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ABSTRACT 

 

Multiple description coding (MDC) using Compressive Sensing (CS) mainly aims at 

restoring an image from a small subset of samples with reasonable accuracy using an iterative 

message passing decoding algorithm commonly known as Belief Propagation (BP). The CS 

technique can accurately recover any compressible or sparse signal from a lesser number of non-

adaptive, randomized linear projection samples than that specified by the Nyquist rate.  

In this work, we demonstrate how CS-based encoding generates measurements from the 

sparse image signal and the measurement matrix. Then we demonstrate how a BP decoding 

algorithm reconstructs the image from the measurements generated. In our work, the CS-BP 

algorithm assumes that all the unknown variables have the same prior distribution as we do not 

have any knowledge of the side information available during the initiation of the decoding 

process. Thus, we prove that this algorithm is effective even in the absence of side information.  
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CHAPTER 1 

INTRODUCTION 

 

Image processing has an increasing demand due to its diverse application in areas such as 

multimedia computing, biomedical imaging, secured image data communication, content based 

image retrieval, etc. It is a challenging task to impart such applications to a machine in order to 

integrate and interpret the visual information embedded in still images, graphics and video or 

moving images in our visually fascinating world. Therefore, it is very essential to understand the 

techniques of storage, processing, transmission, recognition and interpretation of images. One of 

the simplest and best methods with which we can store and transmit the images is image 

compression. The advantage of image compression is that it reduces the visual redundancies in 

data while protecting the critical features intact in order to represent the image frames with 

significantly lesser number of bits and hence condenses the requirements for storage and 

effective communication bandwidth.  

Generally, image compression algorithms transform high resolution images into images 

of lower resolution, while keeping the crucial features intact. Thus, a large digital set of data is 

converted into a relatively smaller one. An image compression technique would prove 

remarkable if there is a way to incorporate the data compression directly by avoiding the large 

set of digital data to begin with. This can be achieved through CS. 

In recent times, CS has been the subject of interest due to its ability to recover a signal or in our 

case, an image from a very few samples utilizing the prior knowledge that the image is sparse (i.e. 
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having a very few non-zero coefficients) or compressible in nature. Thus the storage and the 

encoding complexity are greatly reduced as the image is sampled in a reduced dimensional space. 

CS determines the weighted linear combination of samples i.e. measurements (also known as 

multiple descriptions or projections) in a basis in which the image is said to be sparse. In order to 

generate the measurements, a random matrix is the best choice [1]. Rateless codes are a class of 

codes that can generate potentially limitless number of output symbols from a fixed number of 

message symbols. Rateless codes are the most efficient choice for a random matrix as it does not 

consider the rate of the channel. Thus, we employ non uniform rateless codes along with the 

sparse image vector in order to generate the measurements. Measurements that are generated can 

be decoded using the BP decoding algorithm in order to reconstruct the image. We employed BP 

decoding algorithm which uses iterative message passing technique [2], [3] and [4] over other 

decoding algorithms like l0 norm optimization, l1 norm optimization [5], greedy decoding [13] etc. 

as these algorithms have certain drawbacks like solving l0 norm optimization is NP hard [4], l1 

norm optimization method is generally known to have cubic computational complexity [4] and 

encoding by a dense Gaussian Φ is slow [2].  
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CHAPTER 2 

LITERATURE REVIEW 

 

2.1 Compressive Sensing 

 Compressive sensing, also termed as compressed sensing, compressive sampling or sparse 

recovery, is an efficient technique in the field of sampling theory. The foremost advantage of CS 

is that it requires far fewer samples than that required by the Nyquist rate in order to reconstruct 

the image i.e. CS theory has the ability to reconstruct an image of length N that is known to be 

sparse with M measurements where M<<N. Thus, we can reduce the storage and computational 

complexity. Also, the CS technique is less complex in the encoding and decoding processes and 

its ability to correlate to data is remarkable. Compression of the image is obtained by merely 

storing only the largest basis coefficients which convey more information compared to 

coefficients with lesser values as the reconstruction of the image mainly depends on those high 

valued coefficients.  

The main idea behind CS is to determine the weighted linear combination of pixels, also 

called the measurements in a basis different from the one in which the image is sparse. By 

exploiting the sparsity of the image, the number of measurements required for full recovery can 

be reduced significantly. Mathematically, CS is a signal in a sparse basis induced by vectors 

{  }   
 or the sparsity matrix Ψ (also termed as transform basis) and can be represented as 

   ∑   
 
      or       is called K-sparse if only K values of    are non-zero and K<<N. 



