
TETRAHEDRAL MESH OPTIMIZATION AND GENERATION

VIA TOPOLOGICAL TRANSFORMATIONS AND GRADIENT

BASED NODE PERTURBATION

By

Christopher Bruce Hilbert

Steve L. Karman, Jr.
Professor of Computational Engineering
(Chair)

James C. Newman III
Professor of Computational Engineering
(Committee Member)

Sagar Kapadia
Research Assistant Professor of
Computational Engineering
(Committee Member)

Vincent C. Betro
Computational Scientist, JICS/NICS
(Committee Member)

TETRAHEDRAL MESH OPTIMIZATION AND GENERATION

VIA TOPOLOGICAL TRANSFORMATIONS AND GRADIENT

BASED NODE PERTURBATION

By

Christopher Bruce Hilbert

A Dissertation Submitted to the Faculty of the University
of Tennessee at Chattanooga in Partial Fulfillment of

the Requirements of the Degree of Doctor of
Philosophy in Computational Engineering

The University of Tennessee at Chattanooga
Chattanooga, Tennessee

August 2015

ii

Copyright © 2015

By Christopher Bruce Hilbert

All Rights Reserved

iii

ABSTRACT

A general tetrahedral mesh optimization scheme utilizing both topological changes (i.e.

flips) and gradient-based vertex optimization (i.e. smoothing) is demonstrated. This scheme is

used in the optimization of tetrahedral meshes created by third-party software as well as a grid

generation methodology created for this work. The particular algorithms involved are explained in

detail including, an explication of the primary optimization metric, weighted condition number. In

addition, a thorough literature review regarding tetrahedral mesh generation is given.

iv

DEDICATION

This work is dedicated to my little girl and boy, Abbie and Zeke, who, though they are only

seven and five years old, already make fun of their dad for being a nerd.

v

ACKNOWLEDGEMENTS

The number of people who have helped me to this point are too many to remember. As

with any person who made it this far in their academic career (or any major life endeavor), I have

to thank a legion of teachers, students, mentors, friends, and family who have challenged and

supported me along the way. In particular let me mention the following: My former teachers

and fellow students Nancy Caldwell, Mary Richardson, Jonathan Innes, Sonny Tendian, David

Foreman, Bruce Atkinson, James Brown, Wally Edmondson, Nick Currier, and Taylor Erwin. My

lifelong friends Zachary Cullis, Paul Klintworth, and Michelle Matson who have always supported

me during the challenging times of life. My colleague and friend Ethan Hereth for taking up the

slack I left while working on this dissertation. My advisor, Dr. Steve Karman, who took me on as

a student even after I crashed his computer. My parents, Gary and Debbie. I could not have had

better. My wife for loving me and putting up with a husband who has been in school her whole

married life.

Finally, I give praise to the Lord God, Father, Son, and Holy Spirit. I can do all things

through Christ who strengthens me . . . even CFD.

vi

TABLE OF CONTENTS

ABSTRACT.. iv

DEDICATION ... v

ACKNOWLEDGEMENTS .. vi

LIST OF TABLES .. ix

LIST OF FIGURES ... x

LIST OF SYMBOLS .. xiv

CHAPTER

1. INTRODUCTION AND LITERATURE REVIEW.. 1

1.1 Definitions.. 2
1.2 The Delaunay Property .. 3
1.3 Two-Dimensional Algorithms ... 7

1.3.1 Lawson and Bowyer-Watson ... 7
1.3.2 Two-Dimensional Mesh Creation .. 12

1.4 Delaunay Tetrahedralizations... 14
1.4.1 Boundary Recovery ... 14
1.4.2 Internal Point Generation... 15

1.5 Edge and Face Removal ... 18
1.6 Vertex Smoothing .. 21
1.7 Overview of Mesh Improvement and Creation Strategies Explored 26

2. METHODOLOGIES AND ALGORITHMS .. 27

2.1 A Metric for Tetrahedra Evaluation ... 28
2.1.1 Weighted Condition Number ... 28
2.1.2 Tetrahedral Cost ... 36
2.1.3 Examples of Tetrahedral Weighted Condition Number and Cost.............. 37

vii

2.2 Topological Optimization .. 44
2.2.1 Higher Order Flips .. 45
2.2.2 Boundary Flips... 48
2.2.3 Topological Optimization Algorithm... 48

2.3 Optimization via Node Perturbation .. 52
2.4 Mesh Convergence Cycle... 56

2.4.1 Mesh Convergence Cycle Algorithm... 56
2.4.2 Mesh Convergence Cycle Examples.. 59

2.5 Other Mesh Creation Techniques... 63
2.5.1 Point Insertion.. 63
2.5.2 Bounding Box and Octree-Based Pseudo-Tiling 64
2.5.3 Boundary Recovery ... 67
2.5.4 Edge Driven Refinement and Simply Partitioned Tetrahedra 68
2.5.5 Overall Mesh Creation Algorithm ... 70

3. RESULTS .. 72

3.1 Aspect Ratio... 73
3.2 Numerical Experiment .. 74
3.3 Edge Refinement with LSOI ... 76
3.4 Optimization and Creation Cases .. 78

3.4.1 Simple Sphere .. 80
3.4.2 Three Boxes Test Case .. 86
3.4.3 ONERA M6 Wing .. 94
3.4.4 Notional Spaceplane .. 104
3.4.5 Eglin Wing Pylon Store ... 111
3.4.6 Stanford Bunny .. 118

3.5 Timing Results ... 126

4. DISCUSSION ... 128

APPENDIX

A. DUAL NUMBERS .. 132

B. INTEGER PAIRING.. 141

REFERENCES .. 145

VITA .. 152

viii

LIST OF TABLES

3.1 Simple Sphere Pointwise and TetGen Optimization Statistics .. 83

3.2 Simple Sphere Tetmesh Grid Statistics.. 84

3.3 Three Boxes Case Pointwise Mesh Optimization Statistics... 88

3.4 Three Boxes Case Tetmesh Grid Statistics ... 89

3.5 ONERA M6 Pointwise and TetGen Optimization Statistics.. 97

3.6 ONERA M6 Tetmesh Grid Statistics .. 98

3.7 Notional Spaceplane Pointwise Mesh Optimization Statistics 107

3.8 Notional Spaceplane Tetmesh Grid Statistics ... 108

3.9 Wing Pylon Store Pointwise Mesh Optimization Statistics .. 113

3.10 Wing Pylon Store Tetmesh Grid Statistics .. 114

3.11 Stanford Bunny Optimization Statistics ... 121

3.12 Stanford Bunny Tetmesh Grid Statistics .. 122

3.13 Run Times .. 127

ix

LIST OF FIGURES

1.1 Delaunay versus Not Delaunay .. 4

1.2 A Delaunay Triangulation and Voronoi Diagram of the same set of vertices (in red.) 5

1.3 A “Kite” in a Delaunay Tetrahedralization .. 7

1.4 Bowyer-Watson Algorithm Example ... 10

1.5 Lawson’s Algorithm Example.. 11

1.6 The 2-3 Flip ... 19

1.7 The 3-2 Flip ... 20

1.8 The 4-4 Flip ... 20

1.9 An Example of Node Perturbation... 22

2.1 A Right Angle Tetrahedron with Normalized, Inverted Gradient vectors of cW 38

2.2 An Equilateral Tetrahedron ... 39

2.3 Various Tetrahedra Related to an Equilateral Tetrahedron ... 40

2.4 Plots of WCN and Cost Verses Position of Apex of Tetrahedron with Equilateral Base... 43

2.5 A Higher Order Flip and Its Ring .. 47

2.6 Topological Tetrahedral Optimization ... 50

2.7 Tetrahedral Optimization via Node Perturbation ... 54

2.8 Mesh Convergence Cycle... 57

x

2.9 Mesh Convergence Cycle, Two Tetrahedra .. 61

2.10 Mesh Convergence Cycle, Forty-two Nodes.. 62

2.11 Initial Bounding Box.. 65

2.12 Nearly Equilateral Space Tiling Tetrahedra ... 66

2.13 A Simply Partitioned Tetrahedron ... 70

3.1 Box for Random Insertion.. 75

3.2 A Poor Quality Mesh from Bowyer-Watson Random Point Insertion 75

3.3 Random Insertion Methodologies Relative Frequency Plots .. 76

3.4 Pointwise versus Edge Refinement by Lawson Style Optimization Insertion Relative
Frequency Plots.. 77

3.5 Edge Refinement by Lawson Style Optimization Insertion ... 78

3.6 Simple Sphere Geometry and Surface Grid... 82

3.7 Simple Sphere Poor Quality Elements in TetGen Mesh .. 82

3.8 Simple Sphere Optimization Relative Frequency Plots ... 85

3.9 Simple Sphere Tetmesh vs. Pointwise and TetGen Relative Frequency Plot 85

3.10 Three Boxes Case Geometry and Surface Grid ... 87

3.11 Three Boxes Case Optimization Optimization Relative Frequency Plots 90

3.12 Three Boxes Case Tetmesh vs. Pointwise Generated Grid Relative Frequency Plots 90

3.13 Three Boxes Case Octree Pseudo-Tiling ... 91

3.14 Three Boxes Case Tetmesh Grid with Callout of Poorer Quality Tetrahedron on
Surface .. 92

3.15 Three Boxes Case Tetmesh Grid (close-up) .. 93

xi

3.16 ONERA M6 Geometry and Surface/Symmetry Plane Grid ... 96

3.17 ONERA M6 Optimization Relative Frequency Plots .. 99

3.18 ONERA M6 Tetmesh vs. Pointwise Generated Grid Relative Frequency Plots 99

3.19 ONERA M6 Tetrahedra with WCN ≥ 2.0... 100

3.20 ONERA M6 Tetmesh Grid WCN ≥ 2.0 .. 101

3.21 ONERA M6 Tetmesh Grid ... 102

3.22 ONERA M6 Tetmesh Grid (close-up) .. 103

3.23 Notional Spaceplane Geometry and Surface Grid... 106

3.24 Notional Spaceplane Optimization of Pointwise Mesh Relative Frequency Plots 109

3.25 Notional Spaceplane Tetmesh versus Pointwise Relative Frequency Plots 109

3.26 Notional Spaceplane Poor Quality Tetrahedra on Surface... 110

3.27 Notional Spaceplane Visual Comparison of Pointwise and Tetmesh Grids 110

3.28 Wing Pylon Store Geometry and Grid... 112

3.29 Wing Pylon StoreOptimization of PointwiseMeshOptimizationRelative Frequency
Plots ... 115

3.30 Wing Pylon Store Optimization of Pointwise Mesh .. 115

3.31 Wing Pylon Store Poor Quality Tetrahedron on Surface ... 116

3.32 Wing Pylon Store Visual Comparison of Pointwise and Tetmesh Grids......................... 117

3.33 Stanford Bunny Geometry and Surface Grid .. 120

3.34 Stanford Bunny Optimization of Pointwise Mesh Relative Frequency Plots 123

3.35 Stanford Bunny Tetmesh versus Pointwise Relative Frequency Plots 123

3.36 Stanford Bunny Poor Quality Tetrahedra on Surface .. 124

xii

3.37 Stanford Bunny Slice of Tetmesh Grid ... 125

xiii

LIST OF SYMBOLS

Ak , Jacobian matrix of tetrahedra A taken from vertex k

AR, aspect ratio

CNk , tetrahedral condition number taken from vertex k

cW , tetrahedral cost based on weighted condition number

δn, threshold perturbation distance

E, an edge of a tetrahedron

ε , an infinitesimal number

J (T), the Jacobian of a tetrahedron

LSOI, Lawson Style Optimization Insertion

N , a list or set of nodes

p, perturbation vector

T , a tetrahedron

Θ, a list or set of tetrahedra

W , weight matrix in weighted condition number

WCN, tetrahedral weighted condition number

x, coordinates of vertex/node

·F , Frobenius norm

xiv

CHAPTER 1

INTRODUCTION AND LITERATURE REVIEW

Grid generation is one of the most vital and difficult parts of the computational simulation

process. Acceptable grid quality is a necessary condition to ensure the efficacy of any finite

difference, finite volume, or finite element simulation. While grid quality can be an elusive goal,

experience shows that element shape plays an important role in affecting the stability of a particular

solution procedure as well as affecting phenomenon such as dissipation and diffusion. Grid angles

approaching 0° or 180° often cause computational difficulties and, thus, elements with as “regular”

a shape as possible are desired for quality solutions. An oft cited reference for the effects of element

angles on solution accuracy can be found in Babuska [1]. Shewchuk [2] also offers a good overview

on the subject. Of course, grid resolution is equally important. No phenomenon can be accurately

modeled without adequate resolution.

Finite volume and finite element methods most often make use of unstructured grids. By far,

the most common element type utilized in three-dimensional unstructured grids is the tetrahedron.

This prevalence is due largely to the fact that tetrahedra are the simplest of the three-dimensional

polyhedra. In that vein, a great deal of academic work has focused on constructing tetrahedral

grids. This dissertation focuses on a technique for the creation and quality-driven optimization of

such tetrahedral grids.

1

The research herein tackles two separate but closely related problems in tetrahedral grid

construction:

• Given a set of triangles in three-dimensional space that form a closed manifold, construct a

tetrahedral grid suitable for computational simulations

• Given a tessellation of some space composed of tetrahedra, improve the quality of the

tetrahedralization with respect to its suitability for computational simulations

What follows is a general overview of mesh generation and optimization techniques that are

important to developing algorithms to solve the above problems. Every attempt has been made to

provide a comprehensive, but not necessarily detailed, treatment of the subject of tetrahedral mesh

generation. An introduction to the Delaunay property, two and three-dimensional mesh creation

algorithms, topological mesh manipulation, and mesh improvement through vertex smoothing

will all be highlighted. There are a number of other sources that give a reasonable overview of

tetrahedral mesh creation and improvement techniques. A few such general treatments are given

by Bern [3], George [4], and Danilov [5].

1.1 Definitions

In grid generation there are often many terms for the same thing. In this work, we will make

use of the following terminology:

• The terms grid and mesh will be used interchangeably as will the terms node and vertex.

2

• A simplex will refer to an element, either a triangle or tetrahedron. In that light, triangle

and tetrahedron will refer to their irregular (i.e. non-equilateral) forms unless otherwise

indicated.

• Smoothing will refer to the movement of vertices to improve mesh quality.

• Changes to the mesh connectivity will be formally referred to as topological changes and

more informally as swapping or flipping.

• Quality will refer, loosely, to element shape and the efficacy of the mesh for computational

simulation.

• Optimization will refer to mesh quality improvement through whatever means.

1.2 The Delaunay Property

Most of the tetrahedral grid construction techniques are three-dimensional analogues of

processes developed to create two and three-dimensional triangle grids. In particular, most tetra-

hedral grid generation techniques rely on a feature called the Delaunay [6] property as a way of

maintaining element quality. The Delaunay property simply ensures that the circumscribing sphere

of any tetrahedra in the grid contains no vertices from any other tetrahedra. In two-dimensions, this

property is equivalent to stating that no circle circumscribing any triangle contains the vertex of any

other triangle. A simple illustration of the Delaunay property in two-dimensions is given in Figure

1.1. Notice the red vertex is inside a neighboring triangle’s circumcircle and, thus, the Delaunay

property is violated. Note it is possible for points that form two adjacent triangles or tetrahedra to

3

Figure 1.1 Delaunay versus Not Delaunay

be co-circular or co-spherical. Thus the circumcircle/circumsphere will, strictly speaking, contain

a non-defining vertex. In these cases, any valid connectivity is taken to meet the Delaunay property.

Delaunay showed that any triangulation with the property described above was the dual

mesh of the Voronoi [7] diagram. The Voronoi diagram is the partitioning of a plane with a given

set of points into regions all of whose points are closer to one of the given points than any other

given point. More formally, a Voronoi region of the plane (or hyperplane) X surrounding a given

point pi ∈ P ⊂ X is

R =
{
x ∈ X ���dist

(
x, pi

)
< dist

(
x, pk

)
∀pk ∈ P

}
(1.1)

where P is the given set of points. This partitioning is also often called a Dirichlet tessellation as it

tiles the plane. An illustration of this dual relationship between the Voronoi diagram and Delaunay

triangulation is given in Figure 1.2. (These graphs were created with the help of Chew’s online

4

(a) Delaunay triangulation (b) Voronoi diagram

Figure 1.2 A Delaunay Triangulation and Voronoi Diagram of the same set of vertices (in red.)

applet [8].) The Delaunay triangulation/tetrahedralization of a plane/space is unique for a given set

of points, excepting the possibility of co-circular/co-spherical points.

Indeed there are many reasons to pursue the Delaunay property as a goal and means of

creating triangular and tetrahedral meshes. For example, Sibson [9] has shown that the Delaunay

triangulation of a set of points is the most nearly equiangular triangulation attainable. That is, the

Delaunay triangulation of a set of points will, in some sense, be the highest quality for that set

of points. Also, as will be discussed in Section 1.3, utilizing the Delaunay property during node

insertion provides a way to eliminate poor quality elements.

However, there is no direct correlation between maintaining the Delaunay property and the

efficacy of a tetrahedral unstructured grid vis-à-vis its utility for computational analysis. While

there are several proofs about particular angle-based quality criteria for two-dimensional Delaunay

grids, such strong guarantees do not exist for three-dimensional tetrahedralizations. Rajan [10]

has shown that a Delaunay mesh of any dimension minimizes the maximum radius of any sphere

5

circumscribed about any element of themesh. However, this does not guarantee the optimum angles

desired for simulations. For example, four points that are nearly coplanar will have a circumsphere

that is relatively small and, thus, contains no other points in the mesh. These tetrahedra are often

refereed to as “kites” or “slivers.” Such elements do not violate the Delaunay property but, since

they have angles between faces that approach 0° and 180°, are poor elements for computational

simulation. Figure 1.3 shows such an element from a Delaunay tetrahedralization. Moreover,

simply creating a Delaunay mesh does not solve the grid generation problem vis-à-vis a grid’s

utility for computational analysis. In particular, care must be taken to ensure that the triangles

used to define the geometric boundaries of the model being analyzed are present in the final mesh,

i.e., the boundaries are recovered. Also, one must insert enough points at the correct locations to

achieve an accurate simulation. As such, methods are proposed herein that, while making use of

the Delaunay criterion, ultimately do not completely respect that specification.

6

Figure 1.3 A “Kite” in a Delaunay Tetrahedralization

1.3 Two-Dimensional Algorithms

What follows is a discussion of two-dimensional triangulation algorithms. While this work

assumes that a suitable triangulation of the surface defining the space to be tetrahedralized has been

generated, most of the three-dimensional mesh creation and optimization strategies are extensions

of two-dimensional triangulation algorithms.

1.3.1 Lawson and Bowyer-Watson

Much of the inspiration for this work comes from an early researcher in the problem of

triangulation, C. L. Lawson. Lawson [11] introduced one of the earliest algorithms for triangulating

a set of points. That algorithm is summarized as follows: First the points are ordered by Euclidean

7

distance from the point with the least x coordinate. An initial triangle is constructed from the

first three non-collinear points in this ordering. Then, one-by-one, the points are connected to the

bounding edges of the current triangulation.

Note that, due to the initial ordering of the points, Lawson’s algorithm could simply be

thought of as a sweep line insertion. The unique part of this algorithm is the edge “swapping”

technique. As each triangle is created, that triangle and its edge neighbor are evaluated based upon

one of three quality criteria: the max-min angle criterion, the circle criterion, or the Thiessen region

criteria. The max-min criterion chooses to swap the common edge between two triangles if the new

triangulation increases the minimum included angle as compared the original triangulation. The

circle criterion chooses to swap the edge if the circumscribing circle of one the triangles in question

contains the opposite vertex of the other triangle. The Thiessen region refers to the region around

point P that is closer to point P than any other specified point in the plane. Two given points are

said to be Thiessen neighbors if their Thiessen regions contact one another. Lawson swaps edges

to insure that all Thiessen neighbors are connected. Most importantly, Lawson shows that these

three criteria produce equivalent meshes when used to determine edge swapping.

Although not stated by Lawson, the circle criterion should be simply construed as maintain-

ing the two-dimensional Delaunay property. Also, note that the aforementioned Thiessen regions

are precisely equivalent to Voronoi partitioning although, again, Lawson does not reference this

fact. There is no obvious reason Lawson does not use what have become the more accepted terms

for these properties; but Lawson does reference sources (particularly for Thiessen regions) that,

apparently, also use these terms.

8

The more commonly employed triangulation algorithm, and the one that inspires the most

three-dimensional tetrahedralization algorithms (see Section 1.4) , was developed independently

and published simultaneously in the same journal by Bowyer [12] andWatson [13]. Their algorithm

is summarized as follows: Given a Delaunay triangulation, insert a new point into the triangulation

by finding all the triangles whose circumcircles contain the new point. Delete these triangles

and connect the points to form new triangles appropriately. This algorithm is generally known as

“Boywer-Watson” insertion. An illustration of this is given in Figure 1.4.

It should be noted that Bowyer does not specify triangle removal in terms of circumcircles

but instead in terms of the Voronoi partitioning. Watson specifies an initial simplex into which

to insert the first given point while Bowyer simply takes the first several specified points to form

the initial Voronoi partitioning. Both authors substantiate that their algorithm works for any

dimensionality; but, for obvious reasons, they only give examples in two and three-dimensions.

Lawson’s methodology can be applied to point insertion in a manner similar to Bowyer-

Watson. Instead of removing all triangles whose circumcircle contains the new point, simply

connect the point to the vertices of the triangle in which it is found to form three new triangles

(deleting the original triangle.) Subsequently, use a series of flips to ensure the Delaunay property

is maintained. A illustration of this process is given in Figure 1.5.

In two-dimensions, Lawson’s algorithm will result in the same mesh as Bowyer-Watson,

excluding the co-circular case. This result is due to the fact that any two-dimensional grid that is

everywhere locally Delaunay will, obviously, be globally Delaunay. Unfortunately, that property

does not entirely hold in higher dimensions. More discussion of this quandary can be found in

Section 1.5.

