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ABSTRACT

The study uses computational methods to simulate fluid flow on the NASA ROBIN helicopter 

model and on a simplified rotor geometry previously tested at Mississippi State. The ROBIN model 

and the rotor are run using an unstructured grid. Results from the Tenasi flow solver are compared 

against both simulated and wind tunnel data. Tenasi is an unstructured, Reynolds Averaged Navier-

Stokes (RANS) solver developed at the SimCenter: National Center for Computational Engineering, 

located at the University of Tennessee at Chattanooga. 

Steady-state results for the isolated ROBIN fuselage and unsteady results for both fuselage and 

rotor systems are computed. In the unsteady case, relative grid motion of both the rotor disk relative to 

the fuselage and the cyclic pitching motion of each blade as the rotor turns must be simulated. Thus, 

each moving component is meshed in its own subdomain, and a nonmatching and sliding interface 

method is used to compute fluxes across the subdomain boundaries. Testing of the implementation of 

this method in Tenasi is the primary purpose of the study.
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CHAPTER I

INTRODUCTION

Background and Previous Work

At NASA Langley Research Center, Freeman and Mineck (1979) took a large amount of 

experimental data over a ROBIN (ROtor-Body INteraction) fuselage with and without a rotor system. 

The ROBIN is an analytically defined notional generic helicopter body, described later. The wind-

tunnel experiment was conducted to expand the data available to validate analytic models of the flow 

field around a helicopter fuselage. Test result data were presented without analysis. At the Georgia 

Institute of Technology, Brand, McMahon, and Komerath (1989) conducted wind-tunnel tests of a 

simple cylindrical fuselage with a two-bladed teetering rotor system. The Georgia Tech test was 

intended to provide data for verification of Computational Fluid Dynamics methods for modeling of 

rotorcraft in flight. At Mississippi State University, Webster (1994) undertook to simulate a helicopter 

rotor (isolated) in forward flight. A turbomachinery code using the Reynolds-averaged, Navier- Stokes 

equations with thin-layer approximation called TURBO was modified and used. The modification 

consisted of cyclic blade surface motion function implementation with grid deformation/distortion 

using weighting functions and the grid motion techniques used to simulate the rotor assembly rotation. 

In Schweitzer (1999), an unstuctured simulation of the ROBIN fuselage without a rotor was run using 

the Parallel Unstructured Maritime Aerodynamics (PUMA) solver from Virginia Polytechnical Institute 

and State University.
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In Mineck (1999), an unstructured-grid, Navier-Stokes solver was used to predict the surface 

pressure distribution, the off-body flow field, the surface flow pattern, and integrated lift and drag 

coefficients on the ROBIN configuration without a rotor at four angles of attack. Another wind tunnel 

test for the ROBIN was run by Mineck and Gorton (2000), and steady and periodic (unsteady) pressure 

measurements on the fuselage were taken, with peaks corresponding to blade passage. The model was 

tested at four advance ratios and three thrust coefficients. Data for the unsteady cases are provided, but 

no analysis was performed. That data is the primary reference for ROBIN simulations in this study.

Park and Kwon (2004) conducted an unstructured-mesh simulation of an isolated helicopter 

rotor with the three-dimensional Euler (inviscid) flow equations using a sliding-plane method for flow 

across a single subdomain boundary parallel to and below the rotor plane. Mesh deformation for cyclic 

blade pitching motion in forward flight was handled using a spring analogy and cell-edge collapsing. 

At Mississippi State University, several methods were employed for relative grid movement. 

According to Blades and Marcum (2005),

...an unstructured method for node-centered schemes was developed by Sreenivas et 
al. for tilt-rotor simulations. This method, referred to as the UVI method, employs 
local grid reconnection to enable relative grid motion... The UVI method, in 
principle, is an unstructured implementation of the localized grid distortion and 
clicking method introduced by Janus and Whitfield (1990). The local-reconnection 
process reconnects the distorted grid lines at the interface, and the inner grid is 
essentially clicked into place.

In Blades and Marcum (2005), a sliding interface method is developed for simulations 

involving relative grid motion that requires no grid deformation, remeshing, or hole cutting. This is the 

method currently used in Tenasi, and it will be described later in Chapter 1. Nam, Park, and Kwon 

(2006) – following directly on Park and Kwon (2004), also at Korea Advanced Institute of Science and 

Technology – ran unstructured-mesh simulations of both the ROBIN and Georgia Tech rotorcraft with 
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rotors in forward flight in the three-dimensional Euler flow equations. Again, periodic blade flapping 

due to pressure fluctuations was modeled via mesh deformation. An upper and lower rotating zone 

were used for the rotor and fuselage, respectively, with a single sliding plane interface between them. 

Trim sensitivity calculations were performed on a coarse grid, which was then refined via mesh 

adaptation to provide results that reasonably matched wind-tunnel data. 

Mitchell (2007) uses a constructive geometry approach to calculate the overlap of two surface 

elements arbitrarily oriented in three-dimensional Cartesian space. This information allows edges to be 

created in the unstructured solver that allow for a flux to be calculated across the discontinuous 

interface. The finite-volume solver uses these edges to construct median dual volumes, as seen in 

Figure 1. Calculations are performed at the true center of gravity of each control volume. Surface 

elements are refined to allow for median dual volume construction. Data structures for refined surface 

element and control volume connectivity are maintained in dynamic grid situations. While this 

reconstructed control volume method is theoretically fully conservative and thus might provide more 

accurate results, the extrusion method of Blades and Marcum for sliding interfaces is used in the Tenasi 

solver at the time of this writing and for this study.

Steijl and Barakos (2009) have conducted simulations of both the Georgia Tech and ROBIN 

simplified rotorcraft geometries in forward flight, using a sliding-plane method on structured grids. 

Results from their study are compared with this simulation as well as the experimental data from 

Freeman and Mineck (1979) and Brand et al. (1989). 
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The Unstructured Solver: Tenasi

Tenasi, developed at the UTC SimCenter, is an unstructured, finite-volume, three-dimensional 

flow solver for a system of coupled partial differential equations that describe fluid flow, known as the 

Reynolds Averaged Navier-Stokes (RANS) equations. There is currently no analytical solution for 

them. The full set of equations and methods used to solve them numerically are listed and described in 

Chapter III. The Tenasi software allows parallel computation over decomposed domains of the mesh, 

with communication of geometry information and volume surface flux computations occurring across 

domain boundaries via the Message Passing Interface (MPI) standard. It employs arbitrary Mach 
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Figure 1  Sliding interface schematic for two-dimensional field elements, reconstructed 
control volume method



preconditioning to enable resolution of essentially incompressible (low Mach number) flows as well as 

high speed (Mach number > 1) flows (Sreenivas et al., 2005).

Sliding Interfaces

For a rotorcraft simulation, the blades must obviously rotate relative to the body. This presents a 

difficulty when the flow field is discretized – the mesh blocks near boundary surfaces must move with 

them in order to maintain conservation of fluid properties that are quantified in the mesh itself. This can 

be accomplished using either vector arithmetic in Cartesian coordinates, or by recasting the equations 

in a relative, rotating frame. The problem, then, is what to do at the block interfaces. One approach is 

similar to that used at boundaries of subdomains created from a large mesh to distribute computational 

load across cores of a supercomputer – i.e. using “ghost nodes”. From Brand, McMahon, and Komerath 

(1989): 

“Rotational motion is accomplished by rigidly rotating a subdomain representing the 
moving component. At the subdomain interface boundary, the faces along the 
interfaces are extruded into the adjacent subdomain to create new volume elements 
and provide a one-cell overlap. These new volume elements close the control 
volumes for the nodes on the interface surface and allow a flux to be computed across 
the subdomain interface. An interface flux is computed independently for each 
subdomain. The values of the solution variables and other quantities for the nodes 
created by the extrusion process are found by interpolation.”

Tenasi currently employs a cell extrusion method for calculating fluid flow across sliding grid 

interfaces, described in Blades and Marcum (2005):

The method is implemented into a parallel, node-centered finite volume, unstructured 
viscous flow solver. The rotational motion is accomplished by rigidly rotating the 
subdomain representing the moving component. At the subdomain interface 
boundary, the faces along the interface are extruded into the adjacent subdomain to 
create new volume elements and forming a one-cell overlap (See Figure 2)... the 
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extrusion is done so that the interpolation will maintain information as localized as 
possible.

To avoid confusion, the entities referred to above as “subdomains” we will call “blocks”, since 

the term “subdomain” is also used to refer to field mesh decomposition units for distributed parallel 

processing. Since the rotor blocks are rotated in the unsteady simulation, each block and its boundary 

surface must be axisymmetric in order to maintain volume closure of the computational mesh at the 

sliding boundaries. Thus, each block boundary surface was created by rotating an arc through a full 

circle about the rotor axis. Each block boundary was then copied in place, with one copy of the surface 

assigned to the rotating block, and the other assigned to the enclosing block. It should be noted that 

exact copies of the meshed block boundary surfaces are not necessary for the extrusion sliding interface 

method, and unaligned multiblock surface meshes will produce valid solver results as long as they are 
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Figure 2  Two-dimensional overlapping sliding interface



geometrically co-located within acceptable tolerances. In fact, mirroring around the Y-axis origin was 

necessary in Pointwise in order to create co-located surface domains, since this software attempts to 

prevent the creation of duplicate elements.  The blocks for each rotating component of the ROBIN 

model are illustrated in Figure 3.

