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ABSTRACT 
 
 

After several decades of development, higher-order finite-element methods are now 

being considered for realistic and large scale Computational Fluid Dynamics (CFD) 

simulations. This necessitates further studies on utilization of mesh adaptation techniques 

in order to reach reliable solutions at minimal computation cost. In this study, adaptation 

capabilities have been developed within a Petrov-Galerkin (PG) finite-element method. The 

mesh modification mechanisms include h-, p-, and combined hp-adaptations which are 

performed in a non-conforming manner. The constrained approximation method has been 

utilized in order to retain the continuity of the solution space in presence of hanging nodes. 

Hierarchical basis functions have been employed to facilitate the implementation of the 

constrained approximation method. The adaptive methodology has been demonstrated on 

numerous cases using the Euler and Reynolds Average Navier-Stokes (RANS) equations, 

equipped with a modified Spalart-Allmaras (SA) turbulence model. Also, a PDE-based 

artificial viscosity has been added to the governing equations, to stabilize the solution in 

the vicinity of shock waves. For accurate representation of the geometric surfaces, high-

order curved boundary meshes have been generated and the interior meshes have been 

deformed through the solution of a modified linear elasticity equation. A fully implicit 

linearization has been utilized within a Newton-type algorithm to advance each iteration or 
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time-step, for steady-state or unsteady simulations, respectively. In order to navigate the 

adaptation process, adjoint-based and feature-based techniques have been employed in the 

steady-state and unsteady problems, respectively. It was shown that weak implementation 

of the boundary conditions and the use of a modified functional are required to obtain a 

smooth adjoint solution where Dirichlet Boundary conditions are imposed. Failure to utilize 

both results in a non-smooth adjoint solution. To accelerate the error reduction, an 

enhanced h-refinement has been used in the vicinity of singularity points. Several numerical 

results illustrate consistent accuracy improvement of the functional outputs and capability 

enhancements in resolving complex viscous flow features such as shock boundary layer 

interaction, flow separation, and vortex shedding. 
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CHAPTER I  
 

INTRODUCTION 
 
 

I.1 Automatic Adaptation 

Most of the physical phenomena in the world around us are governed by Partial 

Differential Equations (PDEs) in the form of Initial Boundary Value Problems (IBVPs). 

Countless examples of fluid dynamics, solid mechanics, and electromagnetics are well-known 

cases of these type of problems. Today, there is no doubt that numerical methods have been 

very successful to tackle complex PDEs which are well-guarded if one tries to face them 

with classical mathematical methods. The key to this success is the basic idea to discretize 

the given continuous PDE to obtain a system of equations with finite number of unknowns 

which can be solved using a computer [1]. To apply the discretization, the given domain of 

interest is represented by a computational domain which is typically partitioned into sub-

domains or elements. This partitioning is known as computational mesh and it includes the 

location of unknowns. Then an approximate solution is sought on the computational mesh. 

This is in contrast to classical methods that seek an exact solution to the PDE over the 

domain of interest. For a consistent discretization method, as the number of unknowns 

increases, the discretization error decreases, and the approximate solution converges to the 

exact solution to the PDE. However, there should be a tradeoff between the computation 
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cost and the required accuracy. Fortunately, in many real-world applications, the exact 

solution is not needed and instead, the solution only needs to be accurate-enough. 

Immediately, two fundamental questions should be answered. First, what is called an 

accurate-enough solution? Second, how to obtain an accurate-enough solution? 

In order to answer the first question, a clear definition of the error is required. In the 

classical sense, any difference between the approximate solution and the exact solution to 

the PDE over the entire domain of interest is considered as error. Clearly, the exact solution 

can be utilized to obtain any desirable output or study any phenomenon which is governed 

by the PDE. However, in real-word applications, the computations are performed for a 

limited number of objectives and thus the above mentioned definition of the error can be 

replaced with those that target the objectives of the computation. Therefore a solution can 

be called accurate-enough if the error in the computed objective of interest is less than a 

prescribed value. Depending on the application, other definitions may serve equally. In any 

case, the key is that such an approach avoids the waste of computational resources for 

unnecessary resolutions and so it drastically reduces the required computational cost. 

To answer the second question, one needs to realize the possible sources of the error. 

In general, the accuracy of a numerical solution depends on the discretization method, and 

also on the quality of the computational mesh. In engineering applications, the quality of a 

mesh should be simply assessed by its capability to obtain an accurate solution using the 

given discretization method. It is well known that the shape of the elements and their 

density distribution are the key factors in this regard. To follow this topic, it is useful to 

define the term of the optimal mesh. Different researchers may have different definitions for 
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this term. For example, Baserinia [2] calls a mesh optimal if it minimizes the discretization 

error for a prescribed number of elements. However, in this study, a mesh is considered as 

optimal if it minimizes the computational cost associated with the chosen discretization 

method to reach the least accurate-enough solution. Here it should be emphasized that we 

have related the quality of the mesh to the accuracy of the solution which in turn depends 

on the computation’s objective. This implies that different simulation objectives for the 

same geometry may have different optimal meshes. The careful reader will notice that, by 

choosing the discretization method, the second question will change to how to obtain an 

optimal mesh? 

Generally, the mesh generation is a pre-processing step and it is usually done without 

the knowledge of the exact solution. Even if the exact solution is known, each discretization 

method demands exclusive requirements for a high quality mesh. In simple words, it is not 

wrong to say that it is impossible, even for experts, to generate an optimal mesh manually. 

Therefore an automated algorithm is needed for this purpose. Such algorithms usually start 

with an initial mesh and after obtaining the solution on that mesh, an a posteriori error 

analysis is performed to determine which areas of mesh need modifications to reach an 

optimal mesh. This process will be repeated until an accurate-enough solution is obtained. 

Such algorithms are known as automatic mesh adaptation. 

Based on above discussion, automatic adaptation is a necessity for all mesh-based 

discretization methods. However, each discretization method requires special considerations 

to be utilized within an adaptive algorithm. 
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I.2 High-Order CFD Methods 

Currently, second-order finite-volume methods are the dominant methodologies in 

Computational Fluid Dynamics (CFD). However, after several decades of development, 

finite-element simulations over complex geometries can now be performed for both time-

dependent and steady state applications. Although much less mature and not yet widely 

adopted, finite-element methodologies offer some potentially very distinct advantages over 

finite-volume counterparts (for example, see reference [3]). Many of these advantages stem 

from the fact that finite-element methods use discretization stencils that only require 

immediately adjacent nodes, whereas finite-volume algorithms inevitably require much 

larger stencils. One major benefit of the compact stencil is that higher order discretization 

in both space and time is possible through a clear and well-defined path without 

complications associated with the larger stencil in finite-volume methods. The compact 

stencil also presents significant advantages over finite-volume methods because an accurate 

linearization of the nonlinear residual is easily obtained, thereby enabling very significant 

benefits in the development of algorithms modeled after Newton’s method and for sensitivity 

analysis.  

In addition to the algorithmic advantages previously mentioned, the development of 

a comprehensive finite-element fluid-dynamic simulation capability provides several benefits 

for high-fidelity physical modeling. Many simulations require long-distance tracking of 

critical features, such as vortices, to determine the effects caused by their impingement on 

other geometries or structures. Flow over a helicopter is a well-known example of this type. 

In such cases, the use of second-order finite-volume methods requires excessively refined 
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meshes to resolve these features. The development of adaptive finite-element methodology 

addresses these difficulties in two ways. First, high-order methods simply resolve small 

features for much longer distances than second-order methods without dissipating their 

strength. For example, Anderson et al. [4] have shown an example of turbulent flow 

simulation in which the finite-element solution shows significantly less dissipation when 

compared to finite-volume solution, even if both schemes use second order accuracy for 

spatial discretization. Secondly, adaptive finite-element methods are more capable than 

finite-volume counterparts. The major reason is that in addition to local mesh refinements, 

significant benefits can be obtained by local enrichment of the order of accuracy. Higher-

order discretization has lower truncation error, and at the same time, requires less work 

than that required for local spatial refinement. However, due to the large stencils, pursuing 

high-order adaptive grid capability with finite-volume schemes is cumbersome at best and 

is functionally impractical. 

 

I.3 Motivation 

Among higher order finite-element methods being developed for compressible flow 

problems, the Discontinuous-Galerkin (DG) schemes [5-25] have been the most utilized. 

However, stabilized Petrov-Galerkin (PG) schemes [25-42] are increasingly absorbing more 

attention from researchers in the higher order CFD community. A major difference between 

these schemes is that in a DG scheme, each element has its exclusive set of nodes and the 

solution can be discontinuous between adjacent elements whereas in a PG scheme, some 

nodes are shared between adjacent elements and the solution is continuous all over the 
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computational domain. As a result, for elements with lower polynomial degrees, a PG 

scheme requires significantly less Degrees of Freedom (DOFs) and non-zero matrix entries 

than a DG scheme for comparable accuracy [25, 38, 39, 41]. This difference is well 

appreciated by noting that for linear and quadratic tetrahedral elements, a DG scheme may 

require an order of magnitude more computational resources than a PG scheme [40]. This 

advantage can be further enhanced using adaptation techniques. Although in the higher 

order CFD community, a considerable amount of research has been conducted on adaptation 

techniques for DG schemes [8, 9, 12, 16, 19-21, 23, 24, 43-50], the methodology for PG 

schemes is still not rigorously established and this provides the principal motivation behind 

this dissertation. In particular, this work aims to add several adaptation capabilities to a 

general framework, denoted as FUNSAFE (Fully UNStructured Adaptive Finite Elements). 

This framework uses PG formulation for discretization and it is capable for a wide range of 

applications including fluid dynamics, electromagnetics, and structural analysis [25, 38, 40, 

51-53]. The adaptive method should be equally applicable for all of the mentioned 

applications and in the same time, it should impose the least amount of effort for 

implementation. This is particularly beneficial for multidisciplinary applications. Also, the 

adaptation capability is intended to be utilized in both steady-state and unsteady 

applications. Note that for the unsteady applications, derefinement is crucial as the flow 

features travel in the computational domain and without a derefinement mechanism, the 

computation will be hindered by an over-refined mesh. 
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I.4 Scope 

Adaptive higher order methods cover a broad area of research. In this section, the 

particular objectives of this study have been described and the extents of the framework to 

achieve these objectives have been determined. Although dynamic adaptation has been 

considered for the unsteady problems, the main emphasis has been put on the steady-state 

problems. In particular, a robust adaptive methodology has been sought such that it can be 

effectively employed in a wide range of compressible flow applications, including subsonic 

and transonic flows. To this end, numerous components within flow solver and adaption 

algorithm must work in harmony. 

A common component of any adaptation algorithm is an error analysis mechanism 

which identifies the regions of the computational mesh that need refinement. Feature-based 

error indicators [45, 54-59] and output-based error estimators [19-21, 23, 48, 49, 55, 60-73] 

are two well-known alternatives for such a mechanism. 

Feature-based methods aim to capture regions with distinguishing flow features such 

as shock waves, shear layers, vortices, and singularities. For this purpose, the gradients of 

the flow variables are typically used as error indicators. These methods have an ad hoc 

nature and generally are not considered as reliable adaptation techniques. Nevertheless, due 

to the simplicity and cost efficiency, they are extensively used, particularly in unsteady 

applications where frequent adaptations are required to trace an evolving phenomenon. 

With the same incentive, in this study, feature-based methods have been employed in 

unsteady problems. 
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Output-based (or adjoint-based) methods are particularly useful when a specific 

functional output, usually defined in an integral form, is the main objective of the 

simulation. Lift and drag coefficients are familiar examples in aeronautical applications. In 

such cases, output-based methods perhaps offer the most reliable option to navigate the 

adaptation algorithm as they target the chosen functional output and try to adapt the mesh 

such that a prescribed precision is ensured. For this purpose, the sensitivity of the functional 

with respect to the local residual of the flow (or primal) solution is calculated in the form 

of an adjoint (or dual) solution. This approach provides an estimation of local errors that 

directly contribute to the global error of the desired functional. Thus, regions with highest 

local errors are chosen for mesh refinement. Despite the benefits, applications of output-

based methods have been mostly limited to the steady-state problems. This is mainly due 

to the computational costs and implementation complexities for the unsteady problems. 

Therefore, in the present work, the output-based method has been employed only for steady-

state problems. Examples of output-based adaptation for unsteady problems can be found 

in references [66, 70-72]. 

In order to develop an effective output-based adaptation, the quality of the adjoint 

solution is of critical importance. In particular, for viscous flows, due to the presence of 

Dirichlet boundary conditions on the no-slip walls, special attention should be given to the 

implementation of the boundary conditions. In the present work, the spatial discretization 

is based on a Streamline-Upwind Petrov-Galerkin (SUPG) scheme [26, 27, 36]. To obtain a 

smooth adjoint solution near the no-slip walls, the boundary conditions have been imposed 

weakly [74-76]. Also, the definition of the functional outputs have been modified to be 
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compatible with these boundary conditions. The implementation of the boundary conditions 

is, in essence, based on the Nitsche’s method [77] and its particular formulation has been 

taken from a Symmetric Interior Penalty Galerkin (SIPG) method [15, 21, 25, 78] that is 

commonly used in the DG discretizations.  

A major concern in the solution of transonic and supersonic flows is the need to 

stabilize the numerical scheme in vicinity of the shock waves. Although several methods 

exist to address this problem [79-81], present work seeks a method that shows a consistent 

behavior in an output-based adaptation algorithm. To this end, a PDE-based artificial 

viscosity [79, 80] has been added to the governing equations. 

Another aspect of this study pertains to mesh modification mechanisms. In finite-

element context, mesh modifications are usually categorized into h-adaptation, p-

adaptation, or hp-adaptation. For h-adaptation, the local refinement is accomplished by 

subdividing the elements into smaller elements of the same polynomial order. The p-

adaptation, on the other hand, is obtained by local change of the polynomial degree of the 

element’s shape functions. These two methods have been shown in figure I.1. While both h-

refinement and p-enrichment produce more unknowns, p-enrichment is expected to be more 

effective in error reduction for the same number of unknowns. However, p-enrichment may 

be problematic in regions with sharp gradients in the solution, or sharp corners in the 

geometry. Therefore, the most effective approach is a combined hp-refinement algorithm 

which utilizes p-enrichment in regions with smooth solution and h-refinement everywhere 

else. In this study, all three cases of h-, p- and hp-adaptations have been implemented. For 
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the case of hp-adaptation, the categorization of elements has been done using a smoothness 

indicator. 

 

Figure I.1  Example of h- and p-adaptation 

 

Different h-refinement methods can be categorized in several ways. One 

categorization is non-conforming versus conforming. Figure I.1 also demonstrates an 

example of each method. As seen in this figure, in non-conforming refinement, hanging 

nodes are generated. Such a mesh is called irregular. Although conforming method does not 

generate hanging nodes, successful implementation of that may require a great deal of effort, 

especially for mixed-type elements in three dimensional meshes. As discussed by Remacle 

et al. [9], non-conforming adaptation offers a simpler implementation for multiple levels of 

refinement/derefinement. Since one of the goals of the present work is an efficient dynamic 

hp-adaptation, the speed, versatility, and simplicity offered by a non-conforming method 

provides enough incentive to choose this method for development. However, as mentioned 

earlier, in PG schemes, the discrete solution is required to be continuous over the 

Non-Conforming Conforming 

Initial Mesh 

h-refinement 

p-enrichment Hanging Node 
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computational domain and hanging nodes can violate this requirement across the interface 

between refined and unrefined elements. To address this problem, a technique known as 

constrained approximation [73, 82-88] has been employed. In this method, a function value 

at a hanging node is constrained by the function values at adjacent nodes such that a 

continuous solution is obtained across all element interfaces.  

In higher order methods, high order representation of the geometry has a crucial role 

to reach optimal orders of accuracy. Anderson et al. [38] have shown an example in which 

linear representation of the surface for quadratic elements causes the order of accuracy to 

become less than that obtained by linear elements. In this study, to accurately represent 

the geometries, high-order curved boundary edges have been generated. Since curving the 

boundary edges can result in collapsed cells when high aspect ratio elements are present in 

the viscous boundary layers, the interior meshes have been deformed through a linear 

elasticity solver. 

 

I.5 Overview 

The contributions of this dissertation in the FUNSAFE framework include: 

- Development of non-conforming dynamic hp-adaptation capabilities for both 

Lagrange and hierarchical basis functions. Also, elements can be non-uniformly sub- 

or super-parametric.  

- Development of output-based adaptation for steady-state problems, and feature-

based adaptation for unsteady problems. 
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- Development of weakly imposed boundary conditions and modified functional 

outputs to obtain smooth adjoint solutions in vicinity of Dirichlet-type boundaries. 

- Implementation of PDE-based artificial viscosity to enhance the stability of the 

scheme for the shock capturing purposes.  

The remainder of this text describes the methods used to accomplish these tasks. 

Chapter II presents the governing equations as well as the full system of equations resulting 

from a SUPG discretization. In chapter III, the solution expansions and the details of 

constrained approximations have been precisely described. Chapter IV describes the details 

of the adaptation methodology which includes the adjoint-based error estimation and 

decision making criteria for the hp-adaptation. Numerical examples are presented in chapter 

V to demonstrate the ability of the current adaptive methodology. Finally, Section VI offers 

conclusions and discusses the future work. 
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CHAPTER II  
 

GOVERNING EQUATIONS AND DISCRETIZATION 
 
 

II.1 Governing Equations of Fluid Flow 

The governing equations consist of the compressible Reynolds Averaged Navier-

Stokes (RANS) equations coupled with the one equation negative Spalart-Allmaras (SA) 

turbulence model. In the conservative form, these equations can be written as 

 
∂𝐐𝐐
∂𝑡𝑡

+ ∂𝐅𝐅𝑖𝑖
∂𝑥𝑥𝑖𝑖

= 𝐒𝐒  in Ω (II.1) 

where the bold letters denote vector variables due to multiple equations, and 𝑖𝑖 indexes the 

spatial dimension. Also, as seen in following, ()������ denotes a vector in 𝑛𝑛𝑠𝑠𝑠𝑠 spatial dimensions 

(herein 𝑛𝑛𝑠𝑠𝑠𝑠 = 2). The vector of the conservative flow variables Q, the source term 𝐒𝐒, and 

the flux vector 𝐅𝐅𝑖𝑖 which consists of inviscid and viscous parts, 𝐅𝐅𝑖𝑖
𝐸𝐸 and 𝐅𝐅𝑖𝑖

𝑣𝑣, are given by 

 𝐐𝐐 =

⎩
��
⎨
��
⎧ 𝜌𝜌

𝜌𝜌𝑢𝑢1
𝜌𝜌𝑢𝑢2
𝜌𝜌𝜌𝜌
𝜌𝜌𝜈𝜈̃ ⎭

��
⎬
��
⎫

, 𝐒𝐒 =

⎩
��
⎨
��
⎧ 0

0
0
0

𝑆𝑆𝑇𝑇 ⎭
��
⎬
��
⎫

 (II.2) 

 𝐅𝐅𝑖𝑖 = 𝐅𝐅𝑖𝑖
𝐸𝐸 − 𝐅𝐅𝑖𝑖

𝑣𝑣 (II.3) 
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 𝐅𝐅𝑖𝑖
𝐸𝐸 =

⎩
�
�
�
�
⎨
�
�
�
�
⎧ 𝜌𝜌𝑢𝑢𝑖𝑖

𝜌𝜌𝑢𝑢1𝑢𝑢𝑖𝑖 + 𝛿𝛿1𝑖𝑖𝑝𝑝

𝜌𝜌𝑢𝑢2𝑢𝑢𝑖𝑖 + 𝛿𝛿2𝑖𝑖𝑝𝑝

𝜌𝜌𝜌𝜌𝑢𝑢𝑖𝑖

𝜌𝜌𝑢𝑢𝑖𝑖𝜈𝜈̃ ⎭
�
�
�
�
⎬
�
�
�
�
⎫

, 𝐅𝐅𝑖𝑖
𝑣𝑣 =

⎩
��
��
�
⎨
��
��
�
⎧ 0

𝜏𝜏1𝑖𝑖

𝜏𝜏2𝑖𝑖

𝜏𝜏𝑖𝑖𝑖𝑖𝑢𝑢𝑗𝑗 + 𝜅𝜅 ∂𝑇𝑇
∂𝑥𝑥𝑖𝑖

1
𝜎𝜎

𝜇𝜇(1 + 𝜓𝜓) ∂𝜈𝜈̃
∂𝑥𝑥𝑖𝑖⎭

��
��
�
⎬
��
��
�
⎫

,   𝑖𝑖 = 1,2 (II.4) 

where 𝜌𝜌 is the density, 𝑝𝑝 is the static pressure, 𝑢𝑢𝑖𝑖 is the velocity component in direction of 

the Cartesian coordinate 𝑥𝑥𝑖𝑖, 𝐸𝐸 is the specific total energy, 𝐻𝐻 = 𝐸𝐸 + 𝑝𝑝
𝜌𝜌 is the specific total 

enthalpy, and 𝛿𝛿𝑖𝑖𝑖𝑖  is the Kronecker delta. With the assumption of the perfect gas, the 

pressure is related to the state variables by the constitutive relation, 

 𝑝𝑝 = (𝛾𝛾 − 1) �𝜌𝜌𝜌𝜌 − 1
2

𝜌𝜌𝑢𝑢𝑖𝑖𝑢𝑢𝑖𝑖� (II.5) 

where 𝛾𝛾 is the ratio of specific heats and it is set to 1.4. Also, the shear stress tensor is given 

by 

 𝜏𝜏𝑖𝑖𝑖𝑖 = (𝜇𝜇 + 𝜇𝜇𝑇𝑇 )�∂𝑢𝑢𝑖𝑖
∂𝑥𝑥𝑗𝑗

+
∂𝑢𝑢𝑗𝑗

∂𝑥𝑥𝑖𝑖
− 2

3
∂𝑢𝑢𝑘𝑘
∂𝑥𝑥𝑘𝑘

𝛿𝛿𝑖𝑖𝑖𝑖� (II.6) 

where 𝜇𝜇 is the dynamic viscosity which is obtained by the Sutherland’s Law and 𝜇𝜇𝑇𝑇  is the 

turbulent eddy viscosity. Moreover, 𝜅𝜅 is the thermal conductivity, and 𝑇𝑇  is the temperature 

which is related to the specific total energy by  

 𝜅𝜅𝜅𝜅 = 𝛾𝛾 � 𝜇𝜇
𝑃𝑃𝑃𝑃

+ 𝜇𝜇𝑇𝑇
𝑃𝑃𝑟𝑟𝑇𝑇

 � �𝐸𝐸 − 1
2

𝑢𝑢𝑖𝑖𝑢𝑢𝑖𝑖� (II.7) 

where 𝑃𝑃𝑃𝑃 and 𝑃𝑃𝑟𝑟𝑇𝑇  are Prandtl and turbulent Prandtl numbers which are set to 0.72 and 

0.9, respectively. 
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Also, 𝜈𝜈  ̃is the working variable of the SA turbulence model. For more details on turbulence 

model, the reader is referred to the references [21, 23, 25, 89].  