9

(a) initial mesh (b) point location

(c) circumcircle tests (d) violated triangles deleted

(e) inserted point connection

Figure 1.4 Bowyer-Watson Algorithm Example

10

(a) point location (b) point inserted

(c) first violated triangle test (d) first flip

(e) second violated triangle test (f) second flip

Figure 1.5 Lawson’s Algorithm Example

11

Also note that neither the Bowyer-Watson nor Lawson method address the issue of ensuring

particular edges, such as those that compose a set of boundaries, are extant in the final mesh. In

that vein, Chew [14] has shown that with a given set of n vertices and a prescribed set of edges,

a constrained Delaunay mesh can be constructed in O
(
n log n

)
time. A constrained Delaunay

triangulation is a triangulation which respects the set of prescribed edges but is, otherwise, as close

to maintaining the Delaunay property as possible. A similar concept of a constrained Delaunay

tetrahedralization that respects a set of prescribed triangles is often used for three dimensional

meshes. However, neither Bowyer-Watson nor Lawson nor this particular work by Chew prescribe

methods to generate the set of points to be triangulated. That is, not everything has been introduced

to solve the problem of creating a complete computational mesh.

1.3.2 Two-Dimensional Mesh Creation

Within the literature, there have been many methods proposed for point creation in two-

dimensional meshes. Chew [14, 15] presented the first two-dimensional meshing algorithm with

provable size and shape bounds. Chew’s algorithm is very popular and forms the basis of many

other two and three-dimensional Delaunay based procedures. A summary of the algorithm is a

follows:

• Choose a parameter h such that all boundary edge lengths are between h and h
√
3.

• Form the constrained Delaunay triangulation of the boundary edges.

12

• Beginning with this original triangulation, while there exists a triangle with circumradius

greater than h, add the center of that triangle’s circumcircle to triangulation using a Bowyer-

Watson style insertion.

The procedure provably terminates in a triangulation wherein all edges have length less than 2h and

all angles are between 30° and 120°. This result, due to its guaranteed quality constraint, makes

Chew’s algorithm extremely appealing, even with the input boundary length restriction. As such,

much work has been done to extend the result.

Ruppert [16–18] built on Chew’s result by allowing triangles that vary in size. Ruppert’s

work guarantees a triangulation with angles between 20° and 160° with aspect ratios less than

2/sin 20° ≈ 5.85. More importantly, unlike Chew’s algorithm where all elements are of roughly equal

area, the triangles will vary smoothly in size between small and large input boundary segments. It

should be noted that, in Ruppert’s approach, the boundary segments themselves are refined. Thus,

Ruppert’s approach does not necessarily recover a prescribed set of segments.

Alternative approaches to generating and triangulating a set of points have been developed.

Bern et al. [19] introduced a quadtree methodology that produces triangles with an aspect ratio

less than 4 and/or angles with quality bounds (depending upon the particular implementation

chosen.) Marcum [20–22] gave details for point insertion based upon the boundary definitions that

produce nearly isotropic triangles. See Section 1.4.2 for a more detailed explanation. H. Chen and

Bishop [23] proposed a way to mesh surfaces in three dimensions by transforming the circumcircles

of the triangles into the parametric space of the surface. This technique produces better results than

simply meshing in the parametric space and transforming the mesh back into real coordinates.

13

1.4 Delaunay Tetrahedralizations

The majority of three-dimensional tetrahedralization algorithms utilize a form of the

Bowyer-Watson algorithm and make every attempt to maintain the Delaunay property. There

are broad issues that must be overcome to make these mesh generation algorithms viable. Notably,

there are efficiency and numerically related robustness issues associated with the point insertions

and generation of the set of tetrahedra to be deleted. Little discussion will be given here to these

issues here except to say that those sorts of problems have been mostly solved. In particular,

Borouchaki and George [24] have developed a highly efficient Bowyer-Watson insertion scheme

based upon finding the next point for insertion via a random walk. Shewchuk [25] has also done

work towards solving such problems involving infinite precision arithmetic.

More important to this work, one must be concerned with recovering a boundary that

consists of a set of triangles. Further, there is the question of how to construct points to generate

quality elements on the interior of the mesh. What follows is an overview of these two issues.

1.4.1 Boundary Recovery

The recovery of the prescribed triangular boundary is itself a perplexing problem worthy of

an entire dissertation. Perhaps the most distressing fact in the quest for a tetrahedral mesh comes

from Ruppert and Seidel [26] who showed that determining if a polyhedra can be tetrahedralized

at all without the addition of a specified number of vertices is NP-complete. That is, the problem

is theoretically equivalent to the most challenging and intractable problems of computational

theory. Thus, there may be triangular boundary configurations that could themselves only be

tetrahedralized by checking all possible configurations. This result implies the problem would

14

take O (n!) operations to solve! Still, from a practical point of view, boundary recovery is well

understood.

Paul Louis George et al. [27–29] have presented most of the seminal work on recovering

a particular triangular boundary. George’s methodologies consists largely of making topological

changes to the mesh in order to recover the prescribed triangulation. Shewchuk [30, 31] has

also employed an edge swapping based boundary recovery scheme. However, in [27] George

has proven that boundary recovery is provably obtainable if one is allowed to insert an arbitrary

number of points into the triangulation itself. Si and Gartner [32] introduced an algorithm utilizing

a constrained Delaunay approach to insert points and provably recover the boundary. Du and

Wang [33] presented work which combined point insertion and topological changes that also

provably recovered the boundary. Liu et al. [34] improved upon this procedure by constructing the

order in which these points are inserted so that they can be easily removed.

Ghadyani et. al. [35] presented an innovative algorithm based upon element removal called

“Last Resort.” This algorithm creates a hole in the mesh containing the points of the deleted

elements. The number of possible ways to re-mesh this hull is, as alluded to above, O (n!).

However, Ghadyani employs a tree structure to make the procedure more tractable, reducing the

operations to O (n). For boundary recovery, the hole is merely created at the surface with its hull

defined by the prescribed triangulation.

1.4.2 Internal Point Generation

There are a variety of methodologies used to determine where precisely points should be

placed internally to the surface triangulation to create a suitable computational mesh. Algorithms

15

to attack the worst quality element, quad-tree insertion techniques, and boundary dependent point

placement are all routinely used. Most three-dimensional point placement algorithms are merely

analogues of some two-dimensional algorithm. However, as was stated before, most techniques are

based-on, or at least utilize, the Bowyer-Watson point insertion methodology.

Placing new points to guarantee the removal of poor quality elements is commonly utilized.

Chew [36] proposed an algorithm for tetrahedralization of a domain based on the developed two-

dimensional scheme. However, instead of placing points at exactly the center of the circumsphere

of a tetrahedron, a point is randomly placed somewhere within one-half radius a circumsphere.

This candidate point is accepted only if it produces no slivers. (See Section 1.2.) If slivers are

produced by the new point, a new random point is chosen and the check is repeated until no slivers

are produced. This process guarantees the deletion of a poor quality element and, as Chew proved,

will create meshes with angles between tetrahedral faces bounded by approximately 14.5° and

151°. Unfortunately, this guarantee requires that the boundary triangulation be convex and meet

some stringent quality and length constraints.

Shewchuk [25,37,38] developed a three-dimensional tetrahedral mesh generation algorithm

that built upon Ruppert’s two-dimensional algorithm. (See Section 1.3.2.) This algorithm can

provably produce Delaunay meshes with circumradius-to-shortest-edge ratio no greater than two

as long as the input segments and facets are separated by angles of at least 90°. The procedure first

splits the prescribed boundary segments and faces, thus refining those segments and faces as was

done by Ruppert. Vertices are then inserted at the circumcenter of tetrahedra with circumradius-

to-shortest edge ratio above some prescribed bound. Shewchuk also introduced a number of

innovations including the use of an “equatorial lens” to protect subfacets of a boundary face from

16

refinement, an explanation of the use of arbitrary precision floating point arithmetic as it pertains

to grid generation, and (most importantly) a large number of proofs about good-quality and good-

grading (i.e. smooth transition from elements of small volume to element of a larger volume.)

Note that, just as with Ruppert, Shewchuk’s original algorithm did not enforce a strict boundary

recovery, only broadly defined segments and facets which are themselves refined. However [39]

and [30] outline a sweep algorithm utilizing the aforementioned subfacet protection to create a

mesh with a given set of facets.

As a doctoral thesis, Si [40] developed an algorithm much like Shewchuck’s that incor-

porated a Delaunay refinement routine with guaranteed termination. Si [41] has also shown that

Shewchuk’s boundary angle requirement can be reduced from 90° to arccos 1
3 ≈ 70.53°. A tetra-

hedral mesh generation code developed by Si, TetGen1 [42], is freely available online.

There have been many other variations utilizing the Bowyer-Watson insertion technique.

Borouchaki et. al [43] generated points by comparing current edge lengths in the mesh with a local

step size based upon the boundaries. New points are located along the edges utilizing an algebraic

distribution and then inserted using a Bowyer-Watson scheme. Miller et. al. [44] showed a method

that places points using a sphere packing algorithm which guarantees a bounded radius to edge

ratio. Gosselin and Ollivier-Gooch [45] presented an algorithm that inserts points based on various

quality measures with the goal of removing sliver tetrahedra.

Marcum [20–22, 46] has created some very high quality (and visually impressive) meshes

using “Advancing Front/Local Reconnection,” or AFLR, point insertion techniques. Initially,

1http://wias-berlin.de/software/tetgen/

17

the triangular boundaries are recovered, somewhat ironically, with a Delaunay procedure. Point

distribution functions are assigned to each boundary point representative of the local point spacing.

New points are created by marching from the selected face, hence the term advancing front, with

procedures implemented to ensure that the newly placed points are not close to existing points.

Interestingly, each point is inserted in place and then edge and face flips are used, hence local

reconnection, using a “combined Delaunay and min-max type criterion.” (See Section 1.5.) Thus,

because of the prescribed point placement, meshes are created with mostly isotropic tetrahedra

(outside any prescribed boundary layer.) Working with Marcum, Weatherill [47–49] has given a

method which produces results similar to AFLR meshes by inserting points in a set of existing

tetrahedra based upon local spacing parameters.

1.5 Edge and Face Removal

In two dimensions, the only topological change involving triangles that can be made is the

simple edge swap originally used by Lawson. However, in three-dimensions with tetrahedra, the

changes are not so simple. While only two tetrahedra may share a face there is no upper bound

for the number of tetrahedra that may surround an edge. Nevertheless, there are practical ways to

make flips with tetrahedra.

There are three basic topological changes that can be made in tetrahedral meshes: the 2-3

flip, 3-2 flip, and 4-4 flip. The 2-3 flip takes 2 tetrahedra that share a face and connects the two

vertices not on that face with an additional edge. Thus, three tetrahedra are created around that

edge and the two original tetrahedra are removed. See Figure 1.6 for an illustration. The 3-2 flip is

simply the inverse of the 2-3 flip. An edge surrounded by three tetrahedron is removed to create two

18

(a) before: 2 − 3 − 4 − 1, 4 − 3 − 2 − 0 (b) after: 0 − 1 − 2 − 3, 0 − 1 − 3 − 4, 0 − 1 − 4 − 2

Figure 1.6 The 2-3 Flip

tetrahedra that share a face. The 3-2 flip is depicted in Figure 1.7. Finally, the 4-4 flip removes an

edge surrounded by four tetrahedra and adds an edge between two of the four nodes not connected

to the edge that was removed. Note there are potentially two valid choices for this new edge. Figure

1.8 shows an example of one choice for the 4-4 flip. George and Borouchaki [50] have shown that

the 4-4 flip is necessary in creating an arbitrary topological change in that the 2-3 and 3-2 flips are

insufficient to describe some transformations. Removing an edge surrounded by more than four

tetrahedra will be considered in Section 2.2.1.

One of the most import aspects of face and edge swapping with regards to tetrahedral mesh

generation and optimization is the fact that all such topological changes are local. That is, an edge

or face removal or swap only affects simplices connected to that feature. Thus local improvements

in mesh quality can be achieved without worrying about changing other elements of the mesh.

19

(a) before: 0 − 1 − 2 − 3, 0 − 1 − 3 − 4, 0 − 1 − 4 − 2 (b) after: 2 − 3 − 4 − 1, 4 − 3 − 2 − 0

Figure 1.7 The 3-2 Flip

(a) before: 0 − 1 − 2 − 3, 0 − 1 − 3 − 4, 0 − 1 − 4 − 5,
0 − 1 − 5 − 2

(b) after: 2 − 3 − 5 − 1, 5 − 3 − 2 − 0, 3 − 4 − 5 − 1,
5 − 4 − 3 − 0

Figure 1.8 The 4-4 Flip

20

Others have explored topological changes to maintain a Delaunay mesh. Joe [51–53] gave

an algorithm utilizing flips that successfully constructs the Delaunay tetrahedralization for any set of

points. Moreover, Joe proved that any locally non-Delaunay set of tetrahedra could be transformed

into a Delaunay tetrahedralization if no set of four points were coplanar. Unfortunately, Joe shows

that these coplanar situations arise in cases that are not overly contrived or pathological. Further,

in [54] Joe gave an approach to generating tetrahedral meshes based not upon the Delaunay property

but upon maximizing the minimum solid angle. The algorithm gives good results. Overall, Joe’s

results were early evidence of the efficacy of using topological changes to improve a mesh despite

any pathological cases.

Shewchuk [55] gave pseudocode for a “hill-climbing” algorithmdesigned to improvemeshes

with topological changes in a manner similar to Joe’s algorithm. His approach to removing edges

connected to more than four elements employs Klincsek’s [56] methodology to construct the

optimal triangulation of the ring of edges around the edge to be removed. Since Klincsek’s

algorithm assumes the points are in the plane, it is not clear how successful this technique will be

for non-planar point sets.

1.6 Vertex Smoothing

In practical mesh generation, there is rarely need to constrain vertices except those that

define the geometry. As such, it seems a good and natural pursuit to move vertices to improve mesh

quality. A simple illustration of the process in two-dimensions is given in Figure 1.9. Note how

the sliver triangle in the lower right has been eliminated by the point movement.

21

Of course, exactly how to achieve a desirable point position is not obvious. There has,

however, been a good deal of research in the area of mesh vertex smoothing. Generally, there

are two distinct vertex optimization schemes employed for mesh quality improvement: Laplacian

smoothing and optimization-based smoothing.

(a) before smoothing (b) after smoothing

Figure 1.9 An Example of Node Perturbation

Laplacian smoothing is based upon taking the average coordinate of the set of vertices

connected to a given vertex and moving that vertex to the averaged coordinate. This technique is

cast as a Laplacian equation ∑
i

wi (xi − x) = 0 (1.2)

where x is the position of the vertex in question, the xi are the positions of the vertices surrounding

x, and the wi are some prescribed weights. An early reference to Laplace smoothing can be found

in Buell [57]. Modern work on this technique seems to have started with Field [58] who shows

22

that maintaining the Delaunay property after point movement greatly improves the quality in a

triangular mesh.

Optimization-based smoothing techniques rely upon minimizing (or maximizing) some

function, Φ (x), which describes some quality measure of the elements surrounding the vertex at x.

Also the gradient of the quality function, ∇Φ (x), is usually (but not always) employed in finding

the minimum or maximum.

As there has been a great deal of work in mesh smoothing over the years with generally good

results, it seems necessary to list as much of that work as possible. What follows is as exhaustive

of a set of sources as the author could compile, in rough order of increasing interest to the work

presented in this dissertation. Indeed, there has been earlier work which attempted to expound

upon and categorize the notion of mesh improvement. Ollivier-Gooch [59] gave an overview of

several mesh improvement techniques, including mesh smoothing and topological transformations,

designed to improve unstructured grids created from randomly placed points. Dompierre et al. [60]

proposed a set of benchmarks for tetrahedral optimization based upon several test cases including

a unit equilateral tetrahedra. While no attempt is made here to synthesize the research and, indeed,

little of what follows was explicitly used in this research, all of the following works are worthy of

some consideration.

Parthasarathy and Kodiyalam [61] gave an optimization method based upon minimizing an

aspect ratio based global objective function. Canann et al. [62] introduced, in the amusingly titled

Optimsmoothing, the idea of minimizing the sum of some quality metric via a conjugate gradient

method. Later, Canann et al. [63] presented a smoothing scheme, implemented in ANSYS®,

that perturbs one node at at time with both Laplacian smoothing and optimization based scheme.

23

Amezua et al. [64] proposed a method based on optimizing desired local edge lengths with a

quasi-Newton method cast as a finite-element system. Amenta et al. [65] gave a method based upon

linear programming for the optimum placement of a newly inserted point. Zhou and Shimada [66]

showed an angle-based smoothing method for triangular and quadrilateral meshes based upon

a spring analogy. Xu and Newman [67] used a very similar technique but relocated the node

with an optimization technique instead of a heuristic technique like Zhou and Shimada. These

techniques give demonstrably better results than Laplacian smoothing but an obvious extension to

three-dimensions is not apparent.

Consideration of the effect of mesh smoothing on finite element schemes is not highly

represented in the literature, but there is some work to be found. Z. Chen et al. [68] proposed

an objective function designed for two-dimensional triangular and quadrilateral grids intended for

finite-element simulations. The function consists of using the L2 norm and introducing an “angle

penalty term” which gave higher quality quadratic elements. L. Chen [69] has introduced a two-

dimensional smoothing scheme shown to reduce interpolation error. Since much of the trend in

simulation is toward finite element methods, we should expect to see more work of this type.

Occasionally, as is employed in this research, topological changes are applied in addition to

node smoothing in order to improve mesh quality. In [70], De L’Isle and George gave an extensive

procedure for the optimization of a tetrahedral mesh. Their algorithm consists of removing edges

and faces (i.e. flipping,) relocating points one at a time based upon an edge length/in-radius based

quality metric and, uniquely, adding and removing points to “suppress” certain edges. In their

own words, the algorithm is “lazy” in the sense that it tests each change to see if mesh quality is

improved before applying said change. Also, the various optimization techniques are applied in an

24

arbitrary order. However, the scheme is very successful at improving mesh quality. Further, results

are shown wherein the quality metric is modified on a per element basis to obtain certain element

shapes and point distributions in different areas of the mesh.

Freitag et al. [71–76] cast the optimization problem in terms of maximizing the minimum

angle of the triangles or tetrahedra surrounding a vertex. This optimization was performed via a

set of search directions and employed analytical functions and gradient definitions. Further, these

works include examples involving both Laplacian and optimization-based smoothing (see [74]) of

the same meshes as well as incorporating edge and face flipping. In fact, they note in [73] that

it is quite rare for the removal of an edge surrounded by more than seven tetrahedra to yield an

improvement in quality. Some of this work has been shown to even be able to “untangle” invalid

meshes (see [76].) More importantly, they showed experimentally in [75] that smoothing and

flipping yielded considerable savings in solution time.

Klinger [77,78] likewise combined optimization-based smoothingwith topological changes.

His smoothing algorithm is taken from Freitag (see above) and, like that implementation, works

on one node at a time and only accepts the new position of a vertex if the mesh is improved.

Further, Klinger’s work has implemented the ability to smooth nodes on the boundaries, although

no boundary flips are performed. He has also implemented Shewchuk’s multi-face removal scheme.

Finally, Klinger uses clever vertex insertions as a way of improving the mesh. Klinger’s tetrahedral

mesh improvement code, Stellar2, code is available online.

2http://www.cs.berkeley.edu/~jrs/stellar/

25

Freitag and Klinger’s work is very close to that presented in this dissertation but differs in

a few important ways. First, these works employ optimization methods which work on only one

node at a time. Second, they optimize an angle-based function instead of a general quality metric.

Finally, none of these techniques are used during the initial mesh generation.

1.7 Overview of Mesh Improvement and Creation Strategies Explored

Most of the author’s introduction to the mesh smoothing strategy employed in this work

came through Steve Karman, who originally employed an optimization scheme to smooth meshes

constructed from an octree. Most of this work was originally presented in [79] and [80]. A

continuation of the work that also employed solution adapted smoothing techniques was presented

in [81]. Much of this dissertation is a continuation of the research presented there.

This work will use topological mesh transformations including removing edges surrounded

by more than four tetrahedra as well as gradient based vertex smoothing to improve mesh qual-

ity. Quality will be defined primarily with the metric of Weighted Condition Number although

tetrahedral aspect ratio will also be reported. (See Section 2.1.) Detailed explanations of both the

topological improvement and node smoothing algorithms are given. (See Sections 2.2 and2.3.) An

explanation of the node insertion, boundary recovery, and node creation techniques used to create

volume meshes (as opposed to improving existing ones) are overviewed. (See Section 2.5.) Finally,

a number of examples of mesh improvement and creation are shown. (See Chapter 3.)

26

CHAPTER 2

METHODOLOGIES AND ALGORITHMS

This chapter gives an explication of the ideas and procedures relevant to this work. In

particular, a quality metric, weighted condition number, used to evaluate a tetrahedron’s utility for

computational simulation is thoroughly explicated. Also, the several algorithms, most importantly

those of topological optimization and node smoothing, are given in detail.

One of the important ideas, both in theory and implementation, that all of the approaches

presented herein take is simply that improving the worst tetrahedron of any given configuration

takes precedence over the quality of any other tetrahedron involved. While this notion is not unique,

it is not necessarily a motivating factor in other tetrahedral creation and optimization algorithms.

This motivation for improving the worst tetrahedra is simple: it only takes one bad element to

ruin a simulation. Being that the goal of this work is to develop schemes to create and improve

meshes intended for simulation, as opposed to some other academic end, it is natural to focus on

improving the worst tetrahedron; even if this focus sacrifices the quality of other more well-shaped

elements. Practical grid generation experience shows this strategy to be fruitful. Indeed, the author

has encountered many grids where just a handful of poor elements prevented large simulations

from running successfully.

In that light, both the topological optimization and node perturbation optimization tech-

niques given in this work will focus on improving the worst tetrahedron. These emphases will

27

be pointed out in their explanations. Even the choice of a quality measure was influenced by this

principle.