In the unsteady simulation, the blocks containing solid bodies (solid boundary surfaces) are 

rotated relative to each other. Rotation of the entire rotor block (red, in the figure above) relative to the 

body and farfield can be accomplished using relative frame rotation (Ghosh, 1996) in addition to mesh 

movement for the cyclic pitching of blades, or through absolute frame rotation, i.e. mesh movement 
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Figure 3  Blocks for rotation of ROBIN rotor (red) and cyclic pitching of blades (yellow)



with submotion specified for the blade-enclosing blocks. A comparison of these two methods to verify 

their equivalence (or rather, lack thereof in the current implementation when block submotion) is 

performed on the isolated rotor test case. The cyclic pitching of the blade blocks (yellow, above) 

relative to the rotor block is achieved using rigid mesh movement, i.e. coordinate manipulation of the 

mesh nodes in memory.

Extrusion

The new volume elements that are extruded from the sliding surfaces into each adjacent 

subdomain have their extrusion distance determined relative to the cell size of the neighboring 

subdomain near its surface. In this way, the method avoids creating extruded volumes that extend past 

several neighboring cells in the extrusion direction - see Figure 4. This allows for data closer to the 

subdomain surface to be used in constructing surface fluxes for control volumes around the subdomain 

surface nodes and, therefore, more accurate results for trans-surface flow. Figures 2 and 4 illustrating 

the extrusion are from Blades and Marcum (2005). In these simulations, the sliding interface does not 

intersect solid boundaries. However, the method allows for solid boundaries by extruding interface 

edges to quadrilateral elements that will then have appropriate boundary conditions applied. These 

faces will close control volumes for the interface nodes and their solution flux evaluations.
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Figure 4  Suboptimal extrusion distance (nodes near surface are ignored)

Variable Value Interpolation

Once the sliding nodes are extruded, and the subdomains are rotated, the containing host 

element is found through a nearest-neighbor search using the previous host element as an initial guess 

(Löhner and Ambrosiano 1990). The variable values Q⃗ , Δ Q⃗ , etc. are then interpolated from the 

nodes in the host element.

û=∑
j=1

n

φ j u j (1)

Above, û is the interpolated quantity, φ j  are the finite element shape functions or weighting functions 

for the host element, uj is the value of the quantity at the nodes of the host element, and j is an index 

9



over the nodes of the host element. For a tetrahedral host element, φ j  are isoparametric shape 

functions, while for hexahedra, pyramids, and prisms, where the shape functions would require solution 

of a cubic polynomial, φ j  are inverse distance weighting functions. Extruded node values are updated 

in every timestep, regardless of update frequency for other nodes, e.g. nodes on any parallel block 

boundaries. This ensures tight coupling of blocks across interfaces.
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CHAPTER II

MODEL CONSTRUCTION AND METHODOLOGY

Isolated Rotor Geometry

The isolated rotor that was tested had blades with a NACA 0012 cross-section, untwisted and 

untapered. The rotor diameter was 7.5 feet or 2.286 m. This gives a circumference of π*d/2 = 23.562 

feet = 7.1817 m. The blades were offset from center (giving a “root cutout”) of 5 inches or 5.5 % of the 

diameter (0.127 m). The aspect ratio of each blade is 6, giving a blade chord of 0.625 feet or 0.1905 m. 

The collective pitch for the rotor blades in the grid as constructed was 8 degrees. The farfield was 

generated as a cylinder having a diamter equal to 3 times that of the rotor. The hub is a cylindrical 

surface meant to approximate the rotor test assembly. The full rotor geometry can be seen in Figure 5.

Figure 5  Isolated rotor geometry
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Definition of the ROBIN Body

The coordinates of the ROBIN body are defined by super-ellipse equations. For a given non- 

dimensional body longitudinal station, the nondimensional coordinates of the cross section are obtained 

from the analytic functions for the model height (H), width (W), camber (Z0), and elliptical power (N). 

Each function has the same form; only the eight coefficients (C1 to C8) differ. The body is divided into 

four regions and the pylon is divided into two regions. Separate coefficients are used for each of these 

six regions in the four functions. The form of these functions is defined as follows:

[ H (x / l)
W ( x / l)
Z 0( x / l)
N ( x / l) ]=C6+C7(C1+C 2( x / l +C 3

C4 )
C5)

1/C 8

(2)

The Cartesian coordinates at a given body station x/l are defined in terms of polar coordinates. 

The nondimensional radial coordinate for the cross section is defined as follows:

r=( ( H
2

W
2 )N

( H
2

sin φ)N
+(W

2
cosφ)N )

1 /N

(3)

From the radial coordinate, the nondimensional coordinates y/l and z/l on the cross section can 

be obtained from equation 4 by varying ϕ from 0 to 2π. It should be noted, here, that the listing of these 

formulas in Mineck and Gorton (2000) is incorrect, having the sine function in y/l and cosine in z/l. 

This results in a subtle difference in the body shape that was only noticed on direct comparison of the 

3-D model in software with the body as generated by previous codes (Schweitzer 1999). In fact, in the 
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study presented here, many simulations of the unsteady case (having a rotor) were run with the wrong 

body, using different parameters in an attempt to isolate potential sources of disagreement in results.

y / l=r cosφ
z / l=r sinφ+Z 0

(4)

 A listing of the code used to generate the model for this study can be found in the appendices. The 

values of the coefficients are listed in tables below. For further details, see Mineck and Gorton (2000).
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Table 1  Coefficients to define body shape

Function
0.0 < x/l < 0.4

C1 C2 C3 C4 C5 C6 C7 C8

H 1.0 -1.0 -.4 .4 1.8 0.0 .25 1.8

W 1.0 -1.0 -.4 .4 2.0 0.0 .25 2.0

Z0 1.0 -1.0 -.4 .4 1.8 -.08 .08 1.8

N 2.0 3.0 0.0 .4 1.0 0.0 1.0 1.0

0.4 < x/l < 0.8

C1 C2 C3 C4 C5 C6 C7 C8

H .25 0.0 0.0 0.0 0.0 0.0 0.0 0.0

W .25 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Z0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

N 5.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.8 < x/l < 1.9

C1 C2 C3 C4 C5 C6 C7 C8

H 1.0 -1.0 -.8 1.1 1.5 .05 .2 .6

W 1.0 -1.0 -.8 1.1 1.5 .05 .2 .6

Z0 1.0 -1.0 -.8 1.1 1.5 .04 -.04 .6

N 5.0 -3.0 -.8 1.1 1.0 0.0 0.0 0.0

1.9 < x/l < 2.0

C1 C2 C3 C4 C5 C6 C7 C8

H 1.0 -1.0 -1.9 .1 2.0 0.0 .05 2.0

W 1.0 -1.0 -1.9 .1 2.0 0.0 .05 2.0

Z0 .04 0.0 0.0 0.0 0.0 0.0 0.0 0.0

N 2.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
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Table 2  Coefficients to define pylon shape

Function
0.4 < x/l < 0.8

C1 C2 C3 C4 C5 C6 C7 C8

H 1.0 -1.0 -.8 .4 3.0 0.0 .145 3.0

W 1.0 -1.0 -.8 .4 3.0 0.0 .166 3.0

Z0 .125 0.0 0.0 0.0 0.0 0.0 0.0 0.0

N 5.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.8 < x/l < 1.018

C1 C2 C3 C4 C5 C6 C7 C8

H 1.0 -1.0 -.8 .218 2.0 0.0 .145 2.0

W 1.0 -1.0 -.8 .218 2.0 0.0 .166 2.0

Z0 1.0 -1.0 -.8 1.1 1.5 .065 .06 .6

N 5.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

ROBIN Rotor Geometry

The ROBIN model for this study uses a four-bladed rotor. The full rotor suspension, propulsion, 

and trim mechanisms as used in the NASA Langley experiments are not modeled. However, a simple 

ellipsoidal hub is included for approximation of flow obstruction through the rotor center. 

Each of the four rotor blades is identical. The cross-section is a standard NACA 0012 airfoil 

extruded for the length of the blade and given a linear -8° twist starting from the blade root. The blade 

tips, for a collective pitch of 0º, are set at 0° angle of attack with respect to the direction of travel or tip 

path plane (with no flapping). The blades are untapered and rectangular in planform. The root cutout is 

at 24% of the radius from the center, as shown with blades and hub in Figure 6. The rotor radius R as 

constructed is 33.876 inches, giving a blade chord c of 2.61 inches, and a blade length (with cutout) of 

25.75 inches. The body length is 2R = 78.7 inches. The rotor aspect ratio, AR = R/c is approximately 

13. The rotor geometry as modeled includes a 2 inch offset starboard of fuselage centerline. For 
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forward flight, the entire rotor disk block was tilted forward 3 degrees from the hover condition, where 

the rotor axis of rotation and the Z axis are parallel, and the mesh block having the rotor disk and 

ROBIN body as interior surfaces was reinitialized. Note that, due to blade twist, collective pitch θ0 is 

measured at 0.75 R along the blade by common convention.

Figure 6  ROBIN rotor geometry

Grid Generation

Meshes which discretize field space for the computational solution of the governing equations 

were generated using Pointwise® software by Pointwise, Inc. Pointwise supports the generation of 

structured, unstructured, and hybrid meshes. “The grid in each block can either be structured, 
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unstructured, or hybrid. A structured grid consists entirely of quadrilateral (2D) or hexahedral (3D) 

cells that have been arranged in an ordered IxJxK array. An unstructured grid consists of triangles (2D) 

or tetrahedral, pyramid, and prism cells (3D) having no implicit order.” (Pointwise 2010)

All flapping motions were modeled as cyclic pitching according to the coupling equation given 

as a truncated Fourier series θ =θ 0−θ 1c cosϕ−θ 1ssin ϕ−... (where θ is total blade pitch angle, and  

θ0, θ1c, and θ1s are collective, lateral, and longitudinal cyclic pitch respectively)  (Webster 1994, p. 31). 

