it is a MATLAB-based

hardware synthesis tool, it requires the code to be written in a special way. Some of the

MATLAB functions are not supported directly in AccelDSP. The MATLAB design to be

synthesized should have a script file and a function file. Basically, the script file must

have a streaming loop which calls for the function file. The function file should have all

the functions and equations to be performed in the input file. The main disadvantage of

this style of design is that it takes only one input sample at a time and performs the

functions with it. Thus, it takes more time to simulate the code. The simulation and HDL

generation process for AM radio modulation is explained in detail below.

19

Figure 3.1 AccelDSP process flow

In Figure 3.1, above, the process flow of using AccelDSP is shown. The first step

was to check the output of the AM radio modulation part with MATLAB. The code

created using MATLAB was according to the AccelDSP style guidelines. The script code

for AM modulation is shown in Figure 3.2 below [Appendix A.2].

%Call the function for hardware

for i = 1:max(size(input_data))

y(i)=AMTRANSMIT(input_data(i),Fs,t(i));

end

Figure 3.2 AM modulation AccelDSP script code

20

As it is seen in Figure 3.2, the code has a streaming loop which uses a “for” loop

to call the function that will be compiled to a hardware design. In our case, the called

function is AMTRANSMIT. The function created was

Function

outdatabuf=AMTRANSMIT(indatabuf,Fs,t)

%Signal Frequency

Wm = 2*pi*Fs;

%Carrier Frequency

Wc = 2*pi*500000;

%Amplitude Modulation

F1=Wc*t; F2=(Wc+Wm)*t; F3=(Wc-Wm)*t;

c1=sin(F1); c2=sin(F2); c3=sin(F3);

c=c2+c3;

outdatabuf=c1 + (indatabuf/2) * c;

Figure 3.3 AM modulation AccelDSP function file

 The function file, shown in Figure 3.3 [Appendix A.2], implements the basic AM

modulation function which is

 y(t) = [A + m(t)] * c(t)

where, carrier frequency c (t) is given by

c(t) = C cos(ωct + ϕc)

and message signal m(t), is given by

m(t) = M cos(ωmt + ϕm)

A and C are constants and generally their value is 1. M is also a constant which represents

the largest magnitude of the message signal.

21

The function AMTRANSMIT generates the signal frequency, m(t), and the carrier

frequency c(t). It then adds a constant to the modulating signal and multiplies it with the

carrier wave. The values of function parameters are passed one by one in the main script

file.

 The output result of the MATLAB floating point model was verified. The next

step was to create an AccelDSP project. The MATLAB code for AM modulation was

invoked as a script file. By using the ‘Verify floating point model’ function of AccelDSP,

the MATLAB code was simulated. Then the floating point model was analyzed and all

the streaming loop and top-level design functions were identified. By clicking on the

option of ‘Generate fixed point model’, the design loop function is invoked and files

which are to be synthesized into hardware are generated.

The final step is to generate RTL design. This process generates either VHDL or

Verilog HDL code in a folder which has the HDL files and associated testbench files.

Also, an RTL report is generated which displays the simulation information. This process

is depicted in Figure 3.4.

22

Figure 3.4 AccelDSP window with RTL report for AM modulation

After the generation of HDL, the code has to be downloaded on the hardware

board with the use of the Xilinx ISE tool suite. HDL descriptions for AM radios were

generated using AccelDSP.

23

3.5.2 AM radio with Simulink:

Figure 3.5 AM radio using Simulink

Figure 3.5 shows the design for AM radio receiver created in Simulink. This

design uses envelope detection to generate the output signal. The envelope detection

circuit detects the amplitude variations of the incoming signal and produces an output

signal. The positive and negative peaks of the output signal look like they are enclosed in

an envelope hence the name envelope detection. Essentially the envelope detector circuit

uses a half wave rectifier, which consists of a diode, a resistor, and a capacitor, to filter

the incoming signal. As can be seen from the figure, the input is a .mat file. The

modulation design writes the RF output samples to a .mat file. It can be accessed from

MATLAB workspace. The output of the demodulator circuit is exported to the

workspace.

Simulink uses a graphical dataflow to represent each function hence making it

easier for the user to design. In this project, the input used was the actual radio input from

a radio station. The three AM stations present in the data, which was obtained by digitally

sampling an actual antenna, were 647 KHz, 623 KHz, and 713 KHz [Appendix A.1]. The

aim of the experiment was to detect and demodulate the strongest signal among the three

24

stations, which in this case is 623 KHz. Figure 3.6 shows the Fast Fourier Transform

(FFT) representation of the input radio stations.