 

II.2 Spatial Discretization 

To start, the strong form of the problem is written as  

  

∂𝐐𝐐
∂𝑡𝑡

+ ∂𝐅𝐅𝑖𝑖
∂𝑥𝑥𝑖𝑖

− 𝐒𝐒 = 𝟎𝟎 𝑥𝑥⃗ ∈ Ω and 𝑡𝑡 ∈ [0, ∞) (II.8.a) 

𝐅𝐅𝑖𝑖 = 𝐅𝐅𝑖𝑖
𝑏𝑏 𝑥𝑥⃗ ∈ Γ𝐹𝐹  and 𝑡𝑡 ∈ [0,∞) (II.8.b) 

𝐐𝐐(𝒙𝒙, 𝑡𝑡) = 𝐐𝐐𝐷𝐷 𝑥𝑥⃗ ∈ Γ𝐷𝐷 and 𝑡𝑡 ∈ [0,∞) (II.8.c) 

𝐐𝐐(𝒙𝒙, 0) = 𝐐𝐐0(𝒙𝒙) 𝑥𝑥⃗ ∈ Ω (II.8.d) 

where, Ω ⊂ ℝ𝑛𝑛𝑠𝑠𝑠𝑠  is a bounded domain with Lipschitz-continuous boundary Γ, 𝐅𝐅𝑖𝑖
𝑏𝑏  is the 

prescribed boundary fluxes through Γ𝐹𝐹  portion of the boundary, and 𝐐𝐐𝐷𝐷 is the Dirichlet 

boundary condition on the Γ𝐷𝐷 portion of the boundary. By defining the solution and weight 

spaces, 

 𝓢𝓢𝑡𝑡 ≔ {𝐐𝐐| 𝐐𝐐(⋅, 𝑡𝑡) ∈ [ℋ1(Ω)]𝑛𝑛𝑄𝑄, 𝑡𝑡 ∈ [0, ∞) 𝑎𝑎𝑎𝑎𝑎𝑎 𝐐𝐐(𝑥𝑥,⃗ 𝑡𝑡) = 𝐐𝐐𝐷𝐷 𝑜𝑜𝑜𝑜 Γ𝐷𝐷} (II.9) 

 𝒲𝒲 ≔ {𝑤𝑤| 𝑤𝑤 ∈ ℋ1(Ω) 𝑎𝑎𝑎𝑎𝑎𝑎 𝑤𝑤(𝑥𝑥)⃗ = 0 𝑜𝑜𝑜𝑜 Γ𝐷𝐷} (II.10) 

the weak form of the problem is expressed as: for any 𝑡𝑡 ∈ [0, ∞) find 𝐐𝐐 ∈ 𝓢𝓢𝑡𝑡 such that for 

all 𝑤𝑤 ∈ 𝒲𝒲, 

 �𝑤𝑤 ∂𝐐𝐐
∂𝑡𝑡

− ∂𝑤𝑤
∂𝑥𝑥𝑖𝑖

𝐅𝐅𝑖𝑖 − 𝑤𝑤𝐒𝐒 𝑑𝑑Ω
Ω

+ � 𝑤𝑤 (𝐅𝐅𝑖𝑖
𝑏𝑏𝑛𝑛𝑖𝑖) 𝑑𝑑Γ

Γ𝐹𝐹

= 𝟎𝟎 (II.11) 

where 𝑛𝑛𝑖𝑖’s are the components of the unit outward-normal on the Γ. Equation (II.11) is 

simply obtained by: multiplying the equation (II.8.a) by the weight function 𝑤𝑤, performing 
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integration over Ω, applying the integration by parts, and substituting equation (II.8.b) in 

the resulting boundary integral. Since weight functions vanish on the Dirichlet-type 

boundaries, the boundary integral has been limited to Γ𝐹𝐹 . By performing a spatial 

integration, a semi-discrete approach is pursued and thus the weight functions do not 

depend on the time. On the other hand, time dependency of the solution has been translated 

into a time-varying solution space. In equations (II.9) and (II.10), ℋ1 is the usual Sobolev 

space of weakly differentiable functions, and [ℋ1]𝑛𝑛𝑄𝑄 is the corresponding space of vector 

functions with 𝑛𝑛𝑄𝑄 components. 

Toward developing the discrete (finite dimension) form, the Ω is approximated by a 

computational domain Ωℎ with piecewise-polynomial boundary Γℎ. Then, the finite-element 

mesh 𝒯𝒯ℎ  = {Ω1, Ω2, … , Ω𝑛𝑛𝑒𝑒𝑒𝑒} is defined as the geometrical division of Ωℎ  into a finite 

number of non-overlapping elements such that 

 Ωℎ = � Ω𝑒𝑒
𝑛𝑛𝑒𝑒𝑒𝑒

𝑒𝑒=1
 (II.12) 

where 𝑛𝑛𝑒𝑒𝑒𝑒 denotes the number of elements. Accordingly, the boundary is partitioned as: 

 Γℎ = � Γ𝑒𝑒 ∩ Γ
𝑛𝑛𝑒𝑒𝑒𝑒

𝑒𝑒=1
 (II.13) 

where Γ𝑒𝑒 denotes the boundary of the element 𝑒𝑒. A two dimensional mesh is called regular 

if for any two elements Ω𝑒𝑒 and Ω𝑓𝑓 , 𝑒𝑒 ≠ 𝑓𝑓 , only one of the followings is true [84]:  

1. Ω𝑒𝑒 ∩ Ω𝑓𝑓  is empty, 

2. Ω𝑒𝑒 ∩ Ω𝑓𝑓  is a single common vertex, 

3. Ω𝑒𝑒 ∩ Ω𝑓𝑓  is a single common edge.  
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With such definition, a regular mesh does not include any hanging node. For the sake of 

simplicity, to present the discretization, the mesh is assumed to be regular. However, in the 

section of constrained approximation (Section III.3), this assumption will be relaxed. 

To define the approximation spaces, each element 𝑒𝑒 is equipped with a polynomial 

order 1 ≤ 𝑃𝑃(Ω𝑒𝑒) = 𝑃𝑃𝑒𝑒 . In general, the distribution of polynomial orders may be non-

uniform. Obviously, this is a necessity for p- and hp-adaptation. At this point, spatial 

approximation spaces can be precisely defined as 

 
𝓢𝓢𝑡𝑡

ℎ ≔ {𝐐𝐐|𝐐𝐐(⋅, 𝑡𝑡) ∈ [ℋ1(Ωℎ)]𝑛𝑛𝑄𝑄,𝐐𝐐(⋅, 𝑡𝑡)|Ω𝑒𝑒 ∈ [𝒫𝒫𝑃𝑃𝑒𝑒(Ω𝑒𝑒)]𝑛𝑛𝑄𝑄,

𝑡𝑡 ∈ [0, ∞) ∀𝑒𝑒 and 𝐐𝐐(⋅, 𝑡𝑡) = 𝐐𝐐𝐷𝐷
ℎ  on Γ𝐷𝐷

ℎ } 
(II.14) 

 𝒲𝒲ℎ ≔ {𝑤𝑤| 𝑤𝑤 ∈ ℋ1(Ωℎ); 𝑤𝑤|Ω𝑙𝑙 ∈ 𝒫𝒫𝑃𝑃𝑒𝑒(Ω𝑒𝑒) ∀𝑒𝑒 and 𝑤𝑤 = 0 on Γ𝐷𝐷
ℎ } (II.15) 

where 𝒫𝒫𝑃𝑃  is the polynomial space, complete to the order 𝑃𝑃 . Now, the discrete solution to 

the weak form can be expressed as: for any 𝑡𝑡 ∈ [0, ∞) find 𝐐𝐐ℎ ∈ 𝓢𝓢𝑡𝑡
ℎ such that for all 𝑤𝑤ℎ ∈

𝒲𝒲ℎ, 

 � 𝑤𝑤ℎ ∂𝐐𝐐ℎ 
∂𝑡𝑡

− ∂𝑤𝑤ℎ

∂𝑥𝑥𝑖𝑖
𝐅𝐅𝑖𝑖 − 𝑤𝑤ℎ𝐒𝐒 𝑑𝑑Ω

Ωℎ

+ � 𝑤𝑤ℎ (𝐅𝐅𝑖𝑖
𝑏𝑏𝑛𝑛𝑖𝑖) 𝑑𝑑Γ

Γ𝐹𝐹
ℎ

= 𝟎𝟎 (II.16) 

provided that 𝐅𝐅𝑖𝑖  and 𝐒𝐒  are calculated based on 𝐐𝐐ℎ . This solution is expanded in a 

piecewise manner as 

 𝐐𝐐ℎ = � 𝐐𝐐𝑖𝑖𝑁𝑁𝑖𝑖

𝑛𝑛𝐷𝐷𝐷𝐷𝐷𝐷

𝑖𝑖=1
   on Ωℎ (II.17) 

where 𝐐𝐐𝑖𝑖’s are the solution’s coefficients or the Degrees of Freedom (DOFs), 𝑁𝑁𝑖𝑖’s are the 

basis functions for the finite-dimension space 𝓢𝓢𝑡𝑡
ℎ and 𝑛𝑛𝐷𝐷𝐷𝐷𝐷𝐷  is the dimension of that space 

as well as the number of DOFs. If the weight function 𝑤𝑤ℎ is constructed using the same 
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class as the solution’s basis functions 𝑁𝑁 , the original Bubnov-Galerkin discretization is 

derived. It is well-known that in situations where advection fluxes dominate diffusion fluxes, 

the original Galerkin method will suffer from spurious oscillations which lead to instability 

of the method. As Dona and Huerta [90] describe, these oscillations are due to the negative 

numerical diffusion produced by the original Galerkin discretization. Intuitively, the 

common remedy in CFD is to add numerical dissipation to the discretization. During the 

last three decades, several stabilization methods, for example the Streamline-Upwind 

Petrov-Galerkin (SUPG) [26, 27, 36], Galerkin Least Square (GLS) [91], and Variational 

Multi-Scale (VMS) [74, 92, 93] methods have been developed for continuous Galerkin 

methods. An excellent review of stabilized methods for compressible flows, including their 

formulation and history, can be found in reference [36]. In the developed framework, SUPG, 

GLS, and VMS can each be used for stabilization. In this study, however, only the results 

of the SUPG method have been presented. To clarify the notation used for the stabilization 

and the weak boundary conditions, it is also useful to rewrite the equation (II.8.a) using a 

quasi-linear differential operator as (see also references [94, 95]) 

 ℒ(𝐪𝐪) = 𝐒𝐒 (II.18) 

 ℒ ≔ [𝐀𝐀𝑞𝑞] ∂
∂𝑡𝑡

+ [𝐀𝐀𝑖𝑖
𝐸𝐸] ∂

∂𝑥𝑥𝑖𝑖
− ∂

∂𝑥𝑥𝑖𝑖
�𝐆𝐆𝑖𝑖𝑖𝑖

∂
𝜕𝜕𝑥𝑥𝑗𝑗

� (II.19) 

where [𝐀𝐀𝑞𝑞] = ∂𝐐𝐐
∂𝐪𝐪  is the variable transformation matrix, [𝐀𝐀𝑖𝑖

𝐸𝐸] = ∂𝐅𝐅𝑖𝑖
𝐸𝐸

∂𝐪𝐪  is the Euler flux 

Jacobian matrix, and �𝐆𝐆𝑖𝑖𝑖𝑖�  is the diffusivity matrix which is defined such that 𝐅𝐅𝑖𝑖
𝑣𝑣 =

�𝐆𝐆𝑖𝑖𝑖𝑖�
∂𝐪𝐪
∂𝑥𝑥𝑗𝑗

. Here, 𝐪𝐪 is the vector of the dependent variables which may be chosen over the 

conservative variables 𝐐𝐐 to facilitate the implementation. In the present work, it is the 
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vector of state variables 𝐪𝐪 = [𝜌𝜌, 𝑢𝑢𝑖𝑖, 𝑇𝑇 , 𝜈𝜈]̃𝑇𝑇 .  This choice is based on the need for modeling 

fluids with nonlinear equations of state that typically provide the pressure and other 

thermodynamic variables in terms of density and temperature. Hereafter, 𝐪𝐪ℎ is considered 

as the discrete solution. The stabilization is performed by adding a stabilization term to the 

Galerkin discretization as 

 

� 𝑁𝑁[𝐀𝐀𝑞𝑞] ∂𝐪𝐪ℎ 
∂𝑡𝑡

− ∂𝑁𝑁
∂𝑥𝑥𝑖𝑖

𝐅𝐅𝑖𝑖 − 𝑁𝑁𝐒𝐒 𝑑𝑑Ω
Ωℎ

+ � 𝑁𝑁(𝐅𝐅𝑖𝑖
𝑏𝑏𝑛𝑛𝑖𝑖) 𝑑𝑑Γ

Γ𝐹𝐹
ℎ�����������������������

𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷

+ �� [𝐏𝐏𝑒𝑒]�[𝐀𝐀𝑞𝑞] ∂𝐪𝐪ℎ

∂𝑡𝑡
+ ∂𝐅𝐅𝑖𝑖

∂𝑥𝑥𝑖𝑖
− 𝐒𝐒� 𝑑𝑑Ω

Ω𝑒𝑒

𝑛𝑛𝑒𝑒𝑒𝑒

𝑒𝑒=1�����������������
𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇

= 𝟎𝟎 

(II.20) 

provided that 𝐅𝐅𝑖𝑖 and 𝐒𝐒 are calculated based on 𝐪𝐪ℎ. In above equation, N has been used 

instead of w to emphasize that hereafter the weight functions are chosen from the same 

class as the solution’s basis functions. The stabilization term is calculated over all the 

elements in the computational domain. The value in the parentheses of this term is the 

residual of the original PDE and this is why these methods are known as residual-based 

stabilization methods [93]. The major property of such a method is the consistency, in the 

sense that the stabilization term goes to zero as the numerical solution approaches the exact 

solution of the PDE. The term [𝐏𝐏] is called the perturbation to the test function space as 

it modifies the original Galerkin methods to a Petrov-Galerkin method with 𝑁𝑁[𝐈𝐈] + [𝐏𝐏] as 

the weight function [36].  

 For SUPG method, 

 [𝐏𝐏𝑒𝑒] = [𝐀𝐀𝑖𝑖
𝐸𝐸] ∂𝑁𝑁

∂𝑥𝑥𝑖𝑖
[𝛕𝛕𝑒𝑒] (II.21) 
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where [𝛕𝛕] is called the stabilization matrix. It has the dimension of time and it can be 

obtained based on the eigensystem decomposition of the projection of the flux Jacobian 

matrices onto the spatial gradients of the basis functions. However, the stabilization may 

also be derived from flux-vector splitting formulations. Advantages of such an approach are 

that differentiability, positivity, and total enthalpy conservation can be maintained [39, 96, 

97]. In the present study, only the “standard” stabilization based on eigensystem 

decomposition is used [98] with viscous scaling as described in reference [99]. This term for 

element 𝑒𝑒 is given by 

 [𝛕𝛕𝑒𝑒]−1 = ��
∂𝑁𝑁𝑗𝑗

𝑒𝑒

∂𝑥𝑥𝑖𝑖
[𝐀𝐀𝑖𝑖

𝐸𝐸]�
𝑛𝑛𝑠𝑠 

𝑒𝑒

𝑗𝑗=1
+

∂𝑁𝑁𝑗𝑗
𝑒𝑒

∂𝑥𝑥𝑖𝑖
[𝐆𝐆𝑖𝑖𝑖𝑖]

∂𝑁𝑁𝑗𝑗
𝑒𝑒

∂𝑥𝑥𝑘𝑘
 (II.22) 

where 𝑁𝑁𝑗𝑗
𝑒𝑒  and 𝑛𝑛𝑠𝑠 

𝑒𝑒 are the shape functions and number of modes within element 𝑒𝑒 , 

respectively. Here, a shape function within an element is considered as the restriction of a 

basis function to that element (see Section III.1). In above equation, 

 �
∂𝑁𝑁𝑗𝑗

𝑒𝑒

∂𝑥𝑥𝑖𝑖
[𝐀𝐀𝑖𝑖

𝐸𝐸]� = [𝐓𝐓]|𝚲𝚲|[𝐓𝐓]−1 (II.23) 

where [𝐓𝐓] and |𝚲𝚲| denote the matrix of right eigenvectors and the diagonal matrix of 

absolute values of the eigenvalues of the left hand side of the above equation, respectively. 

Remarks 

1. In the SUPG scheme, the numerical dissipation is added in streamwise direction. 

The added dissipation can be interpreted as an added numerical viscous flux [33], or 

upwinding through giving more weight to the up-stream element [26]. 

2. For the GLS scheme, 
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 [𝐏𝐏𝑒𝑒] = ℒ(𝑁𝑁)[𝛕𝛕𝑒𝑒] (II.24) 

where operator ℒ was previously defined in equation (II.18). If a steady-state solution is 

sought, for pure advection (e.g. Euler equations) or for linear elements, the GLS and SUPG 

schemes are equivalent.  

 

II.3 Initial and Boundary Conditions 

In this study, the initial condition is set to free-stream condition with exception of 

the no-slip walls, where the no-slip condition is applied. The free-stream value of the 

turbulence working variable 𝜈𝜈  ̃is set to 3 for fully turbulent flows [100]. 

Regarding boundary conditions, far-filed, inviscid wall, and no-slip wall boundaries 

are considered. The walls are assumed to be adiabatic. For the far-field boundaries, the 

boundary flux vector 𝐅𝐅𝑖𝑖
𝑏𝑏 only includes the inviscid part and is constructed using the Roe 

scheme [101] based on the free-stream and interior state values. For the inviscid walls, the 

boundary flux vector only takes the pressure from interior and thus 𝐅𝐅𝑖𝑖
𝑏𝑏 = [0, 𝛿𝛿1𝑖𝑖𝑝𝑝, 𝛿𝛿2𝑖𝑖𝑝𝑝, 0]𝑇𝑇 .  

 
II.3.1 Weakly Imposed Dirichlet Boundary Conditions 

To apply no-slip condition on the walls, the discrete weak form in equation (II.20) 

may be augmented with the weak implementation of the Dirichlet boundary conditions [74]. 