 

4 
 

 An image X ϵ R
N
 has a sparse representation in one basis i.e. X = Ψa, where Ψ is the 

sparsity matrix (i.e. transform basis) and a is the sparse vector. In this work, we employ the 

Discrete Cosine Transform (DCT) [5] to be the transform basis but in general the transform basis 

can be any one of the transform techniques like Discrete Wavelet Transform (DWT), Stationary 

Wavelet Transform (SWT) etc. This image can be recovered from a small number of 

measurements onto a second basis that is incoherent with the first one. In the real world, an image 

by itself is not sparse, meaning that the majority of the coefficients which represents the image 

will be non-zero. The image can be made sparse or compressible by using any one of the 

transform techniques mentioned above. An alternative approach to obtain sparse image is by 

using DCT, DWT or SWT sparsity matrices instead of the transform itself.  

According to [1], for an image X of length N which is K sparse and K<<N, CS theory 

states that M=O (Klog (N/K)) random linear projections or measurements of X are sufficient to 

robustly reconstruct the image at the decoding end. 

 

2.2 Rateless Codes 

Rateless codes, also known as Luby transform (LT) codes [6], Raptor codes [7], or online 

codes [8], are a class of codes that can generate potentially limitless number of output symbols 

from a fixed number of message symbols using the generator matrix, or the rateless encoding 

matrix, G. Additionally, more encoding symbols can be generated as and when the need arises 

and transmitted over the channel until the decoder has adequate number of symbols in order to 

recover the data. On contrary to the traditional codes, rateless codes on lossy channels do not 

assume any knowledge about the channel. Therefore, rateless codes prove to be very appropriate 

in the applications when the channel erasure probability is unknown [16]. 



 

5 
 

Most of the entries in the rateless encoding matrix (G) are dominated by zeros while the 

non-zero entries are sparse independent and identically distributed (IID) Gaussian or Bernoulli 

(+1) vectors. These entries provide a useful universal measurement basis for CS [10]-[12]. As 

long as the rateless encoding matrix G is not too sparse, the measurements will succeed in 

capturing sufficient information about X to decode the image.  

The output symbols are generated independently and arbitrarily such that each output 

symbol will be the sum of certain input symbols. From the summation of the input symbols, the 

degree distribution and also the neighboring nodes can be determined. It is essential that the 

decoder knows the degree distribution and the set of neighbors of each encoding symbol when the 

encoding symbols are used to recover the original image. Asymptotically, a good degree 

distribution for the rateless codes was developed and is introduced in [6], [7] and [8]. The 

encoding and decoding processes are faster in case of rateless codes, because multiplying a signal 

by a sparse generator matrix is fast. The design of rateless encoding matrix G, characteristics such 

as column and row weights i.e. degree distribution rely upon the relevant signal, measurement 

model and the decoding algorithm that is employed. The degree distribution plays a crucial role in 

determining the success of the decoder [7]. The performance of non-uniform rateless codes, 

meaning rateless codes having irregular degree distribution is known to be superior compared to 

uniform rateless codes [9]. Therefore, in our work, we have employed non-uniform rateless codes. 

The mathematics behind the degree distribution of rateless codes is  ( )  ∑   
 
     , 

where    the probability is that degree i is chosen and x represents the entries in the rateless 

encoding matrix G. The encoding process involves generating independent and random 

measurements from the degree distribution  ( ) to obtain a weight between 1 and N. After 

generating independent and random descriptions, a vector V = (v1, v2 … vn), with a weight of w is 
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chosen at random. Finally, the value of the encoded symbol is calculated by the formula 

∑   
 
      [18] 

 

2.3 Belief Propagation 

BP is a decoding technique that is used to reconstruct the image from the set of generated 

measurements. BP algorithm involves an iterative message passing technique in which 

neighboring variables talk to each other passing messages. BP algorithm basically solves 

inference problems based on an iterative message passing technique [2]-[3]. After enough 

iterations, this series of conversations is likely to converge to a consensus that determines the 

marginal probability of all the variables. Estimated marginal probabilities are called “Beliefs”. BP 

algorithm updates messages until convergence and then calculates beliefs. Once we have the 

measurements at the decoding end, the BP decoding algorithm is applied to a bipartite graph 

(which is discussed in detail in Chapter 3) with the image pixel nodes on one side and the 

measurements on the other side. CS-BP decoding algorithm uses O (Nlog
2
 (N)) computations [2]. 

