
THE DEVELOPMENT OF AN ALL QUADRILATERAL

BOUNDARY CONFORMING GRID GENERATOR FOR HIGH

ORDER FINITE ELEMENT METHODS

By

Mary Barker

Lafayette K. Taylor
Professor of Computational Engineering
(Chair)

Steve L. Karman jr.
Professor of Computational Engineering
(Committee Member)

James C. Newman III
Professor of Computational Engineering
(Committee Member)

Kidambi Sreenivas
Professor of Computational Engineering
(Committee Member)

THE DEVELOPMENT OF AN ALL QUADRILATERAL

BOUNDARY CONFORMING GRID GENERATOR FOR HIGH

ORDER FINITE ELEMENT METHODS

By

Mary Barker

A Thesis Submitted to the Faculty of the University of Tennessee
at Chattanooga in Partial Fulfillment of the Requirements

of the Degree of Master of Science: Engineering

The University of Tennessee at Chattanooga
Chattanooga, Tennessee

December 2015

ii

Copyright c© 2015

By Mary Barker

All Rights Reserved

iii

ABSTRACT

A grid generator is developed that produces all quadrilateral meshes. The scheme is au-

tomated to work for arbitrary choice of geometry. In addition, a Non-Uniform Rational B-Spline

curve fitter is implemented to replicate the curvature of the geometries. The grid elements on the

boundaries conform to the curved structure to support high order accuracy for a finite element

scheme.

Various geometries are used to test the robustness and generality of the meshing algorithm.

The initial problems that were encountered are discussed and the solutions explained. The speed

of the algorithm is discussed together with the effect of grid and geometry size on runtime.

A finite element solver is used to validate the grids. The order of accuracy of the scheme is

demonstrated for quadrilateral grids and increased order is compared with a refined grid study.

iv

DEDICATION

This work is dedicated to my Parents, William and Prudence Barker, and to my sisters

Heidi and Heather, who made it fun.

v

ACKNOWLEDGEMENTS

I would like to thank my thesis advisor Professor Lafayette Taylor for his patience, en-

couragement and unending help during this process. Also I am deeply grateful to Arash Ghasemi

for many stimulating discussions and helpful ideas. Without their help this work would not have

succeeded.

vi

TABLE OF CONTENTS

ABSTRACT.. iv

DEDICATION ... v

ACKNOWLEDGEMENTS .. vi

LIST OF TABLES .. ix

LIST OF FIGURES ... x

CHAPTER

1. INTRODUCTION ... 1

2. PREVIOUS EFFORTS AT QUADRILATERAL MESH GENERATION.......................... 3

3. GRID GENERATION ... 5

3.1 Boundary Curves ... 5
3.1.1 Mathematical Formulation for NURBS Curve .. 6
3.1.2 Quality Metric for Curve Fitting.. 10

3.2 Grid Generator ... 12
3.3 Grid Test Cases .. 21

3.3.1 Multiple Curves and Geometries ... 21
3.3.2 Buffer Layer Creation .. 24

3.4 Time Study... 27

4. SIMULATIONS UTILIZING HIGH ORDER CURVED BOUNDARY
DISCRETIZATION AND THE FINITE ELEMENT METHOD 30

4.1 Overview of Integration Technique ... 30
4.2 Weak Formulation.. 34
4.3 Circular Waveguide Applications .. 36

vii

4.4 Higher Order Elements .. 43

5. EXAMPLES ... 50

5.1 Order of Accuracy ... 50
5.2 Refinement Studies for a Finite Element Solver.. 54

6. CONCLUSION AND FUTURE WORK .. 63

APPENDIX

A. GEOMETRIES FOR NURBS CURVE FITTING .. 65

B. RUNTIME ANALYSIS ... 70

REFERENCES .. 75

VITA .. 77

viii

LIST OF TABLES

3.1 Errors for NURBS Curve Fitting Various Numbers of Points... 10

3.2 Error for NURBS Curve Fitting Various Geometries .. 11

3.3 Error for NURBS Curve Fitting Circles Geometry ... 23

3.4 Mesh Statistics for Circles Geometry .. 24

3.5 Mesh Statistics for NACA 0012 Airfoil... 25

3.6 Mesh Statistics for 30P30N Airfoil ... 27

3.7 Average Run Times for given Mesh Size... 28

5.1 Runtimes for p refinement study.. 61

5.2 Runtimes for h refinement study.. 61

ix

LIST OF FIGURES

3.1 Effect of control points in NURBS formulation .. 7

3.2 Interpolating points and control points .. 8

3.3 Grid generation process ... 12

3.4 Flowchart of grid generating algorithm ... 13

3.5 Line intersection test .. 16

3.6 Line segment with multiple intersections .. 17

3.7 Deletion process resulting in unconnected interior node... 18

3.8 Example of a problematic boundary.. 18

3.9 Conforming grid lines: geometry extent.. 19

3.10 Conforming grid lines: geometry orientation .. 20

3.11 Best choice for point connection ... 21

3.12 Test case involving multiple geometries and multiple boundary curves for each ge-
ometry .. 22

3.13 Different connectivity options for buffer layer quadrilaterals.. 25

3.14 30P30N airfoil with coarse mesh .. 26

3.15 30P30N airfoil with fine mesh ... 26

3.16 Time taken to generate meshes for three trial geometries of varying size......................... 29

4.1 Chebyshev points ... 31

x

4.2 Chebyshev point distribution for physical rectangle and ideal distribution....................... 32

4.3 Concentric circles mesh with higher order point distribution.. 33

4.4 Smile mesh with higher order point distribution ... 34

4.5 Mesh For Circular Waveguide Solutions ... 39

4.6 Solutions to Helmholtz equation for transverse magnetic mode TM31 40

4.7 Error for computed Helmholtz equation for transverse magnetic mode TM31 41

4.8 Solutions to Helmholtz equation for transverse magnetic mode TM61 42

4.9 Error for computed Helmholtz equation for transverse magnetic mode TM61 43

4.10 Difference between solution quality for higher and lower order elements 44

4.11 Field components for rectangular waveguide using transverse electric Maxwell’s
equations .. 45

4.12 Error for magnetic field component computed with increasing orders of accuracy 47

4.13 Error of magnetic field distribution with respect to grid size .. 48

5.1 Solution to Laplace equation ... 52

5.2 Meshes with varying coarseness for error analysis.. 53

5.3 Error study for Laplace equation ... 54

5.4 NACA 0012 geometry ... 55

5.5 Potential flow solution ... 56

5.6 Mesh used for p-refinement ... 57

5.7 Effect of p refinement on Cp .. 58

5.8 Element order compared for different grid sizes.. 58

5.9 Effect of h refinement on Cp .. 59

xi

5.10 Effect of h refinement on Cp with lower order elements ... 60

xii

CHAPTER 1

INTRODUCTION

The purpose of this research is to create an algorithm that will generate two dimensional

unstructured grids composed entirely of quadrilateral elements. The grid conforms to curved

boundaries to increase accuracy for high-order spacial discretizations. A Non-Uniform Rational B-

Spline (NURBS) formulation for approximating boundaries is implemented and curved elements

are stored in order to evaluate the edges of quadrilaterals that fall on a boundary.

Higher order Finite Element solution algorithms promise increased accuracy and profoundly

higher convergence rates when compared with more traditional finite volume formulations. How-

ever, the convergence rate of these algorithms is highly dependent upon element type, particularly

the preponderance of quadrilaterals in two dimensions and hexahedrons in three dimensions rather

than triangles and tetrahedra, pyramids and prisms respectively. These meshes are considerably

more difficult to create for complex geometries than mixed element meshes, and more prone to

skewed or otherwise badly shaped elements. The manual construction of quadrilateral grids is the

best method for ensuring quality control of meshes. However, it is also time consuming and of-

ten requires painstaking effort to create. Thus a quadrilateral mesh generator that can account for

highly curved and irregular geometries is required.

