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ABSTRACT

An increased focus on domestic security in recent years has brought attention to several

important application areas where computational fluid dynamics (CFD) has the ability to

make a significant impact. In particular, disaster mitigation and post-event forensic activities

are of interest. This work investigates a procedure built on gradient based design methods

to allow for the solution of the so-called inverse chemistry problem in urban environments.

The inverse chemistry problem consists of computing a release location based on the sensing

of chemical byproducts of the release and the ability to compute an accurate flow field on

the geometry of interest. In this study, Washington DC is simulated under conditions of

a hazardous plume. A CFD solver is implemented which allows for the solution of the

preconditioned finite-rate Navier-Stokes equations as well as the in situ computation of

design gradients.
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et specific total energy

Ea activation energy

F conservative inviscid flux vector

G conservative viscous flux vector

gx, gy, gz gravity force components

H unsteady residual

h specific enthalpy

hoi standard state enthalpy for species i

ht specific total enthalpy

Je energy diffusion flux

Ji mass diffusion flux for species i

xv



Kb,r backward reaction rate for reaction r

Kc,r equilibrium rate constant for reaction r

Kf,r forward reaction rate for reaction r

Mk molecular weight of species k

NS number of species

p pressure

Pp preconditioner for pressure based nonconservative variable vector

pstd standard pressure = 1 atm

Prt turbulent Prandtl number

Q conservative variable vector

q nonconservative variable vector

R specific mixture gas constant

Ri specific gas constant

Runiv universal gas constant

s specific entropy

soi standard state entropy for species i

SL, SR, S∗ wave speed estimates

xvi



T temperature

u, v, w flow field velocity components in x, y, and z directions

Ui diffusion velocity for species i

Vx, Vy, Vz grid velocities in x, y, and z directions

x, y, z Cartesian coordinate directions

xi mole fraction for species i

Yi mass fraction

z′′ sum of product stoichiometric coefficients

z′ sum of reactant stoichiometric coefficients

xvii



CHAPTER 1

INTRODUCTION

An increased focus on domestic security in recent years has brought attention to several

important application areas where computational fluid dynamics (CFD) has the ability to

make a significant and lasting impact. In particular, disaster mitigation and post-event

forensic activities are of interest. An engineering solution to the so-called “inverse chemistry”

problem has the potential to aid in forensic activities related to plume dispersal in high

occupancy areas.

Unfortunately, these incidents, whether intentional or accidental are not at all uncommon.

In 1994 over 600 individuals were exposed to Sarin gas when a truck with a heater and a

fan was used as a delivery mechanism in a residential area of Matsumoto, Japan [1]. Vapors

from Sarin-filled containers in a Tokyo, Japan subway exposed several thousand in 1995

[2]. The same agent was used in Damascus, Syria, in 2013 during civil war. Chlorine

and other industrial chemicals are also of grave concern. In 2005, 90 tons of chlorine

gas was accidentally vented into Graniteville, South Carolina following a train derailment

with mass injury occurring [3]. Advanced simulation and in particular the ability to study

complicated releases with precise outcomes, i.e. design, promises to increase the knowledge-

base surrounding these tragedies and assist in enhanced informed planning on the part of
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security personnel. Allocation of resources to better protect currently unidentified critical

locations could have profound effects in preventing or mitigating disaster situations.

The technologies necessary for simulation of chemical dispersal in an urban environment

have been present in literature for some time. These include preconditioning for low-Mach

flow present in atmospheric plumes, finite-rate chemistry for tracking chemical content with

reactions, and parallel computational techniques necessary for the resolution requirements

of complicated urban terrain.

Given a forward solution (or physical measurement) from a disaster situation which

provides fixed sensor data for measurable chemical species, an engineering estimate with

useful error on a dispersant location is desired. Sensor data provided for a particular release

will be dependent on release concentration, local weather (flow field), release duration, etc.

These variables are natural choices for study.

Several researchers have investigated this problem previously. Markov chain Monte-

Carlo (MCMC) methods have been used to determine source plume locations in complex

urban environments under uncertainty [4]. A recommended resource for MCMC methods

is given in [5]. However, these methods require a very high number of forward simulations

to build a statistical database. The methods rely on the forward simulation of a flow field

with chemistry changes absent and the solution of a scalar transport equation with the

flow field imposed. Current research has therefore been commonly limited to convective-

diffusion equations without finite-rate chemistry [6]. Greedy hidden Markov models have

also been used to estimate both the plume source as well as source parameters based on

binary sensor output [7]. Huang et al [8] studied parameter estimation using PDE based
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plume models and MCMC methods. Their results indicate that position of a release can be

determined to useful levels using convection-diffusion models. Primary disadvantages of these

methods are the relative inflexibility and lack of fidelity to resolve flow features in complicated

environments. While the addition of source terms to account for terrain steering effects is

possible in theory, it appears to be cumbersome and error-prone in general. Michaelides

and Panayiotou utilize a nonlinear least squares method to perform source inversion [9].

This work uses a constant radial concentration model with varying noise that does not

model the effects of convection. However, the model does represent diffusion in some sense.

Interestingly, utilizing the nonlinear least squares procedure under low levels of temporally

varying noise, increasing the number of sensors does not always increase the source location

predictions. Errors reported are on the order of 50-100 meters for a 1 km by 1 km solution

space with less than 100 sensors deployed.

The present research proposes to utilize gradient based design methods to provide an

engineering “best-guess” for plume source location with in-plume reactivity. The method

has the potential to be significantly more accurate and flexible than building the MCMC

databases which are considered state of the art at the time of this writing. Because the

gradient based method requires a full simulation of potential source locations, it also permits

much higher resolution models to be utilized. The work of Chow [4] requires nearly 2,560

forward simulations in an Oklahoma City model environment. For a simple geometry, a

single building in crossflow, the source location was predicted very well. However, for a

complex urban environment such as Oklahoma City, the source location was localized to

within around 100 meters. Clearly this is a difficult problem with the complexities of real
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geometry. For a total geometry size of 300 meters by 330 meters with a total height of

around 100 meters (580,000 elements), the construction of the flow field database took

approximately 17 days on 32 2.4 GHz Xeon processors [4]. Computationally, the above

method is intractable with finite-rate chemistry on adequately resolved meshes. Hence,

the work presented here demonstrates an increase in the fidelity of predictions in more

complicated urban environments. More importantly, the methods presented herein only

require the simulation of potential source locations as the optimization problem progresses.

This has the potential to be significantly cheaper for a given problem. However, querying

the database given in Chow for given sensor data only takes approximately 5 minutes on

two processors [4]. The method presented here does not have the potential to demonstrate a

turn around time this short because computation is not started until sensor data is acquired.

However, a similar database could be constructed with this method for traversal. This

response time optimization is not performed here.

Gradient based design optimization methodologies have been shown to be quite robust

in applications of fairly complex engineering problems [10]. Both the direct and adjoint

methods show the ability to compute high accuracy gradients of output functions with respect

to parametric variables from physics-based solvers. It has been shown that these methods

produce derivatives comparable to computing flow solutions in complex arithmetic at a

fraction of the cost. These methods are of particular interest here because of their increased

accuracy when compared to finite difference methods external to the flow solver. Due to

the low concentrations as well as the low speed flow in urban environments the problem of

interest would be intractable in the presence of accuracy limitations. That is, the inverse

4



problem has high sensitivity to gradient accuracy due to the difficulty in solving the forward

problem (CFD).

In this work, a fully parallel compressible Navier-Stokes solver is developed. The desired

capabilities include the simulation of low speed reacting plumes in complicated urban

environments. However, this work also seeks to develop and demonstrate the ability to

compute accurate and cost efficient sensitivity information of a sensor field sample with

respect to a dispersal location. Several methods of computing these gradients are compared

and their accuracy evaluated for numerous test problems.

Thus, the goal of this study is to provide a proof of concept study demonstrating the

appropriate technologies required to perform forensic investigation of a hazardous release.

While the complete “inverse chemistry” problem is not attempted on a fully resolved urban

geometry, a surrogate test case investigates the feasibility of using these methods. Results of

forward simulations without sensitivity are also presented on a full geometry of Washington

DC. Though computational power has continued to increase exponentially, the resources

available to this researcher are still roughly an order of magnitude too low for reasonable

use of these techniques on real geometries. However, machines are in existence with the

throughput to investigate disasters on useful time scales.
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CHAPTER 2

COMPUTATIONAL FORMULATION

This chapter describes the governing equations of interest and the numerical discretization

used in their solution. Within this discussion the preconditioning required for the solution

of reacting flows at low Mach numbers is presented. Additionally discretization in time and

space, as well as practical implementation issues, are described in detail.

2.1 Governing Equations

The governing equations of interest in the present work are those representing time-

dependent, compressible, turbulent, chemically reacting flows. In this regard, the Reynolds

averaged Navier-Stokes equations utilizing finite-rate chemistry are solved with turbulence

being modeled in a loosely coupled manner.

2.1.1 Representation of Flow Variables

Several variable sets are considered throughout this work. In many cases a particular

choice makes certain calculations considerably less difficult. The variable sets used here are

Q = [ρ1 ... ρNS ρu ρv ρw ρet]
T (2.1)
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where Q is the conservative variable set of species density (ρi), momentum (ρu, ρv, ρw), and

total energy (ρet). Two nonconservative variables sets are also used. These are constructed

with either pressure (p), or temperature (T ) representing the energy content of the flow and

both replacing momentum with flow velocity (u, v, w). These are

qp = [ρ1 ... ρNS u v w p]T (2.2)

qT = [ρ1 ... ρNS u v w T ]T (2.3)

Conversion between any particular set may be accomplished via transformation Jacobians.

For example the map from pressure based to temperature based variables is performed by

dqT =

[
∂qT
∂qp

]
dqp (2.4)

2.1.2 Compressible Navier-Stokes with Finite-Rate Chemistry

The Navier-Stokes equations with finite-rate chemistry are written as

∂

∂t

∫
Ω

Q dV +

∫
∂Ω

F · ~̂n dA =
1

Re

∫
∂Ω

G · ~̂n dA+

∫
Ω

ẆdV +

∫
Ω

Bg dV (2.5)
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Q =



ρ1

ρ2

...

ρNS

ρu

ρv

ρw

ρet



, Ẇ =



ẇ1

ẇ2

...

ẇNS

0

0

0

0



, Bg =



0

0

...

0

gx(ρ− ρref )

gy(ρ− ρref )

gz(ρ− ρref )

0



(2.6)

where Q is the vector of conservative variables, Ẇ is the chemical source term associated

with the mass production for each tracked species, and Bg is the gravity buoyancy source

which will be subsequently discussed.

The inviscid and viscous fluxes may be expressed as

F · ~̂n =



ρ1(u− Vx)

ρ2(u− Vx)

...

ρNS(u− Vx)

ρu2 + p

ρuv

ρuw

ρht(u− Vx) + pVx



î+



ρ1(v − Vy)

ρ2(v − Vy)

...

ρNS(v − Vy)

ρuv

ρv2 + p

ρvw

ρht(v − Vy) + pVy



ĵ +



ρ1(w − Vz)

ρ2(w − Vz)

...

ρNS(w − Vz)

ρuw

ρvw

ρw2 + p

ρht(w − Vz) + pVz



k̂ (2.7)
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G · ~̂n =



J1,x

...

JNS,x

τxx

τxy

τxz

uτxx + vτxy + wτxz − q̂x + Je



î+



J1,y

...

JNS,y

τyx

τyy

τyz

uτyx + vτyy + wτyz − q̂y + Je



ĵ +



J1,z

...

JNS,z

τzx

τzy

τzz

uτzx + vτzy + wτzz − q̂z + Je



k̂ (2.8)

where τ is the shear stress tensor with

τxx = (µ+ µt)

(
2ux −

2

3
D
)

(2.9)

τyy = (µ+ µt)

(
2vy −

2

3
D
)

(2.10)

τzz = (µ+ µt)

(
2wz −

2

3
D
)

(2.11)

τxy = τyx = (µ+ µt)(uy + vx) (2.12)

τxz = τzx = (µ+ µt)(uz + wx) (2.13)

τyz = τzy = (µ+ µt)(vz + wy) (2.14)

D = ux + vy + wz (2.15)

where molecular viscosity is defined by µ and the turbulent eddy viscosity by µt. q̂ represents

the heat flux defined as

q̂ = −
(
k̃ +

cpµt
Prt

)
∇T (2.16)

and k̃ is a local heat transfer coefficient. Ji is a vector of diffusion fluxes for species i.
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An additional term, accounting for the energy transfer must be included in the diffusion

flux terms, and is given by

Je =
NS∑
i=1

ρihiUi (2.17)

where Ui is the species diffusion velocity. The above equation set is valid for a Newtonian

fluid in local thermodynamic equilibrium obeying Stokes’ hypothesis.

2.1.3 Buoyancy Source Terms

Of particular interest in this study is the simulation of heavy gas plumes. Sinking of

a heavy gas plume to street level, and the continued propagation in the boundary layer

region of the mesh, are critical for accurately modeling this physical phenomena. Without

resolving this effect, all plumes, regardless of density, rise until the vertical momentum

imparted is negated by cross flow and continue to propagate at a relatively stable height

over the environment. In the presence of gravity source terms, however, the simulated path

of contaminants is more physically representative and complex. These effects have been

shown to be fundamental to CFD modeling of heavy gases [11, 12].
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In the current implementation a buoyancy source term is applied to the momentum

equations as follows

Bg =



0

...

0

gx(ρ− ρref )

gy(ρ− ρref )

gz(ρ− ρref )

0



(2.18)

where ρref is a reference value associated with the bulk density with the purpose of improving

the numerics of the source term addition. This factor is not strictly necessary but allows the

value added into the source term to consider only the difference between cells rather than

full magnitude. Because the buoyancy source is integrated across all cells in the mesh, ρref

is simply a constant in the numerical integration. The gravity vector, ~g, is specified based

on the grid orientation and ρ is the bulk fluid density in the control volume.