In addition, rotation of the blades and hub as a rotor must be modeled. To that end, in accordance with 

the sliding interface methodology described above, each moving surface had cylindrical interfaces 

defined that would allow movement around an axis of rotation. All sliding interface surfaces were 

generated as cylinders with rounded corners – one for cyclic pitching of each of the blades and one for 

rotation of the rotor itself within the farfield. These can be seen for the isolated rotor in Figure 7.

Figure 7  Rotation sliding interfaces for isolated rotor
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Surface and Volume Meshing

Each surface was modeled according to specifications (see above) and imported into

Pointwise as a “database”. These surfaces were quilted to form water-tight bodies – having no gaps 

between surface edges bounding the volume – and outlined with connectors. Surfaces bounded by these 

connectors have a “domain” mesh created on their topology, either through trans-finite interpolation 

(TFI) in the case of structured grids, or via Delaunay triangulation in the case of unstructured grids (see 

Figure 8). These surfaces are then associated to form adjacent faces of three-dimensional blocks. In an 

unstructured mesh, points allocated to the interior of these blocks are connected to form tetrahedra (or 

prisms and/or pyramids extruding from quadrilateral surface elements, in the case of some 

structured/unstructured hybrid meshes). 

Figure 8  ROBIN surface mesh
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Isolated Rotor Case Mesh Generation

A single blade was extruded from a NACA 0012 outline used as a spline surface. A sliding 

interface for rotation of the rotor assembly in the freestream and sliding interfaces for pitching rotation 

of each blade was constructed for the isolated rotor. The interfaces were axisymmetric cylinders with 

rounded edges to facilitate computation of boundary cell face fluxes in the normal direction. Tighter 

control of point spacing on the blade surfaces necessitated the diagonalization of a structured 

(quadrilateral) mesh with regular spacing. This allowed more points to be clustered in areas of higher 

expected gradient - near the leading and trailing edges of the blades - for better numerical resolution of 

flow phenomena (see Figure 9). The volume between triangulated surfaces was initialized with an 

unstructured tetrahedral mesh (see Figure 10). The total number of nodes on each blade surface domain 

was 121,594, while each cyclic pitching block interface had 56,179 nodes, and the rotor block 

interfaces had 26,595. The total count of nodes for all blocks in the mesh was 1,993,605 before viscous 

layers were added (discussed below).

Figure 9  Blade surface mesh
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Figure 10  Full grid for isolated rotor case

Figure 11  “Crinkle cut” through tetrahedral volume mesh arounnd rotor
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ROBIN Case Mesh Generation

A Delaunay-triangulated mesh was created on the ROBIN body surfaces (see above). The 

ROBIN body surface mesh had 73,675 nodes. For ROBIN body only cases in steady-state, the body 

surface mesh was divided on the symmetry plane and a block was created from the body surface to a 

spherical “farfield” boundary with a radius of 26 m (the body length being 2 m). The entire mesh for 

the steady-state case had 1,194,304 nodes. For the cases having a rotor, each blade surface was 

constructed and meshed similar to the procedure for the isolated rotor case above. Sliding interfaces for 

the cyclic pitching blocks around the blades and the rotor revolution block were constructed as 

cylinders with rounded corners, and blocks using solid and sliding interface boundaries were defined 

and initialized with an unstructured tetrahedral mesh (see Figure 11). Each blade surface domain was 

meshed with 132,768 nodes. The cyclic pitching block sliding interfaces each had 16,406 nodes, and 

the rotor sliding interface had 328,175.  The total number of nodes for all volume blocks in the mesh 

with rotor was 5,879,513.

Viscous Layering

In a fluid flow model that accounts for viscosity, a “no-slip” condition is imposed at the solid

boundary surfaces. This condition specifies that fluid velocity magnitude relative to the surface is zero, 

and that within a “boundary layer” extending away from that surface, internal friction and shear 

stresses will induce a velocity gradient (see Figure 12 and equation 5).

τ=μ ∂ u
∂ y

(5)
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Figure 12  Viscous shear stress (Image source: 
http://en.wikipedia.org/wiki/File:Laminar_shear_flow.svg)

Because of this gradient, mesh layers that will resolve viscous effects must have very small spacing in 

the direction perpendicular to the boundary surface. These layers are very difficult to generate in an 

unstructured mesh using current tools. At the SimCenter, Parallel Viscous Layer Insertion (PVLI) has 

been developed by Dr. Steve Karman et al. in order to insert these layers on specified surfaces (Karman 

2007). The existing mesh is treated as a visco-elastic material using the linear-elastic equations of 

structural mechanics, and the innermost layer of it is moved away from the surface. New layers are 

then inserted from the mesh towards the surface, with the perpendicular length specified according to a 

geometric progression factor to be specified by the user. The results for the ROBIN model can be seen 
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in Figures 13 and 14, and for the isolated rotor case in Figure 15. In both cases, the expected Reynolds 

number for transonic flow recommended an initial wall or y-direction spacing on the order of 1e-05, 

using a community rule of thumb. The growth rate of the spacing in the y+ direction was 1.2, and 

P_VLI was able to insert between 12 and 40 layers on all viscous surfaces. After viscous layer 

insertion, the isolated rotor mesh had 6,875,660 nodes. The viscous ROBIN mesh had 15,513,143.

Figure 13  PVLI viscous layer packing around ROBIN blade surface
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Figure 14  PVLI viscous layer packing around ROBIN body surface

Figure 15  Viscous layers on isolated rotor blade
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CHAPTER III

COMPUTATIONAL FLUID DYNAMIC MODEL

Governing Equations

∂
∂ t∰Ω

QdV +∯d Ω
F⃗ (Q)⋅̂⃗n dA= M ∞

R e ∯dΩ
G⃗(Q)⋅̂⃗n dA (6)

Q= [ρ ρu ρ v ρw ρ e t ]
T (7)

F⃗=[
ρ(u−V x)

ρ u(u−V x)+P
ρ v (u−V x)
ρ w(u−V x)

ρht(u−V x)+V x P
] î +[

ρ(v−V y)
ρu (v−V y )

ρv (v−V y)+P
ρw (v−V y)

ρht(v−V y)+V y P
] ĵ+[

ρ(w−V z)
ρ u(w−V z)
ρ v (w−V z)

ρw(w−V z)+ P
ρ ht (w−V z)+V z P

] k̂ (8)

G⃗=[ 0
τxx
τyx
τzx

u τ xx+v τxy+w τxz−qx
] î+[ 0

τxy
τ yy
τzy

u τ yx+v τ yy+w τ yz−q y
] ĵ+[ 0

τxz
τ yz
τzz

u τzx +v τzy+w τzz−qz
] k̂ (9)

 

τxx=(μ+μt)(2u x−
2
3

∇ V⃗ ) (10)

τ yy=(μ+μt)(2v y−
2
3

∇ V⃗ ) (11)

τzz=(μ+μt)(2 w z−
2
3

∇ V⃗ ) (12)
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τxy=τyx=(μ+μt)(u y+v x) (13)

τxz=τ zx=(μ+μt)(uz+w x) (14)

τ yz=τzy=(μ+μ t)(v z+w y ) (15)

q⃗=−

μ
Pr

+
μ t

Pr t

(γ−1)
∇ T (16)

The Prandtl number Pr above is between 0.7 and 0.8 for air, while the turbulent Prandtl number 

Prt has an average value of 0.85 (http://en.wikipedia.org/wiki/Prandtl_number). The specific heat ratio 

γ is 1.401 for air at 15ºC and Standard Atmospheric Pressure at sea level.

The equations presented above are the three-dimensional compressible Navier-Stokes equations 

in conservative integral form and Cartesian coordinates for a control volume Ω bounded by surface dΩ 

and moving with velocity V⃗  (Tenasi Documentation 2012). For an ideal gas, the equations are closed 

with the applicable equation of state (17) and the appropriate boundary conditions, described below. 

p=ρ R T (17)

Computational Methods

Tenasi uses several techniques to allow for numerical solution of a discretized form of the 

continuous governing equations. In particular, it employs a node-centered finite-volume approach, in 

which solution variables are stored at each node and associated with a corresponding control volume 

constructed as a median dual as follows: each edge connected to a node has a midpoint; these are 

connected to the geometric center of their corresponding incident faces and elements (triangle, 

quadrilateral, tetrahedron, hexahedron, etc.). Each midpoint and centroid then form the nodes for faces 
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of the median dual volume. The two-dimensional analogue can be observed in Figure 16 as the 

polyhedron bounded by a dotted red line around the central node. 

Figure 16  Control volume for center node, constructed as median dual

Under the Roe scheme, the surface fluxes are computed as numerical approximations along 

these control volume boundaries using solution variable values from the nodes on each side of the 

control volume boundary surface as input to a one-dimensional Riemann problem: 

Φ=1
2

(F (Q L)+ F (QR))−
1
2

Ã(QR ,QL)(QR−QL) (18)

where Ã= R̃ Λ̃ R̃−1  and R is constructed from the right eigenvectors of the flux Jacobian, while Λ̃  is a 

square matrix having the eigenvalues along the diagonal and zero elsewhere (Hyams 2003).
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Node values are designated “Left” and “Right” by convention, using a winding rule for 

consistency. The following averages are then used for values at the volume face:

ρ̄=√ρLρR (19)

ū=
√ρL uL+√ρR uR

√ρL+√ρR
(20)

v̄= √ρL v L+√ρR v R

√ρL+√ρR
(21)

w̄=√ρL wL+√ρR wR

√ρL+√ρR
(22)

H̄ =
√ρL H L+√ρR H R

√ρL+√ρR
(23)

The governing equations are discretized using a finite volume technique, wherein the surface 

integrals are approximated by a quadrature over the surface of the control volume of interest using the 

averages above at each edge midpoint. The resulting formulation for a given node n takes the form 

∂qn

∂ t
+ℜn=0 (24)

wherein qn represents variable values at the nodes, and spatial terms are entirely represented within the 

residual ℜ, which contains all contributions from approximations to the viscous and inviscid terms 

(Hyams 2003). By convention, this is moved to the “right-hand side” of the equations, while the 

temporal derivative (i.e. the solution update term for each timestep) forms the left. A fully implicit 

backwards Euler approximation is used to calculate the temporal derivative i.e. the solution update at 

each time step, where the linear system is solved using LU decomposition and Symmetric Gauss-Seidel 

algorithms (Tenasi Documentation 2012). For unsteady simulations, where accuracy within each 
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timestep is of importance (in addition to the iterative convergence of the solution update), Newton's 

method is used to solve for the spatial residual at the new timestep n+1 by linearizing about the known 

solution Qn. (Hyams 2003).

