
Jack Thompson 

To The Graduate Council:  
 
I am submitting a thesis written by Sumit Khanna entitled “Breaking the Multi-
Colored Box: A Study of CAPTCHA.”  I have examined the final copy of this thesis 
and recommend that it be accepted in partial fulfillment of the requirements for the 
degree of Master of Science with a major of Computer Science. 
 
 
 
 
 
 
 

_______________________________ 
Billy Harris, Chairperson 

 
 
We have read this thesis and  
recommend its acceptance: 
 
 
 
 
_______________________________ 
Joseph Kizza 
 
 
 
_______________________________ 
Jack Thompson   
 
 
 
  
           Accepted  for  the Graduate Council: 
 

_______________________________ 
    Stephanie Bellar 
    Interim Dean of the Graduate School 

Billy Harris 

Joseph Kizza 

Stephanie Bellar 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UTC Scholar

https://core.ac.uk/display/51197359?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Breaking the Multi Colored Box: 
A Study of CAPTCHA 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

A Thesis 
Presented for the 

Master of Science Degree 
The University of Tennessee, Chattanooga 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Sumit Khanna 
April 2009 



 ii 

 
 
 
 

This work is licensed under the Creative Commons Attribution-Noncommercial-Share 
Alike 3.0 Unported License. To view a copy of this license, visit 

http://creativecommons.org/licenses/by-nc-sa/3.0/ or send a letter to Creative Commons, 
171 Second Street, Suite 300, San Francisco, California, 94105, USA. 

 
2009 Sumit Khanna 

Some rights reserved. 



 iii 

Acknowledgements 

The research presented here could not be completed without the assistance and 

support of many different people. I would like to thank Susan Reid, Erin Hazard, Chris 

Coffey and Erin McArthur for their help in copy-editing my work. I would also like to 

thank Alex Shiels for helping me find resources on Askimet. Thanks go to my committee 

chairman Billy Harris, as well as my committee members Joseph Kizza and Jack 

Thompson, for all their assistance and suggestions. Finally, I'd like to thank everyone 

who has encouraged and supported me during the research and writing of this thesis. 



 iv 

Abstract 

Communication is faster than ever. Innovations in low cost network computing 

have brought an era in which people can effortlessly and instantaneously view and post 

opinions collaboratively with others across the world. With such an infrastructure of 

public message boards, chat rooms and instant messaging systems, there is also a large 

potential for abuse by people wishing to capitalize on such open services by posting 

unsolicited advertisements. 

An entire industry has been constructed around the prevention of unsolicited 

electronic advertisements (SPAM). This thesis examines various techniques for 

preventing SPAM, focusing on Completely Automated Public Turing Tests to Tell 

Computers and Humans Apart (CAPTCHA), a challenge/response technique where an 

image is displayed with text that is heavily distorted. It also examines the feasibility of 

breaking CAPTCHA programmatically, alternatives to CAPTCHA based on filtering, 

improvements to CAPTCHA using photo recognition and avoiding the need for 

CAPTCHA using naïve approaches.  
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Chapter I – Introduction 

People who frequently use the Internet for communication, social networking and 

purchases often come across web pages that request that they type the value of an image 

with distorted text into an input box. The purpose of such requests is to prove that the 

requester is in fact human and not an automated computer program. This challenge 

response test is what is known as a Completely Automated Public Turing test to tell 

Computers and Humans Apart (CAPTCHA). The term was originally coined by several 

developers at Carnegie Mellon University, and the school’s Computer Science 

Department currently holds the trademark on the acronym [1]. 

There is a directed effort by commercial interests to break CAPTCHAs, that is to 

create computer programs to solve the puzzles in order to post unsolicited messages and 

advertisements. Many such attempts are similar to the nature of attempting to get 

messages past filters for unsolicited e-mail (also known as SPAM). There are also 

noncommercial interests in breaking CAPTCHA, either to improve the CAPTCHA itself, 

force developers to find alternatives by showing CAPTCHA is broken, or general 

curiosity in bettering the field of Computer Science. 

1.1 Problem Statement 

My research focuses on three major problems: 

1. Is it possible to break common distorted text based CAPTCHA, i.e. 

recognize and answer challenges programmatically, using currently 
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available open source tools for filtering and character recognition?  

2. How can CAPTCHA be improved? Are there other challenges that can be 

created that are easier for humans to answer and more challenging for 

computers to respond to programmatically? 

3. How effective is CAPTCHA against combating SPAM compared to other 

prevention techniques? 

1.2 Explanation of the Problems 

Unsolicited bulk e-mail, advertisements posted to public forms, blogs and bulletin 

boards and other forms of SPAM are a major problem on the Internet for several reasons. 

The cost of sending unsolicited advertisements is relatively cheap but consumes large 

amounts of bandwidth causing cost to be shifted to regular consumers. A majority of 

SPAM is also fraud and can cause uninformed end-users to lose a considerable amount of 

money [2]. Because of these facts, multimillion dollar industries arose simply to identify 

and combat SPAM, which increases costs to service providers, the cost of entry for 

legitimate businesses and overall costs for end users.  

Public forums, bulletin boards and blogs are particularly susceptible to SPAM 

posting because they are designed to facilitate a high degree of open interaction and 

discussion with either no verification or simple registration. CAPTCHA becomes 

important for these services to prevent automated scripts from flooding public discussion 

areas. Such postings can make legitimate websites completely unusable. However, 

CAPTCHA does make it more difficult for visually impaired users to participate in such 
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discussions. My research into attempting to break CAPTCHA is intended to answer the 

question: is CAPTCHA still a viable form of protection against SPAM? 

Regardless of the solution to the first problem, my research also examines 

alternatives to the traditional distorted text based CAPTCHA and attempts to improve on 

such techniques and provide innovative approaches. To these ends, I have developed an 

application that can be integrated into existing websites and that provides a new form of 

photograph based CAPTCHA utilizing a vast library of user contributed photographs and 

metadata on those photographs to generate challenges.  

CAPTCHA challenges can potentially prevent SPAM but have a considerable 

number of drawbacks, primarily the inability for the visually impaired to answer most 

challenges. Many websites and content management systems have attempted to use 

traditional SPAM filtering techniques such as those used to prevent unsolicited e-mail. 

The final problem my research addresses is the effectiveness of non-CAPTCHA 

techniques for preventing SPAM versus CAPTCHA challenges. 

1.3 Understanding CAPTCHA 

The goals of CAPTCHA are to eliminate automated robots and scripts from using 

a website as a means of spreading unsolicited advertisements, inflating rankings in search 

engines and distributing viruses. Although an individual could still accomplish these 

tasks, using an automated program makes the distribution of SPAM much faster, causes 

the damage to be more widespread and makes the results considerably more difficult to 

clean up. 
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At one time a simple image with slightly distorted text may have been enough to 

confuse most web robots and allow web designers to validate human users; however, the 

presence of such text has led programmers to create even more sophisticated robots 

capable of using Optical Character Recognition (OCR) algorithms —the same types of 

algorithms used by scanner software to convert scanned documents into text— to 

recognize the text within the images.  

Such innovations have led to more complicated CAPTCHA, which involves 

multi-colored distorted text on altered backgrounds that contain added lines, noise and 

possible faded and rotated characters that are not part of the CAPTCHA itself [Figure 1] 

[3]. 

 

 

Figure 1 - Example of a CAPTCHA 

 

One of the foundations of security in the field of Computer Science is the ability 

to create a process or algorithm that is very easy to do computationally but is very 

difficult to undo. This foundation is used in asymmetric or public/private key encryption, 

which utilizes keys based on the products of two large prime numbers: something that is 

very easy to do but difficult to undo due to the complexity of factoring products of prime 

numbers. This same concept applies to the idea of CAPTCHA, although in a slightly 
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different context. 

With CAPTCHA, a computer program must test the users to see if they are 

human. By doing so, the program needs to generate a test, to which it knows the answer, 

but which cannot be solved programmatically. There is an odd paradox here where the 

program generates a test and grades it for correctness; a test that the program itself cannot 

pass [4]. 

CAPTCHA is considered an example of a Reverse Turing Test. In a traditional 

Turing Test, software developers attempt to generate a program that can simulate written 

human communication. Typically a user will attempt to communicate with the Turing 

Machine over a text message system to determine if he or she is talking to a real person 

or a computer on the remote end. Although there is much debate about whether it is 

theoretically possible to create a true Turing Test or Reverse Turing Test [5], the concept 

itself does lend itself to many limitations, technical problems and ethical boundaries 

when dealing with real people. 

Simply put, CAPTCHA works because, even with the advancement and 

innovations in computing technology over the past several decades, there are still tasks 

that can be accomplished faster and more easily by humans than they can by computers; 

specifically simple puzzles that involve images, natural language processing or a 

combination of the two.  

Current advancements in image recognition, shape recognition, artificial 

intelligence and machine learning may tip that scale back in favor of computer algorithms 

in solving CAPTCHA challenges. Therefore, programmers and security experts must be 
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diligent in finding new techniques to correctly identify humans, prevent SPAM and 

maintain security in website models.  

1.4 Types of CAPTCHA 

The most prevalent form of CAPTCHA is an image with distorted text, although 

there are many others. A CAPTCHA needs to be able to automatically determine if the 

end user is human or a program. Therefore, any test that is easy for a human to solve yet 

difficult to write an automated program for can be considered a CAPTCHA. Recent 

advancements have led to CAPTCHAs based on pictures, word puzzles, spoken audio 

and other challenges, each with their own strengths and weaknesses.  

1.4.1 Word Puzzles 

One such technique is implemented as a plugin for the commercial bulletin board 

software, vBulletin. "NoSpam! - an alternative to CAPTCHA images" is a plugin 

designed by a programmer who goes by the handle Antialiasis [6]. The plugin allows a 

board administrator to define a set of questions and answers. The questions can be simple 

(e.g. "What is 2 + 2?") or technical questions related to the forum. The author also 

suggests embedding an image and asking the question about the image itself.   