2.1 A Metric for Tetrahedra Evaluation

In order to evaluate the quality of a tetrahedron and whether it is a candidate for vertex

optimization or topological optimization, one must, of course, have some numerical measure

generally related to that tetrahedron’s suitability for use in simulation. Generally, simulation

software prefers elements with shapes whose angles are not far from right, i.e. angles that are

too small or too large are undesirable. Precisely what constitutes “too small” and “too large” is

dependent upon a variety of factors including the order of the simulation, the nature of the physics,

and the particulars of solver implementation. In any case, with a few exceptions to capture specific

physics such as boundary layers and shocks, it is usually desirable to have tetrahedra that are as

close to equilateral as possible for the simple reason that an equilateral tetrahedron “regularizes”

all the angles. That is, a decrease in any angle of the tetrahedra (face-to-face angles, edge-to-edge

angles, face-to-edge angles, etc.) will necessarily subtend an increase to some other angle.

2.1.1 Weighted Condition Number

This work has focused on a tetrahedral quality metric that enforces good angles without

having to actually measure the angles directly: weighted condition number. Freitag and Knupp

gave an overview of this metric in [82] and the explanations and proof presented below are taken

from their paper. In short, the weighted condition number of a tetrahedron is a measure of that

tetrahedron’s “equilateral-ness” or equiangularity.

28

The (non-weighted) condition number of a tetrahedron is directly related to the condition

number of a matrix. Label the vertices of the tetrahedron xn for n = 0, 1, 2, 3. If we consider one

vertex k ∈ {0, 1, 2, 3} and construct the vectors emanating from that vertex, ek+1,k, ek+2,k, ek+3,k as

columns of a matrix, we have

Ak =

ek+1,k,1 ek+2,k,1 ek+3,k,1

ek+1,k,2 ek+2,k,2 ek+3,k,2

ek+1,k,3 ek+2,k,3 ek+3,k,3

(2.1)

To be clear, en,m,p indicates the pth component of the vector from the vertex m to the vertex n. Also,

the first index, indicating the terminating node of the vector, is taken modulo 4. This construction

is also known as the Jacobian matrix of the tetrahedra from the given corner.

Note that if we define

M =

1 1 1

−1 0 0

0 −1 0

(2.2)

29

then, by construction, Ak = A0M k , where the superscript on M indicates exponentiation. For

example,

A0M2 =

e1,0,1 e2,0,1 e3,0,1

e1,0,2 e2,0,2 e3,0,2

e1,0,3 e2,0,3 e3,0,3

1 1 1

−1 0 0

0 −1 0

2

=

e1,0,1 e2,0,1 e3,0,1

e1,0,2 e2,0,2 e3,0,2

e1,0,3 e2,0,3 e3,0,3

0 0 1

−1 −1 −1

1 0 0

=

−e2,0,1 + e3,0,1 −e2,0,1 e1,0,1 − e2,0,1

−e2,0,2 + e3,0,2 −e2,0,3 e1,0,2 − e2,0,2

−e2,0,3 + e3,0,3 −e2,0,3 e1,0,3 − e2,0,3

=

e3,2,1 e0,2,1 e1,2,1

e3,2,2 e0,2,2 e1,2,2

e3,2,3 e0,2,3 e1,2,3

(2.3)

since −e2,0,1 + e3,0,1 = e3,2,1, −e2,0 = e0,2, e1,0,3 − e2,0,3 = e1,2 by vector arithmetic. Further, the

Jacobian of a tetrahedron T is defined as

J (T) = det (Ak) (2.4)

30

Note that the choice of vertex k does not affect J (T) since

det (Ak) = det
(
A0M k

)
= det (A0) (det (M))k

= det (A0) · 1

= det (A0) (2.5)

Note that J (T) < 0 for inverted tetrahedra and J (T) = 0 for a tetrahedron defined by four coplanar

points (i.e. a “flat” tetrahedron.) The Jacobian will be used below in constructing a tetrahedral cost

function.

Now, consider a “unit” tetrahedra with one vertex at the origin and each side of unit length

along the cardinal axes (i.e. a tetrahedron with vertices (0, 0, 0), (1, 0, 0), (0, 1, 0), and (0, 0, 1).)

Then the matrix constructed from the origin is

A0 =

1 0 0

0 1 0

0 0 1

(2.6)

The condition number of this matrix in the Frobenius norm is

κ (A0) = A0F
A−10 F = 3 (2.7)

31

since A0F =
√
12 + 02 + . . . 12 =

√
3 and A−10 = A0. Note this is also the condition number in the

Euclidean norm. Since we are considering a unit tetrahedra and its right angle vertex, it is natural

to normalize this metric to one for this case. Thus, condition number of a tetrahedron T taken from

its vertex k is defined as

CNk (T) =
AkF

A−1k
F

3
(2.8)

for k = 0, 1, 2, 3. Note that the higher the condition number, the closer that corner of the tetrahedron

is to planer and, thus, the smaller (or larger) the solid angle of that corner.

CNk has several nice properties for a tetrahedral quality metric. First, since the Frobenius

norm is invariant to rotation matrices, any rotation of the tetrahedron will not effect its condition

numbers. Also, as will be shown later, CNk is actually algebraic. That is, it can be defined using

only addition, subtraction, multiplication, division, and raising to a rational power. Finally, and

most importantly, CNk is scale invariant. That is, the size of the tetrahedra does not effect the

condition number. This property is easily shown. Consider a tetrahedron T whose vertices have all

been multiplied by α to create T ′. Then, if T’s original Jacobian matrices were Ak , T ′’s Jacobian

32

matrices are simply αAk . So

CNk
(
T ′

)
=

αAkF
(αAk)−1F

3

=
αAkF

 1
α A−1k

F

3

=
αAkF

1
α

A−1k
F

3

=
AkF

A−1k
F

3

= CNk (T) (2.9)

by the straight-forward properties of the matrix inverse and matrix norms.

Despite invariance to rotation and scale, by itself condition number is an unsatisfactory

metric. First it is smallest for a right angle tetrahedron, not an equilateral one. Second, and more

importantly, condition number is not independent of one’s choice of vertices. (Simply choose a

different vertex for the right angle tetrahedron referenced above and the calculation easily reveals

this dependence.) Both of these undesirable aspects can be corrected with a simple transformation.

Consider the equilateral tetrahedron with vertices at (0, 0, 0), (1, 0, 0),
(
1/2,
√
3/2, 0

)
, and(

1/2,
√
3/6,
√
2/
√
3
)
. The Jacobian matrix taken from the origin is

W =

1 1
2

1
2

0
√
3
2

√
3
6

0 0
√
2
√
3

(2.10)

and its inverse is

33

W−1 =

1 −
√
3
3 −

√
2

2
√
3

0 2
√
3

3 −
√
2

2
√
3

0 0 3
√
2

2
√
3

(2.11)

These matrices will serve as linear transformations of the tetrahedral Jacobian matrices. Define the

Weighted Condition Number of a tetrahedron from the vertex k as

WCNk (T) =
AkW−1F

W A−1k
F

3
(2.12)

Now, we can overcome the deficiencies of the unweighted tetrahedral condition by showing that

the weighted condition number of a tetrahedra does not depend on one’s choice of k. The proof is

a follows:

Define the matrix R = W MW−1 for the W , M given above. Then

R = W MW−1

=

1 1
2

1
2

0
√
3
2

√
3
6

0 0
√
2
√
3

1 1 1

−1 0 0

0 −1 0

1 −
√
3
3 −

√
2

2
√
3

0 2
√
3

3 −
√
2

2
√
3

0 0 3
√
2

2
√
3

=

1
2

√
3
6

√
2
√
3

√
3
2

1
6

√
2
3

0 −2
√
2

3
1
3

(2.13)

34

Direct calculation shows that RTR = I and det (R) = 1, so, R is a rotation matrix. Further, if R

is a rotation matrix, so is R−1. Note also that Rn =
(
W MW−1

)n
= W MnW−1 for every integer n.

Since, as stated above, the Frobenius norm is invariant under rotations, we have

AkW−1F = A0M kW−1F

= A0W−1RkF

= A0W−1F (2.14)

Similarly

W A−1k
F =

(
AkW−1

)F

=

(
A0M kW−1

)−1F

=

(
A0M kW−1

)−1F

=

(
A0W−1Rk

)−1F

=
(
Rk

)−1
W A0F

= W A0F (2.15)

Therefore
AkW−1F

W A−1k
F

3
=

A0W−1F
W A−10

F

3
(2.16)

and, so, WCNk =WCN0 for all k = 0, 1, 2, 3 and the proof is complete.

35

As such, it is perfectly reasonable to drop the weighted condition number’s dependence on

the choice of vertex and simply say

WCN (T) =
AW−1F

W A−1F

3
(2.17)

Note that WCN has a range of [1,∞) with the convenient property that an equilateral tetrahedron

has a WCN of one. Also, the scale invariance and rotational invariance shown for CNk will also

hold for WCN.

2.1.2 Tetrahedral Cost

One important drawback still remains in the use of weighted condition number as a tetra-

hedral cost metric. Namely, WCN will not identify an inverted tetrahedron. To overcome this

deficiency, a cost function has been developed that first calculates the Jacobian of the tetrahedron.

With this definition in mind, the cost of a tetrahedra, T , based on WCN is defined as

cW (T) =

1 − J (T) if J (T) ≤ 0

1 − 1
WCN(T) if J (T) > 0

(2.18)

Note cw (T) ∈ [0,∞) with cW (T) = 0 for an equilateral tetrahedron, cW (T) = 1 for a flat

tetrahedron, and cW (T) > 1 for an inverted or invalid tetrahedron.

For smoothing purposes, it will also be necessary to calculate the derivatives of cW (T).

The gradient matrix of this cost for any tetrahedra will be of size 4 × 3 with one entry for each

derivative with respect to each coordinate of each vertex. While it would be possible to find an

36

analytic definition of this gradient, there are a number of obstacles involved in such a derivation.

First and foremost, such a derivation would be quite tedious as the expansion of WCN itself is

daunting to say the least. Also, the derivatives of cW are not continuous at cW = 1. That is,

cW is a C0 function. However, these drawbacks are not that important. First, there is no interest

in tetrahedra with cW (T) ≥ 1 except to move their nodes to a position of validity and, thus, the

smoothness of the function around cW (T) = 1 is of no concern. That is, the Jacobian is simply part

of the definition to identify when a tetrahedron is inverted. Secondly, there are well understood

numerical techniques to calculate the derivative of a function while calculating its value, namely

numerical complex differentiation and dual numbers. For this work, dual numbers were chosen as

the mechanism to calculate the derivative of cW while calculating its value. See Appendix A for an

explanation of dual numbers.

2.1.3 Examples of Tetrahedral Weighted Condition Number and Cost

In practical mesh generation, it is important to have a sense of the quality metrics used to

evaluate a mesh. Further, an understanding of the gradients used in this research is important to

understanding the validity and utility of the method. As a way of developing some intuition as to

the nature of WCN and cW , consider the following examples.

First, a right angle tetrahedron with vertices (0, 0, 0), (1, 0, 0), (0, 1, 0), and (0, 0, 1) has a

weighted condition number of WCN = 1.22474487 and cost of cW = 0.18350342. Figure 2.1

shows such a tetrahedron. The vectors depicted are the normalized, inverted gradients of cW

associated with each vertex and, thus, each vector points in the direction of greatest decrease for the

cost of the tetrahedra. In simpler terms, moving the node along that vector will, at least for small

37

(a) origin on the left (b) origin on top

Figure 2.1 A Right Angle Tetrahedron with Normalized, Inverted Gradient vectors of cW .

perturbations, improve the quality of the tetrahedra. It is readily apparent that these vectors are

pointing, at least initially, in the directions that will move the tetrahedron towards equiangularity.

For more examples, consider a perfectly equilateral tetrahedron with vertices (0, 0, 0),

(1, 0, 0),
(
1/2,
√
3/2, 0

)
, and

(
1/2,
√
3/6,
√
2/
√
3
)
. Of course, such a tetrahedron has a weighted condition

number ofWCN = 1.0 and cost of cW = 0.0. Figure 2.2 shows an equilateral tetrahedron and Figure

2.3 shows several tetrahedra each with an equilateral triangle for a base with its apex having been

moved to various positions. Just as in Figure 2.1, these tetrahedra are depicted with the normalized,

inverted gradients of cW . Figure 2.3a shows a tetrahedra whose vertex has been moved over the

origin. Note, as was the case for the right angle tetrahedron, the vectors are pointing in directions

that will move the tetrahedron toward equiangularity. However, it is interesting to see that the apex

vector is not simply pointing directly back towards what would make it the apex of an equilateral

tetrahedron but actually indicates a change in the z-coordinate of the apex. This observation shows

how the derivatives do not always give a direct path towards equiangularity.

38

Figure 2.2 An Equilateral Tetrahedron

Figures 2.3c, 2.3d, and 2.3f show equilateral tetrahedra whose apices have been moved up

and down the z-axis by factors of 2. For the tetrahedron whose apex has been moved down, the

vectors indicate that it should be moved directly upwards to improve cW . Also, note the vectors

on the base have a significant negative z component. As one would expect, the two tetrahedra

whose apex has been shifted upwards exhibit exactly the opposite behavior with respect to their

cost improvement vectors. More importantly, note that the tetrahedra in Figures 2.3b, 2.3d, and 2.3f

are deformed to the extent that visual inspection engenders suspicion of low quality. Analytically,

the face angles between the base and sides in Figure 2.3d are only 35.26° and the vertex angles

around the apex of the tetrahedron in Figure 2.3f are only 17.34°. Experience shows that small

angles lead to poor performance in some analysis software. Moreover, the angle between the base

and vertex in Figure 2.3b is 140.8°. As referenced earlier, Shewchuk [2] has shown that large angles

lead to large error in finite element analysis.

For a more analytical example, consider the tetrahedron with an equiangular base and some

third node above that base. That is, a tetrahedron with vertices (0, 0, 0), (1, 0, 0),
(
1/2,
√
3/2, 0

)
,

39

(a) tetrahedron with equilateral base
and apex of

(
0, 0,

√
2/
√
3
)
;WCN =

1.167, cW = 0.1429

(b) tetrahedron with equilateral base
and apex of

(
−1, 0,

√
2/
√
3
)
;WCN =

2.167, cW = 0.5385

(c) tetrahedron with equilateral base
and apex

(
1/2,
√
3/6,
√
2/2
√
3
)
; WCN =

1.225, cW = 0.1835

(d) tetrahedron with equilateral base
and apex

(
1/2,
√
3/6,
√
2/4
√
3
)
; WCN =

2.031, cW = 0.5076

(e) tetrahedron with equilateral base
and apex

(
1/2,
√
3/6, 2

√
2/
√
3
)
; WCN =

1.225, cW = 0.1835

(f) tetrahedron with equilateral base
and apex

(
1/2,
√
3/6, 4

√
2/
√
3
)
; WCN =

2.031, cW = 0.5076

Figure 2.3 Various Tetrahedra Related to an Equilateral Tetrahedron

40

and
(
x3, y3, z3

)
where x3, y3, z3 > 0 to assure the tetrahedron is valid. So, the A matrix for this

tetrahedron is

A =

1 1
2 x3

0
√
3
2 y3

0 0 z3

(2.19)

which gives (with the help of the computer algebra system Maple1 the tetrahedron’s WCN as

WCN (T) =
1

18z3
·

√
10 − 6x3 + 6x23 − 2y3

√
3 + 6y23 + 6z23

·

√
−3y3

√
3 + 9x23 + 9y

2
3 + 18z23 − 9x3 + 9 (2.20)

Note that even for this casewith a single free vertex, the expansion of theWCN is rather cumbersome.

Its derivatives would be even more so. Thus the use of numerical differentiation over some exact

formulation is justified at least in terms of convenience if not speed of computation. Nonetheless,

the expansion is straight-forward and entirely algebraic.

This WCN and its associated cW are plotted in Figure 2.4. Figures 2.4a and 2.4b graph

WCN and cW for fixed x3, y3 and free z3. Figures 2.4c and 2.4d graph WCN and cW for fixed z3

and free x3, y3. Note, it is clear is all these plots that the quality of the tetrahedron is best (i.e.

cW and WCN are lowest) when the
(
x3, y3, z3

)
=

(
1/2,
√
3/6,
√
2/
√
3
)
and the tetrahedron is perfectly

equilateral. More importantly, it is clear that these graphs have that point as a single minimum.

While not a picture of the entire space, this simple analysis gives credence to the practice of using

a gradient based method for optimization of cW .

1http://www.maplesoft.com/products/maple/)

41

Interestingly, Figures 2.4a and 2.4b also clearly show that the derivatives of cW (T) are

not monotonic. There are clear inflection points and it is obvious the derivative is decreasing as

the vertex moves away from the plane of the tetrahedron’s base. This observation is borne out in

practice and is one of the reasons the gradient vector is primarily used to provide a perturbation

direction and not a magnitude. (See Section 2.3.)

As a final investigation of the space of WCN and cW , consider some arbitrary but valid

tetrahedron T . Translate one vertex of T to the origin, rotate one edge onto the x-axis, and scale

the tetrahedron such that this edge is of unit length to create a tetrahedron T ′ with vertices (0, 0, 0),

(1, 0, 0),
(
x2, y2, z2

)
, and

(
x3, y3, z3

)
. Since WCN is scale invariant, rotationally invariant, and the

translation of T will not effect the vectors that define its edges, then the WCN of T and T ′ will be

equal. With, yet again, a great deal of help from a computer algebra system, one can show that the

expansion of the T
′s WCN is

WCN (T) =
√
ρ1 ρ2

6
(
y2 z3 − y3 z2

) (2.21)

where

ρ1 = 6x22 − 4 x2 x3 + 6 x23 + 6 y
2
2 − 4 y2 y3 + 6 y

2
3

+6 z22 − 4 z2 z3 + 6 z23 − 4 x2 − 4 x3 + 6 (2.22)

42

(a) WCN vs. z3 (b) cW vs. z3

(c) WCN vs. x3, y3 (d) cW vs. x3, y3

Figure 2.4 Plots of WCN and Cost Verses Position of Apex of Tetrahedron with Equilateral Base

43

ρ2 = x22 y
2
3 + x22z23 − 2 x2 x3 y2 y3 − 2 x2 x3 z2 z3 + x23 y

2
2 + x23z22 + y

2
2 z23 − 2 y2 y3 z2 z3

+y23 z22 + x2 y2 y3 − x2 y23 + x2 z2 z3 − x2 z23 − x3 y22 + x3 y2 y3 − x3 z22

+x3 z2 z3 + y22 − y2 y3 + y
2
3 + z22 − z2 z3 + z23 (2.23)

Note again, this expansion is cumbersome. More importantly this formulation is, indeed,

general and could be used to calculate the WCN of any tetrahedron after translation, rotation, and

scaling. So, definitively, one can say that WCN is algebraic and, thus, everywhere differentiable

and, moreover, its derivative is everywhere continuous. So, for valid tetrahedra, cW is aC1 function.

All of this analysis leads to the practical question of what threshold of cW is unacceptable

for simulation. While a definitive answer will be dependent upon implementation, a pattern does

emerge. The three poorer quality tetrahedra in Figures 2.3b, 2.3d, and 2.3f all have WCN ≥ 2.0. In

Figures 2.4b and 2.4d, it is easy to see that input values giving cW ≥ 0.5 are well past the inflection

point and, thus, the gradient is becoming less useful for optimization. These observations and

experience with the algorithms have led to taking any tetrahedron with cW ≤ 0.5, WCN ≤ 2.0 as

acceptable.

2.2 Topological Optimization

Topological optimization of a tetrahedral mesh can be a very powerful mechanism to

improve mesh quality locally. A particularly poor quality tetrahedra can be eliminated if some

viable topological transformation is performed. Indeed, since there are ten potential flips associated

with each tetrahedra, four face flips and six edge flips, the utility of such transformations is easy to

grasp.

44

2.2.1 Higher Order Flips

The three basic flips, 3-2, 2-3, and 4-4, were presented in Section 1.5. However, it is quite

possible for there to be more than four tetrahedra arrayed around an edge. In fact, there is no upper

bound for the number of elements that can contain any given edge. In this work, the removal of an

edge surrounded by more than four tetrahedra is refereed to as a “higher order” flip.

The central problem of removing an edge surrounded by some number of tetrahedra is

triangulating the set of points not part of the edge E to be removed. Here we refer to this set of

points as the “ring” surrounding E. For a 3-2 flip, the problem is trivial as there are only three

points and, thus, only the single triangulation of those points. For a 4-4 flip, there are four points

in the ring; so there are two possible triangulations from which to choose. For five or or more, the

number of nodes in the rings increases the potential number of triangulations factorially. In fact

the number of valid triangulations for a convex polygon with n vertices, as given in [83], is

n (n + 1) . . . (2n − 4)
(n − 2)!

(2.24)

Checking every triangulation is obviously impractical. Some solutions to this problem

are referenced in Section 1.5. The solution presented here, however, is based upon recasting the

triangulation of the ring as another topological optimization problem. The edge E is removed and

a triangulation of the ring is constructed using an “ear-clipping” method similar to that described

by El Gindy et al. [84]. Each node n in the ring along with its neighbors to the left and right, n − 1,

n + 1, are used to form a triangle. These triangles are then used to create two tetrahedra, each

connected to a different node of E. If these tetrahedra are valid, they are retained and n is removed

45

from the ring. If the two tetrahedra are invalid, then move onto the next node in the ring. The

procedure is repeated until the ring is completely collapsed. Keep in mind the ring of nodes is by

no means necessarily planar; but the validity of any triangulation is judged on the validity of the

tetrahedra it subtends, a measure that accounts for its non-planarity.

This process creates a new set of tetrahedra Θ which, as it is guaranteed to be valid, may

potentially replace the original set of tetrahedra around E. Θ is then optimized in isolation using

only 4-4 flips. Section 2.2.3 details the general topological optimization algorithm. For this case,

the optimization is exactly the same as using Lawson’s two-dimensional algorithm on the arbitrary

triangulation; but, instead of using a circumcircle criterion for edge swapping, edges are swapped

based on the tetrahedral cost of the four tetrahedra around the edge.

Figure 2.5a and 2.5b show a higher order flip involving five tetrahedra transformed into six

tetrahedra. Figures 2.5c and 2.5d show the ring triangulation before and after optimization.