The objectives for the research are speed, robustness, computational efficiency and gener-

ality. Speed is an important objective as the reason for automating the grid generation process is to

1

ease the solution process. Manual mesh generation is the best way of creating quality meshes and

therefore a more time efficient method is desired. As the mesh will be used in conjunction with a

finite element solver, speed and memory consumption are two important considerations. The more

global importance of generality is also considered. The grid generator must be capable of creating

valid meshes for any geometry. In addition, the quality of those meshes must be such as to validate

the automated process. The best way to ensure a quality mesh is to create it manually, but a mesh

generator capable of creating quality meshes without input is highly desirable.

2

CHAPTER 2

PREVIOUS EFFORTS AT QUADRILATERAL MESH GENERATION

The attempt to automate all-quadrilateral mesh generation is not a new undertaking. There

is a wide array of methods that have been implemented for structured and unstructured meshes.

Several methods for generating quadrilateral grids, as described in [1], [2] and [3] begin by

first initializing the domain with a triangular mesh and then combining triangles by some method

into quadrilaterals. This technique is very robust and creates meshes where every element has

nonzero area, however the resulting meshes are predominately made up of very poor quality ele-

ments that may require a great deal of smoothing in order to achieve optimum results. Also, this

scheme is not highly efficient apart from the need for a smoothing algorithm since it requires the

construction of two meshes in order to achieve one.

Another common grid generating procedure is first to subdivide the given domain into sim-

ple subsets or patches that are connected sets, and then to generate quadrilateral grids for each

patch using a simple interpolation, or in the case of [4], a more advanced shape-decomposition

technique. Although this method generally ensures good quality meshes, the complexity of an

algorithm capable of implementing such a scheme is beyond the scope of this project. The stipula-

tion that the borders between patches have the same number of nodes together with the variety of

ways of dividing the overall domain into patches require specific geometric user input.

3

Many methods that have been developed for quadrilateral mesh generation involve the cre-

ation of an overlay Cartesian mesh that spans the entire domain. The main difference between these

methods is the algorithm used to introduce and join the geometry into the mesh. Of these, there

are hierarchical cases where a quadtree method is used to decompose the domain into quadrilater-

als and sub-quadrilaterals based upon boundary curvature [5]. Druyor implements a hierarchichal

method where the overlay mesh is successively refined as the elements are closer to the bound-

aries [6]. The mesh is then ‘grown’ from the boundaries to create viscous layering and joined to

the overlay mesh using a triangulating scheme at the interface. The scheme is capable of being

generalized, but misses the goal of producing an all-quadilateral mesh. A procedure described by

Cui is to create an overlay mesh and then remove the elements that overlap the boundaries and

connect the boundaries to the overlay mesh by directly matching the remaining grid points on the

edges of the domain to points distributed along the boundaries [7]. This scheme requires user input

based on the specific geometry in order to first determine the number of points to be added to each

boundary and then to connect the points together. Therefore this scheme lacks the criterion of

generality.

The grid generating algorithm developed for this project is one which involves the construc-

tion of an overlay grid from which to generate a mesh with curved boundary conforming elements.

The details of the structure will be discussed further in the work.

4

CHAPTER 3

GRID GENERATION

In this chapter the structure of the mesh generator is outlined and some test geometries are

shown to illustrate the utility of the scheme. Section 3.1 describes the means used to replicate

boundary curvature using a Non-Uniform Rational B-Spline generating scheme. The curved edges

are then used to create the remaining mesh. This is seen in Section 3.2 where the body of the

algorithm is discussed. The problems that arise with some different geometries are described in

Section 3.3 together with examples of successful applications of the mesh generator. Finally, the

speed of the algorithm is considered in Section 3.4.

3.1 Boundary Curves

The replication of curved geometries by means of constructing interpolating curves to fit a

collection of points is an important facet of the grid generator as the curved edges allow for high

order point placement with boundary conforming accuracy when using a finite element solver. The

point placement and effect on the overall solution is discussed further in later sections.

There are many schemes for interpolating a set of points using some mathematical function.

Some of the most commonly used are splines such as B-Splines and T-Splines. Non-Uniform

Rational B-Splines are a generalization of B-Splines. They are parametric functions that describe

complicated shapes smoothly. One of the benefits of NURBS interpolation as opposed to other

5

splines is that NURBS are locally evaluated while retaining global smoothness. This means that

NURBS curves can interpolate a high number of points without introducing oscillatory error to

which other splines are prone.

3.1.1 Mathematical Formulation for NURBS Curve

The complete description of a NURBS curve has five main components: a knot vector (k),

B-Spline basis functions(Ni(t)), order (p), control points(Pi) and a weight vector(w). The general

form of a NURBS curve of order p defined by n control points is

C(t) =

n∑
i=0

wiN
p

i
(t)Pi

n∑
i=0

wiN
p

i
(t)

(3.1)

For this research, a constant value of p = 3 was used.

The knot vector is a vector of some m values ki=1,...,m where m = n + p + 1 and ki ≤ ki+1.

A NURBS curve is called Nonuniform when the values in the knot vector are unequally spaced.

The number of times a value k is repeated within the knot vector is called the multiplicity of

k . The multiplicity of a value affects the continuity of the curve at that point by decreasing the

differentiability of the function by the same amount. At a value with multiplicity m, the curve is

only p − m continuous. Thus the values ki cannot be repeated more than p times.

B-Spline basis functions are parametric functions defined in terms of the knot vector k . For

a value t ∈ [0, 1] these functions are defined recursively.

N
p

i
(t) =

t − ki

ki+p − ki
N

p−1
i

(t) +
ki+p+1 − t

ki+p+1 − ki+1
N

p−1
i+1 (t) (3.2)

6

Where

N0
i (t) =


1, if ki ≤ u ≤ ki+1

0, else
(3.3)

Control points lie outside of the curve and control the shape of the curve by ‘pulling’ the

curve as shown in Figure 3.1. Shifting the control point can cause the curve to stretch. Although

represented as a single value Pi in Equation 3.1, each control point has x, y and z components.

Thus Equation 3.1 has in fact three components where in two dimensions the third equation has all

Pi ,z = 0.

Figure 3.1 Effect of control points in NURBS formulation

The weight vector w controls the influence of each control point with respect to how far the

curve can be pulled in its direction. For each control point Pi there is a corresponding weight wi .

The general rules for the strength of each control point Pi are as follows.

1. If wi = 0, then Pi has no effect whatsoever

7

2. if wi increases, the effect of Pi increases

3. If wi decreases, the effect of Pi decreases

The major difference between interpolating functions and B-Splines in general is that in-

terpolating functions are defined in terms of a set of points through which the function passes.

B-Splines however, are defined in terms of a series of control points which govern the shape of the

function without necessarily satisfying the function itself at that point. This idea is illustrated in

Figure 3.2 where interpolated points and control points are shown.

Figure 3.2 Interpolating points and control points

Before attempting to find weights and control points to fit a set of points, it is necessary

to introduce a parametrization t ∈ [0, 1] of the points to be fitted. For any given curve this was

accomplished by defining ti for np points as

ti =
1
L

i∑
j=2

√
(x j − x j−1)2 + (yj − yj−1)2 + (z j − z j−1)2 (3.4)

8

where L is the sum of the lengths of the segments in the curve.

The knot vector is a vector with np + p values in the range [0, 1]. The requirements for

the knot vector are that the first p elements are equal to 0 and the last p elements are equal to

1. Thus in order to create a knot vector, any set of np + p elements ranging in ascending order

from 0 to 1 with the specified end conditions will suffice. Piegl and Tiller recommend averaging

the parametrized values, as the resulting knots more closely reflect the spacing of the original

points [8]. This scheme generates values for the knot vector for arbitrary order p using the formula

shown in Equation 3.5.

ki =



0, 0 ≤ i ≤ p

1
p

i−1∑
j=i−p

t j , p + 1 ≤ i ≤ np

1 np + 1 ≤ i ≤ np + p

(3.5)

With the knot vector defined, the basis functions N are defined as well, and setting wi = 1

for all i , i = 1, ..., np, a curve of arbitrary order p can be generated for a set of points Xi =

(xi , yi), i = 1, ..., np by solving the system of linear equations

Xi =

np∑
j=0

N
p

j
(ti)Pi (3.6)

for the control points Pi . Although there is not a unique NURBS curve for each collection of

points, this scheme produces results that reflect the spacing of the initial points. In addition, the

method used to compute NURBS is robust and accurate.