2.1.4 Chemical Source Terms

The chemical source term for each species in the Equation 2.5 is defined as a combination

of the rate contributions from each reaction in which that species participates. It is written

as

ẇi = Mi

NR∑
r=1

(ν ′′i,r − ν ′i,r)Γ

[
Kf,r

NS∏
k=1

(
ρk
Mk

)ν′k,r
−Kb,r

NS∏
k=1

(
ρk
Mk

)ν′′k,r]
(2.19)
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where Mi/k is the molecular weight of each species indexed either i or k. The terms ν ′i/k,r

and ν ′′i/k,r are the left and right-hand chemical stoichiometric coefficients respectively for a

species indexed either i or k. The coefficient Kf,r is the forward rate of a particular reaction

and Kb,r is the backward rate. It is worth noting that Kf,r and Kb,r have units that are

dependent on the stoichiometric coefficients. That is, Kf,r has units of (mol
m3 )1−z′ 1

s
and Kb,r

has units of (mol
m3 )1−z′′ 1

s
, where z′ is the sum of the left-hand side coefficients and z′′ is the

sum of the right-hand side coefficients for a particular reaction. The term Γ is used as a

modifier for the rate of progress of a reaction if a third body is present. A third body is any

species which has the potential to modify the reaction rate either as a catalyst or through

rate reduction. It is considered an effective concentration of a species for cases where there

is enhanced collisional efficiency αr,k [13]. This effective concentration can be higher than

the actual concentration. If all species contribute equally to a reaction, αr,k = 1. This term

can be computed via the expression

Γ =
NS∑
k=1

αr,k
ρk
Mk

(2.20)

The backward rate of a reaction is typically determined from the combination of a forward

rate (Kf,r), which is computed as a function of temperature, and the equilibrium constant

(Kc,r), which is computed via standard thermodynamic properties of the involved reactants

and products. A full description can be found in Section 2.14.3.
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2.1.5 Diffusion Flux Calculation

The Stefan-Maxwell equations are a model for describing the inter-species diffusion in a

multicomponent gas mixture. Following Ramshaw [14] these equations are

∑
j

xixj
Dij

[Uj − Ui] = Gi (2.21)

where xi is the mole fraction of species i, Dij is the binary diffusion coefficient for the species

pair i and j. The driving forces Gi are given as

Gi = ∇xi + (xi − Yi)∇ln p+Ki∇ln T −
1

p
[ρiFi − YiρjFj] (2.22)

where p is pressure, T is temperature, and Fi is the body force per unit mass acting on

species i. The mass fraction for species i is given by Yi. Ki is a function of species thermal

diffusion coefficients and species mass/mole fractions. It is given by

Ki =
∑
j

xixj
ρDij

(
DT,i

Yi
− DT,j

Yj

)
(2.23)

where DT,i are the thermal diffusion coefficients. The above equations are referred to as the

generalized Stefan-Maxwell equations. In the case where the only driving addition to Gi

is the mole-fraction gradients, ∇xi, the Stefan-Maxwell equations are recovered [15]. This
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assumption is made here. The summation of Gi over all species is equal to zero. That is,

∑
i

Gi = 0 (2.24)

The mass diffusion flux for species i is thus defined as

Ji = ρYiUi (2.25)

which allows closure for the mass diffusion fluxes given in Equation 2.5.

It should be noted that though the above equation is written in terms of NS components,

there are only NS − 1 independent equations. These equations also reduce to Fick’s Law in

the case of two species diffusion only.

While not developed here, an excellent discussion of several methods for solving the

reduced form of the Stefan-Maxwell equations under varying assumptions is given by

Subramaniam [16].

2.2 Preconditioner for Low Mach Flows

The numerical difficulty of solving the compressible Navier-Stokes equations at low Mach

numbers arises from the spectral radius of the discretized linear system becoming large. This

manifests itself as numerical “stiffness” and slow convergence properties. More nefarious is

that the convergence of iterative methods used to solve the linear system is strictly dependent

on the spectral radius of the iteration matrix being less than unity. For example, the left
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hand side of the linear system, A, can be written as

A = D +R (2.26)

where D is the diagonal of the matrix and R is the remainder. The Jacobi method requires

the following condition for convergence

ρ(D−1R) < 1 (2.27)

where D−1 is the inverse of the diagonal. The results are similar for other iterative solution

methods such as Symmetric Gauss Seidel [17].

The eigenvalues of concern correspond to the convective and acoustic wave speeds. As

the Mach number of the flow is decreased towards the limit of zero, the eigenvalue associated

with the acoustic wave speed changes little. The convective eigenvalue, however, approaches

zero. This large disparity causes the spread in eigenvalues described above. For the non-

preconditioned equations, these eigenvalues are

λconv = θ

λacoustic = θ + c

(2.28)

where θ is the velocity normal to a face and c is a mixture speed of sound.

A method is developed to “condition” the equations and in turn, reduce the spectral

radius. This allows for the convergence of the discretized partial differential equations in the

low Mach number limit.
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2.3 Preconditioner for Finite-Rate Navier-Stokes

Following Gupta, the energy conservation equation is written for a given species i in

terms of entropy for fluid undergoing compression [18]. The equation is written under

the assumption of constant entropy. The work that follows is a multi-species extension

to Eriksson’s constant entropy preconditioner [19].

dQi,rev = Tdsi = dei + pidvi (2.29)

Specific volume vi is related to density

vi =
1

ρi
(2.30)

and the differential of v is then

dvi = − 1

ρ2
i

dρi (2.31)

Substituting Equation 2.31 into Equation 2.29 results in

Tdsi = dei −
pi
ρ2
i

dρi (2.32)

The total derivative of internal energy with respect to the two state variables ei = ei(ρi, T )

is given by

dei =
∂ei
∂T

∣∣∣∣
ρi

dT +
∂ei
∂ρi

∣∣∣∣
p

dρi (2.33)
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Temperature can be expressed as a function of pressure and density while holding other

species densities constant T = T (p, ρi), which leads to the differential

dT =
∂T

∂pi

∣∣∣∣
ρi

dpi +
∂T

∂ρi

∣∣∣∣
p

dρi (2.34)

Equation 2.34 is substituted into Equation 2.33 and the result into Equation 2.32 yield

Tdsi = ∂ei
∂T

∣∣
ρi
dT + ∂ei

∂ρi

∣∣∣
p
dρi − pi

ρ2
i
dρi

Tdsi = ∂ei
∂T

∣∣
ρi

[
∂T
∂pi

∣∣∣
ρi
dpi + ∂T

∂ρi

∣∣∣
p
dρi

]
+ ∂T

∂ρi

∣∣∣
p
dρi + pi

ρ2
i
dρi

Tdsi = ∂ei
∂T

∣∣
ρi

∂T
∂pi

∣∣∣
ρi
dpi +

[
∂ei
∂T

∣∣
ρi

∂T
∂ρi

∣∣∣
p

+ ∂ei
∂ρi

∣∣∣
T
− pi

ρ2
i

]
dρi

(2.35)

A parameter β is introduced to scale the changes in pressure and limit the spectral radius

of the flux Jacobian as

dp∗i = βdpi (2.36)

In this work β is a global constant and is chosen to be

β =


Mach2 for Mach < 1

1 for Mach ≥ 1

(2.37)

This choice provides well behaved eigenvalues for the test cases examined. The terms dpi

and dρi are replaced with the conditioned dp∗i and dρ∗i in Equation 2.35 to arrive at

Tdsi =
∂ei
∂T

∣∣∣∣
ρi

∂T

∂pi

∣∣∣∣
ρi

dp∗i +

[
∂ei
∂T

∣∣∣∣
ρi

∂T

∂ρi

∣∣∣∣
p

+
∂ei
∂ρi

∣∣∣∣
T

− pi
ρ2
i

]
dρ∗i (2.38)
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Subtracting Equation 2.38 from Equation 2.35 and enforcing zero species entropy change

Tdsi between the conditioned and unconditioned expressions results in

0 =
∂ei
∂T

∣∣∣∣
ρi

∂T

∂pi

∣∣∣∣
ρi

(dpi − dp∗i ) +

[
∂ei
∂T

∣∣∣∣
ρi

∂T

∂ρi

∣∣∣∣
p

+
∂ei
∂ρi

∣∣∣∣
T

− pi
ρ2
i

]
(dρi − dρ∗i ) (2.39)

Substituting Equation 2.36 into Equation 2.38 and solving for the conditioned change in

species density ρ∗i defines

dρ∗i = dρi +

∂ei
∂T

∣∣
ρi

∂T
∂pi

∣∣∣
ρi

(1− β)dpi[
∂ei
∂T

∣∣
ρi

∂T
∂ρi

∣∣∣
p

+ ∂ei
∂ρi

∣∣∣
T
− pi

ρ2
i

] (2.40)

Making judicious use of the cyclic rule of partial derivatives, this can be rewritten as

dρ∗i = dρi −
(1− β)

c2
i

dpi (2.41)

where c2
i is the square of the species speed of sound. This is calculated for ideal gases as

c2
i = γiRiT (2.42)

where γi is the ratio of specific heats i and Ri is the specific gas constant for species i. Note

that the change in preconditioned density is related to the change in partial pressure where

the total pressure can be written as

pi =
ρi
ρ
p (2.43)
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That is, the change in density related to the change in total pressure involves a mass fraction

term. The exclusion of this term results in the generation of spurious mass sources and sinks.

Though of small magnitude in the cases examined, these sources and sinks greatly hinder

the convergence properties and are certainly non-physical in nature. Therefore, the change

in species density may be written as

dρ∗i = dρi −
(1− β)

c2
i

Yidp = dρi −
(1− β)ρi

c2
i ρ

dp (2.44)

and in matrix form the differential changes become



dρ∗i

...

dρ∗NS

du

dv

dw

dp∗



=



1 · · · 0 0 0 0 − (1−β)ρ1

c21ρ

...
. . .

...
...

...
...

...

0 · · · 1 0 0 0 − (1−β)ρNS

c2NSρ

0 · · · 0 1 0 0 0

0 · · · 0 0 1 0 0

0 · · · 0 0 0 1 0

0 · · · 0 0 0 0 β





dρi

...

dρNS

du

dv

dw

dp



(2.45)
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The preconditioning matrix is derived from the transformation matrix in Equation 2.45. The

above is expressed in [ρ u p]T primitive variables, and this is denoted via the subscript p as

Pp =



1 · · · 0 0 0 0 − (1−β)ρ1

c21ρ

...
. . .

...
...

...
...

...

0 · · · 1 0 0 0 − (1−β)ρNS

c2NSρ

0 · · · 0 1 0 0 0

0 · · · 0 0 1 0 0

0 · · · 0 0 0 1 0

0 · · · 0 0 0 0 β



(2.46)

The inverse of the preconditioner is required in the implicit solution procedure, which may

be shown to be

P−1
p =



1 · · · 0 0 0 0 (1−β)ρ1

βc21ρ

...
. . .

...
...

...
...

...

0 · · · 1 0 0 0 (1−β)ρNS

βc2NSρ

0 · · · 0 1 0 0 0

0 · · · 0 0 1 0 0

0 · · · 0 0 0 1 0

0 · · · 0 0 0 0 1
β



(2.47)
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2.4 Preconditioned Eigensystem

Implementation of characteristic boundary conditions requires the eigensystem of the

preconditioned equations. Additionally, this allows for the extension of the flow solver to

make use of other approximate Riemann solvers which require a full eigensystem. The

derivations are performed using the pressure based nonconservative variable set. This

choice in particular highlights the wave speeds that should be conditioned and provides

for simpler mathematical manipulation. The interested reader is directed to Gupta [18] for

a parameterized formulation of many other available preconditioners. The flux Jacobian

derived in the pressure based nonconserved variable set is given by

Ap =
∂F

∂qp
=



θ · · · 0 ρ1nx ρ1ny ρ1nz 0

...
. . .

...
...

...
...

...

0 · · · θ ρNSnx ρNSny ρNSnz 0

0 · · · 0 θ 0 0 nx

ρ

0 · · · 0 0 θ 0 nx

ρ

0 · · · 0 0 0 θ nx

ρ

0 · · · 0 ρc2nx ρc2ny ρc2nz θ



(2.48)
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Applying the preconditioner to the flux Jacobian matrix results in

PpAp =



θ · · · 0
ρ1nx(c21−c2(1−β))

c21

ρ1ny(c21−c2(1−β))

c21

ρ1nz(c21−c2(1−β))

c21
−ρ1θ(1−β)

ρc21

...
. . .

...
...

...
...

...

0 · · · θ
ρNSnx(c2NS−c

2(1−β))

c2NS

ρNSny(c2NS−c
2(1−β))

c2NS

ρNSnz(c2NS−c
2(1−β))

c2NS
−ρNSθ(1−β)

ρc2NS

0 · · · 0 θ 0 0 nx

ρ

0 · · · 0 0 θ 0 nx

ρ

0 · · · 0 0 0 θ nx

ρ

0 · · · 0 βρc2nx βρc2ny βρc2nz βθ



(2.49)

Furthermore, the preconditioned flux Jacobian can be decomposed into the eigensystem

PpAp = TΛT−1 (2.50)

where T are the right eigenvectors, T−1 are the left eigenvectors, and Λ is a diagonal matrix

whose entries are the eigenvalues of the system. These eigenvalues are

λ1 = λ2 = ... = λNS+2 = θ (2.51)

λNS+3 =
1

2
(β + 1)θ + c′ (2.52)

λNS+4 =
1

2
(β + 1)θ − c′ (2.53)

The selection of the eigenvectors requires great care be taken due to the repeat NS + 2

eigenvalues. Construction of a basis for the preconditioned flux Jacobian which is nonsingular

when inverted is nontrivial. Additionally, the eigensystem must remain in reasonable scale

22



even in the presence of trace species with very low density [20]. That is, the matrix must not

approach singularity in the presence of trace species. The right eigenvectors of this system

are selected to be

T =



1 · · · 0 0 0 −ρ1(c21+c2(β−1)−θXm(β−1))

c21Xm

ρ1(c21+c2(β−1)−θXp(β−1))

c21Xp

...
. . .

...
...

...
...

...

0 · · · 1 0 0 −ρNS(c2NS+c2(β−1)−θXm(β−1))

c2NSXm

ρNS(c2NS+c2(β−1)−θXp(β−1))

c2NSXp

0 · · · 0 lx mx nx −nx

0 · · · 0 ly my ny −ny

0 · · · 0 lz mz nz −nz

0 · · · 0 0 0 −ρXm ρXp



(2.54)

where ~̂l and ~̂m are mutually perpendicular normal vectors constructed to form a basis with

the face normal vector ~̂n. The nonsingular left eigenvectors are

T−1 =



1 · · · 0 − K̃1(lymz−lzmy)

c21XmXp

K̃1(lxmz−lzmx)

c21XmXp
− K̃1(lxmy−lymx)

c21XmXp

ρ1(c21+c2(β−1))

ρc21XmXp

...
. . .

...
...

...
...

...

0 · · · 1 − K̃NS(lymz−lzmy)

c2NSXmXp

K̃NS(lxmz−lzmx)

c2NSXmXp
− K̃NS(lxmy−lymx)

c2NSXmXp

ρNS(c2NS+c2(β−1))

ρc2NSXmXp

0 · · · 0 (mynz −mzny) −(mxnz −mznx) (mxny −mynx) 0

0 · · · 0 −(lynz − lzny) (lxnz − lznx) −(lxny − lynx) 0

0 · · · 0 Xp(lymz−lzmy)

2c′
−Xp(lxmz−lzmx)

2c′
Xp(lxmy−lymx)

2c′
1

2ρc′

0 · · · 0 Xm(lymz−lzmy)

2c′
−Xm(lxmz−lzmx)

2c′
Xm(lxmy−lymx)

2c′
1

2ρc′



(2.55)
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where the following definitions are made

K̃i = −ρi(c2
i (Xm +Xp)− (β − 1)XmXpθ + (β − 1)(Xm +Xp)c

2) (2.56)

βm =
1− β

2
(2.57)

Xp = θβm + c′ (2.58)

Xm = θβm − c′ (2.59)

A nonsingular eigensystem for the non-preconditioned finite-rate Navier-Stokes equations is

available in the literature [20, 21].