The application of CS for BP is discussed in [2] and [3].  
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CHAPTER 3 

METHODOLOGY 

 

3.1 Compressive Sensing based Image Compression 

In this algorithm (i.e. compressive sensing based image compression) the image is 

compressed and represented as a sparse signal in a reduced dimensional space. Once we have the 

sparse image, we can generate measurements using the CS measurement matrix (Φ). This 

constitutes the encoding aspect of the process. 

 

 

Fig 1: Image encoding using CS. 

 

The CS measurement matrix (Φ) is obtained from the rateless encoding matrix G and the 

transpose of the sparsity matrix Ψ´. It is necessary that the rateless encoding matrix G is strictly 

sparse in nature, whereas, the measurement matrix (Φ) may be obtained by either of the CS 

algorithms, i.e. sparse random projection (SRP) or dense random projection (DRP). 

As sparsity is a crucial factor in CS based recovery, we choose SRP in our work. 

Encoding complexity is low in case of a SRP when compared to DRP. Also the incoherency 

between rateless encoding matrix G and the transform basis Ψ must be minimized [17] meaning 
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that both G and Ψ must be generated randomly so that the image pixels values can be recovered 

error free at the decoding end. CS theory requires M=O (Klog (N/K)) measurements in order to 

reconstruct the original image with high probability.  

In order to encode the image, measurements Y at the encoding end are generated using 

the CS measurement matrix Φ and the sparse image signal X as follows, 

a. When the transforms technique is employed: 

Ymx1 = Φ mxn×Xnx1 = Φ × Ψa; where Φ is the CS measurement matrix generated from G. 

b. When the sparsity matrix is employed: 

Y mx1 = Φ mxn×Xnx1; where Φ = GΨ´;  

Y mx1 = GΨ´Ψa = Ga; where G is the rateless encoding matrix and a is sparse vector. 

 

 

Fig 2: Generating measurements ‘Y’ using ‘G’ and sparse vector ‘a’. 

 

When Ψ and Ψ´ are orthonormal, Ψ´Ψ = I and thus the measurement matrix will contain Ga. 

These measurements generated serve as the input to the BP decoder which aims at reconstructing 

the image. 

 

3.2 Degree Distribution of Rateless Codes 

 The crucial step in the encoding and measurement generation process is when the image 

node randomly selects a weight from the degree distribution  ( ). Depending on the design of 

the degree distribution  ( ), we can determine whether the measurements are SRP or DRP. 
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DRP allows more accurate recovery of a sparse signal at the decoding end as compared to SRP 

but the computational complexity of DRP is very high. Thus, it is our goal to intelligently design 

the degree distribution  ( ) such that only SRP are generated. In order to design the degree 

distribution  ( ) such that it generates only sparse projections, we use a parallel channel 

scheme. The application of channel coding for CS has been studied earlier in [2], [14] and [15].  

 Next, it is essential to determine how to design the degree of the rateless code such that 

the implementation of CS is practical and the performance of CS is optimum. The authors in [2] 

have employed a fixed degree for all measurements and from the simulation results it can be seen 

that the optimum value of  ( )   . In our work, we propose employing a non-uniform degree 

for rateless codes as non-uniform rateless codes are known to perform better when compared to 

uniform rateless codes [9]. Thus, CS is modeled with a set of parallel channels. This model is 

designed in [19] and its application has been studied for imaging. 

The main aim in CS is to reconstruct all the values of the image pixels after receiving M 

measurements. The received measurements can be considered as parity bits as those bits help the 

decoding end to reconstruct the original K-sparse vector. This K-sparse vector can be modeled 

as input to a ‘q-ary’ symmetric channel (q-SC) whose output is a vector comprised of zero’s, i.e. 

an all zero vector. A ‘q-SC’ channel with a size of q and having an error probability δ can be 

defined as follows, 

 

where x, y ϵ Fq are the input and output of the channel respectively [15]. The ‘q-ary’ symmetric 

channel modeled in this work has an error of  
 

 
. As the parity bits or the measurements received 
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are error free, it implies that the parity bits can be modeled as an ideal channel scheme whose 

output is the same as input.  

 

 

 

 

 
Fig 3: Parallel channel scheme used in CS-based encoding. 

