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Abstract 

Several cadaveric and in vivo biomechanical studies have looked at the effects that 

ligament injuries of the ankle joint complex have on the stability of the ankle joint and 

susceptibility to chronic degeneration of articular surfaces, but there have been very few studies 

that use computer simulation and the finite element method to evaluate how an ankle ligament 

injury affects stability, joint pressure, and potential subsequent failure points. Evidence shows 

that ankle instability is associated with excessive rotation of the talus in transverse plane, which 

contributes to articular surface degeneration. It has been documented that after disruption of the 

anterior talofibular ligament that additional load is placed on the posterior tibiotalar ligament, 

which leads to further rotational instability. Disruption of the interosseous talocalcaneal ligament 

creates a more complex instability that leads to chronic joint instability of both the talocrural and 

subtalar joints. A 3D model of the ankle joint was created using CT image data of a cadaver 

lower limb. A tetrahedral mesh was created and the bone modulus was assumed uniform. 

Tendons were represented by simple truss elements and surface to surface contact regions were 

established to facilitate joint motion. The tibia was fixed and internal rotation in the transverse 

plane was applied to the foot in the neutral position by means of a 5000 N-mm moment. Force 

displacement data was compared to experimental data collected using an MTS test frame on a 

cadaver specimen, and previously published data from an arthrometer study. The anterior 

talofibular ligament (ATFL) was then removed and compared to MTS and arthrometer load and 

displacement data. Joint pressures were calculated from the finite element model to evaluate 

potential lesion spots as well as ligament forces in the deep posterior tibiotalar ligament 

(DPTTL). Results show a correlation in the change in magnitude from intact to ATFL cut states 

in the FEA model to the in vitro testing methods. The model predicts a medial shift in contact 

pressures under internal rotation which has been shown to be a potential location for lesions in 

ankles with lateral instability. The model also predicts that the DPTTL carries a majority of the 

resistant forces in the ligaments in internal rotation when the ATFL has been compromised. 
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Preface 

The field of orthopaedics is relatively new compared to other more established fields of 

medicine. Biomechanical research through in vitro and in vivo studies has only flourished in the 

last 100 years, with major advances coming in the last half of that period. It was only during the 

Vietnam War that the standard of care for war injuries was changed from amputation to limb 

salvage. During the space race of the 1960’s, NASA designed and built the first cohesive finite 

element analysis package NASTRAN. This opened the door to finite element analysis in other 

fields of engineering; during the 1980’s it was in the early stages of being used in orthopaedics. 

Today finite element analysis is heavily used in all aspects of orthopaedics and is used 

extensively by industry for the design and development of new orthopaedic products. Because of 

its prevalence there has been significant research to develop better models to represent the 

complex mechanical properties of biological tissues, with major advances in non-linear contact 

models as well as anisotropic, viscoelastic, and hyperelastic material behavior models.  
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Chapter 1 Introduction 

1.1 Background 

Several cadaveric and in vivo biomechanical studies have looked at the effects that 

ligament injuries of the ankle joint complex have on the stability of the ankle joint and 

susceptibility to chronic degeneration of articular surfaces (McCullough and Burge 1980, 

Rasmussen and Kromann-Andersen, Experimental Ankle Injuries 1983, Renstrom, et al. 1988, 

Birmingham, et al. 1997, Conlin, Johnson and Sinning 1989, Dias 1979, Xenos, et al. 1995, 

Teramoto, et al. 2008), but there have been very few studies that use computer simulation and the 

finite element method to evaluate how an ankle ligament injury affects stability, joint pressure, 

and potential subsequent failure points. (Cheung and Zhang 2006, Iaquinto and Wayne 2008, 

Anderson, et al. 2006) Evidence shows that ankle instability is associated with excessive rotation 

of the talus in transverse plane, which contributes to articular surface degeneration. (Rasmussen 

and Tovborg-Jensen, Anterolateral Rotational Instability in the Ankle Joint 1981, Johnson and 

Markolf 1983) It has been documented that after disruption of the anterior talofibular ligament 

that additional load is placed on the posterior tibiotalar ligament, which leads to further rotational 

instability. (Stormont, et al. 1985) Disruption of the interosseous talocalcaneal ligament creates a 

more complex instability that leads to chronic joint instability of both the talocrural and subtalar 

joints. (Wilkerson, et al. 2005, Parlasca, Shoji and D'Ambrosia 1979, Wilkerson and Alvarez, 

Rotary ankle instability: Pathomechanics and consequences of inadequate treatment. 2010 (in 

press))  Resent research (Wilkerson, Doty, et al. 2010 (in press)) has shown the effectiveness of 

using an ankle arthrometer to record the transverse plane rotation and torque curve of an ankle 

then comparing the curve to the curve of a normal ankle. A normal ankle curve exhibits some 

elastic hysteresis, but ligament injuries to the ankle increase rotary displacement creating 

backlash in the force displacement curve. The presence and severity of an injury can be evaluated 

as well as subsequent repair. (Johnson and Markolf 1983, Wilkerson, Doty, et al. 2010 (in press)) 

1.2 Objective 

The objective of this thesis was to develop a finite element model of the talocrural joint in 

an intact state and in an ATFL removed state. The load displacement results of the finite element 

model would then be validated by in vitro testing and contact pressure patterns would be 

compared to clinical data of ankle lesions in laterally unstable ankles. 
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Chapter 2 Ankle Joint Properties 

2.1 Bone Mechanical Properties 

Human bone is comprised of two distinct subtypes of bone cortical and cancellous. 