The advantages to such an approach include accessibility to the visually impaired 

as well as providing a less cumbersome mechanism of distorted text which sometimes 

takes users several tries to decipher correctly. For this technique to be effective, there 

needs to be a considerably large number of questions so that a programmer simply does 

not farm the website for all the possible challenge responses. The questions also need to 
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be simple enough to be quickly and easily answered. A similar tool for Wordpress, WP-

Gatekeeper, offers challenge questions such as "How do you spell the color blue?" [7] 

However, questions such as these could eventually be circumvented by a sophisticated 

natural language processor. 

1.4.2 Sound Based 

Some CAPTCHAs provide a sound file alternative for uses that are visually 

impaired. This allows the user to listen to an audio clip, typically one that is heavily 

distorted, as a means to identify the text in a visual CAPTCHA. Although a sound only 

alternative is a possibility, such an implementation would be inaccessible to those who 

have hearing impairments, users who are at computers without sound cards such as those 

in libraries or users who are in noisy environments such as coffee shops or public 

wireless locations.  

Sound CAPTCHAs also run into the same limitations as picture based 

CAPTCHAs as they require large numbers of voice recordings to be effective. One 

solution is automatically generated sounds using voice-synthesizing software; however, 

such sound based challenges could be circumvented using voice recognition software. 

Many audio challenges also add in background noise and various other voices chattering. 

Although this addition makes it more difficult for voice recognition programs to extract 

the correct response, it can also make it difficult for humans to understand what the 

correct response should be. 

The current official version of CAPTCHA created by the term’s trademark holder, 

Carnegie Mellon University, named reCAPTCHA, has support for an auditory 
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CAPTCHA for users who are visually impaired. In addition, reCAPTCHA is more useful 

than just a SPAM prevention mechanism. It actually helps facilitate digitizing books into 

an electronic form [Figure 2].  

 

 

Figure 2 - reCAPTCHA Example 

 

It works by providing two words, one which is known and the other taken from a 

book digitalization project that an optical character recognition (OCR) program could not 

correctly identify with confidence. If the CAPTCHA is validated correctly with the 

known word, the user submitted value of the unknown word is stored. The same 

unknown word is presented to multiple people to gain a total confidence score on what 

the word actually is [8].  

1.4.3 Photograph Identification 

One means of determining if an individual is human is by using a matrix of 

photographs. A challenge is presented where the user is asked to select a set of photos 

which have something in common with one another. An example is the KittenAuth 
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project by Oli Warner. Using KittenAuth, a user is presented with a series of nine images 

[Figure 3]. The user must pick out the three which are kittens in order to prove he or she 

is human [9]. 

The advantage to such a challenge is that for people who are visually impaired, it 

may be easier to recognize photographs than it is to read distorted text challenges. The 

disadvantage is that a massive repository of both kitten and non-kitten related photos 

would be necessary for such a system to be practical against SPAM prevention. If the 

program contained only a few hundred photos, given enough time, an attacker could 

manually identify many of the kittens and then proceeded to using image comparison 

techniques to break the challenge and send automated requests. 

 

 

Figure 3 - KittenAuth Photo-Based CAPTCHA 

 

Part of my research deals with this specific type of CAPTCHA challenge and 

improves it to be more robust and less vulnerable to attack by utilizing a larger public 

repository of images. The result is an application called FlickMeCaptcha, which interacts 
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with the popular photo sharing website Flickr and is covered in more detail in Chapters 3 

and 4.   

1.5 Alternatives to CAPTCHA 

1.5.1 Bayesian Networks 

There are solutions that simply test the contents of the message body itself rather 

than add an additional CAPTCHA test, similar to how e-mail SPAM filters work. Early 

spam filters for e-mail used developer defined rules such as searching e-mail for specific 

types of websites or words and phrases. As spammers became adept at circumventing sets 

of known rules and the rules themselves grew to enormous sizes, more dynamic 

approaches based on machine learning came into play.  

Modern SPAM filters are based on the concept of a naïve Bayes classifier, also 

known as a Bayesian Network. In 1998, Sahami and others trained the first of such filters 

with promising results [10]. Today, the same Bayesian filtering has been incorporated 

into many end user applications and SPAM filters such as Mozilla Thunderbird and the 

free project SpamAssassin [11].  

Bayesian Networks work off a probabilistic graph model. Under the surface they 

are standard acyclic directed graphs that can be trained for classification using machine 

learning techniques. Given a certain threshold they can be trained to return, within the 

tolerance of a given percentage, items that are likely to be SPAM.  

Bayesian Networks are not the perfect solution to preventing SPAM since they 

still have several problems when used with websites. E-mail based filters have the 
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advantage of also being able to perform checks based on e-mail headers, reverse domain 

name service (DNS) lookups and other techniques in addition to the Bayesian analysis to 

derive a total confidence score. On a website where user input is available, many of these 

options are not available and the filter must determine the legitimacy of the posted item 

based solely on the text entered. 

Another common problem is Bayesian Filtering Poisoning. Using this technique, 

a spammer incorporates several legitimate words together with the SPAM so the filter 

either lets the message through or incorrectly marks legitimate e-mails as SPAM leading 

to false positives within the SPAM filter. One particularly tricky example involves using 

text that is the same color as the background [Figure 4]. 

 

 

Figure 4 - Seemingly Legitimate Text  

 

 

Figure 5 - Hidden SPAM 

 

Using changes in text and background color, an e-mail that seems like an 

unsolicited advertisement to the user may pass through a SPAM filter. Highlighting the 

text reveals the characters that are used to run the words together [Figure 5] [12].  
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Utilizing a Bayesian Network based filter on user submitted input could be used 

as an alternative to CAPTCHA. The advantages include not bothering the user with the 

CAPTCHA puzzle and not taking into consideration users who may be visually impaired 

and unable to read the challenge. However, there is the possibly that the filter could 

identify false positives and incorrectly label legitimate content as SPAM. 

In my research I examined several non-CAPTCHA based alternatives that 

examine the contents of messages to determine if they are SPAM. Such alternatives 

include Akismet [13], Mollom [14] and Defensio [15]. These alternatives are 

implemented as web based services that can be accessed through a publicly available 

interface. All of them are free for non-commercial use with optional licenses for 

businesses and large websites. Each also has plugins for popular content management 

systems such as Wordpress, Drupal and Movable Type. They most likely implement a 

series of techniques such as Bayesian Networks and blacklists although their exact 

techniques are kept secret to prevent attackers from being able to circumvent the systems.   

1.5.2 The Naïve Approach  

There is a less sophisticated approach to preventing SPAM based on the 

assumption that automated scripts written to post SPAM are not designed to be very 

intelligent. In other words, the programmers that create SPAM posting scripts design 

them to post as many websites as possible without paying much attention to any other 

content on the page. An example of a naïve approach is placing an input field on a 

website and then changing its display property in the style sheet to make it invisible. A 

simple automated program would most likely not be designed to download and parse the 
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style sheet and would fill out the form field that could not be seen in a real web browser, 

clearly indicating the post is SPAM. 

In my research I examine naïve approaches used on websites. Naïve techniques 

do not provide a high degree of SPAM prevention and can easily be circumvented, 

however the cost and effort for identifying and circumventing these implementations is 

often not economical for posting SPAM to small websites.  

1.6 Ethical Concerns in Using and Breaking CAPTCHA 

Although added visual distortions may make it more difficult for a program to 

efficiently identify the characters, these distortions pose a second challenge of also 

making it more difficult for humans to identify the characters as well, especially since 

one in twelve people in the United States have some form of color blindness [16]. Being 

color deficient in one or more major color group can make it difficult if not impossible to 

identify characters in CAPTCHA.  

There are many ethical dilemmas found both in using CAPTCHA and in trying to 

circumvent or break CAPTCHA. Issues of legality, security and access for those with 

visual impairments are just a few of the many issues surrounding both CAPTCHA and 

various other SPAM prevention technologies. Some companies have issued cease and 

desist orders against developers and companies who create software to circumvent 

CAPTCHA while others have taken software developers to court. The issues that arise 

begin to congeal over the very idea of creating illegal software. The simple act of 

developing software brings up questions of liability when it comes to damages, whether 
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real or virtual, when faced with the concept types of software that are defined as illegal to 

develop. 

One of the more recent and predominant cases involving software that 

circumvents CAPTCHA is in the case of TicketMaster vs. RMG. TicketMaster found that 

certain ticket brokers were purchasing large numbers of tickets in very small amounts of 

time. Some of these brokers used a service from RMG called ticketbrokertools.com 

which was available only to RMG clients. Through cooperation with brokers, 

TicketMaster found that RMG's PurchaseMaster software actually made a slew of 

automated requests to TicketMaster's website. RMG had developed software to break the 

CAPTCHA used by TicketMaster and funneled the request through their client's PCs to 

make the request look like they were coming from several sources [17]. 

Another questionable ethical practice involves employing people to solve massive 

amounts of CAPTCHA problems in a farming type situation. Technically a real human 

would be solving the problems; however, it would be for the purposes of posting SPAM 

or launching some type of attack. There are widespread, although unsubstantiated, reports 

of such farming [18], however the feasibility of such a concept comes into serious 

question. Jeff Atwood of the website Coding Horror puts the feasibility of such an 

operation into perspective in the follow blog article: 

 

“Let's say spammers set up a sweatshop to employ people to look at 

computer screens and answer CAPTCHA challenges. They get to send one 

message for each challenge passed. Assuming 10 seconds per challenge, 
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and paying roughly $5 per hour, that represents $14 per thousand 

messages [sic]. A typical spam run of 1 million messages per day would 

cost $14,000 per day and require 116 people working 24/7. 

This would break the economic model used by most current spammers. A 

recent Wired article showed one spammer earning $10 for each successful 

sale. At that rate, the cost of $14,000 for 1,000,000 spam emails requires a 

1 in 1000 success rate just to break even, whereas current spammers are 

managing a 1 in 100,000 or even 1 in 1,000,000 success rate [19].”   