In both simulations, the Menter SAS one-equation turbulence model is used for calculating the 

Reynolds stress terms necessary for closure of the RANS equations. The diffusive terms are discretized 

using the same finite volume method as the viscous terms in the mean flow (Sreenivas et al. 2005). The 

turbulence model is solved independently and combined with the convective solution in each timestep 

update. This loosely coupled solution methodology allows for the implementation and use of several 

different turbulence models in the flow solver in addition to the one employed here.

Solution Convergence

A decreasing value for the norm of the residual (i.e. the finite differences of variable values with 

respect to the time interval, or the approximate magnitude of the solution update at each timestep) 

determines convergence in steady-state models.  Results from the simulation of the isolated ROBIN 

fuselage were run to steady-state convergence.  However, the rotor-body interaction models in this 

study involve transient relative grid motion and therefore will not approach a true steady state. 

Nonetheless, steady calculations are performed for the first several hundred time steps (two rotor 

revolutions, in the ROBIN case) in order to establish the initial conditions for the flow field with 

respect to the rotor in relative grid motion. In this case, specifying to Tenasi that “steady” calculations 

should be performed refers simply to the lack of extra calculations performed in unsteady models in 

order to more accurately compute the solution update for each time step. In previous research with 

Tenasi it has been determined that this can overcome instability that might appear in the initial 

timesteps of a numerical simulation and accumulate to invalid or unrepresentable floating-point values. 
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After initialization, the cases are restarted with the solver directed to begin performing unsteady 

calculations using Newton iterations to drive convergence of the residual within each time step, as 

described above. Convergence of the overall solution, then, is designated as the lack of a significant 

fluctuation in rotor thrust coefficient over a full rotor revolution from one revolution to the next. 

Parameters

For this study, the time step (Δτ) was specified in order to achieve one step per degree of rotor 

revolution. For the isolated rotor test case in hover, the tip Mach number was 0.877 (298.43 m/s) or 

2493.3 rpm, and therefore the timestep Δτ = 6.685e-05 seconds. For the isolated rotor test case in 

forward flight, a tip Mach number of 0.6713 is equivalent to a rotation frequency near 1908.5 rpm, and 

the timestep to achieve one degree of rotation was Δτ = 8.73e-05 seconds. For the ROBIN rotor in both 

hover and forward flight, at V∞ = ΩR = 591 ft/sec and R = 2.823 ft, rotation frequency Ω = 209.35 

radians/sec ≈ 2000 rpm. The time step was approximately Δτ = 8.33e-05 seconds. 

In both cases, the first two revolutions, or 720 time steps, were run as a steady-state problem 

using local time stepping to assist in stability, as above, with a Courant number CFL = 15.0, ramped 

from 1.0 over 1000 time steps. The CFL number is used to control the magnitude of the local time 

stepping in steady-state calculations, where the solution in each control volume is advanced as far as 

possible with respect to numerical stability given local conditions in that volume. The time step is 

calculated by analogy with a scalar hyperbolic equation based on the relative magnitudes of the flux 

Jacobian eigenvalues (Hyams 2003). Subsequently, time advancement iterations were performed as 

unsteady with Newton's method and dual time stepping. Dual time stepping refers to the technique of 

allowing internal Newton iterations and linear sub-iterations to use local time stepping, in order to 

improve stability, while using a fixed step in the outer time-marching loop to maintain unsteady time 
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accuracy. When used in conjunction with minimum time stepping, the CFL number is used as a 

multiplier to generate a timestep Δτ for the pseudo-time derivative, but with local time stepping, the 

computed local time step is used for Δτ (Tenasi Documentation 2012). Fluxes were limited using the 

Barth method to avoid accumulation of numerical error, i.e. spurious oscillations, from driving the 

solution to divergence. Inputs of coordinates for the center of rotation and axis of rotation, as well as 

rotation speed for both relative and absolute motion and cyclic pitch coefficients were provided in the 

boundary conditions input file.

Boundary Conditions

For all simulations, blade, fuselage, and hub surfaces were treated as solid viscous adiabatic – 

that is, exerting frictional forces on the surrounding fluid, with no heat transfer, and no-slip (fluid 

velocity at the wall constrained to the local velocity of the surface). Sliding interface surfaces and their 

partner surfaces were specified as such, with the appropriate calculations performed as described 

above. Farfield boundary conditions imposed freestream flow on the outside of the domain.  For all 

cases but isolated rotor forward flight, flow was parallel to the x-axis. For the isolated rotor forward 

flight case, the flow vector was rotated 2º forward about the y-axis in order to simulate a -2º tilt of the 

rotor tip path plane and thrust vector relative to the freestream or “translational” velocity vector, 

depending on one's reference frame.
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CHAPTER IV

RESULTS

Isolated Rotor Model

The isolated rotor was run in both hover and forward flight configurations with first-order 

spatial accuracy for the first 360 time steps to establish the flow field, and second-order spatial 

accuracy thereafter. First-order temporal accuracy was specified for the “unsteady” part of the hover 

case (that is, the time steps in which Newton iterations are performed), but as the hover case converges 

to a steady state, second-order temporal accuracy was not used. In the forward flight cases, which are 

not steady-state, first-order and second-order temporal accuracy are compared. The same grid was used 

for each. In the hover case, Utip= Mach 0.877 = 298.43 m/s. Figures 17 through 21 show comparison of 

pressure coefficient distribution along the non-dimensionalized blade chord vs. results from simulation 

using the TURBO flow solver at Mississippi State University (Webster 1994) and experimental results 

(Caradonna and Tung 1981) at several radial blade stations. The pressure coefficient from TURBO uses 

local velocity of the blade at the radial blade station r/R as reference velocity V∞(TURBO), whereas in 

Tenasi the pressure coefficient uses a specified reference velocity V∞, in the present work this is rotor 

tip speed. For comparison of values, the TURBO coefficient data was therefore scaled by V∞(TURBO)
2/V∞

2. 

Note also that the pressure coefficient is negated on the y-axis in order that values should appear 

relative to the surface on which they are observed (i.e. suction or negative pressures, on the top of the 

blade, are above positive pressure values that occur on the underside). There was no significant 
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difference between running the case in a single rotating reference frame (“Nonsliding” results) vs. 

holding the farfield stationary and rotating the blade assembly (“Sliding” results), using the same grid. 

Results are plotted together to illustrate this. Both Tenasi cases were run using relative frame rotation. 

Values plotted are averages over one rotor revolution, i.e. all variable values for each point have been 

averaged over 360 timesteps.

Figure 17  Pressure on blade surfaces at r/R=0.5, hover case

33



Figure 18  Pressure on blade surfaces at r/R=0.68, hover case
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Figure 19  Pressure on blade surfaces at r/R=0.8, hover case
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Figure 20  Pressure on blade surfaces at r/R=0.89, hover case
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Figure 21  Pressure on blade surfaces at r/R=0.96, hover case
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Agreement is generally good, though in the Tenasi results there is an initial “peak” and dip near 

the leading edge of the suction surface of the blade that can be observed at r/R = 0.68 and 0.8. These 

secondary shocks develop when flow around the leading edge accelerates and becomes locally 

supersonic, decelerates as pressure is encountered on the blade surface, and then accelerates again to 

supersonic speeds before encountering the primary recompression shock. The appearance of this 

phenomenon in these results can be attributed to increased grid resolution vs. the compared study, 

which was run using structured discretization methods with coarser meshes. The minimum spacing 

normal to blade (i.e. in the viscous boundary layer) in TURBO was 4e-06, while, as mentioned above, 

the Tenasi mesh used a viscous spacing of 1e-05. For the TURBO model, the chordwise point spacing 

on the blade surface was 1e-04 at the leading edge and 1.5e-03 at the trailing edge, whereas for the 

Tenasi models, the leading and trailing edges had spacing of 2e-03. Spanwise (in the radial direction), 

the initial spacing for TURBO at the blade tip was 1.35e-03, while for Tenasi it is 5.6e-03. The tightest 

spacings near the corners of each blade are then slightly coarser in Tenasi – however, for the TURBO 

model, spacing in the spanwise and chordwise directions was very rapidly increased away from the 

connector ends such that the total number of points on the blade surface was 35x22x71 or 54,670. The 

spacings for Tenasi are consistent along the blade length, and the number of points on each blade 

surface was 121,596. A comparison of the mesh surfaces is seen in Figure 22. The increased number of 

points both on the surface and in the space surrounding the blades very likely added to accuracy in 

resolving velocity gradients and curl (vorticity) and other flow field phenomena around the blades.
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In addition to the hover case, a forward flight case allowed for testing of cyclic pitching grid 

motion code. Forward flight cases were run with the same spatial and temporal accuracy (second and 

first-order, respectively), as well as second-order temporal accuracy. Coefficients for the forward flight 

condition were as follows: collective θ0 = 8+1.37 = 9.37º, longitudinal θ1s = -3.23º,  lateral θ1c = 1.11º. It 

should be noted here that cyclic pitching parameters in this work are the negative of those used in 

Webster (1994). While this caused quite a delay in creating discarded simulation runs and isolating the 

cause of the discrepancy in results, it is a simple difference in convention. The advance ratio µ for the 
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Figure 22  Tenasi isolated rotor blade surface mesh vs. TURBO blade surface mesh



forward flight condition is 0.15, thus the maximum advancing-tip Mach number is Mat = 0.772. 