46

(a) before: 0 − 1 − 2 − 3, 0 − 1 − 3 − 4, 0 − 1 − 4 − 5,
0 − 1 − 5 − 6, and 0 − 1 − 6 − 2

(b) after: 2 − 3 − 5 − 1, 5 − 3 − 2 − 1, 3 − 4 − 5 − 1,
5 − 4 − 3 − 1, 5 − 6 − 2 − 1, and 2 − 6 − 5 − 1

(c) original arbitrary ring triangulation (d) optimized ring triangulation

Figure 2.5 A Higher Order Flip and Its Ring

47

2.2.2 Boundary Flips

Although the problem this work attempts to solve expressively requires the boundary trian-

gulation to be retained as part of the final mesh, it is possible to perform topological improvements

with tetrahedra connected to the boundary. Consider two adjacent triangles on the boundary and

the set of tetrahedra Θ connected to the edge E those triangles share. It is possible to swap that

edge amongst the two triangles and re-tetrahedralize Θ. If there are only two tetrahedra connected

to E then this edge swap would replace the two tetrahedra with two new tetrahedra. Such a 2-2

flip is easy to implement. If three tetrahedra are connected to E, those could be swapped for four

tetrahedra connected to the new edge. The problem becomes more complicated as the number of

tetrahedra around the boundary edge increases.

The solution used here is exactly that employed for higher order flips. The set of tetrahedra

Θ are isolated and E is removed. Now the ring of nodes must be closed with the new edge; but,

other than that addition, the higher order construction algorithm continues as described above.

2.2.3 Topological Optimization Algorithm

To optimize the mesh topologically, the results presented here consider each potential face

and edge flip for each tetrahedra of a particular subset of all tetrahedra in the mesh. This subset of

tetrahedra is constructed from tetrahedra that have been recently created and/or modified.

One important drawback to any programmatic implementation of tetrahedral topological

transformations is the amount of information that must be constantly stored and updated or, at the

very least, determined whenever each flip is considered. For example, before considering face

removal, one must obviously be able to determine which two tetrahedra share that face. Similarly,

48

to consider edge removal one must be able to determine all the tetrahedra around that edge. Further,

as each tetrahedra always has four faces and four nodes, the only connectivities with a constant size

are an element-to-element lookup and an element-to-node lookup. All other connectives vary in

size and, thus, are not amenable to direct memory allocation. For example, each node is connected

to an indeterminate number of other nodes and, thus, the size of a node-to-node lookup cannot be

predetermined. No matter what implementation strategy is chosen, there will most certainly be a

lot of “bookkeeping.”

To tackle this problem, the code used for this research has implemented three different

connectivity lookups: a node-to-node, node-to-tetrahedra, and tetrahedra-to-tetrahedra connectiv-

ity. The node-to-node and node-to-tetrahedra connectivities are updated immediately whenever a

tetrahedron is created, destroyed, or changed via topological transformation. These two connec-

tivities are then used to create the tetrahedra-to-tetrahedra connectivity. Also, the set of tetrahedra

around a particular edge is determined as needed by intersecting the two node-to-tetrahedra lookups

associated with the nodes of the edge. No claim is made about the efficiency of this scheme except

that the timing of the cases run is not intractable.

The general topological flip algorithm employed here is as follows: Begin with a list of

tetrahedra Θ to consider. As indicated above, this list is populated from tetrahedra recently added

to the mesh and with tetrahedra whose nodes have been moved in the smoothing process. (See

Section 2.3.) While Θ is non-empty, choose the tetrahedron, T ∈ Θ with the greatest CW (i.e. worst

cost) and remove it from Θ. Loop over the faces of T and check if a 2-3 flip with its face neighbor

is viable. If the flip is viable and the maximum cost of the three new tetrahedra is less than the

49

Fi
gu

re
2.
6

To
po

lo
gi
ca
lT

et
ra
he
dr
al
O
pt
im

iz
at
io
n

50

maximum cost of the two original tetrahedra and the maximum cost of the three tetrahedra is less

that the maximum cost of the best flip considered so far, mark the flip as preferred.

Next, loop over all the edges of T . For each edge, collect the ordered set of tetrahedra

around that edge. If the edge is on a boundary, consider whether boundary flips are allowed as they

may change the boundary triangulation against the desired behavior. Construct the flip appropriate

for the number of tetrahedra around the edge. This flip may be 3-2, 4-4, higher order, or 2-2 if

on a boundary. As with the face flips, if the flip is viable and the maximum cost of the tetrahedra

created by the flip is less than the maximum cost of the original tetrahedra and the maximum cost

of the tetrahedra created by the flip is less that the maximum cost of the best flip considered so far,

mark the flip as preferred.

Now that all possible topological changes for T have been considered, the last flip (if any)

marked as preferred is performed. In this way, the best flip, in the sense that it reduces the cost the

most, is chosen. Finally, any new tetrahedra created are added toΘ to be considered for topological

optimization. Also, any nodes involved in the flip are added to a list of candidates for smoothing.

(See Section 2.3.) A detailed flowchart of the entire topological optimization process is given in

Figure 2.6.

There are an enormous number of algorithmic considerations that must be taken in im-

plementing this scheme. Not all of them are discussed here but a few important issues follow.

First, care must be taken to avoid an infinite processes of flipping back and forth between two

configurations with the same maximum cW (such as in a co-spherical distribution of nodes.) This

trap can be avoided by ensuring that flips are only marked if they improve the situation by some

tolerance. Thus, flips that produce precisely equal maximum costs are not marked.

51

Second, since we are always choosing the tetrahedron from the list with the worst cost

to consider for flipping, it is efficient to keep this list sorted by tetrahedral cost. However, any

tetrahedra involved in a flip must be removed from the list. The solution implemented for this

work is to keep two C++ stl::map containers, one of which is sorted by cost and contains the

integer identifying the tetrahedron and the other which is sorted by the integer and contains the

tetrahedron’s cost. Thus a bi-mapping has been created between tetrahedral identifier and cost.

With this framework, it is quite efficient to remove and add tetrahedra based on cost or identifier.

Finally, looping over tetrahedra, as opposed to faces and/or edges, necessarily causes

extra work as, strictly speaking, every flip will be considered multiple times. For example, if

every tetrahedra around an edge is in the list of consideration for flipping, then that particular

edge flip will be considered for every one of those tetrahedra. This repetition will cause a good

deal of unnecessary computation. To avoid this, tetrahedra that have had all of their edges and

faces checked for potential flips but had no flips performed are flagged. Anytime any flagged

tetrahedron is considered in the flip of another tetrahedron, that flip is ignored (i.e. not marked)

before construction. (In consideration of space, this flagging is not referenced in Figure 2.6.)

However, anytime a flip is performed, all the tetrahedra that share an edge or face with any of the

new tetrahedra are un-flagged so they may be considered in further flips.

2.3 Optimization via Node Perturbation

As indicated in the literature review in Section 1.6, nodal perturbation, or smoothing, can

be a powerful tool for improving the quality of the mesh.

52

Programmatically speaking, mesh smoothing is a much easier operation than topological

transformations as the only changes made to the mesh are the locations of the vertices themselves.

That is, no connectivity ever changes so all one has to do is update the coordinates of the nodes. The

only lookups one requires are the tetrahedron-to-tetrahedron and the node-to-node connectivities

and, again, any smoothing algorithm will not change these. Also, in the algorithm presented here,

all of the nodes in a specified set are considered for perturbation at once. Thus, there is no need to

worry about a “worst” node and, so, no need to keep a sorted list as was the case for tetrahedra in

topological optimization. Generally, mesh smoothing is not as burdened with the same machinery

as topological optimization.

The general node smoothing algorithm is as follows. Begin with a prescribed number of

smoothing sweeps, a set of nodes N marked for perturbation, and some smoothing parameter (i.e.

multiplier) β. As long as there are sweeps remaining and the maximum node perturbation is greater

than some overall threshold, loop over all tetrahedra. For every tetrahedron, T , that has any of

its four nodes marked for perturbation, calculate the cost of T and its cost-gradient contribution

to the four nodes. Also, calculate the inscribed radius, rT , of T . If the cost of T is greater than

any other tetrahedra connected to the node, then store this gradient vector as the gradient for the

node. In other words, only the gradient from the highest cost tetrahedron surrounding the node is

stored. Now, after all tetrahedra are checked, loop over all nodes. For every marked node, reverse

the direction of its gradient vector to produce a vector, p, that points in the direction of greatest

descent of the greatest cost tetrahedra surrounding the node. For each node, choose a threshold

perturbation distance, δn, equal to the minimum inscribed radius of the tetrahedra surrounding the

53

Fi
gu

re
2.
7

Te
tra

he
dr
al
O
pt
im

iz
at
io
n
vi
a
N
od

e
Pe
rtu

rb
at
io
n

54

nodes times the smoothing multiplier. That is

δn = β ·min {rn} (2.25)

where {rn} is the set of inscribed radii of the tetrahedra surrounding the node. If the magnitude of

p is greater than one, then clip its magnitude to the threshold perturbation distance. In symbols,

if ‖p‖ > 1 then
δn

‖p‖
p→ p (2.26)

If the magnitude of p is less than or equal to one but still greater than the perturbation threshold,

then multiply its magnitude by the threshold perturbation. Again, in symbols,

if ‖p‖ ≤ 1 and ‖p‖ > δn then δnp→ p (2.27)

Otherwise, if the magnitude of p is less than one and less than the threshold perturbation, do not

modify p. Finally, perturb the node by p.

Note that the clipping of the perturbation distance by a factor of smallest inscribed radius

surrounding the node is necessary to keep thismethodology stable. If one simply uses themagnitude

of the gradient as a perturbation distance, the method has the tendency to produce invalid tetrahedra

and the whole process quickly produces invalid meshes that this gradient methodology cannot

“untangle.” So, for all intents and purposes, the method described is an under-relaxed algorithm.

One other important consideration taken in this algorithm is whether or not any of the

tetrahedra in question are inverted. If so, all of their nodes are marked for perturbation (i.e. added

55

to N .) Also, tetrahedra whose nodes are nearly coplanar (i.e. kites) will have an inscribed radius

very close to zero and, so, the perturbation threshold will be very close to zero. Thus, care must

be taken to ensure δn � 0. Finally, the overall process is not allowed to terminate until all the

tetrahedra are valid. This consideration is simply a stopgap measure to keep the algorithm from

terminating with an invalid mesh. Otherwise the algorithm terminates after the prescribed number

of sweeps is reached. Finally, all tetrahedra connected to the nodes of N are added to a list of

tetrahedra as candidates for topological optimization and N is emptied.

A detailed flowchart of this process is given in Figure 2.7.

2.4 Mesh Convergence Cycle

While expressed as separate algorithms, topological optimization and node smoothing are

used together to improve the quality of the mesh. The combination is fairly simple but effective.

What follows is an explanation of how the procedures are used together as well a some examples.

2.4.1 Mesh Convergence Cycle Algorithm

The algorithm is as follows. An overall number of optimization cycles is chosen. Then all

tetrahedra with a cW greater than some given cost threshold c (usually 0.5) are added to the list

of tetrahedra Θ as candidates for topological optimization. Also, all the nodes of each T ∈ Θ are

added to the set of nodes N to be smoothed. A topological optimization pass is performed which

empties Θ. Recall that any flip performed will ensure that all the nodes involved will be added to N

and, as a consequence, N may grow in size. After this, a prescribed number of smoothing sweeps

are performed. Recall that all the tetrahedra whose nodes have been smoothed are added to Θ and

N is emptied. Finally, all tetrahedra with a cW greater than the given cost c added to the list of

56

Figure 2.8 Mesh Convergence Cycle

57

tetrahedra Θ as candidates for topological optimization and the nodes of each T ∈ Θ are added to

the set of nodes N to be smoothed. The entire process is repeated until the number of cycles is

exhausted. A final topological optimization pass is then performed. A detailed flowchart of this

algorithm is given in Figure 2.8.

At first brush, it may appear as if the number of tetrahedra slated for optimization and

the number of nodes involved in smoothing will only grow. However, note that both Θ and N

are emptied at the end of the topological optimization and node smoothing processes respectively.

So, at the beginning of each topological smoothing pass, Θ contains only tetrahedra above the

prescribed cost threshold c as well as the tetrahedra involved in the previous node smoothing pass.

Similarly, at the beginning of each node smoothing pass N contains only the nodes of tetrahedrawith

cost above c as well as the nodes of any tetrahedra involved in flips from the previous topological

optimization pass. In this way, a tetrahedron and its nodes that fall below a cost of c will fall out of

consideration in both the topological optimization and node smoothing passes.

The effectiveness of this overall mesh improvement scheme lies in the combination of the

two techniques. The topological scheme provides the node smoothing scheme with the best grid

connectivity attainable from the given set of nodes. The smoothing scheme provides the topological

optimization algorithm with the best node positions available for the given connectivity. The result

is an overall algorithm that drives both the connectivity and vertex positions towards a quality mesh.

It should be noted that the name chosen to describe this process is something of a mis-

nomer as it rarely “converges.” While there is almost always a step in the algorithm at which no

more topological optimizations are performed, the process rarely reaches a stage where the vertex

smoothing as described yields movement below some small tolerance. The nodes tend to “jitter”

58

between acceptable positions until the number of prescribed cycles is exhausted. This behavior is

due, at least in part, to basing the choice of gradient vector upon the worst cost tetrahedra. Thus, the

worst tetrahedra connected to a node can change and the gradient vector will “ping-pong” directions

between smoothing passes. In practice, however, this lack of convergence is of no concern as the

number of smoothing sweeps and overall number of convergence cycles is limited.

2.4.2 Mesh Convergence Cycle Examples

Experience shows this algorithm to be highly effective at improving the quality of tetrahedral

grids. Indeed, as will be demonstrated in Chapter 3, this procedure can take meshes with near

degenerate tetrahedra and optimize them into grids with completely acceptable quality. What

follows are two examples that show the mesh convergence cycle on small cases. These examples

are intended to convey a sense of how the algorithm works in practice.

Figures 2.9 and 2.10 give examples of the mesh convergence cycle. Each figure shows a set

of tetrahedra either before or at some step in the convergence cycle. Each node is annotated with its

scaled, inverted gradient vector. Each figure shows a set of coordinate axes since the perspective

varies from picture to picture. The maximum WCN of all the tetrahedra depicted is noted in the

figure’s caption. In each case, a single node is fixed but all others are allowed to move and the

convergence cycle routine is called with 5 smoothing sweeps between each topological optimization

pass. Any sort of flip is allowed including boundary flips.

Figure 2.10 depicts two tetrahedra that share a single face. In the optimization process, no

flips ever occur (because none would make an improvement) so all the optimization is from vertex

smoothing. Note the two tetrahedra quickly converge to two equilateral tetrahedra. In Figure 2.9d

59

it appears the vectors have disappeared because their magnitude is zero. That is, in this particular

instance, the mesh convergence process has, in contrast to the discussion above, actually converged.

Figure 2.9 shows a small mass of tetrahedra which were constructed mostly at random. This

grid begins as nearly invalid. This fact is highlighted by the size of the vectors in Figure2.10b.

The mesh improves substantially after one set of flips and, after only three convergence cycles, the

maximum WCN has been reduced to a manageable level. Finally, after 100 cycles, the mesh has

reached a completely acceptable state.

60

(a) original mesh, max WCN 2.167 (b) after 3 convergence cycles, max WCN 1.224

(c) after 5 convergence cycles, max WCN 1.054 (d) after 20 convergence cycles, max WCN 1.000

Figure 2.9 Mesh Convergence Cycle, Two Tetrahedra

61

(a) original mesh, vectors omitted, max
WCN 1322

(b) original mesh with perturbation vec-
tors

(c) after one round of flips, max WCN
113.3

(d) after 3 convergence cycles, max WCN
3.119

(e) after 8 convergence cycles, max WCN
1.692

(f) after 100 convergence cycles, max
WCN 1.450

Figure 2.10 Mesh Convergence Cycle, Forty-two Nodes

62

2.5 Other Mesh Creation Techniques

The shining jewels of the algorithms presented in this work aremost certainly the topological

and smoothing procedures themselves. As such, the other mesh creation techniques are, admittedly,

somewhat “ad hoc.” However, they are not without merit. Given below is an overview of the

procedures used in the mesh creation cases presented in Chapter 3.

2.5.1 Point Insertion

Two types of point insertion have been implemented for this work: a traditional Bowyer-

Watson style insertion and a three-dimensional Lawson-style insertion. The Bowyer-Watson style

insertion is as described in Section 1.3.1. All the tetrahedra with circumspheres that contain the

new vertex are deleted and new tetrahedra are created by connecting the new vertex to the vertices

of the deleted hull. Since the Bowyer-Watson technique is faster, this technique is used in the initial

phases of mesh creation because no smoothing or topological changes have yet been applied that

would destroy the Delaunay property.

Once any mesh smoothing or flips have been applied, the grid is no longer Delaunay. While

it would still be possible to utilize a Bowyer-Watson style algorithm for insertion as any new vertex

will at least be contained in the circumsphere of the tetrahedra that contains the vertex itself, the

usefulness of this insertion technique is diminished since all of the guaranteed quality constraints

referenced in Chapter 1 no longer apply. So, instead, new vertices are inserted using a Lawson-style

scheme. That is, the tetrahedron containing the new vertex is deleted and four new tetrahedra are

created by connecting the new vertex to the faces of the deleted tetrahedron. Note it is possible for

the new vertex to be on a face or edge in the existing tessellation. In such a case, all the tetrahedra

63

containing that face or edge are deleted and the new vertex is connected to all the faces of the deleted

tetrahedra not containing the new vertex. (N.B. if a new vertex is on an edge of a tetrahedron it is

also on two of its faces.)

Immediately after this insertion, the mesh convergence cycle routine is called. (See Section

2.4.) Note that the very first optimization in the convergence cycle is topological. In this way,

the Lawson-style scheme mimics the classic two-dimensional Lawson scheme with the addition

of node smoothing. The new tetrahedra and new vertex will have been added to the appropriate

Θ and N during the insertion process. The quality threshold is set to some high value (usually

0.8) so that not much optimization will occur outside of the region around the new vertex. As a

matter of convenience, this operation of Lawson-style insertion immediately followed by topological

optimization and vertex smoothing is referred to as Lawson Style Optimization Insertion or LSOI.

2.5.2 Bounding Box and Octree-Based Pseudo-Tiling

Before inserting points, one must have something into which to insert them i.e. some initial

grid. It seems natural to create as high quality of an initial mesh as possible. So, in this work,

a background mesh consisting of high quality tetrahedra is created into which points from the

prescribed boundary triangulation are inserted.

As has been discussed, the highest quality element for our purposes is the equilateral

tetrahedron. Unfortunately, there is no way to tile space with regular, equilateral tetrahedra and

thus one cannot create the “perfect” background mesh in the sense that all the elements will have

maximum quality. However, from a practical point of view, one can come close. The method

employed for this work creates an octree-based upon the provided boundary triangulation and uses

64

Figure 2.11 Initial Bounding Box

this construct to create points for interior tetrahedra. This method is referred to here as octree-based

pseudo-tiling.

First, an eight point bounding box composed of five tetrahedra is created. This box is sized

so that it encompasses the extents of the boundary triangulation. This initialization is precisely the

same as employed by Watson [13] and virtually every other tetrahedral mesh generation algorithm.

The bounding box is depicted in Figure 2.11.

Based on this bounding box, a spatial octree is created to hold the triangles from the

prescribed boundary triangulation. Then this octree is itself refined so that none of its leaves

have a longer diagonal than twice the longest edge in the boundary triangulation. The octree is

regularized so that an octant with any children is ensured to have all eight of its children. Then

the octree is refined so that no leaf octant is adjacent to any leaf more than one level larger than

65

Figure 2.12 Nearly Equilateral Space Tiling Tetrahedra

itself. Finally, points from the lower corner and midpoints of these octants are added to the overall

tetrahedralization. This process creates a nice gradation of points based on the spacing that arises

from the boundary triangulation. An example of the bounding mesh created in this way on the

Three Boxes Case in Section 3.4.2 is shown in Figure 3.13.

The elements immediately subtended by this process consist of a set of nearly equilateral

tetrahedra that tile space. An example of this configuration is shown in Figure 2.12. Each of these

elements has a WCN of 1.054 which is well within the acceptable range. Elements created from

points generated at transitions of spacing in the octree have a higher WCN. However, experience

shows that the optimization process readily improves their quality.

66

2.5.3 Boundary Recovery

As previously stated, one of the goals of this research is to explore the creation of meshes

with a prescribed triangular boundary. In other words, the final mesh is required to have a particular

set of triangles on the boundary as opposed to simply respecting some polyhedra as is done by Chew,

Shewchuk and others. (See Section 1.4.2.) As such, a set of triangle recovery and enforcement

techniques have been employed throughout the mesh optimization and creation routines.

First and foremost, if at any time during Lawson-style point insertion or topological opti-

mization an edge prescribed in the triangulation is created, that edge is marked as inviolable and

no topological operation is ever allowed to remove it. Similarly, if any triangular face is ever extant

in the mesh no edge creation is ever allowed to pierce the face. The only method by which this

piercing could occur is via a 2-3 flip and, thus, the inviolable face is easy to protect. Note that such

edges or faces could be destroyed with a Bowyer-Watson style insertion but that technique is only

employed during bounding mesh creation before any optimization.

After all the points of the boundary triangulation have been inserted and the mesh has been

optimized, each boundary triangle is processed to check if it is the face of some tetrahedron in the

mesh. If so, that boundary triangle is marked as recovered and the next one is processed. If not, first

an attempt is made to insert the edges of the triangle using the topological operations implemented

for mesh optimization. If that is successful, an attempt is made to remove edges that pierce the

desired face. If either of the edge or face recovery routines fail to recover the desired triangle, that

triangle is marked for further processing.