 

A more viable model would be to get real people to solve CAPTCHA challenges 

either for free or in exchange for something with insignificant cost. According to 

Computer World Magazine, such a technique was implemented by one group using a 

virtual stripper [20]. The animated image of the stripper would gradually remove clothing 

as users enter in solutions to CAPTCHAs. Each CATPCHA was actually taken from 

Yahoo’s e-mail service and the solutions were used to generate a collection of accounts to 

use for spamming purposes.  

There are many ethical considerations surrounding CAPTCHA. As far as their 

use, the primary concern is accessibility for those who are impaired. Improvement in the 

use of audio and word puzzle substitutes has greatly reduced this concert in newer 

implementations.  

As far as solving CAPTCHA programmatically, issues have been raised as to the 

legality of breaking CAPTCHA for the purpose of sales. The Ticketmaster vs RMG 
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shows that the courts hold that development of software specifically for the purpose of 

violating TicketMaster’s terms of service is illegal, however, this raises further concerns 

about the ethics of creating software to break CAPTCHA for research purposes, in an 

effort to find either better CAPTCHA or to enhance the field of artificial intelligence as a 

whole. 
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Chapter 2 – Literature Review 

Applications designed to programmatically break CAPTCHA do not need to have 

a high degree of accuracy. Even if a program can only get ten percent of the image 

challenges correct, it could access and submit to a page several hundred times a minute 

negating the inaccuracy. Typically the more SPAM prone websites will also add monitors 

that can detect several connection attempts by a single client in a short interval and will 

ban such connections. In this sense software that prevents Denial of Service attacks has 

the side-effect of also helping deflect CAPTCHA breaking attacks. This forces spammers 

to find ways of getting other clients to make such attempts, either by means of spreading 

viruses, using unsecured open proxy servers or coaxing individuals with offers of free 

services or money. 

There has been considerable research put forth into creating algorithms that can 

identify and successfully answer CAPTCHA challenges. There are several challenges 

facing image analysis. Each of the papers I examined dealt with issues of segmentation, 

that is separating individual letters in a CAPTCHA challenge, and shape recognition, that 

is identifying individual characters or glyphs.  

Before beginning my own experiments and writing my own applications, I studied 

existing academic research as well as individual blogs and user experience. I read the 

works of Chellapilla and Simard who authored the paper Using Machine Learning to 

Break Visual Human Interaction Proofs [21], Mori and Malik who wrote Breaking a 

Visual CAPTCHA [22], Hocevar who created a program called PWNtcha [24] that 

attempted to circumvent several common forms of CAPTCHA, and Jeff Atwood of the 
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blog Coding Horror [19] who comments on the state of CAPTCHA breaking as well as 

using a naïve approach to prevent SPAM.  

2.1 Chellapill and Simard 

In the paper Using Machine Learning to Break Visual Human Interaction Proofs, 

Chellapilla and Simard [21], two software engineers from Microsoft, examine breaking 

hard CAPTCHA using a combination of recognition, machine learning algorithms and 

segmentation techniques. During the course of their research, they determine that most 

simple CAPTCHAs, which they referred to as Human Interaction Proofs or HIPs, were 

simple recognition problems while the harder ones required significantly more complex 

segmentation algorithms.  

For simple CAPTCHAs such as Milblocks, Chellapilla and Simard were able to 

achieve an end-to-end segmentation success rate of 88.8% with a 95.9% recognition for 

those correctly segmented. Similarly, the Register CAPTCHA had a 95.4% segmentation 

success rate with an 87.1% recognition rate of successful segmentation. Harder 

CAPTCHAs to segment, such as Ticketmaster's, which uses diagonal intersecting lines, 

yielded a segmentation success rate of only 16.6%. Of those correctly segmented, the 

recognition rate was 82.3%. Their conclusions showed that once segmentation can be 

broken, the reaming recognition problem can be solved easily with a machine learning 

algorithm.  

Chellapilla and Simard pose the question: What makes segmenting characters in 

CAPTCHA difficult? Their analysis shows that segmentation is very computationally 
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expensive requiring examination of many different patterns to locate candidates. The 

segmentation functions are also very complex because they must identify patterns over 

the set of all possible valid and invalid patterns, which is substantially more difficult than 

traditional classification problems. Finally, identifying symbols over a set of valid and 

invalid candidates is a combinational problem, which can very quickly explode into a 

high order problem size. For example correctly identifying 10 characters among 20 

candidates has a 1 in 184,756 (20 choose 10) chance in succeeding by random guessing 

[21]. 

Unlike Chellapilla and Simard, in my own research I do not attempt to use a 

machine learning algorithm to analyze CAPTCHA challenges. Instead I use freely 

available optical character recognition (OCR) software combined with image filtering 

over a large set of challenges. The software I have developed is modularized to 

accommodate a variety of different filtering techniques. Using an object orientated 

approach, the analysis tool can be easily expanded to accommodate different filters and 

analyzers and then perform experiments using different combinations of filters and 

analyzers to gather results.  

The software I designed attempts to test several different CAPTCHA scripts with 

a set of analysis techniques. Although it gathers data on the amount of both correct letters 

and correct words, it does not have a means of gathering data on correct segmentation. 

2.2 Mori and Malik 

One of the more famous examples of defeating CAPTCHA is documented in the 
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paper Breaking a Visual CAPTCHA by Greg Mori and Jitendra Malik from the 

University of California Berkeley and Simon Fraser University, respectively [22]. They 

took on the challenge of breaking Gimpy and EZ-Gimpy, the Yahoo CAPTCHA systems. 

Using shape recognition techniques, the one word EZ-Gimpy CAPTCHA could be 

broken 92% of the time, while the more difficult two overlaid word Gimpy CAPTCHA 

could still be broken 33% of the time.  

The technique employed by Mori and Malik involves three very basic steps at its 

highest level. First, each individual shape is identified and a list of possible letters 

assigned to it. Second, a set is composed by linking every possible combination of the 

letters. Third, the set is compared to a dictionary to find the actual word the image is 

displaying [23]. This technique has obvious limits as the EZ-Gimpy system uses actual 

dictionary words and not random letters. Although this makes the system easier for a 

human to use, it also makes it significantly easier to automatically decipher.   

My own research uses CAPTCHA scripts which generate random characters 

instead of dictionary words. Because of this my engine does not attempt to try to match 

potential choices with a dictionary; but attempts to analyze each image individually and 

gathers data on the percentage of correct letters and correct challenges. 

2.3 Hocevar 

Sam Hocevar, a developer, has worked diligently on his project "PWNtcha" 

which stands for "Pretend We're Not a Turing Computer but a Human Antagonist." 

Hocevar has discovered poorly designed generation techniques in many of the common 
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forms of CAPTCHA used in a variety of bulletin board and blogging software which 

allows them to be easily deciphered [Figure 6] [24]. 

 

 

Figure 6 - Chart outlining several types of easily broken CAPTCHA  

 

Hocevar claims that his program is more of a toolkit for image filtering and 

manipulation than a general purpose decoder. He can not feed any CAPTCHA to it, but 

must custom tailor it to the type of CAPTCHA presented to it. His website provides 

examples of significantly harder CAPTCHAs that he still cannot break and is unsure if he 

will ever be able to [Figure 7]. 
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Figure 7 - Chart outlining several types of hard CAPTCHA 

 

Sam Hocevar originally published his results from the PWNtcha project in 2004, 

however he offered no source code. Unlike the aforementioned studies, he also did not 

publish detailed methodology on how he accomplished his results stating ethical reasons. 

Because of this, as opposed to more traditional studies, Hocevar's results were not 

reproducible. In 2008, he did release the source code to PWNtcha publicly, stating that 

the algorithms he used were for outdated CAPTCHAs that were no longer in use. 

2.4 Atwood 

Jeff Atwood, writer for the blog Coding Horror, described how his blog uses a 

"naïve CAPTCHA" meaning the CAPTCHA does not change. It uses the same challenge 

presented continually, yet the author claimed he has received fewer than ten SPAM 

messages and that the naïve approach was 99.9% effective against stopping SPAM [19]. 

Atwood's article isn't about naïve approaches specifically, but rather it explains why 

CAPTCHA isn't broken. He claims that although a few CAPTCHA-defeating proof of 

concepts have been published, many major websites such as Google, Yahoo and Hotmail 

still use CAPTCHA. 

Furthermore, Atwood makes the argument that, "The real secret to CAPTCHA is 
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that it hits spammers where they are most vulnerable: in the pocketbook. The minute you 

put up a computational barrier, the entire economic model of SPAM comes crashing 

down [19]."  

This argument works logically when examining the previously mentioned 

research of Chellapilla and Simard [21], Mori and Malik [22] and Hocevar [24]. In all of 

the mentioned examples where CAPTCHA was broken, the researchers had to design 

algorithms for a specific CAPTCHA. In the case of RMG vs. Ticketmaster [17], a 

situation can be seen where the financial benefits of breaking CAPTCHA outweigh the 

research costs.  

In the case of smaller websites, it is not economically feasible to research 

algorithms for every possible CAPTCHA type. Rather it is easier to submit SPAM to 

every form that can be found and hope that some of them post to the website. I've 

experienced this on my personal website, http://sumdog.com, where I incorporated 

CaptchaPHP into the guestbook over two years ago to combat rising levels of SPAM. 

The amount SPAM I receive dropped from several messages a week to fewer than ten 

SPAM posts over the entire course of its implementation. 

The importance of Atwood's work in regards to my own research is to show that 

SPAM can be prevented by using unsophisticated techniques. With Atwood's very simple 

naïve CAPTCHA, he was able to successfully reduce the amount of SPAM posted on his 

website. My research into both naïve and non-CAPTCHA based approaches show that 

there isn't an effective way to measure or compare the effectiveness of such approaches 

over regular CAPTCHA challenges. Still, this information is important to note as it is 
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significant to the general field of SPAM prevention. 

2.5 Conclusions 

From studying existing ventures into breaking CAPTCHA, there has been a 

considerable amount of research done on breaking CAPTCHA by independent 

researchers, major universities and even major corporations. Although many groups will 

publish results as well as complex methodology, few will post actual source code, most 

likely for ethical reasons.  