Translational Mach is Mt = 0.1007. Mach 1 is 761.21 miles/hour or 340.29 m/s at Standard Sea Level 

conditions or 15.0ºC and 101325 Pa (Webster 1994), and rotational Mach Mbt = 0.6713. The rotational 

tip Mach gives a tip speed of 0.6713*340.29 m/s = 228.44 m/s. With the blade tip describing a circle 

with circumference = 7.1817 m, this is approximately 1908.5 rotations per minute (199.86 rad/s). With 

that in mind, using a timestep of 8.7329e-05 seconds/timestep will result in roughly one degree of 

rotation per timestep. For forward flight, the rotor shaft tilt α = -2º is implemented as a free stream flow 

vector: (x,y,z) = (0.99939 -0.034899 0.0).

Experimental data were not available for the forward flight case, therefore Webster (1994) was 

used as the sole reference. Three cases were run in order to determine the effects of temporal accuracy 

and to validate relative frame rotation with respect to absolute frame or full grid motion with submotion 

of cyclic pitching blocks – absolute frame first order temporal, absolute frame second order temporal, 

and relative frame (first order temporal). Figures 23 through 30 show a comparison of values for the 

absolute frame and TURBO results. As above, pressure on both the “pressure” and “suction” surfaces 

of the blade is examined at a particular radial station (in this case, only at r/R = 0.89, where transonic 

effects can be observed). For these plots, however, values at different blade azimuth locations ψ show 

the development of transonic deceleration shock as the blade travels from the advancing side (port or ψ 

= 90º) to the retreating side (starboard or ψ = 270º). Note, in particular, the shock that develops at ψ = 

240º and becomes more pronounced at    ψ = 270º where velocity of the advancing blade at all stations 

is directly opposed to freestream and maximum relative tip velocity is achieved. The shock smooths out 

from  ψ = 300º through  ψ = 360º.
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Figure 23  Pressure on blade surfaces at 60º, forward flight case
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Figure 24  Pressure on blade surfaces at 90º, forward flight case
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Figure 25  Pressure on blade surfaces at 120º, forward flight case



Figure 26  Pressure on blade surfaces at 180º, forward flight case
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Figure 27  Pressure on blade surfaces at 240º, forward flight case

45



46

Figure 28  Pressure on blade surfaces at 270º, forward flight case



Figure 29  Pressure on blade surfaces at 300º, forward flight case

47



Figure 30  Pressure on blade surfaces at 360º, forward flight case

For additional comparison to TURBO, Figures 31 and 32 show transient measurement of 

pressure at several point locations on the rotor blade surface, specifically at r/R = 0.5 and r/R = 0.89, 

with output from “sensors” at each timestep defined in a python extension module to Tenasi (further 

use of this capability is made in the unsteady ROBIN case below). The sensors were positioned at 10%, 

30%, and 50% of the chord distance along the blade top surface (“suction” side), and the corresponding 

coordinates are presented in Table 3. Agreement is again good, with an additional flow feature showing 

in the Tenasi results at r/R = 0.89 at the 10% chord location or leading edge of the blade, with a shock 
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appearing and then disappearing between 0.25 and 0.5 revolutions (or 90º and 180º blade azimuth). 

Here, the transonic nature of the flow is more apparent with increased grid resolution and modeling of 

viscous effects near the blade surface as it advances through its highest speed relative to free stream 

flow. One can also see, at ψ = 60º and 240º, secondary shocks that are resolved by the higher grid 

resolution used with Tenasi, and that, particularly at 240º, second order time is picking up stronger 

signals thereof.

Table 3  Variable value "sensor" output location coordinates for isolated rotor forward flight

10% chord 30% chord 50% chord

X Y Z X Y Z X Y Z

r/R = 0.5 -1.8750 0.0420 0.0888 -1.8750 0.0327 -0.0362 -1.8750 0.0108 -0.1593

r/R = 0.89 -3.3375 0.0420 0.0888 -3.3375 0.0327 -0.0362 -3.3375 0.0108 -0.1593
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Figure 31  Pressure coefficient on blade surface vs. rotor revolutions, forward flight, r/R = 0.5



Figure 32  Pressure coefficient on blade surface vs. rotor revolutions, forward flight, r/R = 0.89

Finally, presented in Figures 33 through 35 are results from running the isolated rotor in the 

same mesh, using grid motion to achieve rotation (as above) vs. “relative frame” rotation, wherein the 

equations are recast in order to represent relative motion, i.e. grid velocity terms, in a non-moving mesh 

(that is, having the observer spinning with the rotor, as it were). This approach avoids the vector 

arithmetic necessary to move all elements of the mesh in question, and is a commonly-used technique 

when modeling turbomachinery to improve computational efficiency. However, rotorcraft in forward 

flight have an additional component of motion, namely cyclic pitching of the blades to counteract a 

51



rolling moment and impart forward velocity thrust redirection, as explained above. Here, we find that 

the grid motion (in absolute frame) of the blocks enclosing the blades is not properly accounted for as 

relative frame motion is implemented in Tenasi. This is apparent most at the advancing blade, where 

relative velocity is larger in magnitude, as seen at the azimuths plotted. Therefore, this feature of Tenasi 

currently will not produce valid results for rotorcraft forward-flight simulations, or any simulation 

where block submotion is modeled inside the relative frame block.
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Figure 33  Relative vs. absolute frame rotation modeling, all other parameters being equal, ψ = 60º

Figure 34  Relative vs. absolute frame rotation modeling, all other parameters being equal, ψ = 90º



Steady-state, ROBIN Model

Two cases of the ROBIN fuselage alone, without a rotor system, were run to steady-state 

convergence at two different angles of attack: 0.0° and -5.0°. Results were compared to a simulation 

run by Schweitzer (1999)  using the solver PUMA at The Pennsylvania State University and to wind 

tunnel test data gathered by Freeman and Mineck (1979). The wind tunnel test was run at NASA 

Langley's V/STOL closed return atmospheric tunnel at a Mach number of 0.062 and an effective 
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Figure 35  Relative vs. absolute frame rotation modeling, all other parameters being equal, ψ = 360º



Reynolds number of 4.46 x 106 using a reference length of L (where the body length is 2L) and standard 

atmospheric conditions for air. Pressure data were gathered from taps located along the fuselage of the 

ROBIN geometry (a diagram of  locations as presented in Schweitzer is here included as Figure 36).  

These surface-pressure data were time-averaged. Note that Schweitzer (1999) does not present results 

for X/R = 0.2563.

The PUMA simulation was of the ROBIN fuselage without rotor, in an unstructured parallel 

solver for the Euler equations. That study compared favorably to the experimental results except in 

areas where flow separation could be expected; for example, around the fore and aft sections of the 

pylon.  In addition, the PUMA simulations were run at a high Mach number of 0.3 to avoid the need for 

pre-conditioning. The Tenasi case was run for the port half of the fuselage, using a symmetry boundary 

condition at the y = 0 plane. Simulation results are presented in Figures 37 - 40. We note excellent 

agreement with previous results. Figure 41 is included simply as an illustration of steady-state 

freestream surface flow conditions and the symmetrical boundary surface of the computational mesh.
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Figure 36 ROBIN Geometry Experimental Pressure Tap Locations
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Figure 37  Steady-state surface pressure, 0° angle of attack, X/R < 0.4669
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Figure 38  Steady-state surface pressure, 0° angle of attack, X/R > 0.6003
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Figure 39  Steady-state surface pressure, -5° angle of attack, X/R < 0.4669
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Figure 40  Steady-state surface pressure, -5° angle of attack, X/R > 0.6003
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Figure 41  ROBIN steady case in Tenasi, representative flow streamlines and pressure contours
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Unsteady, ROBIN Model

Unsteady cases of the ROBIN fuselage and rotor in hover and forward flight provided 

validation cases for sliding interfaces that allowed for relative rotation of the rotor and examination of 

flow effects on the body. Experimental data for this case were collected in a wind tunnel at NASA 

Langley and reported in NASA Technical Memorandum TM-2000-210286 (Mineck and Gorton 2000). 

Computational simulations have also been used for comparison: the unstructured-grid simulation of 

forward flight using the Euler equations (i.e. inviscid) from Korea Advanced Institute of Science and 

Technology (KAIST) (Nam, Park, and Kwon 2006), and a structured simulation of forward flight in 

both the Euler equations and the full Navier-Stokes from the University of Liverpool (Steijl and 

Barakos 2009), both using sliding interface techniques. We also compare results for the hover case with 

an Euler simulation of the hover condition using unstructured grids and overset methods from KAIST 

in 2010 (Lee et al. 2010).