Figure 3.6 FFT of input radio stations

The ‘Digital Filter Design1’ block in Figure 3.5 is used to select a particular radio

station and filter out others. This design uses squaring and low pass filtering for envelope

detection. The peaks of the input signal are identified and recovered using a bandpass

filter with a pass-band of 0.45ω to 0.47ω, where ω is the Nyquist frequency. After

filtering the required station, the signal is squared, and then multiplied by a constant gain

of 2. The signal is then down-sampled by a factor of 20. Since, the signal was up-sampled

by a factor of 20; the same factor is used for down-sampling. The signal is then passed

through a low pass filter with a pass-band of 0.45ω and a stop-band of 0.55ω. The

25

envelope detector connects all the peaks of the modulating signal together. With the

simulation of the design, actual radio stations were recovered. Figure 3.7, below, shows

the input and output plots.

(a) (b)

Figure 3.7 Input plot (a) and Output plot (b) of AM demodulation with Simulink

As per Figure 3.7 (b), the output of AM demodulation represents a similar pattern

to that of the input modulating signal shown in Figure 3.7 (a). The output signal was

played on the computer and was verified with the input signal.

 Though all the design methods yield the same results, System Generator was

found the most suitable for this project. Since all the blocks could be dragged and

dropped, designs were created with ease. On the other hand, separate script file and

function files have to be created while using AccelDSP which made it a little time

consuming. The simulation time in System Generator was also less compared with the

simulation time in AccelDSP. The procedure of programming the FPGA board was also

26

simpler while using System Generator. Since AccelDSP is becoming obsolete, System

Generator was selected for efficient programming of FPGAs.

27

Chapter 4

Hardware Platform Comparison

Field programmable gate arrays (FPGAs) are a flexible and cost-effective choice

for implementing digital radio components such as digital receivers. With the addition of

high performance DSP resources, their inherent flexibility have enabled FPGAs to be

used for commercial, military and industrial software radio applications. There are a

number of FPGA- based hardware platforms available for implementing software defined

radios. This chapter compares the most commonly used USRP board with the Spartan 3E

Starter Kit board frequently used in electrical and computer engineering curricula.

4.1 USRP Board

The Universal Software Radio Peripheral (USRP), shown in Figure 4.1, is a data

acquisition board containing several distinct sections [10]. It enables the user to rapidly

design and implement software radio systems. Since the USB cable operates at a

maximum rate of 480 million bits per second (Mbps), the FPGA must process the signal

from the ADC to reduce the data rate before sending it to the computer over the USB

connection. Similar processing must occur in the transmit path. For instance, an actual

FM radio station operating at 200 Mhz with 8 samples per cycle will have a sampling rate

of 1.6 Gbps which is very high compared with the USB data transfer rate.

The USRP provides several functions: digitization of the input signal, digital

tuning within the IF band, and sample rate reduction before sending the digitized

baseband data to the computing platform via the USB interface. It provides the opposite

processing functions for the transmit path.

28

Features of USRP:

• Four 64 MS/s 12-bit analog to digital Converters

• Four 128 MS/s 14-bit digital to analog Converters

• Four digital downconverters with programmable decimation rates

• Two digital upconverters with programmable interpolation rates

• Capable of processing signals up to 16 MHz wide

• Modular architecture supports wide variety of RF daughterboards which

could be basic RX boards, basic TX boards or Transceivers. The

frequency range for TX and RX boards depends upon the applications.

• Fully coherent multi-channel systems which are Multiple Input Multiple

Output (MIMO) capable

As seen in Figure 4.1, the first version of the USRP motherboard can host several

daughterboards which can implement different signal processing blocks. The board

shown in the figure has two transmitter and two receiver daughterboards and an Altera

FPGA chip on board.

29

Figure 4.1 USRP board with daughterboards

4.2 Spartan 3E Starter Kit Board

The Xilinx Spartan 3E Starter Kit Board provides a powerful and highly advanced

self-contained development platform for different hardware designs [17]. It features a

500K gate Spartan 3E FPGA with multiple external memories. A 32 bit Reduced

Instruction Set Computer (RISC) can also be implemented inside the FPGA.