Cortical bone is harder and stiffer than cancellous bone due to cellular size and density, but recent 

studies show that cortical bone is stronger than previously thought. Both types of bone exhibit 

anisotropic behavior which means more parameters, such as elastic modulus, Poisson’s ratio, and 

shear modulus for all three loading directions are needed to properly specify behavior of these 

materials. Strain rate must also be known since bone is also viscoelastic. Because of the 

anisotropic and viscoelastic behavior, bone is classified as a complex material. In long bones it 

can be assumed that cortical bone will behave as a transversely isotropic material meaning that it 

is isotropic about its axis and exhibits a secondary isotropic modulus in the transverse plane.  

2.2 Ligament Mechanical Properties 

Ligaments are comprised of parallel collagen fibers and are therefore best represented by 

transverse isotropic material behavior. They exhibit a non-linear concave upward load elongation 

curve during initial loading changing to a linear elastic region as strain increases. The cause of the 

change in stiffness is due to an initial un-crimping of the collagen fibers, once the fibers un-crimp 

the collagen fiber backbone is then being stretched resulting in a higher stiffness. Most of the 

physical loading conditions are done in the non-linear region, occasionally in the linear region 

Ligaments have also been shown to exhibit the viscoelastic characteristics of creep, stress 

relaxation, and hysteresis. Ligaments have even been shown to exhibit hyperelastic properties by 

exhibiting elastic behavior even under very high strain. (Mow and Huiskes 2005) 

2.3 Articular Cartilage Mechanical Properties 

Articular cartilage is a biphasic material due to water flowing through the porous 

permeable solid matrix of cartilage under an imposed pressure gradient during loading. Its 

mechanical properties are very similar to a sponge which has a high resistance to fluid flow. 

(Mansour 2004, Mow and Huiskes 2005) Cartilage can exhibit both isotropic and anisotropic 

behavior as well as viscoelastic and hyperelastic behavior based on location in the body, loading 

direction, strain rate, and hydration. The main mechanism for the viscoelastic properties of 

articular cartilage are the hydroscopic drag as fluid moves through the membranes of the cartilage 

structure. The hyperelastic properties of articular cartilage are due to its incompressibility and 
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ability to undergo large amounts of strain without permanent deformational while still remaining 

in the elastic region of its stress strain curve.  

2.4 Ankle Joint Biomechanics 

The ankle joint complex consist of a series of joints each contributing to the overall range 

of motion of the ankle. The first component is the ankle joint or talocrural joint formed by the 

tibia, fibula, and talus. This joint is followed by the sub-talar joint formed by the talus and 

calcaneus. The last joint is the transverse tarsal joint which consists of the talonavicular and 

calcaneocuboid joints formed by the talus, navicular, cuboid, and calcaneus bones. (Mann and 

Haskell 2007, Netter 2003) The range of motion starting in the neutral position for a normal ankle 

joint complex is 33º to 18º in inversion-eversion and 48º to 18º plantarflexion-dorsiflection. 

(American Academy of Orthopaedic Surgeons 1965) The talocrural joint is stabilized by a set of 

ligaments consisting of the ATFL, CFL, PTFL, DPTTL, TCL, DATTL, and TNL. While most 

internal rotation of the foot comes from the hip joint during normal walking some internal 

rotation comes from the ankle joint. An increase in internal rotation is usually associated with 

lateral ankle instability from a ligament injury. (Dias 1979) 

 
Figure 1 Ankle Joint Ligaments 

The ligaments of the ankle are shown in the lateral and medial views. The ATFL, CFL, PTFL, DATTL, TNL,  

TCL, and DPTTL are visible. 
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Chapter 3 Methods 

3.1 Overview 

A 3D model of the ankle joint was created using CT image data of a cadaver lower limb. A 

tetrahedral mesh was created and the bone modulus was assumed uniform. Tendons were 

represented by simple truss elements and surface to surface contact regions were established to 

facilitate joint motion. The tibia was fixed and internal rotation in the transverse plane was 

applied to the foot in the neutral position by means of a 5000 N-mm moment. Force displacement 

data was compared to experimental data collected using an MTS test frame on a cadaver 

specimen, and previously published data from an arthrometer study (Wilkerson, Doty, et al. 2010 

(in press)). The anterior talofibular ligament (ATFL) was then removed and compared to MTS 

and arthrometer load and displacement data. Joint pressures were calculated from the finite 

element model to evaluate potential lesion spots as well as ligament forces in the posterior 

tibiotalar ligament (PTTL). 
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Figure 2 MTS 858 Mini Bionix II 

The MTS 858 Mini Bionix is a biaxial test frame capable of testing both axial and torsional loading 

conditions simultaneously. The testing fixture was custom built to accommodate the finite element 

model boundary conditions. The fixture consisted of a set of linear bearings and a gimbaled fixture. 