9

3.1.2 Quality Metric for Curve Fitting

The quality of the NURBS curve fitting scheme can be evaluated by defining a metric for

the closeness of the fit. For this study the error is computed as the maximum distance between the

original set of points to be interpolated and the corresponding points evaluated using the NURBS

formulation. All of the geometries used in this section are shown in Appendix B

The first question to be considered is whether the number of grid points has effect on the

curve fit. For this case a simple circle of unit radius is described with a varying number of points,

and then interpolated with a NURBS curve. The errors are shown in Table 3.1.

Table 3.1 Errors for NURBS Curve Fitting Various Numbers of Points

Number of Boundary Points Maximum Error

10 2.48253E-016

50 3.51083E-016

100 4.47545E-016

500 4.00297E-016

1000 4.96507E-016

In every case the maximum error is on the order of machine zero. This is a good indication.

Although the error does increase slightly from the first case to the last, the change is so negligible

that it can be ignored. The maximum value of the error fluctuates slightly, however it does not

change one order of magnitude with respect to the number of points fitted.

10

Another consideration is the effect of curvature upon the error for curve fitting. To test this a

series of geometries were fitted that have varying levels of curvature and combinations of curvature,

straight lines and acute angles. The first geometry is a straight line, the second, a square. The third

and fourth geometries are an upper semicircle and a full circle respectively. The fifth geometry is

a NACA 0012 airfoil, and the sixth a 30P30N airfoil with multiple sections. The errors for all of

these cases are shown in Table 3.2.

Table 3.2 Error for NURBS Curve Fitting Various Geometries

Geometry Maximum Error

Straight line 5.55112E-017

Square 4.57757E-016

Semicircle 2.00148E-016

Circle 2.48253E-016

NACA 0012 Airfoil 3.33139E-016

30P30N Airfoil front tip 1.98603E-015

30P30N Airfoil main body 3.33356E-016

30P30N Airfoil rear flap 4.44956E-016

Although there is some slight variation with respect to geometry curvature, the errors are

all on the order of machine zero and therefore acceptable. The NURBS curve fitter is demonstrated

to be robust and accurate for a range of geometries.

11

3.2 Grid Generator

The general structure of the grid generator introduced in this research is one that uses an

overlay Cartesian mesh as an initial stencil. An overarching grid that spans the entire domain is

initialized and the quadrilaterals that intersect the boundaries together with any nodes exterior to a

boundary are deleted. Once the boundary quadrilaterals are deleted, the remaining grid is attached

to the boundary curves to create an unstructured quadrilateral mesh.

(a) Overlay Mesh Initialization (b) External Quads Deletion (c) Boundary Connection

Figure 3.3 Grid generation process

An outline of the algorithm that follows the procedure in Figure 3.3 is shown in Figure

3.4. The scheme is similar to that described by Cui [7], but has been automated and generalized to

work for any geometry. Although of simple design, there are several difficulties that must be met

in order to achieve a robust scheme. These are explored later and illustrated with several test cases

that describe how the issues are resolved.

12

Figure 3.4 Flowchart of grid generating algorithm

13

There are two constraints upon the geometries that can be used for this project. The first is

that the domain must be connected, that is, that any two points in the domain can be connected by a

finite number of consecutive line segments that are fully within the domain. The second is that the

segments must be oriented such that the outer curve is counterclockwise and interior boundaries

are clockwise. These two conditions are necessary in order to determine whether a given point is

inside the domain or not.

One of the fundamental issues to be dealt with when identifying the quadrilaterals in the

overlay grid which are outside of or spanning a boundary segment is the problem of how to ac-

curately identify the intersection of two line segments. The analytic solution to this problem is a

simple procedure outlined in most elementary algebra textbooks. However, when computing the

solution using a finite precision computer, many issues arise.

First is the problem of machine accuracy. The slope of a given segment is computed using

finite precision mathematics and therefore subject to machine error. Therefore in comparing two

quantities a tolerance must be added. This is most problematic when dealing with lines that are

close to parallel or parallel and non-overlapping and therefore the values to be compared are close

to the value of the tolerance itself.

The second problem is that of extent. Due to the fact that the segments are finite in length,

it is possible to have two non-intersecting segments such that the lines running through them do

intersect at a point beyond the extent of one or more of the segments. In addition, machine accuracy

often induces errors when two segments intersect at an endpoint. For a more detailed examination

of the issue of segment intersection in finite precision arithmetic together with a rigorous study of

the errors arising in such tests see [9].

14

For this discussion, let two segments A and B have endpoints a1, a2 and b1, b2 respectively

where a1 = (a1x , a1y), a2 = (a2x , a2y), b1 = (b1x , b1y), b2 = (b2x , b2y). The segments are

parametrized A = a1(1 − t) + a2t and B = b1(1 − t) + b2t for t ∈ (0, 1). Three intersection types

were tested in this project, each with multiple possible variations. The first is when two segments

cross at some point within the length of both segments. This can be tested by solving the equation

a1(1 − t1) + a2t1 = b1(1 − t2) + b2t2, which is equivalent to


a2x − a1x b1x − b2x

a2y − a1y b1y − b2y



t1

t2

 =


b1x − a1x

b1y − a1y

 (3.7)

If both of the variables t1, t2 ∈ [0, 1], then the lines through A and B intersect at a point coincident

with both segments.

As there can arise accuracy issues regarding the intersection of two points, it is necessary

to add a second condition to the first test for intersection. The second type of intersection is when

two segments cross at a point that is the endpoint of one or both of the segments, or when either

of the computed values t1, t2 are close to 1 or 0. This can be tested by connecting one endpoint

from a segment with the two endpoints of the other segment and computing the cross product of

the resulting lines. If they are parallel, then the endpoint lies on the second line. For example,

if a1 is incident with the line B, then the cross product of the segments b1a1 and a1b2 will be

equal to 0. Examples of endpoint intersection and possible case where the endpoint is close but

non overlapping are shown in Figure 3.5.

15

(a) Intersecting endpoint (b) Non-intersecting endpoint

Figure 3.5 Line intersection test

The third type of intersection is when the segments are parallel and overlapping. This case

fails the intersection test since the left hand side matrix in Equation 3.7 is noninvertible. However,

a positive result for two or more endpoint intersection tests will accurately reflect that there are

parallel lines.

With these tests, it is clear that some false positive cases can occur. For example, if a given

edge in a quadrilateral is intersected twice by a boundary curve then both nodes will be counted

as exterior to the domain when they are actually interior. This is demonstrated in Figure 3.6. Note

that the arrows denote the normal vector to the boundary

16

Figure 3.6 Line segment with multiple intersections

In order to delete only nodes that are exterior to the domain, the overlay mesh must be

constructed in such a way that no edge has more than one intersection with a boundary. In addition

to the problems with edge intersections, the complexities of the range of possibilities for different

boundary intersections increase when considering quadrilaterals as the basic pieces for deleting.

This is a necessary consideration, since after deleting everything exterior to the domain, the re-

maining structure must be rebuilt into a mesh made up of quadrilaterals rather than a collection

of edges or points. One issue is that unconnected nodes can be left when the edges connecting a

given node are all deleted. An example is shown in Figure 3.7 where only nodes 3, 4, 5 and 7 are

left after deleting external nodes leaving 3 completely disconnected.

17

Figure 3.7 Deletion process resulting in unconnected interior node

The solution to this difficulty is to ensure that the overlay mesh fulfills the criterion that

no quadrilateral has more than 3 sides intersecting with boundaries. This issue arises often with

certain airfoil geometries where the boundaries are narrow relative to the mesh spacing and oriented

diagonally to the principle axes of the overlay quadrilaterals. Figure 3.8 shows how this can lead

to an unacceptable number of intersections for a given quadrilateral.