What are considered easy cases have been solved for a considerable amount of 

time and require only simple image filtering in combination with shape recognition to 

solve. Harder cases may require additional work with segmentation and machine 

learning, yet some researchers have been able to get reasonable success rates even with 

such cases. The hardest challenges are images that use varying colors, intersecting lines, 

words layered upon words and various other techniques that make filtering the original 

characters very difficult while still maintaining easy visibility for human readers.  

Even with all these innovations in segmentation, filtering and recognition, none of 

the aforementioned studies have a general case algorithm to work universally on all 

CAPTCHAs. The methodology must be customized and tailored for each type; therefore, 

attacks are most often targeted, either to specific types of challenges or to a single 

particular website of high interest to an attacker.  
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Chapter 3 – Research and Experiments 

My research focuses on three distinct yet related problems. One is to attempt and 

break existing distorted word based CAPTCHA using freely available tools, the second is 

to create or improve a form of CAPTCHA and the third is to compare the effectiveness of 

using CAPTCHA based alternatives. The first problem involves writing an application to 

compare different approaches to breaking CAPTCHA. The second involves creating a 

script to implement a new form of photo identification base CAPTCHA. The third 

problem involves examining statistics from services which provider alternatives to 

CAPTCHA. 

In this chapter I describe the Java based BMCB engine I designed to generate data 

sets of CAPTCHA images and run experiments against those sets using optical character 

recognition applications. I also cover FlickMeCaptcha, a PHP add-in I designed to be 

easy to integrate into existing websites that offers an improvement on photo-based 

CAPTCHA. Finally, I examine Akismet, an alternative to CAPTCHA which examines 

website submissions the same way e-mail filters examine messages for SPAM and 

compare its effectiveness to CAPTCHA. 

3.1 BMCB Engine 

The BMCB engine generates several sets of CAPTCHA images with known 

answers and stores those answers and their corresponding files in a database. The engine 

can then be used to apply image filtering, segmentation (separating individual characters 
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into sub images) and analysis techniques to the image sets and see how well the computer 

functions in determining the text in the CAPTCHA images. The engine is dynamic 

enough that it can be used for analyzing each image independently or using machine 

learning to train an analyzer with one of the data sets.  

All of the generators, filters, segmentators and analyzers that come with the 

engine are based on existing open source technologies, however they can all easily be 

expanded to incorporate various technologies and algorithms. Most of the default 

analyzers are wrappers for open source Optical Character Recognition (OCR) software. 

By itself, the OCR software would have difficulty interpreting the highly distorted 

images, therefore the use of filtering and segmentation on the images was attempted to 

see if they would improve the OCR software’s ability to correctly identify challenges. 

3.1.1 Experiment Constraints 

The engine is highly adaptable with the ability to set constraints within the 

workflow classes. In the experiments detailed within this paper, several open source 

CAPTCHA generators were modified to take in an argument from the command line in 

order to create a set of known CAPTCHA challenge images and responses. The following 

constraints were used: 

• The CAPTCHAs consist of a set of random letters distorted in the common image 

based CAPTCHA 

• All CAPTCHAs in a given data set are all a fixed length of five characters 

• CAPTCHAs only contain letters, no numbers, with the challenge response being 

case insensitive 
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• Each CAPTCHA set consists of 1000 challenge response images 

The constraints may seem restrictive, however they allow the design of the engine 

to focus on a very narrow scope and solve simple problems before progressing on to the 

general case.  

3.1.2 Set Generation 

In order to generate a set of known CAPTCHA challenges, common open source 

script need to be slightly modified. The engine has a default Command Line Generator 

class that will take any program given to it, pass that program the CAPTCHA letters as 

the first argument and the path to where the distorted image should be written as the 

second. Most generation scripts can easily be modified by altering the methods used to 

randomly generate the text within the image as well as the function used to display the 

image on the webpage.  

Four different CAPTCHA generation scripts were used with the engine. Three of 

them are PHP based open source CAPTCHA tools: CaptchaPHP [25], Freecap [26] and 

Gotcha [27]. The final script is a custom one that creates an undistorted image in an 

easily readable font to be used for the trivial case to test the accuracy of the analyzers 

[Figure 8]. 
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Figure 8 - Types of CAPTCHA 

3.1.3 Image Filtering  

The default filtering class that comes with the engine is a wrapper for the 

command line file manipulation tool ImageMagick. ImageMagick is an open source tool 

used to programmatically perform common image manipulation tasks such as brightness, 

contrast, color adjustment, edge detection, resizing, transformation, etc.  

Simple effects such as brightness and contrast adjustment can greatly affect the 

readability of the image, both by humans and character recognition programs. 
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ImageMagick uses the “modulate” parameter to adjust brightness and contrast [Figure 9 -

- Figure 10]. 

 

 

Figure 9 - Original CAPTCHA 

 

 

Figure 10 - CAPTCHA with Modulate Filter 110,100 Applied 

 

Noise reduction is another helpful filter when trying to examine images. The 

noise reduction filter helps to remove much of the distortion from areas of heavy 

changing contrast. Typically applied to photos to improve sharpness and remove 

imperfections, noise reduction can greatly improve the ability of an analyzer to recognize 

characters in a CAPTCHA [Figure 11 - Figure 12].  

 

 

Figure 11 - Original CAPTCHA 
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Figure 12 - Noise Reduction Filter Applied 

 

Filters can be used either by themselves or in combination with each other in 

order to remove noise from an image and make the image easier to process by shape 

recognition algorithms.  

3.1.4 Analysis  

Two basic analyzers are included with the engine. The first is GOCR, an open 

source OCR program released under the GNU General Public License, which was 

originally developed by Joerg Schulenburg who now leads a team of independent 

developers. The latest release of the software was in March of 2007 [28]. The second 

analyzer is OCRAD, an open source OCR program developed as a GNU project by the 

Free Software Foundation. Its latest release was in June of 2007 [29]. 

Both GOCR and OCRAD can be run directly from the command line. As their 

first argument, they take in a Portable Anymap (PNM) File. Their output is ASCII text in 

the standard western alphabet representing its recognition of the text [Figure 13]. 
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Figure 13 - OCRAD Analyzing a Trivial Image 

 

The Guessing Analyzer is a trivial analyzer, which must know the length of the 

CAPTCHA (i.e. it must be called using a method that provides an array of image 

segments) and then randomly guesses the letters in the image without any analysis. 

Combined with the equally trivial Even Length Segementator, the Guessing Analyzer can 

be used to test the probability of correctly randomly guessing a CAPTCHA.  

3.1.5 Experiments  

The framework is designed so that experiments can be implemented in the form 

of workflows. Experiment workflows can be as simple as just taking raw unfiltered 

images and passing them directly to the analyzer or can be as complex as passing each 

image through a series of filters, before or after being segmented and eventually 

analyzed. The tools are chained together by utilizing a standard object for holding and 
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manipulating the image. 

The most basic experiments executed here include two control situations. One 

uses the analyzers to examine the accuracy of standard text. For the case of this 

experiment, the font used to render the unaltered text was COLLEGE.TTF. It was chosen 

because, although all the characters are uniform, unique and have mostly straight edges, 

the letters are somewhat non-standard and easily confusable with one another, allowing 

the control set to test the analyzers in less than unique conditions.  

The second control situation involves the analyzers examining CAPTCHA images 

without first being filtered, segmented or altered in any way. The results of such a set 

would show the capabilities of analysis by itself without the benefit of pre-filtering, 

segmentation or any other noise reducing technique.  

There is also a third, nondeterministic control test in which the analyzer randomly 

attempts to guess the letters in the CAPTCHA challenge without performing any filtering 

or analysis. It has the advantage of knowing the length of the CAPTCHA and shows the 

results of randomly guessing for that one ideal case and shows the feasibility of using 

such a brute force technique.  

In addition to the control or trivial cases, there are several experiments which 

filter the images before passing them to the analyzers. Filtering experiments include 

changing various degrees of brightness and contrast as well as adding modulation. The 

specific settings for each filter were chosen based on viewing the raw images in the 

debugging tool and choosing the settings that did the best job of removing noise without 

bleaching out the letters embedded within the image for each individual CAPTCHA type.  
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The goal of the experiments is to easily break CAPTCHA. A high success rate is 

not necessary as automated software can make thousands of requests an hour. A success 

rate of 10% would be sufficient to post over 100 messages an hour, assuming over 1,000 

requests could be made within an hour. Such a rate is more that feasible on a standard 

consumer grade high speed internet connection. 

3.1.6 Results 

The first experiment results show [Figure 14; Table 1] that randomly guessing, 

even on a small and known number of letters per image, proves to have a very low 

success rate. Only individual letters are guessed correctly and never with more than a 4% 

accuracy on a set size of 1,000. Randomly guessing solutions to CAPTCHA using this 

brute force technique is simply not a viable solution. 

In the second set of experiments, the analyzers are tested against the raw 

CAPTCHA challenges without any filtering. GOCR by itself without any filtering does 

not correctly identify any full challenges except in the trivial case and even then, it only 

has a 68% success rate. In most cases, it can identify fewer that 1% of individual 

characters correctly [Figure 15; Table 2]. 

OCRAD does better in the raw test for individual characters, but not as well as 

GOCR for complete words. Counter-intuitive to the trivial results, OCRAD does do 

substantially better with the distorted images and is able to solve a very small percentage 

of challenges for both CaptchaPHP and Freecap [Figure 16; Table 3]. 

The third experiment involves adjusting the brightness of the CAPTCHA by a 

factor of ten while keeping the contrast constant. Using GOCR, adjusting the brightness 
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yielded a slight increase in word character for CaptchaPHP without increasing accuracy 

in any other categories [Figure 17; Table 4]. 

OCRAD’s character analysis of CaptchaPHP and Freecap benefitted from a ten-

point increase in brightness, as well as its word analysis of Freecap increasing its full 

word success rate to over 1% [Figure 18; Table 5]. 