This setup allowed for medial-lateral translation, proximal-distal translation, internal-external 

rotation, and varus-valgus tilt. 
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Figure 3 Ankle Arthrometer 

The ankle arthrometer was developed by Blue Bay Research (Navarre, FL) for diagnosing ankle 

ligament injuries in vivo. It can also be used in vitro to assess the function of the ankle before and after 

removal of ligaments, and to assess the effects of repair and various taping methods. The arthrometer 

shown in the above figure is the original model which is capable of only measuring the translations and 

reaction loads of the ankle joint complex.  The current arthrometer and the one used for the study is 

able the measure translations and reaction loads as well as measure rotations and reaction torques of 

the ankle joint complex. 
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3.2 Finite Element Model Development 

3.2.1 Meshing 

CT imaging results in a series of sequential dicom image slices through the foot and ankle 

taken at a resolution of 16 slices per inch. These dicoms were imported into Slicer3D (3D Slicer 

home page 2010, Pieper, Halle and Kikinis, 3D SLICER 2004, Pieper, Lorensen, et al. 2006, 

Gering, et al. 1999) and threshold values were set that corresponded to the grey scale density of 

cortical bone. Slicer3D then interpolated the dicom images to create a rendered volume of the 

foot and ankle comprised of a dense collection of polygon volumes. Slicer3D then converted the 

resulting volume into a stereo lithography file (.stl) that was comprised of a dense mesh of 

triangle surfaces. The stl file was then imported into Hypermesh (Altair, Troy, MI) for 

preprocessing. Once the file was imported to Hypermesh a wrap was done of the stl surfaces to 

create a hollow shell of 2D triangle elements. A tetrahedral mesh was then created to fill in the 

hollow 2D Mesh. Articular cartilage was extruded with 6-node prism elements to a thickness of 1 

mm. (El-Khoury, et al. 2004, Shepherd and Seedhorn 1999) Special tension only truss elements 

were used to define the ligaments of the ankle and were connected to nodes at the point of 

anatomical insertion. (Cheung and Zhang 2006) 
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Figure 4 Dicom Images and Volume Rendering 

Silcer3D (3D Slicer home page 2010) is open source software that is capable of assembling dicom sets 

from either CT or MRI imaging then converting them into a 3D model. Once a 3D model of polygon 

elements has been created in Slicer3D it can be converted into a STL file consisting of triangle 

elements. The STL file is a commonly accepted file format in most meshing and 3D CAD program 

import functions. 
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Figure 5 Meshed Model 

The finite element model consists of a 3D tetrahedral mesh of the tibia, fibula, talus, calcaneus, and 

forefoot. Articular cartilage structures were extruded on both the talar dome and the distal tibia with 

6-node prism elements. Tension only 2-node truss elements were placed in the anatomic locations for 

the ATFL, CFL, PTFL, DPTTL, DATTL, TCL, and TNL. Al l elements were modeled as linear elastic 

materials. 
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3.2.2 Model Parameters 

The modulus of the bone was assumed uniform, elastic, and isotropic since the main focus 

is that of joint motion and not for the stresses in the bone itself. A value of 16000 MPa was used 

for the bone’s modulus and a Poisson’s ratio of 0.3 was used. (Mow and Huiskes 2005) Cartilage 

was also assumed to be elastic and isotropic. A value of 10 MPa was used for the modulus and a 

Poisson’s ratio of 0.3 was used. (Mansour 2004) Ligaments were given a tension only elastic 

modulus of 158 MPa and a Poisson’s ratio of 0.3 were used. (Attarian, et al. 1985, Colville, et al. 

1990, Siegler, Brock and Schneck 1988, St. Pierre, et al. 1983) The cross section of each ligament 

was defined from values available in literature. (Mkandawire, et al. 2005) Density was assigned 

for the bone, cartilage, and ligaments at values of 1.5e-9, 1.0e-9, and 1.0e-9 tonne/mm3 

respectively. Contact between the articular cartilage surfaces was modeled as “soft” or 

exponential contact. Values were assigned for the distance at which contact first engages and the 

value for the force exerted. The distance value was 0.0001 mm and the force value was 0.01 N. 

Friction was modeled as classic Coulomb friction with a value of 0.001 and a maximum shear 

stress value of 1 Pa. The very small 1 Pa force was assigned arbitrarily to facilitate a faster 

convergence of the finite element model, since zero was mathematically less stable. The 

maximum shear stress value is the value at which sliding will occur regardless of normal contact 

stress. (Abaqus 2007) During the internal rotation phase the value of the friction and max shear 

stress were set to zero, the reason is that articular cartilage surface friction can be assumed zero in 

the presence of synovial fluid. (Mansour 2004) 

Table 1 FEA Model Material Properties 

Material Type Modulus (MPa) Poisson’s Ratio Density (tonne/mm3) 

Bone 16000 0.3 1.5e-9 

Articular Cartilage 10 0.3 1.0e-9 

Ligaments 158 0.3 1.0e-9 

 



11 
 

Table 2 FEA Model Ligament Cross-Sections 

Ligament Abbreviation Cross-Section Area (mm2) 

ATFL 62.85 

CFL 21.36 

DPTTL 78.43 

DATTL 43.49 

PTFL 46.43 

TCL 43.2 

TNL 60 

 

3.2.3 Boundary Conditions and Loading Methods 

Even though it has been stated that anterior translation contributes to instability in the 

ankle by allowing the talus to rotate out of the mortis of the ankle joint, anterior-posterior 

translation was fixed. The reason for this was that the model was limited to bones, cartilage, and 

ligaments. Without the joint capsule and surrounding soft tissue the ankle joint will completely 

disarticulate in the absence of the ATFL, and is numerically unstable in a finite element analysis. 