Bazilevs and Hughes proposed such an approach in reference [75] for the advection diffusion 

and incompressible Navier–Stokes equations and then, they extended their method in 

reference [76]. It should be mentioned that this method is essentially based on the Nitsche’s 

method [77]. Here the same idea is followed, although the utilized formulation is based on 
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a DG discretization for compressible flows. This formulation is obtained by ignoring interior 

stabilization from Symmetric Interior Penalty Galerkin (SIPG) method [15, 21, 25, 78]. As 

it will be shown in the numerical results, weak boundary condition is one of the essential 

ingredients to obtain a smooth adjoint solution near the no-slip wall boundaries. To impose 

weak boundary conditions, equation (II.20) is augmented as follows 

 

� 𝑁𝑁[𝐀𝐀0]
∂𝐪𝐪ℎ 
∂𝑡𝑡

− 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥𝑖𝑖

𝐅𝐅𝑖𝑖 − 𝑁𝑁𝐒𝐒 𝑑𝑑Ω
Ωℎ

+ � 𝑁𝑁(𝐅𝐅𝑖𝑖
𝑏𝑏𝑛𝑛𝑖𝑖) 𝑑𝑑Γ

Γ𝐹𝐹
ℎ

+ �� [𝐏𝐏𝑒𝑒] �[𝐀𝐀0]
∂𝐪𝐪ℎ 
∂𝑡𝑡

+ ∂𝐅𝐅𝑖𝑖
∂𝑥𝑥𝑖𝑖

− 𝐒𝐒� 𝑑𝑑Ω
Ω𝑒𝑒

𝑛𝑛𝑒𝑒𝑒𝑒

𝑒𝑒=1
+ 𝒩𝒩ΓD

= 𝟎𝟎 

(II.25) 

where 

 

𝒩𝒩ΓD
= � 𝑁𝑁�𝐅𝐅𝑖𝑖

𝐸𝐸(𝐪𝐪𝑏𝑏) − 𝐅𝐅𝑖𝑖
𝑣𝑣(𝐪𝐪𝑏𝑏, ∇𝐪𝐪ℎ)�𝑛𝑛𝑖𝑖 𝑑𝑑Γ

Γ∩Γ𝐷𝐷
ℎ

− � �[𝐆𝐆𝑖𝑖1(𝐪𝐪𝑏𝑏)] ∂𝑁𝑁
∂𝑥𝑥𝑖𝑖

, [𝐆𝐆𝑖𝑖2(𝐪𝐪𝑏𝑏)] ∂𝑁𝑁
∂𝑥𝑥𝑖𝑖

� ⋅ (𝐪𝐪ℎ − 𝐪𝐪𝑏𝑏)𝑛⃗𝑛 𝑑𝑑Γ 
Γ∩Γ𝐷𝐷

ℎ

+ � 𝜂𝜂[𝐆𝐆(𝐪𝐪𝑏𝑏)](𝐪𝐪ℎ − 𝐪𝐪𝑏𝑏)𝑛⃗𝑛 ⋅ 𝑁𝑁𝑛⃗𝑛 𝑑𝑑Γ
Γ∩Γ𝐷𝐷

ℎ

 (II.26) 

where 𝐪𝐪𝑏𝑏 is a state vector which is constructed based on the Dirichlet boundary conditions 

and interior solution. Adiabatic and no-slip conditions yield 𝐪𝐪𝑏𝑏 = [𝜌𝜌, 0,0, 𝑇𝑇 , 0]𝑇𝑇 and thus the 

components of the boundary viscous flux associated with the energy equation vanishes. Note 

that to calculate 𝐪𝐪𝑏𝑏, 𝜌𝜌 and 𝑇𝑇  are calculated based on the interior solution on the element 

adjacent to the boundary. Also, turbulence working variable 𝜈𝜈  ̃is set to zero at no-slip walls.  

The first term in equation (II.26) is called the consistency term. To justify this term, 

note that if the Dirichlet boundary conditions are imposed weakly, unlike equations (II.10) 

and (II.15), weight functions do not vanish on the boundary. Thus this term results from 
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the integration by parts in the derivation of the weak form in equation (II.11). Note that 

to calculate the viscous flux, the gradients ∇𝐪𝐪ℎ are calculated based on the interior solution 

on the element adjacent to the boundary. 

The second term is called the symmetry term, or adjoint-consistency term. If the 

discretization is adjoint-consistent, by substitution of the exact solution of the adjoint 

problem as the weight function in equation (II.25), this equation should be satisfied 

identically [15, 76, 102]. 

The last term is referred to as the penalty term, where the penalty parameter 𝜂𝜂 is 

explicitly evaluated using the element geometry parameters as well as the order of 

discretization [21, 25]. Here the value given by reference [21] has been used 

 𝜂𝜂𝑒𝑒 = 𝑛𝑛𝑠𝑠 
𝑒𝑒 |Γ𝑒𝑒|

|Ω𝑒𝑒|
 (II.27) 

where |Γ𝑒𝑒| and |Ω𝑒𝑒| are the perimeter and area of the element 𝑒𝑒 which is adjacent to the 

boundary. 

Remarks 

Considering that the viscous flux is linear in the flow gradients, the sum of 

consistency and penalty terms can be written as a modified viscous flux. For this purpose, 

a modified gradient vector ∇𝐪𝐪ℎ  is defined as 

 ∇𝐪𝐪ℎ = ∇𝐪𝐪ℎ + 𝜂𝜂(𝐪𝐪ℎ − 𝐪𝐪𝑏𝑏)𝑛⃗𝑛 (II.28) 

and thus, equation (II.26) is simplified to 
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𝒩𝒩ΓD
= � 𝑁𝑁 �𝐅𝐅𝑖𝑖

𝐸𝐸(𝐪𝐪𝑏𝑏) − 𝐅𝐅𝑖𝑖
𝑣𝑣�𝐪𝐪𝑏𝑏, ∇𝐪𝐪ℎ �� 𝑛𝑛𝑖𝑖 𝑑𝑑Γ

Γ∩Γ𝐷𝐷
ℎ

− � �[𝐆𝐆𝑖𝑖1(𝐪𝐪𝑏𝑏)] ∂𝑁𝑁
∂𝑥𝑥𝑖𝑖

, [𝐆𝐆𝑖𝑖2(𝐪𝐪𝑏𝑏)] ∂𝑁𝑁
∂𝑥𝑥𝑖𝑖

� ⋅ (𝐪𝐪ℎ − 𝐪𝐪𝑏𝑏)𝑛⃗𝑛 𝑑𝑑Γ 
Γ∩Γ𝐷𝐷

ℎ

 (II.29) 

Note that the ∇𝐪𝐪ℎ  is only used for integration of the viscous flux along the boundary. As 

it will be mentioned in the Section IV.1.4, ∇𝐪𝐪ℎ  will also be used in calculation of the 

functional of the interest (i.e. lift or drag) when a discrete adjoint solution is sought. 

 

II.4 Semi-discrete Formulation 

Due to Galerkin-based formulation, the weight space is spanned by the same basis 

functions as the solution space. Therefore, in order to obtain a semi-discrete formulation, 

the equations (II.20) and (II.25) can be iterated for 𝑁𝑁𝑖𝑖, 1 ≤ 𝑖𝑖 ≤ 𝑛𝑛𝐷𝐷𝐷𝐷𝐷𝐷 . This process results 

in 𝑛𝑛𝐷𝐷𝐷𝐷𝐷𝐷  equations which can be compactly written as 

 [𝐌𝐌] ∂𝐪𝐪ℎ

∂𝑡𝑡
+ 𝐑𝐑(𝐪𝐪ℎ) = 𝟎𝟎 (II.30) 

where 𝐑𝐑 denotes the spatial residual, and [𝐌𝐌] denotes the mass matrix.  

 
II.4.1 Steady-State Solutions 

To obtain a steady-state solution, the equation (II.30) is discretized in time using an 

implicit backward difference formula (BDF). This yields  

 𝐑𝐑𝐑𝐑𝐬𝐬𝐧𝐧+𝟏𝟏(𝐪𝐪ℎ,𝑛𝑛+1) = [𝐌𝐌]
Δ𝑡𝑡

(𝐪𝐪ℎ,𝑛𝑛+1 − 𝐪𝐪ℎ,𝑛𝑛) + 𝐑𝐑(𝐪𝐪ℎ,𝑛𝑛+1) = 0 (II.31) 

where 𝐑𝐑𝐑𝐑𝐬𝐬𝐧𝐧+𝟏𝟏 represents the unsteady flow residual at time step 𝑛𝑛 + 1. The implicit system 

is linearized using an automatic differentiation implementation [103] and the vector of the 
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dependent variables is updated in a Newton-iteration algorithm similar to that in reference 

[104]. The linearized system and the update equation are given by 

 [𝐉𝐉𝑛𝑛(𝐪𝐪ℎ,𝑛𝑛)]Δ𝐪𝐪ℎ,𝑛𝑛 = −𝐑𝐑𝑛𝑛(𝐪𝐪ℎ,𝑛𝑛) (II.32) 

 𝐪𝐪ℎ,𝑛𝑛+1 = 𝐪𝐪ℎ,𝑛𝑛 + 𝑤𝑤𝑜𝑜𝑜𝑜𝑜𝑜Δ𝐪𝐪ℎ,𝑛𝑛 (II.33) 

where [𝐉𝐉] = �∂𝐑𝐑𝐑𝐑𝐑𝐑
∂𝐪𝐪ℎ � denotes the Jacobian matrix. The 𝑤𝑤𝑜𝑜𝑜𝑜𝑜𝑜 is a nominal optimum relaxation 

factor which is determined in a line search process. It should be mentioned that the utilized 

Newton algorithm has been modified to include local time-steps which are amplified by the 

CFL number to accelerate the global convergence. At small CFL numbers, the algorithm 

essentially becomes an explicit method, whereas at high CFL numbers the algorithm 

approaches Newton’s method. To enhance robustness, a limiting relaxation factor 𝑤𝑤𝜌𝜌,𝑇𝑇  is 

determined such that neither the density nor the temperature changes by more than 10 

percent. 𝑤𝑤𝜌𝜌,𝑇𝑇  serves as the maximum factor during the line search that is used to determine 

the optimal value 𝑤𝑤𝑜𝑜𝑜𝑜𝑜𝑜. Here, the RMS of the unsteady residual 𝐑𝐑𝐑𝐑𝐬𝐬𝐧𝐧+𝟏𝟏 is evaluated at four 

values of the relaxation factors: 0, 𝑤𝑤𝑚𝑚𝑚𝑚𝑚𝑚,(𝑤𝑤𝑚𝑚𝑚𝑚𝑚𝑚 + 𝑤𝑤𝜌𝜌,𝑇𝑇 )/2, and 𝑤𝑤𝜌𝜌,𝑇𝑇 . The optimal value is 

found by locating the minimum of a fitted cubic polynomial within the range of [0, 𝑤𝑤𝜌𝜌,𝑇𝑇 ]. 

If the optimal relaxation factor falls below the minimal value 𝑤𝑤𝑚𝑚𝑚𝑚𝑚𝑚, the step is rejected and 

the CFL number is divided by 10. If a full step is taken, as characterized by a relaxation 

factor of 𝑤𝑤𝑜𝑜𝑜𝑜𝑜𝑜 = 1.0, the CFL is doubled. In other cases the CFL remains at the previous 

value. In this study 𝑤𝑤𝑚𝑚𝑚𝑚𝑚𝑚 is set to 0.1. Also, the maximum value of CFL has been set to 

106 and no minimum value has been set. 
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II.4.2 Unsteady Solutions 

For time-dependent solutions, the second order backward difference formula (BDF2) 

is applied on equation (II.30) which yields 

 𝐑𝐑𝐑𝐑𝐬𝐬𝐧𝐧+𝟏𝟏(𝐪𝐪ℎ,𝑛𝑛+1) =
[𝐌𝐌]
Δ𝑡𝑡

�
3
2

𝐪𝐪ℎ,𝑛𝑛+1 − 2𝐪𝐪ℎ,𝑛𝑛 +
1
2

𝐪𝐪ℎ,𝑛𝑛−1� + 𝐑𝐑(𝐪𝐪ℎ,𝑛𝑛+1) = 0 (II.34) 

Similar to the case of steady-state solution, the unsteady residual is linearized and the 

resulting system of equations is solved using Newton’s method. However, a constant time-

step is used for the entire computational domain. 

 
II.4.3 Solution of Linear System 

At each iteration or time step, the linear system is solved using the GMRES [105] 

algorithm with a preconditioner based on incomplete LU decomposition with 0 and at most 

5 levels of fill [106], for unsteady and steady state problems, respectively.  

 

II.5 Artificial Viscosity Formulation 

In this study, the artificial viscosity is added to the governing equations in order to 

stabilize the solution near the shock waves. To this end, the viscous flux is augmented as 

 𝐅𝐅𝑖𝑖
𝑣𝑣 = �𝐆𝐆𝑖𝑖𝑖𝑖�

∂𝐪𝐪
∂𝑥𝑥𝑗𝑗

+ �𝐀𝐀𝑖𝑖𝑖𝑖
𝜖𝜖 � ∂𝐐𝐐�

∂𝑥𝑥𝑗𝑗
 (II.35) 

where 𝐐𝐐� is a state vector which includes 𝜌𝜌𝜌𝜌  instead of 𝜌𝜌𝜌𝜌. This choice is expected to 

conserve the total enthalpy across the shock which is required by Rankine-Hugoniot shock 

jump relations (see references [80, 81]). The artificial viscosity matrix is �𝐀𝐀𝑖𝑖𝑖𝑖
𝜖𝜖 � = 𝜖𝜖 ̂�𝐃𝐃𝑖𝑖𝑖𝑖�, 

where 𝜖𝜖 ̂is the artificial viscosity, and �𝐃𝐃𝑖𝑖𝑖𝑖� is a diagonal matrix. Persson and Peraire [81] 
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have proposed a piecewise-constant artificial viscosity that scales with ℎ/𝑃𝑃  in a finite-

element discretization, aiming to make the shock width also be 𝑂𝑂(ℎ/𝑃𝑃). To detect the 

shock, they have developed a discontinuity sensor based on the rate of decay of the 

expansion coefficients in a hierarchical basis used to expand the discrete solution. The 

beauty of their method is that by fixing the element size ℎ, and increasing the polynomial 

order 𝑃𝑃 , the shock can be resolved within one element. The downside, however, is that due 

to the element-wise design of the method, large jumps in artificial viscosity may be observed 

between adjacent elements which may result in spurious oscillations in the flow gradients. 

Thus, Barter and Darmofal [80] extended that method by developing a diffusion model, in 

form of a PDE, to smooth the distribution of the artificial viscosity. In their proposed model, 

which is referred to as artificial viscosity PDE, the above mentioned discontinuity sensor 

has been used in the source term, and the diffusion term has been biased by the directional 

mesh size metrics which is particularly useful for anisotropic meshes. Burgess and Mavriplis 

[107] have compared the above mentioned methods and concluded that although the PDE-

based method results in a more dissipated solution, it shows a more robust and consistent 

convergence behavior in an adjoint-based adaptive algorithm. In this study, a similar 

comparison was repeated which came to the same conclusion. Thus the PDE-based method 

was chosen. However, it should be mentioned that the benefits of this method comes with 

the extra cost of the additional PDE. All the studies in references [80, 81, 107] have used 

the DG scheme and to our knowledge, this is the first application of the PDE-based artificial 

viscosity method in the PG scheme. The following formulation has been taken from reference 

[80]. The artificial viscosity matrix is given by, 
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 �𝐀𝐀𝑖𝑖𝑖𝑖
𝜖𝜖 � = 𝜖𝜖(̂𝜖𝜖)diag �𝐼𝐼 ̂ℎ𝑖𝑖

ℎ̅
� 𝛿𝛿𝑖𝑖𝑖𝑖 (II.36) 

 𝜖𝜖(̂𝜖𝜖) ≡

⎩�
�⎨
��
⎧0, 𝜖𝜖 ≤ 𝜃𝜃𝐿𝐿

𝜃𝜃𝐻𝐻
2

�1 + sin �𝜋𝜋 � 𝜖𝜖 − 𝜃𝜃𝐿𝐿
𝜃𝜃𝐻𝐻 − 𝜃𝜃𝐿𝐿

− 1
2
��� , 𝜃𝜃𝐿𝐿 < 𝜖𝜖 < 𝜃𝜃𝐻𝐻

𝜃𝜃𝐻𝐻 𝜖𝜖 ≥ 𝜃𝜃𝐻𝐻

 (II.37) 

where ℎ̅(𝑥𝑥)⃗ is the arithmetic mean of the components of ℎ⃗(𝑥𝑥)⃗ ∈ ℝ𝑛𝑛𝑠𝑠𝑠𝑠 which is a vector of 

the element size metrics described in following, and 𝐼𝐼 ̂ = [1,1]𝑇𝑇 . Using equation (II.37), the 

artificial viscosity 𝜖𝜖 ̂varies smoothly between zero and maximum value of 𝜃𝜃𝐻𝐻 , as 𝜖𝜖, the 

working variable of the artificial viscosity PDE,  varies between 𝜃𝜃𝐿𝐿 and 𝜃𝜃𝐻𝐻 . Here, 𝜃𝜃𝐿𝐿 =

0.01𝜃𝜃𝐻𝐻 , and 𝜃𝜃𝐻𝐻 = 𝜆𝜆𝑚𝑚𝑚𝑚𝑚𝑚ℎ̅ 𝑃𝑃⁄ . Here, the maximum eigenvalue (or wave speed) of the system 

is 𝜆𝜆𝑚𝑚𝑚𝑚𝑚𝑚 = �𝑢𝑢𝑖𝑖𝑢𝑢𝑖𝑖 + 𝑐𝑐, where 𝑐𝑐 is the speed of sound. The artificial viscosity PDE and its 

boundary conditions are:  

 ∂𝜖𝜖
∂𝑡𝑡

= ∇ ⋅ �[𝛈𝛈]
𝜏𝜏

∇𝜖𝜖� + 1
𝜏𝜏

�ℎ̅(𝑥𝑥)⃗
𝑃𝑃

𝜆𝜆𝑚𝑚𝑚𝑚𝑚𝑚(𝐪𝐪)𝑆𝑆𝑒𝑒(𝐪𝐪) − 𝜖𝜖� , 𝑥𝑥⃗ ∈ Ω and 𝑡𝑡 ∈ [0, ∞) (II.38) 

 ∂𝜖𝜖
∂𝑛⃗𝑛

= 𝜖𝜖 − 𝜖𝜖∞
𝐿𝐿

, 𝑥𝑥⃗ ∈ Γ and 𝑡𝑡 ∈ [0,∞) (II.39) 

where 𝜏𝜏  is a time constant, and [𝛈𝛈] is the diffusivity matrix. They are compactly given by 

 
[𝛈𝛈]
𝜏𝜏

= 𝐶𝐶1𝐶𝐶2𝑃𝑃𝜆𝜆𝑚𝑚𝑚𝑚𝑚𝑚(𝐪𝐪)
min

𝑖𝑖
ℎ𝑖𝑖

diag�ℎ𝑥𝑥
2 , ℎ𝑦𝑦

2�;  𝐶𝐶1𝐶𝐶2 = 15. (II.40) 

𝑆𝑆𝑒𝑒 is the shock indicator which forces the 𝜖𝜖 to be non-zero near the discontinuities. It is 

given by, 

 𝑆𝑆𝑒𝑒(𝐹𝐹𝑒𝑒, 𝜃𝜃𝑆𝑆, 𝜓𝜓0, Δ𝜓𝜓) =

⎩�
�⎨
��
⎧0, 𝐹𝐹𝑒𝑒 ≤ 𝜓𝜓0 − Δ𝜓𝜓

𝜃𝜃𝑆𝑆, 𝐹𝐹𝑒𝑒 ≥ 𝜓𝜓0 + Δ𝜓𝜓
𝜃𝜃𝑆𝑆
2

�1 + sin �𝜋𝜋 𝐹𝐹𝑒𝑒 − 𝜓𝜓0
2Δ𝜓𝜓

�� |𝐹𝐹𝑒𝑒 − 𝜓𝜓0| < Δ𝜓𝜓
 (II.41) 
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where 𝐹𝐹𝑒𝑒 is the discontinuity sensor developed by Persson and Peraire [81] which is given 

by, 

 𝐹𝐹𝑒𝑒 = log10 �〈𝑞𝑞 − 𝑞𝑞,̂ 𝑞𝑞 − 𝑞𝑞〉̂𝑒𝑒
〈𝑞𝑞, 𝑞𝑞〉𝑒𝑒

� (II.42) 

where 〈, 〉𝑒𝑒 denotes 𝐿𝐿2 norm on element 𝑒𝑒, and 𝑞𝑞 is a state variable which for a solution of 

order 𝑃𝑃𝑒𝑒  is expanded as 𝑞𝑞 = ∑ 𝑞𝑞𝑗𝑗𝑁𝑁𝑗𝑗
𝑒𝑒𝑛𝑛𝑠𝑠

𝑒𝑒(𝑃𝑃𝑒𝑒)
𝑗𝑗=1  within element 𝑒𝑒. 𝑞𝑞  ̂is a truncated expansion 

given by 𝑞𝑞 ̂= ∑ 𝑞𝑞𝑗𝑗𝑁𝑁𝑗𝑗
𝑒𝑒𝑛𝑛𝑠𝑠

𝑒𝑒(𝑃𝑃𝑒𝑒−1)
𝑗𝑗=1 . In this study, density has been used as the state variable. 

Since we are seeking a continuous solution, 𝑃𝑃 = 1 is the lowest allowable polynomial order. 

Thus, for linear elements, 𝑞𝑞 ̂is taken to be the arithmetic average of the 𝑞𝑞𝑗𝑗 in the element.  

In equation (II.41), 𝜃𝜃𝑆𝑆 = 1  is the maximum value. 𝜓𝜓0  and Δ𝜓𝜓  are empirical 

constants which determine when the shock indicator should take effect. Here,                   

𝜓𝜓0 = −(4 + 4.25 log10(𝑃𝑃 )), and Δ𝜓𝜓 = 0.5. 

Remarks 

1. Equation (II.39) denotes a Robin boundary condition and it has been designed to be 

effective regardless of the angle at which the shock intersects with the boundary. 

However, to simplify the implementation, here, a homogeneous Neumann condition 

∂𝜖𝜖
∂𝑛𝑛����� = 0 has been used. This boundary condition implies that the shock is normal to 

the boundary [79]. 