Figure 3.8 Example of a problematic boundary

18

In order to generate acceptable overlay meshes, a preprocessor was implemented. Since

the overlay mesh is structured, the preprocessor subdivides the rows and columns of the mesh

based on the number of intersections detected. A rudimentary step toward guessing appropriate

placement for the initial quadrilaterals is also in place. This algorithm aligns the grid lines passing

through or near a given geometry to conform to the general curvature of that structure. The way in

which the overlay grid reflects some geometrical features is illustrated in Figures 3.9 and 3.10. The

first example, shown in Figure 3.9 is that of extent. The grid lines that are close to the boundaries

mimic some of the curvature in order to minimize intersections. The second example is that of

orientation. The longest direction spanned by each boundary curve is considered and if the general

orientation is at an angle to the coordinate axes, the overlay lines within range of the geometry are

angled to reflect the angle of the curve.

Figure 3.9 Conforming grid lines: geometry extent

19

Figure 3.10 Conforming grid lines: geometry orientation

Once the appropriate quadrilaterals in the overlay mesh have been identified and removed,

the next step is to connect the remaining mesh to the boundary curve. In the deleting process, the

nodes on the edges of the mesh have been associated with a particular boundary determined by

which boundary curve intersected with the edge connecting it to a deleted node.

The connecting quadrilaterals formed between the overlay mesh and the boundary curves

are determined by the shape that they must fill. Therefore the ‘best’ connection is often not the

one which is the closest connection, but rather what creates the most orthogonal angles, or mini-

mizes the difference between all angles and a right angle. Some connections that demonstrate the

orthogonal connection are shown in Figure 3.11. This is discussed further in the implementation

of several boundary cases in Section 3.3.

20

(a) Case 1 (b) Case 2 (c) Case 3

Figure 3.11 Best choice for point connection

The process of filling in the buffer layer between the overlay mesh and the boundaries

can result in quadrilaterals with high aspect ratio. Therefore, when all boundaries have been con-

nected to form a complete quadrilateral grid, the resulting mesh is smoothed using an optimization

smoother.

3.3 Grid Test Cases

In order to test the generality of the grid generator, cases were run for a variety of geome-

tries. Below are shown some of the geometries which address the immediate weaknesses of the

algorithm structure, together with descriptions of the methods implemented to solve each problem.

3.3.1 Multiple Curves and Geometries

The first consideration in evaluating the scheme is whether it will work for complex struc-

tures such as multiple disconnected pieces for a geometry and variable numbers of NURBS curves

to describe each boundary. First and most basic is a simple set of circles with multiple curves for

each circle. In Figure 3.12 is shown a case of three interior circles increasing in size that are com-

prised of 1, 2, and 3 curves respectively. The exterior circle has 4 curved components. The NURBS

21

curve components of each boundary are shown also with the endpoints of each curve marked with

a black dot.

(a) Mesh (b) NURBS Curve segments

Figure 3.12 Test case involving multiple geometries and multiple boundary curves for each ge-
ometry

The maximum error for the curve fitting for each curve is shown in Table 3.3.

22

Table 3.3 Error for NURBS Curve Fitting Circles Geometry

Geometry Maximum Error

Smallest Circle 9.9301366129890925E-016

Medium Circle Curve 1 1.83103E-015

Medium Circle Curve 2 1.83103E-015

Large Circle Curve 1 6.28037E-016

Large Circle Curve 2 9.93014E-016

Large Circle Curve 3 1.98603E-015

Outer Circle Curve 1 2.512148E-015

Outer Circle Curve 2 2.512148E-015

Outer Circle Curve 3 2.512148E-015

Outer Circle Curve 4 2.512148E-015

The grid was generated by stipulating an overlay mesh with fixed spacing of 1 in both the

x and y directions. Due to the fact that all of the boundaries are circular, there was no additional

work done by the preprocessor to align grid lines to conform to geometry orientation. There are

no dominant directions with respect to coordinate axes for a circle. The automated procedure

produced the grid in Figure 3.12 with mesh quality statistics shown in Table 3.4.

23

Table 3.4 Mesh Statistics for Circles Geometry

Metric Minimum value Maximum Value Average

Quadrilateral Area 9.638E-002 0.311 0.221

Corner Angle 51.184 146.518 90.000

Aspect Ratio 1.000 1.291 1.0433

Condition Number 1.000 1.828 1.026

3.3.2 Buffer Layer Creation

One of the immediate concerns in developing the algorithm was how to choose the best

node connectivity when filling in the buffer layer. The resulting quadrilaterals can become twisted

and even entirely inverted unless a robust method for connecting the interior mesh to the boundaries

is implemented.

A simple and obvious choice for connecting nodes is to find the closest pair of mesh and

boundary nodes and to follow the connectivity around the geometry until all of the nodes have been

connected. However, this does not always result in a valid mesh. As an example, the NACA 0012

airfoil is shown in Figure 3.13 with two different choices for connecting the airfoil and farfield

boundary to the mesh. Mesh (a) was created using a closest-point criterion for connecting the

boundaries whereas Mesh (b) was created by finding the point most orthogonal to the boundary at

each endpoint.

24

(a) Closest point connection (b) Orthogonal point connection

Figure 3.13 Different connectivity options for buffer layer quadrilaterals

The quality statistics for the mesh with orthogonal connectivity is shown in Table 3.5. The

orthogonal boundary connection means that the minimum angles of the quadrilaterals in the buffer

layer are maximized.

Table 3.5 Mesh Statistics for NACA 0012 Airfoil

Metric Minimum value Maximum Value Average

Quadrilateral Area 0.296 1.034 0.697

Corner Angle 49.134 172.687 90.000

Aspect Ratio 1.001 2.090 1.169

Condition Number 1.000 18.163 1.211

25

One of the most challenging cases is a multiple segment 30P30N airfoil as shown with

meshes in Figure 3.14 and Figure 3.15. This geometry has several points of interest. However,

due to the extremely angular nature of some of the segments, the resulting meshes contained some

very high aspect ratio elements as is illustrated in Figure 3.14.

Figure 3.14 30P30N airfoil with coarse mesh

In order to achieve a high quality mesh, a finer overlay grid can be used. However, the

fine meshes are computationally expensive and unnecessarily fine given the higher order solver.

The separate components of this geometry pose distinct challenges such as a diagonally dominant

geometry and acute angles that are not aligned with the coordinate axes determined by the majority

of the boundary curves which are discussed earlier. An example of a good quality mesh about the

30P30N airfoil is given in Figure 3.15.

Figure 3.15 30P30N airfoil with fine mesh

26

The mesh statistics for the mesh in Figure 3.15 are shown in Table 3.6. It is a sign of the

quality of the mesh that the corner angle, aspect ratio and condition number values are comparable

to the much simpler NACA 0012 mesh that is shown as the orthogonal point connection example

in Figure 3.13.

Table 3.6 Mesh Statistics for 30P30N Airfoil

Metric Minimum value Maximum Value Average

Quadrilateral Area 1.644E-004 1.380E-003 8.682E-004

Corner Angle 26.853 176.755 90.000

Aspect Ratio 1.000 2.124 1.051

Condition Number 1.000 18.118 1.005

The best method for meshing this geometry is then manual grid generation. Although

time consuming and difficult, the computational cost of using the fine mesh generated with the

automated procedure outweighs the benefits of implementing it. For a finite volume or other low

order solver, however, the automated process is still helpful for this airfoil as grid resolution is

important for these.

3.4 Time Study

One of the important qualities for a useful mesh generator is speed. The algorithm must

be quick enough to justify the automating process. Overall, the meshes created in the studies that

27

follow were generated within the space of 10 minutes, and most of them considerably under 2

minutes.

The average time taken to create a series of grids meshed about three different geometries

is illustrated in Table 3.7. The geometries are simple circles with different numbers of points

distributed about the perimeter. The only difference in the cases is the number of points distributed.

Table 3.7 Average Run Times for given Mesh Size

Time in Seconds Number of Grid Nodes

7.100E-03 40

0.283 12,000

6.667 30,000

These times are sufficiently small to justify the use of the generator. However, it is also

important to understand the rate at which the time taken to generate the mesh changes with respect

to the total size of the resulting mesh. Figure 3.16 illustrates the effect of grid size upon runtime

visually. The three lines denote three test geometries run with a range of values for the initial

spacing which in turn determines the eventual grid size. The first and smallest geometry file has

10 points, the second has 250, and the third 500 points.