Medial-lateral translation was set to free as well as proximal-distal translation, varus-valgus tilt, 

and internal-external rotation. Plantarflexion-dorsiflection rotation was fixed to hold the foot in 

the neutral plane during internal rotation. A static load of 100 N was applied in the proximal 

direction through the talus to seat the ankle, and then a torque of 5000 N-mm was applied to 

induce internal rotation of the ankle. The torque was removed and the ankle was allowed to return 

to its initial state. The ATFL was removed and the cycle was repeated. 
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Figure 6 Loading Profiles 

The loading profile of the in vitro and FEA test consists of an axial load of 100 N that is applied at the 

beginning and is held through the test duration. The torque load of 5000 N-mm (5 N-m) is applied and 

then released. This test cycle is done for both the intact state and ATFL cut state.   

3.2.4 Finite Element Analysis 

The finite element analysis model was calculated in the ABAQUS multi physics software 

package (Simulia, Providence, RI). special consideration was taken for the discontinuous nature 

of the ankle model. ABAQUS stabilization features were used during the initial loading phase 

and to a lesser degree during the internal rotation phase with the ATFL removed. The 

stabilization feature places an energy cushion in the void around the contact surfaces and 

decreases that energy to zero by completion of the step. The auto tolerance function was used to 

calculate the over-closure tolerances for contact to assist in the initial contact phase. The model 

was treated as a discontinuous analysis. This allows ABAQUS to use more equilibrium iterations 

and prevents the analysis time step from being decrease early in the analysis. (Abaqus 2007) 

During the axial loading step the analysis was treated as dynamic instead of static as in the rest of 

the analysis; this was due to large amounts of ridge body motion combined with two contact 

surfaces coming into full contact. After this step the remainder or the analysis was semi-static.  
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3.2.5 Post Processing  

Post processing was done in ABAQUS CAE. Tables of X-Y data were created for the 

proximal and distal sections of the ankle, giving load and rotation verses time. Contact profiles 

were also created for comparison to known cartilage lesion locations in unstable ankles. 
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3.3 In Vitro Biomechanical Test Validation 

3.3.1 Specimen Preparation 

The original fresh frozen specimen that was used to create 3D model could not be used for 

testing due to damage to the CFL and ATFL, so a different fresh frozen specimen that was similar 

in size and age was used. The specimen was thawed from -20º C to room temperature and then 

placed in a custom fixture purpose built to replicate the boundary and loading conditions of the 

finite element model. Linear bearings allow for free movement in the medial-lateral direction as 

well as free varus-valgus tilt. Anterior-posterior movement was restricted as well as 

plantarflexion-dorsiflection rotation. A single 4.5 cancellous lag screw was placed through the 

calcaneus and through the subtalar joint into the talar dome to prevent subtalar joint motion. The 

foot was secured by two traction pins one through the calcaneus and one through the navicular 

and cuboid bones. Both pins were secured to the testing jig by means of external fixator locknuts. 

The tibia and fibula were potted in a steel cylinder by means of a quickset epoxy. 

 

Figure 7 In Vitro Test Setup 

The in vitro test setup was performed on a fresh frozen ankle specimen. The specimen 

was thawed and then soft tissue resected to allow for the potting of the fibula and tibia 

in a steel cylinder with epoxy. A single 4.5mm cancellous lag screw was used to secure 

the sub talar joint and the calcaneus, navicular, and cuboid bones were fixed using two 

traction pins. 
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3.3.2 Testing Protocol 

Axial force and internal rotation torque were applied by a MTS 858 Mini Bionix test frame 

(MTS, Eden Prairie, MN). Loading rates were 10 N per second for axial force and 100 N-mm per 

second for internal rotation. Data acquisition rates were 40Hz for all recorded measurements. 

Load data was acquired from the MTS frame 15 kN biaxial load cell and rotation and axial 

displacement will be recorded by the MTS rotary and linear variable displacement transducers 

respectively. Axial displacement was measured in mm and internal rotation was measured in 

degrees. First an axial load of 100 N was applied to seat the joint and then it was followed by an 

internal rotation torque of 5000 N-mm. After full torsional loading the torque load was returned 

to 0 N-mm and the ankle was allowed to return to its new resting position. The specimen was 

unloaded and the ATFL cut at its mid-length. The loading cycle was repeated for the ankle now 

with a cut ATFL. 

3.3.3 Post processing of Raw Data 

Load and displacement data was exported to Excel and was formatted into Torque vs. 

Internal Rotation graphs. Raw data was smoothed by averaging every 100 data points; the 

smoothed data was then interpolated at 5 distinct positions 1, 2, 3, 4, and 5 N-m for comparison to 

other measurement methods.  
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Chapter 4 Results 

The results of the FEA model show a decreased amount of displacement compared to the 

two in vitro testing methods.  At max internal rotation there is an 88% difference in the intact 

state and a 51% difference in the ATFL removed state between the FEA model and in vitro 

testing on the MTS. There is also a 90% difference in the intact state and a 48% difference in the 

ATFL removed state between the FEA model and in vitro testing on the arthrometer. A 

comparison of max internal rotation of the two in vitro testing methods shows a 15% difference in 

the intact state and a -7% difference in the ATFL removed state between the MTS and the 

arthrometer. The correlation in the change in magnitude between the intact state and ATFL state 

calculated by the FEA model and the in vitro methods was 86% of the FEA model prediction for 

the MTS and 44% for the arthrometer. 