2. In reference [80], the vector of mesh size metrics ℎ⃗(𝑥𝑥)⃗ is defined such that the 

arithmetic mean, ℎ̅(𝑥𝑥)⃗ is a continuously varying scalar function throughout the 

mesh. In particular, ℎ⃗(𝑥𝑥)⃗ = ∑ 𝐻𝐻��������𝑘𝑘𝑁𝑁𝑘𝑘(
𝑛𝑛𝑠𝑠𝑑𝑑+1
𝑘𝑘=1 𝑥𝑥)⃗, where 𝐻𝐻��������𝑘𝑘 is the average value of the 

bounding box vectors of all elements surrounding the 𝑘𝑘𝑡𝑡ℎ vertex node of an element 
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and 𝑁𝑁𝑘𝑘 is the linear vertex shape function associated with the vertex node. The 

bounding box vectors for a triangular element with linear edges has been shown in 

figure II.1.a. Here we have made a modification which is particularly beneficial for 

curved boundary layer elements. Figure II.1.b shows a thin element that has the 

same mesh metrics as the triangle in Fig 1.a. However, the curved element has 

smaller area and accordingly it needs less artificial viscosity. Thus, we use |Ω|/𝐻𝐻𝑦𝑦 

instead of 𝐻𝐻𝑥𝑥, and |Ω|/𝐻𝐻𝑥𝑥 instead of 𝐻𝐻𝑦𝑦, where |Ω| is the area of the element. Using 

this modification, the mesh size metrics for thin boundary layer elements reduces 

significantly and accordingly less artificial viscosity is added to these elements. 

3. To solve the equation (II.38), the artificial viscosity 𝜖𝜖 ̂is appended to the state vector 

𝐪𝐪 in equation (II.18) and thus the artificial viscosity PDE is discretized using the 

same PG scheme described earlier.  

 

              
(a) Linear edges                             (b) Curved edges 

 

Figure II.1  Mesh size metrics 
 
 

II.6 Mesh Curving Strategy 

A common practice in CFD, and particularly in the second-order accurate schemes, 

is that the boundaries of the geometry are represented by a series of linear elements. 

However, to achieve higher accuracies, an increased conformity is required to properly 
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account for surface curvature. Therefore, a mechanism is required to project the boundary 

edges to the exact geometry. However, such projection may generate collapsed elements 

near the boundary, especially when high aspect ratio elements are used, for example in the 

boundary layers. Thus, a robust mesh deformation strategy must be employed to move the 

interior elements away from the curved boundaries. In this study, a modified form of the 

linear elasticity equations has been employed to deform the computational mesh. These 

equation are given by 

 

𝜕𝜕
𝜕𝜕𝜕𝜕

�𝑑𝑑11
𝜕𝜕𝛿𝛿𝑥𝑥
𝜕𝜕𝜕𝜕

+ 𝑑𝑑12
𝜕𝜕𝛿𝛿𝑦𝑦

𝜕𝜕𝜕𝜕
� + 𝜕𝜕

𝜕𝜕𝜕𝜕
�𝑑𝑑44 �𝜕𝜕𝛿𝛿𝑥𝑥

𝜕𝜕𝜕𝜕
+

𝜕𝜕𝛿𝛿𝑦𝑦

𝜕𝜕𝜕𝜕
�� = 0 

𝜕𝜕
𝜕𝜕𝜕𝜕

�𝑑𝑑21
𝜕𝜕𝛿𝛿𝑥𝑥
𝜕𝜕𝜕𝜕

+ 𝑑𝑑22
𝜕𝜕𝛿𝛿𝑦𝑦

𝜕𝜕𝜕𝜕
� + 𝜕𝜕

𝜕𝜕𝜕𝜕
�𝑑𝑑44 �𝜕𝜕𝛿𝛿𝑥𝑥

𝜕𝜕𝜕𝜕
+

𝜕𝜕𝛿𝛿𝑦𝑦

𝜕𝜕𝜕𝜕
�� = 0 

(II.43.a) 

where 𝛿𝛿 = (𝛿𝛿𝑥𝑥, 𝛿𝛿𝑦𝑦) denotes the displacement vector in the Cartesian coordinate directions, 

the coefficients 𝑑𝑑11 = 𝑑𝑑22 = 𝐸𝐸(1−𝜈𝜈)
(1+𝜈𝜈)(1−2𝜈𝜈)  , 𝑑𝑑12 = 𝑑𝑑21 = 𝐸𝐸𝐸𝐸

(1+𝜈𝜈)(1−2𝜈𝜈)  , 𝑑𝑑44 = 𝐸𝐸𝐸𝐸
2(1+𝜈𝜈) . Here, 𝐸𝐸 

denotes the Young’s modulus, and 𝜈𝜈 is the Poisson’s ratio. To improve the robustness of 

the method for extremely high aspect ratio elements, E can be defined as a decreasing 

function of the distance to the wall.  

To solve the above equations, the Galerkin method with similar hierarchical basis 

functions as those used for flow variables are used. In the FUNSAFE framework, the 

polynomial orders of the flow variables and the geometry mappings can be chosen 

independently for each individual element. This is particularly useful to employ sub- and 

super-parametric elements arbitrarily. For clarification, hereafter, the polynomial order of 

the solution variables is denoted by P, and the polynomial order of the geometry mappings 
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is denoted by Q. For instance, a P1-Q3 element is a super-parametric element with linear 

shape functions for the flow variables, and cubic shape functions for the geometry mapping. 

Typically, a mesh is first generated using linear edges. Since hierarchical shape 

functions are used here, the vertex nodes are directly placed on the exact geometry while 

the edge nodes are chosen such that the resulting computational edge passes through some 

desired points on the exact geometry. For example, in the case of quadratic edges, the edge 

node is iteratively updated such that the mid-point of the edge marches from its initial 

location toward the normal direction to the edge until the intersection with exact geometry 

is determined. Similarly, for cubic edges, the number of points matched on the exact 

geometry is increased to two. As it will be shown in the results, in all of the studied cases, 

the initial mesh is equipped with curved Q3 elements. During the adaptation, h-refined 

elements are, generally, embedded within the parent elements except for those near the 

solid boundary where they need to conform to the exact geometry. The geometry of the 

children elements are initialized based on the current mapping of their parents. For 

maximum conformity, it is useful to repeat the mesh curving process if the refinement occurs 

on the boundary. Due to the possible presence of the hanging nodes in the geometry 

mapping, once more, the constrained approximation is used to solve the linear elasticity 

equations on an hp-adapted mesh. 
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CHAPTER III  
 

SOLUTION EXPANSION AND CONSTRAINED APPROXIMATION 
 
 

III.1 Basis Functions 

Considering the transformation of the conservative variables 𝐐𝐐ℎ to the dependent 

variables 𝐪𝐪ℎ, instead of equation (II.17), the discrete solution is expanded as, 

 𝐪𝐪ℎ = � 𝐪𝐪𝑖𝑖𝑁𝑁𝑖𝑖

𝑛𝑛𝐷𝐷𝐷𝐷𝐷𝐷

𝑖𝑖=1
   𝑜𝑜𝑜𝑜 Ωℎ (III.1) 

In order to relate the above expansion to the computational mesh, it is useful to define the 

term node as any geometrical entity (vertex, edge, and element interior) that associates a 

solution coefficient 𝐪𝐪𝑖𝑖 and its corresponding basis function 𝑁𝑁𝑖𝑖 to the computational mesh. 

As will be seen in the next section, this definition is particularly beneficial when hierarchical 

basis functions are employed. The basis functions 𝑁𝑁𝑖𝑖 are constructed in a piecewise manner 

by combining the shape functions which are defined within elements. To explain this 

concept, note that the discrete solution 𝐪𝐪ℎ can be expanded as  

 𝐪𝐪ℎ = � 𝐪𝐪𝑒𝑒
𝑛𝑛𝑒𝑒𝑒𝑒

𝑒𝑒=1
   𝑜𝑜𝑜𝑜 Ωℎ (III.2) 

where 𝐪𝐪𝑒𝑒 is the restriction of 𝐪𝐪ℎ to the element 𝑒𝑒. Then, 𝐪𝐪𝑒𝑒 is expanded as  
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 𝐪𝐪𝑒𝑒 = � 𝐪𝐪𝑗𝑗
𝑒𝑒𝑁𝑁𝑗𝑗

𝑒𝑒
𝑛𝑛𝑠𝑠

𝑒𝑒

𝑗𝑗=1
  on Ω𝑒𝑒 (III.3) 

 𝑁𝑁𝑗𝑗
𝑒𝑒 = 𝑁𝑁𝑖𝑖𝑗𝑗(𝑒𝑒)   on Ω𝑒𝑒 (III.4) 

 𝑁𝑁𝑖𝑖 = � 𝑁𝑁𝑗𝑗𝑖𝑖(𝑒𝑒)
𝑒𝑒

𝑒𝑒∈𝐸𝐸𝑖𝑖

 (III.5) 

where 𝐪𝐪𝑗𝑗
𝑒𝑒, 𝑁𝑁𝑗𝑗

𝑒𝑒, and 𝑛𝑛𝑠𝑠
𝑒𝑒 are the local solution coefficients, shape functions, and the number 

of shape functions within element 𝑒𝑒, respectively. Note that 𝑗𝑗 is a local index within element 

𝑒𝑒, and 𝑖𝑖 is a global index referring to the node 𝑖𝑖 within the mesh. Accordingly, 𝑗𝑗𝑖𝑖(𝑒𝑒) is the 

local index in element e which points to the node i, and 𝑖𝑖𝑗𝑗(𝑒𝑒) is the global index associated 

with the local node 𝑗𝑗. Also, 𝐸𝐸𝑖𝑖 is the set of the elements that contain the node i. In this 

manner, the basis function 𝑁𝑁𝑖𝑖  is only non-zero over the elements of 𝐸𝐸𝑖𝑖  and the shape 

function 𝑁𝑁𝑗𝑗𝑖𝑖(𝑒𝑒)
𝑒𝑒  is the restriction of 𝑁𝑁𝑖𝑖 to the element 𝑒𝑒. This notion has been illustrated in 

figure III.1. In this figure, the blue umbrella is a basis function and each individual triangular 

facet is a local shape function. 

 

 

Figure III.1  Sample basis function 

 



35 
 

Due to continuity of the solution space, the basis functions need to keep the 

continuity across element interfaces. In other words, the trace of the shape functions of 

adjacent elements that contribute in forming 𝑁𝑁𝑖𝑖 need to match on the element interfaces. 

As will be discussed in the section of constrained approximation (Section III.3), this is an 

important property which should be retained in presence of hanging nodes. 

 

III.2 Shape Functions 

In the present study, both Lagrange and hierarchical shape functions have been 

implemented for triangular elements. However, it should be mentioned that in spite of their 

popularity, the Lagrange shape functions are not the best choice when p- or hp-adaptation 

is desired. One reason is that by changing the polynomial order, all the shape functions in 

an element need to be updated, and an interpolation step is required to project the solution 

on the new set of nodes. Another reason is that two adjacent elements with different 

polynomial orders may not be able to share the nodes on the common interface (edge in 2D 

and edge/face in 3D). This is particularly important when a continuous solution is sought. 

Although, by using a technique known as constrained approximation [73, 82-88], the 

continuity can be maintained, separate sets of nodes need to be stored for different elements 

surrounding the mentioned interface (see reference [73]). 

Above mentioned issues can be addressed by employing hierarchical shape functions. 

The notion of hierarchy comes from the fact that higher-order polynomial spaces can be 

incrementally built from the lower-order ones. In other words, to obtain higher order 

expansions, new terms, which can be viewed as corrections, are added to the old expansion. 



36 
 

A remarkable feature of this approach is that some shape functions are associated with the 

interior of the elements and the rest are associated with sub-element entities (i.e. 

vertices/edges in 2D). Accordingly, in addition to the element, edges are also equipped with 

polynomial orders. As a result, by changing the polynomial order associated with an edge, 

the polynomial spaces of all the elements, which share that edge, are automatically updated. 

Therefore, non-uniform distribution of the polynomial orders is achieved more easily than 

Lagrange elements. Another notable feature of hierarchical shape functions is that obtaining 

arbitrary higher order expansions for triangular elements can be automated in a 

straightforward manner. Hierarchical shape functions have been previously employed in 

SUPG schemes in studies by Whiting and Jansen [94] and Whiting et al. [95].  

The hierarchical shape functions used in this study are similar to those presented in 

reference [84]. To clarify the upcoming notation, it should be mentioned that so far the 

symbol 𝑒𝑒 has been used to denote elements. Hereafter, it is used for edges as well. However, 

in order to avoid confusion, when it is used for an edge, it comes with a local index. For 

example, 𝑒𝑒1 denotes the first edge in an element.  

To facilitate the numerical integrations, the shape functions have been be presented 

for a reference element which is defined as, 

 Ω� = {(𝜉𝜉, 𝜂𝜂) ∈ ℝ2; −1 ≤ 𝜉𝜉 + 𝜂𝜂 ≤ 0} (III.6) 

Figure III.2 shows this element and the convention used for numbering and 

orientation of the vertices and edges. Letting 𝑃𝑃𝑏𝑏 and 𝑃𝑃𝑒𝑒𝑖𝑖  denote the polynomial orders of 

the element’s interior and the local edge 𝑒𝑒𝑖𝑖 , respectively, the polynomial space for the 

reference element is defined as, 
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Figure III.2  The reference element 

 

 𝑊𝑊𝑇𝑇 = �𝑤𝑤 ∈ 𝒫𝒫𝑃𝑃𝑏𝑏(Ω�);𝑤𝑤|𝑒𝑒𝑗𝑗
∈ 𝒫𝒫𝑃𝑃𝑒𝑒𝑖𝑖 (𝑒𝑒𝑖𝑖), 𝑖𝑖 = 1, … ,3 � (III.7) 

where 

 𝒫𝒫𝑃𝑃 (Ω�) = span�𝜉𝜉𝑖𝑖𝜂𝜂𝑗𝑗; (𝜉𝜉, 𝜂𝜂) ∈ Ω�; 𝑖𝑖, 𝑗𝑗 = 0, … , 𝑝𝑝;  𝑖𝑖 + 𝑗𝑗 ≤ 𝑃𝑃 � (III.8) 

To satisfy the 𝐻𝐻1-conformity, it is assumed that 

 𝑃𝑃𝑒𝑒𝑖𝑖 ≤ 𝑃𝑃𝑏𝑏, 1 ≤ 𝑖𝑖 ≤ 3 (III.9) 

In two dimensions, the complete set of the shape functions is obtained by vertex, 

edge, and bubble functions. For a triangle element, (𝑃𝑃 𝑏𝑏 + 1)(𝑃𝑃 𝑏𝑏 + 2)/2 shape functions are 

required to reach a polynomial space complete to the order 𝑃𝑃𝑏𝑏. 

The vertex functions are given by 

 

𝜑𝜑𝑣𝑣1 = − 1
2

(𝜉𝜉 + 𝜂𝜂) 

𝜑𝜑𝑣𝑣2 = 1
2

(𝜉𝜉 + 1) 

𝜑𝜑𝑣𝑣3 = 1
2

(𝜂𝜂 + 1) 

(III.10) 

These functions, which are similar to the linear Lagrange shape functions, have been 

illustrated in figure III.3.  

𝑣𝑣1 𝑣𝑣2 

𝑣𝑣3 

-1 1 0 

-1 

1 

𝑒𝑒1 

𝑒𝑒2 

𝑒𝑒3 
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(a) 𝜑𝜑𝑣𝑣1 (b) 𝜑𝜑𝑣𝑣2 (c) 𝜑𝜑𝑣𝑣3 

Figure III.3  Vertex functions for the master element Ω� 

 

The edge functions are defined using vertex functions and a kernel function 𝜙𝜙 as, 

 

𝜑𝜑𝑘𝑘
𝑒𝑒1 = 𝜑𝜑𝑣𝑣1𝜑𝜑𝑣𝑣2𝜙𝜙𝑘𝑘−2(𝜑𝜑𝑣𝑣2 − 𝜑𝜑𝑣𝑣1),   2 ≤ 𝑘𝑘 ≤ 𝑃𝑃𝑒𝑒1  

𝜑𝜑𝑘𝑘
𝑒𝑒2 = 𝜑𝜑𝑣𝑣2𝜑𝜑𝑣𝑣3𝜙𝜙𝑘𝑘−2(𝜑𝜑𝑣𝑣3 − 𝜑𝜑𝑣𝑣2),   2 ≤ 𝑘𝑘 ≤ 𝑃𝑃𝑒𝑒2 

𝜑𝜑𝑘𝑘
𝑒𝑒3 = 𝜑𝜑𝑣𝑣3𝜑𝜑𝑣𝑣1𝜙𝜙𝑘𝑘−2(𝜑𝜑𝑣𝑣1 − 𝜑𝜑𝑣𝑣3),   2 ≤ 𝑘𝑘 ≤ 𝑃𝑃𝑒𝑒3 

(III.11) 

where  

 

𝜙𝜙0(𝑥𝑥) = 𝑐𝑐0 

𝜙𝜙1(𝑥𝑥) = 𝑐𝑐1𝑥𝑥 

𝜙𝜙2(𝑥𝑥) = 𝑐𝑐2(5𝑥𝑥2 − 1) 

𝜙𝜙3(𝑥𝑥) = 𝑐𝑐3(7𝑥𝑥3 − 𝑥𝑥) 

(III.12) 

Note that in equation (III.11), the parentheses denote function evaluation. With such 

definition, the edge 𝑒𝑒𝑖𝑖 is associated with (𝑃𝑃 𝑒𝑒𝑖𝑖 − 1) shape functions, traces of which coincide 

with scaled Lobatto polynomials on the edge 𝑒𝑒𝑖𝑖 and vanish on all other edges. Lobatto 

polynomials can be written as 
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𝑙𝑙𝑘𝑘(𝑥𝑥) = 𝑙𝑙0(𝑥𝑥)𝑙𝑙1(𝑥𝑥)𝜙𝜙𝑘𝑘−2 (𝑥𝑥),   2 ≤ 𝑘𝑘 

𝑙𝑙0 = 1 − 𝑥𝑥
2

,   𝑙𝑙1 = 1 + 𝑥𝑥
2

 
(III.13) 

 

Figure III.4 illustrates the edge function for 𝑘𝑘 = 2, … ,5. 

Finally the bubble functions are defined using the same kernel functions as 

 
𝜑𝜑𝑛𝑛1,𝑛𝑛2

𝑏𝑏 = 𝜑𝜑𝑣𝑣1𝜑𝜑𝑣𝑣2𝜑𝜑𝑣𝑣3𝜙𝜙𝑛𝑛1−1(𝜑𝜑𝑣𝑣2 − 𝜑𝜑𝑣𝑣1)𝜙𝜙𝑛𝑛2−1(𝜑𝜑𝑣𝑣1 − 𝜑𝜑𝑣𝑣3),  

1 ≤ 𝑛𝑛1, 𝑛𝑛2; 𝑛𝑛1 + 𝑛𝑛2 ≤ 𝑃𝑃𝑏𝑏 − 1 
(III.14) 

Note that similar to equation (III.11), the parentheses denote function evaluation. With 

such definition, the bubble functions vanish on all the edges. Figure III.5 illustrates these 

function up to 𝑃𝑃𝑏𝑏 = 3, … ,5. 

 

Remarks 

1. Using kernel functions in the definition of edge and bubble functions, one only needs 

to extend the list of the kernel functions to reach higher order expansions. 

2. The constants 𝑐𝑐𝑘𝑘 can be utilized to condition the linear system in equation (II.32) 

[19].  

3. Following set of 𝑐𝑐𝑘𝑘 returns the standard Lobatto polynomials. 

 𝑐𝑐0 = −2�3
2

, 𝑐𝑐1 = −2�5
2

, 𝑐𝑐2 − 1
2

�7
2

, 𝑐𝑐3 = −1
2

�9
2
 (III.15) 
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(a) 𝜑𝜑2

𝑒𝑒1 (b) 𝜑𝜑2
𝑒𝑒2 (c) 𝜑𝜑2

𝑒𝑒3 

   
(d) 𝜑𝜑3

𝑒𝑒1 (e) 𝜑𝜑3
𝑒𝑒2 (f) 𝜑𝜑3

𝑒𝑒3 

   
(g) 𝜑𝜑4

𝑒𝑒1 (h) 𝜑𝜑4
𝑒𝑒2 (i) 𝜑𝜑4

𝑒𝑒3 

   
(j) 𝜑𝜑5

𝑒𝑒1 (k) 𝜑𝜑5
𝑒𝑒2 (l) 𝜑𝜑5

𝑒𝑒3 
 

Figure III.4  Hierarchical edge functions for the master element Ω�, (𝑃𝑃 𝑒𝑒𝑖𝑖 = 2, … ,5) 
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(a) 𝜑𝜑1,1

𝑏𝑏  (b) 𝜑𝜑1,2
𝑏𝑏  (c) 𝜑𝜑2,1

𝑏𝑏  

   
(d) 𝜑𝜑1,3

𝑏𝑏  (e) 𝜑𝜑3,1
𝑏𝑏  (f) 𝜑𝜑2,2

𝑏𝑏  

Figure III.5  Hierarchical bubble functions for the master element Ω�, (𝑃𝑃 𝑏𝑏 = 3, … ,5) 

 

III.2.1 Orientation of Element Edges 

As mentioned earlier, to form continuous basis functions, the trace of the shape 

functions from adjacent elements, which contribute in that basis function, need to match 

on the interface between elements. In the case of hierarchical shape functions, the basis 

functions which are formed by combining odd-order edge functions from two adjacent 

elements need special attention. Note that if all the elements in the mesh follow the 

numbering and orientation convention defined by the reference element (shown in figure 

III.2), then two adjacent elements have opposite orientations on the shared edge. This has 

been shown in figure III.6. Now, based on the equation (III.12),  
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 𝜑𝜑𝑘𝑘−2(−𝑥𝑥) = (−1)𝑘𝑘−2𝜑𝜑𝑘𝑘−2(𝑥𝑥),   2 ≤ 𝑘𝑘  (III.16) 

Thus, considering equation (III.11), the trace of two odd-order edge functions from two 

adjunct elements will be opposite of each other. To solve this issue, as suggested in reference 

[84], each physical edge in the mesh can be assigned a unique (global) orientation. Then, 

elements will be equipped with an orientation sign (+1 or -1) for each of their local edges. 