The fourth experiment was similar to the third except the brightness was adjusted 

to 180 while the contrast stayed constant. By adjusting the brightness, GOCR was able to 

make significant gains in its analysis of CaptchaPHP’s challenge. Other CAPTCHAs did 

did not see an increase in correctness with the combination of GOCR and the filter 

[Figure 19; Table 6]. 

OCRAD also performed well against CaptchaPHP by adjusting the brightness to 

180. It was also able to identify a very small percentage of characters in Gotcha as well as 

increase its accuracy against the trivial case [Figure 20; Table 7]. 

The fourth experiment not only adjusted the brightness to 140, but also reduced 

the contrast to 5. With the 140/5 filter, GOCR did better in its analysis of Freecap with a 

word accuracy of 0.7%, but decreased its effectiveness of CaptchaPHP [Figure 21; Table 

8]. 

OCRAD did better against CaptchaPHP in correct letters with the 140/5 filter than 

GOCR gaining both a higher correct letter and word count, however, it was less effective 

against Freecap [Figure 22; Table 9]. 

In the fifth experiment, once again, only the brightness was increased. With a 

brightness adjustment of 160, this test places GOCR at the highest success rate of solving 
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CaptchaPHP with a correct word accuracy of 0.5%. The effect of brightness adjustment 

with CaptchaPHP seems to have the most significant effect on increasing its readability. 

Other CAPTCHAs did not see any significant rates of solvability [Figure 23; Table 10]. 

Increasing the brightness to 160 did help improve OCRAD’s correct letters 

success rate against CaptchaPHP giving it a letter accuracy of 31.0%, the highest 

accuracy in individual letters out of any other experiment. However, other filters 

provided higher accuracy in correct words [Figure 24; Table 11]. 

In the final experiment, noise reduction is used with a radius of 1 to filter the 

images. GOCR did help with correctly identifying CaptchaPHP challenges, however the 

rate of success was not as significant as other filters with only a 0.3% word accuracy for 

CaptchaPHP and 0% for the other two non-trivial tests. [Figure 25; Table 12]. 

OCRAD preformed slightly better with noise reduction than GOCR in accuracy 

of correct letters but did not do as well in correctly identifying words. As with GOCR, 

noise reduction was not as effective as other techniques [Figure 26; Table 13].
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Figure 14 - Graph of Trivial Experiment Results from Guessing 

 

 

Table 1 - Trivial Experiment Results from Guessing 

 CaptchaPHP Gotcha Freecap Trivial 
Letters Correct  4.3%  3.9%  3.5%  3.9% 
Words Correct 0 0 0 0 
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Figure 15 - Graph of Raw GOCR Test 

 

 

Table 2 - Results from Raw GOCR Test 

 CaptchaPHP Gotcha Freecap Trivial 
Letters Correct 0.6% <0.1% 1.3% 86.6% 
Words Correct 0 0 0 68.3% 
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Figure 16 - Graph of Raw OCRAD Test 

 

 

Table 3 - Results from Raw OCRAD Test 

 CaptchaPHP Gotcha Freecap Trivial 
Letters Correct 3.3% <0.1% 7.5% 79.9% 
Words Correct 0.1% 0 0.7% 31.5% 
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Figure 17 - Graph of GOCR Analysis of 110 Brightness Adjusted Image 

 

 

Table 4 - Results from GOCR Analysis of 110 Brightness Adjusted Image 

 CaptchaPHP Gotcha Freecap Trivial 
Letters Correct 1.4% <0.0% 0.9% 86.7% 
Words Correct 0.1% 0% 0% 68.6% 
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Figure 18 - Graph of OCRAD Analysis of 110 Brightness Adjusted Image 

 

 

Table 5 - Results from OCRAD Analysis of 110 Brightness Adjusted Image 

 CaptchaPHP Gotcha Freecap Trivial 
Letters Correct 6.8% <0.0% 35.6% 89.1% 
Words Correct 0.0% 0% 1.5% 56.0% 
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Figure 19 - Graph of GOCR Analysis of 180 Brightness Adjusted Image 

 

 

Table 6 - Results from GOCR Analysis of 180 Brightness Adjusted Image 

 CaptchaPHP Gotcha Freecap Trivial 
Letters Correct 12.9% <0.1% 0% 79.6% 
Words Correct 0.4% 0 0% 44.0% 
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Figure 20 - Graph of OCRAD Analysis of 180 Brightness Adjusted Image 

 

 

Table 7 - Results From OCRAD Analysis of 180 Brightness Adjusted Image 

 CaptchaPHP Gotcha Freecap Trivial 
Letters Correct 30.8% 0.8% 7.5% 93.1% 
Words Correct 0.4% 0% 0.7% 71.5% 
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Figure 21 - Graph of GOCR Analysis of 140 Brightness, 5 Contrast Adjusted Image 

 

 

Table 8 - Results From GOCR Analysis of 140 Brightness, 5 Contrast Adjusted Image 

 CaptchaPHP Gotcha Freecap Trivial 
Letters Correct 13.1% <0.0% 1.0% 86.7% 
Words Correct 0.0% 0% 0.7% 68.6% 
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Figure 22 - Graph of OCRAD Analysis of 140 Brightness, 5 Contrast Adjusted Image 

 

 

Table 9 - Results from OCRAD Analysis of 140 Brightness, 5 Contrast Adjusted Image 

 CaptchaPHP Gotcha Freecap Trivial 
Letters Correct 30.5% 0.0% 0.2% 89.5% 
Words Correct 0.4% 0% 0.0% 59.4% 
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Figure 23 - Graph of GOCR Analysis of 140 Brightness Adjusted Image 

 

 

Table 10 - Results from GOCR Analysis of 140 Brightness Adjusted Image 

 CaptchaPHP Gotcha Freecap Trivial 
Letters Correct 13.7% <0.0% 0.0% 86.4% 
Words Correct 0.5% 0% 0.0% 67.4% 
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Figure 24 - Graph of OCRAD Analysis of 160 Brightness Adjusted Image 

 

 

Table 11 - Results from OCRAD Analysis of 160 Brightness Adjusted Image 

 CaptchaPHP Gotcha Freecap Trivial 
Letters Correct 31.0% 0.3% 0.0% 90.5% 
Words Correct 0.3% 0% 0.0% 62.1% 
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Figure 25 - Graph of GOCR Analysis of Noise Reduced Image 

 

 

Table 12 - Results from GOCR Analysis of Noise Reduced Image 

 CaptchaPHP Gotcha Freecap Trivial 
Letters Correct 6.7% <0.0% 1.5% 58.3% 
Words Correct 0.3% 0% 0.0% 19.7% 
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Figure 26 - Graph of OCRAD Analysis of Noise Reduced Image 

 

 

Table 13 - Results from OCRAD Analysis of Noise Reduced Image 

 CaptchaPHP Gotcha Freecap Trivial 
Letters Correct 7.6% 0.8% 3.6% 32.8% 
Words Correct 0.1% 0.0% 0.0% 1.1% 
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3.2 FlickMeCaptcha 

Part of the research not only deals with trying to break existing CAPTCHA, but 

also to creating a new CAPTCHA. Previously, in section 1.4.3 Photograph Identification, 

this paper had covered an existing type of visual CAPTCHA based on using photos 

where several of the images contain kittens. To prove one is human, the user must select 

all the images which contain kittens. The disadvantage to this technique is that a very 

large selection of images is required for this type of CAPTCHA to work. It also offers no 

alternative for visually impaired users. 

The first disadvantage can be addressed by using publicly available images that 

have been pre-categorized. Rather than trying to construct an image repository that is 

static, the service Flickr from Yahoo offers a means by which regular people can upload 

photos to share over the Internet and assign them metadata known as 'tags' indicating 

information about the photos. Flickr offers a public application programming interface 

(API) to search and interact with the photo repository. With new photos being uploaded 

everyday and existing photos given new tags at the same rate, Flickr provides a very 

broad and dynamic base of photos to use in photo-based CAPTCHA. 

The application I developed as proof of concept is called FlickMeCaptcha. It is 

written in PHP and uses Flickr's representative state transfer (REST) API in order to 

perform searches for photos. It creates a CAPTCHA challenge that displays images in a 

grid from which the user must pick out images which relate to a given tag. The amount of 

images displayed is configurable within the application, but by default it displays nine 
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images in a square grid. Four of the images match the given tag and at least three of them 

must be selected for the challenge to be answered correctly [Figure 27]. 

 

 

Figure 27 - FlickMeCaptcha 

 

FlickMeCaptcha can retrieve the tags it uses in two ways. The first way is to use a 

predefined list stored in a text file with the application. The second is that it can retrieve 

the most popular tags on Flickr and randomly select from the set of popular tags. Using a 

text file has the distinct disadvantage of having a statically defined set of tags. Without a 

sufficiently large list, it may be possible to circumvent the CAPTCHA simply by 

examining all photos with a given tag. Popular tags may seem like an obviously better 

choice, however there are many cases where popular tags have nothing to do with the 

content of the photograph. For instance, one popular tag is "Cannon10kn" which referees 

not to the photo itself, but to what camera was used to take it. 
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3.3 Non-CAPTCHA based SPAM Defense 

Several services have arisen to combat SPAM, not by using CAPTCHA to ensure 

the poster is human, but by analyzing the content of the message in the same way e-mail 

filters work. Many of these services are free to use for non-profits and individual. 

Companies that provide the services pull in revenue to sustain themselves by offering 

commercial licenses. In my research I've examined the following three services: Akismet 

[13], Mollom [14] and Defensio [15].   

Akismet is a service that analyzes blog and forum comments to determine if a 

particular message is SPAM or a legitimate interactive post from a human (what its 

designers refer to as "Ham"). Submissions to the service return a true or false indicating if 

the post is SPAM. Many popular content management systems such as WordPress and 

Drupal have plugins that run all user submitted content through Akismet's service. 