The ligament forces calculated by the FEA model at max internal rotation in the intact state 

show a force of 179 N in the ATFL and forces of approximately 0 N in the other ligaments. In the 

ATFL removed state the FEA model shows a force of 7 N in the CFL and 156 N in the DPTTL 

the forces in the other remaining ligaments are approximately 0 N. 

 Contact pressures calculated by the FEA model show a contact profile that is laterally 

biased ranging from 0 to 2.5 MPa for the intact and ATFL removed states at 0 N-m of applied 

internal rotation moment. In the intact state at 5 N-m of applied internal rotation moment the 

contact profile becomes more distributed with a 2 MPa maximum. The ATFL removed state at 5 

N-m shows a posterior medial shift in contact as well as anterior contact between the lateral side 

of the talar dome and the tibial malleolus with an increased pressure range o f 3.8 MPa.
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Table 3 Comparison of FEA Model Data and In Vitro Testing Data 

 
Internal Rotation (Degrees) 

FEA Model In Vitro % Difference 

Moment (N-m) Intact -ATFL Intact -ATFL Intact -ATFL 

1.0 0.37 1.47 1.76 2.66 78.98 44.74 

2.0 0.73 5.85 8.05 8.74 90.93 33.07 

3.0 1.08 9.88 11.46 13.68 90.58 27.78 

4.0 1.43 10.92 13.36 16.79 89.3 34.96 

5.0 1.77 11.44 15.06 23.44 88.25 51.19 

 

Table 4 Comparison of FEA Model Data and Arthrometer Data 

 
Internal Rotation (Degrees) 

FEA Model Arthrometer % Difference 

Moment (N-m) Intact -ATFL Intact -ATFL Intact -ATFL 

1.0 0.37 1.47 6.70 7.09 94.48 79.27 

2.0 0.73 5.85 11.22 12.70 93.49 53.94 

3.0 1.08 9.88 14.14 16.96 92.36 41.75 

4.0 1.43 10.92 16.08 18.98 91.11 42.47 

5.0 1.77 11.44 17.62 21.89 89.95 47.74 

 

Table 5 Comparison of In Vitro Testing Data and Arthrometer Data 

 
Internal Rotation (Degrees) 

In Vitro Arthrometer % Difference 

Moment (N-m) Intact -ATFL Intact -ATFL Intact -ATFL 

1.0 1.76 2.66 6.70 7.09 73.73 62.48 

2.0 8.05 8.74 11.22 12.70 28.26 31.18 

3.0 11.46 13.68 14.14 16.96 41.37 19.34 

4.0 13.36 16.79 16.08 18.98 16.92 11.54 

5.0 15.06 23.44 17.62 21.89 14.53 -7.44 
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Figure 8 FEA Model Moment vs. Internal Rotation 

The figure shows the change in Internal Rotation vs. Moment for the finite element model. The intact 

model shows a linear curve for load vs. displacement this is because of the linear elastic model that was 

used to model the ligament material properties. The ATFL cut model shows a non-linear curve, but 

once the DPTTL starts to carry tension forces the curve becomes increasingly linear and approaches 

the slope of the intact model. 
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Figure 9 In Vitro Testing Moment vs. Internal Rotation 

The figure shows the in Internal Rotation vs. Moment for the in vitro testing conducted on the MTS 

858 Mini Bionix. While the magnitude of the maximum internal rotation varies greatly from the FEA 

model the relative change in magnitude from the intact to ATFL cut states is 86% of the change 

predicted by the FEA model. 
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Figure 10 Arthrometer Moment vs. Internal Rotation 

The figure shows the in Internal Rotation vs. Moment for the in vitro testing of the arthrometer. The 

arthrometer data shown has been curve fitted and standardized to facilitate comparison. The overall 

change in magnitude between the intact and ATFL cut state are 44% of the predicted change from the 

FEA model. The is due to the fact that the arthrometer uses a different set of boundary conditions and 

allows for movement of the subtalar and the transverse tarsal joints, as well as anterior translation 

during internal rotation in the intact state. (Wilk erson, Doty, et al. 2010 (in press))  
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Figure 11 Comparisons of Intact State Data 

The figure shows a comparison of all three testing methods in the intact state. The FEA model is linear 

and stiffer than the other two graphs due to the linear elastic model used for the ligament material 

properties.  The arthrometer data is greater than in vitro results because it allows for movement of the 

subtalar and the transverse tarsal joints, as well as anterior translation during internal rotation. 
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Figure 12 Comparisons of ATFL Cut State Data 

The figure shows a comparison of all three testing methods in the ATFL cut state. Initially the in vitro 

test data follows the FEA model then shifting closer to the results of the arthrometer.  This is due to the 

FEA model overestimating the stiffness of the ligaments by only considering the linear portion of the 

stress strain curve, while the arthrometer allows for movement of the subtalar and the transverse 

tarsal joints, as well as anterior translation during internal rotation. 

Table 6 FEA Model Ligament Forces at Max Internal Rotation 

Force (N) CFL ATFL PTFL DPTTL DATTL TCL TNL 

Intact 0 179.37 0 0 0 0 0 

ATFL Cut 7.28 0 0 155.75 0 0 0 
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Figure 13 Intact State 0 N-m Moment Contact Pressure 

The figure shows the intact state model’s contact pressure at 0 N-m of moment applied. Loading is spread over 

two points on the medial and lateral sides of the talar dome, with the highest concentration on the lateral side. 
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Figure 14 Intact State 5 N-m Moment Contact Pressure 

The figure shows the intact state model’s contact pressure at 5 N-m of moment applied. Loading is spread over 

two points on the medial and lateral sides of the talar dome, with the highest concentration on the lateral side. 