The orientation sign which is shown by 𝑜𝑜(𝑒𝑒) indicates whether the local edge of the element 

has the same or opposite orientation with respect to the physical edge. It follows that one 

only needs to multiply each edge function by 𝑜𝑜𝑘𝑘(𝑒𝑒), to account for the orientation of the 

physical mesh. More details on this topic can be found in reference [84]. 

 

 

Figure III.6  Orientation of element edges  

 

III.3 Constrained Approximation 

So far, the computational mesh was assumed to be regular. Such a mesh does not 

include any hanging node. In the context of continuous finite elements, hanging nodes can 

break the 𝐻𝐻1-conformity of the solution across the interface between refined and unrefined 

elements. To address this problem, a technique known as constrained approximation [73, 

82-88] has been employed in which the function value at a hanging node is constrained by 

the function values at adjacent nodes such that a continuous solution is obtained across all 



43 
 

element interfaces. This concept can be illustrated by an example. Figure III.7.a shows two 

triangular elements with linear shape functions. For local h-refinement, the right triangle is 

subdivided into four similar elements, and for p-enrchiment, it is replaced with a quadratic 

element, as shown in figures III.7.b and III.7.c, repectively. To set the constraint, the 

function value at the hanging node is forced to follow the linear profile dictated by the left 

element at the common edge, for both cases. 

 

 

Figure III.7  Example of non-conforming h-refinement and p-enrichment 

 

The difficulty in implementation of the constrained approximation is that in a 

general hp-adaptation, elements with different polynomial orders and different h-refinement 

levels can locate next to each other, and the implementation should be able to handle all 

the possible configurations. To alleviate this issue, it is a common practice to limit the 

number of possible configurations. The limitation employed in this study is the 1-irregularity 

rule [87] which limits the maximum difference of h-refinement levels of neighbor elements 

to one. However, such a limitation has not been imposed for the case of p-enrichment.  

Another important consideration regarding the complexity of the implementation is 

the choice of the shape functions. As mentioned before, hierarchical shape functions, provide 

a more modular way to achieve non-uniform polynomial order distribution compared to the 

(b) h-refinement (a) Initial Mesh (c) p-enrichment 
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Lagrange shape functions. By returning to the above example, the hanging node produced 

by p-enrichment can be avoided if hierarchical shape functions are employed. Here, the 

polynomial order of the common edge can be set to one in favor of the linear element on 

the left and this automatically keeps the continuity of the solution between two elements. 

By extending this example to a three dimensional case, the convenience obtained by 

hierarchical basis function is more appreciated considering that several elements may share 

a common edge. Nevertheless, in the case of non-conforming h-refinement, both Lagrange 

and hierarchical shape functions generate hanging nodes. 

 
III.3.1 Finding Constraints 

The constraint relations are found based on a description in reference [84], although 

slight modifications have been added to reflect the present implementation details and 

differences. Using hierarchical shape functions and 1-irregularity rule, in two dimensions, 

hanging nodes can only take place at the edges between elements with one h-refinement 

level difference as shown in figure III.8. In this figure, elements Ω2  and Ω3  have been 

generated by h-refinement of the neighbor of element Ω1. Similarly, small edges e2, e3 have 

been generated by subdivision of edge e1 and thus they inherit their orientations from that 

edge. That is if 𝑒𝑒1 = 𝑣𝑣1𝑣𝑣2, then 𝑒𝑒2 = 𝑣𝑣1𝑣𝑣3 and 𝑒𝑒3 = 𝑣𝑣3𝑣𝑣2.  
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Figure III.8  Constrained approximation with 1-irregularity rule and hierarchical shape 
functions 

 

In figure III.8, 𝑣𝑣3  is assumed to be at the mid-point of 𝑒𝑒1  and thus considering 

𝑥𝑥𝑒⃗𝑒1: [−1,1] → ℝ2 to be the map of edge 𝑒𝑒1 to the physical space,  

 

𝑣𝑣1 = 𝑥𝑥𝑒⃗𝑒1(−1) 

𝑣𝑣2 = 𝑥𝑥𝑒⃗𝑒1(1) 

𝑣𝑣3 = 𝑥𝑥𝑒⃗𝑒1(0)  

(III.17) 

Edges 𝑒𝑒2 and 𝑒𝑒3 inherit their polynomial orders from edge 𝑒𝑒1, right after their generation. 

However, in successive adaptation cycles, the polynomial orders of elements may change 

arbitrarily. Therefore, after each adaptation cycle, it is necessary to update the polynomial 

order of the edges. To this end, for each edge, the minimum polynomial order is picked from 

its adjacent elements. In the case of figure III.8,  

 𝑃𝑃 = 𝑃𝑃 𝑒𝑒1 = 𝑃𝑃 𝑒𝑒2 = 𝑃𝑃 𝑒𝑒3 = min{𝑃𝑃 𝑏𝑏(Ω1), 𝑃𝑃 𝑏𝑏(Ω2), 𝑃𝑃 𝑏𝑏(Ω3)} ≥ 1  (III.18) 

In following, the solution coefficients or DOFs are denoted by u and those associated with 

edges 𝑒𝑒1, 𝑒𝑒2, and 𝑒𝑒3 are labeled as: 

- Constraining: the vertex coefficients 𝑢𝑢𝑣𝑣1, 𝑢𝑢𝑣𝑣2 and edge coefficient 𝑢𝑢𝑘𝑘
𝑒𝑒1 , 2 ≤ 𝑘𝑘 ≤ 𝑃𝑃 . 

- Constrained: the vertex coefficients 𝑢𝑢𝑣𝑣3 and edge coefficients 𝑢𝑢𝑘𝑘
𝑒𝑒2 , 𝑢𝑢𝑘𝑘

𝑒𝑒3 , 2 ≤ 𝑘𝑘 ≤ 𝑃𝑃 .  

𝑣𝑣1 

𝑣𝑣2 

𝑣𝑣3 
𝑒𝑒1 

𝑒𝑒3 

𝑒𝑒2 Ω1 

Ω3 

Ω2 
-1 0 1   

𝜃𝜃: Trace of the approximation on 𝑒𝑒1 

L R 
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To set a constraint, the constrained coefficients need to be expressed in terms of constraining 

ones. Toward this, consider 𝑉𝑉[−1,1]
𝑃𝑃 , 𝑉𝑉[−1,0]

𝑃𝑃  and 𝑉𝑉[0,1]
𝑃𝑃  as the spaces of scalar polynomials of 

order 𝑃𝑃  or lower defined on the subscribed intervals. These spaces are equipped with 

following polynomial bases: 

 ℬ[−1,1]
𝑃𝑃 = {𝑙𝑙𝑘𝑘}𝑘𝑘=0

𝑃𝑃 = {𝑙𝑙𝑘𝑘(𝜉𝜉);  𝜉𝜉 ∈ [−1,1]; 𝑘𝑘 = 0, … , 𝑃𝑃} (III.19.a) 

 ℬ[−1,0]
𝑃𝑃 = {𝑙𝑙𝑘𝑘𝐿𝐿}𝑘𝑘=0

𝑃𝑃 = {𝑙𝑙𝑘𝑘(1 + 2𝜉𝜉);  𝜉𝜉 ∈ [−1,0]; 𝑘𝑘 = 0,… , 𝑃𝑃} (III.19.b) 

 ℬ[0,1]
𝑃𝑃 = {𝑙𝑙𝑘𝑘𝑅𝑅}𝑘𝑘=0

𝑃𝑃 = {𝑙𝑙𝑘𝑘(−1 + 2𝜉𝜉);  𝜉𝜉 ∈ [0,1]; 𝑘𝑘 = 0, … , 𝑃𝑃} (III.19.c) 

Now, the trace of the approximate solution on edge 𝑒𝑒1 (see figure III.8) can be expressed 

as, 

 𝜃𝜃 = (𝐮𝐮𝑒𝑒1)𝑇𝑇 ⋅ 𝐥𝐥𝑒𝑒1   on [−1,1] (III.20) 

where 𝐮𝐮𝑒𝑒1 is the vector of the coefficients associated with edge 𝑒𝑒1, 

 𝐮𝐮𝑒𝑒1 = [𝑢𝑢𝑣𝑣1, 𝑢𝑢𝑣𝑣2, 𝑢𝑢2
𝑒𝑒1, … , 𝑢𝑢𝑃𝑃

𝑒𝑒1 ]𝑇𝑇  (III.21) 

and 𝐥𝐥𝑒𝑒1 is the vector of the functions in ℬ[−1,1]
𝑃𝑃 , 

 𝐥𝐥𝑒𝑒1 = [𝑙𝑙0, 𝑙𝑙1, 𝑙𝑙2,… , 𝑙𝑙𝑃𝑃 ]𝑇𝑇  (III.22) 

Similarly, for edges 𝑒𝑒2 and 𝑒𝑒3,  

 𝐮𝐮𝑒𝑒2 = [𝑢𝑢𝑣𝑣1, 𝑢𝑢𝑣𝑣3, 𝑢𝑢2
𝑒𝑒2, … , 𝑢𝑢𝑃𝑃

𝑒𝑒2 ]𝑇𝑇  (III.23.a) 

 𝐮𝐮𝑒𝑒3 = [𝑢𝑢𝑣𝑣3, 𝑢𝑢𝑣𝑣2, 𝑢𝑢2
𝑒𝑒3, … , 𝑢𝑢𝑃𝑃

𝑒𝑒3 ]𝑇𝑇  (III.23.b) 

 𝐥𝐥𝑒𝑒2 = [𝑙𝑙0𝐿𝐿, 𝑙𝑙1𝐿𝐿, 𝑙𝑙2𝐿𝐿, … , 𝑙𝑙𝑃𝑃𝐿𝐿]𝑇𝑇  (III.23.c) 

 𝐥𝐥𝑒𝑒3 = [𝑙𝑙0𝑅𝑅, 𝑙𝑙1𝑅𝑅, 𝑙𝑙2𝑅𝑅, … , 𝑙𝑙𝑃𝑃𝑅𝑅]𝑇𝑇  (III.23.d) 
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To obtain a continuous solution along edge 𝑒𝑒1, 

 (𝐮𝐮𝑒𝑒2)𝑇𝑇 ⋅ 𝐥𝐥𝑒𝑒2 = (𝐮𝐮𝑒𝑒1)𝑇𝑇 ⋅ 𝐥𝐥𝑒𝑒1   on [−1,0] (III.24.a) 

 (𝐮𝐮𝑒𝑒3)𝑇𝑇 ⋅ 𝐥𝐥𝑒𝑒3 = (𝐮𝐮𝑒𝑒1)𝑇𝑇 ⋅ 𝐥𝐥𝑒𝑒1   on [0,1] (III.24.b) 

To solve the above equations, the functions in 𝐥𝐥𝑒𝑒1can be expressed in terms of 𝐥𝐥𝑒𝑒2 and 𝐥𝐥𝑒𝑒3 . 

Thus, by defining the transition matrices [𝐌𝐌𝐿𝐿
𝑃𝑃 ] and [𝐌𝐌𝑅𝑅

𝑃𝑃 ] as, 

 𝐥𝐥𝑒𝑒1 = [𝐌𝐌𝐿𝐿
𝑃𝑃 ]𝑇𝑇 𝐥𝐥𝑒𝑒2 (III.25.a) 

 𝐥𝐥𝑒𝑒1 = [𝐌𝐌𝑅𝑅
𝑃𝑃 ]𝑇𝑇 𝐥𝐥𝑒𝑒3 (III.25.b) 

the coefficients of edges 𝑒𝑒2 and 𝑒𝑒3 are obtained as, 

 𝐮𝐮𝑒𝑒2 = [𝐌𝐌𝐿𝐿
𝑃𝑃 ]𝐮𝐮𝑒𝑒1 (III.26.a) 

 𝐮𝐮𝑒𝑒3 = [𝐌𝐌𝑅𝑅
𝑃𝑃 ]𝐮𝐮𝑒𝑒1 (III.26.b) 

Above equations reveal how the constrained DOFs are related to constraining ones. 

Transition matrices are (𝑃𝑃 + 1) × (𝑃𝑃 + 1)  matrices. Due to hierarchy of one 

dimensional shape functions (𝑙𝑙𝑘𝑘), these matrices are also hierarchical. That is [𝐌𝐌𝐿𝐿
𝑃𝑃+1] and 

[𝐌𝐌𝑅𝑅
𝑃𝑃+1] are obtained by adding one new row and one new column to the matrices [𝐌𝐌𝐿𝐿

𝑃𝑃 ] and 

[𝐌𝐌𝑅𝑅
𝑃𝑃 ], respectively. Therefore as suggested in reference [84], for implementation, only the 

matrices corresponding to the maximum required polynomial order need to be stored. Some 

entries of these matrices depend on the choice of the constants 𝑐𝑐𝑘𝑘 in equation (III.12). 

Reference [84] has given these matrices for 𝑃𝑃 = 3 with the assumption of 𝑐𝑐0 = −2. Here, 

they are given for 𝑃𝑃 = 5 and for arbitrary values of 𝑐𝑐𝑘𝑘, 0 ≤ 𝑘𝑘 ≤ 3. 
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 [𝐌𝐌𝐿𝐿
5 ] =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡

1 0 0 0 0 0

1
2

1
2

𝑐𝑐0
4

0 − 𝑐𝑐2
4

0

0 0 1
4

− 3𝑐𝑐1
8𝑐𝑐0

3𝑐𝑐2
4𝑐𝑐0

− 𝑐𝑐3
2𝑐𝑐0

0 0 0 1
8

− 5𝑐𝑐2
4𝑐𝑐1

23𝑐𝑐3
16𝑐𝑐1

0 0 0 0 1
16

− 7𝑐𝑐3
32𝑐𝑐2

0 0 0 0 0 1
32 ⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 (III.27.a) 

 [𝐌𝐌𝑅𝑅
5 ] =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡

1
2

1
2

𝑐𝑐0
4

0 − 𝑐𝑐2
4

0

0 1 0 0 0 0

0 0 1
4

3𝑐𝑐1
8𝑐𝑐0

3𝑐𝑐2
4𝑐𝑐0

𝑐𝑐3
2𝑐𝑐0

0 0 0 1
8

5𝑐𝑐2
4𝑐𝑐1

23𝑐𝑐3
16𝑐𝑐1

0 0 0 0 1
16

7𝑐𝑐3
32𝑐𝑐2

0 0 0 0 0 1
32 ⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 (III.27.b) 

The first row of [𝐌𝐌𝐿𝐿
𝑃𝑃 ] and second row of [𝐌𝐌𝑅𝑅

𝑃𝑃 ] are simply unit vectors as they point 

to the unconstrained vertex coefficients 𝑢𝑢𝑣𝑣1 and 𝑢𝑢𝑣𝑣2 , respectively. Also, the second row of 

[𝐌𝐌𝐿𝐿
𝑃𝑃 ] and the first row [𝐌𝐌𝑅𝑅

𝑃𝑃 ] are equal as both point to the constrained coefficient 𝑢𝑢𝑣𝑣3 . 

Equation (III.26) reveals how constrained coefficients are related to constraining ones.  

 
III.3.2 Applying Constraints 

The constraint relations established in the previous sub-section should be imposed 

to the linear system shown in equation (II.32). To this end, an algorithm similar to that in 
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reference [88] has been utilized, although slight modifications has been added to reduce the 

size of the final linear system. 

Based on equation (III.26), constrained DOFs can be explicitly written in terms of 

unconstrained (or constraining) DOFs. If 𝑖𝑖 is the global node index of a constrained DOF, 

the corresponding constraint relation can be written as 

 𝑢𝑢𝑖𝑖 = �𝛼𝛼𝑗𝑗
𝑖𝑖𝑢𝑢𝑟𝑟𝑗𝑗

𝑖𝑖

𝑛𝑛𝑐𝑐
𝑖𝑖

𝑗𝑗=1
 (III.28) 

where 𝑛𝑛𝑐𝑐
𝑖𝑖  denotes the number of constraining nodes for node 𝑖𝑖, and 𝐫𝐫𝑖𝑖  and 𝛂𝛂𝑖𝑖  are two 

vectors with the length of 𝑛𝑛𝑐𝑐
𝑖𝑖  which include the global indices of constraining nodes, and 

corresponding factors, respectively. For implementation, the scalar 𝑛𝑛𝑐𝑐, and vectors 𝐫𝐫 and 𝛂𝛂 

are stored for each hanging node.  

A direct result of equation (III.28) is that the constrained DOFs are not required to 

be solved for in a coupled system like equation (II.32). In other words, the unconstrained 

DOFs are the actual unknowns of the problem. Now the question is: in presence of hanging 

nodes, how the linear system of equation (II.32) should be formed? Note that this equation 

was previously formed with the assumption that all basis functions of the solution space are 

𝐻𝐻1-conforming. However, the basis functions associated with constrained and constraining 

DOFs are not conforming where the hanging nodes are present. Figure III.9 illustrates this 

issue for the configuration previously shown in figure III.8. To solve this problem, a new set 

of conforming basis functions 𝑁𝑁̃
𝑖𝑖 can be constructed from existing basis functions 𝑁𝑁𝑖𝑖. Using 

this algorithm, one can generate as many conforming shape functions as there are 

unconstrained DOFs in the computational mesh. The main idea is to obtain a linear 
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combination of existing basis functions for which the trace of the shape functions from 

adjacent elements match along both sides of the edge with the hanging nodes (i.e. edge 𝑒𝑒1 

in the present example). Equation (III.25) provides the coefficients required for such a linear 

combination. In the present example, the elements are assumed to be linear (𝑃𝑃 = 1). Thus 

using the transition matrices [𝐌𝐌𝐿𝐿
1 ] and [𝐌𝐌𝑅𝑅

1 ], equation (III.25) results in 

 [𝑙𝑙0, 𝑙𝑙1]𝑇𝑇 = �1 1 2⁄
0 1 2⁄ � [𝑙𝑙0𝐿𝐿, 𝑙𝑙1𝐿𝐿]𝑇𝑇  (III.29.a) 

 [𝑙𝑙0, 𝑙𝑙1]𝑇𝑇 = �1 2⁄ 0
1 2⁄ 1� [𝑙𝑙0𝑅𝑅, 𝑙𝑙1𝑅𝑅]𝑇𝑇  (III.29.b) 

In other words, 

 𝑙𝑙0 = 𝑙𝑙0𝐿𝐿 + 1
2

𝑙𝑙1𝐿𝐿    for 𝜉𝜉 ∈ [−1,0] or 𝑥𝑥⃗ ∈ [𝑣𝑣1, 𝑣𝑣3] (III.30,a) 

 𝑙𝑙0 = 1
2

𝑙𝑙0𝑅𝑅          for 𝜉𝜉 ∈ [0,1] or 𝑥𝑥⃗ ∈ [𝑣𝑣3, 𝑣𝑣2] (III.30.b) 

 𝑙𝑙1 = 1
2

𝑙𝑙1𝐿𝐿          for 𝜉𝜉 ∈ [−1,0] or 𝑥𝑥⃗ ∈ [𝑣𝑣1, 𝑣𝑣3] (III.30.c) 

 𝑙𝑙1 = 1
2

𝑙𝑙0𝑅𝑅 + 𝑙𝑙1𝑅𝑅   for 𝜉𝜉 ∈ [0,1] or 𝑥𝑥⃗ ∈ [𝑣𝑣3, 𝑣𝑣2] (III.30.d) 

Note that in this example,  

- 𝑙𝑙0, 𝑙𝑙0𝐿𝐿 correspond to the basis function of vertex 𝑣𝑣1 which is denoted by 𝑁𝑁1, 

- 𝑙𝑙1, 𝑙𝑙1𝑅𝑅 correspond to the basis function of vertex 𝑣𝑣2 which is denoted by 𝑁𝑁2,  

- and 𝑙𝑙0𝑅𝑅, 𝑙𝑙1𝐿𝐿 correspond to the basis function of vertex 𝑣𝑣3 which is denoted by 𝑁𝑁3. 

Also, note that vertices 𝑣𝑣1, 𝑣𝑣2 are constraining nodes and vertex 𝑣𝑣3 is the constrained node. 

Equation (III.30) shows that for constraining nodes, the conforming basis functions can be 

constructed as follows: 
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 𝑁𝑁̃
1 = 𝑁𝑁1 + 1

2
𝑁𝑁3 (III.31.a) 

 𝑁𝑁̃
2 = 𝑁𝑁2 + 1

2
𝑁𝑁3 (III.31.b) 

These functions have been depicted in figure III.9. It is worth to mention that similar figures 

for the case of non-conforming p-adaptation for Lagrange elements can be found in reference 

[73]. 