28

Figure 3.16 Time taken to generate meshes for three trial geometries of varying size

The size of the geometry file has some effect upon the overall time taken. However, the

overall rate of change is governed by the grid size. The change in the number of points in the

geometry adds a near constant value to the overall runtime behavior. A more detailed discussion

of this study is in Appendix B.

29

CHAPTER 4

SIMULATIONS UTILIZING HIGH ORDER CURVED BOUNDARY DISCRETIZATION AND

THE FINITE ELEMENT METHOD

In this chapter the finite element method is briefly outlined. The grid generating algorithm

is designed to work for such a method and therefore the requirements for a high order solution

algorithm are important to understand. The high order node spacing in particular is important,

since the curved boundary elements are designed to distribute such points with more accurate

results.

4.1 Overview of Integration Technique

The finite element solution algorithm implements a numerical integration scheme that is

based on Gauss quadrature, in which the solution is approximated as a series of unknown values at

each node multiplied by an interpolating polynomial. A variable u is approximated on an element

Ω with k points as u =
k∑

n=1
φnun where un denote the values of u at each point n and φn are the

basis functions of order k such that φi(x j , yj) = δi , j .

With a polynomial interpolation of the solution variable at each node, numerical integration

can be implemented by setting ∫ b

a

u(x)dx ≈
k∑
i=1

wiφiui (4.1)

30

where wi denote the quadrature weights. Note that for this research, the order of numerical integra-

tion scheme is always the same as the order of the interpolation polynomials. The quadrature rule

used in this research implements a Chebyshev point distribution. Chebyshev points are computed

easily for a segment [a, b]. These points are the projection onto the diameter of the circle centered

at (a+b
2 , 0) of radius b−a

2 of equally spaced points distributed along the upper half of the circle [10]

that has the line segment as diameter. The distribution for six points over the segment [−1, 1] is

shown in Figure 4.1.

Figure 4.1 Chebyshev points

The formula for computing n Chebyshev points x j , j = 0, ..., n is given by

x j =
1
2

(a + b) +
1
2

(b − a)cos
(
π j

n

)
, j = 0, ..., n (4.2)

One of the benefits of using quadrilateral elements is that the extension to two dimensional

elements is simple for quadrilaterals as it is merely the combination of all of the coordinates points

31

taken from the distribution of points along the x and y directions. This is not true for triangular or

other non-quadrilateral element meshes.

The points are distributed on an ideal square and then a transformation from each quadri-

lateral to the ideal square is defined for the problem domain. The ideal square is the domain

[−1, 1] × [−1, 1], for which the weights for integration are defined [10]. Figure 4.2 shows a

quadrilateral of order 14 with the ideal square. The transformation maps the points on the ideal

square distributed using Chebyshev point placement to points on the mesh quadrilateral using a

bijective relation.

(a) Physical coordinate rectangle (b) Ideal square

Figure 4.2 Chebyshev point distribution for physical rectangle and ideal distribution

For each segment, the distribution of Chebyshev points of order p results in a total of p + 1

points that divide the domain into p segments. Thus the total number of points for a p order

quadrilateral is (p + 1) × (p + 1).

32

Because of this multiplication in two dimensions, the resulting solution domain can contain

considerably more points for high order schemes than are in the original mesh. This suggests a

comparison between grid spacing and element order. The differences and respective value of these

two approaches are studied in Section 5.2. Meanwhile, the ability to implement higher order

elements is demonstrated. Some examples of meshes with Chebyshev point spacing are shown in

Figure 4.3 and Figure 4.4 .

Figure 4.3 Concentric circles mesh with higher order point distribution

33

Figure 4.4 Smile mesh with higher order point distribution

The points are distributed throughout each of the elements by means of the transformation

defined for each element and are fitted to the curved edges of the boundary to capture high resolu-

tion data for solution accuracy. This transformation is computationally slow and an analysis of the

runtime costs of using high order schemes and fine meshes is performed in Section 5.2.

4.2 Weak Formulation

The weak formulation of a differential equation is a useful restatement of the original prob-

lem in which the differentiability requirement of the original variable is weakened. This form is

derived using the identity from calculus known as the product rule.

d

dx
(f (x)g(x)) =

df (x)
dx

g(x) + f (x)
dg(x)
dx

(4.3)

34

Rearranging the terms and integrating over a domain Ω yields

∫
Ω

df (x)
dx

g(x)dΩ =

∫
δΩ

f (x)g(x)nxdδΩ −
∫
Ω

f (x)
dg(x)
dx

dΩ (4.4)

Where nx , ny are the unit normal vectors around the boundary δΩ .

This is useful particularly when dealing with higher derivatives. Thus for example, in order

to solve the Equation 4.5

∂2 f

∂x2 = 0 (4.5)

First multiply by another variable g, and then integrate over a domain Ω

∫
Ω

g
∂2 f

∂x2 dΩ = 0 (4.6)

However, using the calculus identity, this equation can be rewritten

∫
Ω

g
∂2 f

∂x2 dΩ =

∫
δΩ
g
∂ f

∂x
dδΩ −

∫
Ω

∂g

∂x

∂ f

∂x
dΩ (4.7)

One of the important points that makes this process useful is that it decreases the highest derivative.

In Equation 4.7 there is no higher derivative term than first order.

The finite element method is commonly used to solve the weak form of an equation. The

problem is first cast in terms of an approximation to the solution and then multiplied by a function

φ in the same family of polynomials as the interpolating polynomials used to approximate the

solution. The weak form of the problem is taken and results in a system of matrix equations.

35

4.3 Circular Waveguide Applications

An example that shows how the finite element scheme is implemented using a weak for-

mulation is an initial value problem describing the electric and magnetic components in a circular

waveguide as discussed in [11].

The equations for electric and magnetic fields in a circular waveguide are most conveniently

dealt with using the cylindrical coordinate system. For the transverse magnetic modes, the field

components are computed using the vector potential A = Az(ρ, φ, z)k̂ where k̂ is the unit vector in

the z-direction. This potential satisfies the equation

∇2A(ρ, φ, z) + β2A(ρ, φ, z) = 0 (4.8)

which in cylindrical coordinates becomes

∂2A

∂ρ2 +
1
ρ

∂A

∂ρ
+

1
ρ2

∂2A

∂φ2 +
∂2A

∂z2 + β2A = 0 (4.9)

The solutions to Equation 4.9 are of the form

A(ρ, φ, z) = [A1Jm(βρρ)+B1Ym(βρρ)]× [A2cos(mφ)+B2sin(mφ)]× [A3e
−iβz z +B3e

iβz z] (4.10)

Where β2 = β2
z + β2

ρ and Jm, Ym are m-order bessel functions of the first and second kind respec-

tively and the constants A1, A2, A3, B1, B2, B3 can be determined by applying boundary conditions

36

which are shown below [11].

Eφ(ρ = a, φ, z) = Eφ(ρ, φ, z)
∣∣∣
ρ∈δΩ

= 0

Ez(ρ = a, φ, z) = Ez(ρ, φ, z)|ρ∈δΩ = 0

The fields must be infinite everywhere

The fields must repeat every 2π radians in φ

(4.11)

Using the resulting complete form A, the field components are given by

Eρ = −i 1
ωµε

∂2A
∂ρ∂z = −Bmn

βzβρ
ωµε J

′
m(βρρ)[A2cos(mφ) + B2sin(mφ)]e−iβz z

Eφ = −i 1
ωµε

1
ρ
∂2A
∂φ∂z = −Bmn

mβz
ωµε

1
ρ Jm(βρρ)[−A2sin(mφ) + B2cos(mφ)]e−iβz z

Ez = −i 1
ωµε (∂

2

∂z2 + β2)A = −iBmn
β2
ρ

ωµε Jm(βρρ)[A2cos(mφ) + B2sin(mφ)]e−iβz z

Hρ = 1
µ

1
ρ
∂A
∂φ = Bmn

m
µ

1
ρ Jm(βρρ)[−A2sin(mφ) + B2cos(mφ)]e−iβz z

Hφ = − 1
µ
∂A
∂ρ = −Bmn

βρ
µ J
′
m(βρρ)[−A2sin(mφ) + B2sin(mφ)]e−iβz z

Hz = 0

(4.12)

The formulation implemented in the finite element solver was derived by using the fact that

the solution is time harmonic. That is, E(ρ, φ, z , t) = E(ρ, φ, z)eiωt and therefore ∂2E
∂t2

= −ω2E.