2.5 Preconditioned HLLC Flux

Nonlinear hyperbolic partial differential equations admit solutions which contain shocks

and contact discontinuities. These cases can be reduced to the solution of a Riemann

problem. Using the theory of characteristics several different methods have been proposed

for the upwinding of fluxes in such equation sets. One such method is given by Roe [22].

However, the approximate Riemann solver of Harten, Lax, and van Leer (HLL) [23] with

contact wave (HLLC) corrections is utilized in the current work due to a considerably simpler

implementation. It was found by Buvaneswari [24] that the differences between the flux

formulation of Roe and HLLC are almost nonexistent as applied to both equilibrium and

nonequilibrium chemically active flows. The development below follows the discussion of

Toro [25].
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First, the maximum and minimum eigenvalues of the preconditioned system must be

found by

λ(NS+3)R = θR + c′R (2.60)

λ(NS+4)L = θL − c′L (2.61)

λ(NS+3) = θ̄ + c̄′ (2.62)

λ(NS+4) = θ̄ − c̄′ (2.63)

where

θ = n̂xu+ n̂yv + n̂zw + at (2.64)

and the preconditioned speed of sound is

c′ =
√
θ2β2

m + βc2 (2.65)

where c′L, c
′
R are the speed of sound based on either the left or right state at the control

volume face and c̄′ is some averaged speed of sound between the two states. Possibilities for

c̄′ include either a simple arithmetic average or a Roe averaged state. The term θ has been

defined previously, only here the averaged version θ̄ is used. Next, wave speed estimates SL,

SR, and S∗ are defined as

SL = min(λ(NS+4)L, λ(NS+4)) (2.66)

SR = max(λ(NS+3)R, λ(NS+3)) (2.67)
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S∗ =
pR − pL + ρLθL(SL − θL)− ρRθR(SR − θR)

ρL(SL − θL)− ρR(SR − θR)
(2.68)

and the HLLC state is determined from

QHLLC =



QL if 0 ≤ SL

Q∗L if SL ≤ 0 ≤ S∗

Q∗R if S∗ ≤ 0 ≤ SR

QR if 0 ≥ SR

(2.69)

where QL and QR indicate that the entire state is derived from either the left or the right

side of the interface. This is the condition that arises from a supersonic flow, in which the

speed of sound is not sufficient to overcome the flow speed, where all values are upwinded.

For the cases in which the HLLC state is defined as Q∗K , where K is either L or R, the

following relations are appropriate

ρHLLCK =
SK − θK
SK − S∗

ρ (2.70)

and is applicable to bulk density as well as species density. The pressure in this region is

written as

p∗ = pK + ρK(θK − SK)(θK − S∗) (2.71)

Since a conservative formulation is utilized, the variables must be transformed to conservative

variables before flux evaluation. Therefore, the remaining conservative variables are
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determined as

ρuHLLCK =
SK − θK
SK − S∗

(ρKuK) +
p∗ − pK
SK − S∗

n̂x (2.72)

ρvHLLCK =
SK − θK
SK − S∗

(ρKvK) +
p∗ − pK
SK − S∗

n̂y (2.73)

ρwHLLCK =
SK − θK
SK − S∗

(ρKwK) +
p∗ − pK
SK − S∗

n̂z (2.74)

ρeHLLCt =
SK − θK
SK − S∗

ρetK +
p∗S∗ − pKθK
SK − S∗

(2.75)

2.6 Practical Issues With Preconditioner

Several practical issues are of concern when utilizing the above preconditioner. Namely,

the issue of the choice of β as well as some modifications to the idealized eigensystem to

ensure stability are examined.

2.6.1 Choice of β

The choice of β is of particular interest for preconditioning schemes. Sreenivas [26] showed

that the choice of a global β parameter equal to Mach2 was sufficient to provide satisfactory

convergence and accuracy results for a single species variable Mach formulation. Gupta [18]

utilized a local β parameter and noted that for stagnation regions β must be limited to

avoid numerical instability with an optimal value of Mach number squared also used in well-

behaved regions. Unrau [27] also used a local β and proposed the preconditioning parameter

should consist of a free parameter multiplied by the local Mach number squared, i.e. φMach2

where φ < 3. Instabilities associated with the acoustic modes of the flow field approaching

the local diffusion velocity were observed in [27].
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Additionally, the specification of a local von Neumann number, µ∆t/ρ∆x2 must be

considered. Unrau [27] noted that in low Reynolds number regions, the time step must

be set to limit the von Neumann number to unity. In the current work, this criterion was

found to be far too restrictive to allow for useful simulation times. It was also found that

this criterion is not necessary with the reduction of the β parameter. It is suspected that

the effect noted by Unrau [27] is actually related to the increase in the mandated critical

time-step as the local eigenvalues approach unity in a preconditioned flow solver.

It should be noted that in the above cited works, none considered multi-species

simulations. In this work it is noted that highly converged solutions for very small values

of β were not always possible using inadequately resolved meshes. However, by applying a

preconditioning parameter which was not precisely equal to Mach2 in these cases resulted

in greatly enhanced convergence. It is suspected that the trace elements being modeled in

many of the cases of interest result in increased “stiffness” which are beyond the performance

threshold of the applied preconditioner. Unrau [27] showed, however, that despite limiting

β from the ideal value, acceptable accuracy results were still obtained.

Figure 2.1 shows how the eigenvalues associated with acoustic and convective wavespeeds

approach a constant value as the preconditioning parameter, β, is reduced towards Mach2.

This reduction in magnitude of the acoustic wavespeeds is the primary benefit of the

preconditioning method demonstrated. By rescaling the eigenvalues, the spectral radius

is reduced and convergence enhanced.

It has been reported by others [26] that replacing total pressure with gauge pressure in

flux calculation aids in convergence at low Mach numbers. This modification has the effect of
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Figure 2.1 Illustration of eigenvalue scaling at Mach 0.01 as β is varied from 1 (no
preconditioning) to Mach2 (full preconditioning)
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minimizing accumulation of roundoff errors associated with the surface integral of pressure.

At low Mach numbers this contribution becomes poorly scaled in relation to other the flux

components and utilizing gauge pressure assists in mitigating this issue.

2.6.2 Modification of Eigensystem for Stability

The replacement of the species speed of sound, ci, with the mixture speed of sound,

c, greatly enhances convergence. This is believed to be due to the decoupling in densities

allowed with the use of the species speed of sound in the preconditioner. The modification

made using the mixture speed of sound appears to drive the system towards convergence in

a more coupled way, thus avoiding numerical stability problems.

2.7 Spatial Discretization

In the current work, spatial discretization is achieved using a node-centered (median-

dual), finite-volume method on mixed-element unstructured grids. The median-dual is

constructed by connecting the element centroids to edge midpoints and face centroids to

form a closed cell. References available to describe this implementation in more detail may

be found in [28, 29].

The discretization of spatial terms over each control volume can be expressed as

Vi
∂Qi

∂t
+ <i = 0 (2.76)
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where < is the spatial residual and contains all contributions from numerical fluxes and

source terms where applicable [28]. In this work < can be represented by

<i = <i,inviscid + <i,viscous − ViBg,i − ViẆi (2.77)

This quantity is defined for every control volume i and ∂Qi

∂t
here represents the change of

the conservative variables with respect to a particular step in time. This expression must be

generalized to solve directly for the nonconservative variables via

Vi
∂Qi

∂qi

∂qi
∂t

+ <i = 0 (2.78)

where ∂Qi

∂qi
can be thought of as a mapping of the conservative solution into nonconservative

variable space. These terms arise on the diagonal of the linear system and are given in

appendix A.

The discrete form of the residual on an unstructured mesh is expressed as a sum of the

normal flux over each face enclosing the control volume

<i,inviscid =

nfaces∑
j=0

F · ~̂n dA (2.79)

where dA is the subface area associated with a particular control volume face normal.
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Using Equation 2.7, the conservative inviscid flux normal to these control volume faces

may be written as

F · ~̂n =



ρ1θ

ρ2θ

...

ρNSθ

ρuθ + Pn̂x

ρvθ + Pn̂y

ρwθ + Pn̂z

ρhtθ − atP



(2.80)

θ = n̂xu+ n̂yv + n̂zw + at (2.81)

and the grid velocity term at is defined as

at = −[n̂xVx + n̂yVy + n̂zVz] (2.82)

where Vx, Vy, Vz are components of ~V , the control volume face velocity vector.

The viscous fluxes are discretized by

<i,viscous =
1

Re

nfaces∑
j=0

G(∇Qij) · ~̂n dA (2.83)

where G(∇Qij) · ~̂n is the viscous flux evaluated with the solution gradient at a face between

control volumes i and j.
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The flux associated with the viscous stresses is discretized according to the directional

derivative method. Following Hyams [28] the gradients at the control volume faces are

approximated via gradient information available at control volume centroids as well as

information regarding the geometric location of the control volume face. Therefore, the

gradient at a face defined by the edge ij can be written as a normal and tangential

contribution

∇Qij = ∇Qij,norm +∇Qij,tan (2.84)

If a directional derivative is used to approximate the normal component along the edge and

the average of centroid gradients is used to approximate the tangential component,

(∇Qij · ŝ)ŝ ≈
Qj −Qi

|∆s|
ŝ (2.85)

(∇Qij · t̂)t̂ ≈ ∇̄Q− (∇̄Q · ŝ)ŝ (2.86)

where ŝ is a unit vector in the direction of the face and t̂ is a unit vector in a direction

perpendicular to the direction of the face, ∇̄Q is the average of the centroid gradient values,

and ~∆s = ~xj − ~xi, where i is the index of the control volume of interest and j is the index

of a neighbor. By combining Equation 2.85 and Equation 2.86 the following formula for a

gradient at a face location is derived

∇Qij ≈ ∇̄Q+ [Qj −Qi − ∇̄Q · ~∆s]
~∆s

| ~∆s|2
(2.87)
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Thus, the only requirement for the evaluation of the viscous fluxes is the nodal gradient value

and information regarding the geometry of control volumes on either side of a particular

control volume face.

2.8 Higher Order Accuracy

A second order spatially accurate method is implemented by extrapolating the control

volume centroid data to the control volume face location. In this work, a weighted least

squares method is used to compute the solution gradients. The variables at a control volume

face can be written as a truncated Taylor series expansion

Qface = Qi +∇Qi · ~r (2.88)

where ~r is a position vector from the control volume centroid to the control volume face.

Development of the least squares gradient method used to compute the variable gradients,

∇Qi, is found in Appendix B.

2.8.1 Limiters

Equation 2.88 represents a higher order solution reconstruction procedure. However, in

the presence of shocks or other high gradient regions of the flow field, this reconstruction

procedure is non-monotone. A limiting function must be introduced to reduce the

extrapolation back to first order in the presence of strong flow features or the solution

will become oscillatory. These oscillations, if not damped, may result in the divergence of
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the numerical method or non-physical solution behavior. The limited extrapolated method

is

Qface = Qi + φi∇Qi · ~r (2.89)

where φi is a limiting function with a value less than or equal to one. This method is higher

order in smooth regions of the solution and total variation diminishing (TVD). Limiters are

known to hinder convergence [30]; in this work, however, some test cases warranted their use

for stability reasons.

Several limiters are implemented within the fluid solver. Two of note are those of Barth

and Jespersen [31], and Venkatakrishnan [32]. The Barth limiter is implemented as follows:

1. Find largest negative difference δQi,min = min(Q−Qi) and positive difference δQi,max =

max(Q − Qi) between the solution in the current control volume and its immediate

neighbors.

2. Compute the unlimited reconstruction at each control volume face

Qface = Qi +∇Qi · ~r

3. Compute a maximum allowable value of φi for each face j

φij =


min

(
1,

δQi,max

Qface−Qi

)
, if (Qface −Qi) > 0

min
(

1,
δQi,min

Qface−Qi

)
, if (Qface −Qi) < 0

1, if (Qface −Qi) = 0

(2.90)

4. Select φi = min(φij)

35



The Venkatakrishnan limiter replaces the function min(1, y) with a smooth alternative

ψ(y) =
y2 + 2y

y2 + y + 2
(2.91)

The version most often used in this work is the modification introduced by Venkatakrishnan

to eliminate the limiter’s effect for regions of smooth flow. This modifies the limiter in the

case where (Qij −Qi) > 0. For these regions

φij =
1

∆−

[
(∆2

+ + ε2)∆− + 2∆2
−∆+

∆2
+ + 2∆2

− + ∆−∆+ + ε2

]
(2.92)

where ∆− = Qij −Qi, ∆+ = δQi,max, and ε2 = (K∆x)3. K is set to one in most cases and

is a tunable parameter, ∆x is any characteristic length scale for the control volume.

The Barth limiter is non-differentiable which has ramifications with regards to the

gradient based design code as well as convergence [33]. For these reasons, all results shown

make use of the modified Venkatakrishnan limiter where necessary.

2.9 Temporal Discretization

Introducing the volume averaged value of the state-vector as

Q̄ =

∫
V QdV
V

(2.93)

36



The conservation equations given in Equation 2.5 become

∂(Q̄V)

∂t
+

∫
∂Ω

F · n̂ dS − 1

Re

∫
Ω

G · ~̂n dA−
∫

Ω

Ẇ dV −
∫

Ω

Bg dV = 0 (2.94)

and defining the spatial residual as

∂(Q̄V)

∂t
= −< (2.95)

where

< =

∫
∂Ω

F · n̂ dA− 1

Re

∫
∂Ω

G · ~̂n dA−
∫

Ω

Ẇ dV −
∫

Ω

Bg dV (2.96)

An implicit solution method requires the spatial residual to be evaluated at the current time

level.

∂Q̄V
∂t

+ <n+1 = 0 (2.97)

Using the standard backward differentiation formula (BDF2) for the temporal derivative of

the equation, the above may be written as

1

∆t
[φn+1(Q̄V)n+1 + φn(Q̄V)n + φn−1(Q̄V)n−1] = −<(Qn+1) (2.98)

or subtracting Q̄n from each term, and factoring, yields

1
∆t

[φn+1(Q̄n+1 − Q̄n)Vn+1 + φn−1(Q̄n−1 − Q̄n)Vn−1] +

Q̄n

∆t
(Vn+1φn+1 + Vnφn + Vn−1φn−1) = −<(Qn+1)

(2.99)
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For BDF2 the integration coefficients are

φn+1 = 3/2

φn = −2

φn−1 = 1/2

(2.100)

Note that the sum of these coefficients is zero. In the case of constant volume through time,

the last term, the geometric conservation law (GCL) contribution, cancels which gives

V
∆t

[φn+1(Q̄n+1 − Q̄n) + φn−1(Q̄n−1 − Q̄n)] = −<(Qn+1) (2.101)

It is important to note that < can be quite challenging to linearize exactly. This process

introduces a linearization error into the solution. Also, there is error associated with the

rescaling of the wave-speeds via preconditioning. Therefore, the concept of pseudo-time τ is

introduced to allow these errors to be removed. This results in

V
(
∂Q

∂τ

)n+1

+
1

∆t
[φn+1(Q̄n+1 − Q̄n) + φn−1(Q̄n−1 − Q̄n)] = −<n+1 (2.102)

Note that this modification does not affect the temporal accuracy of the scheme as long

as ∂Q/∂τ vanishes for large values of τ . This term is now discretized using a first order

backwards difference about a pseudo-time level m + 1. Note that previous values of the

solution nor the GCL depends on τ .