 

   

(a) No basis function 
shown 

(b) 𝑁𝑁1 (c) 𝑁𝑁2 
 

   
(d) 𝑁𝑁3 (e) 𝑁𝑁̃

1 = 𝑁𝑁1 + 1
2 𝑁𝑁3 (f) 𝑁𝑁̃

2 = 𝑁𝑁2 + 1
2 𝑁𝑁3 

 
Figure III.9  Non-conforming and conforming basis functions. 

 

Following reference [88], hereafter the conforming basis functions are referred to as 

condensed basis functions. In general, for the constraining node 𝐼𝐼 , the condensed basis 

functions 𝑁𝑁̃
𝐼𝐼 can be formed as, 
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 𝑁𝑁̃
𝐼𝐼 = 𝑁𝑁𝐼𝐼 + �𝛽𝛽𝐽𝐽

𝐼𝐼 𝑁𝑁𝑠𝑠𝐽𝐽
𝐼𝐼

𝑛𝑛𝑑𝑑
𝐼𝐼

𝐽𝐽=1
 (III.32) 

where 𝑛𝑛𝑑𝑑
𝐼𝐼  is the number of hanging nodes which are constrained by the node 𝐼𝐼 , and 𝐬𝐬𝐼𝐼and 

𝛃𝛃𝐼𝐼  are two vectors with the length of 𝑛𝑛𝑑𝑑
𝐼𝐼  which include the global indices of constrained 

nodes, and corresponding factors, respectively. Careful inspection of equations (III.25) and 

(III.26) reveals that if 𝑖𝑖 = 𝑠𝑠𝐽𝐽
𝐼𝐼  and 𝐼𝐼 = 𝑟𝑟𝑗𝑗

𝑖𝑖 , then 

 𝛽𝛽𝐽𝐽
𝐼𝐼 = 𝛼𝛼𝑗𝑗

𝑖𝑖  (III.33) 

This result implies that using a proper algorithm, the vectors 𝐬𝐬 and 𝛃𝛃 are not required to 

be stored. In practice, only the vectors 𝐫𝐫 and 𝛂𝛂 are stored.  

Regarding the implementation, the advantage of this method is that the condensed 

basis functions do not need to be constructed in advance. Instead, for the linear system of 

equation (II.32), all the original basis functions, including those of constrained and 

unconstrained DOFs, may be used to calculate the residual vector 𝐑𝐑 and the Jacobian 

matrix [𝐉𝐉]. Then, the resulting system is modified to form a condensed system which only 

includes the entries corresponding to the unconstrained DOFs. 

 �𝐉𝐉𝑛̃𝑛(𝐪𝐪ℎ,𝑛𝑛)�Δ𝐪𝐪ℎ,𝑛𝑛 = −𝐑̃𝐑𝑛𝑛(𝐪𝐪ℎ,𝑛𝑛) (III.34) 

Such a system is supposed to be similar to that which results from direct utilization of the 

condensed basis functions. To explain this procedure, considering that the entries of 𝐑𝐑 are 

linear in weight functions, the corresponding entries of 𝐑̃𝐑 can be obtained by the same 

linear combination used to form condensed basis functions. That is, similar to equation 

(III.32),  
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 𝑅𝑅�𝐼𝐼 = 𝑅𝑅𝐼𝐼 + �𝛽𝛽𝐽𝐽
𝐼𝐼 𝑅𝑅𝑠𝑠𝐽𝐽

𝐼𝐼

𝑛𝑛𝑑𝑑
𝐼𝐼

𝐽𝐽=1
 (III.35) 

Once the condensed residuals for all constraining nodes have been evaluated, the residual 

of constrained nodes are set to zero. As mentioned earlier, the vectors 𝜷𝜷 and 𝐬𝐬 are not 

stored and instead the vectors 𝛂𝛂 and 𝐫𝐫 are utilized in the actual implementation. This 

process has been shown in algorithm II.1. 

 

Algorithm III.1 

1: 𝑖𝑖 → 1𝑠𝑠𝑠𝑠 constrained node  
2: while (𝑖𝑖 is not pointing to 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛) 
3:     for 𝑗𝑗 = 1, 𝑛𝑛𝑐𝑐

𝑖𝑖  
4:         𝐼𝐼 = 𝑟𝑟𝑗𝑗

𝑖𝑖 
5:         𝑅𝑅𝐼𝐼 = 𝑅𝑅𝐼𝐼 + 𝛼𝛼𝑗𝑗

𝑖𝑖𝑅𝑅𝑖𝑖 
6:     end for 
7:     𝑅𝑅𝑖𝑖 = 0 
8:     𝑖𝑖 → next constrained DOF 
9: end while 

 

Noting that [𝐉𝐉] = �∂𝐑𝐑𝐑𝐑𝐑𝐑
∂𝐪𝐪ℎ �, a similar procedure is carried out for the evaluation of the 

condensed Jacobian matrix �𝐉𝐉�̃ by adding the non-zero entries of constrained nodes to those 

of constraining nodes. However, it should be noted that the connectivity pattern in �𝐉𝐉�̃ 

needs to be updated to accommodate the new dependencies that are transferred from 

constrained nodes to constraining nodes. Then equation (III.28) is used to determine the 

matrix entries for constrained nodes. Since the constrained nodes are associated with 

independent DOFs, they can be eliminated from �𝐉𝐉�̃ using a further static condensation 
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step. By doing so, the spatial part of �𝐉𝐉�̃ would be conservative. That is, if the contribution 

from mass matrix is ignored, due to conservation laws, all the column sums should be zero. 

The conservative property of the constraint approximation technique developed in the 

current work has been verified with the condensed Jacobian matrix in several cases which 

include multiple levels of h- and hp-refinements. 

As should be apparent at this point, the use of constraint approximation greatly 

simplifies the incorporation of h- and hp-adaptive refinement into existing high-order finite-

element schemes. 

 

 

 
 
 
 
 

  



55 
 

 
 
 
 
 

CHAPTER IV  
 

ADAPTATION METHODOLOGY 
 
 

In this study, output-based and feature-based adaptations have been used for steady-

state and unsteady problems, respectively. In this chapter the details of these methods are 

described. 

 
IV.1 Output-Based Adaptation 

Output-based (or adjoint-based) adaptation methods are particularly useful when a 

specific functional output (e.g. lift or drag) is the main objective of the simulation. These 

methods target the desired functional output and iteratively adapt the mesh such that the 

final adapted mesh ensures a prescribed precision for the computed value of the functional 

output. For this purpose, the sensitivity of the functional output with respect to residual of 

the flow (primal) equations is calculated in the form of an adjoint (dual) variable. Then the 

local error is estimated by the inner product of the residual of the flow and the adjoint 

variable. Having the distribution of the local errors, regions with high errors are chosen for 

refinement. Using this method, only those regions in the mesh that directly affect the 

computed value of the functional output are refined. A major benefit of such an approach 

is that areas that are not intuitively recognizable by the user are captured by the error 
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estimation mechanism. This is particularly useful for hyperbolic equations for which, the 

propagation of information cannot be trivially anticipated. The other benefit is that the 

estimated error may also be used to estimate a correction to the functional value on the 

current mesh. It should be noted, however, that the final adapted mesh will only be suitable 

for the chosen functional. That is, an optimal mesh for the lift is not guaranteed to provide 

the prescribed precision for the drag estimation.  

  
IV.1.1 Discrete Adjoint-Based Error Estimation 

The presented formulation is an abbreviated derivation based on the approach 

developed by Venditti and Darmofal [61, 63, 64] which was initially utilized in finite volume 

schemes [65, 67]. In recent years, this approach has been extensively utilized within DG 

finite-element schemes (e.g. see references [16, 20, 21, 23, 46, 50]). Here, we utilize this 

approach in a Petrov-Galerkin discretization for compressible turbulent flows. 

Consider a coarse mesh 𝒯𝒯𝐻𝐻 with low polynomial order 𝑃𝑃 , as an affordable finite-

element mesh to start the calculations. The objective is to estimate a functional 𝒥𝒥(𝐪𝐪), where 

𝐪𝐪 is the steady-state solution to the PDE under consideration (see equation (II.8.a)). Let 

𝐪𝐪𝐻𝐻 to be the discrete solution on 𝒯𝒯𝐻𝐻 , and 𝒥𝒥𝐻𝐻(𝐪𝐪𝐻𝐻) to be the corresponding approximation 

of the functional. Also, consider 𝒯𝒯ℎ as a globally h-refined/p-enriched finite-element mesh 

which is assumed to be uniformly embedded within 𝒯𝒯𝐻𝐻 , except at the boundaries where it 

needs to conform to the actual geometry. It is desired to estimate 𝒥𝒥ℎ(𝐪𝐪ℎ) without solving 

the discrete problem on 𝒯𝒯ℎ. To this end, 𝒥𝒥ℎ(𝐪𝐪ℎ) can be expanded about the coarse mesh 

solution in a Taylor series as 
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 𝒥𝒥ℎ(𝐪𝐪ℎ) = 𝒥𝒥ℎ(𝐪𝐪𝐻𝐻
ℎ ) + ∂𝒥𝒥ℎ

∂𝐪𝐪ℎ�
𝐪𝐪𝐻𝐻

ℎ

(𝐪𝐪ℎ − 𝐪𝐪𝐻𝐻
ℎ ) + HOT (IV.1) 

where 𝐪𝐪𝐻𝐻
ℎ  is a projected solution from the coarse mesh to the fine mesh via a projection 

operator as 

 𝐪𝐪𝐻𝐻
ℎ ≡ 𝐼𝐼𝐻𝐻

ℎ 𝐪𝐪𝐻𝐻 (IV.2) 

Also, ∂𝒥𝒥ℎ

∂𝐪𝐪ℎ�
𝐪𝐪𝐻𝐻

ℎ
 refers to the sensitivity of the functional with respect to the fine level flow 

variables evaluated at 𝐪𝐪𝐻𝐻
ℎ . By ignoring Higher Order Terms (HOT), all terms on the left 

hand side of the equation (IV.1) are explicitly computable, with the exception of the 𝐪𝐪ℎ. 

Since 𝐪𝐪ℎ is assumed to be a steady-state solution, by ignoring time terms in equation (II.30) 

we have 

 𝐑𝐑ℎ(𝐪𝐪ℎ) = 0 (IV.3) 

and thus by an expansion about the coarse mesh solution as, 

  𝐑𝐑ℎ(𝐪𝐪ℎ) = 𝐑𝐑ℎ(𝐪𝐪𝐻𝐻
ℎ ) + �∂𝐑𝐑ℎ

∂𝐪𝐪ℎ �
𝐪𝐪𝐻𝐻

ℎ
(𝐪𝐪ℎ − 𝐪𝐪𝐻𝐻

ℎ ) + HOT = 0 (IV.4) 

the 𝐪𝐪ℎ − 𝐪𝐪𝐻𝐻
ℎ  can be estimated as 

 𝐪𝐪ℎ − 𝐪𝐪𝐻𝐻
ℎ ≈ − �∂𝐑𝐑ℎ

∂𝐪𝐪ℎ �
𝐪𝐪𝐻𝐻

ℎ
𝐑𝐑ℎ(𝐪𝐪𝐻𝐻

ℎ ) (IV.5) 

By substitution of equation (IV.5) into equation (IV.1), an approximation for functional 

output on the fine mesh may be expressed as 

 𝒥𝒥ℎ(𝐪𝐪ℎ) ≈  𝒥𝒥ℎ(𝐪𝐪𝐻𝐻
ℎ ) − ∂𝒥𝒥ℎ

∂𝐪𝐪ℎ�
𝐪𝐪𝐻𝐻

ℎ

�∂𝐑𝐑ℎ

∂𝐪𝐪ℎ �
𝐪𝐪𝐻𝐻

ℎ
𝐑𝐑ℎ(𝐪𝐪𝐻𝐻

ℎ ) (IV.6) 

At this point, the discrete adjoint variable 𝝀𝝀ℎ on the fine mesh can be defined as,  
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 �∂𝐑𝐑ℎ

∂𝐪𝐪ℎ �
𝑇𝑇

𝝀𝝀ℎ = �∂𝒥𝒥ℎ

∂𝐪𝐪ℎ�
𝑇𝑇

 (IV.7) 

which expresses the adjoint variable as the sensitivity of the functional 𝒥𝒥 with respect to 

the local spatial residual 𝐑𝐑. Using this definition, equation (IV.6) is simplified to 

 𝒥𝒥ℎ(𝐪𝐪ℎ) ≈ 𝒥𝒥ℎ(𝐪𝐪𝐻𝐻
ℎ ) − �𝝀𝝀ℎ|𝐪𝐪𝐻𝐻

ℎ �𝑇𝑇 𝐑𝐑ℎ(𝐪𝐪𝐻𝐻
ℎ ) (IV.8) 

Since 𝝀𝝀ℎ|𝐪𝐪𝐻𝐻
ℎ  is defined on the fine mesh, its direct evaluation through equation (IV.7) can 

be as expensive as the primal solution. Alternatively, the adjoint variable can be calculated 

on the coarse mesh using 

 �∂𝐑𝐑𝐻𝐻

∂𝐪𝐪𝐻𝐻 �
𝐪𝐪𝐻𝐻

𝑇𝑇

�𝝀𝝀𝐻𝐻|𝐪𝐪𝐻𝐻� = �∂𝒥𝒥𝐻𝐻

∂𝐪𝐪𝐻𝐻�
𝐪𝐪𝐻𝐻

𝑇𝑇

 (IV.9) 

and then, like equation (IV.2), a projection operator may be employed to project the adjoint 

solution on the fine mesh as 

 𝝀𝝀𝐻𝐻
ℎ ≡ 𝐽𝐽𝐻𝐻

ℎ �𝝀𝝀𝐻𝐻|𝐪𝐪𝐻𝐻� (IV.10) 

Using 𝝀𝝀𝐻𝐻
ℎ , a computable estimate of the output function on the fine mesh is obtained as 

 𝒥𝒥ℎ(𝐪𝐪ℎ) ≈ 𝒥𝒥ℎ(𝐪𝐪𝐻𝐻
ℎ ) −(𝝀𝝀𝐻𝐻

ℎ )𝑇𝑇 𝐑𝐑ℎ(𝐪𝐪𝐻𝐻
ℎ )�������

Computable Correction

 (IV.11) 

where the computable correction is expressed as the inner product of the adjoint solution 

and the primal residual error.  

 
IV.1.2 Adaptation Criteria and Element Picking Strategy 

The computable correction gives a spatial distribution of nodal error and thus may 

be used to navigate the adaptation process. As a possible choice, an elemental error indicator 

may be defined as  
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 𝜀𝜀𝑒𝑒 = �𝑐𝑐𝑙𝑙(𝑒𝑒)�[(𝝀𝝀𝐻𝐻
ℎ )𝑇𝑇 𝐑𝐑ℎ(𝐪𝐪𝐻𝐻

ℎ )]𝑙𝑙(𝑒𝑒)�
𝑙𝑙(𝑒𝑒)

 (IV.12) 

In above expression, the index 𝑒𝑒 refers to an element in the coarse mesh, and the index 𝑙𝑙(𝑒𝑒) 

refers to the local fine-mesh modes embedded in the coarse-mesh element. The coefficient 𝑐𝑐 

is used to determine the share of nodal errors that contribute to the elemental error. For 

the sake of simplicity, in this study, nodal errors are equally distributed among coarse-mesh 

elements which surround the node. Note that due to the use of absolute value function in 

equation (IV.12), the total error is a conservative measure of the computable error. 

Having the elemental errors from equation (IV.12), a refinement list is formed that 

sorts the elements in the descending order of their contribution to the total error. Then 

elements are picked from the top of the list until the sum of the picked error exceeds a 

prescribed fraction 𝜃𝜃𝑒𝑒 of the total error. This approach has been used, for example, in 

reference [68], although here to avoid excessive refinements at final adaptation cycles, the 

number of picked elements at each adaptation cycle is limited by another prescribed fraction 

𝜃𝜃𝑛𝑛. For all numerical test cases in the present work,  𝜃𝜃𝑒𝑒 = 75% and 𝜃𝜃𝑛𝑛 = 20%. 

 
IV.1.3 Projection Operators 

Here the fine the mesh 𝒯𝒯ℎ is formed by uniform p-enrichment of the coarse mesh 

𝒯𝒯𝐻𝐻 . Thus, due to the hierarchy of the shape functions, 𝐼𝐼𝐻𝐻
ℎ  and 𝐽𝐽𝐻𝐻

ℎ  can be naturally obtained 

by initializing the new modes to zero. Although this approach is simple and computationally 

inexpensive, the values of adjoint variable at the higher dimension space are totally ignored 

and the error is obtained by the inner product of the coarse level adjoint and the fine level 

flow residual. A better approach is to utilize a projection method that results in a smoothed 
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adjoint solution on the fine mesh. A common technique is to reconstruct the solution on the 

fine mesh using a patch-wise least square method similar to that in references [20, 46].  

However, the implementation of this method on non-conforming meshes is not trivial and 

thus we have reserved this practice for the future work. Nevertheless, as it will be shown in 

the numerical results, output-based adaptation in this study has demonstrated at least a 

satisfactory performance. 

 
IV.1.4 Functional Modification for Weakly Imposed Boundary Conditions 

When weak boundary conditions are used, if the functional of interest depends on 

the viscous forces, equation (II.28) is used to calculate the viscous forces on the boundary 

edges. It will be shown in results section that this approach is required to obtain a smooth 

adjoint solution in vicinity of Dirichlet-type boundaries. 

 
IV.1.5 Deciding Between p-enrichment or h-refinement 

For hp-adaptation, the elements identified for refinement need to be divided into 

two groups: First, p-enrichment group which includes elements with smooth solution, and 

second, h-refinement group which includes the elements with large gradients. For this 

grouping, the discontinuity sensor given in equation (II.42) has been employed. Such 

approach has been previously used by Wang and Mavriplis [20]. Note that this discontinuity 

sensor was initially introduced in section II.5 for the shock capturing. The grouping is done 

using following criterion, 

 �
𝐹𝐹𝑒𝑒 ≥ 𝑆𝑆0 − 𝜅𝜅,      h − refinement
𝐹𝐹𝑒𝑒 < 𝑆𝑆0 − 𝜅𝜅,      p − enrichment (IV.13) 
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where 𝑠𝑠0 = 1/𝑃𝑃4, and 𝜅𝜅 is a tuning parameter which is set to 6 in the present work. In 

addition, all the state variable are used to calculate the discontinuity sensor, and finally, 

the maximum values are chosen.  

 
IV.1.6 Enhanced h-refinement (EHR) 

After grouping elements, one should decide about how many levels of p-enrichment 

or h-refinement should be done on each element. A common approach in hp-adaptation is 

to use one level for both p-enrichment and h-refinement at each adaptation cycle. In the 

present work, we use one level for p-enrichment. However, for h-refinement, depending on 

the value of the discontinuity sensor 𝐹𝐹𝑒𝑒, we may use either one or two levels. In particular, 

 �
𝐹𝐹𝑒𝑒 ≥ 𝜃𝜃𝑠𝑠 max

𝑒𝑒
𝐹𝐹𝑒𝑒 1 level of h − refinement

𝐹𝐹𝑒𝑒 < 𝜃𝜃𝑠𝑠 max
𝑒𝑒

𝐹𝐹𝑒𝑒 2 levels of h − refinement (IV.14) 

where 𝜃𝜃𝑠𝑠 = 1.1 is a tuning parameter. Note that 𝐹𝐹𝑒𝑒 is a negative number and its lower 

values indicate smoother solutions. In most cases studied here, 𝐹𝐹𝑒𝑒  was observed to be 

between -2 and -16.  

We refer to 2 levels of h-refinement as enhanced h-refinement (EHR). As it will be 

shown in the numerical results, EHR is particularly effective when a singularity is present 

in the solution. In such a situation, the error is rapidly reduced by concentrating nodes near 

the singularity.   

The idea behind EHR can be explained using the Reentrant corner problem. Consider 

to solve the Laplace equations using  the Method of Manufactured Solutions (MMS) on 

three meshes that are shown in figure IV.1. These meshes have similar grid densities at 
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outer boundaries and different grid densities near the corner. Assuming that all the elements 

in this figure are linear, by uniform h-refinement of each mesh, the error is expected to 

reduce by an order of 2. However, due to the presence of singularity, the error is reduced 

by an order of 0.5, as shown in figure IV.2. Note that although meshes with more clustering 

of the nodes near the corner have lower values of the error, the slope of the error reduction 

is the same for all three meshes. This observation suggest that to reach the nominal order 

of accuracy, more than one level of refinement is required in vicinity of the singularity point, 

as shown by the dashed line in figure IV.2. The proposed approach in equation (IV.14) tries 

to detect regions with non-smooth solutions and enhance the h-refinement on those regions. 

 

   

(a) Mesh 1 (b) Mesh 2 (c) Mesh 3 

Figure IV.1  Three meshes for Reentrant corner problem 

 

 
Figure IV.2  Error convergence for Reentrant corner problem 
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IV.2 Feature Based Adaptation 

In the present work, a feature-based adaptation has been developed for unsteady 

problems. The main purpose is to investigate the possibility of dynamic adaptation in 

tracing evolving flow features. Such a problem requires a derefinement mechanism. 

Otherwise, the computation will be hindered by an over-refined mesh. As mentioned earlier, 

a non-conforming mesh adaptation method has been used in this study. Such a method can 

be efficiently implemented using a parent-children data structure. Specifically, a tagged 

element for h-refinement is stored as the parent and the newly generated elements are stored 

as the children. Each child can also be a parent to obtain a multi-level refinement. Using 

this method, derefinement can be simply done by deleting the elements at the upper level. 