 

 

Fig 3 shows the parallel channel model used in CS based encoding. For large values of q, 

the capacity of this channel can be calculated by          . This set of parallel channels is 

used in order to design the degree distribution. In order to design the rateless codes for the 

channels as shown in Fig 3, we consider both the q-SC channel and the parity bits and base the 

code design on a set of non-uniform channels where different bits encounters varying noise 

levels. Thus, CS uses two different degree distribution Ω1(x) and Ω2(x). Based on this degree 

distribution, a random realization of G can be generated. By using Gaussian elimination, we are 

then able to construct the generator matrix G´ that is used for rateless coding. Lastly, the 

measurement matrix Φ is obtained by removing the submatrix identity from G´.  

 

3.3 Signal Model for Decoding 

 As a mixture of Gaussian models has proven to be efficient in modeling real world 

signals, they can be effectively employed in image processing [2]. Thus, we have considered a 

two-state Gaussian mixture model as a prior that interprets the prior knowledge regarding the 

sparsity of the image signal. From the previous section, we know that  X = [X(1), X(2),…..,X(N)] 

Є R
N
 , and consider the signal x = [x(1), x(2),…..x(N)] to be the result of X. In order to model this 

Systematic 

rateless codes 

+ sparse image 

signal. 

Belief 

Propagation 

Decoding Q-SC 

Channel 

Measurements/Parity bits  

Info bits All Zero vectors 
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signal, we need two probability functions i.e. Probability Mass Function (pmf) and Probability 

Distribution Function (pdf) [2]. The Probability Distribution Function (pdf) of state variable  

Q = 1 or Q = 0 represents the probability that X has either a large coefficient or a small 

coefficient and the  Probability Mass Function (pmf) models the small and the large coefficients 

with zero mean Gaussian mixture model with high and low variances 

Let Q = [Q (1), Q (2)…Q (N)] denote the state random vector associated with the image 

signal. In order to make sure that we have K large coefficients approximately, we consider pdf of 

the state variable Q (i) to be Bernoulli (+1) which can be represented as below, 

 Pr (Q (i) =1) = S and Pr (Q (i) = 0) = 1 – S  

where S = 
 

 
 is the sparsity rate. 

As the estimated sparse image signal contains majority of small coefficients (zero or 

close to zero) and a very few large coefficients which carry some information, we can relate the 

pdf of each coefficient f(X(i)) along with a state variable Q(i) that can take two values. These 

coefficients can be represented by zero mean Gaussian distributions with high variance denoted 

by Q (i) = 1 and low variance denoted by Q (i) = 0 as follows.  

f (X (i))|Q(i)=1) ~ N(0, σ1
2
) and f (X (i))|Q(i)=0) ~ N(0, σ0

2
) 

where σ1
2
 >σ0

2
. In the presence of the side information, this prior model can be altered based on 

the information available. 

Fig 4 shows the distribution of the original image signal X based on the state variables Q 

= 0 and Q = 1. The state Gaussian mixture model is depends on parameters such as sparsity rate 

S, the variances σ1
2
 and σ0

2
 of the Gaussian pdf’s which corresponds to the states. 
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Fig 4: Gaussian mixture model for signal coefficients. 

 

As mentioned earlier, in our work, we have assumed that all the unknown variables have 

the same prior distribution as we do not have any side information available at the decoding end 

during the initiation of the decoding process. 

 

3.4 Image Reconstruction via Belief Propagation 

BP is a decoding algorithm which involves iterative message passing technique in which 

the neighboring nodes talk to each other passing messages. After enough iteration, this series of 

conversations is likely to converge to a consensus that determines the marginal probability of all 

the variables. Estimated probabilities are termed as “Beliefs”. BP algorithm updates messages 

until convergence and then calculates the beliefs. Once we have the measurements at the 

decoding end, BP decoding algorithm is applied to a bipartite graph with the image pixel nodes 

on one side and the measurements on the other side.  

Fig 5 clearly explains how measurements Y can be generated from the image pixels X and 

the CS measurement matrix Φ (Φ = GΨ´). Once the decoder has the measurements, BP algorithm 

uses the iterative message passing technique in order to solve the bipartite graph and reconstruct 

the image. As mentioned in chapter 2, CS-BP algorithm uses O (Nlog
2
 (N)) computations. The 

main advantage of CS-BP algorithm is that the prior information can be easily incorporated which 

aids in the decoding process. In CS-BP algorithm, a two state mixture Gaussian model is used as 
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the prior information for all variable nodes, where all the nodes are considered to be zero-mean 

Gaussian random variables.   