Experience shows that the above technique is able to recover over 97% of the desired

triangles before any point insertion is necessary. Of course, all of the triangles must be recovered

67

for the method to be successful. Before any further boundary recovery, mesh convergence cycles

are run on the entire grid. Recall, that any edges and faces that have been correctly recovered will

not be changed and so none of the recovery process heretofore completed will be lost. After the

cycles are complete, an attempt is made to recover any remaining unrecovered triangles using only

topological changes as described above. If this process still fails to recover the triangle, points are

inserted near the desired triangle face and the mesh convergence cycle is used to optimize the mesh

locally. Then, as before, flips are used in an attempt to recover the triangle. This processmay require

the insertion of several points over several iterations and, frankly, there is no theoretical guarantee

it will recover the desired triangle. However, the algorithms as implemented were successful in all

attempts. Each of the cases presented in Chapter 3, several of which have complex boundaries,

employed this boundary recovery solution.

2.5.4 Edge Driven Refinement and Simply Partitioned Tetrahedra

After the pseudo-tiling and boundary recovery, it remains to improve the quality of the

mesh. However, the LSOI technique has no proven quality guarantees such as those shown for

Bowyer-Watson style algorithms by Chew and Shewchuk. (See Section 1.4.2.) So, the chosen

methodology for further mesh refinement is based upon a geometric constraint one can be sure

converges, namely edge length refinement. Simply, if one chooses to insert points based upon

refining internal edge lengths, such a process is guaranteed to converge as those edges above some

prescribed length will be subdivided until they are eventually shorter than whatever prescribed

length.

68

To this end, two separate edge refinement techniques have been implemented. These

techniques insert new vertices at the midpoints of edges by LSOI. First edges are refined based

upon some multiple of the maximum boundary edge length. That is, any internal edge longer

than the longest boundary triangle edge has a point inserted at its midpoint. Secondly, internal

edges connected to boundary triangles are refined based upon the maximum length of the boundary

triangle edges connected to them. In other words, any internal edge connected to a boundary node

has a point inserted at its midpoint if its length is greater than some multiple of the boundary edges

connected to that node.

Experience showed that refining the mesh along edges using the LSOI was successful. The

most elementary example of this technique can be seen in Section 3.3. Other methodologies to

choose points for insertion were explored, such as refinement based on tetrahedral cost, but none

were as successful as techniques based on edge length.

In practice, edge refinement is conducted by gathering a set of midpoints and then inserting

them one at a time via LSOI as opposed to inserting the new vertices as they are created. The set of

midpoints is created by looping over tetrahedra, checking edges lengths, and ensuring edges are not

marked for refinement twice with the techniques discussed in Appendix B. Thus, it is possible that

LSOI will have destroyed or moved the edge some node n was created to bisect before it is inserted.

In such a case, LSOI will first place the point by subdividing whatever tetrahedron in which the n

is found. So, initially, n will only be connected to four other nodes and four tetrahedra. If no flips

are immediately performed, n will be smoothed and tend towards the center of the four vertices to

which it is attached.

69

Figure 2.13 A Simply Partitioned Tetrahedron

Here, this construct is referred to as a simply partitioned tetrahedra and n is referred to as a

simply connected node. Figure 2.13 shows such a configuration. The four tetrahedra connected to n

will not be of the best quality. However, it is very easy to find n after the fact as it will be connected

to exactly four other nodes and not be part of a boundary triangle. As part of the mesh creation

process, such simply connected nodes and their associated tetrahedra are deleted and replaced with

a single tetrahedra.

2.5.5 Overall Mesh Creation Algorithm

For clarity’s sake, the mesh creation steps used in this research are summarized, without

much explanation, as follows: First, the bounding box with octree pseudo-tiling is created via a

Bowyer-Watson insertion. Then, the nodes from the boundary triangles are inserted via Bowyer-

Watson. The mesh convergence process is called, the boundaries are recovered, and the mesh

70

convergence cycle is called again. Edges connected to boundaries are refined and the mesh

convergence cycle is called. Edges longer than the longest boundary edge are refined and the

mesh convergence cycle is called. Finally, simply partitioned tetrahedra are removed and the mesh

convergence cycle is called for the final time.

Generally speaking, this process is successful. Some of its advantages and drawbacks are

discussed in Chapter 4. Chapter 3 is replete with examples of this process.

71

CHAPTER 3

RESULTS

The actual C++ program used to optimize and create meshes with the methods described

in Chapter 2 is called by the uncreative but utilitarian name Tetmesh. Tetmesh is approximately

9800 lines of code excluding personal libraries not solely devoted to this project of over 4500 lines.

(These counts exclude comments and blank lines.) Volume meshes solely created using Tetmesh

will be designated with this name.

Surface meshes and volume meshes used for pure optimization procedures were produced

in the commercial grid generation software Pointwise1. Some grids used for optimization were

created with Si’s open source software TetGen2. (See Section 1.4.2.) Grid visualization and graphs

related to grid quality were produced with the open-source application ParaView3. What follows

are examples of the mesh optimization and generation process utilizing these tools.

1http://www.pointwise.com
2http://wias-berlin.de/software/tetgen/
3http://www.paraview.org

72

3.1 Aspect Ratio

Along with weighted condition number, the other quality metric reported in the cases below

is aspect ratio, sometimes denoted AR. The aspect ratio of a tetrahedron T is defined as

AR (T) =
rc

3ri
(3.1)

where rc is the radius of the sphere containing all four vertices ofT (i.e. the radius the circumsphere)

and ri is the radius of the largest sphere that may be inscribed within T . The factor of 3 in the

denominator ensures that an equilateral tetrahedron will have AR = 1.

This metric is reported for two reasons. First, such reporting demonstrates that quality

metrics other thanWCNalso show improvement under thesemesh optimization techniques. Second,

and most importantly, the grids from Pointwise and TetGen are created with metrics more closely

associated with AR. In particular, the TetGen meshes were created with a quality flag that refines

the grid based upon a ratio of a tetrahedron’s circumradius to shortest edge. This measure is similar

to AR. While there is no technical information publicly available on Pointwise’s mesh generation

technique, it is clear the method is based on the Delaunay property and generally produces meshes

with low AR.

In general, the optimization techniques, though completely based upon WCN, also lower

the AR of elements of the mesh. Such improvement is in spite of there being no direct mathematical

relationship between WCN and AR other than they both favor equilateral tetrahedra. This fact is

submitted in support of the choice of WCN as a quality metric.

73

3.2 Numerical Experiment

To show the general efficacy of LSOI, a numerical experiment was conducted by randomly

placing 172 nodes in a box with a triangulated surface mesh. The number of randomly placed

nodes was chosen as 172 since Pointwise created a mesh with that many internal nodes using its

default settings. The box in question, which is in fact cubic, has itself 284 surface nodes and 564

boundary triangles. First, the boundary of this triangulation was recovered without the addition of

any points. The geometry and recovered boundary are shown in Figure 3.1.

After boundary recovery the 172 random nodes were placed in this grid in two ways. First,

they were inserted with Bowyer-Watson and then the mesh convergence cycle was called on the

entire grid. Secondly, they were inserted with LSOI and an overall mesh convergence cycle was

called. This process was repeated 100 times for each case. Relative frequency plots for the WCN

of all tetrahedra in all 100 meshes are given in Figure 3.3.

As expected, Bowyer-Watson insertion of the random points results in horrible meshes. An

example is given in Figure 3.2. Note the spike in frequency at the end of the plot. This jump

indicates over 8% of the tetrahedra created over the 100 meshes have WCN ≥ 4. LSOI produces a

reasonable mesh with most of the tetrahedra having WCN ≤ 2. After further optimization, these

LSOI meshes have improved with all tetrahedra having WCN ≤ 3. Surprisingly, the best meshes

are those with the Bowyer-Watson insertion and optimization. No such mesh has any tetrahedra

with WCN > 2.5 and the majority of elements have WCN ≤ 2. More discussion of these results is

given in Chapter 4.

74

(a) geometry (b) initial mesh

Figure 3.1 Box for Random Insertion

Figure 3.2 A Poor Quality Mesh from Bowyer-Watson Random Point Insertion

75

Figure 3.3 Random Insertion Methodologies Relative Frequency Plots

3.3 Edge Refinement with LSOI

For further experimentation, the internal edges of the same geometry shown in Figure 3.1

were subdivided via LSOI until 172 points were inserted. (Again, this number was chosen to match

the number of internal nodes in the Pointwise mesh.) Note that, unlike in the general creation

procedure, each point is inserted before the next one is chosen. A relative frequency plot of WCN

comparing this mesh to the one generated in Pointwise is shown in Figure 3.4.

Generally, the LSOI mesh compares well with the Pointwise mesh. Both have a maximum

WCN<2. Further, just a few more points would have made the LSOI mesh higher quality. Figure

3.5 shows the LSOI mesh for this case along with one of its worst tetrahedra. The mesh would

likely improve if this tetrahedra, which is on the boundary, were refined along its longest edge.

76

Figure 3.4 Pointwise versus Edge Refinement by Lawson Style Optimization Insertion Relative
Frequency Plots

Note the LSOI mesh has a spike in frequency around WCN ≈ 1.3. Also, there are more

tetrahedra with 1.4 ≤ WCN ≤ 1.6 in the LSOI mesh than in the Pointwise mesh. As it turns out,

this is a common outcome of the optimization process presented in this work. Recall, both the

topological and vertex smoothing schemes focus on improving the worst quality elements and very

high quality elements are often sacrificed in process.

77

(a) interior of grid withworst tetrahedron in upper right corner (b) worst tetrahedron

Figure 3.5 Edge Refinement by Lawson Style Optimization Insertion

3.4 Optimization and Creation Cases

A number of simple to complex cases are presented below to demonstrate the methods so

far described. Meshes are generated in Pointwise and, in some cases, TetGen to be utilized for

optimization. Also meshes are generated in Tetmesh with the procedure outlined in Section 2.5.5.

In each case, the same geometry and boundary triangulations were used to create the Pointwise and

TetGen grids as well as the mesh created purely with Tetmesh. All of the boundary triangulations

themselves were created in Pointwise using its Delaunay-based or advancing-front-based surface

meshing technique unless otherwise noted.

Grids generated with Pointwise used the default settings with no user intervention. On

the other hand, it was necessary to modify the quality parameter input so that the TetGen meshes

would have a comparable number of points to the Pointwise mesh. In each of these cases, said

78

quality parameter had to be set well above the default. Still, as will be seen, the meshes generated

by TetGen are of relatively low quality. While unintentional, this outcome was useful in that it

shows the efficacy of the optimization algorithm. In any case, the low quality of the TetGen meshes

should not be seen as an assailment against that code or its author. It is safer to assume the author

of this work simply did not know how to properly operate TetGen.

The Pointwise and TetGenmesheswere first optimizedwith topological changes only. Then,

the meshes were optimized with the entire mesh convergence cycle utilizing 40 cycles each with 40

mesh smoothing sweeps between topological optimizations. No boundary flips are allowed in any

of the optimization cases. Also, it is worth emphasizing that the optimization procedure employed

on the Pointwise and TetGen meshes neither inserts nor deletes vertices. Meshes created with

Tetmesh utilized the procedure outlined in Section 2.5.5 and, just as with the pure optimization

cases, all of the mesh convergence cycles in those creations utilized 40 cycles each with 40 mesh

smoothing sweeps between topological optimizations. Also, no boundary flips are allowed except

in the Stanford Bunny case in Section 3.4.6. These details will not be belabored in the discussions

below.

For each of these cases, a number of relative frequency plots of WCN are shown as well

as a number of tables listing certain percentiles of WCN and AR. Every effort has been made to

consistently format these items. Note that in each individual case the relative frequency plots all

have the same scales although they vary between cases.

79

3.4.1 Simple Sphere

First, as a simple introductory case, consider meshes generated inside a sphere with a

surface as shown in Figure 3.6. This surface mesh has 513 nodes and 1,022 triangles. Relative

frequency plots for the optimized Pointwise and TetGen meshes are given in Figure 3.8. Table 3.1

gives the statistics for both the Pointwise and TetGen optimization cases. Figure 3.9 is a relative

frequency plot comparing the Pointwise, TetGen, and Tetmesh generated grids and Table 3.2 give

the statistics for that Tetmesh grid.

As was intimated above, the TetGen grid is of poor quality especially given the simplicity

of the surface triangulation. Note it has a maximum AR greater than 6. Further, as can be seen

from the jump in the relative frequency plot, well over 2% of the tetrahedra have a WCN ≥ 2.5.

An illustration of all the tetrahedra generated by TetGen with WCN ≥ 2.0 is given in Figure 3.7.

The Pointwise grid, on the other hand, is of much higher quality. In fact, from a practical point of

view, there is little reason to optimize this grid.

Even though the Pointwise grid may not need it, the optimization techniques are able to

dramatically improve both grids. The maximum WCN is reduced to below 1.4 for the Pointwise

grid and below 1.5 for the TetGen grid. Indeed the TetGen grid has gone from unacceptable to quite

nice. Note that in both cases, topological optimization alone is not enough to bring satisfactory

improvement in grid quality. Indeed, flips have little effect on the Pointwise mesh at all. However,

flipping is enough to at least make the quality of the TetGen mesh tolerable.

Without yielding any particular insight, the mesh creation process in Tetmesh has produced

a grid comparable if not better than the original Pointwise mesh. Note the number of nodes in each

80

mesh differs by less than 9%. The quality of the Tetmesh grid is nearly that of the fully optimized

Pointwise and TetGen grids.

Finally, note the spikes in the relative frequency graphs aroundWCN of 1.3 in both the pure

optimization cases as well as the Tetmesh created grid. This behavior is exactly the same as noted

in Section 3.3. Indeed, this phenomenon will be seen over and over again in the cases that follow.

81

Figure 3.6 Simple Sphere Geometry and Surface Grid

Figure 3.7 Simple Sphere Poor Quality Elements in TetGen Mesh

82

Ta
bl
e
3.
1

Si
m
pl
e
Sp

he
re

Po
in
tw

ise
an
d
Te
tG

en
O
pt
im

iz
at
io
n
St
at
ist
ic
s

qu
al
ity

m
ea
su
re

pe
rc
en
til
es

m
in

20
th

40
th

m
ed
ia
n

60
th

80
th

m
ax

O
ri
gi
na

lP
oi
nt
w
is
e
G
ri
d:

5,
50

8
te
tr
ah

ed
ra
,1

,1
96

no
de
s

W
ei
gh

te
d
Co

nd
iti
on

N
um

be
r

1.
00

20
80

1.
08

50
16

1.
13

37
01

1.
16

20
54

1.
19

39
01

1.
28

74
28

1.
92

05
69

A
sp
ec
tR

at
io

1.
00

25
49

1.
10

10
91

1.
16

19
22

1.
19

48
67

1.
23

41
25

1.
34

54
87

2.
02

46
88

Af
te
r
Fl
ip
s
O
nl
y:

5,
49

0
te
tr
ah

ed
ra
,1

,1
96

no
de
s

W
ei
gh

te
d
Co

nd
iti
on

N
um

be
r

1.
00

20
80

1.
08

55
64

1.
13

63
73

1.
16

49
58

1.
19

60
01

1.
28

41
17

1.
92

05
69

A
sp
ec
tR

at
io

1.
00

25
49

1.
10

23
37

1.
16

36
50

1.
19

75
30

1.
23

71
03

1.
34

46
37

2.
15

41
53

Af
te
r
Fl
ip
s
an

d
Po

in
tP

er
tu
rb
at
io
n:

5,
48

9
te
tr
ah

ed
ra
,1

,1
96

no
de
s

W
ei
gh

te
d
Co

nd
iti
on

N
um

be
r

1.
00

75
41

1.
10

86
90

1.
16

91
53

1.
19

87
64

1.
22

96
39

1.
27

63
62

1.
39

74
97

A
sp
ec
tR

at
io

1.
00

84
16

1.
12

94
27

1.
20

23
76

1.
23

86
58

1.
27

02
82

1.
32

33
09

1.
72

18
00

m
in

20
th

40
th

m
ed
ia
n

60
th

80
th

m
ax

O
ri
gi
na

lT
et
G
en

G
ri
d:

5,
15

4
te
tr
ah

ed
ra
,1

,0
97

no
de
s

W
ei
gh

te
d
Co

nd
iti
on

N
um

be
r

1.
00

10
30

1.
10

06
70

1.
15

70
17

1.
18

95
63

1.
22

50
11

1.
36

37
82

6.
24

24
45

A
sp
ec
tR

at
io

1.
00

12
68

1.
12

39
73

1.
19

61
12

1.
23

64
34

1.
28

77
36

1.
45

42
63

6.
33

38
80

Af
te
r
Fl
ip
s
O
nl
y:

4,
88

3
te
tr
ah

ed
ra
,1

,0
97

no
de
s

W
ei
gh

te
d
Co

nd
iti
on

N
um

be
r

1.
00

10
30

1.
10

09
53

1.
15

69
15

1.
18

62
88

1.
21

52
49

1.
30

09
29

2.
80

37
47

A
sp
ec
tR

at
io

1.
00

12
68

1.
12

46
53

1.
19

55
77

1.
23

46
05

1.
28

00
88

1.
39

53
90

2.
80

93
21

Af
te
r
Fl
ip
s
an

d
Po

in
tP

er
tu
rb
at
io
n:

4,
88

6
te
tr
ah

ed
ra
,1

,0
97

no
de
s

W
ei
gh

te
d
Co

nd
iti
on

N
um

be
r

1.
00

24
12

1.
11

99
92

1.
19

10
16

1.
22

43
59

1.
25

76
95

1.
31

15
89

1.
48

20
44

A
sp
ec
tR

at
io

1.
00

31
90

1.
14

37
69

1.
23

04
70

1.
27

17
25

1.
30

80
08

1.
37

43
52

1.
91

56
00

83

Ta
bl
e
3.
2

Si
m
pl
e
Sp

he
re

Te
tm

es
h
G
rid

St
at
ist
ic
s

qu
al
ity

m
ea
su
re

pe
rc
en
til
es

m
in

20
th

40
th

m
ed
ia
n

60
th

80
th

m
ax

Te
tm

es
h
G
ri
d:

4,
81

8
te
tr
ah

ed
ra
,1

,1
00

no
de
s

W
ei
gh

te
d
Co

nd
iti
on

N
um

be
r

1.
00

55
30

1.
13

24
15

1.
19

81
42

1.
22

77
94

1.
25

52
14

1.
30

95
16

1.
59

22
77

A
sp
ec
tR

at
io

1.
00

70
14

1.
16

00
40

1.
24

12
94

1.
27

83
58

1.
31

08
12

1.
39

07
52

2.
14

86
85

84

(a) Pointwise (b) TetGen

Figure 3.8 Simple Sphere Optimization Relative Frequency Plots

Figure 3.9 Simple Sphere Tetmesh vs. Pointwise and TetGen Relative Frequency Plot

85

3.4.2 Three Boxes Test Case

As another simple test case, an outer cubewith two interior cubes with off-center positioning

was constructed. This case is useful for demonstration since it has interior surfaces as do many

practical grid generation problems. The surface mesh used here has 5,053 nodes and 10,094

triangles. Importantly, the inner cube discretization is much finer than the outer cube. That is, the

spacings of the surface mesh are not roughly uniform as they were on the sphere case above. This

surface spacing differential requires a spacing gradation in the tetrahedral mesh in order to have a

quality grid. Otherwise, there will be large "jumps" in element size that are not conducive to good

simulations (or element quality itself.) The surface geometry is depicted in Figure 3.10.

For this case, only a Pointwise generated grid has been optimized. Relative frequency plots

of the Pointwise optimized mesh and the grid created by Tetmesh are given in Figures 3.11 and

3.12 respectively. The listing of grid statistics are to be found in Tables 3.3 and 3.4.

The results for pure optimization are very similar to those on the sphere case. The Pointwise

mesh is of acceptable quality, but flipping and node smoothing significantly improve the grid.

Topological changes by themselves do not have much effect.

Once again, the mesh creation scheme creates a grid comparable to that of Pointwise’s with

slightly higher quality. Figure 3.13 shows the octree pseudo-tiling tiling for this case. Note how it

creates a simple gradation from the inner to the outer boundaries. The final meshes are depicted

in Figures 3.14 and 3.15. These grids are obviously of high quality but note that one of the lower

quality elements is on the boundary. This phenomenon will be examined later.

86

Figure 3.10 Three Boxes Case Geometry and Surface Grid

87

Ta
bl
e
3.
3

Th
re
e
Bo

xe
sC

as
e
Po

in
tw

ise
M
es
h
O
pt
im

iz
at
io
n
St
at
ist
ic
s

qu
al
ity

m
ea
su
re

pe
rc
en
til
es

m
in

20
th

40
th

m
ed
ia
n

60
th

80
th

m
ax

O
ri
gi
na

lP
oi
nt
w
is
e
G
ri
d:

14
0,
26

6
te
tr
ah

ed
ra
,2

5,
82

2
no

de
s

W
ei
gh

te
d
Co

nd
iti
on

N
um

be
r

1.
00

00
05

1.
08

98
69

1.
14

31
63

1.
17

23
38

1.
20

58
42

1.
30

15
49

2.
31

56
84

A
sp
ec
tR

at
io

1.
00

00
06

1.
10

74
43

1.
17

30
24

1.
20

85
77

1.
24

93
00

1.
36

65
80

2.
53

48
31

Af
te
r
Fl
ip
s
O
nl
y:

13
9,
86

6
te
tr
ah

ed
ra
,2

5,
82

2
no

de
s

W
ei
gh

te
d
Co

nd
iti
on

N
um

be
r

1.
00

00
05

1.
09

20
28

1.
14

69
74

1.
17

69
85

1.
20

98
79

1.
29

83
06

2.
31

56
84

A
sp
ec
tR

at
io

1.
00

00
06

1.
10

96
05

1.
17

74
93

1.
21

36
88

1.
25

40
92

1.
36

50
22

2.
68

11
66

Af
te
r
Fl
ip
s
an

d
Po

in
tP

er
tu
rb
at
io
n:

te
tr
ah

ed
ra
,2

5,
82

2n
od

es
W
ei
gh

te
d
Co

nd
iti
on

N
um

be
r

1.
00

03
80

1.
11

98
65

1.
18

29
70

1.
21

36
70

1.
24

06
52

1.
27

93
88

1.
53

40
27

A
sp
ec
tR

at
io

1.
00

04
35

1.
14

26
73

1.
21

80
70

1.
25

09
41

1.
27

73
07

1.
33

02
96

1.
89

46
67

88

Ta
bl
e
3.
4

Th
re
e
Bo

xe
sC

as
e
Te
tm

es
h
G
rid

St
at
ist
ic
s

qu
al
ity

m
ea
su
re

pe
rc
en
til
es

m
in

20
th

40
th

m
ed
ia
n

60
th

80
th

m
ax

Te
tm

es
h
G
ri
d:

83
,9
72

te
tr
ah

ed
ra
,1

6,
77

9
no

de
s

W
ei
gh

te
d
Co

nd
iti
on

N
um

be
r

1.
00

00
09

1.
13

43
08

1.
19

85
04

1.
22

64
80

1.
25

47
46

1.
31

78
76

1.
95

28
79

A
sp
ec
tR

at
io

1.
00

00
10

1.
16

06
23

1.
23

74
76

1.
27

25
55

1.
30

89
64

1.
40

06
61

3.
17

05
70

89

Figure 3.11 Three Boxes Case Optimization Optimization Relative Frequency Plots

Figure 3.12 Three Boxes Case Tetmesh vs. Pointwise Generated Grid Relative Frequency Plots

90

Figure 3.13 Three Boxes Case Octree Pseudo-Tiling

91

Figure 3.14 Three Boxes Case Tetmesh Grid with Callout of Poorer Quality Tetrahedron on
Surface

92

Figure 3.15 Three Boxes Case Tetmesh Grid (close-up)

93

3.4.3 ONERA M6 Wing

Of course, if the methodologies developed here are intended for practical mesh generation

they should be generated on practical geometries. To that end, a mesh on NASA’s ONERA M6

Wing geometry was constructed. The ONERA M6 is a standard CFD test case consisting of a

particular wing mounted in a wind tunnel. Information about the test case can be found in [85].