The board also features a Xilinx Platform Flash memory, USB and JTAG parallel

programming interfaces with numerous FPGA configuration options via the onboard Intel

Strata Flash and ST Microelectronics Serial Flash memory. The board is fully compatible

with all versions of the Xilinx ISE tools including the free WebPack. The Spartan 3E

Starter board is also compatible with the MicroBlaze Embedded Development Kit (EDK)

and the PicoBlaze from Xilinx. The MicroBlaze processor has a 32-bit pipelined RISC

30

architecture. It has local on-chip block Random Access Memory (RAM) and can perform

up to 102 Dhrystone Million Instructions Per Second (D-MIPS) at 150 Mhz. The

PicoBlaze processor is an 8 bit microcontroller with RISC architecture. It can perform up

to 100 MIPS. The Peripheral Modules (PMODs) used in this project are ADC

57476MSPS which has two 12 bit ADC chips. The maximum cut off frequency for the

filters used is 500 Khz. The DAC used is DAC 121S101 which has two 12 bit resolution

DACs which can work simultaneously. They consume less power as well

Figure 4.2 Spartan 3E Starter Kit Board

Features and components of Spartan 3E:

• Xilinx XC3S500E Spartan-3E FPGA

• Xilinx 4 Mbit Platform Flash configuration PROM

• 64 MByte (512 Mbit) of DDR SDRAM, x16 data interface, 100+ MHz

31

• 16 MByte (128 Mbit) of parallel NOR Flash (Intel StrataFlash) memory

• 2-line, 16-character LCD screen

• PS/2 mouse or keyboard port

• VGA display port

• 10/100 Ethernet connection

• Two serial ports

• Three Digilent 6-pin PMOD expansion connectors.

• Four-output, Serial Peripheral Interface (SPI)-based Digital-to-Analog

Converter (DAC). It has 12-bit unsigned resolution.

• Two-input, SPI-based Analog-to-Digital Converter (ADC) with

programmable-gain pre-amplifier. It has a 14-bit output. The maximum

sample rate supported by ADC is 1.5 Mhz.

Below is the comparison table between USRP boards and Spartan 3E Starter Kit board

Table 4.1 USRP versus Spartan 3E Starter Kit comparison

Parameter USRP Spartan 3E Starter Kit

ADC resolution 12 bit 12 bit

DAC resolution 14 bit 12 bit

ADC speed 64 Msamples/sec 1.5 Mhz

DAC speed 64 Msamples/sec 50 Mhz

Input 4 channels 232 user I/O pins + 2

channels of ADC

Output 4 channels LCD, VGA, 232 user I/O,

and 2 channels of DAC

Memory N/A Multiple memories

Connectivity USB 10/100 Ethernet

Additional ports N/A Serial port

Cost $2000 (approx) $160

License cost Free Free for educational

institutes

Additional hardware Yes, daughterboards Yes, PMOD boards

32

In this project, the hardware for the radio is generated on a Spartan 3E starter

board. As it is used for an educational research purpose, the license for the students is

free. Also, as it can be seen from the table above, the cost of the board is significantly

cheaper than the USRP board and there is no need for additional hardware as well.

As mentioned in the previous chapters, there are a number of SDR projects which

are used at universities for educational and research purpose. Below is the comparison

table for those projects.

Table 4.2 SDR projects comparison

Project OSSIE [11] SDR4All

[13]

WARP [15] SDR

transceiver

[14]

SDR using

Spartan3E

Hardware USRP / Beagle

Board

USRP and

sound card

FPGA /

Virtex 2 Pro

USRP Spartan3E

Software C++, CORBA

ORB

VHDL, C,

Assembly

System

Generator

Python System

Generator

Application Radios,

wireless

communication

Wireless

data transfer

applications

Radios,

wireless

applications

HF

transceiver,

Digital voice

modes

AM / FM

radios,

communication

lab experiments

Additional

hardware

requirements

Daughterboard Daughter-

board

Radio board,

Clock board

Daughter-

board

N/A

Cost (in $) 1200 (approx) 1200

(approx)

2000

(approx)

1200

(approx)

160

As mentioned earlier, the project focuses on an educational research purpose.