Thus the Helmholtz equation can be solved by computing

β2

ω2

∂2E
∂t2
− ∇2E = 0 (4.13)

37

Using the weak form this becomes

(
β2

ω2

∫
Ω
φiφ jdΩ

)
∂2E j

∂t2
−

(∫
Ω

(
∂φi
∂x

∂φ j

∂x +
∂φi
∂y

∂φ j

∂y

)
dΩ

)
E j+(∫

δΩ
φi

(
∂φ j

∂x nx +
∂φ j

∂y ny

)
dδΩ

)
∂E j

∂t = 0
(4.14)

Note that this is a series of scalar equations that multiply by the vector quantities E j ,
∂E j

∂t ,
∂2E j

∂t2
.

The boundary integral terms cancel at interior edges of the mesh due to the normal component,

and at the boundary the values are specified with Dirichelet boundary conditions. Using numerical

integration, the integral quantities are approximated as follows.

Mi , j =
β2

ω2

k∑
n=1

φiφ jwk (4.15)

Ki , j =

k∑
n=1

(
∂φi
∂x

∂φ j

∂x
+
∂φi
∂y

∂φ j

∂y

)
wk (4.16)

And the final form of the solution algorithm is

Mi , j

∂2E j

∂t2
+ Ki , jE j = 0 (4.17)

The time integration was evaluated using a leapfrog algorithm that follows a Velocity Verlet

stepping scheme described by Young [12]. The solution was computed for the TM31 and TM61

modes on a mesh with initial spacing of 0.25 in each direction and p = 4 elements. This mesh is

shown in Figure 4.5.

38

Figure 4.5 Mesh For Circular Waveguide Solutions

Some snapshots detailing the first half oscillation for each mode are shown in Figure 4.6.

Note that the time t represents the values 1
ω
π
4 ,

1
ω

2π
4 ,

1
ω

3π
4 and π

ω only approximately, and therefore

these are not the exact maxima and minima. This is also the reason why the solutions for each

mode at t = 2π
4ω are not uniformly 0 but show slight variations in value.

39

(a) t = 0 (b) t = 1
ω
π
4 (c) t = 1

ω
2π
4

(d) t = 1
ω

3π
4 (e) t = π

ω

Figure 4.6 Solutions to Helmholtz equation for transverse magnetic mode TM31

The error for each of these snapshots was also computed. For the first case it is simply the

error from the interpolation. Therefore only the errors for all the snapshots at time t > 0 are shown

in Figure 4.7. Because the scheme is of order p = 4, the second order time integration scheme

contributes the dominant error to the entire procedure.

40

(a) t = 1
ω
π
4 (b) t = 1

ω
2π
4 (c) t = 1

ω
3π
4

(d) t = π
ω

Figure 4.7 Error for computed Helmholtz equation for transverse magnetic mode TM31

In addition to the TM31 mode, the electric field component Ez was computed for the 61

mode as well. The solution at points during the first half oscillation are shown in Figure 4.8. Since

this mode has the same time period for oscillation as the 31 mode, the snapshots are at the same

time step as in Figure 4.6. They are all on the order of

41

(a) t = 0 (b) t = 1
ω
π
4 (c) t = 1

ω
2π
4

(d) t = 1
ω

3π
4 (e) t = π

ω

Figure 4.8 Solutions to Helmholtz equation for transverse magnetic mode TM61

The errors for the last four snapshots for the 61 mode are shown in Figure 4.9.

42

(a) t = 1
ω
π
4 (b) t = 1

ω
2π
4 (c) t = 1

ω
3π
4

(d) t = π
ω

Figure 4.9 Error for computed Helmholtz equation for transverse magnetic mode TM61

4.4 Higher Order Elements

The example of the Transverse magnetic mode solutions in a circular waveguide can also

be used to illustrate the immense effect of node spacing on the solution accuracy. The results

shown in Figures 4.6 and 4.8 were computed using higher order elements. The same solution is

shown in Figure 4.10 with p = 4 elements and p = 1 elements. The resolution of the solution

alone is dramatic. In addition, the information is more exact due to the improved resolution at the

boundaries and in the areas of high solution gradients.

43

(a) TM31 p = 4 (b) TM61 p = 4

(c) TM31 p = 1 (d) TM61 p = 1

Figure 4.10 Difference between solution quality for higher and lower order elements

The effect upon solution quality of using higher order elements is further illustrated in the

following example. The governing equations for Maxwell’s equations in two dimensions for a

rectangular waveguide with Perfect Electric Conductor (PEC) boundary conditions are given by

Equation 4.18 [11].

44

∂Ex

∂t =
∂Hz

∂y

∂Ey
∂t = −

∂Hz

∂x

∂Hz

∂t =
∂Ey
∂x −

∂Ex

∂y

(4.18)

which can be written in matrix form as

∂

∂t


Ex

Ey

Hz


+

∂

∂x


0 0 0

0 0 −1

0 1 0




Ex

Ey

Hz


+

∂

∂y


0 0 1

0 0 0

−1 0 0




Ex

Ey

Hz


=


0

0

0


(4.19)

The solution is

Ex = − nπ
ω cos(mπx)sin(nπy)sin(ωt)

Ey = nπ
ω sin(mπx)cos(nπy)sin(ωt)

Hz = cos(mπx)cos(nπy)cos(ωt)

(4.20)

The field components in a rectangular waveguide are shown in Figure 4.11 for the TE11 mode at

time t = 0.

(a) Ex (b) Ey (c) Hz

Figure 4.11 Field components for rectangular waveguide using transverse electric Maxwell’s
equations

45

With a solution that has large gradients, grid spacing is crucial. A large number of points

are required to capture the curvature of solutions with high curvature. A visual example of the

importance of higher order elements is shown below. The error for the initialized magnetic field

component Hz at t = 0 with respect to the analytical solution is shown plotted for different values

of p ranging from 1 to 8 with constant grid spacing.

46

(a) p = 1 (b) p = 2

(c) p = 3 (d) p = 4

(e) p = 5 (f) p = 6

(g) p = 7 (h) p = 8

Figure 4.12 Error for magnetic field component computed with increasing orders of accuracy
47

Not only are the errors more smoothly varying between elements, but the values of the

errors themselves decrease with the order of the approximation as well. Although the same color

scale is used in each plot to illustrate the variation within the error between maximum and min-

imum values, the maximum and minimum in each case decreases from plot to plot. The scaling

is necessary as the errors for p = 8 elements do not show up if plotted using the same color bar

as with lower order elements. This phenomenon was explored further by instantiating the solution

and comparing the initial error on a series of grids of varying size. The difference in values for

solutions on two different grids gives a slope when compared to the size of the grids themselves.

When graphed, the slopes reflect the order of accuracy. The results are shown in Figure 4.13.

Figure 4.13 Error of magnetic field distribution with respect to grid size

48

Thus the demonstrated accuracy of the scheme for a p order element is p + 1. When

compared with more traditional Finite Volume solvers, the ease of increasing accuracy of such a

scheme to improve the solution is a powerful incentive for using the Finite Element method.

49

CHAPTER 5

EXAMPLES

This chapter deals with various cases that arise when using a finite element solver that

demonstrate the utility of the grid generator. Not only is automated mesh creation helpful for

meshing for complex geometries, but functionality for changing the initial spacing of the overlay

mesh makes it possible to perform studies with large numbers of meshes of the same geometry but

with different spacing with ease. Section 5.1 contains a study of the observed order of accuracy of

the finite element scheme for different values of p. Section 5.2 is devoted to a comparison of mesh

refinement and increased element order with respect to solution accuracy.

5.1 Order of Accuracy

One of the outstanding features of the finite element method is the facility for higher order

solution accuracy. Therefore an important consideration in implementing the solver with an all-

quadrilateral mesh is whether the order of accuracy of the solver is preserved for specified values

of p. The quadrature rules for quadrilaterals and triangles are different and therefore it is important

to check this step.