This is a similar distribution to the 0 N-m moment contact pressure image shown in Figure 12. 
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Figure 15 ATFL Cut State 0 N-m Moment Contact Pressure 

The figure shows the ATFL cut state model’s contact pressure at 0 N-m of moment applied. Loading is spread 

over two points on the medial and lateral sides of the talar dome, with the highest concentration on the lateral 

side. 
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Figure 16 ATFL Cut State 5 N-m Moment Contact Pressure 

The figure shows the ATFL cut state model’s contact pressure at 5 N-m of moment applied. Contact has shifted 

to the posterior medial side of the talar dome and to anterior portion of the facet for the tibia malleolus. Both 

locations have been shown to be locations of articular cartilage lesions in patients with lateral ankle instability. 

(Taga, et al. 1993, Hintermann, Boss and Schafer 2002, Valderrabano, et al. 2006, van Dijk, Bossuyt and Marti 

1996) 
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Chapter 5 Conclusions 

The results show a correlation in the change in magnitude from intact to ATFL cut states in 

the FEA model to the in vitro test on the MTS of 86% of the predicted value. The arthrometer 

data shows a change that is 44% of the predicted amount. The arthrometer has a greater degree of 

freedom from less restrictive boundary conditions coupled with free movement of the subtalar 

and transverse tarsal joints because of this it can internally rotate to a greater degree with the 

ATFL intact. The FEA model results show a linear behavior that is a result of linear elastic 

material ligament model used in the model. The ligament’s true material behavior is a non-linear 

viscoelastic material. (Mow and Huiskes 2005) In the contact analysis results the model predicts a 

medial shift in contact pressures under internal rotation without the ATFL which has been shown 

to be a potential location for lesions in ankles with lateral instability. (van Dijk, Bossuyt and 

Marti 1996, Hintermann, Boss and Schafer 2002, Taga, et al. 1993, Valderrabano, et al. 2006, 

Okuda, et al. 2005) The model also predicts that the DPTTL and not the CFL carries a majority of 

the resistant forces in the ligaments in internal rotation when the ATFL has been compromised. 

This of interest because there has been some debate on rather the CFL or the DPTTL is injured by 

internal rotation after the disruption of the ATFL, and the model results do not show that the CFL 

sees any significant stress. (Stormont, et al. 1985, Rasmussen and Tovborg-Jensen, Anterolateral 

Rotational Instability in the Ankle Joint 1981) In future models it would be necessary to model 

the surrounding soft tissue such as the joint capsule, muscles, and skin to allow for more freedom 

of movement without creating an under-constrained ridged body. Several other studies have done 

this taking into account the hyper-elastic properties of the surrounding soft tissue. (Cheung and 

Zhang 2006) Ligaments could also me modeled as viscoelastic and non-linear to create a more 

accurate look at the behavior of the ankle joint. Further areas of research could also look at the 

effects of various control devices such as boots or taping to prevent excessive internal rotation in 

an unstable ankle. (Hintermann and Valderrabano 2001, Wilkerson, et al. 2005, Omori, et al. 

2004) This type of modeling would require interaction between the outer layer of soft tissue and 

whatever stabilization device was being examined. 
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ABAQUS Input File 