Some universities which are using the Spartan3E board for their courses are mentioned

here [19], [21], [22], [23]. Texas A&M University is using the Spartan 3E for simple

33

arithmetic operations on an FPGA for image decoding and processing. The course

offered in digital design and embedded systems at Virginia Tech also makes use of the

Spartan 3E board. The digital systems course offered at Rose Hulman Institute of

Technology uses a Spartan 3E board for Finite State Machine (FSM) design and other

projects like traffic light controller and elevator controller [20].

The Spartan 3E FPGA board was selected as a preferred platform for this project

as it is cheaply available, widely supported, and most commonly used for undergraduate

courses. The PMODs used with the board were also very inexpensive and most suitable

for basic radio designs. The board could be programmed using the Xilinx ISE design

suite. It was also available for free hence reducing the cost of the project even more.

34

Chapter 5

Lab Experiments and results

This chapter discusses the lab experiments done for the project and their results.

The designs were created in System Generator and the output was observed on the

Spartan3E board as well as on the oscilloscope. Two experiments are described in this

chapter. The AM modulation is the analog modulation technique where as Amplitude

Shift Keying (ASK) modulation is digital.

5.1 Experiment 1: Amplitude Modulation (AM)

ENGR 471 Lab 1

Title: Amplitude Modulation

Objective: To create a design for AM modulation in System Generator and

implement it on Spartan 3E FPGA.

Equipment: Xilinx Spartan 3E Starter Board Kit

 Oscilloscope

 PMODs: ADC and DAC

Parts: Oscilloscope probes

 Alligator clips

Procedure:

1. Refer to the System Generator instructions before creating your design [25],

[Appendix A.3].

35

2. Use Xilinx blockset for your design. Use a 10 KHZ carrier signal. The input to

the DAC must be 12-bit. Use System Generator instructions to configure the input

and output PMODS.

3. Use the ADC module to input the message signal into your design. Use the DDS

module to create a carrier signal. Use the DAC module as the output port.

4. Run the simulation in Simulink and plot the results. Download the design on the

hardware board and verify the results in hardware using the oscilloscope.

5.2 Experiment 1 Results

Figure 5.1 AM modulation in System Generator [24]

As shown in Figure 5.1, the modulating signal is given to the input PMOD

(ADC). The carrier wave is generated using the Direct Digital Synthesizer (DDS)

compiler block. It generates sinusoidal frequencies with the desired frequency. This block

is a part of the Xilinx Blockset used with System Generator. The input signal and carrier

36

signals are shown in Figure 5.2 and Figure 5.3 respectively. Multiplier and adder blocks

implement the AM modulation equation. The 12 bit conversion module is used to make

the output of the adder compatible with the DAC resolution. The output PMOD (DAC)

gives a 12-bit output which is plotted and is shown in Figure 5.4.

Figure 5.2 Modulating signal

Figure 5.3 Carrier signal

Figure 5.4 Modulated signal observed with System Generator

37

Figure 5.5 Modulated signal on oscilloscope

The design was simulated in System Generator and waveforms were observed.

The design was then downloaded to the Spartan 3E board using Xilinx iMPACT. The

output was observed on an oscilloscope which is shown in Figure 5.5. Both the outputs

were compared.

5.3 Experiment 2: Amplitude Shift Keying (ASK)

ENGR 471 Lab 2

Title: Amplitude Shift Keying Modulation

Objective: To create a design for ASK modulation in System Generator and

implement it on Spartan 3E FPGA.

Equipment: Xilinx Spartan 3E Starter Board Kit

 Oscilloscope

 PMODs: ADC and DAC

Parts: Oscilloscope probes

38

 Alligator clips

Procedure:

1. Refer to the System Generator instructions before creating your design [25],

[Appendix A.3].

2. Use the Xilinx blockset for your design. Use on-board ADC and DAC modules

for your design.

3. Use the Bernoulli Binary Generator module for the binary input in your design.

Use the Sine-wave generator module for the other input in your design. Use the

Multiplexer module for logically integrating all the inputs.

4. Run the simulation in Simulink and plot the results. Download the design on the

hardware board and verify the results in hardware using an oscilloscope.

5.4 Experiment 2 Results

Figure 5.6 ASK modulation [24]

39

The design shown in Figure 5.6 represents ASK modulation. The input given to

the PMOD is binary. The other input is a sine wave acting as a carrier. The inputs given

to the multiplexer are a binary signal, a sine wave and a sine wave multiplied by a

constant 2. The output of the multiplexer is given to the output PMOD. The output

observed on virtual scope after simulation is shown in Figure 5.7.