A simple test case that involves second derivatives in both x and y directions is Laplace’s

equation. To compute the observed order of accuracy of the scheme, the Laplace equation is solved

50

on a series of quadrilateral meshes of increasing grid spacing. The error for each mesh between

the computed and the analytical solution varies with element order.

The Laplace equation in two dimensions is given by

∂2Φ

∂x2 +
∂2Φ

∂y2 = 0 (5.1)

The solution to this equation can be computed by using separation of variables. First iden-

tify Φ as the product of two functions of the coordinate directions x and y respectively.

Φ(x , y) = X(x)Y (y) (5.2)

And denoting ∂2 f

∂x2 and ∂2 f

∂y2 by f̈x , f̈y respectively we obtain the equality

Ẍx

X
= −

Ÿy

Y
= C (5.3)

for some constant C. This can be simplified by dividing through with the following result.

Ẍx = CX(x), Ÿy = −CY (y) (5.4)

51

These equations are solved for any combination ofC0e
Cx ,C0e

−Cy or the trigonometric components

cos(Cx ,Cy), cosh(Cx ,Cy), sin(Cx ,Cy) and sinh(Cx ,Cy) that preserve the conditions

Φ̈x = −Φ̈y

Ẍx = CX

Ÿy = −CY

(5.5)

Thus there are a range of values for X and Y and consequently Φ which will satisfy Equation 5.1

for given boundary conditions.

For this example, Dirichelet boundary conditions are chosen that correspond to an analyti-

cal solution of Φ(x , y) = cos(4πx
5)cosh(4πy

5) as pictured in Figure 5.1.

Figure 5.1 Solution to Laplace equation

52

The solution was computed for five grids of successively larger spacing as shown in Fig-

ure 5.2. These grids were generated by altering the input spacing of the overlay mesh for each

successive case.

(a) Mesh 1 (b) Mesh 2 (c) Mesh 3

(d) Mesh 4 (e) Mesh 5

Figure 5.2 Meshes with varying coarseness for error analysis

For each of the grids created, the solution was computed using p-order elements where

p = 1, ..., 8. The L∞ norms of the error for each grid size was compared with fixed p. This is

shown in Figure 5.3. As can be seen in the plot, the slopes are very close to the expected values.

53

Figure 5.3 Error study for Laplace equation

Thus the accuracy of the scheme is demonstrated for higher order elements.

5.2 Refinement Studies for a Finite Element Solver

There are two very common ways to increase resolution and accuracy for the solution of

a problem. The first of these is to implement a higher order scheme as described in the previous

chapter, and the second is to solve the problem on a grid with more dense point placement. The

grid generator is capable of creating grids of increasingly fine spacing, and therefore a higher

order scheme might not be necessary. The order of accuracy of the higher order scheme is clearly

maintained for quadrilateral grids, but the overall effectiveness of such a scheme as a means of

improving solution accuracy is not established.

54

Two case studies are presented here in order to guage the extent of the different effects of

grid refinement and element order on the accuracy of the finite element solution algorithm. The

pressure coefficientCp for potential flow solution about a NACA 0012 airfoil is used as the solution

computed for comparison. The geometry is shown in Figure 5.4.

Figure 5.4 NACA 0012 geometry

The equation used to describe the potential flow solution is also the Laplace equation which

gives the velocity potential formulation

∂2Φ

∂x2 +
∂2Φ

∂y2 = 0 (5.6)

With Dirichelet boundary conditions Φ(x , y) = −x specified on the farfield and von Neu-

mann boundary conditions ∂Φ
∂x nx + ∂Φ

∂y ny = 0 on the airfoil surface. The velocity potential solution

is shown in Figure 5.5 together with a closeup view of the geometry with solution contour lines.

55

(a) Velocity potential solution Φ (b) Contours of solution at boundary

Figure 5.5 Potential flow solution

In order to visualize the impact of element order upon the accuracy of the solution, a mesh

with fixed spacing dx = dy = 0.5 was used with varying values of the order p. This mesh is shown

in Figure 5.6.

56

Figure 5.6 Mesh used for p-refinement

The computed values of Cp for elements of order 4, 5, 6 and 8 are shown in Figure 5.7.

It can be seen that the increased order has particular effect on the quality of the solution at the

endpoints of the airfoil, where the points are more dense with a higher order implementation.

Most particularly at the front tip of the airfoil where the curvature is greatest the resolution of

points improves solution quality dramatically.

57

Figure 5.7 Effect of p refinement on Cp

The same set of cases were run on the coarsest mesh with similar results. The solutions

for this mesh were roughly the same as for the finer mesh but with the effect of diminishing the

element order by 2. Thus the solution with p = 3 elements on the fine mesh is similar to the

solution with p = 5 elements on the coarse mesh. The solutions with p = 8 elements on the fine

mesh and p = 10 elements on the coarse mesh are shown in Figure 5.8

Figure 5.8 Element order compared for different grid sizes

58

For h-refinement, the element order was held constant at 6 while the mesh spacing was

varied. The initial mesh had an average spacing of dx = dy = 2.0, and for each successive case

the spacing was halved in each direction.

The computed values of Cp with case 1 being the coarsest mesh and case 4 the finest are

shown in Figure 5.9.

Figure 5.9 Effect of h refinement on Cp

As can be seen, the quality of the solution is improved by using a finer mesh but with a

much smaller change than is observed in the p refinement study. The overall solutions for the h

refinement study are much better than the ones computed in the p refinement case. However, this

is because a high value for p was used in the first place. The results for the same set of meshes

with a constant element order of 4 is shown in Figure 5.10

59

Figure 5.10 Effect of h refinement on Cp with lower order elements

The solution is considerably degraded, and the change in grid resolution has very little

positive effect when compared with the change in solution quality demonstrated in Figure 5.7.

Therefore, the comparative accuracy of the solutions in the first h-refinement study do not signify

a better rate of change in solution accuracy.

The result of this visual comparison is a clear indication of the effectiveness of higher order

elements in increasing the accuracy of a computed solution. Although increasing both the element

order and the grid size does improve the overall solution quality, the rate of change in accuracy

with respect to grid spacing is much lower than that of accuracy with respect to element order.

Although the high order scheme produces better results more quickly with respect to grid

size, it takes a much longer time computationally. The runtimes for the p refinement study and

the second h refinement study are shown in Tables 5.1 and 5.2. The total time is divided into the

amount of time taken to generate the mesh and the total time taken to distribute higher order points

for each element.

60

Table 5.1 Runtimes for p refinement study

Mesh Size Mesh Generation Point Distribution

588 4.400E-02 3.000E-02

1024 4.200E-02 5.200E-02

1580 4.100E-02 8.400E-02

3052 4.100E-02 0.204

Table 5.2 Runtimes for h refinement study

Mesh Size Mesh Generation Point Distribution

588 1.700E-02 9.00E-03

1560 4.400E-02 2.900E-02

5022 1.060 1.93

19440 0.492 2.620

The amount of time taken in mesh generation is comparable to that of the point distribution

on the small mesh for p = 4 or 5, but it is overshadowed completely by the time taken to generate

Chebyshev points for higher orders. Since the times scale with the size of the meshes, a very

61

simple way to speed up runtime for large cases is to generate a finer mesh and use a slightly lower

value of p for each element.

Using a high order solver has been shown to improve solution quality more efficiently than

increasing the number of grid points. However, this does not necessarily mean that high order

schemes are more time efficient. The mesh generating algorithm has been shown to create large

grids very quickly whereas the high order scheme is extremely expensive in comparison. Therefore

in order to obtain the best results in the quickest time, a mesh of moderately small spacing with an

implementation of p = 3 to p = 5 elements is a practical option that maximizes ratio of accuracy

and runtime cost.

62

CHAPTER 6

CONCLUSION AND FUTURE WORK

The mesh generator that was developed satisfies the requirements of efficiency and gen-

erality. For each case, a single mesh is created and then refined to fit the geometry without the

need to generate a triangular mesh or subdivide the domain into patches. Generality is achieved

by implementing a preprocessor that insures a valid overlay mesh that has the correct quadrilateral

intersection types to be tested at a later stage in the algorithm. The method used is automated and

can be used for arbitrary geometry as has been shown by meshing various geometries. The scheme

is also time efficient. Although the runtime does scale with the size of the mesh to be generated,

the overall runtimes for a variety of mesh sizes are small. Therefore the automating process is

justified for speed.