For the ROBIN model, thrust values were compared as a coefficient CT scaled by a rotor 

solidity coefficient σ, which is described in the list of symbols. The flight conditions for this study were 

selected to match available data, i.e. for forward flight, advance ratio μ = 0.15 and in hover, μ = 0.01. In 

both cases, the rotor thrust coefficient CT/σ = 0.0656. Trim conditions in simulation that would produce 

this thrust coefficient were calculated by Nam et. al. (2006) using a Newton-Raphson method, in which 

the thrust and moment coefficients are optimized given the collective and cyclic pitch angles as 

dependent variables. This is necessary in simulation because, among other factors, rotor blade 

movement due to flapping is not modeled by mesh movement but by grid rotation to achieve blade 

pitching using pitch-flap equivalence (Webster 1994). Thrust vector direction is affected by cyclic 

pitching, fluctutations in flow velocity over the blades (relative to a reference frame moving with the 

free stream) due to rotation, and passage of the blades over the body surface, and is therefore unsteady. 
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However, using the trim conditions as given in Nam et. al. (2006) and Steijl and Barakos (2009), the 

rotor thrust in Tenasi, time-averaged over one full rotation, “converged” to CT/σ = 0.0653 (see Figure 

42).

Figure 42  Unsteady convergence of coefficient of thrust over sigma vs. timestep for ROBIN rotorcraft 
in Tenasi

Unsteady pressure data was gathered in the experimental case via taps located along the body 

surface, as shown in Figures 43, and 44. Coordinates for these tap locations are included in Table 4, 

along with adjusted coordinates used for simulation sensors. It was found that the coordinates given for 

some sensor locations on the physically constructed fuselage were beneath the body surface as 
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generated analytically. The adjusted coordinates include an offset necessary to place the sampling 

locations outside of the generated ROBIN body surface coordinates. To obtain dependent variable 

values at these locations for each simulation timestep, an extension module was provided to Tenasi 

giving these adjusted coordinates in Python code (see Appendix B).
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Figure 43  ROBIN sensor locations, port side

Figure 44  ROBIN sensor locations, starboard side
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Table 4  Orifice/Sensor Locations for Unsteady Pressure Measurements

Coordinates on Experiment Body, Crown Coordinates on Simulation Body, Crown

Sensor x/l y/l z/l x/l y/l z/l

D5 0.052 0.007 0.004 0.052 0.007 0.008653

D6 0.096 0.006 0.037 0.096 0.006 0.041440

D8 0.201 0.007 0.090 0.201 0.007 0.090193

D9 0.256 0.007 0.110 0.256 0.007 0.106196

D17 0.467 0.007 0.185 0.467 0.007 0.179424

D18 0.600 0.007 0.202 0.600 0.007 0.194343

D22 0.896 0.007 0.200 0.895 0.007 0.187737

D26 1.001 0.007 0.150 1.001 0.007 0.145459

D14 1.180 0.007 0.100 1.180 0.007 0.106102

D15 1.368 0.007 0.087 1.368 0.007 0.092695

D16 1.556 0.007 0.073 1.556 0.007 0.079658

Coordinates on Experiment Body, Ring Coordinates on Simulation Body, Ring

D1 0.897 -0.091 -0.117 0.896431 -0.089118 -0.112276

D3 0.895 -0.117 0.080 0.895024 -0.117342 0.080075

D4 0.895 -0.096 0.106 0.895387 -0.099154 0.110412

D19 0.895 -0.067 0.125 0.896407 -0.074639 0.125000

D22 0.895 0.007 0.200 0.892686 0.006999 0.188190

D23 0.895 0.067 0.150 0.896393 0.074525 0.150280

D25 0.895 0.067 0.125 0.896407 0.074439 0.125000

D13 0.895 0.094 0.109 0.895262 0.096032 0.112436

D12 0.897 0.116 0.086 0.896974 0.115673 0.085900

D10 0.897 0.094 -0.115 0.896496 0.092120 -0.110967

Hover conditions were simulated and compared with results from Lee et al. (2010). The rotor 

trim conditions that would produce the correct thrust vector (magnitude CT/σ = 0.0063) at advance ratio 

μ = 0.012 were: collective θ0 = 8.8º, longitudinal θ1s = 0.2º,  lateral θ1c = -0.1º. This model was run for 28 
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rotor revolutions, and the last four revolutions were time-averaged for each azimuth degree. The results 

are compared in figures 45 through 52. Note that for these plots an azimuth offset or lag of 30º that 

appears at some sensor locations in the NASA data has not been corrected for. This phase offset 

between experimental and simulated results is acknowledged in the current literature (Kenyon and 

Brown 2009), can be observed in results from previous studies (Park, Nam, and Kwon 2003), and is 

most likely due to signal delay in the physical instrumentation. 
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Figure 45  Pressure on ROBIN body vs. blade azimuth, hover μ=0.012, D8
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Figure 46  Pressure on ROBIN body vs. blade azimuth, hover μ=0.012, D9



Figure 47  Pressure on ROBIN body vs. blade azimuth, hover μ=0.012, D14
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Figure 48  Pressure on ROBIN body vs. blade azimuth, hover μ=0.012, D15
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Figure 49  Pressure on ROBIN body vs. blade azimuth, hover μ=0.012, D4
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Figure 50  Pressure on ROBIN body vs. blade azimuth, hover μ=0.012, D19
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Figure 51  Pressure on ROBIN body vs. blade azimuth, hover μ=0.012, D23



There was, for some of these sensors, quite a large discrepancy between results. Further 

experiments using an increased number of Newton iterations significantly improved accuracy. As 

mentioned above, it is thought at this time that, while the dual time-stepping technique allows for a 

stable simulation even when using relatively large time steps for the spatial cell size (in conjunction 

with a very low maximum CFL specified for local time stepping), many more Newton iterations may 

be required to fully solve for the residual term in each time step. Figures 53 through 60 show data for 

the same sensor locations as above, using the same solution restarted and run for three more 
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Figure 52  Pressure on ROBIN body vs. blade azimuth, hover μ=0.012, D25



revolutions, but with 30 Newton iterations in each time step. Note that these values are only for one 

revolution, i.e. not averaged.
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Figure 53  Pressure on ROBIN body vs. blade azimuth, hover μ=0.012, 30 Newton iterations, D8
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Figure 54  Pressure on ROBIN body vs. blade azimuth, hover μ=0.012, 30 Newton iterations, D9
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Figure 55  Pressure on ROBIN body vs. blade azimuth, hover μ=0.012, 30 Newton iterations, D14
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Figure 56  Pressure on ROBIN body vs. blade azimuth, hover μ=0.012, 30 Newton iterations, D15
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Figure 57  Pressure on ROBIN body vs. blade azimuth, hover μ=0.012, 30 Newton iterations, D4
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Figure 58  Pressure on ROBIN body vs. blade azimuth, hover μ=0.012, 30 Newton iterations, D19
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Figure 59  Pressure on ROBIN body vs. blade azimuth, hover μ=0.012, 30 Newton iterations, D23



One final observation on these hover results: note the large difference between results for sensor 

D19 and D25. These sensors are symmetrically opposed to each other on the sides of the pylon, near 

where it meets the body. However, results are very different. While this could theoretically be due to 

the slight offset of the rotor from centerline above the body, it is also likely that here, as in the phase of 

pressure signal and the collective pitch vs. thrust coefficient correspondence, the NASA results must be 
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Figure 60  Pressure on ROBIN body vs. blade azimuth, hover μ=0.012, 30 Newton iterations, D25



regarded as rough guidelines for simulation and adjustments need to be made to account for unknown 

variables.

The results shown in Figures 61 through 65 include comparison data available from other 

simulations for the forward flight case (advance ratio μ = 0.15). The rotor trim conditions for the 

forward flight case were: collective θ0 = 6.5º, longitudinal θ1s = 2.2º,  lateral θ1c = -2.0º. An axial 

(forward) tilt αs = -3.0º for the rotor was applied to the model and the volume mesh was reinitialized. 

Since only a few sensor locations were available for comparison with simulation data, results for all 

sensors as compared with the NASA Langley experiment are presented in Appendix A. It should be 

noted that for these plots and those in the appendix, the NASA data have been shifted roughly 30º to 

allow for better comparison. 
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Figure 61  Pressure on ROBIN body vs. blade azimuth, forward flight μ=0.15, D6

Figure 62  Pressure on ROBIN body vs. blade azimuth, forward flight μ=0.15, D8
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Figure 63  Pressure on ROBIN body vs. blade azimuth, forward flight μ=0.15, D22

Figure 64  Pressure on ROBIN body vs. blade azimuth, forward flight μ=0.15, D15
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Figure 65  Pressure on ROBIN body vs. blade azimuth, forward flight μ=0.15, D25

The results from Tenasi show a well-established periodic pressure induced on the body. Phase is 

present as related to blade azimuth ψ, where ψ = 0 has been established for blade 1 when it is directly 

over the aft centerline of the fuselage. The NASA data are not as evenly periodic as CFD results. In the 

NASA results, each blade has a slightly different effect on body surface pressure as it passes over. This 

could be due to small imperfections in blade surfaces as constructed, or in differing longitudinal blade 

rigidity giving rise to flapping magnitude inconsistencies.  However, peak-to-peak variation, in terms 

of magnitude, compares well to other CFD simulations (except perhaps at sensor D25). There is a 

discrepancy between simulation and experiment in the magnitude of the average pressure coefficient at 

each tap location. We speculate that this is due to an imperfect optimization across all parameters 

affecting the outflow velocity vector field, given that optimization was performed on thrust coefficient 
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alone, and furthermore that better results might be obtained at some sensor locations through adaptive 

grid refinement on velocity gradient magnitude to better capture effects at smaller length scales. In fact, 

this should be the next step in future work.