The usual CFD geometry with the wing attached to a symmetry plane has been employed.

The surface mesh, including the farfield and symmetry planes, consists of 42,766 nodes and 85,528

triangles. The wing’s surface mesh, as well as part of the symmetry plane, is shown in Figure 3.16.

Both a Pointwise and TetGen generated grid have been optimized for this case. Relative

frequency plots of the Pointwise and TetGen optimized meshes as well as the grid created by

Tetmesh are given in Figures 3.17 and 3.18 . The listing of grid statistics are in in Tables 3.5 and

3.6.

Again we see the optimization methodologies are able to improve mesh quality in both the

Pointwise and TetGen grids. A depiction of the several tetrahedra with WCN ≥ 2.0 is shown in

Figure 3.19. Note all of the these lower quality tetrahedra have been optimized away.

The grid created solely in Tetmesh, while far superior to the TetGen grid, is of roughly the

same quality as that of the Pointwise mesh. Figure 3.20 shows all the the elements withWCN ≥ 2.0

created by Tetmesh. Fortunately, they are all far away from the actual wing geometry. It is believed

these poorer quality elements are caused by a flaw in the octree based pseudo-tiling initialization.

Note the slices of the grid in Figure 3.22 shows a high quality mesh near the wing but Figure 3.21

shows elements that are slightly stretched. This abnormality was caused by the extents of the mesh

being non-cubic and, thus, the octree used to create vertices for insertion was irregularly shaped.

94

It is believed this oversight led to the lower quality elements. Still, the overall mesh is acceptable

and, again, comparable to the Pointwise grid. In any case, this problem could easily be corrected

by simply force the bounding box to be cubic.

95

Figure 3.16 ONERA M6 Geometry and Surface/Symmetry Plane Grid

96

Ta
bl
e
3.
5

O
N
ER

A
M
6
Po

in
tw

ise
an
d
Te
tG

en
O
pt
im

iz
at
io
n
St
at
ist
ic
s

qu
al
ity

m
ea
su
re

pe
rc
en
til
es

m
in

20
th

40
th

m
ed
ia
n

60
th

80
th

m
ax

O
ri
gi
na

lP
oi
nt
w
is
e
G
ri
d:

60
6,
22

2
te
tr
ah

ed
ra
,1

23
,2
61

no
de
s

W
ei
gh

te
d
Co

nd
iti
on

N
um

be
r

1.
00

05
50

1.
09

55
59

1.
15

33
15

1.
18

54
11

1.
22

26
07

1.
32

69
73

2.
49

85
28

A
sp
ec
tR

at
io

1.
00

06
73

1.
11

50
65

1.
18

62
90

1.
22

65
83

1.
27

40
23

1.
40

97
23

4.
39

11
56

Af
te
r
Fl
ip
s
O
nl
y:

60
6,
22

1
te
tr
ah

ed
ra
,1

23
,2
61

no
de
s

W
ei
gh

te
d
Co

nd
iti
on

N
um

be
r

1.
00

05
50

1.
09

55
60

1.
15

33
19

1.
18

54
17

1.
22

26
21

1.
32

69
93

2.
27

89
20

A
sp
ec
tR

at
io

1.
00

06
73

1.
11

50
66

1.
18

62
95

1.
22

65
89

1.
27

40
32

1.
40

97
52

4.
02

26
98

Af
te
r
Fl
ip
s
an

d
Po

in
tP

er
tu
rb
at
io
n:

60
5,
30

2
te
tr
ah

ed
ra
,1

23
,2
61

no
de
s

W
ei
gh

te
d
Co

nd
iti
on

N
um

be
r

1.
00

04
14

1.
10

70
63

1.
16

81
44

1.
19

99
40

1.
23

23
32

1.
29

11
59

1.
95

65
04

A
sp
ec
tR

at
io

1.
00

04
99

1.
12

83
94

1.
20

29
12

1.
24

06
82

1.
27

50
86

1.
36

07
72

2.
63

66
34

m
in

20
th

40
th

m
ed
ia
n

60
th

80
th

m
ax

O
ri
gi
na

lT
et
G
en

G
ri
d:

63
7,
02

8
te
tr
ah

ed
ra
,1

23
,0
70

no
de
s

W
ei
gh

te
d
Co

nd
iti
on

N
um

be
r

1.
00

00
25

1.
11

15
45

1.
17

73
96

1.
21

26
31

1.
25

44
51

1.
40

29
32

6.
69

10
65

A
sp
ec
tR

at
io

1.
00

00
33

1.
13

61
31

1.
22

13
59

1.
26

88
18

1.
32

45
21

1.
51

00
58

7.
74

04
72

Af
te
r
Fl
ip
s
O
nl
y:

61
1,
86

0
te
tr
ah

ed
ra
,1

23
,0
70

no
de
s

W
ei
gh

te
d
Co

nd
iti
on

N
um

be
r

1.
00

00
25

1.
10

83
77

1.
16

98
82

1.
20

14
91

1.
23

75
25

1.
34

51
22

4.
61

76
06

A
sp
ec
tR

at
io

1.
00

00
33

1.
13

23
91

1.
21

20
36

1.
25

50
39

1.
30

36
73

1.
44

75
30

4.
74

47
47

Af
te
r
Fl
ip
s
an

d
Po

in
tP

er
tu
rb
at
io
n:

60
5,
64

7
te
tr
ah

ed
ra
,1

23
,0
70

no
de
s

W
ei
gh

te
d
Co

nd
iti
on

N
um

be
r

1.
00

09
94

1.
12

03
04

1.
18

45
36

1.
21

70
89

1.
25

06
32

1.
30

96
61

1.
95

65
30

A
sp
ec
tR

at
io

1.
00

11
17

1.
14

51
57

1.
22

59
14

1.
26

61
91

1.
30

42
50

1.
37

68
19

3.
55

27
01

97

Ta
bl
e
3.
6

O
N
ER

A
M
6
Te
tm

es
h
G
rid

St
at
ist
ic
s

qu
al
ity

m
ea
su
re

pe
rc
en
til
es

m
in

20
th

40
th

m
ed
ia
n

60
th

80
th

m
ax

Te
tm

es
h
G
ri
d:

65
5,
98

7
te
tr
ah

ed
ra
,1

33
,3
61

no
de
s

W
ei
gh

te
d
Co

nd
iti
on

N
um

be
r

1.
00

13
18

1.
14

41
99

1.
21

42
04

1.
24

42
65

1.
27

24
18

1.
33

81
83

2.
45

72
10

A
sp
ec
tR

at
io

1.
00

15
36

1.
17

40
92

1.
25

62
00

1.
29

21
97

1.
33

06
66

1.
43

57
04

4.
51

83
01

98

(a) Pointwise (b) TetGen

Figure 3.17 ONERA M6 Optimization Relative Frequency Plots

Figure 3.18 ONERA M6 Tetmesh vs. Pointwise Generated Grid Relative Frequency Plots

99

(a) Pointwise (b) TetGen

Figure 3.19 ONERA M6 Tetrahedra with WCN ≥ 2.0

100

Figure 3.20 ONERA M6 Tetmesh Grid WCN ≥ 2.0

101

Figure 3.21 ONERA M6 Tetmesh Grid

102

Figure 3.22 ONERA M6 Tetmesh Grid (close-up)

103

3.4.4 Notional Spaceplane

So far, none of the meshes generated or optimized are of production size. That is, they

contain fewer nodes and elements than would be used in analysis of a typical geometry. For that

matter, none of the geometries thus far have been particularly complex. So, as an example, a

mesh on a notional spaceplane from popular culture has been optimized and generated. While

an amusing exercise, this geometry has a couple of qualities that make it a good mesh generation

test case. First, there is a great amount of detail in the surface geometry which makes both the

surface meshing and boundary recovery challenging. Second, to capture all the geometric detail

necessarily requires a large surface mesh.

The geometry for meshing consists of the spaceplane placed in a farfield. The surface mesh

including the farfield has 257,440 nodes and 514,896 triangles. Figure 3.23 shows the spaceplane

surface mesh along with a close-up of the parabolic aerial. These images are designed to give a

sense of the amount of detail present in the surface.

As above, relative frequency plots of the Pointwise optimized mesh and the grid created by

Tetmesh are given in Figures 3.24 and 3.25 respectively. The listing of grid statistics are to be found

in Tables 3.7 and 3.8. Note that the relative frequency plots do not seem to reflect the maximum

WCN indicated in the grid statistics tables. This seeming discrepancy will be discussed below.

Despite the mesh size and complex geometry, results for this case are very similar to those

of the cases presented so far, including the characteristic spike in the number of tetrahedra at

WCN ≈ 1.3 in both the optimized Pointwise mesh and Tetmesh grid. Figure 3.27 shows a visual

comparison between the Pointwise mesh the Tetmesh created grid. It is clear the elements in

104

the Tetmesh grid grow larger more quickly as the distance from the surface increases than do the

elements in the Pointwise grid.

Note, as indicated above, that the tables of statistics indicate the relative frequency plots

are somewhat deceptive. There are, in fact, several tetrahedra in both grids that have WCN ≥2.0.

There are so few of these elements, though, that they do not affect the character of the plot as they

did in the several TetGen meshes presented above. These few poorer quality elements are actually

a result of the surface triangulation. However, as can be seen in the visualization, the Pointwise

grid has a large number of poorer quality elements away from the geometry.

Figure 3.26 shows a view of one such poor quality tetrahedra on the surface. This tetrahedra

is connected to a poor quality surface triangle that arose from awkward intersection of two parts of

the geometry. In fact, the depicted tetrahedra is composed of four points on the boundary and, thus,

can not be improved through vertex smoothing as all four nodes are fixed. There are several other

places in the surface triangulation with similar poor quality triangles. The lower quality elements

in both the Pointwise and Tetmesh grids are a result of these sort of difficulties presented by the

boundary triangulation.

105

(a) overview

(b) close-up of aerial

Figure 3.23 Notional Spaceplane Geometry and Surface Grid

106

Ta
bl
e
3.
7

N
ot
io
na
lS

pa
ce
pl
an
e
Po

in
tw

ise
M
es
h
O
pt
im

iz
at
io
n
St
at
ist
ic
s

qu
al
ity

m
ea
su
re

pe
rc
en
til
es

m
in

20
th

40
th

m
ed
ia
n

60
th

80
th

m
ax

O
ri
gi
na

lP
oi
nt
w
is
e
G
ri
d:

5,
72

9,
95

1
te
tr
ah

ed
ra
,1

,0
82

,1
13

no
de
s

W
ei
gh

te
d
Co

nd
iti
on

N
um

be
r

1.
00

00
00

1.
09

35
55

1.
14

81
02

1.
17

81
96

1.
21

30
21

1.
31

29
53

5.
41

86
29

A
sp
ec
tR

at
io

1.
00

00
00

1.
11

24
64

1.
18

07
05

1.
21

74
64

1.
26

05
60

1.
38

44
27

6.
13

38
98

Af
te
r
Fl
ip
s
O
nl
y:

5,
72

9,
90

9
te
tr
ah

ed
ra
,1

,0
82

,1
13

no
de
s

W
ei
gh

te
d
Co

nd
iti
on

N
um

be
r

1.
00

00
00

1.
09

35
57

1.
14

81
07

1.
17

82
01

1.
21

30
28

1.
31

29
72

5.
41

86
29

A
sp
ec
tR

at
io

1.
00

00
00

1.
11

24
67

1.
18

07
09

1.
21

74
71

1.
26

05
69

1.
38

44
53

6.
13

38
98

Af
te
r
Fl
ip
s
an

d
Po

in
tP

er
tu
rb
at
io
n:

5,
72

1,
00

3
te
tr
ah

ed
ra
,1

,0
82

,1
13

no
de
s

W
ei
gh

te
d
Co

nd
iti
on

N
um

be
r

1.
00

00
00

1.
10

43
96

1.
16

29
73

1.
19

30
79

1.
22

39
87

1.
28

07
23

5.
41

86
29

A
sp
ec
tR

at
io

1.
00

00
00

1.
12

54
63

1.
19

62
51

1.
23

14
85

1.
26

57
60

1.
32

86
95

7.
11

12
26

107

Ta
bl
e
3.
8

N
ot
io
na
lS

pa
ce
pl
an
e
Te
tm

es
h
G
rid

St
at
ist
ic
s

qu
al
ity

m
ea
su
re

pe
rc
en
til
es

m
in

20
th

40
th

m
ed
ia
n

60
th

80
th

m
ax

Te
tm

es
h
G
ri
d:

2,
98

1,
05

1
te
tr
ah

ed
ra
,6

38
,1
85

no
de
s

W
ei
gh

te
d
Co

nd
iti
on

N
um

be
r

1.
00

00
00

1.
14

63
12

1.
22

47
66

1.
25

86
86

1.
29

08
97

1.
36

21
12

7.
29

25
58

A
sp
ec
tR

at
io

1.
00

00
00

1.
17

81
82

1.
27

49
26

1.
31

77
17

1.
36

10
56

1.
46

99
53

24
.8
53

96
6

108

Figure 3.24 Notional Spaceplane Optimization of Pointwise Mesh Relative Frequency Plots

Figure 3.25 Notional Spaceplane Tetmesh versus Pointwise Relative Frequency Plots

109

(a) locating view (b) close up view

Figure 3.26 Notional Spaceplane Poor Quality Tetrahedra on Surface

(a) Pointwise (b) Tetmesh

Figure 3.27 Notional Spaceplane Visual Comparison of Pointwise and Tetmesh Grids

110

3.4.5 Eglin Wing Pylon Store

A more realistic example of a complex (but not quite as detailed) geometry is the Eglin

Wing Pylon Store, named for Eglin Air Force Base near Pensacola, Florida. Wind tunnel tests

were conducted on this configuration at Arnold Engineering Development Center (AEDC) in 1990

and provide high quality experimental results useful in CFD validation. Full details can be found

in [86].

The geometry is a simple wing with a pylon attached to a symmetry plane with a separating

store close under the pylon. The entire surface mesh used for this work has 52,720 nodes and

105,432 triangles. The geometry, along with a close-up of the surface mesh, is shown in Figure

3.28. Relative frequency plots of the Pointwise optimized mesh and the grid created by Tetmesh

are given in Figures 3.29 and 3.30 respectively. The listing of grid statistics are to be found in

Tables 3.9 and 3.10.

The results for this case are very similar to those of the notional spaceplane. Optimization

of the Pointwise mesh and the grid created by Tetmesh follow all the patterns noted above. Figure

3.32 shows a visual comparison between the Pointwise and Tetmesh grids and, just as before, the

Pointwise grid has better gradation in the size of the tetrahedra but a few scattered, poorer quality

elements. Further, as before, there are a few poor quality elements not obvious from the frequency

plots. Again, these are caused by a few suspect boundary triangles. Figure 3.31 shows just such a

tetrahedra on the surface of one of the store fins. Note the very long, poor quality triangle.

111

(a) geometry excluding symmetry

(b) close-up of surface grid

Figure 3.28 Wing Pylon Store Geometry and Grid

112

Ta
bl
e
3.
9

W
in
g
Py

lo
n
St
or
e
Po

in
tw

ise
M
es
h
O
pt
im

iz
at
io
n
St
at
ist
ic
s

qu
al
ity

m
ea
su
re

pe
rc
en
til
es

m
in

20
th

40
th

m
ed
ia
n

60
th

80
th

m
ax

O
ri
gi
na

lP
oi
nt
w
is
e
G
ri
d:

78
9,
05

7
te
tr
ah

ed
ra
,1

58
,4
78

no
de
s

W
ei
gh

te
d
Co

nd
iti
on

N
um

be
r

1.
00

02
75

1.
09

52
15

1.
15

28
15

1.
18

47
67

1.
22

18
54

1.
32

57
39

11
.0
32

35
7

A
sp
ec
tR

at
io

1.
00

03
54

1.
11

43
79

1.
18

53
59

1.
22

54
13

1.
27

24
64

1.
40

69
05

16
.6
75

97
2

Af
te
r
Fl
ip
s
O
nl
y:

78
9,
06

0
te
tr
ah

ed
ra
,1

58
,4
78

no
de
s

W
ei
gh

te
d
Co

nd
iti
on

N
um

be
r

1.
00

02
75

1.
09

52
21

1.
15

28
30

1.
18

47
85

1.
22

18
87

1.
32

57
91

11
.0
32

35
7

A
sp
ec
tR

at
io

1.
00

03
54

1.
11

43
86

1.
18

53
81

1.
22

54
39

1.
27

24
99

1.
40

69
65

16
.6
75

97
2

Af
te
r
Fl
ip
s
an

d
Po

in
tP

er
tu
rb
at
io
n:

78
7,
54

8
te
tr
ah

ed
ra
,1

58
,4
78

no
de
s

W
ei
gh

te
d
Co

nd
iti
on

N
um

be
r

1.
00

04
59

1.
11

03
80

1.
17

33
61

1.
20

52
07

1.
23

69
03

1.
29

53
30

9.
53

43
89

A
sp
ec
tR

at
io

1.
00

05
12

1.
13

25
79

1.
20

92
90

1.
24

64
74

1.
28

08
82

1.
36

00
50

20
.1
90

28
7

113

Ta
bl
e
3.
10

W
in
g
Py

lo
n
St
or
e
Te
tm

es
h
G
rid

St
at
ist
ic
s

qu
al
ity

m
ea
su
re

pe
rc
en
til
es

m
in

20
th

40
th

m
ed
ia
n

60
th

80
th

m
ax

Te
tm

es
h
G
ri
d:

64
3,
97

1
te
tr
ah

ed
ra
,1

36
,4
67

no
de
s

W
ei
gh

te
d
Co

nd
iti
on

N
um

be
r

1.
00

14
96

1.
15

46
70

1.
23

18
85

1.
26

53
49

1.
29

70
91

1.
36

51
75

9.
53

43
87

A
sp
ec
tR

at
io

1.
00

18
37

1.
18

83
03

1.
28

33
55

1.
32

58
46

1.
36

83
12

1.
47

37
11

20
.2
00

91
5

114

Figure 3.29 Wing Pylon Store Optimization of Pointwise Mesh Optimization Relative Frequency
Plots

Figure 3.30 Wing Pylon Store Optimization of Pointwise Mesh

115

Figure 3.31 Wing Pylon Store Poor Quality Tetrahedron on Surface

116

(a) Pointwise (b) Tetmesh

(c) Pointwise (d) Tetmesh

Figure 3.32 Wing Pylon Store Visual Comparison of Pointwise and Tetmesh Grids

117

3.4.6 Stanford Bunny

To demonstrate the potential of changing boundary topology (i.e. boundary flips) like those

described in Section 2.2.2, a case with an obviously poor surface mesh was chosen: the Stanford

Bunny. The Stanford Bunny is an early example of three-dimensional scanning research conducted

at Stanford University. The surface triangulation is poor because of the immature nature of the

technology used to create it. Also, in fairness, this triangulation is not intended for computational

meshing but rather for three-dimensional modeling and printing. The repository from which the

model was taken as well as other information can be found in [87].

The original triangulation had several holes which for meshing purposes needed to be

closed. So this triangulation was read into Pointwise and the holes were “patched.” The final

surface mesh has 8,294 nodes and 16,584 triangles and is shown in Figure 3.33. Relative frequency

plots of the Pointwise optimized mesh and the grid created by Tetmesh are given in Figures 3.34

and 3.35. The listing of grid statistics are to be found in Tables 3.11 and 3.12. Note that the relative

frequency plots and statistics tables include entries related to boundary flips.

As with the previous two cases, the relative frequency plots do not highlight the poor quality

tetrahedra. Unsurprisingly, all these tetrahedra occur at the boundaries. Indeed, no small part of the

surface triangulation is completely unacceptable for computational purposes. Figure 3.36 shows the

worst tetrahedron in both the Pointwise and Tetmesh grids before any boundary flips are performed.

A nearly “folded over” triangle is forcing an extremely flat tetrahedron into the final meshes. This

configuration is unavoidable with the given surface mesh. However, boundary flips involving this

tetrahedron substantially improve its quality when utilized both in the pure optimization process

118

and in Tetmesh grid creation. Note the changes to the surface highlighted in Figure 3.36d. This

image shows the original mesh in blue and the mesh after boundary flips in red.

Overall, allowing boundary flips was able to substantially improve the quality of the mesh.