According to Akismet's statistics page which is continually updated, as of 

February 2009, Akismet has caught over 9.8 billion SPAM messages while allowing 1.8 

billion Ham messages [30]. The service interface allows site maintainers to mark false 

negatives and false positives, although quantities of such identifications do not appear on 

the overall statistics page. The inner workings of Akismet are kept mostly secret in order 

to prevent malicious users from "gaming the system [31]." 

Criticism has been raised about Akismet flagging Ham comments as false 

positives for SPAM. A blogger, that goes by the pseudonym "timetheif," posted the 

following about Akismet in early 2008: 

 



 52 

"Although I have never experienced this problem before, as of yesterday 

the comments that I leave on wordpress.com blogs where I have 

previously been approved did not appear immediately after I posted them. 

I became suspicious and did some investigation and found that the 

comments are ending up in the Akismet spam filter. Thus far raincoaster, 

sulz, thesacredpath and several other bloggers have found my comments 

in the Akismet filter and fished them out [32]." 

 

An alternative to Akismet is Mollom, which also has plugins for several major 

content and blogging engines. As of February 2009, Mollom has claims to have caught 

33.9 million SPAM messages with an average efficiency of 99.95%, meaning that only 5 

in every 10,000 SPAM messages are not caught [33]. It is very similar to Akismet in the 

sense that is it a web based service that is free for non-commercial use and sustains itself 

with licensing for commercial and enterprise use.   

Defensio is yet another direct competitor to Akismet and Mollom with a similar 

suite of plugins for major content engines and a free for non-commercial use license. In 

January of 2009, Defensio was acquired by Websense [34]. Unlike its competitors, 

Defensio does not offer a statistics page on its website to show the amount of SPAM its 

filter has blocked.      

It is difficult to get accurate numbers for false-positives when it comes to 

CAPTCHA SPAM protection since oftentimes a user with visual disabilities may have 

several failed attempted before successfully being able to post a message or may give up 
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in frustration altogether. Although there are more statistics gathered for non-CAPTCHA 

based approaches, and such approaches have a more reliable way of determining false-

positives (i.e. humans marking incorrectly flagged messages), there still seems to be no 

reasonable means by which to compare the two techniques.  

The advantages of using a non-CAPTCHA based technique for preventing SPAM 

include the ability for visually impaired individuals to easily post messages as well as 

reducing the burden of the end users for proving that they are in fact human. The 

drawback is the possibility of false-positives and the requirement of website 

administrators to occasionally check responses marked as SPAM. This may become 

impractical for sites with heavy amounts of traffic such as bulletin boards or websites 

with significant amounts of comments. The advantages of either technique are not easily 

measurable or comparable due to the difficulty in creating controlled SPAM 

environments, difficulty in the collection of statistics on CAPTCHA based systems 

without human interactive studies and the closed source nature of non-CAPTCHA based 

alternatives. 
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Chapter 4 – Analysis 

4.1 Degree of Success for the BMCB Engine 

Examining the BMCB Engine, the best-case results with optimized filters show 

success rates ranging from 1 in 1000 to 3 in 1000. Although this may seem like a very 

low rate of success, the requests to web servers are automated and most web servers are 

designed to handle very large volumes of simultaneous connections. To determine if such 

a success rate is adequate to post large amounts of SPAM, the connection and transfer 

times must be examined as well.   

Given that the average broadband connection within the United States is 

approximately 1.9Mbps [35], a CAPTCHA the size of 1 to 5 kilobytes would take less 

than a second to transfer at that speed, but the connection to the web server itself is 

expensive. Although most web servers support pipelining, that is the ability to stream 

multiple requests on a single connection, answering a CAPTCHA challenge requires a 

request for the image followed by a response to the server, which must then terminate.  

Connection times can vary greatly depending on the server being access and 

network congestion. Assuming a modest average case connection time of two seconds, it 

is reasonable to assume at worst it would take five seconds (two per request and one to 

download the image itself) to request and respond to a website with a CAPTCHA 

challenge.  

This would mean 12 requests could be completed per minute or over 700 per 

hour. With success rates using the engine at under 1 in 1000, this would mean at most, 
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only one SPAM message could be posted per hour. If the assumption is given that there is 

a very fast connection with minimal delay to a web server, and the entire 

request/response process only took one second, over 3,000 requests could be handled per 

hour allowing for the possibility of posting up to 3 messages an hour.   

Since it's been established that the return rate for SPAM is very low, at best 1 in 

1,000 and at worst 1 in 1,000,000 [19], a dedicated system in the best-case scenario of 

one response per second would be required to run for over 10 days in order to get a single 

return for SPAM posting efforts.  

Although adding additional computers could increase the effectiveness of 

breaking CAPTCHA, the cost would still be prohibitive. The research given here shows 

that using open source and freely available image recognition and OCR analysis tools 

does not yield a high enough rate of return to be useful in producing SPAM messages. 

Furthermore, examining the results shows that specific sets of filters can yield 

better results for one CAPTCHA while making results worse for another. For example, 

CaptchaPHP had the greatest success rate of 0.5% resulting from GOCR analysis 

combined with a 140 brightness adjustment. In the same experiment, Freecap had a 

success rate of 0%. Freecap's highest success rate was 1.5% using OCRAD analysis with 

a brightness adjustment of 110. In the same experiment CaptchaPHP had a success rate of 

0%. This shows that filters and analysis must be specifically targeted to a given type of 

CAPTCHA.  

In the case of the Gotcha CAPTCHA, not a single experiment was able to get 

even one challenge solved. Some experiments were able to correctly identify some letters 
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with success rates in the range of less than 0.1% to 0.8%, however the trivial test which, 

attempts to randomly guess the challenge without performing any type of analysis had a 

higher character success rate of 3.9%. This shows that for this one CAPTCHA, randomly 

guessing the challenge's answer has a higher rate of success than actually trying to 

analyze the image. Researchers have shown particular CAPTCHAs may be solvable, but 

to do so would require specific and directed effort into analysis of that particular 

CAPTCHA. There is, as of yet, no general algorithm that is effective against all 

challenges. Therefore small and moderately sized websites, blogs and message boards are 

reasonably protected from SPAM with CAPTCHA. Only large sites, where the potential 

for financial gain to outweigh the substantial research and development cost in breaking 

CAPTCHA, need to be concerned with such attacks. 

4.2 Pros and Cons of FlickMeCaptcha 

FlickMeCaptcha is an improvement over existing implementations of image 

based CAPTCHA such as KittenAuth. There are several advantages including the 

following: 

• Availability of large selection of constantly growing images for challenges 

• Ability to select random tags from the most popular set on Flickr 

• Many configurable options including number of images to display and 

number of correct images that must be selected 

• Ability to use a predefined wordlist  

Although FlickMeCaptcha does solve some problems with photo-based 
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CAPTCHA, the largest concern being the base of images from which to chose from, it 

does bring up some new problems of its own. They include the following: 

• Most popular tags on Flickr often do not represent anything in the image 

(e.g. a tag indicating the camera model used to take the photo) 

• Copyright constraints restrict the available images to those licensed under 

the creative commons 

• The current implementation makes several successive calls to the REST 

service instead of utilizing HTTP pipelines, causing a performance delay 

Overall, the gains in photo-based CAPTCHA are significant and the script is more 

of a proof of concept that can be expanded upon and easily integrated into content 

management software and blogging engines. 

4.3 Filtering versus CAPTCHA 

Studying the alternatives to CAPTCHA resulted in finding a number of web 

service based filters with open programming implementations than can be used by many 

different types of content management software. Although many of the implementations 

provided general and overall statistics, none of them provided more detailed numbers that 

could be filtered or used to drill-down specifics. Due to this, studying the effectiveness of 

these approaches versus CAPTCHA becomes difficult. Akismet staff has even stated 

publicly that such studies would be ineffective [36]. 
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Chapter 5 – Contributions to the Field 

The crux of the research presented in this thesis comes from two programs 

specifically written for expanding knowledge of the field of CAPTCHA and SPAM 

prevention. Both programs are released as open source and will continue to be available 

for developers and researchers to expand upon. The first program is the BMCB Engine 

whose audience is specifically developers and researchers who want to test techniques for 

attaching and breaking CAPTCHAs. The second program is FlickMeCaptcha, a program 

intended for web developers and end users to provide a new image based CAPTCHA that 

can not easily be solved. 

5.1 BMCB Engine 

Although the BMCB Engine did not meet the measure of success proposed, that is 

the ability to solve CAPTCHA at a success rate necessary to post large amounts of 

SPAM in a reasonable amount of time using freely available filtering and analysis 

programs, it did provide some insights and contributions to others attempting the same 

type of research. 

The results show that it is possible to use image filtering in combination with 

existing OCR tools to solve current CAPTCHAs automatically without the need of a 

human and in effect defeating the purpose of the test. However, since the percentages for 

success are so low, website administrators could protect themselves simply by installing 

software or hardware that tracks repetitive and continual network requests. Such software 
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is often used to prevent Denial of Service attacks. If such a system were in place, an 

attacker would need to use some type of distributed network or a set of computers 

compromised with a virus to effectively carry out an attack.   

Furthermore, the attack must be targeted towards specific types of CAPTCHA. In 

the existing studies published, the algorithms used were specific websites and CAPTCHA 

scripts. The engine, along with results from existing research, show that filtering works 

best when it is target to a specific image challenge. There has been no evidence to show 

that it would be easy, nor is it currently possible, to generate an all-purpose analyzer that 

would be capable of decoding all types of CAPTCHA as well as a human could. 

The analyzers and filters that come with the engine I developed are very basic and 

rely on existing, publicly available and free open source tools, yet still yield viable 

results. The advantage of using existing tools is that the engine itself is designed to be 

easily extendable, dynamic and can be adapted to facilitate other research with more 

complex algorithms. In its current state, it can be released to the public without large 

ethical concerns. It is my hope that this contribution to the open source community will 

help further future innovations and will be a useful tool for others who are interested in 

the field.  