For some sensors there is a greater difference in periodic pressure magnitude than others. This 

could be due to several factors. The rotor hub was modeled for Tenasi as a simple ellipsoidal surface of 

rotation, not as a full rotor drive system. Also, the employed trim state is an estimation selected to 

agree with the work of Park, Nam, and Kwon (2003), and it has a greater effect near the tip of the blade 

(Steijl and Barakos 2009). Therefore, while the generated thrust coefficient for the entire rotor may 

match acceptably with experiment, the curve of thrust vs. station along blade length may deviate. For 

sensors downstream of the pylon, i.e. D15, experimental and simulated pressure magnitudes more 

closely correspond. Surface pressure data for all sensors show periodicity, even where variations in 

magnitude occur. It should be noted that sensors positioned near body supports that were present in the 

NASA physical model but were not represented by boundary surfaces in computational models should 

be expected to show differences; this has also been posited by Steijl and Barakos. Boundary layer flows 

could also be affected by small variations in the constructed physical model surface that were not 

represented in the mathematically generated body geometry. We found a sensitivity to sensor 

positioning in pressure measurements on the body, which can be explained by high pressure gradient 

magnitude in certain body surface locations, see Figure 66. Given that mesh nodes must be located for 

sensor sampling output within a given bounding box, mesh spacing in the surface planar direction 

should be increased for measurement fidelity. Finally, as is noted in the hover case results, more 

Newton iterations may be necessary with the dual time-stepping technique (which allows enough 

stability to run the simulation with a fairly large time step, i.e. one timestep per degree of rotation), but 

for the forward flight case these conditions were not tested due to a lack of time.
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Figure 66  ROBIN unsteady pressure gradient magnitude (Pa) on body surface, timestep 5400

In addition to the coefficient of pressure data, a plot of streamlines seeded in the rotor disk 

representing rotor blade tip vortex generation and and downstream propagation are presented in Figure 

67; comparisons of surface restricted flow from Tenasi with streaklines produced on the physical model 

at NASA Langley are shown in Figure 68; and instantaneous vorticity magnitude is compared with 

vorticity contours from Nam et al. in Figure 69 (Nam, Park, and Kwan 2006).

87



88

Figure 67  Streamlines from rotor disk with vorticity magnitude (rad/s), forward flight



Figure 68  Physical streaklines vs. computed body restricted surface flow streamlines
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Figure 69  Vorticity contours as shown in Nam et al. (2006) vs. vorticity magnitude (rad/s), Tenasi
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CHAPTER V

CONCLUSIONS AND FUTURE WORK

Conclusions

The isolated rotor cases showed that proper flux computation across sliding interfaces allowed 

for inflow and outflow necessary to produce the appropriate lift as shown in pressure values at all 

examined blade radial stations, validating the sliding interface implementation in Tenasi. Agreement 

with previous simulation and experiment was good, giving confidence in the sliding interface technique 

as well as the cyclic pitching code, once some initial confusion in the sign conventions for the pitching 

coefficients was resolved and the pressure coefficients were appropriately defined and scaled. In 

particular, the forward flight case provided an important result in showing that relative frame rotation 

with cyclic pitching submotion does not match results for absolute frame (grid motion) for rotation and 

cyclic pitching. With investigation, however, it is possible that the correct terms for fluid acceleration 

could be derived for grid submotion inside a relative frame, and the advantages of this approach could 

be recovered.

Steady-state modeling of the isolated ROBIN body compared very favorably with previous 

models in prediction of surface flow characteristics and provided validation of the constructed body 

geometry as represented computationally against the wind-tunnel model used at NASA Langley.

The rotor thrust output figures from Tenasi for the ROBIN rotor configuration showed 

confirmation of the rotor trim characteristics identified by Nam, Park, and Kwan (2006) and used by 
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Steijl and Barakos (2009)  and Lee et al. (2010) in producing a similar coefficient of thrust under 

simulation. We can posit that adjustments made to cyclic pitch while maintaining a certain thrust 

coefficient might further improve simulation accuracy, but the sensitivity analysis is outside the scope 

of the current work. It was found, however, upon an investigation of the literature, that no simulation 

has been able to reproduce the nominal thrust coefficients from wind-tunnel experiments using the 

stated parameters for collective and cyclic pitching, relying instead on comptational design 

optimization techniques to reproduce results. We can only surmise that there may have been either 

measurement inaccuracy or clerical error.

The unsteady ROBIN results presented herein, especially when a larger number of Newton 

iterations are applied to unsteady calculations, still provide confirmation of the sliding interface 

methodology currently implemented in Tenasi both in terms of a reasonable approximation of transport 

across the interface and of the compuational simulation results as compared to both real-world wind-

tunnel models and to other flow solvers. With adaptive refinement techniques and further modeling of 

features present in the wind tunnel testing (i.e. shapes representing the body support, rotor drive 

system, etc.), it is reasonable to assume that the predicted results would more closely match observed 

values for body surface pressure coefficient vs. blade azimuth. Regardless, periodicity of body surface 

flow effects generated by the rotor blade passage over the fuselage is well-established in the ROBIN 

case. This interaction is an important area of study in rotorcraft aerodynamics, and the sliding interface 

technique enables its simulation.

Future Work

Several techniques might be applied for improvement of the results obtained. The first step for 

the ROBIN model should be an investigation of the number of Newton iterations necessary to 

92



compensate for the large time step that is enabled by the dual time-stepping technique. Also, the 

application of adaptive refinement techniques to improve solution fidelity in areas of high gradient 

magnitude and reduce the computational effort required in areas that have low gradients and/or do not 

affect fluid transport between the rotor and body.

Both cyclic and collective pitching conditions could be optimized for the desired thrust 

coefficient. Regarding this, a flapping model could be implemented that would calculate normal 

stresses on rotor blades and employ finite-element linear-elastic techniques to estimate the amount of 

blade deformation under load, then translate that to an equivalent pitching motion. In this way, higher 

simulation fidelity of actual rotor conditions in-flight could be achieved without increasing the grid 

spacing necessary to model rotors having highly elastic blades. This would improve the applicability of 

the solver to different rotorcraft. In some rotorcraft (notional or production), there is not enough space 

for axisymmetrical sliding interfaces around the individual blades, therefore blade pitching would need 

to be implemented using, for example, mesh deformation techniques with definition of custom cyclic 

pitching motion functions for the blade boundary surfaces. Python extension method callouts already 

exist in Tenasi that could be used for this purpose. With this, validation of fuselage surface flow effects 

against existing data for this rotorcraft would provide another useful comparison case.

Data are also available from the cited wind-tunnel experiments for several different advance 

ratios and rotor trim conditions (giving different rotor thrust coefficients). Other experimental data are 

available for rotorcraft having tail rotors. These could warrant further study.
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APPENDIX A

FULL ROBIN UNSTEADY RESULTS, FORWARD FLIGHT

96



Figure 70  Pressure coefficient vs. rotor azimuth, sensors D5, D6, D8, D9, D17, D18
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Figure 71  Pressure coefficient vs. rotor azimuth, sensors D22, D26, D14, D15, D16, D1
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Figure 72  Pressure coefficient vs. rotor azimuth, sensors D3, D4, D19, D22, D23, D25
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Figure 73  Pressure coefficient vs. rotor azimuth, sensors D13, D12, D10
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APPENDIX B

LISTING OF EXTENSION MODULE CODE FOR SENSOR OUTPUT
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#!/usr/bin/env python                                                                                            
##############################################################################                                   
# ROBIN simulations                                                                                              
##############################################################################                                   
import math,numpy,sys
import simcenter

def UX_get_nsensor(uxp,sdb,grid):
   print "PYTHON: changing nsensor."
   grid['nsensor'][0] = 21
   return 0

def UX_get_sensor_points(uxp,sdb,grid):
   print "PYTHON: getting sensor points."
   nsensor = grid['nsensor']
   sxyz = grid['xyz']
   if nsensor == 0:
      return 0
   sxyz[1,:] = [0.052, 0.007, 0.008653422]
   sxyz[2,:] = [0.096, 0.006, 0.0414404]
   sxyz[3,:] = [0.201, 0.007, 0.0901934625737]
   sxyz[4,:] = [0.256, 0.007, 0.106195857265]
   sxyz[5,:] = [0.467, 0.007, 0.179423627271]
   sxyz[6,:] = [0.6, 0.007, 0.194343339855]
   sxyz[7,:] = [0.895, 0.007, 0.187737186317]
   sxyz[8,:] = [1.001, 0.007, 0.145458628794]
   sxyz[9,:] = [1.18, 0.007, 0.106102032154]
   sxyz[10,:] = [1.368, 0.007, 0.0926950824708]
   sxyz[11,:] = [1.556, 0.007, 0.0796581813966]
   sxyz[12,:] = [0.896431793354, -0.0891183197015, -0.112276291166]
   sxyz[13,:] = [0.89502463615, -0.117342129771, 0.0800751092973]
   sxyz[14,:] = [0.895387340606, -0.0991539019425, 0.1104117382]
   sxyz[15,:] = [0.896406683527, -0.07463850092, 0.125000021066]
   sxyz[16,:] = [0.89268627592, 0.00699924890983, 0.188190492228]
   sxyz[17,:] = [0.896393314003, 0.0745250726884, 0.150280066432]
   sxyz[18,:] = [0.896406683527, 0.07443850092, 0.125000021066]
   sxyz[19,:] = [0.895262016363, 0.0960322575544, 0.112435838349]
   sxyz[20,:] = [0.896974221307, 0.115672851276, 0.085900314048]
   sxyz[21,:] = [0.896496124549, 0.092119811179, -0.110966736786]
   return 0

def UX_get_sensor_box(uxp,sdb,grid):
   print "PYTHON: getting sensor box."
   nsensor = grid['nsensor']
   sbox = grid['box']
   if nsensor == 0:
      return 0
   for i in xrange(1,nsensor+1):
      sbox[i,0] = 5.0e-3
      sbox[i,1] = 5.0e-3
      sbox[i,2] = 5.0e-3
   return 0
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APPENDIX C