*HEADING 
Written by Bain Ervin 
*RESTART,WRITE,FREQUENCY = 10,OVERLAY 
*NODE 
            1,  99.340984779952,  102.20434363817,  -65.2193159176  
          . 
  . 
  . 
     78591,  112.6631832246 ,  69.784731694166,  -92.13478344022 
*ELEMENT,TYPE=C3D4,ELSET=Fibula 
      5663,      2834,       223,      3289,       214 
         . 
  . 
  . 
     19451,       284,       289,      3195,       324 
*ELEMENT,TYPE=C3D4,ELSET=Tibia 
     46248,      4338,      4253,     17752,      4438 
      . 
  . 
  . 
     72934,     19171,      5452,      5379,      5318 
*ELEMENT,TYPE=C3D4,ELSET=Calcaneus 
     72935,     21032,      9432,      9486,      9462 
       . 
  . 
  . 
    120215,     20536,     12730,     20244,     12803 
*ELEMENT,TYPE=C3D4,ELSET=Talus and Fore Foot 
    180994,     29966,     55262,     30065,     59932 
     . 
  . 
  . 
    357033,     34933,     34488,     34725,     34806 
*ELEMENT,TYPE=C3D6,ELSET=Talus Cart 
    357034,     27648,     27822,     27928,     69679,     69680,     69681 
      . 
  . 
  . 
    366864,     74750,     74735,     74753,     74751,     74736,     74754 
*ELEMENT,TYPE=C3D6,ELSET=Tibia Cart 
    366865,      5041,      5040,      5038,     74797,     74798,     74799 
      . 
  . 
  . 
    373941,     78530,     78527,     78590,     78531,     78528,     78591 
*ELEMENT, TYPE=T3D2, ELSET=CFL 
    373942,     13062,        91 
*ELEMENT, TYPE=T3D2, ELSET=ATFL 
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    373943,     27846,      1115 
*ELEMENT, TYPE=T3D2, ELSET=PTFL 
    373944,       885,     26108 
*ELEMENT, TYPE=T3D2, ELSET=DPTTL 
    373945,      5084,     26064 
*ELEMENT, TYPE=T3D2, ELSET=DATTL 
    373946,      5454,     27652 
*ELEMENT, TYPE=T3D2, ELSET=TCL 
    373947,      5486,     15163 
*ELEMENT, TYPE=T3D2, ELSET=TNL 
    373948,      5618,     24472 
*NSET, NSET=Prox 
      2390,      2393,      2394,      2395,      2397,      2398,      2404,      2407, 
       . 
  . 
  . 
     19484,     19493,     19494,     19496,     19502 
*NSET, NSET=Dist 
      8929,      8930,      8931,      8932,      8933,      8934,      8935,      8936, 
       . 
  . 
  . 
     69479,     69596,     69638 
*ELSET, ELSET=Tal-Cont 
    357036,    357039,    357042,    357045,    357048,    357051,    357054,    357057, 
      . 
  . 
  . 
    366852,    366855,    366858,    366861,    366864 
*ELSET, ELSET=Tib-Cont 
    366867,    366870,    366873,    366876,    366879,    366882,    366885,    366888, 
      . 
  . 
  . 
    373923,    373926,    373929,    373932,    373935,    373938,    373941 
*ELSET, ELSET=Fib-Cont 
      5664,      5665,      5667,      5670,      5676,      5678,      5680,      5688, 
        . 
  . 
  . 
     19427,     19429,     19434,     19436,     19444,     19446,     19447,     19451 
*NSET, NSET=Prox-1 
      4465, 
*NSET, NSET=Dist-1 
     29869,      
***** 
*****Materials Defined************************************** 
***** 
*MATERIAL, NAME=Bone 
*ELASTIC 
16000.0,0.3 
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*DENSITY 
1.5E-9 
*MATERIAL, NAME=Cartilage 
*ELASTIC 
10.0,0.3 
*DENSITY 
1.0E-9 
*MATERIAL, Name=Ligament 
*ELASTIC 
158.0,0.3 
*NO COMPRESSION 
*DENSITY 
1.0E-9 
** 
*SOLID SECTION, ELSET=Tibia, MATERIAL=Bone 
*SOLID SECTION, ELSET=Calcaneus, MATERIAL=Bone 
*SOLID SECTION, ELSET=Talus and Fore Foot, MATERIAL=Bone 
*SOLID SECTION, ELSET=Fibula, MATERIAL=Bone 
*SOLID SECTION, ELSET=Talus Cart, MATERIAL=Cartilage 
*SOLID SECTION, ELSET=Tibia Cart, MATERIAL=Cartilage 
*SOLID SECTION, ELSET=CFL, MATERIAL=Ligament 
21.36 
*SOLID SECTION, ELSET=ATFL, MATERIAL=Ligament 
62.85 
*SOLID SECTION, ELSET=PTFL, MATERIAL=Ligament 
46.43 
*SOLID SECTION, ELSET=DPTTL, MATERIAL=Ligament 
78.43 
*SOLID SECTION, ELSET=DATTL, MATERIAL=Ligament 
43.49 
*SOLID SECTION, ELSET=TCL, MATERIAL=Ligament 
43.20 
*SOLID SECTION, ELSET=TNL, MATERIAL=Ligament 
60 
***** 
*****CREATING SURFACES FROM ELEMENTS FOR CONTACT************ 
***** 
*SURFACE, NAME = Tib-Cont, TYPE = ELEMENT, TRIM = YES 
Tib-Cont, 
*SURFACE, NAME = Tal-Cont, TYPE = ELEMENT, TRIM = YES 
Tal-Cont, 
*SURFACE, NAME = Fib-Cont, TYPE = ELEMENT, TRIM = YES 
Fib-Cont, 
***** 
*CONTACT PAIR, INTERACTION=cont1   
Tib-Cont,Tal-Cont 
Fib-Cont,Tal-Cont  
Tal-Cont,Tib-Cont  
** 
*SURFACE INTERACTION, NAME = cont1 
*SURFACE BEHAVIOR, PRESSURE-OVERCLOSURE = EXPONENTIAL 