5.2 FlickMeCaptcha 

FlickMeCaptcha provides a new tool that can be implemented by website 

designers to provide a new type of CAPTCHA to end-users. Although it uses the concept 

of photo-based challenges, which have been implemented before, the means by which it 
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acquires photos is innovative and provides a much larger and constantly changing base 

than previous implementations. 

The are several advantages for using FlickMeCaptcha including a very large, 

constantly changing base of images that can be displayed in different sizes and are fairly 

easy to identify. The interface is fully customizable with Cascading Style Sheets (CSS) 

and the project is open source, so it is free to modify, and the tags used are stored in a 

plain text file that can easily be modified.  

There are also disadvantages of using FlickMeCaptcha. The option to use popular 

tags instead of a list is not very useful due to many tags not relating to the photos directly. 

There is also the possibility that individuals have given photos tags that don’t necessarily 

relate to them in an intuitive way, meaning the user may have to attempt to solve the 

CAPTCHA several times before being given a relevant set of images. FlickMeCaptcha is 

also limited to photos on Flickr that are copyright free, limiting the potential base of 

images. This can be changed in the setup but may cause legal problems. Finally, there is 

no built-in alternative for the visually impaired, so FlickMeCaptcha would have to be 

paired with another approach to be inclusive to those with disabilities.   

5.3 Conclusion 

Analyzing the problem of SPAM and the solution on CAPTCHA does not address 

the core problem that allows SPAM to propagate and be as invasive as it is. The core 

problem with SPAM is its success rate. Even with only a return of fifty responses to 

every million SPAM messages sent [37], the model is still economically viable because 
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the messages themselves cost virtually nothing to send. The cost to bandwidth, computer 

security and the massive infrastructure that must be put in place to deal with SPAM is 

detrimental to growth on the Internet.  

Although CAPTCHA has been and will continue to be a viable solution, with new 

and innovative forms of CAPTCHA improving human success rates while being 

increasingly effective against automated attacks, the main problem is that SPAM will 

continue as long as there is a consumer response, no matter how minuscule. In order to 

remove the need for CAPTCHA and other SPAM prevention techniques, Internet users 

need to be more informed about identifying SPAM so as to not purchase products, and 

thereby grant legitimacy, to websites that use SPAM based promotions, to the degree that 

the return rate of SPAM becomes financially unviable. 

Individuals have been running mass advertisements and scams using regular 

postal mail for decades before the age of the Internet. The greater problem of increasing 

awareness and social intelligence is well beyond the scope of this thesis. However, in the 

meantime, the innovations that have come about through combating unsolicited e-mail, 

viruses and malicious website attacks have been invaluable. Security research in both the 

fields of prevention and circumvention have led to powerful innovations in machine 

learning that have been of great benefit to the Computer Science community.  

5.4 Future Work 

Several areas of research exist which can be built on top of the results outlined in 

this thesis.  These areas of research include enhancing the existing analysis engine, 
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expanding FlickMeCaptcha, and performing research on humans’ ability to correctly 

respond to CAPTCHA challenges versus that of a machine.  

The engine is licensed under the GNU General Public License (GNU GPL) 

version 3, making it freely available for others to view, modify, enhance, learn from and 

redistribute. Although the engine itself is structured to be a comprehensive testing 

platform, the filters and analyzers themselves are not very strong. Since the engine is 

written in Java and has several extendable abstract base classes, it can easily be expanded 

to use new analysis algorithms and filtration techniques. Full guides for installing the 

engine and developing with it are located in Appendix A and Appendix B respectively. 

Along with studying existing CAPTCHAs, additional research is also warranted 

in creating new CAPTCHA challenge techniques. FlickMeCaptcha is a wonderful proof 

of concept, but it still has room for development. Features that could be developed for it 

include an alternative CAPTCHA, either audio or word puzzle, for the visually impaired, 

using pipelined connections to speed up response time (versus making multiple 

connections to Flickr’s REST service) and a better means for choosing relevant tags.   

Since no human studies were conducted for this thesis, another area of research 

would involve human interaction with CAPTCHA and examine people’s success rate in 

answering CAPTCHA challenges correctly in correlation to their age demographics and 

visual impairments. Such research, in conjunction with computer analysis, could show 

which techniques work better for humans and against automated programs.  

The research in this thesis is one stepping stone in the complex fields of image 

filtering and analysis. My hope is that the research presented in this thesis will help other 
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researchers continue to examine and enhance CAPTCHA challenges and improve 

security and protection against SPAM. 
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Formatting Conventions  

Filenames and paths to specific files will be listed in italics: 

/usr/bin/vi 

Commands that are intended to be typed in verbatim are represented in mono-type: 

mysql 

CREATE TABLE Bmcb; 

Variables or options in commands will be specified using mono-type combined with 

brackets and underlines:  

./runCommand.sh [dryRun | fullTest ] 

Class names that are traditionally camel cased in code are separated out into individual 

words with each leading character capitalized and kept in the standard font: 

Image Magick Filter Test Workflow.  

Code inline with the paragraphs will be displayed in monotype with function names 

ended with parenthesizes. 

  myFunction() 
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Appendix A – Installing the Engine 

The core of the engine is written in Java and it accesses several external programs 

to perform tasks. Although many of the external programs are portable and the 

application should be able to run on any system, it was primarily developed and tested on 

a Linux system. The requirements listed below are for the configuration I used during 

testing. BMCB may work with older or newer versions of the tools listed and customized 

versions may not require all the tools listed for filtering and analysis.  

Requirements and Dependencies 

• Java 1.5 or higher runtime environment and compiler 

• PHP for CAPTCHA generation (any recent build of PHP 4 or 5 with gd support 

should work) 

• MySQL 5.0.26 or higher 

• ImageMagick 6.4 or higher 

• Apache Ant 1.7.0 or higher 

Downloading the Source Files 

The latest version of the BMCB engine, as well as this installation document, can 

be found at http://penguindreams.org/page/see/Bmcb  
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Unpacking the Source Files 

After downloading and saving the compressed source file, open a terminal and 

change to the directory it was saved to. Then run the tar command with appropriate 

parameters to extract the archive, replacing <version> with the appropriate version of the 

application. 

tar xvfj Bmcb-<version>.tar.bz2 

Compiling the Engine 

An ant build file is included to easily compile the engine into a single jar file. To 

start the compilation, run the ant application in the currently working directory where the 

source code was extracted.  

ant jar 

Setting up the Database 

An instance of MySQL must be running either on the system the engine is 

installed onto or on a remote server. For the purposes of this installation, it is assumed the 

engine and MySQL server are on the same computer.  

A database must be created for the engine, permissions must be assigned to the 

database and the schema for the engine must be imported. This can all be done from the 

MySQL command line utility which can be run by simply running mysql from the 

command prompt. If a root password has been defined, you may have to run mysql -u 

root -p and then enter your password when prompted. From the prompt, run the create 
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and grant statements necessary to establish the database and issue permissions on it. 

CREATE DATABASE bmcb; 

GRANT ALL ON bmcb.* TO 'bmcb'@'localhost' IDENTIFIED BY 'bmcbdb'; 

The Configuration Files 

Logging is provided using the Log4j libraries. The engine tries to locate the 

log4j.property file in the current working directory. The default configuration should be 

adequate for most users. To further tune the logging, documentation for log4j can be 

found at http://logging.apache.org/log4j/1.2/.  

Program specific configuration settings are found in the bmcb.config file located 

in the programs current working directory. It contains path names, database attributes and 

various other runtime configuration options needed for the engine. It will need to be 

adjusted for the particular environment on which it is installed.  
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Attribute Description 

db_host Hostname of Database Server 

db_user Database Username 

db_password Database Password 

db_database Name of Database to use 

db_port Database port 

cp_generators Directory containing CAPTCHA generators 

cp_setdirs Directory to write dataset images 

cp_tmpdirs Directory to store temporary data 

cp_results Directory to store result graphs 

cp_imagemagick Full path to directory containing 

ImageMagick executables 

an_ocrad Full path to OCRAD executable 

an_gocr Full path to GOCR executable 

Running the Program 

The application can be run directly from the jar file so long as it is run from the 

directory which contains the /lib directory. If the application jar needs to be relocated 

outside of the distribution directory, the manifest.txt must be modified to contain the path 

to the external libraries located in /lib and the application must be recompiled. To run the 
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engine, execute the jar file. 

 java -java Bmcb.jar 

Running the jar will produce a usage statement. 

Usage: Bmcb [generate|trivialTest|magickTest|SegmentDebug] 

By default, BMCB can run several of the built-in workflows included with the 

application. They include a generation workflow for creating CAPTCHA datasets and 

two testing workflows for analyzing CAPTCHA and generating results. Using the 

SegmentDebug option will start the graphical debugging tool displaying generated 

datasets.  
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Appendix B – High Level Overview of the Engine 

Looking at the engine from the top down, all the tasks that are performed are in 

the form of workflows. Workflows can be used to generate sets of CAPTCHAs to test 

against or perform testing and analysis and gather statistics. A workflow is just a simple 

Java class that is used to call all the other components of the framework. They can be 

highly customizable to perform any type of experiment and have full access to all the 

other public components in the framework. 

 Components accessible from the workflows include a variety of tools for 

experiments including CAPTCHA generators, image filters, segmentators and analyzers. 

Storage of generated datasets can be handled using the database classes and a variety of 

static utility functions exist for the purpose of loading images, converting image types, 

logging and generating result graphs [Figure 28]. 
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Figure 28 - High Level Overview of BMCB Engine 

Generators  

The Abstract Generator class provides the basis for any type of generator. The 

primary included generator is the Command Line Generator, which calls an external 

program with two arguments, the first being the text to be placed in the image and the 

second being the directory to write the image to. The Abstract Generator can also be 

extended for other purposes such as generation via an HTTP request, in the case where 

the CAPTCHA is generated on a non-UNIX machine such as from an active server page 

(ASP), or a Java based generator which uses existing Java classes to generate a 

CAPTCHA.  