V Q̄n+1,m+1−Q̄n+1,m

∆τ
+ 1

∆t
[φn+1(Q̄n+1,m+1 − Q̄n) + φn−1(Q̄n−1 − Q̄n)] = −<n+1,m+1 (2.103)
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The residual at pseudo-time m+ 1 is linearized about the mth time level, again using a first

order approximation. This gives

<n+1,m+1 = <n+1,m +
∂<
∂Q

n+1,m

(Q̄n+1,m+1 − Q̄n+1,m) (2.104)

Defining ∆Qn+1,m+1 = (Q̄n+1,m+1− Q̄n+1,m) and making the appropriate substitutions yields

V ∆Qn+1,m+1

∆τ
+ <n+1,m + ∂<

∂Q

n+1,m
∆Qn+1,m+1 =

− 1
∆t

[φn+1(Q̄n+1,m+1 − Q̄n) + φn−1(Q̄n−1 − Q̄n)]]

(2.105)

The right hand side still has a Q̄m+1,n+1 term present which cannot be evaluated. Subtract

φn+1Q̄
n+1,mV/∆t from both sides and proceed formally to obtain

[ (
V

∆τ
+ φn+1V

∆t

)
I + ∂<

∂Q

n+1,m

]
∆Qn+1,m+1 = −H (2.106)

where H is the unsteady residual, defined by

H = <n+1,m +
1

∆t
[φn+1(Q̄n+1,m − Q̄n) + φn−1(Q̄n−1 − Q̄n)] (2.107)

Since the terms dependent on τ vanish as τ gets large, any procedure that will evolve the

solution in pseudo-time will result in the convergence of H to the temporally correct residual.

That is, τ is evolved using local time-stepping while t must remain fixed for every control

volume. This greatly accelerates the solution at each unsteady time-step, t, and has no effect
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on the temporal accuracy provided in real-time. Using the backward differentiation formula

integration scheme, the solver is formally second order accurate in time.

Note that Equation 2.106 is written in terms of conserved variables Q. The preconditioner

derived in section 2.3 is applied to the time-stepping scheme from Equation 2.106 as

[ [
∂Q
∂qT

]
P−1
T

(
V

∆τ
+ φn+1V

∆t

)
I + ∂<

∂qT

n+1,m

]
∆qn+1,m+1

T = −H (2.108)

where P−1
T is the inverse preconditioning matrix as applied to the [ρ u T ]T variable set.

The transformation to the temperature-based variable set from the pressure-+based set is

straightforward and can be written as

P−1
T =

[
∂qT
∂qp

]
P−1
p

[
∂qp
∂qT

]
(2.109)

Making this substitution results in the fully implicit, second order time-accurate method

[ [
∂Q
∂qT

] [
∂qT
∂qp

]
P−1
p

[
∂qp
∂qT

] (
V

∆τ
+ φn+1V

∆t

)
I + ∂<

∂qT

n+1,m

]
∆qn+1,m+1

T = −H (2.110)

2.10 Boundary Conditions

The Navier-Stokes equations can be classified as an initial-boundary value problem. As

such, the specification of boundary conditions is necessary for solution. In this section, a set

of boundary conditions applicable to the problems studied in this work are developed.
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2.10.1 Isothermal No-Slip Wall

For all viscous problems studied in this work an isothermal no-slip wall boundary

condition was utilized at solid surfaces. The derivation of this boundary condition follows

the work by Anderson and Bonhaus [34]. These boundary conditions are applied implicitly

via the modification of the block row corresponding to nodes lying on the viscous surface.

The ghost nodes as well as the interior nodes which lie on the viscous surface are also set to

the wall temperature and wall velocity explicitly in boundary condition enforcement. The

modified diagonal block for a node lying on a viscous surface is



B1,1 · · · B1,NS B1,NS+1 B1,NS+2 B1,NS+3 B1,NS+4

BNS,1 · · · BNS,NS BNS,NS+1 BNS,NS+2 BNS,NS+3 BNS,NS+4

0 0 0 1 0 0 0

0 0 0 0 1 0 0

0 0 0 0 0 1 0

0 0 0 0 0 0 1





∆ρ1

...

∆ρNS

∆u

∆v

∆w

∆T



=



<1

...

<NS

0

0

0

0


(2.111)

In diagonal block matrix rows where the residual and the off-diagonal entries are zeroed,

the off diagonal blocks must also have the appropriate entries zeroed. This ensures that

during the solution of the linear system, no contributions are added to the right hand side

of the equation. In short, this modification prevents updates from being non-zero in all

momentum and energy equations for nodes on viscous walls.
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2.10.2 Characteristic Variable Boundary Conditions

Farfield boundaries are enforced via characteristic variable boundary conditions. The

governing equations can be written in 1-D for a direction normal to the boundary, η, as

∂Q

∂t
+
∂F

∂η
= S (2.112)

where S is a source term. This equation, denoting the flux Jacobian A = ∂F
∂Q

, may be

expressed as

∂Q

∂t
+ A

∂Q

∂η
= S (2.113)

A similarity transformation is used to diagonalize the Jacobian A as A = TΛT−1.

∂Q

∂t
+ TΛT−1∂Q

∂η
= S (2.114)

The matrix Λ is diagonal and contains the eigenvalues of A. T is a matrix whose columns are

a the right eigenvectors of A and T−1 the left eigenvectors. Multiplying the above through

by T−1 evaluated at constant conditions gives

∂W0

∂t
+ Λ0

∂W0

∂η
= T−1

0 S (2.115)

The result is a decoupled hyperbolic partial differential equation where W0 are the

characteristic variables defined as W0 = T−1Q. The slope of characteristics in η space is
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given by the eigenvalues. Therefore, ∂η
∂t

= Λ and the above can be further simplified as

dW0

dt
= T−1

0 S (2.116)

Discretizing at a boundary, b, of interest yields

W0,b = W0,r + T−1
0 S∆t (2.117)

For the purposes of this work S = 0 which gives

W0,b = W0,r (2.118)

where W0,b are the characteristic variables on the boundary and W0,r are the characteristic

variables evaluated at a reference condition specified by the sign of the eigenvalue. That is,

W0,r is evaluated from internal information for positive eigenvalues and evaluated from the

outside of the domain for negative eigenvalues.

Recall, W0,b = T−1
0 Qb and W0,r = T−1

0 Qr, and making this substitution results in

T−1
0 Qb = T−1

0 Qr (2.119)

Multiplying through by the right eigenvalues gives

Qb = T0T
−1
0 Qr (2.120)
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For example, if the first NS+3 eigenvalues are positive (i.e. θ+c) and the last eigenvalue

if negative (i.e. θ − c), which is the case for subsonic outflow (θ < c), the system takes the

following form

Qb = [T0]



T−1
0,1 qin

...

T−1
0,NS qin

T−1
0,NS+1 qin

T−1
0,NS+2 qin

T−1
0,NS+3 qin

T−1
0,NS+4 qext



(2.121)

where T−1
0,i is the ith row of T−1

0 or the ith left eigenvector, qin is the solution vector from the

interior of the domain, and qext is the solution vector from an externally specified state. Due

to the fact that the eigensystem is developed in the pressure based nonconservative variable

set, the resulting output and input, q, is in terms of the pressure based nonconservative

variable vector. The application of an equation of state allows this pressure to be converted

readily to temperature.

2.10.3 Characteristic Impermeable Wall

The characteristic impermeable wall boundary conditions are imposed at inviscid surfaces

in a similar manner to the characteristic farfield boundary conditions. Since there is no

information available except from the internal portion of the flowfield, all characteristics at
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the ghost node are applied from internally

RHSCV BC =



T−1
0,1 qin

...

T−1
0,NS qin

T−1
0,NS+1 qin

T−1
0,NS+2 qin

T−1
0,NS+3 qin

at



(2.122)

The following linear system is then solved with the last row in T−1 replaced to enforce a

θ = 0 condition. This modification can be written as

T−1
CV BC Qb = RHSCV BC (2.123)

where T−1
CV BC is T−1 above with the last equation replaced with the following

[
0 . . . 0 n̂x n̂y n̂z 0

]
[Pb] = [at] (2.124)

This has the effect of allowing the pressure at the wall to float as appropriate while strictly

enforcing the no mass flow constraint at the surface.
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2.10.4 Reflective Impermeable Wall

The reflective impermeable wall boundary condition is implemented as a simple reflection

of the nodal velocities such that the effect is zero mass flow through the wall. This reflected

velocity is

Ughost = Uin − 2.0(Uin · ~̂n) (2.125)

Density and temperature at the ghost node are directly imposed from the internal node

values.

2.10.5 Symmetry Plane

The symmetry plane boundary condition is implemented as being identical to the

particular impermeable wall boundary condition which is active plus a gradient correction.

The gradient correction is simply the removal of any normal gradient component which exist

on symmetry enforced walls. This eliminates any small errors which may be present in the

gradient calculation and has been shown to greatly increase the numerical stability of this

boundary condition. The correction is

∇Q = ∇Q−∇Q · ~̂nwall (2.126)

where ~̂nwall is the normal face vector at the symmetry wall surface.
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2.11 Jacobian Calculation

When implementing an implicit solution algorithm, the Jacobian or linearization of the

residual must be available. The full Jacobian is represented by a sparse block matrix. A

diagonal block of this matrix for control volume i is represented as

∂Ri

∂Qi

=



∂R1

∂Q1
. . . ∂R1

∂QNS

∂R1

∂QNS+1

∂R1

∂QNS+2

∂R1

∂QNS+3

∂R1

∂QNS+4

...
. . .

...
...

...
...

...

∂RNS

∂Q1
. . . ∂RNS

∂QNS

∂RNS

∂QNS+1

∂RNS

∂QNS+2

∂RNS

∂QNS+3

∂RNS

∂QNS+4

∂RNS+1

∂Q1
. . . ∂RNS+1

∂QNS

∂RNS+1

∂QNS+1

∂RNS+1

∂QNS+2

∂RNS+1

∂QNS+3

∂RNS+1

∂QNS+4

∂RNS+2

∂Q1
. . . ∂RNS+2

∂QNS

∂RNS+2

∂QNS+1

∂RNS+2

∂QNS+2

∂RNS+2

∂QNS+3

∂RNS+2

∂QNS+4

∂RNS+3

∂Q1
. . . ∂RNS+3

∂QNS

∂RNS+3

∂QNS+1

∂RNS+3

∂QNS+2

∂RNS+3

∂QNS+3

∂RNS+3

∂QNS+4

∂RNS+4

∂Q1
. . . ∂RNS+4

∂QNS

∂RNS+4

∂QNS+1

∂RNS+4

∂QNS+2

∂RNS+4

∂QNS+3

∂RNS+4

∂QNS+4



(2.127)

There are also entries in each matrix row, i, for each control volume, j, that i is connected

to, ∂Ri/∂Qj. In this way the matrix is symmetric in structure but not in value. Also, for the

full second order accurate or viscous linearization, there is also an entry for each neighbor

of j in row i. This is referred to as the second order stencil and the matrix itself becomes

considerably less diagonally dominant when these entries are included. The matrix also

becomes considerably less sparse and therefore, more expensive to store. These entries need

not be included for the computation of a flow field and are only necessary when considering

gradient computation for design or sensitivity analysis.
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These Jacobians can be computed in one of several different ways. The first method

is by analytic hand differentiation. The analytic method is the least computationally

expensive in most cases as a closed form derivative evaluation is performed. However, due

to the complexity of the residual routine, approximations must often be made in order to

differentiate analytically. In the case of the viscous contributions to the residual, only nearest

neighbor contributions are made to the Jacobian. All viscous contributions are of the analytic

type and are approximate. The following approximation is made for taking the derivative of

any gradient at a face location

∂

∂Q
(∇Qij) ≈

∂

∂Q

(
[Qj −Qi]

~∆s

| ~∆s|2

)
(2.128)

≈
~∆s

| ~∆s|2
(2.129)

That is, only the directional derivative contribution is applied. It should be noted that

this introduces a considerable amount of inaccuracy into the Jacobian related to viscous

terms. However, it has been demonstrated that this approximation greatly enhances the

convergence of viscous problems while maintaining sparsity in the full Jacobian matrix.

This approximation is not appropriate for computation of exact linearizations which are

necessary for gradient based design methods.

In most cases, numerical Jacobians are preferable for several reasons. The foremost

reason is that no additional development is required when the residual routine changes or

additional source terms are added. This is beneficial as it greatly increases the modularity

and permits plug and play type functionality. Additionally, numerical Jacobians require no
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approximations be made to allow for compact analytic expressions. In this way, numerical

Jacobians can be more accurate than approximate analytic expressions. Forward finite

difference, central finite difference, and complex Taylor series expansion (CTSE) numerical

Jacobians are available in the flow solver. Computation is very straightforward and simply

involves a loop where each value of Q is perturbed, the flux computed, and the resulting

derivative taken. The result is placed in the appropriate column of the Jacobian. Forward

finite differences involve a single perturbation and are first order accurate, central finite

differences require two perturbations and are second order accurate. Both of these are

subject to subtractive cancellation errors. The CTSE method involves a single perturbation

in the complex plane and exhibits true second order accuracy while not being subject to

subtractive cancellation errors [35]. The only caveat is computing the diagonal contribution

from boundary conditions. The boundary condition must be updated, and converged to

steady state if exact contributions are required, then the flux and derivative computed. The

procedure is as follows:

1. Perturb Qj at node i as required for derivative method

2. Update boundary conditions

3. Compute boundary flux at node i

4. Take derivative (forward finite difference or complex only)

Central differences are incongruous with this method and are not used for boundary

node Jacobian contributions. These numerical methods applied to constructing gradient

information are discussed in more detail in Section 3.1.
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2.12 Time Step Calculation

The solver can be run in several temporal modes. The first is time accurate. In this

mode the time-step is specified by the user to capture relevant flow features and is applied

as constant across all cells. The second mode is steady or pseudo-time-stepping. In both

the steady and pseudo-time-stepping modes the parameter ∆τ is set locally for every control

volume based on a Courant-Friedrichs-Lewy (CFL) number. This is termed local-time-

stepping. In the pseudo-time-stepping mode ∆t is set as constant just as in the time accurate

mode. This mode is also time accurate. See Section 2.9 for a deeper discussion of this scheme.