Parent-children structure is not required for p-modifications, and thus polynomial degree of 

each element is changed locally.  

Toward developing an adaptation criterion, the following error indicator 𝜀𝜀𝑒𝑒 is defined 

based on the magnitude of the velocity gradient: 

 𝜀𝜀𝑒𝑒 = � �� � �∂𝑢𝑢𝑖𝑖
∂𝑥𝑥𝑗𝑗

�
2

𝑛𝑛𝑠𝑠𝑠𝑠

𝑗𝑗=1

𝑛𝑛𝑠𝑠𝑠𝑠

𝑖𝑖=1
�

1
2
𝑑𝑑Ω

Ω𝑒𝑒

   (IV.15) 

Then, the mesh is adapted until the following statement holds for all of the elements: 

 𝜀𝜀𝑒𝑒|Ω𝑒𝑒|(𝑃𝑃 𝑒𝑒)2 ≤ 𝑡𝑡 𝜀𝜀𝑡𝑡𝑡𝑡𝑡𝑡
𝑛𝑛𝑒𝑒𝑒𝑒

 (IV.16) 

where 𝜀𝜀𝑡𝑡𝑡𝑡𝑡𝑡 is the total integral of adaptation parameter over the computational mesh and 𝑡𝑡 

is a tuning parameter. In particular, the following criterion is used to pick the elements for 

refinement/derefinement: 
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 �|Ω𝑒𝑒| > Ω𝐷𝐷
𝑒𝑒  refinement

|Ω𝑒𝑒| < 4Ω𝐷𝐷
𝑒𝑒 derefinement (IV.17) 

where 

 Ω𝐷𝐷
𝑒𝑒 = 𝑡𝑡 𝜀𝜀𝑡𝑡𝑡𝑡𝑡𝑡

𝑛𝑛𝑒𝑒𝑒𝑒𝜀𝜀𝑒𝑒(𝑃𝑃 𝑒𝑒)2 (IV.18) 
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CHAPTER V  
 

NUMERICAL RESULTS 
 
 

In this chapter, several numerical examples are given to demonstrate the performance 

of the present adaptive high-order finite-element flow solver. These examples include 

application of adjoint-based adaptation in steady-state problems and feature-based 

adaptation in an unsteady problem. In steady-state problems, only refinement mechanisms 

are employed while in the unsteady problem, derefinement is also used and a dynamic 

adaptation is presented. 

 
V.1 Output-Based Adaptation in Steady-State Flows 

The developed adjoint-based adaptive algorithm is applied to six numerical examples 

including four subsonic flows, and two transonic flows. For four examples, the NACA0012 

airfoil is used and the exact geometry of the airfoil is calculated based on a modified formula 

from Turbulence Modeling Resource (TMR) website [100], which is supported by NASA 

Langley Research Center for verifying and validating turbulence models. This formula 

results in a sharp trailing edge: 

 
𝑦𝑦 = ± 0.594689181�0.298222773 

√
𝑥𝑥 − 0.127125232 𝑥𝑥

−  0.357907906 𝑥𝑥2  +  0.291984971 𝑥𝑥3 − 0.105174606 𝑥𝑥4� 
(V.1) 
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For all examples, the geometry is represented using Q3 elements. For all hp-

adaptations, the computation starts with P1 elements and the maximum polynomial order 

is set to 3. Then, if an element requires more p-enrichment, it will be h-refined, regardless 

of the smoothness of the solution in the element. 

V.1.1 Clarification of Figures 

In order to clarify the figures presented in this section, it is useful to mention the 

following notes: 

1- In some figures, the functional output is plotted against the number of degrees 

of freedom, 𝑛𝑛𝐷𝐷𝐷𝐷𝐷𝐷 . In these figures, 𝑛𝑛𝐷𝐷𝐷𝐷𝐷𝐷  represents the number of unconstrained 

nodes in the calculation; it does not represent the total number of unknowns in 

the computational domain, which also includes the number of variables solved 

for at each node.  

2- In some figures, the error in the functional is plotted against a mesh spacing 

metric, ℎ,  determined strictly based on number of nodes.  

3- In order to study the convergence behaviors, in most cases, the adaptation process 

has been continued to reach a precision more than that normally required for 

engineering applications. Thus, the final adapted mesh may be too fine to be 

properly depicted. In such cases, instead of the final adapted mesh, an 

intermediate adapted mesh may be shown. To ensure the sufficient resolution, 

the percentage of relative change in the functional output obtained by the shown 

mesh, Δ𝒥𝒥, is reported in the figure’s caption. For example, Δ𝒥𝒥 = 0.1% means 
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that the relative difference in the computed functional on the shown mesh and 

its previous one is 0.1 percent.  

4- In some figures, the corrected functional output is plotted. This corrected value 

is calculated based on equation (IV.11). 

 
V.1.2 Subsonic Inviscid Flow over NACA0012 

The first example shows an application of adjoint-based adaptation for subsonic 

inviscid flow over a NACA0012 airfoil at free stream Mach number of 0.5 and the angle-of-

attack of 2 degrees. The functional of interest is the drag coefficient, CD, which is calculated 

based on the static pressure forces. This problem has been presented to demonstrate the 

convergence behavior of the proposed adaptive approach in an inviscid flow (see also 

reference [50]). Moreover, due to presence of the singularity at the trailing edge, the 

usefulness of the EHR is illustrated. The studied cases include h-refinement on uniform P1, 

P2, and P3 elements, and hp-adaptation using P1 to P3 elements. In all cases, results with 

and without EHR are compared.  

Figure V.1 shows the initial computational mesh which contains 2962 triangular 

elements. With uniform P1 discretization, this mesh includes 1551 DOFs. The outer 

boundary has been placed at a distance of 100 chord lengths away from the airfoil. Figure 

V.2 compares regular h-refinement and EHR in vicinity of the trailing edge for the 4th h-

adapted mesh on P3 elements. In this figure, bold lines show the elements on the initial 

mesh. As seen, EHR forces significantly more refinements at the trailing edge. The actual 

usefulness of EHR is revealed by examining the error convergence histories. In order to 
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compute the error, a reference value, CD,Ref , has been taken from an hp-adapted solution 

in which the absolute difference in the functional value between last two adapted mesh has 

been less than 10−9. Figure V.3 shows the Mach number contours on the mentioned hp-

adapted mesh. Also, figure V.4 shows the contours of the 𝑥𝑥- and 𝑦𝑦-velocity adjoint variables 

on that mesh. As seen, a smooth adjoint solution has been obtained. 

 

 
Figure V.1  Initial meshes for the subsonic inviscid flow over NACA0012 

 

  
 

(a) Trailing Edge of 4th h-adapted mesh       
with P3 elements (Δ𝒥𝒥 = 2.5%) 

 

 

(b) Trailing Edge of 4th EHR mesh               
with P3 elements and EHR (Δ𝒥𝒥 = 0.3%) 

 

Figure V.2  Comparison of regular h-refinement and EHR in vicinity of the trailing edge 
for the subsonic inviscid flow over NACA0012 at 𝑀𝑀∞ = 0.5 and 𝛼𝛼 = 2°, Bold lines: 

elements of the initial mesh 
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Figures V.5 and V.6 show the convergence history of the drag coefficient error for 

all of the mentioned adaptive refinements. In each sub-figure, the results with and without 

EHR have been compared and in order to show the convergence order, auxiliary guidelines 

have been plotted. In all cases, except for the h-adaptation on P1 elements, EHR results in 

a notably steeper error reduction slope. For example, in the h-adaptation case on P2 

elements, by employing EHR, a convergence order of 6 has been achieved whereas without 

EHR the convergence order is limited to 3. This corresponds to the same order as that 

achieved by h-adaptation on P1 elements. This clearly shows the effect of the singularity in 

limiting the performance of the higher order elements.  

The reason of the failure of EHR for P1 elements is that the discontinuity sensor has 

not been successful in detecting the trailing edge. As discussed in section II.5, the 

discontinuity sensor is defined based on the rate of decay of the expansion coefficients in 

the hierarchical basis used to expand the discrete solution. However, for a linear expansion, 

there are not enough modes to calculate the rate of the decay. Thus, for P1 elements, the 

average of state variable was used instead of 𝑞𝑞 ̂in equation (II.42). This study showed that 

this approach is not reliable. 

Figure V.7 summarizes the error convergence histories. As expected, by increasing 

the polynomial order, the order of convergence increases. Also, it is seen that hp-adaptation 

shows the superior performance in terms of the number of DOFs. Notably, the hp-

adaptation has achieved the same order of convergence as P3 elements. This is because in 

the final adaptation cycles, most of the computational mesh has been covered by P3 

elements.  
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Figure V.3  Mach number contours for the subsonic inviscid flow over NACA0012 at 
𝑀𝑀∞ = 0.5 and 𝛼𝛼 = 2° 

 
 
 

  
 

                       (a) 𝑥𝑥-velocity adjoint 
 

      

    (b) 𝑦𝑦-velocity adjoint 
 

Figure V.4  Drag-based adjoint solution for the subsonic inviscid flow over NACA0012 at 
𝑀𝑀∞ = 0.5 and 𝛼𝛼 = 2°  
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              (a) h-adaptation on P1 elements 
 

 

               (b) h-adaptation on P2 elements 
 

Figure V.5  Convergence of drag coefficient in drag-based h-adaptation on P1 and P2 
elements for the subsonic inviscid flow over NACA0012 at 𝑀𝑀∞ = 0.5 and 𝛼𝛼 = 2° 

 
 
 

  
 

     (a) h-adaptation on P3 elements 
 

 

     (b) hp-adaptation using P1 to P3 elements 
 

Figure V.6  Convergence of drag coefficient in drag-based h-adaptation on P3 elements 
and hp-adaptation using P1 to P3 elements for the subsonic inviscid flow over NACA0012 

at 𝑀𝑀∞ = 0.5 and 𝛼𝛼 = 2°  
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(a) h- and hp-adaptation 
 

 

(b) h- amd hp adaptation with EHR 
 

Figure V.7  Comparison of convergence of drag coefficient in drag-based h- and hp-
adaptations for the subsonic inviscid flow over NACA0012 at 𝑀𝑀∞ = 0.5 and 𝛼𝛼 = 2° 

 
 

V.1.3 Subsonic Laminar Flow over NACA0012 

The second numerical example shows an application of adjoint-based adaptation for 

subsonic laminar flow over a NACA0012 airfoil at free stream Mach number of 0.5, angle-

of-attack of 1 degree, and Reynolds number, based on the airfoil chord, of 5,000. This 

problem has been widely used for the similar purpose (see e.g. reference [50, 68]). Due to 

the no-slip condition on the airfoil surface, it provides a test case to examine the behavior 

of the adjoint solution in presence of Dirichlet boundary condition. This example 

demonstrates the importance of the weak boundary conditions and the modified functional. 

Here, the functional of interest is the total drag coefficient which includes both pressure and 

viscous stresses. 

The initial computational mesh, shown in figure V.8, contains 4524 triangular 

elements. With uniform P1 discretization, this mesh includes 2340 DOFs. The outer 
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boundary has been placed at a distance of 100 chord lengths away from the airfoil, and the 

normal spacing to the wall is 0.0002.  

Studied cases include h- and hp-adaptations which both start from initial mesh with 

P1 elements. Figure V.9 illustrates the 5th h-adapted mesh and the 4th hp-adapted mesh. As 

seen, both adaptation mechanisms resolve similar regions of the flow field to increase the 

predictive accuracy of the drag coefficient. In the smooth regions of the flow field, P2 and 

P3 elements have been almost exclusively employed. This is most evident along the 

stagnation streamline. In contrast, the wake region has been mostly refined by h-adaptation.  

 

 
Figure V.8  Initial mesh for the subsonic laminar flow over NACA0012 

 

Mach number contours are depicted in figure V.10, where the wake can clearly be 

seen. Since drag is strongly dependent on the wake, comparison of the Mach number 

contours with the adaptive meshes in figure V.9 demonstrates that the adjoint-based 

adaptive method highly resolves this region of the flow field.  
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(a) 5th h-adapted mesh (Δ𝒥𝒥 = 0.3%) 
 

 

(b) 4th hp-adapted mesh (Δ𝒥𝒥 = 0.2%) 
 

Figure V.9  Adapted meshes for the subsonic laminar flow over NACA0012 at         
𝑀𝑀∞ = 0.5, 𝛼𝛼 = 1°, and 𝑅𝑅𝑅𝑅 = 5,000 

 
 
 

 
 

Figure V.10  Mach number contours for the subsonic laminar flow over NACA0012 at         
𝑀𝑀∞ = 0.5, 𝛼𝛼 = 1°, and 𝑅𝑅𝑅𝑅 = 5,000  



75 
 

  Figure V.11 depicts the contours of the 𝑥𝑥-velocity adjoint variable obtained on the 

initial mesh with P2 elements. Close inspection of figure V.11.a illustrates the non-smooth 

behavior of the adjoint in the absence of weak boundary conditions and a modified 

functional. This behavior is present if either strong boundary conditions which are not dual 

consistent, or the original functional is used in the calculation of the adjoint. Furthermore, 

it should be noted that this non-smooth behavior can be readily seen for this low-Reynolds 

number flow. For high-Reynolds number flows, with very thin boundary layers, this 

behavior may not be visible on inspection, however, it would still be present. Figure V.11.b 

demonstrates that with the proper implementation of weak boundary conditions and 

modified functional, the adjoint variable is smooth along the airfoil surface. 

The convergence history of the h- and hp-adaptation based on the total drag 

coefficient are shown in figure V.12. As seen in figure V.12.a, the drag coefficient converges 

faster for the hp-adaptive technique. Here again, the reference value, CD,Ref , has been taken 

from an hp-adapted solution in which the absolute difference in the functional value between 

last two adapted mesh has been less than 10−9. Moreover, figure V.12.b illustrates the rate 

of convergence to the reference drag for both adaptation strategies. Based on the guideline 

slopes, the hp-adaption has a convergence rate of nearly four orders greater than h-

adaptation. Thus, in terms of number of DOFs, the hp-adaptive technique results in a more 

efficient means of obtaining greater accuracy.  
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(a) Non-smooth adjoint due to lack of weak 
implementation of boundary condition or 

modified functional output 
 

 

(b) Smooth adjoint obtained by simultaneous   
use of weak boundary conditions and       

modified functional output 
 

Figure V.11  Comparison of adjoint solutions for the subsonic laminar flow over 
NACA0012 at 𝑀𝑀∞ = 0.5, 𝛼𝛼 = 1°, and 𝑅𝑅𝑅𝑅 = 5,000 

 
 
 

  
 

(a) Drag coefficient 
 

(b) Error in drag coefficient 
 

Figure V.12  Convergence of drag coefficient in drag-based h- and hp-adaptation for the 
subsonic laminar flow over NACA0012 at 𝑀𝑀∞ = 0.5, 𝛼𝛼 = 1°, and 𝑅𝑅𝑅𝑅 = 5,000 
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V.1.4 Subsonic Turbulent Flow over NACA0012 

The third example shows an application of adjoint-based adaptation for subsonic 

turbulent flow over the NACA0012 airfoil at free stream Mach number of 0.15, angle-of-

attack of 10 degrees, and Reynolds number, based on the airfoil chord, of six million. These 

conditions have been specified by the AIAA Technical Discussion Group on Solver 

Technologies for Turbulent Flows. Results from the present study are compared with those 

from the Turbulence Modeling Resource (TMR) website [100]. In a previous study [4], we 

compared the forces, moments, pressure distributions, skin friction, and profiles of velocity 

and turbulence working variable of the Spalart-Allmaras turbulence model between the 

developed SUPG scheme and the finite-volume solutions obtained using FUN3D [108-110] 

and CFL3D flow solvers. It was demonstrated that for most of the comparisons, the 

proposed SUPG scheme obtains similar results as finite-volume schemes but using less 

DOFs, and also SUPG solutions demonstrate significantly less dissipation of the wake 

profiles downstream of the airfoil. In the present work, lift and drag coefficients are obtained 

using h- and hp-adaptive solutions. In each case, FUN3D results on meshes containing 3704, 

14576, 57824, 230336, 919424, 3673856, and 14689281 DOFs, are used for comparison. It 

should be noted that the FUN3D results have been obtained using second-order accurate 

discretization of the convective terms in the turbulence model. Moreover, in order to 

calculate the error, the solution on the finest mesh is used as the reference solution. Note 

that the error of the reference solution is assumed to be zero and thus it is not shown in the 

error plots with logarithmic scale. Similar to previous examples, the computed errors are all 
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presented against a mesh spacing parameter that is determined strictly based on the number 

of DOFs.  

Figure V.13 shows the coarsest mesh in the above mention series which is used as 

the initial mesh for h- and hp-adaptation. Shown in the figures V.14 and V.15 are the 6th 

h- and hp-adapted meshes for drag prediction, respectively. Mach number contours for the 

final hp-adapted mesh have been shown in figure V.16. Also shown in figure V.17 are the 

𝑥𝑥-velocity adjoint variable for the lift and drag, respectively. As seen in this figure, both lift 

and drag show strong sensitivity to the solution on the stagnation streamline, although this 

sensitivity is higher for the lift. The trace of this sensitivity can be clearly seen in figures 

V.14 and V.15.  

Figures V.18 and V.19 depict the convergence of the lift and drag for h- and hp-

adaptation cases. It is observed that while all the solutions converge to the reference values, 

adapted solutions show faster convergence. Specifically, the drag is obtained to within half 

of a drag count of the reference value using less than 20 thousand DOFs for hp-adaptation 

and less than 50 thousand DOFs for h-adaptation. Examining the pressure and skin-friction 

components in figures V.20 and V.21, it is seen that h- and hp-adaptive solutions also obtain 

values within half of a drag count with similar grid densities as the total drag. Also, shown 

in figures V.18 to V.21 are the corrected values of the lift and drag, which in all cases show 

faster convergence to the reference value.  

Finally for this example, the details of the flow variables are examined using the 

profiles of velocity components as well as the turbulence working variable. The profiles’ 

data are extracted at ten chord lengths downstream of the leading edge (𝑥𝑥
𝑐𝑐 = 10, 1 ≤ 𝑦𝑦

𝑐𝑐 ≤ 2). 
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In figure V.22, the results of 8th drag-based hp-adapted mesh with 47 thousand DOFs are 

compared with FUN3D results on meshes with 230 thousand and 14.6 million DOFs. Also, 

figure V.23 shows the grid density in vicinity of the profiles’ location for the compared 

solutions. Note that the FUN3D solution with 14.6 million DOFs is considered as the 

reference solution. It is observed that the FUN3D solution on the mesh with 230 thousand 

DOFs has been severely dissipated while the hp-adapted solution with only 47 thousand 

DOFs shows a fairly good agreement with the reference solution. However, it is quite 

apparent that there are significant oscillations and negative values of the turbulence working 

variable at the edge of the wake, which is not unusual on coarse meshes, and is one 

motivation for the development of the negative SA model [89].  