Figure 5.7 ASK modulated signal

As can be observed from the output plot, ASK modulation works like an on-off

switch. The amplitude of input sine wave is changed in accordance with the binary input

stream. The frequency and phase of the signal is unchanged. If the binary input is logic 0,

the carrier amplitude reduces and when the binary input is logic 1, the carrier amplitude is

increased.

 Both the experiments were carried out successfully in the lab by using System

Generator. The designs were downloaded on the Spartan 3E board and the output was

observed.

40

Chapter 6

Conclusion

The aim of this thesis is to define an educational Software Defined Radio

platform for students using a low cost FPGA board. The initial task evaluated existing

educational SDR projects used in universities. The Spartan 3E Starter Kit Board was

chosen over the USRP boards because it required the least amount of external peripherals

to implement the radios. It was also suitable not only for SDRs but also for other signal

processing applications making it suitable for use in other engineering courses. Also, the

board was very cost effective, which was an advantage. Design entry methods like

AccelDSP and System Generator were considered and compared. With the ease of use in

creating a design and model based graphical approach, System Generator was preferred

to carry out the experiments.

Successful efforts were made in designing AM radios, primarily, using MATLAB

and AccelDSP. All the designs were simulated and the outputs were found to be

satisfactory. Newer approaches were used to design a basic AM radio at the later part of

the project. Software like Simulink and System Generator were used to create a graphical

model of the radios. The designs were simulated and were implemented on a Spartan 3E

FPGA board.

The results observed were satisfactory. System Generator was chosen as a design

entry method as it enabled easy design and programming of the FPGAs with its model-

based design approach and graphical environment. Also, there was no cost for license to

use the software as it was used in a university which made the overall cost for the project

about $160.

41

Bibliography

[1]. Software Defined Radio Forum. “About SDR”,

 http://www.sdrforum.org/

[2]. Harris, F., and Lowdermilk, W., “Software Defined Radio,” IEEE Instrumentation

and Measurement magazine, Feb. 2010.

[3]. Wipro Technologies, “Software-Defined Radio white paper,” Aug. 2002.

[4]. SDR Forum, “All about SDR,”

 http://www.wirelessinnovation.org/

[5]. Mitola, J., “Software Radio Architecture,” Wiley-Interscience, 2000.

[6]. EMONA tims, “About tims,”

 http://www.tims.com.au/

[7]. Free Software Foundation Inc., “GNU Operating System,”

 http://www.gnu.org/

[8]. Blossom, E., “GNU radio: tools for exploring the radio frequency spectrum,” Linux

Journal, v.2004 n.122, p.4, June 2004

[9]. High Performance Software Defined Radio: An Open Source Design, “Introduction,”

 http://openhpsdr.org/

[10]. Ettus Research LLC, “USRP Family,”

42

 http://www.ettus.com/products

[11]. Dietrich, C., Reed, J., Edwards, S., and Kragh, F., “Experiences from the OSSIE

Open Source Software Defined Radio Project,” Open Source Business Resource, March

2010.

[12]. Open SDR, “Beagle Board SDR,”

 http://opensdr.com/node/10

[13]. Cardoso, L., Azarian, S., Jallon, P., and Debbah, M., "SDR4all: Software Defned

Radio Made Easy", 6th Karlsruhe Workshop on Software Radio 2010, Germany.

[14]. Geeknet, Inc., “Source Forge: SDR based radio transceiver project,”

 http://sourceforge.net/apps/mediawiki/sdr/index.php?title=Main_Page

[15]. WARP, “Open access WARP repository,”

 http://warp.rice.edu/

[16]. University of Tennessee at Chattanooga, “Electrical Engineering: Laboratories,”

 http://www.utc.edu/Academic/ElectricalEngineering/laboratories.php

[17]. Xilinx, “Products and Services: Design Tools,”

 http://www.xilinx.com/tools/designtools.htm

[18]. Mathworks, “Products for technical computing,”

 http://www.mathworks.com/products/

43

[19]. Texas A&M University, “Department of Electrical and Computer Engineering,”

 www.ece.tamu.edu/~reu/abstracts2007/DanMalcolm.ppt

[20]. Rose Hulman Institute of Technology, “Electrical & Computer Engineering

Department,”

 http://www.sefi.be/wp-content/abstracts/1013.pdf

[21]. Oregon Health and Science University, “Department of Science and Engineering,”

 www.ogi.edu/graduate_edu/syllabi/08_Winter_EE_571_671_.pdf

[22]. Oklahoma State University, “School of Electrical and Computer Engineering,”

 http://ecen3233.okstate.edu/Fall%202009/labs/Lab04.pdf

[23]. Virginia Tech, “Electrical and Computer Engineering,”

 http://www.ece.vt.edu/cel/Kits/ECE-Lab-Kits.html

[24]. Patel, T., “Implementation of Software Defined Radio on FPGA using System

Generator,” Master’s Thesis to University of Tennessee at Chattanooga, April 2010.