The ∆τ value in each control volume is computed based on the eigenvalues local to that

cell. The time step for a control volume is computed by

∆τ = CFL
V∑nfaces

i=0 |λi|max‖n‖
(2.130)

where λmax is the maximum eigenvalue at a particular volume subface and ‖n‖ is the

associated face area. In the case of the Navier-Stokes equations with finite-rate chemistry,

the maximum eigenvalue will be either λNS+3 or λNS+4, given in Equation 2.52 and Equation

2.53, as these are the acoustic wave-speeds. Figure 2.2 illustrates how ∆τ values scale while

varying the preconditioning parameter β. This is important to recognize from a practical

standpoint. For instance, in a typical flow solve, a CFL of unity might take a very long

time to converge. However, in a preconditioned flow solve at Mach 0.01 the same CFL

value represents a time-step which is over fifty times larger. Therefore, more conservative

CFLs are often required to maintain stability in the non-convective terms of the flux, namely
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Figure 2.2 Illustration of time-step scaling at Mach 0.01 as β is varied from 1 (no
preconditioning) to Mach2 (full preconditioning) at several CFL numbers

the viscous terms. This effect is particularly pronounced due to the difficulty in properly

linearizing these terms to begin with. See Section 2.11 for a discussion of the linearization

used here.
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2.13 Implicit Solution Algorithm

Consider the discretized form of the Navier-Stokes equations as written in Equation 2.106.

[ (
V

∆τ
+ φn+1V

∆t

)
I + ∂<

∂Q

n+1,m

]
∆Qn+1,m+1 = −H

It is obvious that the above falls into the familiar form of a linear system of equations with

the matrix being represented by

A ≡
[ (

V
∆τ

+ φn+1V
∆t

)
I + ∂<

∂Q

n+1,m

]
(2.131)

Rewriting the linear system above making this substitution gives

A ∆Q = −H (2.132)

This linear system must be solved in order to advance the solve in time or in pseudo-time in

the case of steady calculations. For steady calculations H is simply replaced directly with

the spatial residual <.

The solution to this system can be achieved by various methods. The two classes

of linear system solution are direct or iterative. Direct methods are intractable due to

the sparse structure of the matrix, the expected fill-in and consequently memory usage

constraints are far too high for realistic scale problems. Thus, iterative methods are used.

Two classes of iterative methods exist; nonstationary and stationary. Both Krylov subspace
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(nonstationary) and stationary iterative methods are useful but the smoothing properties of

stationary methods are attractive in the study of computational fluid dynamics for many

reasons. In particular, the symmetric Gauss-Seidel method is used in solving this linear

system.

Given a matrix A a decomposition can be performed such that the lower triangular,

diagonal, and upper triangular components can be addressed separately.

A = (L+D + U) (2.133)

where L contains all lower blocks, D all diagonal blocks, and U all upper blocks. The solution

to the linear system is thus iteratively obtained by

∆Qk+1
j = D−1

j [−Hj − (Lj + Uj)∆Q
k
j ] (2.134)

where k is the current iteration level in solution of the linear system and j is the current

block row for which the solution is being updated.

A procedure for inverting the block Dj is still required. Here, a partial pivoted LU

factorization is used. PDj = L̂Û where P is a permutation matrix which permutes rows only

with L̂ and Û being lower and upper triangular matrices for the block. Doolittle’s method

with row pivoting is used so that the computations are performed in-place for performance

and memory consumption reasons. The only additional memory cost for this implementation

is the storage of an integer vector which is equal in length to the number of blocks multiplied

by the block rank. This decomposition is performed once per time-step. Inverting these
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blocks amounts to the solution of an additional block linear system for each row in the large

linear system.

Dj ∆Qk+1
j = −Hj − (Lj + Uj)∆Q

k
j (2.135)

This system is solved simply because of the decomposition in one forward and one backwards

pass. The forward pass is

L̂x∗ = P [−Hj − (Lj + Uj)∆Q
k
j ] (2.136)

and the backwards pass is

Û ∆Qk+1
j = x∗ (2.137)

This procedure computes the updates ∆Q to advance the solution in time or pseudo-time.

After the updates are applied to the solution vector, the residual and matrix are recomputed

for the next step. This process is repeated iteratively until the residual, <, or temporal

residual, H, are reduced to the required level of solution accuracy.

2.14 Chemistry

The chemistry components are largely modularized from the compressible Navier-Stokes

equations solver in order to allow quick changes of chemistry models and thermodynamic

databases for individual species. This section describes the methods utilized within the

chemistry library for this research.
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2.14.1 Thermodynamic Data

Determining thermodynamic properties of individual chemical species is not a trivial

task. One method of determining these properties is through the use of NASA 7/9 coefficient

polynomials. Here, the 7 coefficient variety is used exclusively, though for most species the

9 coefficient versions are also available. These 9 coefficient versions are more accurate.

However, the 7 coefficient version of the polynomials typically exhibit one-tenth of one

percent to one percent error at peak temperatures [36].

The thermodynamic curve fit coefficients are valid over two semi-standard ranges, 200-

1000K and 1000-6000K, with some researchers [37] adding additional coefficients for ranges

beyond these tables. The thermodynamic properties of a given species can be derived from

these curve fits as a function of temperature. The relation used for specific heats is

cpi
Ri

= a1 + a2T + a3T
2 + a4T

3 + a5T
4 (2.138)

which is the specific heat at constant pressure. The constant volume specific heat can be

calculated as

cpi − cvi = T

(
∂p

∂T

)∣∣∣∣
v

(
∂v

∂T

)∣∣∣∣
p

(2.139)

An example of this calculation for the ideal gas equation of state is shown in Section 2.14.4.

Specific enthalpy is calculated via

hi
RiT

= a1 +
a2T

2
+
a3T

2

3
+
a4T

3

4
+
a5T

4

5
+
a6

T
(2.140)
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Specific entropy can be calculated with

si
Ri

= a1 lnT + a2T +
a3T

2

2
+
a4T

3

3
+
a5T

4

4
+ a7 (2.141)

Gibbs free energy, which can be used as a fundamental indication of an equilibrium state by

minimizing the total free energy in a mixture, can be found by

gi
RiT

=
hi
RiT

− si
Ri

= a1(1− lnT )− a2

2
T − a3

6
T 2 − a4

12
T 3 − a5

20
T 4 +

a6

T
− a7 (2.142)

All of the above properties are calculated on a per species basis and are not very useful

with regards to a CFD solver. What is desired are the bulk fluid properties in a particular

control volume. The species mass fraction is given as

Yi =
ρi
ρ

(2.143)

Using the following relations, several useful properties can be computed for a localized flow

field

cp =
NS∑
i=1

Yicpi (2.144)

γ =
cp
cv

(2.145)

where cv is defined in Equation 2.139 and is dependent on the equation of state selected.

The species specific gas constant is

Ri =
Runiv

Mi

(2.146)
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and the mixture specific gas constant is defined by

R =
NS∑
i=1

YiRi (2.147)

Specific total enthalpy for the mixture can be calculated as

ht =
NS∑
i=1

Yihi +
1

2
‖U‖2 (2.148)

and likewise, specific total energy can be calculated via

et =
NS∑
i=1

Yiei +
1

2
‖U‖2 (2.149)

More useful, however, is the computation of total energy which is represented by

Et = ht

NS∑
i=1

ρi − P (2.150)

The square of the speed of sound is defined as the partial derivative of pressure with

respect to density and can be written as

c2 =

(
∂P

∂ρ

)
s

(2.151)

This can be evaluated analytically as was done by Cox [38]. However, the full evaluation can

be quite expensive to compute. Here, the assumption of ideal gas behavior was used. This
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can be written as

c2 = γRT (2.152)

where γ and R are both defined for the total mixture of gases [39].

2.14.2 Thermal Transport Properties

The NASA reports by McBride and Gordan represent the methodology used within this

work in the determination of thermal transport properties [40, 41]. The data provided is in

the form of temperature-dependent four coefficient curve-fits.

ln µ

ln k̃

 = A ln T +
B

T
+
C

T 2
+D (2.153)

where viscosity, µ, is reported in micropoise and the thermal conductivity in units of

microwatts per centimeter-kelvin. The mixture thermal conductivity is computed via a

Wilkes mixture rule:

k̃ =
NS∑
i=1

xik̃i∑NS
j=1 xjΦij

(2.154)

with

Φij =

[
1 +

(
µi
µj

)0.5

+
(
Mj

Mi

)0.25
]2

√
8(1 + Mi

Mj
)0.5

(2.155)

where xi is the mole fraction of species i which can be computed by

xi =
ρi
ρ

1

Mi

=
Yi
Mi

(2.156)
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Likewise, the mixture viscosity is computed via a similar mixture rule

µ =
NS∑
i=1

xiµi∑NS
j=1 xjΦij

(2.157)

Though many species are provided in the literature, it is exceedingly difficult to find

data on every species of interest. In many cases, experimental data is not available nor

are predicted values based on molecular structure. In the absence of information regarding

a species of interest, the implementation described here reduces to the thermal transport

properties for air. These properties are given by White in the form of a Sutherland type

curve-fit [42].

µ

µ0

=

(
T

T0

)3/2
T0 + S

T + S
(2.158)

k̃

k0

≈
(
T

T0

)3/2
T0 + S

T + S
(2.159)

The appropriate mixture rules still apply to compute bulk transport properties in these cases.

2.14.3 Reaction Rates

The reaction rates for a particular reaction can be computed via several methods. In this

research, the Arrhenius and modified Arrhenius forms are used. All reactions in this work

are assumed to be laminar. That is, turbulent chemistry interactions are not resolved via

probability density functions [43] or other modeling techniques. The Arrhenius equation is

K = Ae−Ea/RunivT (2.160)
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where A is a prefactor and Ea is the activation energy of the reaction in question. The

modified Arrhenius form is

K = A

(
T

T0

)n
e−Ea/RunivT (2.161)

where T0 is some reference temperature and n is a unitless power. Other forms do exist but

are not used here.

Reaction rates are typically given in terms of forward reaction rate, Kf,r, only. It is then

left to the researcher to derive the backward reaction rate, Kb,r. This can be done with

Kb,r =
Kf,r

Kc,r

(2.162)

where the equilibrium coefficient Kc,r must be determined first. It can be computed from

thermodynamic properties alone [13].

Kp,r = e

(
∆sor,r
Runiv

−
∆hor,r

RunivT

)
(2.163)

where

∆sor,r =
NS∑
i=1

(
ν ′′i,r − ν ′i,r

)
soi (2.164)

and

∆hor,r =
NS∑
i=1

(
ν ′′i,r − ν ′i,r

)
hoi (2.165)
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in which soi and hoi are the standard state entropy and enthalpy, respectively. From this the

reaction rate based on concentration can be derived, which is

Kc,r = Kp,r

(
pstd

RunivT

) NS∑
i=1

(
ν ′′i,r − ν ′i,r

)
(2.166)

where Pstd is 1 atmosphere.

2.14.4 Equation of State

Throughout this work, the equation of state which is selected is the ideal gas law. This

is given by

pV = nRunivT (2.167)

or rearranged to use the specific gas constant, R,

p = ρRT (2.168)

However, any equation of state may be used which has several functions defined. Since most

chemical databases give specific heat in terms of constant pressure, the equation of state

model must be able to convert this to specific heat at constant volume.

The equation of state must also be able to return a pressure value given density, mixture

properties, and temperature. In this work, due to the implementation of the preconditioners

in the [ρ u p]T variable set, the equation of state should be able to return temperature given

pressure, density, and mixture properties instead. The constant volume specific heat give in
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Equation 2.139 can be calculated as

cpi − cvi = T

(
∂p

∂T

)∣∣∣∣
v

(
∂v

∂T

)∣∣∣∣
p

(2.169)

The partial derivatives take the following values for the ideal gas equation of state only

∂p

∂T
=
R

V
(2.170)

∂v

∂T
=
R

p
(2.171)

This results in Mayer’s relation for ideal gases

cp − cv = R (2.172)

Several functions are also required for the linearization of the viscous flux. An example of

these are

∂T

∂p
,
∂T

∂R
,
∂R

∂ρi
, and

∂v

∂T

Finally, the transformation from conservative to nonconservative variables in the mapping

Jacobian requires

∂ρet
∂p

,
∂ρet
∂ρi

, and
∂p

∂T

These requirements are a product of assumptions made about fluid behavior during the

implementation of the solver. However, by placing all equation of state calculations within a
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replaceable module, tremendous flexibility is possible when fluid behavior deviates from the

ideal gas law.

2.15 Spalart-Allmaras Turbulence Model

All turbulent flows computed in this work make use of the Spalart-Allmaras turbulence

model [44]. The trip term ft1, which is noted in the first reference, is not used here and

instead the freestream boundary conditions are modified according to [45]. The turbulence

model is enforced in a loosely-coupled fashion after each pseudo-time-step of the core flow

solver. The non-dimensionalization used when implemented should be consistent with values

of velocity, distance, and time used in the core flow solver. The dimensional form of the

Spalart-Allmaras turbulence model may be expressed as

∂ν̃

∂t
+ uj

∂ν̃

xj
= Cb1[1− ft2]S̃ν̃+

1

σ

[
∇ · [(ν + ν̃)∇ν̃] + Cb2|∇ν̃|2

]
−[

Cw1fw −
Cb1
κ2

ft2

](
ν̃

d

)2
(2.173)

where the following quantities are defined

S̃ = Ω +
ν̃

κ2d2
fv2; Ω =

√
2WijWij (2.174)

(2.175)
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with d defined as the distance from the nearest wall.

fv1 =
χ3

χ3 + C3
v1

; fv2 = 1− χ

1 + χfv1

(2.176)

(2.177)

Wij =
1

2

(
∂ui
∂xj
− ∂uj
∂xi

)
; ft2 = Ct3exp(−Ct4χ2) (2.178)

(2.179)

fw = g

[
1 + C6

w3

g6 + C6
w3

]1/6

; g = r + Cw2(r6 − r) (2.180)

(2.181)

r =
ν̃

S̃κ2d2
(2.182)

The turbulent eddy viscosity is computed from the following expression

µt = ρν̃fv1; ν =
µ

ρ
(2.183)

(2.184)

The boundary conditions are

ν̃wall = 0; ν̃farfield = 3ν∞ to 5ν∞ (2.185)

64



The constants are

Cb1 = 0.1355; σ = 0.3; Cb2 = 0.622; κ = 0.41

Cw2 = 0.3; Cw3 = 2; Cv1 = 7.1

Ct3 = 1.2; Ct4 = 0.5; Cw1 =
Cb1
κ2

+
1 + Cb2
σ

The value of S̃ is limited to be no smaller that 0.3Ω.