However, there are still a few poor quality elements. Figure 3.37 shows a section to the Tetmesh

generated grid. As can be seen, there are still areas of the mesh where the boundary has subtended

some poorer quality elements. Alas, only so much can be done with a surface mesh of such low

quality.

119

Figure 3.33 Stanford Bunny Geometry and Surface Grid

120

Ta
bl
e
3.
11

St
an
fo
rd

Bu
nn
y
O
pt
im

iz
at
io
n
St
at
ist
ic
s

qu
al
ity

m
ea
su
re

pe
rc
en
til
es

m
in

20
th

40
th

m
ed
ia
n

60
th

80
th

m
ax

O
ri
gi
na

lP
oi
nt
w
is
e
G
ri
d:

13
7,
52

7
te
tr
ah

ed
ra
,2

7,
09

8
no

de
s

W
ei
gh

te
d
Co

nd
iti
on

N
um

be
r

1.
00

11
23

1.
09

87
90

1.
15

96
26

1.
19

43
65

1.
23

49
85

1.
35

91
71

58
.7
41

37
2

A
sp
ec
tR

at
io

1.
00

12
90

1.
11

93
71

1.
19

42
97

1.
23

71
82

1.
28

76
97

1.
44

22
31

13
16

.0
46

38
8

Af
te
r
Fl
ip
s
O
nl
y:

13
7,
46

4
te
tr
ah

ed
ra
,2

7,
09

8
no

de
s

W
ei
gh

te
d
Co

nd
iti
on

N
um

be
r

1.
00

11
23

1.
09

89
18

1.
15

98
61

1.
19

45
67

1.
23

52
24

1.
35

96
02

58
.7
41

37
2

A
sp
ec
tR

at
io

1.
00

12
90

1.
11

95
51

1.
19

45
10

1.
23

74
98

1.
28

80
92

1.
44

26
95

13
16

.0
46

38
8

Af
te
r
Fl
ip
s
an

d
Po

in
tP

er
tu
rb
at
io
n:

13
6,
76

1
te
tr
ah

ed
ra
,2

7,
09

8
no

de
s

W
ei
gh

te
d
Co

nd
iti
on

N
um

be
r

1.
00

03
26

1.
13

96
19

1.
21

53
76

1.
25

11
20

1.
28

46
64

1.
35

99
91

58
.7
41

37
2

A
sp
ec
tR

at
io

1.
00

03
66

1.
16

84
82

1.
25

87
25

1.
30

01
35

1.
34

11
75

1.
44

56
75

13
16

.0
46

38
8

Af
te
r
Bo

un
da

ry
Fl
ip
s
an

d
Po

in
tP

er
tu
rb
at
io
n:

13
7,
04

1
te
tr
ah

ed
ra
,2

7,
09

8
no

de
s

W
ei
gh

te
d
Co

nd
iti
on

N
um

be
r

1.
00

11
09

1.
13

33
89

1.
20

29
33

1.
23

54
35

1.
26

73
36

1.
33

09
56

23
.1
06

22
2

A
sp
ec
tR

at
io

1.
00

13
48

1.
16

06
19

1.
24

31
68

1.
28

06
06

1.
31

74
14

1.
40

23
22

29
9.
30

18
91

121

Ta
bl
e
3.
12

St
an
fo
rd

Bu
nn
y
Te
tm

es
h
G
rid

St
at
ist
ic
s

qu
al
ity

m
ea
su
re

pe
rc
en
til
es

m
in

20
th

40
th

m
ed
ia
n

60
th

80
th

m
ax

Te
tm

es
h
G
ri
d,

no
bo

un
da

ry
fli
ps
:
92

,3
31

te
tr
ah

ed
ra
,2

0,
20

9
no

de
s

W
ei
gh

te
d
Co

nd
iti
on

N
um

be
r

1.
00

23
44

1.
17

24
27

1.
26

21
07

1.
30

70
73

1.
35

61
67

1.
47

39
83

58
.7
41

37
2

A
sp
ec
tR

at
io

1.
00

25
61

1.
20

94
66

1.
32

32
32

1.
38

63
78

1.
45

43
21

1.
64

00
34

13
16

.0
46

38
8

Te
tm

es
h
G
ri
d,

w
ith

bo
un

da
ry

fli
ps
:
92

,9
77

te
tr
ah

ed
ra
,2

0,
20

9
no

de
s

W
ei
gh

te
d
Co

nd
iti
on

N
um

be
r

1.
00

12
45

1.
16

52
23

1.
24

85
45

1.
28

92
05

1.
33

06
23

1.
42

75
18

23
.1
06

22
2

A
sp
ec
tR

at
io

1.
00

15
34

1.
19

97
54

1.
30

51
67

1.
35

83
84

1.
41

58
01

1.
56

28
50

29
9.
30

18
91

122

Figure 3.34 Stanford Bunny Optimization of Pointwise Mesh Relative Frequency Plots

Figure 3.35 Stanford Bunny Tetmesh versus Pointwise Relative Frequency Plots

123

(a) locating view (b) close up view

(c) poor quality surface mesh (d) changes to surface that improve quality

Figure 3.36 Stanford Bunny Poor Quality Tetrahedra on Surface

124

Figure 3.37 Stanford Bunny Slice of Tetmesh Grid

125

3.5 Timing Results

Presented here is a very brief discussion of the timings involved in mesh optimization and

creation. All times listed below are for cases run on a Linux desktop with a 2.4GHz CPU. Overall

timings are given in Table 3.13.

As speed was never a goal of this research, there is little guilt in admitting that the code as

implemented is slow. For example, the mesh on the ONERAM6Wing took Tetmesh over 17 hours

to make. In contrast, Pointwise takes less than 20 seconds. The notional spaceplane took Tetmesh

over 9 days! Pure optimization times are not nearly as daunting but still excessive. Obviously, these

times are unacceptable in a production environment.

Despite the apparently abysmal performance, the times for these cases do compare well with

those of Klinger [77, 78]. For example, optimization of mesh an anthropomorphic marshmallow

with 102,393 elements took at least 5,376 seconds, or about 19 elements per second, depending upon

the choice of optimization functions. The Three Boxes Test Case optimization, that has 140,266

elements took 5,792 seconds or about 24 elements per second . There are similar comparisons for

other meshes. Klinger’s timings are from a 2.66 GHz Mac Pro.

Experience shows that the slowest part of the process is topological optimization. The

enormous amount of cost checking and connectivity updates involved seem to take a good bit of

computational time. It is very much believed that this bottleneck, as well as other slow parts of the

codebase, could be ameliorated by somemore intelligent application of computer science techniques

than have thus far been employed. Any such improvement would bring the pure optimization cases

in line with reasonable production times. Also, at this juncture, the algorithms have only been

implemented in serial.

126

Table 3.13 Run Times

Case Time (s)
Pure Optimization Cases

Simple Sphere, Pointwise 80
Simple Sphere, TetGen 71
Three Boxes Test Case 5,792
ONERA M6 Wing, Pointwise 1,006
ONERA M6 Wing, TetGen 1,275
Notional Spaceplane 15,310
Eglin Wing Pylon Store 1,662
Stanford Bunny 833

Creation in Tetmesh
Simple Sphere 471
Three Boxes Test Case 8,868
ONERA M6 Wing 62,325
Notional Spaceplane 793,551
Eglin Wing Pylon Store 66,021
Stanford Bunny 13,800

127

CHAPTER 4

DISCUSSION

The general tetrahedral mesh optimization scheme presented here has been shown to be suc-

cessful. Topological changes combinedwith weighted condition number gradient driven smoothing

is clearly a viable and useful scheme. What follows is a discussion of the several aspects of the

schemes presented with an emphasis on the lessons learned and possible future research.

The Lawson Style Optimization Insertion algorithm was itself shown to be very successful.

Even in the random insertion cases in Section 3.2, inserting and optimizing at the same time

produced reasonable results. The ultimate advantage of such a methodology lies in the ability to

insert points anywhere in the mesh and expect reasonable results. For example, one may be able

to identify undesirable tetrahedra and refine them without fear of producing poor quality elements.

A purely Delaunay based scheme can provide no such guarantee.

LSOI does have two apparent drawbacks. First, it can tend to create the simply partitioned

tetrahedra as discussed in Section 2.5.4. While these elements do tend to be of lower quality, in

practice this tendency is trivial as those nodes are quite easy to remove. The othermain disadvantage

is time. The implementation of LSOI used in Tetmesh was much slower than the Bowyer-Watson

style insertion. This is owed to the fact that the mesh convergence cycle itself was slow. As stated in

Section 3.5, it is believed this is mostly due to the slowness in the topological optimization routine.

128

Weighted condition number has shown itself to be a fine quality metric producing high

quality meshes. The mathematical analysis in Section 2.1 shows tetrahedra with a particular range

of WCN to be high quality elements. In a certain sense, this work begs the question of the efficacy

of WCN by assuming it is a good quality metric. However, what is really being assumed is that

equiangularity is a good quality metric and WCN has been shown to be a fine measure of that

property.

Another interesting result is how well the meshes created by Pointwise and TetGen via a

Bowyer-Watson insertion scheme lent themselves to optimization via topological changes and vertex

soothing. In all the cases presented in Chapter 3 the commercial methods showed good to dramatic

improvement when the mesh convergence cycle was applied to them. Indeed, in Section 3.2, the

initial randomly created Bowyer-Watson style mesh was of terrible quality but optimization was

readily able to improve it to a usable state. These results suggest there is something about Bowyer-

Watson style insertion that well prepares a mesh for flips and node smoothing. Indeed, Frietag

had similar results with her schemes based on meshes created with Bowyer-Watson insertion. (See

Section 2.3.)

Experience would seem to indicate that the reason Bowyer-Watson meshes are easy to

optimize is the amount of new connectivity that algorithm tends to generate. Only in rare cases

would the circumsphere test indicate that only a single tetrahedron should be deleted to form the

convex hull into which to insert the new node. Thus, the new vertex will likely be connected to at

least five and probably many more vertices. LSOI, on the other hand, will only delete the single

tetrahedron in which the new node is located unless the node happens to be on an edge or face. Even

129

in such a case, LSOI will not make more connectivity than Bowyer-Watson. This fact is evidenced

by the existence of the simply partitioned tetrahedra.

It may be possible to avert this problem by simply forcing LSOI to artificially delete more

tetrahedra in the vicinity of the node being inserted thus mimicking the behavior of Bowyer-Watson.

This approach may, however, lead to the same numerical problems present in Bowyer-Watson; so

care will have to be taken to avoid these issues. On the other hand, since LSOI does not depend on

the Delaunay property, there will be little harm in leaving a tetrahedron that could otherwise have

been successfully deleted.

One of the more interesting aspects of the mesh convergence cycle is its tendency to produce

elements around WCN ≈ 1.3. Such behavior was apparent in all the cases presented in Chapter

3. This phenomenon is in contrast to the results of the Delaunay-based methods in Pointwise and

TetGen. Much of this behavior can be attributed to the design philosophy of the algorithms i.e. the

sacrificing of high quality tetrahedra to improve poor quality elements. However, precisely why

the spikes happen at this particular value is still a matter up for debate.

Perhaps the weakest part of the Tetmesh creation scheme comes from the octree based

pseudo-tiling. Unfortunately, as it is currently implemented, the octree is not created to ensure

each octant, and therefore the points chosen for insertion, is a cube. This behavior could be seen

in Onera M6 Wing case in Section 3.4.3. Also, as several of the cases in Chapter 3 showed, the

gradation in points given by the octree is not sufficient. The Pointwise meshes clearly packed more

points close to the geometry.

Fortunately both of these issues are easy to correct. Ensuring that the root octant of the

tree is a cube is trivial. This change would simply require the bounding box created around the

130

triangulation itself be a cube. All of the octants would then, of course, be cubic. Improving

gradation of points given by this method is not much more of a challenge. One must simply ensure

that the octree is refined such that the leaf octants do not increase in size too rapidly. This refinement

could be accomplished by enforcing leaf spacing based upon their neighbors.

In general, though, the sometimes poor quality tetrahedra created at the boundaries lead one

to think that perhaps the best method of point choice near the boundary should be based upon the

boundary triangulation itself. A choosing of points in some way similar to Marcum’s AFLR (See

Section 1.4.2) seems very desirable. In that same vein of thinking, there was some thought and

research given to finding the optimal point subtended by each surface triangle to create the highest

quality tetrahedron possible. Finding such optimal point placement near the boundary seems like

a area ripe for exploration. Indeed, optimal point placement is a subject not only for refining the

grid near the boundary but for all parts of the mesh.

Generally speaking, the work presented here has been quite fruitful. The results show

the methodologies have utility in the field of tetrahedral meshing. It is hoped the optimization

algorithms can be successfully and efficiently integrated into other research and production codes.

131

APPENDIX A

DUAL NUMBERS

132

The gradients referenced in Section 2.1 were calculated numerically using dual numbers.

What follows is a simple explication of dual numbers and their implementation. This presentation

is merely a reprisal of the unpublished work of Hyams [88].

Define some infinitesimal number, ε , to have the special property that ε2 = 0. Suppose this

numbers interacts with real numbers in all the ways one would expect. Specifically assume additive

commutativity, a+ ε = ε + a , and multiplicative commutativity, aε = εa, hold for all real numbers

a.

Consider some real valued function f (x) and it’s Taylor series expansion

f (x + ∆x) = f (x) + ∆x
d f
dx

�����x
+

1
2!
∆x2

d2 f
dx2

�����x
+

1
3!
∆x3

d3 f
dx3

�����x
+ . . . (A.1)

about x. Substituting ε for ∆x gives

f (x + ε) = f (x) + ε
df
dx

�����x
+

1
2!
ε2

d2 f
dx2

�����x
+

1
3!
ε3

d3 f
dx3

�����x
+ . . . (A.2)

However, since ε2 = ε3 = . . . = 0, we have

f (x + ε) = f (x) + ε
df
dx

�����x
(A.3)

What this means is that, if we evaluate the function f with x + ε , the result will be given in

two parts: the real part, f (x), and the coefficient on ε , df
dx evaluated at x.

133

This idea extends easily to multivariable functions. For some function f (x1, x2, . . .),

f (x1 + ε1, x2 + ε2, . . .) = f (x1, x2, . . .) + ε1
df
dx1

�����x1,x2,...
+ ε2

df
dx2

�����x1,x2,...
+ . . . (A.4)

This result gives us a wonderful way to calculate the derivatives of any function. As an

example, consider the simple polynomial

f (x) = 3x2 − 9x + 6 (A.5)

So, of course,

f ′ (x) = 6x − 9 (A.6)

Note that f (1.6) = −0.72 and f ′ (1.6) = 0.6. Now, using the method described above, if we

evaluate f (1.6 + ε) we get

f (1.6 + ε) = 3 (1.6 + ε)2 − 9 (1.6 + ε) + 6

= 3
(
2.56 + 3.2ε + ε2

)
− 9 (1.6 + ε) + 6

= 3 (2.56 + 3.2ε) − 9 (1.6 + ε) + 6

= 7.68 + 9.6ε − 14.4 − 9ε + 6

= −0.72 + 0.6ε (A.7)

with the real part giving the value of the function an the coefficient on ε giving the value of the

derivative.

134

Multivariable functions are just as simple to calculate. Consider

f
(
x, y, z

)
= 3x y + sin (xz) (A.8)

and, so,

∂ f
∂x
= 3y + z cos (xz) ,

∂ f
∂ y
= 3x, and

∂ f
∂z
= x cos (xz) (A.9)

Note that f (1.1, 2.2, 0) = 7.26 , f x (1.1, 2.2, 0) = 3.3 , f y (1.1, 2.2, 0) = 6.6 , and f z (1.1, 2.2, 0) =

1.1 . To find these derivatives with a dual number calculation, we do confront the issue of finding

the sine of a dual number. However, invoking Equation A.3 gives

sin (x + kε) = sin (x) + kε
d [sin (x)]

dx

�����x
= sin (x) + kε cos (x) (A.10)

So, if we evaluate f
(
x + ε1, y + ε2, z + ε3

)
we get

f (1.1 + ε1, 2.2 + ε2, 0 + ε3) = 3 (1.1 + ε1) (2.2 + ε2) + sin ((1.1 + ε1) (0 + ε3))

= 7.26 + 6.6ε1 + 3.3ε2 + ε1ε2 + sin (1.1ε3 + ε1ε3)

= 7.26 + 6.6ε1 + 3.3ε2 + sin (1.1ε3) (A.11)

135

Note, by the above calculation, sin (1.1ε3) = sin (0 + 1.1ε3) = sin (0) + 1.1ε3 cos (0) = 1.1ε3.

Thus

f (1.1 + ε1, 2.2 + ε2, 0 + ε3) = 7.26 + 6.6ε1 + 3.3ε2 + 1.1ε3 (A.12)

where, similar to the polynomial above, we have the real part giving the value of the function and

the coefficients on ε1, ε2, ε3 giving the values of the derivative.

The true value of dual numbers is their simplicity in programmatic implementation, espe-

cially in languages where templating is available.

Given below is a sample of the C++ dual number class used in this research. Ellipses

indicate omitted material.

i f n d e f MB_Dual_12_h

d e f i n e MB_Dual_12_h

d e f i n e NEQN 12

c l a s s MB_Dual_12{

p u b l i c :

i n t i ndex ;

doub l e v a l u e ;

doub l e d e r i v [NEQN] ;

/ / member f u n c t i o n s

136

/ / c o n s t r u c t o r

i n l i n e MB_Dual_12 () {

v a l u e = 0 . 0 ;

f o r (i n t i =0 ; i <NEQN; i ++) d e r i v [i] = 0 . 0 ;

}

. . .

/∗∗

OVERLOADED OPERATORS AND FUNCTIONS

∗∗ /

/ / Add i t i o n

i n l i n e MB_Dual_12 o p e r a t o r + (c o n s t doub l e &num){

MB_Dual_12 r e s u l t ;

r e s u l t . v a l u e = va l u e + num ;

f o r (i n t i =0 ; i <NEQN; i ++) r e s u l t . d e r i v [i] = d e r i v [i] ;

r e t u r n r e s u l t ;

}

i n l i n e f r i e n d MB_Dual_12 o p e r a t o r + (c o n s t doub l e d ,

c o n s t MB_Dual_12 &num) { / / doub l e + dua l

MB_Dual_12 r e s u l t ;

137

r e s u l t . v a l u e = d + num . v a l u e ;

f o r (i n t i =0 ; i <NEQN; i ++) r e s u l t . d e r i v [i] = num . d e r i v [i] ;

r e t u r n r e s u l t ;

}

i n l i n e MB_Dual_12 o p e r a t o r + (c o n s t MB_Dual_12 &num){

MB_Dual_12 r e s u l t ;

r e s u l t . v a l u e = va l u e + num . v a l u e ;

f o r (i n t i =0 ; i <NEQN; i ++) r e s u l t . d e r i v [i]

= d e r i v [i] + num . d e r i v [i] ;

r e t u r n r e s u l t ;

}

/ / S u b t r a c t i o n

i n l i n e MB_Dual_12 o p e r a t o r − (c o n s t doub l e &num){

MB_Dual_12 r e s u l t ;

r e s u l t . v a l u e = va l u e − num ;

f o r (i n t i =0 ; i <NEQN; i ++) r e s u l t . d e r i v [i] = d e r i v [i] ;

r e t u r n r e s u l t ;

}

. . .

i n l i n e f r i e n d MB_Dual_12 s q r t (c o n s t MB_Dual_12 &num){

MB_Dual_12 r e s u l t ;

138

r e s u l t . v a l u e = s t d : : s q r t (num . v a l u e) ;

f o r (i n t i =0 ; i <NEQN; i ++)

r e s u l t . d e r i v [i] = 0 .5∗num . d e r i v [i] / s t d : : s q r t (num . v a l u e) ;

r e t u r n r e s u l t ;

}

. . .

i n l i n e boo l o p e r a t o r >= (c o n s t MB_Dual_12 d){

i f (v a l u e >= d . v a l u e) r e t u r n t r u e ;

e l s e r e t u r n f a l s e ;

}

i n l i n e boo l o p e r a t o r == (c o n s t MB_Dual_12 d){

i f (v a l u e == d . v a l u e) r e t u r n t r u e ;

e l s e r e t u r n f a l s e ;

}

i n l i n e boo l o p e r a t o r != (c o n s t MB_Dual_12 d){

i f (v a l u e != d . v a l u e) r e t u r n t r u e ;

e l s e r e t u r n f a l s e ;

}

139

. . .

} ;

e n d i f

Some further experimentation by Dr. Steve Karman has indicated that manually “unrolling”

the loops in this class can significantly improve the computational speed. The code is presented

here in this form since it is the state in which this work has been presented.

140

APPENDIX B

INTEGER PAIRING

141

In the course of creating the code for this research, it was often useful to be able to store

a pair of integers. For example, all vertices in the mesh were identified with a node number so

a convenient way to mark an edge is with the pair of integers that define it. A similar marking

was used for the face shared by two tetrahedra. However, no edge or face lookups were otherwise

maintained in the code. So, an elegant mathematical solution in the form of pairing functions was

used.

A pairing function is any isomorphism (i.e. one-to-one and onto function) from pairs of

members of a set S to members of that set. That is, f is a pairing function if, for every a, b, c ∈ S,

f ([a, b]) = c ⇐⇒ f −1 (c) = [a, b] (B.1)

where [a, b] is a pair of element in which the order is relevant. Importantly here, there are several

pairing functions from the set of natural number pairs to the set of natural numbers (i.e. from pairs

to positive integers to positive integers.) Such functions are used in theoretical computer science

as well as to show that the cardinality of the set of integers and the set of rational numbers is the

same.

The most famous of such functions is Cantor’s pairing function π : N × N→ N [89, 90]

defined as

π ([n1, n2]) =
1
2

(n1 + n2) (n1 + n2 + 1) + n2 (B.2)

Without going into the details, it can be shown that this function is invertible and, therefore an

isomorphism.

142

Figure B.1 The Elegant Pairing Function

However, the particular pairing function used in this work, was taken from Szudzik [91].