 

 

Fig 5: Bipartite graph denoting the image pixel nodes ‘X’ and measurements ‘Y’ 

 

The message that is sent from image pixel node n to one of its neighbors i.e. the 

measurement node m is denoted by μn→m and the message that is sent from the measurement 

node m to the image pixel node n is denoted by μm→n. BP algorithm approximates the marginal 

distribution of the coefficient and state variables in the bipartite graph, conditional on any 

measurement Y. This is by iteratively passing the messages from the image pixel node and the 

measurement node. The input for the message passing process begins with input consisting of the 

prior probability function (pdf-prior) of the image pixel values. This value of pdf-prior is sent 

from the image pixel node to the measurement node on the bipartite graph. The updated 

messages are sent back to the image pixel node by using the constraint on the set of the image 

pixel nodes generated by the measurement nodes. Iterative BP decoding algorithm repeats the 

iterations until it satisfies the maximum number of iterations (maxIter) and then the messages 

calculate the beliefs. The main difference between BP decoding algorithm in our work and the 

BP decoding algorithm that is proposed in [2] is that in our work, the measurement matrix is 
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composed of 0’s and 1’s whereas in [2], the measurement matrix is composed of 0’s and ±1’s 

and in our work, the degree distribution in the measurement matrix is non-uniform whereas in 

[2], the degree distribution is uniform i.e. they have fixed column and row degrees 

The BP algorithm is summarized as shown in fig 6. In the algorithm, neigh (n) denotes 

the image pixel node and the neigh (m) denotes the measurement pixel node, con (neigh (m)) is 

the constraint on the set of image pixel nodes neigh (n). 

 

 
 

Fig 6: BP decoding algorithm. 

 

 In the above BP algorithm, the very first step is to initialize the pdf-prior. The pdf-prior 

initializes the message sent from the image pixel node to the measurement node. We know that, 

for a sparse image, a large number of coefficients are zero or close to zero which is negligible 

and a small number of its coefficients are large valued. In order to model this behavior 

accurately, we must consider the two probability functions discussed in section 3.3 i.e. pdf and 

pmf.  
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In order to make sure that we have K-sparse signal, pdf must satisfy the condition that  

Pr (Q (i) = 1) = S and the Pr (Q (i) = 0) = 1 – S and pmf must satisfy the condition f (X(i)| Q(i) = 

1) ~ N (0, σ1
2
) and f (X(i)| Q(i) = 0) ~ N (0, σ0

2
) where σ1 > σ0. This is the two state mixture 

Gaussian model and the pdf-prior can be designed as follows which denotes that the probability 

that each node is significant is (K/N = S), which represents the sparsity of the vector and the 

variances of all the significant nodes is σ1
2,

 and the variances of all the insignificant nodes is σ0
2
. 

Thus the pdf-prior can be denoted as  

pdf-prior = (K/N) N (0, σ1
2
) + (1 − K/N) N (0, σ0

2
) = (S) N (0, σ1

2
) + (1 − S) N (0, σ0

2
) 

In case of the presence of side information, this pdf-prior can be altered based on the information 

available.  
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CHAPTER 4 

SIMULATION RESULTS 

 

 In order to demonstrate the efficiency of the proposed compression and decoding 

algorithm, we applied the algorithm on the ‘cameraman’ image. The size of the original image 

frame is 256 × 256. In order to make the computation faster, the original image frame was 

divided into 16 sub images of frames 64 × 64. This work has been carried out under the 

assumption that there is no transmission error. Our simulations were carried out in MATLAB. 

As discussed in the previous chapter, the performance of the non-uniform rateless codes 

is superior compared to uniform rateless codes, therefore the degree distribution used in our code 

in order to generate the encoding matrix is as follows: 

Ω(x) = 0.25x
5
 + 0.25x

10
 + 0.5x

15 

Parameters of the two state Gaussian mixture model σ0
2

 and σ1
2
 are chosen to be 1 and 10 

respectively. Since each sub frame is of dimension 64 × 64, the total number of pixels in each 

iteration is N = 64 × 64 = 4096 and the total number of pixels in entire image is 65536, the 

maximum iterations i.e. maxIter = 10.The sparsity of the image i.e.   
 

 
 is assumed to be 0.1 

initially. 

 Processing an image may cause loss of information and might degrade the quality of the 

reconstructed image. In order to evaluate the performance of the reconstructed image with 

respect to the original image, we compute Peak Signal to Noise Ratio (PSNR) [4], [5] and [20].  
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PSNR is an image quality metric which determines the information loss or degrade in quality by 

objective method i.e. by comparing explicit numerical criteria [21] and [22]. 