[25]. Norwood, D., “System Generator Instructions,” Tutorial for System Generator,

University of Tennessee at Chattanooga, December 2009.

[26]. Murphy, P., Sabharwal, A., and Aazhang, B., "Design of WARP: A Flexible

Wireless Open-Access Research Platform," in Proceedings of EUSIPCO, 2006.

44

[27]. Cardoso, L., Lacerda, R., Jallon, P., and Debbah, M., “SDR4ALL: A Tool for

Making Flexible Radio a Reality,” COGnitive Systems with Interactive Sensors, Paris,

France, 2009.

45

Appendix

A.1 MATLAB code for AM modulation:

%%%
% AM demodulation
% Requires file 'hr_600khz_256_complex.dat'
%%%

% Data is part of AM radio spectrum captured from antenna.
% Sample rate is 256kHz
% 600kHz RF downconverted to 0Hz in file
% 728kHz RF downconverted to 128kHz in file

% Three AM stations are present in the data:
% 647 kHz
% 623 kHz -- Strongest
% 713 khz

% Read in data -- data is complex (I and Q channels)
fid = fopen('hf_600khz_256_complex.dat','r','ieee-le');
readSize = [2,inf];
[array,readCount] = fread(fid,readSize,'single');

% Ignore Q channel, just use I
iCap = array(1,:);

n = [1:max(size(iCap))];

% Take FFT of data
iCap_fft = abs(fft(iCap));
% Find strongest station
[peak, index] = max(iCap_fft);

fft_size = max(size(iCap_fft));
% Find frequency, in terms of Nyquist rate, of strongest station
freq = index / (fft_size / 2);
% Create Sine wave to use as down converter source
mySin = sin(pi()*(n*freq) - pi()/2);
signal = iCap;

figure
plot(abs(fft(iCap)))
title('Original Spectrum')

% Bring strongest station back to baseband
% This is Phase Detection! Phase Detection requires phase alignment of
% carrier and down converter. Because we do not have perfect phase
% alignment, the resulting audio will fade in and out. Envelop

detection
% would avoid this.
baseband = mySin.*signal;

figure

46

plot(abs(fft(baseband)))
title('Baseband Spectrum')

% Now we filter the signal in stages to remove everything except our
% station. After each filter we downsample to reduce the sample rate.
% When we are done, the sample rate will be in the audio range.

% Filter with Low Pass Filter (LPF)
% 10 kHz signal, 128 kHz Nyquist
% Want Cut Off Frequency (fco) to be 10/128 = 0.0781
h1 = firpm(72,[0 .06 .07 1],[1 1 0 0]);
bb_fir1 = filter(h1, 1, baseband);

figure
plot(abs(fft(bb_fir1)))
title('Filter #1 Spectrum')

% Downsample
% 256k samples/sec input
% 64k samples/sec output
bb_fir1_dec1 = downsample(bb_fir1, 4);

figure
plot(abs(fft(bb_fir1_dec1)))
title('Filter and Dec #1 Spectrum')

% Filter with LPF
% fco = 0.3
h2 = firpm(72,[0 .3 .4 1],[1 1 0 0]);
bb_fir2_dec1 = filter(h2, 1, bb_fir1_dec1);

% Downsample
% 64k samples/sec input
% 16k samples/sec output
bb_fir2_dec2 = downsample(bb_fir2_dec1, 4);

norm_factor = max(bb_fir2_dec2);
bb_fir2_dec2_norm = bb_fir2_dec2 / norm_factor;
wavwrite(bb_fir2_dec2_norm, 16000,16, 'strong_station')

47

Appendix A.2

AccelDSP code for AM modulation in MATLAB:

Script file:

close all
clear all
clc

[input_data Fs]=wavread('Bugs.wav');

t=0:1/Fs:4.6;
t=t(1:max(size(input_data)));

%Call the function for hardware
for i = 1:max(size(input_data))
 y(i)=AMTRANSMIT(input_data(i),Fs,t(i));
end

figure
plot(y);

% fd=fopen('AM_Modulated_bugs.txt','w');
% fprintf(fd,'%12.8f\n',y);
% fclose(fd);

Function file:

 function outdatabuf=AMTRANSMIT(indatabuf,Fs,t)

%Signal Frequency
Wm = 2*pi*Fs;
%Carrier Frequency
Wc = 2*pi*500000;

%Amplitude Modulation
F1=Wc*t;
F2=(Wc+Wm)*t;
F3=(Wc-Wm)*t;
c1=sin(F1);
c2=sin(F2);
c3=sin(F3);

c=c2+c3;

outdatabuf=c1 + (indatabuf/2) * c;

48

Appendix A.3

System Generator instructions [25]:

NOTE: In order to use the “black box” within system generator, the system

generator model must be saved in the same directory as the Verilog code. The

instructions below will account for this necessity.

1. Create a new folder in a directory of your choice with the exception of the
desktop

2. Copy and paste da2.v and ad_ref.v (see links below for path) in the new folder
from step 1

3. Within the folder created in step 1, create another folder and name it “test”
4. Copy and paste da2.v and ad_ref.v in the folder named “test”
5. Open Matlab
6. Once Matlab is open, open Simulink
7. Once Simulink is open, create a new model
8. Save the new model from step 7 in the new folder that was created in step 1

a. Do not name the model using Xilinx or Matlab instructions (e.g. input, fft,
filter, max, etc, should not be used; be original)

9. Expand the “Xilinx Blockset” library and click on “Basic Elements”
10. Within the “Basic Elements” library, drag and drop the “System Generator” block

in the new model created in step 7
11. Double-click on the System Generator block that was placed in step 10
12. Change the parameters of the System Generator block to match those in figure 1

49

Figure 1: System Generator Parameters

13. Click the Apply button
14. Click the OK button (System Generator properties closes)
15. Drag and drop the “Black Box” block in the system generator model

a. A window will open prompting the user to, “Select the file that contains
the entity description for the black box.”

b. The default directory will be the folder created in step 1
c. The user should see the da2.v and ad_ref.v files that were copied and

pasted in step 2

16. Click on ad_ref.v and then click the Open button
17. Repeat step 15

50

18. Click on da2.v and then click the Open button
a. The user can adjust the sizes of the black boxes to their preference

19. Drag and drop one “Gateway In” block and two “Gateway Out” blocks from the
“Basic Elements” library into the new model

20. Connect the “Gateway In” block to the j2_in port on the black box
21. Connect one of the “Gateway Out” blocks to the j2_out port and the other block

to the j1_out port on the black boxes
22. Rename the “Gateway In” and “Gateway Out” ports to the names of the ports they

are connected to
a. Double-click on the text label “Gateway In” or “Gateway Out”
b. Rename accordingly

23. Verify steps 17-20 by using figure 2

Figure 2: Basic System Generator Model with Black Boxes

24. Double-click on the j2_in “Gateway In” port and change the settings to match
those in figure 3

25. Double-click on the j2_out “Gateway Out” port and change the settings to match
those in figure 4

51

26. Double-click on the j1_out “Gateway Out” port and change the settings to match
those in figure 5

Figure 3: j2_in Properties for ADC

52

Figure 4: j2_out Properties for ADC

53

Figure 5: j1_out Properties for DAC

27. Based on your application, place blocks from the Xilinx Blocksets in the system
generator model and connect them between the ‘a2d_data’ port and ‘daval’ port

Generate .bit file to download to FPGA:

1. Double-click on the “System Generator” block within the simulink model
2. Click the “Generate” button (time to complete depends on application)
3. …<folder_from_step1>\netlist\<model_name>_cw.bit
4. Download .bit file to FPGA (multiple ways to do this…more to come)
5. Batch file created to automate this procedure

a. Must change <filename> manually before running
b. Must move batch file to directory of .bit file

54

NOTE: The output and input of the ‘a2d_data’ port and ‘daval’ port is unsigned

12-bit (values ranging from 0-4095). Moreover, the input to the PMOD A/D1

module should be between 0-3.3VDC.