CAPTCHA programs typically generate their challenge image text randomly. 
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Within the engine the text to be generated needs to be controlled in order to determine if 

the analysis of the text is correct. The generated text is still random, but the correct 

response needs to be stored in a database for comparison. Because of this, CAPTCHA 

generators need to be modified slightly in order to work correctly with the generator 

classes. For this reason, it is best to use open source CAPTCHA programs which can 

easily be modified and adapted to work with the engine.  

Segmentators 

Segmentators are based off the Abstract Segmentator class. They are given the 

argument of an image and are expected to return either a series of axes where a break 

between letters would occur or an array of image objects that have been pre-segmented. 

A given segmentation algorithm will extend this class and implement all the abstract 

methods.  

Filters  

All filters are based on the Abstract Filter class. A filter is a preprocessor for an 

image before it is used with a segmentator or analyzer. It takes in an image object and 

applies some algorithm to the image to attempt to clean up general noise and distortion. 

The filter is applied directly on the image passed into this object, so if an original copy is 

needed for any purpose, it should be made before the filter is applied. 

Analyzers  

Analyzers are based off the Abstract Analyzer class. They perform the core of the 

analysis process and can act upon either an entire image or an array of image segments. 
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Abstract functions are also defined for learning and training the analyzer if a learning 

style algorithm is used. Implementations of this class can chose to throw an Analysis Not 

Supported Exception in cases where a particular algorithm may not have the ability to 

learn or to accept image segments.    

Workflows 

Workflows are based on the Abstract Workflow class. They have an execution 

method and are used to knit together all the steps and individual pieces necessary to 

perform a task. For example, the Generator Workflow is executed to look through every 

available CAPTCHA generator and create datasets for testing. Workflows can be used to 

run a particular set of tasks for an experiment using a given set of images, segmentators, 

filters and analyzers, as well as calculate the results.  

Utility Classes 

Several utility classes also exist to help deal with miscellaneous tasks required 

through the course of the program. They include common application classes such as 

those needed for reading configuration files and application logging as well as more 

program specific classes for loading and storing images in various formats and rendering 

charts and graphs from result sets. 
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Appendix C – Developing with the Engine  

The BMCB Engine is comprised of several components including the Generators, 

Segmentators, Image Filters, Analyzers and Utilities. All these components are called 

within a Workflow. New workflows must be added to the entry point of the program. 

This guide is intended for developers who want to modify the engine for their own 

analysis techniques and build new experiments into the engine.  

This document follows a bottom up approach focusing on the individual 

components and building them into a full experiment or workflow. Many useful 

examples are included with the engine itself and should be read alongside this document 

to gain a full understanding of how to build new experiments into the existing 

framework.  

Utility Classes 

There are several independent utility classes contained within the framework that 

are used throughout the application. Many of these classes contain static standalone 

methods for basic tasks such as image conversion, logging, configuration, result graphing 

and various other common tasks [Figure 29 - Diagram of Utility Classes].  
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Figure 29 - Diagram of Utility Classes 

 

Some of the more important utilities are as follows: 

• Application Logger: This class is called from many of the abstract classes in the 

framework to initialize a protected log variable. Developers shouldn’t need to call 

this directly unless they create a new class from scratch, as the existing log 

variable is accessible in nearly every abstract class. Examples for creating new 

instances are located in the abstract classes.  

• Image Loader: This class contains several functions to assist with image 

manipulation including image loading, converting between Images and Buffered 

Images, determining the path of an image from a dataset, converting images to 



 82 

PNM files used by OCR programs, and drawing lines on segment boundaries on 

images to be used with the Segment Viewer debugging tool. 

• Process Executor: A simple class to handle the basic task of running an external 

process 

• Config Map: Used to read settings from the bmcb.property file 

Generators 

The engine comes with a command line generation class which passes two 

arguments to a command line application, the first being the CAPTCHA to be produced 

and the second being the location for the output file. This process can be seen in the built-

in generation workflow where random challenge/responses are generated, stored in a 

database and then generated for each CAPTCHA type. 

Typically, a CAPTCHA application generates its challenge randomly and does 

not accept a challenge as an argument.  Therefore, the CAPTCHA script needs to be 

modified. For the purposes of using this engine, it is best to use open source CAPTCHAs 

which can easily be modified. The following changes may be necessary before using a 

CAPTCHA script with this engine: 

• Modify the program to take in the CAPTCHA phrase as the first argument 

• Write the output to a file given by the second argument 

• Adjust the front path to be independent from the script’s location 

The following examples detail how these three modifications can be performed in 

a typical PHP based CAPTCHA script. Each CAPTCHA script a developer wants to 
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incorporate will require different modifications to be compatible with the built in 

Command Line Generator, or it may require a custom generator.  

Modifying the CAPTCHA application to take the input from a command line, 

rather than generating it randomly, can be done in several ways. The developer can 

modify the function that generates the random CAPTCHA or the point at which the key 

is saved to the session can be modified [Figure 30].   

 

 

Figure 30 - Modification to Gotcha to Take Challenge Input 

 

Most CAPTCHA scripts have a function used to generate a random phrase or set 

of letters. This section is what must be modified in order to use the script with the engine. 

The type of modification will vary depending on the programming language used and 

may require the creation of a customized generation class.  

Typically, most CAPTCHA scripts are designed to output directly to a web 

browser. This behavior must also be modified to write the file, with the challenge 

solution as the filename, to a directory [Figure 31]. As with the previous modification, 

this will vary heavily depending on the programming language of the script and the script 

itself. 
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Figure 31 - Modification of Freecap to Output Challenge to a File 

 

Another modification that may or may not be necessary involves modifying the 

path for included and dependent files. For many of the scripts included with the engine, 

this involves modifying the statement that declared which font to use to be working 

directory independent [Figure 32].  

 

 

Figure 32 - Modification of Gotcha for Font Path 



 85 

The above modification may or may not be necessary depending on the way the 

script loads its fonts and dependencies.  

The above modifications are only some of the changes that may need to be made 

to a CAPTCHA application in order to get it to work with the engine. Developers may 

run into other challenges, however most CAPTCHA should be adaptable, either by 

extending the Abstract Command Line Generator or by creating a custom generator class, 

so long as the CAPTCHA application provides some means for manually inputting the 

challenge response.  

Image Filters 

Image Filters extend the Abstract Filter class. They must modify a Buffered 

Image that is passed to the filter by reference. If the calling class requires an unaltered 

version of the Buffered Image, it must clone a copy before passing it to the filter.  

 

 

Figure 33 - Class Diagram for Filters 



 86 

In addition, if a new Buffered Image is created during the filtering process, it can 

be copied into the passed in argument. An example is the function for edge filtering 

which returns a new Buffered Image object[Figure 34]. 

 

 

Figure 34 - Copying One Buffered Image to Another 

Segmentators 

Segmentators are based on the Abstract Segmentator class. An instance of all the 

segmentator objects is created specifically for an image. Derived classes must implement 

the abstract getSegmentAxes() function which returns the x coordinate where the 

image is split into separate vertical segments. Various other functions in the base class 

can be called to split the image into individual arrays of Buffered Image objects to be 

used within the workflows [Figure 35].  
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Figure 35 - Class Diagram for Segmentators  

Analyzers  

Analyzers are what actually try to solve the CAPTCHA challenge after 

appropriate filters and segmentation have been applied. The Abstract Analyzer has been 

designed to contain several functions in the case of learning and non-learning algorithms 

as well as different functions for analyzing segments as opposed to full images. 

Analyzers which do not support a given abstract function can choose to throw an 

Analysis Not Supported Exception. An abstract Command Line Analyzer has been 

included to assist in the process of calling an external application for analysis [Figure 36].  
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Figure 36 - Class Diagram for Analyzers 

Workflows 

The piece that ties all the individual components together is the workflow. The 

workflow calls all the individual pieces listed so far and can be used for generation of set 

data, analysis or any various other tasks. The workflows included with the engine are 

used for data generation, analysis and testing. Developers will want to either modify 

existing workflows or create new workflows for whatever experiments they may wish to 

perform [Figure 37].  
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Figure 37 - Class Diagram for Workflows 

 

The Abstract Workflow class contains a protected runSpecifc() function 

which takes in all the individual components including a Segmentator, Filter and 
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Analyzer, along with a description for results and logging purposes, and runs them 

against all the currently available datasets.  

Entry Point 

The BMCBMain class provides the primary entry point for the application. After 

creating additional workflows, an appropriate command line argument or set of command 

line arguments will be need to be added to the main function to kick off the workflow.  

Visual Debugging Tools 

There is also a Segment Viewer packaged with the engine. It is a graphical tool to 

view data sets as well as the results from segmentators, image filters and analyzers 

[Figure 38]. Newly created Segmentators, Analyzers and Image Filters can easily be 

added to the Segment Viewer.  

 

 

Figure 38 - Visual Debugger 
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Appendix D – FlickMeCaptcha 

Installation 

The most current version of FlickMeCaptcha can be found at 

http://penguindreams.org/projects/flickmecaptcha in the download section. Simply 

download the appropriate tar file and extract it to a working directory.  

tar xvfj flickmecaptcha-<version>.tar.gz 

The compressed tar file contains FlickMeCaptcha.php which is the primary script 

and only one necessary to integrate the application into an existing website. There is also 

a script named example.php which shows how to integrate the application into a form and 

provides a means for testing the application on a web server. 

There are several configuration options,, which can be set in the 

FlickMeCaptcha.php file. Most of these options can be left at their default. The only 

setting which must be changed is the scriptFile variable which must point to the 

web path where the script is located. Other variables purposes and settings are 

documented within the script file itself.  

Integration 

To present the CAPTCHA within a web form, the FlickMeCaptcha.php script 

must be included in the current PHP file followed by a call to the getChallenge() 

function [Figure 39]. Please note that the session must be started using the 
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session_start() function in PHP before creating or verifying the CAPTCHA.  

 

 

Figure 39 - Adding FlickMeCaptcha to a Form 

 

Once the form has been submitted, the CAPTCHA can be verified for correctness 

using the checkChallenge() function [Figure 40]. 

 

 

Figure 40 - Verifying FlickMeCaptcha Challenge 