The PSNR is given by: 

PSNR = 20 log 10 (255×256) / ||(X – Ẍ)
 2

|| in dB 

Where X is the original signal, Ẍ is the reconstructed signal and ||(X – Ẍ)
 2

|| is the mean square 

error (MSE). For a two monochrome images I and P of dimension x × y MSE is given by,  

     
 

    
∑ ∑  (   )   (   )  

   

   

   

   

 

It can be clearly seen that the values of the PSNR approaches infinity as the MSE approaches 

zero which implies that lower the error, higher will be the value of the PSNR which provides a 

better quality image. On the other hand, if the value of the PSNR is very low, it implies that the 

numerical difference between the reconstructed image and the original image is very high and 

thus the image quality of the reconstructed signal is low. 

 

 

Fig 7: Plot of PSNR vs. M/N Ratio 
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 Fig 7 illustrates the plot for PSNR vs. Number of measurements for the ‘cameraman’ 

image of frame size 256 × 256. We calculate the PSNR for each sub frame of size 64 × 64 and 

compute the overall PSNR by averaging the PSNR values of all sub frames. Considering the 

entire image, we start with 20% i.e. 13107 measurements and go up to 60 % i.e. 39321 

measurements and the corresponding PSNR values are determined. Thus it is evident that as the 

number of measurements increases, error decreases. 
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CHAPTER 5 

DETECTION OF HIDDEN IMAGES USING COMPRESSIVE SENSING 

 

5.1 Compressibility test to detect hidden images in Covert Channel  

In the previous chapters, we have studied how CS can be applied in image processing. In 

this chapter, we study another application of CS i.e. its ability to detect a hidden or a covert 

channel [23]. A covert channel is a means of transmitting information in various ways such that 

it is difficult to detect that the transmission is taking place. Some of the techniques of detecting a 

covert channel are based on the delay experienced in the inter packet arrival times, based on the 

change in the header or payload information in the packets etc. [23] and [24] 

In the previous chapters, we studied how the images are compressible. In general a signal 

will be compressible in nature if the coefficients which represent the signal are correlated. Thus 

when the image can be compressed, it implies that the pixels which represent the image will be 

correlated and when compressed gives us a prior knowledge of the image structure. This prior 

knowledge can helps in the detection of the hidden image. The presence of a hidden image will 

alter this structure of the original image because of the additional information it carries. This 

detection technique mainly depends on the fact that a set of values with a high degree of 

regularity or correlation is more compressible than a set of values with a high degree of 

randomness. Thus, by compressing the image in the presence of a hidden image gives us 

different compression values when compared to the compression values of the pixels in the 

original image. 
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 The error between the original image and the reconstructed image is calculated by Peak 

Signal to Noise Ratio (PSNR) which is discussed in the previous chapter. When the original 

image is reconstructed in the absence of the hidden image, we measure the PSNR to determine 

its performance. When the original image is reconstructed in the presence of the hidden image, it 

is noted that the PSNR value decreases when compared to the PSNR value obtained in the 

absence of the hidden image. Higher the value of the PSNR better is the reconstruction quality 

and vice versa. Therefore, the results clearly imply that there is degradation in the quality of the 

image and that the original image has been tampered. Thus, the presence of hidden image can be 

determined.  
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CHAPTER 6 

CONCLUSION 

 

In this work, we proposed an algorithm for CS-based BP which is a compression and 

decoding algorithm for image processing. This CS encoding algorithm successfully compresses 

the signal at a rate less than that required by the Nyquist rate and the proposed BP decoding 

algorithm perfectly reconstructs the signal from a very small subset of samples which carry the 

necessary information. Thus, the main advantage of employing BP over other decoding 

algorithms like l0 norm optimization, l1 norm optimization, greedy decoding, etc., is that the BP 

algorithm is extremely general and can be applied to any graphical model. The BP algorithm 

provides an exact solution when there are no loops in the graph, such as a tree, and in the 

presence of loops BP provides approximate solution. Lastly, decoding is faster compared to the 

other the decoding algorithms mentioned above.  

Our results show that the approach is promising because in the proposed algorithm, we 

aim at reconstructing the image without having any side information. However, it can be noted 

that the results improve in the presence of the side information and the reconstruction quality can 

be improved. In majority of the cases, it is not possible to have the side information about the 

image. Therefore, the proposed CS-BP algorithm proves to be a general case to reconstruct the 

image in the absence of any side information. Also, the proposed CS-BP algorithm can be 

extended and generalized to video coding as well. 
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