2.16 Sensor Sampling Technique

Sampling interpolated point data is not a trivial task to perform efficiently in parallel. A

common approach is to use volume coordinate searches; however, experience has shown that

choice of a starting element and round off errors tend to make these methods troublesome

even in serial computations. There is no guaranteed algorithmic complexity and worse,

the method is not guaranteed to walk in an optimum direction. The addition of walking

across parallel mesh boundaries adds additional complexity and the possibility of serialization

bottlenecks. In this work, the sample is located via an octree based method. Though the

octree requires tree traversal, in practice the tree depth is small and bounded. Furthermore,

the remaining number of nodes to be searched in each leaf for closeness is fully parallelizable.

The implemented sample operation is performed in two stages. The first stage can be

considered preprocessing and consists of finding the owning process and the nearest node to

the sample location. This operation builds a coarse octree surrounding all nodes of a domain

and searches within the octree for a nearest node to each of the sensor locations indicated in

the configuration file. Every process then owns a list of nearest nodes and distances. This
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list is reduced in parallel to find the global nearest node to each of the requested sample

locations.

After each process contains the mesh node nearest to each sample location, the local

stencil of the nearest node, i.e. all the nodes connected to it in the mesh, is extracted. The

extracted stencil amounts to a local neighborhood of known quantities around an unknown,

the sample value. The local stencil solution values are used to build a inverse distance

weighted interpolation which takes the form

Q(x) =

npts∑
i=0

wi(x)Qi∑npts
j=0 wj(x)

(2.186)

where the weights are

wi(x) =
1

dist(x, xi)m
(2.187)

and m is a tunable parameter which controls the weighting given to nodes based on proximity.

Higher values weight closer values more heavily. Since, these stencils tend to be very localized,

there is minimal sensitivity to this parameter. Therefore, a value of two is most often chosen.

2.17 Gaussian Plume

All plumes discussed in this work were assumed to have a source density distribution

which is represented by a two-dimensional Gaussian function. This Gaussian function is

always assumed to lie on a boundary. A plume may be relocated along this specified boundary

by the optimization code. In the absence of the ability to locally refine the mesh, the total

mass inflow has the potential to vary significantly as the plume moves and predictions are
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updated. Thus, the density values for a boundary node in a plume are specified via mass

inflow calculated via higher order quadrature. Details of the integration procedure can be

found in Appendix C. This practice insures that the total mass being contributed does not

vary significantly as the plume traverses a mesh from fine to coarse regions. The Gaussian

function utilized in the current work may be expressed as

g(x, y) = A exp

(
−
(

(x− x0)2

2σ2
x

+
(y − y0)2

2σ2
y

))
(2.188)

where (x0, y0) is the center of the plume, σ2
x and σ2

y are the spread of the plume, (x, y) is a

sampled location, and A is the amplitude of the plume. The integrated values for the plume

source are then mapped back to the nodes using a linear interpolation method. From this

information a Dirichlet type boundary condition can be imposed in the region of influence of

the plume such that the total mass flux across the surface is constant regardless of location. A

normal velocity component may also be specified to allow for injection of the plume material

through any low velocity boundary layers.
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CHAPTER 3

COMPUTATIONAL DESIGN

In order to compute derivatives of objective functions, I, with respect to design variables,

e.g. plume location, Mach number, etc., a general method of computing partial derivatives

is required. Analytic differentiation of outputs with respect to inputs is possible. However,

this is extremely time intensive, error prone, and adds significant size to a code base.

Alternatively, numerical approaches may be adopted. However, real-valued finite differences

require, at minimum, two output function evaluations, which may be quite costly. All

standard numerical derivatives can also be quite sensitive to the choice of perturbation size.

One solution to this problem is to use a complex Taylor series expansion (CTSE) [46, 35, 47].

Using this method, it is possible to get second order accurate derivatives with a step size

near machine precision using a single complex-valued function evaluation.

3.1 Numerical Approaches to Gradient evaluation

Any smooth (differentiable) function can be expressed as a Taylor series expansion as

f(x+ h) = f(x) + f ′(x)h+
f ′′(x)

2!
h2 +

f ′′′(x)

3!
h3 + ... (3.1)
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It follows that f(x) can be subtracted from each side and divided by the perturbation size

h which yields

f(x+ h)− f(x)

h
= f ′(x) +

f ′′(x)

2!
h+

f ′′′(x)

3!
h2 + ... (3.2)

Note that if this expansion is truncated after the first derivative, the forward finite difference

derivative appears as

f ′(x) =
f(x+ h)− f(x)

h
+O(h) (3.3)

That is, the largest error term is roughly the size of the perturbation h.

Instead of using a real perturbation, a perturbation may be performed in the complex

plane where i2 = −1. Rewriting the Taylor series expansion above using the complex

perturbation h i

f(x+ h i) = f(x) + f ′(x)(h i)− f ′′(x)

2!
h2 +

f ′′′(x)

3!
(h i)3 + ... (3.4)

Taking the imaginary part of the expression and dividing by the perturbation size gives an

approximation to the first derivative of f(x) that has a leading error term of order h2.

f ′(x) =
Imag(f(x+ h i))

h
+O(h2) (3.5)

A higher accuracy is achieved for the derivative with a single function evaluation. More

remarkable is that function is never perturbed in the real plane to arrive at a derivative

evaluation. Instead, it is simple enough on modern computers to perturb the complex part

of a variable the derivative is required of and run the code as usual but using complex
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arithmetic. At the end of the computation, the complex part of the resulting function

evaluation is divided by the complex perturbation itself to achieve a second order accurate

first derivative. This is without the addition of any routines to compute finite differences.

Essentially, the programming effort of computing derivatives is mitigated by using complex

arithmetic operations.

An error is added to the real part of the function evaluation. However, this error is of

order O(h2). The careful selection of h on the order of
√
ε, where ε is machine zero, will

result in a truncation error which is smaller than a number which can be represented by

machine accuracy. In short, the additional error is unresolved on a finite precision computer.

3.2 Gradient Based Design Optimization

Consider an objective function I to minimize via the manipulation of several design

variables βj. The functional form of the objective function is

I = I(Q(βj), X(βj), βj) (3.6)

where X(βj) represents grid dependence on the design variables and Q(βj) is the solution

dependence on the same.

Taking the total derivative of the objective function with respect to each of the design

variables gives

dI

dβj
=
∂I

∂Q

∂Q

∂βj
+

∂I

∂X

∂X

∂βj
+

∂I

∂βj
(3.7)
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The residual evaluation at steady-state may be expressed in a similar form as

< = <(Q(βj), X(βj), βj) = 0 (3.8)

Again, taking the total derivative with respect to βj gives

d<
dβj

=
∂<
∂Q

∂Q

∂βj
+
∂<
∂X

∂X

∂βj
+
∂<
∂βj

= 0 (3.9)

Rearranging this equation results in

∂Q

∂βj
= −

[
∂<
∂Q

]−1(
∂<
∂βj

+
∂<
∂X

∂X

∂βj

)
(3.10)

Given Equations 3.7 and 3.10 several methods can be developed for computing the

gradients of the objective function with respect to the design variables.

3.2.1 Complex Arithmetic Mode

Due to the software design, all routines are internally templated such that each can be

called in either real-valued or complex modes. Because of the nature of complex arithmetic,

as discussed in Section 3.1, perturbing the complex portion of any parametric parameters

(Mach number, plume location, node coordinates, etc.) and running the solver to convergence

is straightforward. The derivative of the objective function with respect to the parameter of
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interest may be evaluated as

dI

dβj
=

Imag[I(Qperturb, Xperturb, βj,perturb)]

h
(3.11)

Though the cost is high, over two times the cost of a forward solve, the complex arithmetic

mode provides a very reliable and concurrently updated benchmark for comparing the

derivative accuracy of other modes. The complex arithmetic mode is also invaluable for

finding coding errors in the implementation of more complicated methods.

3.2.2 Forward (Direct) Mode

Substituting Equation 3.10 into Equation 3.7 gives the following

dI

dβj
= − ∂I

∂Q

[
∂<
∂Q

]−1(
∂<
∂βj

+
∂<
∂X

∂X

∂βj

)
+

∂I

∂X

∂X

∂βj
+

∂I

∂βj
(3.12)

This is referred to as the forward or direct mode of gradient calculation. It is important

to note here that this formulation requires the solution of a complete (and potentially very

costly) linear system for each βj considered. This system is given by Equation 3.10. For a

large number of design variables this can be prohibitively expensive.
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3.2.3 Reverse (Adjoint) Mode

The transpose of Equation 3.12 may be utilized to rearrange the gradient of the objective

as

(
dI

dβj

)T
= −

(
∂<
∂βj

+
∂<
∂X

∂X

∂βj

)T [
∂<
∂Q

]−T (
∂I

∂Q

)T
+

(
∂X

∂βj

)T (
∂I

∂X

)T
+

(
∂I

∂βj

)T
(3.13)

The adjoint vector, Λ, is then defined to be

Λ =

[
∂<
∂Q

]−T (
∂I

∂Q

)T
(3.14)

which can be arranged and determined from the following

[
∂<
∂Q

]T
Λ =

(
∂I

∂Q

)T
(3.15)

3.3 Implementation Concerns

There are several concerns of a practical nature when implementing either the direct or

adjoint methods for derivative computation. Notably, as the dependence of a control volume

extends past its local neighborhood, as in second order accurate or viscous computations,

the exact linearization makes the resulting systems very difficult to solve . To mitigate these

difficulties, the incremental iterative approach [48] is introduced for both the direct and

adjoint methods.
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For higher-order spatially accurate sensitivity analysis, the matrix
[
∂<
∂Q

]
is the exact

linearization of the residual vector. The flow solver tolerates approximations in the

linearization because of the Newton formulation; however, no approximations are possible

for the linear sensitivity equations. In the viscous or second order spatial accuracy cases,

this sparse block matrix can have a very large bandwidth causing the storage cost to be

high. The higher order linearization is also very stiff numerically and can be quite difficult

to solve.

3.3.1 Incremental Iterative Method - Reverse (Adjoint) Mode

In the case of the discrete adjoint method, this problem can be mitigated by recasting

the “stiff” linear system in incremental form [48] as

[(
V

∆τ

)
+
∂<
∂Q

]T
approx

∆Λ =

(
∂I

∂Q

)T
−
[
∂<
∂Q

]T
exact

Λ (3.16)

This operation still requires the computation of the full linearization of the second order

residual which can be quite large. More importantly this requires the transpose of the full

linearization which is quite expensive in terms of memory consumption. Due to the fact

that size of the linear system in the finite-rate Navier-Stokes equations scales like (NS+ 4)2,

where NS is the number of tracked species, the adjoint method has not been extended past

first order spatial accuracy in this work.

The prime benefit of utilizing the adjoint method is that for a high number of design

variables the additional cost for each variable is the cost of a matrix vector product. Since
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the number of design variables in this study is low, the additional computational expense

is not exorbitant when compared to the additional development cost of computing the full

higher order linearization.

3.3.2 Incremental Iterative Method - Forward (Direct) Mode

The linear system in Equation 3.10 can also be very “stiff” numerically. The current form

requires the explicit construction of the full linearization matrix which exhibits the same

memory consumption issues illustrated with this matrix in the adjoint method. Instead of

attempting to solve this system directly, the system is manipulated to again take the form

of a Newton iterative solve [48, 47]. This form is

[(
V

∆τ

)
+
∂<
∂Q

]
approx

∆

(
∂Q

∂βj

)
= −

(
∂<
∂βj

+
∂<
∂X

∂X

∂βj

)
−
[
∂<
∂Q

]
exact

(
∂Q

∂βj

)
(3.17)

This form shows convergence which is similar to the steady flow solution and shares the

same conditioning. Also, the linear solve involving a full second order linearization of the

residual now has been transformed into only a matrix vector product involving that same

linearization. This provides the opportunity to utilize matrix free methods and eliminate

the need to store the higher-order spatially accurate Jacobian.

3.3.3 Matrix Free Matrix-Vector Product

The Jacobian matrix-vector product in Equation 3.17 can be computed utilizing matrix

free methods such as the Fréchet derivative. Alternatively, this product can be computed
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using complex arithmetic via

[
∂<
∂Q

]
exact

(
∂Q

∂βj

)
=

Imag
(
<
(
Q+ i h ∂Q

∂βj

) )
h

(3.18)

as demonstrated in Newman, et. al. [35] and Anderson, et. al. [46]. That is, the solution

vector, Q, at steady state is perturbed in the complex plane by the product of a perturbation,

h, and the vector ∂Q/∂βj. All dependencies on Q are updated in the flowfield and the

residual is computed using complex arithmetic. The complex portion of the residual then

contains all of the chain rule derivative information. Note that during this operation, the

full linearization is never explicitly computed and the additional memory overhead is only

the storage required for the computation of a complex arithmetic residual and sensitivity

gradient.

3.4 Application of Complex Arithmetic to Chain Rule Computation

The complex Taylor series expansion is used in any instance when a chain rule evaluation

must be made. For example, the computation of (∂</∂X)(∂X/∂βj) can be performed by

perturbing the complex part of X in the residual computation by the derivative ∂X/∂βj.

The residual is then computed in complex arithmetic and the derivative is encoded in the

complex part of the result by

(
∂<
∂X

)(
∂X

∂βj

)
=

Imag
[
<
(
Q,X + i h

(
∂X
∂βj

)
, βj

)]
h

(3.19)
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The derivative ∂X/∂βj may itself have been computed using hand differentiation or another

complex Taylor series expansion as appropriate. This methodology is extremely flexible and

with careful implementation, very complex evaluations can be encoded in only four or five

lines of C++ code.

3.5 Linear Elastic Mesh Deformation

It is assumed that the mesh movement can be represented as an isotropic material

undergoing a linear deformation. In this way, the mesh acts in such a way as to minimize

the crossing of gridlines following a boundary deformation.