 

  
 

(a) Far-field view 
 

 

(b) Near-field view 
 

Figure V.13  Initial meshes for the subsonic turbulent flow over NACA001 at          
𝑀𝑀∞ = 0.15, 𝛼𝛼 = 10°, and 𝑅𝑅𝑅𝑅 = 6,000,000 
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(a) Far-field view 
 

 

(b) Near-field view 
 

Figure V.14  6th drag-based h-adapted mesh (Δ𝒥𝒥 = 0.5%) for the subsonic turbulent flow 
over NACA0012 at 𝑀𝑀∞ = 0.15, 𝛼𝛼 = 10°, and 𝑅𝑅𝑅𝑅 = 6,000,000 

 
 
 

  
 

(a) Far-field view 
 

 

(b) Near-field view 
 

Figure V.15  6th drag-based hp-adapted mesh (Δ𝒥𝒥 = 0.2%) for the subsonic turbulent flow 
over NACA0012 at 𝑀𝑀∞ = 0.15, 𝛼𝛼 = 10°, and 𝑅𝑅𝑅𝑅 = 6,000,000  
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Figure V.16  Mach number contours for the subsonic turbulent flow over NACA0012 at 
𝑀𝑀∞ = 0.15, 𝛼𝛼 = 10°, and 𝑅𝑅𝑅𝑅 = 6,000,000 

 
 
 

  
 

    (a) Lift-based 𝑥𝑥-velocity adjoint 
 

 

     (b) Drag-based 𝑥𝑥-velocity adjoint 
 

Figure V.17  Adjoint solutions for the subsonic inviscid flow over NACA0012 at        
𝑀𝑀∞ = 0.15, 𝛼𝛼 = 10°, and 𝑅𝑅𝑅𝑅 = 6,000,000  
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        (a) Lift coefficients 
 

 

           (b) Error in lift coefficients 
 

Figure V.18  Convergence of lift coefficient in lift-based h- and hp-adaptation for the 
subsonic turbulent flow over NACA0012 at 𝑀𝑀∞ = 0.15, 𝛼𝛼 = 10°, and 𝑅𝑅𝑅𝑅 = 6,000,000 

 
 
 

    

         (a) Drag coefficients 
 

 

        (b) Error in drag coefficients 
 

Figure V.19  Convergence of drag coefficient in drag-based h- and hp-adaptation for the 
subsonic turbulent flow over NACA0012 at 𝑀𝑀∞ = 0.15, 𝛼𝛼 = 10°, and 𝑅𝑅𝑅𝑅 = 6,000,000  
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             (a) Pressure drag coefficients 
 

 

              (b) Error in pressure drag 
coefficients 

 

Figure V.20  Convergence of pressure drag in drag-based h- and hp-adaptation for the 
subsonic turbulent flow over NACA0012 at 𝑀𝑀∞ = 0.15, 𝛼𝛼 = 10°, and 𝑅𝑅𝑅𝑅 = 6,000,000 

 
 
 

  
 

            (a) Skin friction drag coefficients 
 

 

          (b) Error in Skin friction drag 
coefficients 

 

Figure V.21  Convergence of skin friction in drag-based h- and hp- adaptation for the 
subsonic turbulent flow over NACA0012 at 𝑀𝑀∞ = 0.15, 𝛼𝛼 = 10°, and 𝑅𝑅𝑅𝑅 = 6,000,000  
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(a) Turbulence working 
variable 

 

(b) 𝑥𝑥-velocity component (c) 𝑦𝑦-velocity component 
 

Figure V.22  Comparison of profiles of turbulence working variable and velocity 
components at wake region for the subsonic turbulent flow over NACA0012 at 𝑀𝑀∞ =

0.15, 𝛼𝛼 = 10°, and 𝑅𝑅𝑅𝑅 = 6,000,000 
 

   

(a) 8th drag-based hp-adapted 
mesh with 47 thousand DOFs  
 

 

(b) FUN3D mesh with 230 
thousand DOFs 

(c) FUN3D mesh with 14.6 
million DOFs 

Figure V.23  Grid density in vicinity of profiles’ location for the subsonic turbulent flow 
over NACA0012 at 𝑀𝑀∞ = 0.15, 𝛼𝛼 = 10°, and 𝑅𝑅𝑅𝑅 = 6,000,000  

 

V.1.5 Subsonic Turbulent Flow over Three Element Airfoil 

The fourth numerical example shows an application of adjoint-based adaptation for 

subsonic turbulent flow over a multi-element airfoil. The geometry consists of a leading edge 

slat, a main center element and a trailing edge flap. For this case, the Mach number is 0.2, 

the Reynolds number is 9 million, and angle of attack is 16.2 degrees. This test case has 
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been widely utilized and had originally been used for a code-validation workshop [111]. The 

complex geometry of this test case provides sufficient challenge to assess the capability of 

the present adaptive method in turbulent flows with complex flow structures. For this 

purpose the total lift and drag coefficients has been chosen as the functional outputs, which 

include both pressure and viscous stresses.  

The initial computational mesh, shown in figure V.24, contains 20521 triangular 

elements. With uniform P1 discretization, this mesh includes 10441 DOFs. The outer 

boundary has been placed at a distance of 100 chord lengths away from the airfoil. The 

spacing normal to the wall in the boundary layer mesh is 5 × 10−6. The geometry has been 

represented by Q3 elements. Shown in figure V.25 are views of the 5th lift-based hp-adapted 

mesh. As seen, large portions of the flow are relatively smooth and thus, the field is 

dominated by p-enrichment. Different views of the mesh at the 7th cycle of the lift-based h-

adaptation are shown in figure V.26. The refinement pattern in this case reveals the complex 

structure of the flow. Refinements have taken place on the stagnation streamline, leading 

edge, trailing edge, and the top surface of the elements. In addition, wake regions of the 

slat and the flap have been highly refined. The Mach number contours are shown in figure 

V.27, and illustrate that although the freestream Mach number is low, the flow accelerates 

significantly over the leading edge slat and upper surface of the main airfoil. Note, however, 

that the two-dimensional nature of the flow amplifies this effect. The 𝑥𝑥-velocity adjoint 

variable for the lift and drag are shown in figure V.28.a and V.28.b, respectively. As 

expected, the refinements observed in figures V.25 and V.26 follow the sensitivity data 

provided by the adjoint solution.  
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Figure V.24  Initial mesh for the subsonic turbulent flow over three-element airfoil 

 

 

  
 

(a) Medium-field view 
 

 

(b) Near-field view 
 

Figure V.25  5th Lift-based hp-adapted mesh (Δ𝒥𝒥 = 0.02%) for the subsonic turbulent 
flow over three-element airfoil at 𝑀𝑀∞ = 0.2, 𝛼𝛼 = 16.2°, and 𝑅𝑅𝑅𝑅 = 9,000,000 
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(a) Medium-field view 

 
 

  
 

     (a) Slat and leading edge 
 

 

       (b) Flap cove and flap 
 

Figure V.26  7th Lift-based h-adapted mesh (Δ𝒥𝒥 = 0.05%) for the subsonic turbulent flow 
over three-element airfoil at 𝑀𝑀∞ = 0.2, 𝛼𝛼 = 16.2°, and 𝑅𝑅𝑅𝑅 = 9,000,000 
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Figure V.27  Mach number contours for the subsonic turbulent flow over NACA0012 at 
𝑀𝑀∞ = 0.2, 𝛼𝛼 = 16.2°, and 𝑅𝑅𝑅𝑅 = 9,000,000 

 

  
 

      (a) Lift-based 𝑥𝑥-velocity adjoint 
 

 

(b) Drag-based 𝑥𝑥-velocity adjoint 
 

Figure V.28  Adjoint solutions for the subsonic turbulent flow over three-element airfoil at 
𝑀𝑀∞ = 0.2, 𝛼𝛼 = 16.2°, and 𝑅𝑅𝑅𝑅 = 9,000,000 

 
In order to compute the errors, for both lift and drag coefficients, the reference values 

has been taken from hp-adapted solutions in which the absolute difference in the functional 

value between last two adapted mesh have been less than 10−5. Figures V.29 and V.30 show 
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the convergence of the lift and drag coefficients, as well as their corrected values, for the h- 

and hp-adaptive solutions. Observe that the correct values of lift and drag in all cases are 

better estimates. However, the corrected drag coefficient, particularly early in the 

adaptation process, significantly improves the predicted values. Additionally note that the 

order of convergence of the lift-based h-adaptation is nearly the same as hp-adaptation. On 

the other hand, the convergence rate for the drag-based hp-adaptation demonstrates better 

performance. This potentially indicates that when drag is the primary quantity of interest, 

hp-adaptation should be employed. Finally, figure V.31 compares the surface pressures 

obtained from the final hp-adapted mesh with the experimental values [111]. Despite a small 

over-prediction on the upper surface of the leading edge slat, a good agreement is observed. 

 

  
 

(a) Lift coefficients 
 

 

       (b) Error in lift coefficients 
 

Figure V.29  Convergence of lift coefficient in lift-based h- and hp-adaptation for the 
subsonic turbulent flow over three element airfoil at 𝑀𝑀∞ = 0.2, 𝛼𝛼 = 16.2°,  

and 𝑅𝑅𝑅𝑅 = 9,000,000 
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(a) Drag coefficients 
 

 

(b) Error in drag coefficients 
 

Figure V.30  Convergence of drag coefficient in drag-based h- and hp-adaptation for the 
subsonic turbulent flow over three element airfoil at 𝑀𝑀∞ = 0.2, 𝛼𝛼 = 16.2°,  

and 𝑅𝑅𝑅𝑅 = 9,000,000 
 
 
 

 
Figure V.31  Comparison of surface pressures between hp-adapted solution and 
experimental values for the subsonic turbulent flow over three-element airfoil at       

𝑀𝑀∞ = 0.2, 𝛼𝛼 = 16.2°, and 𝑅𝑅𝑅𝑅 = 9,000,000 
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V.1.6 Transonic Turbulent Flow over NACA0012 

The next numerical example has been selected to show the application of the PDE-

based artificial viscosity for shock capturing as well as the hp-adaptation methodology for 

flows with discontinuities. To this end, the transonic, turbulent flow over a NACA0012 

airfoil has been examined.  The flow conditions assumed are a free stream Mach number of 

0.8, angle-of-attack of 2.5 degrees, and Reynolds number, based on the airfoil chord, of 3 

million. The functional of interest for the adjoint-based adaptation is the lift coefficient. 

The advantage of the utilized artificial viscosity method is realized when higher order 

elements (𝑃𝑃 > 1) are used and thus in this test case, only hp-adaptation has been utilized.  

The initial computational mesh, shown in figure V.32.a, contains 11760 triangular 

elements. With uniform P1 discretization, this mesh includes 5978 DOFs. The outer 

boundary has been placed at a distance of 200 chord lengths away from the airfoil, and the 

normal spacing to the wall is 8 × 10−5. The adaptation process has been repeated until the 

absolute difference between lift coefficients on the last two meshes has been dropped to less 

than 10−5. Figure V.33 shows the convergence of the lift coefficient, as well as its corrected 

value, for the adaptive solution. As expected the final adapted mesh, depicted in figure 

V.32.b, has significant h-refinement in the vicinity of the shock wave. Away from this 

discontinuity, where the flow is smooth, higher-order elements provide the required 

resolution. Shown in figures V.34.a and V.34.b are the Mach number contours for the initial 

and the final adapted mesh, respectively. As can be clearly seen, the initial mesh is not 

adequate for the region of supersonic flow on the upper surface upstream of the shock. In 

the final adapted mesh, all critical features of the flow field have been highly resolved. 
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Illustrated in figure V.35 is a close-up view of the shock near the airfoil surface. In this view 

the shear layer and the shock induced boundary layer separation can be clearly seen. On 

inspection, it can be observed that due to the separated flow, the abrupt deflection causes 

the upstream shock to become oblique. Furthermore, as a result of the lower pressure rise 

across the oblique shock, in order to recover, a weak normal shock is also formed. Since the 

interaction between the shock wave and the boundary layer is a critical feature in the 

accurate prediction of the lift, the adjoint-based adaptive methodology automatically 

resolved this region of the flow. In particular, close inspection of figure V.32.b shows that 

upper side of the recirculation region has been highly refined and the refined areas extends 

to the wake region.  

 

  
 

 (a) Initial Mesh 
 

 

      (b) Final hp-adaptaed mesh 
 

Figure V.32  Initial and final hp-adapted mesh for the transonic turbulent flow over 
NACA0012 at 𝑀𝑀∞ = 0.8, 𝛼𝛼 = 2.5°, and 𝑅𝑅𝑅𝑅 = 3,000,000 
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Figure V.33  Convergence of lift coefficient in lift-based hp-adaptation for the transonic 
turbulent flow over NACA0012 at 𝑀𝑀∞ = 0.8, 𝛼𝛼 = 2.5°, and 𝑅𝑅𝑅𝑅 = 3,000,000 

 
 
 
 

  
    (a) Mach number on initial mesh 

 
   (b) Mach number on final hp-adapted mesh  

 

Figure V.34  Mach number contours on initial and final hp-adapted mesh for the 
transonic turbulent flow over NACA0012 at 𝑀𝑀∞ = 0.8, 𝛼𝛼 = 2.5°, and 𝑅𝑅𝑅𝑅 = 3,000,000 
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Figure V.35  Shock induced boundary layer separation in the transonic turbulent flow 
over NACA0012 at 𝑀𝑀∞ = 0.8, 𝛼𝛼 = 2.5°, and 𝑅𝑅𝑅𝑅 = 3,000,000. 

 
 

The added artificial viscosity in the initial and final hp-adapted meshes are shown 

in figure V.36. Observe that in the initial mesh, considerable artificial viscosity has been 

added in the vicinity of the shock wave. However, the amount of added artificial viscosity 

in the final adapted mesh is not visibly detectable. This is an indication that the current 

implementation is consistent, and that as the mesh is refined, the stabilization vanishes and 

the original governing equations are recovered.  
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        (a) Artificial viscosity on initial mesh 
 

 

   (b) Artificial viscosity on final hp-adapted mesh  
 

Figure V.36  Artificial viscosity contours on initial and final hp-adapted mesh for the 
transonic turbulent flow over NACA0012 at 𝑀𝑀∞ = 0.8, 𝛼𝛼 = 2.5°, and 𝑅𝑅𝑅𝑅 = 3,000,000 

 
 

V.1.7 Transonic Turbulent Flow over RAE2822 

In order to validate the numerical solutions in presence of shock waves, in this 

example, the subsonic turbulent flow over RAE2822 airfoil at Mach number of 0.729, angle-

of-attack of 2.31 degrees, and Reynolds number, based on the airfoil chord, of 6.5 million is 

compared with experimental data [112]. Once more, the functional of interest for the 

adjoint-based adaptation is the lift coefficient. The initial computational mesh, shown in 

figure V.37.a, contains 5903 triangular elements. With uniform P1 discretization, this mesh 

includes 3019 DOFs. The outer boundary has been placed at a distance of 100 chord lengths 

away from the airfoil, and the normal spacing to the wall is 1 × 10−5. The adaptation 

process has been repeated until the absolute difference between lift coefficients on the last 

two meshes has been dropped to less than 10−5. Figure V.37.b shows the final hp-adapted 
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mesh and figure V.38 shows the convergence of the lift coefficient, as well as its corrected 

value. Shown in figure V.39 are the Mach number contours for the initial and the final 

adapted meshes, respectively. Spurious oscillations at upper surface of the airfoil can be 

easily observed for the solution on the initial mesh. These oscillations can also be seen in 

figure V.40 which compares the surface pressures obtained on the initial and final hp-

adapted meshes with the experimental values. As seen, the results of final hp-adapted mesh 

shows an acceptable agreement with experimental data. However, in this case, the 

separation bubble has not been properly resolved.  

 
 

  
 

 (a) Initial Mesh 
 

 

      (b) Final hp-adaptaed mesh 
 

Figure V.37  Initial and final hp-adapted mesh for the transonic turbulent flow over 
RAE2822 at 𝑀𝑀∞ = 0.729, 𝛼𝛼 = 2.31°, and 𝑅𝑅𝑅𝑅 = 6,500,000 
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Figure V.38  Convergence of lift coefficient in lift-based hp-adaptation for the transonic 
turbulent flow over RAE2822 at 𝑀𝑀∞ = 0.729, 𝛼𝛼 = 2.31°, and 𝑅𝑅𝑅𝑅 = 6,500,000 

 
 
 
 

  
    (a) Mach number on initial mesh 

 
   (b) Mach number on final hp-adapted mesh  

 

Figure V.39  Mach number contours on initial and final hp-adapted mesh for the 
transonic turbulent flow over RAE2822 at 𝑀𝑀∞ = 0.729, 𝛼𝛼 = 2.31°, and 𝑅𝑅𝑅𝑅 = 6,500,000 
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Figure V.40  Comparison of surface pressures between solutions on initial and hp-adapted 
meshes with experimental values for the transonic turbulent flow over RAE2822 at 𝑀𝑀∞ =

0.729, 𝛼𝛼 = 2.31°, and 𝑅𝑅𝑅𝑅 = 6,500,000 
 
 

V.2 Feature-Based Adaptation in Unsteady Flows 

V.2.1 Vortex Shedding Flow over a Cylinder  

The final numerical example is the problem of laminar vortex shedding over a 

cylinder. This case has been chosen to demonstrate the operation of the developed program 

in dynamic adaptation. The geometry consists of a cylinder with the diameter of 1 whose 

center is located at (𝑥𝑥 = 0, 𝑦𝑦 = 0). The computational domain extends from -8 to 8 in 𝑦𝑦-

direction and -8 to 25 in 𝑥𝑥 direction. Of course, to minimize the effect of outer boundaries, 

a larger domain is needed. However, here the performance of the adaptation is assessed by 

its ability to retain the vorticity strength in the wake region and not by exact quantitative 

comparisons. Four cases have been run which all start with a triangular mesh with 6248 

elements and 3241 points. These cases are as follows:   
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- Case 1: whole the domain is covered with P1 elements. 

- Case 2: whole the domain is covered with P2 elements. 

- Case 3: h-adaptation is performed on P1 elements. Maximum refinement level is set 

to 3. 

- Case 4: p-adaptation is performed starting with P1 elements and the maximum P is 

set to 3. 

The free-stream Mach number is 0.2, the Reynolds number is 100, and the time step 

is 0.02. Each computation starts with uniform flow and continues until a periodic solution 

is reached. For each time step computation is continued until the residual of all equations 

drops to 10−14 . Since the problem is purely transient, error estimation and subsequent 

adaptation is repeatedly performed after 5 time steps for both h- and p-adaptations.  

Figure V.41 shows the development of the shedding for the case of h-adaptation. The 

left panel shows the meshes and the right panel shows the vorticity contours. As expected 

from a feature-based error indicator, the refined regions follow the solution very well.    

Figure V.42 replicates the same pictures for the case of p-adaptation. This time the left 

panel shows the polynomial degree maps. As seen in this figure, after the shedding 

formation, the core of the wake region is covered with P3 elements while the outer parts 

are covered with P2 elements. Also it can be seen that in some regions P3 elements have 

been placed next to the P1 elements without creating any problem.  

Figure V.43 shows the time variation of vorticity at (𝑥𝑥 = 2, 𝑦𝑦 = 0). In this figure, it 

is seen that for all cases, there is a transition stage until a periodic variation is reached. 

Also, all cases except case 1 agree on the magnitude of the vorticity in the periodic region 

and in fact, case 3 and case 4 almost fall on top of each other. Another point is that case 1 
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is the slowest one to reach the periodic state. This can be described by the fact that case 1 

has the most dissipation and consequently the least capability to retain the vorticity. This 

point can also be seen in figure V.44 which compares the vorticity contours of all cases at 

a snapshot within the periodic state. It can be seen in this figure that both adapted cases 

have retained the vorticity in the wake region better than the other cases. Note that in this 

figure, the location of positive and negative vortices for different cases do not match. This 

is because each case has a different transition time to reach the periodic state. However, all 

the sub-figures show the snapshot at 𝑡𝑡 = 600.  

Finally, this test case verifies that refinement and derefinement mechanisms have 

been successfully implemented.  
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Figure V.41  Mesh and vorticity contours in dynamic h-adaptation on P1 elements for the 
Vortex shedding over a cylinder at 𝑀𝑀∞ = 0.2 and 𝑅𝑅𝑅𝑅 = 100 



102 
 

  

 

 

 

 

 

 

 

 

 

 

Figure V.42  Mesh and vorticity contours in dynamic p-adaptation using P1 to P3 
elements for the Vortex shedding over cylinder at 𝑀𝑀∞ = 0.2 and 𝑅𝑅𝑅𝑅 = 100 
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Figure V.43  Comparison of time variation of vorticity at (𝑥𝑥 = 2, 𝑦𝑦 = 0) for the vortex 

shedding flow over a cylinder at 𝑀𝑀∞ = 0.2 and 𝑅𝑅𝑅𝑅 = 100  
 
 

 

  
(a) Case 1: Uniform P1 elements 

 
(b) Case 2: Uniform P2 elements 

 

  
(c) Case 3: Dynamic h-adaptation on P1 

elements  
(d) Case 4: Dynamic p-adaptation using P1 to 

P3 elements 
 

Figure V.44  A snapshot of periodic state for the vortex shedding flow over a cylinder at  
𝑀𝑀∞ = 0.2 and 𝑅𝑅𝑅𝑅 = 100 
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CHAPTER VI  
 

CONCLUSION 
 
 

In this study, output-based and feature-based adaptation algorithms were 

implemented within a Petrov-Galerkin finite-element method. Constrained approximation 

with hierarchical basis functions were employed to perform h-, p-, and combined hp-

adaptations in a non-conforming manner. The resulting method is not limited to the fluid 

problems and it can be utilized within any continuous Galerkin method. This is particularly 

beneficial for multidisciplinary applications. For the geometric surfaces, high-order curved 

boundary meshes were generated, with the interior meshes deformed through the solution 

of linear elasticity equations. The methodology was demonstrated on numerous cases using 

the Euler and Reynolds Average Navier-Stokes (RANS) equations, equipped with a modified 

Spalart-Allmaras (SA) turbulence model. An enhanced h-refinement technique based on the 

smoothness of the solution was proposed and it was shown that employment of this 

technique near the geometric singularities, such as trailing edges, significantly increases the 

accuracy of integrated quantities. Moreover, it was shown that the implementation of weak 

boundary conditions and use of a modified functional are required to obtain a smooth 

adjoint solution where Dirichlet boundary conditions are imposed. The finite-element h- 

and hp-adaptive solutions were compared with finite-volume solutions in a subsonic 
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turbulent flow and it was shown that finite-element solutions are significantly less 

dissipative. Furthermore, to stabilize the solution in the vicinity of shock waves, PDE-based 

artificial viscosity was added to the governing equations. The adaptive algorithm was shown 

to automatically resolve the shock induced boundary layer separation that was present in a 

transonic, turbulent flow over an airfoil. Also, it was shown that the current implementation 

is consistent, and that as the mesh is refined, the added artificial viscosity vanishes and the 

original governing equations are recovered. 

Topics for future work include: 

1- Utilization of alternative stabilization methods such as Galerkin Least Squares (GLS) 

and Variation Multiscale (VMS) methods in the hp-adaptive algorithm should be 

explored. In particular, adjoint-consistency properties for these methods need to be 

studied in detail. 

2- The current method should be extended to three dimensional problems with mixed-

type elements. 

3- Development of conforming mesh adaptation, in order to avoid the generation of 

hanging nodes, should be investigated.  

4- Feature-based adaptation in unsteady problems should be replaced with reliable error 

estimation methods, like the error transport equations, for dynamic adaptation. 

5- Dynamic load balancing needs to be addressed in order to obtain an efficient parallel 

implementation. 
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