LISTING OF CODE TO GENERATE ROBIN BODY POINTS
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/* Program to calculate surface coordinates of the ROBIN body and pylon
 * Code by Adam Cofer, September 2009
 * For the National Center for Computational Engineering (SimCenter)
 * University of Tennessee at Chattanooga
 */

#include <iostream>
#include <iomanip>
#include <fstream>
#include <sstream>
#include <map>
#include <vector>
#include <math.h>

using namespace std;

const string body_coordinate_file = "C_Body.txt";
const string pylon_coordinate_file = "C_Pylon.txt";
const string body_dat_file = "ROBIN_Body.dat";
const string pylon_dat_file = "ROBIN_Pylon.dat";
const string body_plot3d_file = "ROBIN_Body.xyz";
const string pylon_plot3d_file = "ROBIN_Pylon.xyz";

double analytic_function(double C[8], double x);
void get_xyz(double H, double W, double Z0, double N, double phi, double * x, 
double * y, double * z);
void read_coefficient_block(double CH[], double CW[], double CZ0[], double CN[], 
ifstream& Cfile);
void write_database_files(string infile, string datfile, string p3dfile,
                          int I, int J, double L, double PHI,
                          double a, double xi0, 
                          double x0, double phi0, vector<double>& newblock_x);

double analytic_function(double C[8], double x){
  double retval;
  
  retval = C[0] + C[1] * pow(fabs((x + C[2])/C[3]),C[4]);
  if(C[7] != 0.0 && C[7] != 1.0){    
    retval = C[5] + C[6] * pow(fabs(retval),1.0/C[7]);
  }
  
  return retval;
}

void get_xyz(double H, double W, double Z0, double N, double phi, double * x, 
double * y, double * z){
  double sinphi,cosphi;
  double num,den,r;
  
  sinphi = -sin(phi);
  cosphi = cos(phi);
  num = (H*W)/2.0;
  den = pow((pow(fabs(H * sinphi),N) + pow(fabs(W * cosphi),N)),1.0/N);
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  r = num/den;
  *y = r * cosphi;
  *z = r * sinphi + Z0;
  
}

void read_coefficient_block(double CH[], double CW[], double CZ0[], double CN[], 
ifstream& Cfile){
  int i,j;
  string line;
  stringstream ss;
  double Ctemp;  
  string coeff_line;
  map<string, char> switchmap;
  switchmap["H"] = 'H';
  switchmap["W"] = 'W';
  switchmap["Z0"] = 'Z';
  switchmap["N"] = 'N';
  
  getline(Cfile, line);
  getline(Cfile, line); 
  for(i=0; i < 4; i++){   
    getline(Cfile, line, ' ');
    coeff_line = line;
    for(j=0; j < 8; j++){
      getline(Cfile, line, ' ');
      ss.clear();
      ss << line;
      ss >> Ctemp;
      switch(switchmap[coeff_line]){
        case 'H':
          CH[j] = Ctemp;
          break;
        case 'W':
          CW[j] = Ctemp;
          break;
        case 'Z':
          CZ0[j] = Ctemp;
          break;
        case 'N':
          CN[j] = Ctemp;
          break;
        default:
          cout << "Error, non matching coefficient line key '" << coeff_line << "'" 
<< endl;
          exit(1);
          break;
      }
    }
    getline(Cfile, line);
  }
  
  return;
}
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void write_database_files(string infile, string datfile, string p3dfile,
                          int I, int J, double L, double PHI,
                          double a, double xi0, 
                          double x0, double phi0, vector<double>& newblock_x){

  double this_x;
  double last_this_x = 0.0;
  double this_dx;
  double xi;
  double xin;
  double **x,**y,**z; // coordinates
  double phi;   // angle in super-ellipse
  double H,W,Z0,N;
  double CH[8];
  double CW[8];
  double CZ0[8];
  double CN[8];
  int i,j;
  double dx, dphi;
  
  dx = L/((double)I - 1.0);
  dphi = (PHI - phi0)/((double)J - 1.0);
  
  try{
    x = new double*[I];
    y = new double*[I];
    z = new double*[I];
    for(i=0; i<I; i++){
      x[i] = new double[J];
      y[i] = new double[J];
      z[i] = new double[J];
    }
  } catch(...) {
    cout << "Unable to allocate memory." << endl;
    exit(1);
  }

  
  ifstream Cfile;
  try{
    Cfile.open(infile.c_str());
  } catch(...) {
    cout << "Unable to open input file " << infile << " for coefficient input." << 
endl;
    exit(1);
  }
  
  read_coefficient_block(CH, CW, CZ0, CN, Cfile);
  for(j=0; j<J; j++){
    x[0][j] = x0;
    y[0][j] = 0.0;
    Z0 = analytic_function(CZ0, x[0][j]);
    z[0][j] = Z0;
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  }
  xin = tanh(a * xi0)/(tanh(a*xi0) + tanh(a*(1.0-xi0)));
  for(i=1; i < I; i++){
    // two-sided hyperbolic tangent clustering to pack points near nose and tail
    xi = (dx * (double)i)/L;
    this_x = xin * ( 1.0 + (tanh(a*(xi - xi0))/tanh(a*xi0)) );
    this_x *= L;
    this_x += x0;
    this_dx = this_x - last_this_x;
    
    for(j=0; j < newblock_x.size(); j++){
      if(this_x >= newblock_x[j] && this_x < (newblock_x[j] + this_dx)){ // if this 
x starts a new block, get new coefficients
        read_coefficient_block(CH, CW, CZ0, CN, Cfile);
      }      
    }
    last_this_x = this_x;
    H = analytic_function(CH, this_x);
    W = analytic_function(CW, this_x);
    Z0 = analytic_function(CZ0, this_x);
    N = analytic_function(CN, this_x);
    for(j=0; j < J; j++){
      x[i][j] = this_x;
      phi = dphi * (double)j + phi0;
      get_xyz(H, W, Z0, N, phi, &x[i][j], &y[i][j], &z[i][j]);
    }
  }  
  Cfile.close();
  
  ofstream outfile;
  try{
    outfile.open(p3dfile.c_str());
  } catch(...) {
    cout << "Unable to open output file." << endl;
    exit(1);
  }
  outfile << 1 << endl; // one block
  outfile << I << " " << J << " " << 1 << endl; // output block sizes
  outfile << setprecision(16);
  int linebreak_counter;
  linebreak_counter = 0;
  for(j=0; j<J; j++){
    for(i=0; i<I; i++){
      outfile << x[i][j] << " ";
      linebreak_counter++;
      if(linebreak_counter % 10 == 0 && linebreak_counter != 0){
        outfile << endl;
      }
    }
  }
  linebreak_counter = 0;
  for(j=0; j<J; j++){
    for(i=0; i<I; i++){
      outfile << y[i][j] << " ";
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      linebreak_counter++;
      if(linebreak_counter % 10 == 0 && linebreak_counter != 0){
        outfile << endl;
      }
    }
  }
  linebreak_counter = 0;
  for(j=0; j<J; j++){
    for(i=0; i<I; i++){
      outfile << z[i][j] << " ";
      linebreak_counter++;
      if(linebreak_counter % 10 == 0 && linebreak_counter != 0){
        outfile << endl;
      }
    }
  }

  outfile.close();
  
  try{
    outfile.open(datfile.c_str());    
  }catch(...){
    cout << "Unable to open output file." << endl;
    exit(1);    
  }
  outfile << I * J << endl;
  for(i=0; i<I; i++){
    for(j=0; j<J; j++){
      outfile << x[i][j] << " " << y[i][j] << " " << z[i][j] << endl;
    }
  }
  outfile << endl;
  outfile.close();
  
  for(i=0; i<I; i++){
    delete[] x[i];
    delete[] y[i];
    delete[] z[i];
  }
  delete[] x;
  delete[] y;
  delete[] z;
  
}

int main (int argc, char * const argv[]) {
  double L; // maximum x-value
  double PHI; // maximum phi, angular coordinate around x axis in super-ellipse 
equations
  int I,J; // number of divisions along x axis, polar axis
  double a,xi0; // parameters for hyperbolic tangent clustering of x points - a: 
coefficient of clustering ratio, xi0: center point
  double x0, phi0; // starting x and polar coordinate for geometry
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  vector<double> newblock_x; // vector of starting x coordinates for each new block 
of coefficients
  
  I = 1000;
  J = 1000;
  x0 = 0.0;
  L = 2.0 - x0;
  phi0 = 0.0;
  PHI = M_PI;
  a = 10.0;
  xi0 = 0.5;
  newblock_x.clear();
  newblock_x.push_back(0.4);
  newblock_x.push_back(0.8);
  newblock_x.push_back(1.9);
  
  write_database_files(body_coordinate_file, body_dat_file, body_plot3d_file, I, J, 
L, PHI, a, xi0, x0, phi0, newblock_x);
  
  I = 500;
  J = 1000;
  x0 = 0.4;
  L = 1.018 - x0;
  phi0 = 0.0; //-M_PI*1.1/2.0;
  PHI = M_PI; //M_PI*1.1/2.0;
  a = 10.0;
  xi0 = (L/2.0);
  newblock_x.clear();
  newblock_x.push_back(0.8);
  
  write_database_files(pylon_coordinate_file, pylon_dat_file, pylon_plot3d_file, I, 
J, L, PHI, a, xi0, x0, phi0, newblock_x);  
  
  return 0;
}
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