The three-dimensional, generalized equations for linear elastic smoothing are

∂

∂x

[
α11

∂u

∂x

]
+

∂

∂y

[
α12

∂u

∂y

]
+

∂

∂z

[
α13

∂u

∂z

]
+

α11Φ
∂u

∂x
+ α12Ψ

∂u

∂y
+ α13Ω

∂u

∂z
+

2

[
β1

∂2u

∂x∂y
+ β2

∂2u

∂y∂z
+ β3

∂2u

∂x∂z

]
+

∂

∂x

[
θ11

(
∂v

∂y
+
∂w

∂z

)]
+

∂

∂y

[
θ12

∂v

∂x

]
+

∂

∂z

[
θ13

∂w

∂x

]
= 0

(3.20)

∂

∂x

[
α21

∂v

∂x

]
+

∂

∂y

[
α22

∂v

∂y

]
+

∂

∂z

[
α23

∂v

∂z

]
+

α21Φ
∂v

∂x
+ α22Ψ

∂v

∂y
+ α23Ω

∂v

∂z
+

2

[
β1

∂2v

∂x∂y
+ β2

∂2v

∂y∂z
+ β3

∂2v

∂x∂z

]
+

∂

∂x

[
θ21

∂u

∂y

]
+

∂

∂y

[
θ22

(
∂u

∂x
+
∂w

∂z

)]
+

∂

∂z

[
θ23

∂w

∂y

]
= 0

(3.21)
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∂

∂x

[
α31

∂w

∂x

]
+

∂

∂y

[
α32

∂w

∂y

]
+

∂

∂z

[
α33

∂w

∂z

]
+

α31Φ
∂w

∂x
+ α32Ψ

∂w

∂y
+ α33Ω

∂w

∂z
+

2

[
β1

∂2w

∂x∂y
+ β2

∂2w

∂y∂z
+ β3

∂2w

∂x∂z

]
+

∂

∂x

[
θ31

∂u

∂z

]
+

∂

∂y

[
θ32

∂v

∂z

]
+

∂

∂z

[
θ33

(
∂u

∂x
+
∂v

∂y

)]
= 0

(3.22)

These equations are valid for both linear elasticity and Winslow smoothing [49]. In this

study, only linear elastic grid smoothing was utilized. For linear elasticity the following

definitions are made:

β1 = β2 = β3 = 0, Φ = Ψ = Ω = 0

α11 = E(1−ν)
(1+ν)(1−2ν)

, α12 = E
2(1+ν)

, α13 = E
2(1+ν)

θ11 = Eν
(1+ν)(1−2ν)

, θ12 = E
2(1+ν)

, θ13 = E
2(1+ν)

α21 = E
2(1+ν)

, α22 = E(1−ν)
(1+ν)(1−2ν)

, α23 = E
2(1+ν)

θ21 = E
2(1+ν)

, θ22 = Eν
(1+ν)(1−2ν)

, θ23 = E
2(1+ν)

α31 = E
2(1+ν)

, α32 = E
2(1+ν)

, α33 = E(1−ν)
(1+ν)(1−2ν)

θ31 = E
2(1+ν)

, θ32 = E
2(1+ν)

, θ33 = Eν
(1+ν)(1−2ν)

(3.23)

where ν is Poisson’s ratio. Young’s modulus, E, is taken to be the inverse of the volume of

the cell and ν = 0.2 as was described in Karman [49]. By selecting E in this manner, cells

with a small volume are given a very large stiffness when undergoing deformation. This has

the effect of maintaining the aspect ratio of thin, anisotropic cell spacing near the wall while
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allowing the larger cells in the field to absorb most of the movement near the boundary. In

practice this works quite well even for relatively large motion.

3.6 Implementation Issues

Though a method for the computation of derivatives with second order accuracy has

been outlined in this chapter mathematically, a choice of platform is still required for the

implementation of the above methods into a useful engineering tool. The platform chosen

here is C++ due to the combination of the available template feature as well as computational

performance associated with compiled, strongly-typed languages. The wide availability and

continued development of computational libraries also makes C++ an attractive platform

for future development.

3.6.1 C++ Templating and Operator Overloading

One of the primary expenses in computational fluid dynamics simulation is the

modification and maintenance costs associated with continuous code development. The cost

of development increases significantly in cases where accurate design derivatives are desired.

In particular, the linearization of a code by analytic derivatives can take several years to

mature into a robust tool [50]. On the other hand, by using the CTSE method and careful

selection of software design principles, a code can be numerically differentiated with more

reasonable effort and maintain synchronicity with the flow solver in real time as development

continues [51].
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In particular, the C++ concept of templating allows for the authoring of modular code

which is general enough to perform the appropriate operations regardless of the variable type

passed to it. Take for example the following piece of code

template <c l a s s Type>

Type Cubed Function (Type x )

{

re turn x∗x∗x ;

}

At compile time, the C++ compiler examines each call to the above function, performs

type resolution, and creates a machine code copy of the function for the appropriate types

as they appear. In the case of CTSE, both a double precision and complex typed version is

created in the executable. While this adds to the complexity in compilation, the effort

is moved from the programmer to the compiler. On modern machines, this additional

complexity is negligible in relation to the monolithic effort that would be required to maintain

both a real-valued and complex-valued version of every function and class in the entire

solver. As a more concrete example, the following is a class declaration from the CFD solver

implemented here which contains all of the classes which are necessary to compute a field

solution on a piece of discretized geometry.

// s to rage c l a s s f o r s o l u t i o n va r i ab l e s , eqnset type and

//mesh a s s o c i a t ed with a p a r t i c u l a r s imu la t i on reg ion

template <c l a s s Type>

c l a s s So lut ionSpace : pub l i c SolutionSpaceBase<Type>

{

pub l i c :

template <c l a s s Type2>

Solut ionSpace ( const Solut ionSpace<Type2>& spaceToCopy ) ;

So lut ionSpace (Param<Type>∗ param , PObj<Real>∗ p , std : : s t r i n g names ,
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TemporalControl<Real>& temporalControl ) ;

˜ So lut ionSpace ( ) ;

void I n i t ( ) ;

void AddField ( DataInfo dataInfo , Int stateType , Int varLocat ion ) ;

void AddField ( std : : s t r i n g name ) ;

void RemoveField ( std : : s t r i n g name ) ;

So lu t i onF ie ld<Type> & GetField ( std : : s t r i n g name ) ;

const So lu t i onF ie ld<Type> & GetField ( std : : s t r i n g name) const ;

Type∗ GetField ( std : : s t r i n g name , Int s t a t e ) ;

Bool CheckField ( std : : s t r i n g name) const ;

void Wr i t eAva i l ab l eF i e ld s ( ) const ;

void Val idateRequestedFie lds ( ) const ;

void InitCRSSystem ( ) ;

void Pr e I t e r a t e ( ) ;

void PreTimeAdvance ( ) ;

void NewtonIterate ( ) ;

void PostTimeAdvance ( ) ;

void RefreshForParam ( ) ;

void ClearSo lut ionFromFi le ( ) ;

void WriteSo lut ion ( ) ;

void Wri teSur faceVar iab l e s ( ){} ;

void Wri teRestar tF i l e ( ) ;

void ReadRestartFi le ( ) ;

void OpenOutFiles ( ) ;

void CloseOutFi les ( ) ;

void PrintTimers ( ) ;

Mesh<Type>∗ m;

EqnSet<Type>∗ eqnset ;

EqnSet<RCmplx>∗ ceqnset ;

Param<RCmplx>∗ cparam ;

BoundaryConditions<Real>∗ bc ;

Param<Type> ∗ param ;

Sensors<Type>∗ s en so r s ;

TurbulenceModel<Type>∗ turb ;

Forces<Type>∗ f o r c e s ;

Limiter<Type>∗ l i m i t e r ;

PObj<Type>∗ p ;

CRS<Type>∗ c r s ;

Gradient<Type>∗ grad ;

GaussianSource<Type>∗ gauss ian ;
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// po in t e r s f o r convenience

Type∗ q ;

Type∗ qold ;

Type∗ qoldm1 ;

Type∗ qgrad ;

Type r e s i d u a l ;

Type res idualnm1 ;

std : : o fstream timerOutFi le ;

std : : o fstream re s idOutF i l e ;

p r i va t e :

std : : vector<So lut i onF ie ld<Type>∗> f i e l d s ;

Bool isCopy ;

Type dtmin , r e s idG loba l ;

Int nanf lag ;

} ;

// inc lude implementat ions

#inc lude ” so lu t i onSpace . t cc ”

The entire CFD code receives this treatment and thus, any routine of interest can be

used to compute output based on any of a wide variety of input types. In this study, the

type of interest is complex. The additional complexity of this syntax is negligible compared

to the obvious benefits.

3.6.2 Derivative Accuracy

Due to the functional dependence of the sensitivity equations, the output derivatives are

quite sensitive to many small coding errors which are not readily apparent in a forward CFD

solution.

One area of concern is the computation of the residual linearization as it relates to

boundary conditions. The full linearization of the residual computation, and therefore the

design derivatives themselves, is a function of both the interior and ghost nodes. As shown
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by Hou et. al. [52], the linearization computed must include these contributions or they must

be pre-eliminated prior to the solution of either Equation 3.10 or Equation 3.15. An implicit

pre-elimination procedure is used in this work by computing an additional contribution to

the diagonal Jacobian blocks. This additional contribution is the numerical sensitivity of the

boundary flux at a node i to a perturbation in Q at that node. The procedure is as follows:

1. Perturb Qj at node i in the complex plane.

2. Update boundary conditions iteratively until converged.

3. Compute boundary flux at node i.

4. Take Imag[<(Q+ih)]/h as the additional contribution to the jth column in the diagonal

block.

Also, the computation of any sensitivity where a control volume Q value is perturbed

in the complex plane requires careful attention be paid to boundary condition updates. In

particular, characteristic boundary conditions must be converged fully based on the new Q

value [51]. The computation of characteristic boundary conditions requires an eigensystem be

computed at some reference state. In most cases this is taken to be the average of the internal

and ghost values. As the ghost values are updated, this eigensystem evaluation changes

slightly. In a standard CFD solve or a full CTSE derivative computation the boundary

conditions are slowly converged over many iterations as the whole solution field converges.

In computation of nodal sensitivities this iteration process does not typically take place and

a single sensitivity value at each boundary node is sampled instead. Therefore, at locations

where nodal sensitivities are required on boundary surfaces with characteristic boundary
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conditions applied, the computation must be iterated to converge the boundary conditions

sufficiently. It has been found that in most cases ten iterations is sufficient and the accuracy

of the derivative will be improved by four to six additional significant figures.

Finally, care must be taken in implementation of these methods where Dirichlet boundary

conditions are enabled. In particular, the velocity and temperature components of viscous

boundary conditions are enforced via the modification of the Jacobian matrix, ∂</∂Q. Due

to this modification, the right hand side vector of the linear system solved to compute ∂Q/∂β

values must be set to appropriate values on rows where the left hand side has been modified.

This implies that for Dirichlet boundary nodes, ∂Q/∂β must be computed outside of the

linear system solve. Accuracy of the computed derivatives is not affected through these

modifications.
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CHAPTER 4

NUMERICAL VALIDATION

This chapter consists of several cases which validate both the low Mach preconditioner as

well as the accuracy of design gradients using several different methods. The capabilities

of the implemented solver are exercised in an isolated manner such that confidence in the

combined methods is achieved.

4.1 Low Mach Preconditioner

The validity and performance of the implemented preconditioner is examined in

comparison with a non-preconditioned case. The grid utilized for this study consists of a

unit high channel which is 4 units long. A bump with a maximum height of 0.1 units and of

unit length is placed on the floor of the channel beginning 1.5 units downstream of the inlet.

The roof and floor of the channel are both set to inviscid wall boundary conditions. The

inlet and outlet boundaries are set to characteristic boundary conditions. The compressible

Euler equations were solved in this case with two species present; N2 is set to 79% and O2

is set to 21% to approximate standard atmosphere. There were no reactions present at the

reference temperature of 300K. The inflow Mach number was set to 0.01 and both cases were

run for 3000 iterations. Convergence of 4 orders of magnitude was achieved in both cases.
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The velocity contours for this test case are shown in Figure 4.1 and Figure 4.2. The

preconditioned case in Figure 4.1 shows a correct solution for this problem. The solution

shown in Figure 4.2 illustrates a non-physical contours about the bump which is typical

of this problem at low Mach number. Figure 4.3 shows convergence history for the bump

in channel problem with a constant CFL and varying preconditioning parameter, β. As β

approaches the ideal value of Mach2, convergence is enhanced as expected. These results

compare well to those of Gupta [18].

Figure 4.1 Bump in channel with β = Mach2 (Preconditioning on)
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Figure 4.2 Bump in channel with β = 1 (Preconditioning off)

Figure 4.3 Convergence history for bump in channel with constant CFL = 3 and varying
β
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A behavior observed by many researchers regarding preconditioner performance is

convergence which is independent of Mach number [26, 18]. Figure 4.4 shows convergence

behavior for the bump in channel test case at several inflow Mach numbers. The

preconditioner implemented here does not replicate Mach number independent convergence

as shown by others. Convergence is slower for higher Mach numbers. It is possible that

reflections are of greater magnitude in the higher Mach number cases which stall convergence.

The individual components of the residual were examined and no particular equation is

obviously stalling convergence performance. It is worth noting that other work in this area

has made the assumption of perfect gas flows. It is conceivable that real gas effects, as

well as multiple species, preclude the independent convergence behavior for some, as of yet

undetermined, reason. At this point, no definitive conclusions can be made.

(a) Residual in 2 norm (b) Residual in normalized 2 norm

Figure 4.4 Convergence behavior for bump in a channel case at several Mach numbers and
CFL = 3
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Figure 4.5 shows the pressure coefficient on the lower surface of the bump in channel

case for both the preconditioned and non-preconditioned solutions. Both solutions were

converged three orders of magnitude in the L2-norm of the residual. A zero pressure

coefficient both upstream and downstream of the bump is expected. The plot should also

be symmetric about the centerline of the bump. The preconditioned solution exhibits both

of these characteristics. The non-preconditioned solution exhibits neither. Clearly, the

preconditioned solution demonstrates better performance in this test.

Figure 4.5 Comparison of pressure coefficient for preconditioned and non-preconditioned
bump in channel

4.2 Gradient Validation - High Speed Flows

The high speed airfoil test case is designed to examine the accuracy of the computed

gradients in the presence of reacting flow. This serves the purpose of validating that the

chemistry modeling derivatives are computed correctly in an isolated manner.
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4.2.1 Hicks-Henne Functions

The Hicks-Henne function allows for the smooth shape manipulation of a unit long bump

via a four variable parameterization. This provides for a simple but relatively powerful

method to test both the mesh smoothing and sensitivity derivative routines. The Hicks-

Henne function is

b(x) = a
[
sin
(
πx

log 5
log t1

)]t2
for 0 ≤ x ≤ 1 (4.1)

where b(x) is the surface deformation in the normal direction, t1 controls the location of the

maximum height of the bump, t2 controls the width of the bump in the x-direction, x is

allowed to vary from zero to one along the geometry in the streamwise direction, and a is

the bump amplitude. This very simple parameterization allows for tremendous flexibility in

the shape of the airfoil. A combination of several Hicks-Henne functions which have been

restricted to either the front or rear of the airfoil allow for even greater flexibility while

reducing the total number of design variables.

4.2.2 Problem Setup

A NACA0012 airfoil shape was placed in Mach 0.8 flow and an angle of attack of 1.25

degrees. This particular simulation was run with the finite-rate Euler equations with a

reduced 5-species air model [53]. The inflow conditions were set to standard air mass

fractions (non-dissociated) at 2500K. This created a significant production of dissociation

products as the flow moved from the inflow and ensured that mass production terms were

included in the gradient calculation. The boundary conditions utilized were characteristic
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farfield, characteristic based impermeable wall on the airfoil, and symmetry conditions in

the z-direction. The airfoil is assumed to be one meter in length. The grid consisted of

approximately 5,200 nodes and 15,000 elements. At this resolution, the objective was not

the accuracy of the flow solution but rather the reduced cost of solution allowing for adequate

comparison of all the gradient methods. The objective function of interest was the inverse

of lift coefficient for the airfoil. The starting grid is shown in Figure 4.6.