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.0001,.01 
** 
*FRICTION, TAUMAX = 0.000000001 
0.001    
***** 
*****TYING NODE SETS TO SINGLE NODE**************** 
***** 
*RIGID BODY, TIE NSET=Prox, REF NODE=Prox-1 
*RIGID BODY, TIE NSET=Dist, REF NODE=Dist-1 
***** 
*BOUNDARY 
Prox-1,1,6,0 
** 
****************************************************************************** 
**HMNAME LOADSTEP          1 pre axial position 
*STEP, INC =          1000, NAME = Pre Axial Position, NLGEOM = YES 
*STATIC 
0.01      ,1.0       ,1.0000E-07,1.0        
** 
*BOUNDARY, OP=NEW 
Dist-1,1,1,0 
Dist-1,2,2,-1.0 
Dist-1,3,6,0 
Prox-1,1,6,0 
** 
*NODE PRINT, FREQUENCY = 500 
u 
rf 
coord 
*OUTPUT, FIELD, FREQUENCY =5 
*NODE OUTPUT 
U, RF 
*ELEMENT OUTPUT 
S, E 
*CONTACT OUTPUT 
cstress 
*END STEP 
****************************************************************************** 
**HMNAME LOADSTEP          2 axial load 100N (Single Leg Stance 150lbf) 
*STEP, INC = 1000, NAME = Axial Load 100N, NLGEOM = YES, AMPLITUDE=RAMP 
*DYNAMIC, HAFTOL =20000 
0.01      ,5.0       ,1.0000E-07,5.0        
** 
*CONTACT CONTROLS, STABILIZE 
*CONTACT CONTROLS, AUTOMATIC TOLERANCES 
*CONTROLS, ANALYSIS = DISCONTINUOUS 
** 
*BOUNDARY, OP=NEW 
Dist-1,4,4,0 
Prox-1,1,6,0 
** 
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*CLOAD, OP=NEW 
Dist-1,2,-100 
** 
*NODE PRINT, FREQUENCY = 500 
u 
rf 
coord 
*OUTPUT, FIELD, FREQUENCY =5 
*NODE OUTPUT 
U, RF 
*ELEMENT OUTPUT 
S, E 
*CONTACT OUTPUT 
cstress 
*END STEP 
****************************************************************************** 
**HMNAME LOADSTEP          3 Rotational Displacement 1 
*STEP, INC = 1000, NAME = Rot Disp 1, NLGEOM = YES 
*STATIC 
0.01      ,1.0       ,1.0000E-07,1.0   
** 
*CONTACT CONTROLS, RESET 
** 
*CHANGE FRICTION, INTERACTION = cont1 
*FRICTION, TAUMAX = 0.0 
0.0 
** 
*BOUNDARY, FIXED 
Dist-1,3,4 
** 
*CLOAD, OP=MOD 
Dist-1,5,-5000 
** 
*NODE PRINT, FREQUENCY = 500 
u 
rf 
coord 
*OUTPUT, FIELD, FREQUENCY =5 
*NODE OUTPUT 
U, RF 
*ELEMENT OUTPUT 
S, E 
*CONTACT OUTPUT 
cstress 
*END STEP 
****************************************************************************** 
**HMNAME LOADSTEP          4 Rotational Displacement 2 
*STEP, INC = 1000, NAME = Rot Disp 2, NLGEOM = YES 
*STATIC 
0.01      ,1.0       ,1.0000E-07,1.0        
**  
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*CLOAD, OP=MOD 
Dist-1,5,0 
** 
*NODE PRINT, FREQUENCY = 500 
u 
rf 
coord 
*OUTPUT, FIELD, FREQUENCY =5 
*NODE OUTPUT 
U, RF 
*ELEMENT OUTPUT 
S, E 
*CONTACT OUTPUT 
cstress 
*END STEP 
****************************************************************************** 
**HMNAME LOADSTEP          5 Remove ATFL 
*STEP, INC = 1000, NAME = Remove ATFL, NLGEOM = YES 
*STATIC 
0.25      ,1.0       ,1.0000E-07,1.0         
** 
*CONTACT CONTROLS, RESET 
** 
*BOUNDARY, FIXED 
Dist-1,1,1 
Dist-1,3,6 
** 
*MODEL CHANGE, Remove  
ATFL, 
** 
*NODE PRINT, FREQUENCY = 500 
u 
rf 
coord 
*OUTPUT, FIELD, FREQUENCY =5 
*NODE OUTPUT 
U, RF 
*ELEMENT OUTPUT 
S, E 
*CONTACT OUTPUT 
cstress 
*END STEP 
****************************************************************************** 
**HMNAME LOADSTEP          6 Rotational Displacement With out ATFL 1 
*STEP, INC = 1000, NAME = Rot Disp wo ATFL 1, NLGEOM = YES 
*STATIC 
0.01      ,1.0       ,1.0000E-07,1.0         
** 
*CONTACT CONTROLS, STABILIZE=0.1 
*CONTACT CONTROLS, AUTOMATIC TOLERANCES 
** 
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*CHANGE FRICTION, INTERACTION = cont1 
*FRICTION, TAUMAX = 0.0 
0.0 
** 
*BOUNDARY, OP=NEW, FIXED 
Dist-1,3,4 
Prox-1,1,6 
** 
*CLOAD, OP=MOD 
Dist-1,5,-5000 
** 
*NODE PRINT, FREQUENCY = 500 
u 
rf 
coord 
*OUTPUT, FIELD, FREQUENCY =5 
*NODE OUTPUT 
U, RF 
*ELEMENT OUTPUT 
S, E 
*CONTACT OUTPUT 
cstress 
*END STEP 
****************************************************************************** 
**HMNAME LOADSTEP          7 Rotational Displacement With out ATFL 2 
*STEP, INC = 1000, NAME = Rot Disp wo ATFL 2, NLGEOM = YES 
*STATIC 
0.01      ,1.0       ,1.0000E-07,1.0       
** 
*CHANGE FRICTION, INTERACTION = cont1 
*FRICTION, TAUMAX = 0.0 
** 
*CLOAD, OP=MOD 
Dist-1,5,0 
** 
*NODE PRINT, FREQUENCY = 500 
u 
rf 
coord 
*OUTPUT, FIELD, FREQUENCY =5 
*NODE OUTPUT 
U, RF 
*ELEMENT OUTPUT 
S, E 
*CONTACT OUTPUT 
cstress 
*END STEP 
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