Different geometries illustrating some of the challenges that arise in quadrilateral mesh

generation are studied and meshes successfully created to fit them. One of the most challenging

types of geometries, a multi section 30P30N airfoil is successfully meshed. Test cases including

examples from aerodynamics and electomagnetics are studied. The utility of having an automated

procedure with capability for refinement has been shown with both error analysis and refinement

studies.

Future work includes a more sensitive and dynamic preprocessor for the grid generator. At

its present stage, the preprocessor has the rudimentary architecture in place to sense the general

63

shape of geometries and adjusts the initial mesh to fit. However, a better and more detailed set

of conditions to orient the entire overlay mesh according to the curvature of geometries would be

helpful. Another helpful addition is to extend the current scheme to 3 dimensions. The structure of

the mesh generator is such that adding a third dimension is a feasible extension. A similar approach

to the process implemented in this research is used in [13]. However, the complexities of surface

and volume intersections in the buffer layer stage makes it a considerable undertaking and adds

complexity to the overlay requirements as well.

64

APPENDIX A

GEOMETRIES FOR NURBS CURVE FITTING

65

The geometries used in Section 3.1.2 are listed in Figures A.1 - A.7.

(a) 10 Points (b) 50 Points

(c) 100 Points (d) 500 Points

(e) 1000 Points

Figure A.1 Circles with varying numbers of points

66

Figure A.2 Straight line

Figure A.3 Square

67

Figure A.4 Semicircle

Figure A.5 Circle

68

Figure A.6 NACA 0012 Airfoil

Figure A.7 30P30N Airfoil

69

APPENDIX B

RUNTIME ANALYSIS

70

The runtime study in Section 3.4 showed the general effect upon the runtime of the mesh

generator of the grid size. However, the effect of the geometry size was not discussed.

For clarity, the size that is being considered as the defining aspect of a geometry is the total

number of points used to define boundaries, and not the extent of the domain. The three geometries

that were used were three unit circles with varying numbers of points used to describe each one.

The exact values for each run time are shown in Tables B.1 - B.3.

Table B.1 Run Times for Small Circle Geometry

Number of Grid Nodes Time in Seconds

36 5.99999E-003

108 1.09999E-002

360 3.59999E-002

1284 0.14099

4844 0.60299

29080 4.20800

114736 20.35200

71

Table B.2 Run Times for Medium Circle Geometry

Number of Grid Nodes Time in Seconds

37 6.00000E-003

116 2.09999E-002

392 7.70000E-002

1420 0.29200

5340 1.17700

32222 7.79100

127270 34.96900

72

Table B.3 Run Times for Large Circle Geometry

Number of Grid Nodes Time in Seconds

37 9.99999E-003

116 3.19999E-002

392 0.11400

1420 0.43199

5340 1.71400

22577 7.60199

127270 47.93000

The number of points used for each geometry file are listed in Table B.4.

Table B.4 Number of Nodes for Geometry File

Geometry Number of Nodes

Smallest Circle 10

Middle Circle 250

Largest Circle 500

73

The amount of time that the algorithm uses for three main steps is also considered. The

three sections considered are the initialization stage, which includes NURBS curve fitting and

initialization of the overlay mesh, adding in the geometry to the overlay mesh and creating the

final connectivity, and finally, smoothing the final mesh. A plot showing the distribution of time

for 6 different mesh cases for each geometry is shown in Figure B.1. The cases are chosen to be as

closely corresponding in resulting size of mesh as possible.

Figure B.1 Time distribution of mesh generating algorithm

Despite the fact that the first two steps in the grid generating procedure scale with the size of

the geometry, the overall contribution to the runtime is still less than the last step even for very large

geometry file. The majority of the runtime is allotted to the smoothing algorithm, and therefore in

order to speed up the scheme most efficiently, a more time efficient smoothing algorithm should be

implemented.

74

REFERENCES

[1] Lee, Y. and Lee, C. K., “A new Indirect Anisotropic Quadrilateral Mesh Generation Scheme
with Enhanced Local Mesh Smoothing Procedures,” International journal for Numerical
Methods in Engineering, Vol. 58, No. 2, 2003, pp. 277–300.

[2] Remacle, J.-F., Lambrechts, J., Seny, B., Marchandise, E., Johnen, A., and Geuzainet,
C., “Blossom-Quad: a Non-Uniform Quadrilateral Mesh Generator using a Minimum-Cost
Perfect-Matching Algorithm,” International Journal for Numerical Methods in Engineering,
Vol. 89, No. 9, 2012, pp. 1102–1119.

[3] Lee, K.-Y., Kim, I.-I., Cho, D.-Y., and wan Kim, T., “An Algorithm for Automatic 2D Quadri-
lateral Mesh Generation with Line Constraints,” Computer-Aided Design, Vol. 35, No. 12,
2003, pp. 1055 – 1068.

[4] de Oliveira Miranda, A. and Martha, L., “Quadrilateral Mesh Generation Using Hierarchical
Templates,” Proceedings of the 21st International Meshing Roundtable, edited by X. Jiao and
J.-C. Weill, Springer Berlin Heidelberg, 2013, pp. 279–296.

[5] Yerry, M., Shephard, M. S., et al., “Modified Quadtree Approach to Finite Element Mesh
Generation.” IEEE Comp. Graphics & Applic., Vol. 3, No. 1, 1983, pp. 39–46.

[6] Druyor, C. T., An Adaptive Hybrid Mesh Generation Method for Complex Geometries, Mas-
ter’s thesis, University of Tennessee at Chattanooga, 2011.

[7] Cui, J., Body-fitting Meshes for the Discontinuous Galerkin Method, Ph.D. thesis, TU Darm-
stadt, 2013.

[8] Piegl, L. and Tiller, W., The NURBS Book, Springer, Berlin, 1995.

[9] Gavrilova, M. and Rokne, J. G., “Reliable Line Segment Intersection Testing,” Computer-
Aided Design, Vol. 32, No. 12, 2000, pp. 737–745.

[10] Trefethen, L. N., Spectral Methods in MATLAB, Siam, 2000.

[11] Balanis, C. A., Advanced Engineering Electromagnetics, John Wiley & Sons, Ltd., 1979.

[12] Young, P., “Leapfrog Method and Other ‘Symplectic’ Algorithms for Integrating Newton’s
Laws of Motion,” University Lecture, 2011.

75

[13] Karman Jr, S. L., “Hierarchical Unstructured Mesh Generation,” AIAA Aerospace Sciences
Meeting and Exhibit, Vol. 613, University of Tennessee at Chattanooga, American Institute
of Aeronautics and Astronautics, 2004.

76

VITA

Mary Barker was born and grew up in St. Louis, Missouri. She earned a B.A. in Mathemat-

ics from Covenant College on Lookout Mountain, Georgia and moved to Chattanooga to pursue

a degree in Computational Engineering at the SimCenter, University of Tennessee at Chattanooga

which she completed in August, 2015. She loves mathematics and hopes to continue as a student

until she cannot learn any more.

77

	ABSTRACT
	DEDICATION
	ACKNOWLEDGEMENTS
	LIST OF TABLES
	LIST OF FIGURES
	INTRODUCTION
	PREVIOUS EFFORTS AT QUADRILATERAL MESH GENERATION
	GRID GENERATION
	Boundary Curves
	Mathematical Formulation for NURBS Curve
	Quality Metric for Curve Fitting

	Grid Generator
	Grid Test Cases
	Multiple Curves and Geometries
	Buffer Layer Creation

	Time Study

	SIMULATIONS UTILIZING HIGH ORDER CURVED BOUNDARY DISCRETIZATION AND THE FINITE ELEMENT METHOD
	Overview of Integration Technique
	Weak Formulation
	Circular Waveguide Applications
	Higher Order Elements

	EXAMPLES
	Order of Accuracy
	Refinement Studies for a Finite Element Solver

	CONCLUSION AND FUTURE WORK
	GEOMETRIES FOR NURBS CURVE FITTING
	RUNTIME ANALYSIS
	REFERENCES
	VITA