This function, called the elegant pairing function, E : N × N→ N is defined as

E ([n1, n2]) =

n22 + n1 n1 , max {n1, n2}

n21 + n1 + n2 n1 = max {n1, n2}
(B.3)

E orders the pairs of positives integers by assigning consecutive numbers to points along the sides

of a square. See Figure B.1, also taken from [91]. If E ([n1, n2]) = z, then the pair associated with

z is given by the inverse function

E−1 (z) =

[
z −

⌊√
z

⌋2
,

⌊√
z

⌋]
z −

⌊√
z

⌋2
<

⌊√
z

⌋

[⌊√
z

⌋
, z −

⌊√
z

⌋2
−

⌊√
z

⌋]
z −

⌊√
z

⌋2
≥

⌊√
z

⌋ (B.4)

143

where bxc is the greatest integer less than, or floor of, x. For example, E ([3, 4]) = 42+3 = 19 since

3 < 4 and, as expected E−1 (19) =
[
19 −

⌊√
19

⌋2
,

⌊√
19

⌋]
= [3, 4] since 19 −

⌊√
19

⌋2
<

⌊√
19

⌋
or

3 < 4.

Note that the inverse function is somewhat complicated and involves a square root. Fortu-

nately, this does not matter for edge and face marking as the inverse is never needed. When marking

an edge or face, the pair of integers associated with the element are ordered so that n1 < n2. Thus,

E ([n1, n2]) = n22 + n1 = z. This result is stored and, so, to later check if that edge or face is marked,

one need only check if z has been stored. This procedure was easily implemented in the code

for this research with a C++ std::set container. Future work may use this procedure to efficiently

identify edges and faces throughout the entire meshing process.

144

REFERENCES

[1] Babuska, I. and Aziz, A. K., “On the Angle Condition in the Finite Element Method,” SIAM
Journal on Numerical Analysis, Vol. 13, No. 2, 1976, pp. 214–226.

[2] Shewchuk, J. R., “What is a Good Linear Element? Interpolation, Conditioning, and Quality
Measures,” Proceedings of the 11th International Meshing Roundtable, 2002, pp. 115–126.

[3] Bern, M. and Eppstein, D., “Mesh generation and optimal triangulation,” Computing in
Euclidean geometry, Vol. 1, 1992, pp. 23–90.

[4] George, P. L., “Tet meshing: construction, optimization and adaptation,” Proceedings of the
8th International Meshing Roundtable, 1999.

[5] Danilov, A. A., “Unstructured Tetrahedral Mesh Generation Technology,” Computational
Mathematics and Mathematical Physics, Vol. 50, No. 1, Feb. 2010, pp. 139–156.

[6] Delaunay, B., “Sur la Sphre Vide. A laMemoire de Georges Voronoi,” Izvestia Akademii Nauk
SSSR, Otdelenie Matematicheskii i Estestvennyka Nauk, Vol. 7, No. 6, 1934, pp. 793–800.

[7] Voronoi, G., “Nouvelles applications des paramètres continus à la théorie des formes quadra-
tiques. Premiermémoire. Sur quelques propriétés des formes quadratiques positives parfaites.”
Journal für die reine und angewandte Mathematik, Vol. 133, 1908, pp. 97–178.

[8] Chew, L. P., “Voronoi Diagram / Delaunay Triangulation,” http://www.cs.cornell.edu/info/
people/chew/delaunay.html.

[9] Sibson, R., “Locally equiangular triangulations,” The Computer Journal, Vol. 21, 1978,
pp. 243–245.

[10] Rajan, V. T., “Optimality of the Delaunay Triangulation in Rˆd,” Discrete & Computational
Geometry, Vol. 12, No. 1, 1994, pp. 189–202.

[11] Lawson, C. L., “Software for C1 surface interpolation,” Tech. rep., California Institute of
Technology, Pasadena, California, 1977.

[12] Bowyer, A., “Computing Dirichlet tessellations,” The Computer Journal, Vol. 24, 1981,
pp. 162–166.

[13] Watson, D. F., “Computing the n-dimensional Delauny tesselation with application to voronoi
polytypes,” Computer Journal, Vol. 24, 1981, pp. 167–172.

145

http://www.cs.cornell.edu/info/people/chew/delaunay.html
http://www.cs.cornell.edu/info/people/chew/delaunay.html

[14] Chew, L. P., “Contrained Delaunay Triangulation,” Algorithmica, Vol. 4, No. 1-4, 1989,
pp. 97–108.

[15] Chew, L. P., “Guaranteed-Quality Triangular Meshes,” Cornell University, 1989.

[16] Ruppert, J. M., Results on Triangulation and High Quality Mesh Generation, Ph.D. thesis,
University of California at Berkeley, 1992.

[17] Ruppert, J., “A New and Simple Algorithm for Quality 2-Dimensional Mesh Generation,”
Tech. rep., University of California at Berkley, 1992.

[18] Ruppert, J., “A Delaunay Refinement Algorithm for Quality 2-Dimensional Mesh Genera-
tion,” Journal of Algorithms, Vol. 18, 1994, pp. 548–585.

[19] Bern,M., Eppstein, D., andGilbert, J., “Provably goodmesh generation,” Journal of Computer
and System Sciences, Vol. 48, 1994, pp. 384–409.

[20] Marcum, D., “Generation of unstructured grids for viscous flow applications,” 33rd Aerospace
Sciences Meeting and Exhibit, American Institute of Aeronautics and Astronautics, Reston,
Virigina, Jan. 1995.

[21] Marcum, D. L. and Weatherill, N. P., “Unstructured Grid Generation using Iterative Point
Insertion and Local Reconnection,” AIAA Journal, Vol. 33, No. 9, 1995, pp. 1619–1625.

[22] Marcum, David, L., “Unstructured Grid Generation Using Automatic Point Insertion and
Local Reconnection,” Handbook of Grid Generation, edited by J. F. Thompson, B. K. Soni,
and N. P. Weatherill, 1999, pp. 18–1 – 18–31.

[23] Chen, H. and Bishop, J., “Delaunay Triangulation for Curved Surfaces,” Proceedings of the
6th International Meshing Roundtable, 1997.

[24] Borouchaki, H. and George, P. L., “Optimal Delaunay Point Insertion,” International Journal
for Numerical Methods in Engineering, Vol. 39, No. 1996, 1996, pp. 3407–3437.

[25] Shewchuk, J. R., Delaunay refinement mesh generation, Phd dissertation, Carnegie Mellon
University, 1997.

[26] Ruppert, J. and Seidel, R., “On the Difficulty of Tetrahedralizing 3-dimensional Non-Convex
Polyhedra,” Proceedings of the fifth annual symposium on Computational geometry, 1989,
pp. 380–392.

[27] George, P. L., Borouchaki, H., and Saltel, E., “’Ultimate’ robustness in meshing an arbitrary
polyhedron,” International Journal for Numerical Methods in Engineering, Vol. 58, No. 7,
Oct. 2003, pp. 1061–1089.

[28] George, P. L., Hecht, F., and Saltel, E., “Automatic mesh generator with specified boundary,”
Computer Methods in Applied Mechanics and Engineering, Vol. 92, No. 3, Nov. 1991,
pp. 269–288.

146

[29] George, P. L., “Improvements on Delaunay-based three-dimensional automatic mesh genera-
tor,” Finite Elements in Analysis and Design, Vol. 25, No. 3-4, April 1997, pp. 297–317.

[30] Shewchuk, J. R., “Constrained Delaunay Tetrahedralizations and Provably Good Boundary
Recovery.” Proceedings of the 11th International Meshing Roundtable, 2002.

[31] Shewchuk, J. R., “Constrained Delaunay Tetrahedralization, Bistellar Flips, and Provably
Good Boundary Recovery,” 2003.

[32] Si, H. and Gärtner, K., “3D boundary recovery by constrained Delaunay tetrahedralization,”
International Journal for Numerical Methods in Engineering, , No. September 2010, 2011,
pp. 1341–1364.

[33] Du, Q. and Wang, D., “Boundary recovery for three dimensional conforming Delaunay
triangulation,” Computer Methods in Applied Mechanics and Engineering, Vol. 193, No.
23-26, June 2004, pp. 2547–2563.

[34] Liu, Y., Lo, S. H., Guan, Z. Q., and Zhang, H.-W., “Boundary recovery for 3D Delaunay
triangulation,” Finite Elements in Analysis and Design, Vol. 84, 2014, pp. 32–43.

[35] Ghadyani, H., Sullivan, J., and Wu, Z., “Boundary recovery for Delaunay tetrahedral meshes
using local topological transformations.” Finite Elements in Analysis and Design, Vol. 46,
No. 1-2, Jan. 2010, pp. 74–83.

[36] Chew, L. P., “Guaranteed-Quality Delaunay Meshing in 3D (short version),” Proceedings of
the thirteenth annual Symposium on Computational Geometry, ACM Press, New York, New
York, USA, 1997, pp. 391–393.

[37] Shewchuk, J. R., “Adaptive Precision Floating-Point Arithmetic and Fast Robust Geometric
Predicates,” 1997.

[38] Shewchuk, J. R., “Tetrahedral mesh generation by Delaunay refinement,” Proceedings of the
fourteenth annual symposium on Computational geometry, ACM Press, 1998, pp. 86–95.

[39] Shewchuk, J. R., “Sweep Algorithms for Constructing Higher-Dimensional Constrained De-
launay Triangulations,” Proceedings of the Sixteenth Annual Symposium on Computational
Geometry, 2000, pp. 350–359.

[40] Si, H., Three dimensional boundary conforming Delaunay mesh generation, Ph.D. thesis,
Technische Universität Berlin, Fakultät II, 2008.

[41] Si, H., “An Analysis of Shewchuk’s Delaunay Refinement Algorithm,” Proceedings of the
18th International Meshing Rountable, 2009.

[42] Si, H., “TetGen A Quality Tetrahedral Mesh Generator,” ACM Transactions on Mathematical
Software, Vol. 41, No. 2, 2015.

147

[43] Borouchaki, H., Hecht, F., Saltel, E., and George, P. L., “Reasonably efficient Delaunay based
mesh generator in 3 dimensions,” Proceedings of the 4th International Meshing Roundtable,
1995.

[44] Miller, G. L., Talmor, D., Teng, S.-H., Walkington, N., and Wang, H., “Control Volume
Meshes using Sphere Packing: Generation, Refinement and Coarsening,” Proceeding of the
5th International Meshing Roundtable, 1996, pp. 47–62.

[45] Gosselin, S. and Ollivier-Gooch, C., “Tetrahedral mesh generation using Delaunay refine-
ment with non-standard quality measures,” International Journal for Numerical Methods in
Engineering, , No. February, 2011, pp. 795–820.

[46] Marcum, D. L., “Efficient Generation of High-Quality Unstructured Surface and Volume
Grids,” Engineering With Computers, Vol. 17, 2001, pp. 211–233.

[47] Weatherill, N. P., Hassan, O., and Marcum, D. L., “Compressible Flowfield Solutions with
Unstructured Grids Generated by Delaunay Triangulation,” AIAA Journal, Vol. 33, No. 7,
1995, pp. 1196–1204.

[48] Weatherill, N. P., “Generation of unstructured grids using Dirichlet tessellations,” 1985.

[49] Weatherill, N. P., Hassan, O., and Marcum, D. L., “Calculation of Steady Compressible
Flowfields with the Finite Element Method,” Proceedings of the 31st Aerospace Sciences
Meeting & Exhibit, Reno, Nevada, 1993.

[50] George, P. L. and Borouchaki, H., “Back to Edge Flips in 3 Dimensions.” Proceedings of the
12th International Meshing Roundtable, 2003.

[51] Joe, B., “Three-Dimensional Triangulations from Local Transformations,” SIAM Journal on
Scientific and Statistical Computing, Vol. 10, No. 4, 1989, pp. 718–741.

[52] Joe, B., “Construction of k-Dimensional Delaunay Triangulations Using Local Transforma-
tions,” SIAM Journal on Scientific Computing, Vol. 14, No. 6, 1993, pp. 1415–1436.

[53] Joe, B., “Construction of Three-Dimensional Improved-Quality Triangulations Using Local
Transformations,” SIAM Journal on Scientific Computing, Vol. 16, No. 6, 1995, pp. 1292–
1307.

[54] Joe, B., “Delaunay versus Max-Min Solid Angle Triangulations for Three-Dimensional Mesh
Generation,” International Journal for Numerical Methods in Engineering, Vol. 31, 1991,
pp. 987–997.

[55] Shewchuk, J. R., “Two discrete optimization algorithms for the topological improvement of
tetrahedral meshes,” .

[56] Klincsek, G. T., “Minimal Triangulations of Polygonal Domains,” Annals of Discrete Mathe-
matics, Vol. 9, No. C, 1980, pp. 121–123.

148

[57] Buell, W. R. and Bush, B. A., “Mesh Generation-A Survey,” Journal of Manufacturing
Science and Engineering, Vol. 95, No. 1, 1973, pp. 332–338.

[58] Field, D. A., “Laplacian Smoothing and Delaunay Triangulations,” Communications of Ap-
plied Numerical Methods, Vol. 4, No. December 1987, 1988, pp. 709–712.

[59] Ollivier-Gooch, C., “An Unstructured Mesh Improvement Toolkit with Application to Mesh
Improvement, Generation, and (De-)Refinement,” AIAA Aerospace Sciences Meeting and
Exhibit, Vol. 36, University of British Columbia, American Institute of Aeronautics and
Astronautics, 1998.

[60] Dompierre, J., Labbé, P., Guibault, F., and Camarero, R., “Proposal of Benchmarks for 3D
Unstructured Tetrahedral Mesh Optimization,” Proceedings of the 7th International Meshing
Roundtable, 1998.

[61] Parthasarathy, V.N. andKodiyalam, S., “A constrained optimization approach to finite element
mesh smoothing,” Finite Elements in Analysis and Design, Vol. 9, No. 4, Sept. 1991, pp. 309–
320.

[62] Canann, S. A., Stephenson, M. B., and Blacker, T., “Optismoothing: An optimization-driven
approach to mesh smoothing,” Finite Elements in Analysis and Design, Vol. 13, June 1993,
pp. 185–190.

[63] Canann, S. A., Tristano, J. R., and Staten, M. L., “An Approach to Combined Laplacian and
Optimization-Based Smoothing for Triangular, Quadrilateral, and Quad-Dominant Meshes.”
Proceedings of the 7th International Meshing Roundtable, 1998, pp. 15–17.

[64] Amezua, E., Hormaza, M. V., Hernandez, A., and Ajuria, M. B. G., “A method for the
improvement of 3D solid finite-element meshes,” Advances in Engineering Software, Vol. 22,
1995, pp. 45–53.

[65] Amenta, N., Bern, M., and Eppstein, D., “Optimal Point Placement for Mesh Smoothing,”
Journal of Algorithms, Vol. 30, Sept. 1998, pp. 302–322.

[66] Zhou, T. and Shimada, K., “An Angle-Based Approach to Two-Dimensional Mesh Smooth-
ing,” Proceedings of the 9th International Meshing Roundtable, 2000.

[67] Xu, H. and Newman, T. S., “An angle-based optimization approach for 2D finite element
mesh smoothing,” Finite Elements in Analysis and Design, Vol. 42, No. 13, Sept. 2006,
pp. 1150–1164.

[68] Chen, Z., Tristano, J. R., and Kwok, W., “Construction of an objective function for
optimization-based smoothing,” Engineering with Computers, Vol. 20, No. 3, Aug. 2004,
pp. 184–192.

[69] Chen, L., “Mesh Smoothing Schemes Based on Optimal Delaunay Triangulations,” Proceed-
ings of the 13th International Meshing Roundtable, Williamburg, VA, 2004.

149

[70] De L’Isle, E. and George, P. L., “Optimization of Tetrahedral Meshes,” IMA Volumes in
Mathematics and its Applications, Vol. 75, 1995, pp. 97–128.

[71] Freitag, L., Jones, M., and Plassmann, P., “An Efficient Parallel Algorithm for Mesh Smooth-
ing,” Proceedings of the 4th International Meshing Roundtable, 1995.

[72] Freitag, L. A. and Ollivier-Gooch, C., “A Comparison of Tetrahedral Mesh Improvement
Techniques,” Proceeding of the 5th International Meshing Roundtable, Argonne National
Laboratory (ANL), Argonne, IL, Dec. 1996.

[73] Freitag, L. A. and Ollivier-Gooch, C., “Tetrahedral mesh improvement using swapping and
smoothing,” International Journal for Numerical Methods in Engineering, Vol. 40, 1997,
pp. 3979–4002.

[74] Freitag, L.A., “On combiningLaplacian and optimization-basedmesh smoothing techniques,”
Joint ASME, ASCE, SES symposium on engineering mechanics in manufacturing processes
and materials processing, Evanston, IL, 1997.

[75] Freitag, L. A. and Ollivier-Gooch, C., “A Cost/Benefit Analysis of Simplicial Mesh Improve-
ment Techniques asMeasured bySolutionEfficiency,” International Journal ofComputational
Geometry & Applications, Vol. 10, No. 4, 2000, pp. 361–382.

[76] Freitag, L. A. and Plassmann, P., “Local optimization-based simplical mesh untangling and
imporovement,” International Journal for Numerical Methods in Engineering, Vol. 49, 2000,
pp. 109–125.

[77] Klingner, B. M. and Shewchuk, J. R., “Aggressive tetrahedral mesh improvement,” Proceed-
ings of the 16th International Meshing Roundtable, 2008.

[78] Klingner, B., Tetrahedral Mesh Improvement, Ph.D. thesis, University of California at Berke-
ley, 2009.

[79] Karman, S. L. J., “Hierarchical unstructured mesh generation,” AIAA Aerospace Sciences
Meeting and Exhibit, Reno, Nevada, 2004.

[80] Sahasrabudhe, M. S., Karman, S. L. J., and Anderson, W. K., “Grid Control of Viscous Un-
structured Meshes Using Optimization,” 44th AIAA Aerospace Sciences Meeting and Exhibit,
No. January, 2006.

[81] Karman, S. L., “AdaptiveOptimization-Based Smoothing for TetrahedralMeshes,” 53rd AIAA
Aerospace Science Meeting, Kissimmee, Florida, 2015.

[82] Freitag, L. A. and Knupp, P. M., “Tetrahedral mesh improvement via optimization of the
element condition number,” International Journal for Numerical Methods in Engineering,
Vol. 53, 2002, pp. 1377–1391.

150

[83] Pickover, C. A., The Math Book: from Pythagoras to the 57th Dimension, 250 Milestones in
the History of Mathematics, Sterling Publishing Company, Inc., 2009.

[84] ElGindy, H., Everett, H., and Toussaint, G., “Slicing an ear using prune-and-search,” Pattern
Recognition Letters, Vol. 14, No. 9, 1993, pp. 719–722.

[85] “ONERA M6 Wing,” http://www.grc.nasa.gov/WWW/wind/valid/m6wing/m6wing.html.

[86] Heim, E. R., “CFDWing/Pylon/Finned Store Mutual Interference Wind Tunnel Experiment,”
Tech. rep., Arnold Engineering Development Center, 1991.

[87] “The Stanford 3D Scanning Repository,” https://graphics.stanford.edu/data/3Dscanrep/.

[88] Hyams, D. G., “Using Dual Numbers for Automatic Derivative Calculations,” .

[89] Cantor, G., “Ein Beitrag zur Mannigfaltigkeitslehre.” Journal für die reine und angewandte
Mathematik, Vol. 84, 1878, pp. 242–258.

[90] “Pairing Function,” http://en.wikipedia.org/wiki/Pairing_function.

[91] Szudzik, M., “An elegant pairing function,” NKS2006 Conference, 2006.

151

http://www.grc.nasa.gov/WWW/wind/valid/m6wing/m6wing.html
https://graphics.stanford.edu/data/3Dscanrep/
http://en.wikipedia.org/wiki/Pairing_function

VITA

Christopher Bruce Hilbert was born March 14th, 1976 in Chattanooga, Tennessee to Gary

and Deborah Hilbert. He attended Boyd-Buchanan High School where he graduated Valedictorian

in 1994. Bruce earned a Bachelor of Science with Honors, Summa Cum Laude, with majors

in Mathematics and History from Samford University in 1998. In 2001, he earned a Masters

of Education from the University of Tennessee at Chattanooga while working as a mathematics

instructor at Chattanooga State Community College.

Bruce joined the research staff at UTC’s SimCenter, where he was already a student, in

January of 2009 and that year earned his Masters of Science in Computational Engineering. He

has been the chief grid generation specialist at the SimCenter since that time.

152

	ABSTRACT
	DEDICATION
	ACKNOWLEDGEMENTS
	LIST OF TABLES
	LIST OF FIGURES
	LIST OF SYMBOLS
	INTRODUCTION AND LITERATURE REVIEW
	Definitions
	The Delaunay Property
	Two-Dimensional Algorithms
	Lawson and Bowyer-Watson
	Two-Dimensional Mesh Creation

	Delaunay Tetrahedralizations
	Boundary Recovery
	Internal Point Generation

	Edge and Face Removal
	Vertex Smoothing
	Overview of Mesh Improvement and Creation Strategies Explored

	METHODOLOGIES AND ALGORITHMS
	A Metric for Tetrahedra Evaluation
	Weighted Condition Number
	Tetrahedral Cost
	Examples of Tetrahedral Weighted Condition Number and Cost

	Topological Optimization
	Higher Order Flips
	Boundary Flips
	Topological Optimization Algorithm

	Optimization via Node Perturbation
	Mesh Convergence Cycle
	Mesh Convergence Cycle Algorithm
	Mesh Convergence Cycle Examples

	Other Mesh Creation Techniques
	Point Insertion
	Bounding Box and Octree-Based Pseudo-Tiling
	Boundary Recovery
	Edge Driven Refinement and Simply Partitioned Tetrahedra
	Overall Mesh Creation Algorithm

	RESULTS
	Aspect Ratio
	Numerical Experiment
	Edge Refinement with LSOI
	Optimization and Creation Cases
	Simple Sphere
	Three Boxes Test Case
	ONERA M6 Wing
	Notional Spaceplane
	Eglin Wing Pylon Store
	Stanford Bunny

	Timing Results

	DISCUSSION
	DUAL NUMBERS
	INTEGER PAIRING
	REFERENCES
	VITA