Figure 4.6 Unperturbed NACA0012 airfoil mesh

Table 4.1 shows the derivative results for the first order spatially accurate simulation. As

can be seen, all the methods agree well. The design point about which the derivatives were

computed was a = 0.02, t1 = 2.0, and t2 = 2.0. This ensures that all variables have active

contributions. Figure 4.7 shows the grid at the sensitivity derivative evaluation point.
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Figure 4.7 NACA0012 Airfoil mesh at gradient evaluation design point

Table 4.1 Comparison of Computed Sensitivity Derivatives - First Order

β CTSE Direct Adjoint
a -5.734131344651742e+01 -5.734131344651845e+01 -5.734131344651848e+01
t1 3.082499605763175e-02 3.082499605763227e-02 3.082499605763405e-02
t2 3.696702982376312e-01 3.696702982376109e-01 3.696702982376109e-01

Table 4.2 shows the derivative results for the second order spatially accurate simulation.

Because of the the additional memory requirements and additional complexity the adjoint

method was not extended to second order accuracy in this work. The derivatives computed

from the CTSE and the direct method agree well. However, the same 13 digits of accuracy

which were achieved in the first order analysis were not achieved in second order. The

reaction front lies across a poorly resolved region in the mesh. This front is in a slightly

different location in the solution which is evolved entirely in complex arithmetic (CTSE)

when compared to the starting point for the direct mode derivative computation. This

resulted in the objective function linearization being computed about a slightly different
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solution location. The results are the slight differences observed. If the solution were

computed on a higher resolution mesh or the reaction front passed through a more resolved

region, it is expected that more digits of accuracy would be obtained.

Table 4.2 Comparison of Computed Sensitivity Derivatives - Second Order

β CTSE Direct Adjoint
a -8.104334352528015e+01 -8.104348043995304e+01 N/A
t1 1.599683455400209e-01 1.599686156764921e-01 N/A
t2 6.287382995920745e-01 6.287393935134606e-01 N/A

Timings shown in Table 4.3 were run on 24 cores of the SimCenter PunchCard

computational cluster. This machine consists of 325 dual-processor 3.0 GHz Xeon

(“Woodcrest”) dual-core servers with 1300 cores total. The cluster has a Gigabit Ethernet

interconnect arranged in a flat tree topology and has a peak throughput of 15.6 teraflops.

Timings are given in seconds and the final column compares the cost of each method

normalized with respect to a forward flow solution. The costs are shown for the three design

variables described above. The solve column shows the cost of a forward solution for the

methods which require one, and the design column shows cost related to the design portion

of the simulation only. For the CTSE method, a forward solution is not required as the solver

is run entirely in complex mode with the output being the sensitivity derivatives desired.

The cost of the direct method gradient evaluation is roughly equal to one additional solution

for every design variable of interest. The cost of full complex solution gradient evaluation

(CTSE) is roughly two times the cost of a standard flow solution per design variable. The
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adjoint method exhibits a nearly constant additional cost above the cost of a flow solution

related to the cost of a parallel matrix-vector multiplication operation.

Table 4.3 Cost comparison of sensitivity derivative calculation methods

Method Solve (s) Design (s) Total (s) Normalized Cost
Adjoint 1,702 1,088 2,790 1.66
CTSE 0 13,581 13,581 8.08
Direct 1,680 5,155 6,835 4.06

4.3 Gradient Validation - Low Mach Flows

A bump in channel geometry was chosen for validation of the sensitivity derivatives in a

viscous low Mach flow regime. This case also investigates the objective function and design

parameters of interest for the study of flows in urban environments.

4.3.1 Problem Setup

The grid utilized for this study consists of a unit high channel which is 4 units long.

A bump with a maximum height of 0.1 units and of unit length is placed on the floor of

the channel beginning 1.5 units downstream of the inlet. Viscous spacing of approximately

1.0e-5 is present along the lower surface of the mesh which is consistent with y+ values of

less than one. The inlet, outlet and top surface are set to farfield characteristic boundaries.

The lower surface leading up to and away from the bump are set to symmetry planes and

the bump itself is set to a constant temperature no-slip surface. A Gaussian plume source is

activated on the inflow plane with a strength of 0.001 and centered at a height of 0.1 units for
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the gradient evaluation case. The plume was introduced through a mass source term at the

inflow boundary nodes where the plume was present. The dimensional length of the bump

was set to be 0.01 meters with reference viscosity and conductivity of the fluid representing

that of air at 300K. The freestream velocity at the inflow was 3.82 m/s. This results in a

Reynolds number of approximately 2400. The β parameter was limited to a minimum of 0.01.

All cases were converged approximately three orders of magnitude. Further convergence is

inhibited due to the combination of preconditioning parameter and numerical stability of

the problem setup. This level of convergence was sufficient for sensor samples to stabilize in

the fifth significant digit.

4.3.2 Objective Function

The objective function utilized was a root mean squared difference in the sensor values

I =
√

(S1,target − S1,perturbed)2 + · · ·+ (SN,target − SN,perturbed)2 (4.2)

The values SN,target are the sampled density values for the Argon tracer gas and SN,perturbed

are the Argon density values at sensor N for the current predicted location of the plume

release. In this case 10 samples were taken from a previous run in various location both

in and out of the plume. Table 4.4 gives the locations where the density of the plume was

sampled.
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Table 4.4 Sensor locations for the bump in channel low Mach sensitivity verification case

S# x y z
1 -0.25 0.50 2.50
2 -0.40 0.30 0.50
3 -0.10 0.30 3.20
4 -0.25 0.30 3.60
5 -0.35 0.60 3.80
6 -0.34 0.24 3.90
7 -0.25 0.10 3.40
8 -0.25 0.80 3.00
9 -0.25 0.10 2.50
10 -0.10 0.80 0.40

4.4 Discussion

The converged solution is shown in both Figure 4.8 and Figure 4.9. The plume isosurface

in Figure 4.8 shows that the plume maintains a Gaussian distribution until influenced by

the region of high pressure preceeding the bump as expected.
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Figure 4.8 Channel bump with passive Argon plume - isosurface at Argon density of 0.1

Figure 4.9 Channel bump with passive Argon plume
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Table 4.5 shows the comparison of y location sensitivity derivative computed using the

full complex (CTSE) approach and the direct method. The computed derivatives agree in the

first two digits. This case exhibits limited accuracy due to the trace amount of Argon present

in the sampling locations, difficulty in achieving stable sensor readings, and potentially due

to the level of achievable convergence. A higher degree of accuracy could not be achieved

given the stated problem setup. However, this result is positive as even in the case when

only the sign of the derivative is computed correctly, the optimization routine will step the

plume back towards the original release location. The magnitude of this derivative assists

in the selection of the proper step size within the line search procedure of the optimization

algorithm. However, convergence would still be expected, though perhaps not as efficiently.

Table 4.5 Comparison of Computed Sensitivity Derivatives - Second Order

β CTSE Direct
y 6.006751220704408e-01 6.018497614313126e-01

Design cycles were not attempted on this geometry. This example represents a validation

case which utilizes all of the relevant modules necessary for plume release predictions on

urban geometries.
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CHAPTER 5

SARIN NERVE AGENT

Sarin, or GB, is an organophosphate commonly utilized as a chemical weapon. With

a chemical formula of [(CH3)2CHO]CH3P (O)F it is chemically similar to many widely

available pesticides. Sarin is both colorless and odorless making it difficult to detect in

vapor phase. It is classified as a nerve agent with symptoms ranging from runny nose and

disorientation at low concentrations to death at higher vapor concentrations or contact with

bulk Sarin in liquid phase. Constant properties are shown in Table 5.1 [54].

Table 5.1 Liquid Sarin (GB) properties

Molecular Weight 140.1 g/mol
Liquid Density @ 25 C 1.089 g/cm3

Vapor Density (air ≡ 1) 4.86

Though the use of and production of Sarin was banned following the United Nations

Chemical Weapons Convention (CWC), which became effective in 1997, it remains of interest

from a security standpoint due to the relative ease of production. With relatively little

sophistication, a commonly equipped laboratory is capable of producing low purity, though

still deadly, Sarin agent. This is evidenced by the Tokyo subway attack where Sarin was

produced by a radical religious element in a relatively low sophistication terror attack [2].

Being the most volatile of common nerve agents, the vapor is readily dispersed over wide
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areas. More importantly, the volatility of Sarin allows for large distances to be traversed in

a downwind direction as in the Matsumoto attack by the same group [1]. Even a moderate

increase in sophistication could increase the lethality substantially.

The 50 percent toxicity threshold for inhaled Sarin, LCt50, is 100 mg ·min/m3. The EPA

recommended AEGL-3 (Acute exposure guideline level: life-threatening) for Sarin over 10

minutes is 0.064 parts per million (ppm) or 0.38 mg/m3 [54]. The AEGL-1 is only 0.0012

ppm or 0.0069 mg/m3. Therefore, the lethal density of Sarin nerve agent compared to the

density of air at sea level is seven orders of magnitude smaller. In numeric terms, this requires

that the accuracy of a flow solver should be capable of resolving density features on the order

of 3.16e-7 for prediction of survivability limits on dispersed plumes. As the exposure time

increases, the exposure concentration for lethality decreases substantially. For example, the

AEGL-3 for Sarin exposure of 8 hours is 0.0087 ppm. For the purposes of this study, and to

eliminate the need for highly converged solutions, exposure times for continuous plumes are

assumed to be for low periods of time, i.e. less than 30 minutes.

Naturally, information regarding the thermochemical and physical properties of Sarin are

largely absent from unclassified literature. This presents some difficulty in the analysis of

a toolchain to predict dispersal locations based on real world sensor measurements. Using

vaporized corn oil as a surrogate is a United States Army standard testing procedure for

personal protection equipment used by all military services [55]. In this work however, the

database in [36] is used for thermal properties. Surrogates are also used for decomposition

reaction rates for Sarin in the presence of common urban pollutants. The report by Elliott,

et. al. [56], surveys literature on the decomposition of less toxic organophosphates in urban
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environments. The limiting rates presented therein are used as a substitute for the Sarin

rates due to the lack of available data. Mean residence time based on reaction with the

OH radical for several organophosphorous compounds (pesticides) in urban environments

ranges from 2.1 days to 48 minutes based on the work of Winer and Atkinson [57]. The

measurements provided in [57] make use of a relative rate technique which makes the

definition of temperature dependent reaction rates difficult. In this work, the assumption of

constant rate was made due to the numerical difficulties associated with the fast production

and destruction of the OH radical in infinitesimal quantities. However, should further

improvements in the available models be made, incorporating requires little effort.

A more accurate modeling of an agent plume would also include the change in phase

from an atomized spray to vapor and back again. At this point, these effects are neglected

as well. In particular the vaporization of droplets has a cooling effect on the plume and thus

affects its buoyancy.

The Antoine correlation for vapor pressure is derived from experiments performed at the

US Army’s Edgewood Chemical Biological Center [58]. Vapor pressure measurements are

defined to be

V PGB = Pambient
nGB

nGB + ncarrier
(5.1)

And the Antoine correlation for vapor pressure temperature dependence is given as

ln(V P ) = a− b

c+ T
(5.2)
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where the coefficients for GB are

a = 22.720

b = 4320.8

c = −41.245

For the target temperature of 300K, this relation gives a saturation pressure of 412.23

Pa. Using linear interpolation, the heat of vaporization based on the same data and

temperature is 48.47 kJ/mol. This implies that with a molecular weight of 140 g/mol, a

1kW heater is capable of vaporizing 2.89 g/sec of agent. Therefore a continuous incident is

capable of vaporizing 10.4 kg/hr with relatively little sophistication. Explosive delivery is

capable of introducing considerably more agent into an environment. Continuous releases are

studied here due to the restriction of steady-state solutions to find sensitivity information.

Techniques exist to perform the unsteady analysis, however, they are beyond the resources

available for this work.
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CHAPTER 6

TERRAIN ANALOG STUDY

Due to the computational expense of running even a single forward simulation on a real urban

geometry, a test case consisting of a notional mountainous topology was constructed. The

grid is 10 x 10 x 5 units in dimension with the ground plane having the larger extent. The

ground plane was meshed to have a first point off the wall distance sufficient to give y+ values

less than one. The mesh, shown in Figure 6.1, consists of approximately 4.8 million cells

and 1.6 million nodes. Atmospheric boundary layers were imposed at all farfield boundaries

with an inflow velocity aligned in the positive x-direction and a magnitude of approximately

3.8 m/s. The grid is nondimensionalized with a reference length of 20 meters. This gives

a maximum elevation change of approximately 40 meters across the geometry. A Spalart-

Allmaras turbulence model was used to compute turbulent viscosity. Molecular diffusion is

not enabled due to large scale turbulence being the dominant driver of interspecies mixing.
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Figure 6.1 Notional mountainous terrain topology

A Sarin plume was introdcuced at the (0,0) location which is centered in the terrain.

The density distribution followed a Gaussian distribution with a maximum of 0.001153

kg/m3 at the origin of the plume. The plume was given a small upward velocity which

also followed a Gaussian distribution in the plume region. The maximum upward velocity

is given as approximately 1.9 m/s. This velocity is sufficient to insure the plume penetrates

the boundary layer region with sufficient momentum to convect downstream in a reasonable

amount of computing resources. Figure 6.2 shows the a density isosurface of the Sarin plume

at 1.15e-5 kg/m3. Streamlines are also shown colored by velocity magnitude. Solutions were

computed with steady-state conditions only.
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Figure 6.2 Notional mountainous terrain velocity streamlines with Sarin plume

A starting location for the design cycles was chosen arbitrarily to be (-3,-3). Several design

cycles were performed and the behavior of the plume movement observed. Immediately the

predicted location moved in the negative x-direction with the greatest magnitude. After

only 2 design cycles the plume encountered a location which hindered further convergence

towards the original plume location. Gradients computed in this demonstration case assumed

a frozen turbulence model.

Gradient based design methodologies are sensitive to the phenomenon of local minima.

It is readily apparent that for a general spread of randomly place sensors, gradient based

methods fail on plume inversion problems due to this difficulty. Figure 6.3 shows the sensor

locations relative to the starting location of the design cycles as well as relative to the target

location (shown in red).
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Figure 6.3 Sensor locations and object function sample line for mountainous topology

To further investigate the possibility of encountering local minima, a sample line is taken

between the starting location of the design cycles and the target location. Samples of the

objective function value are taken at discrete locations along this line. The results of this

survey are presented in Figure 6.4. Clearly, a local minima exist along the sample line

at (-0.5, -0.5). This minima exists due to the dense packing of sensors near the height

of a prominent feature in the terrain shown in Figure 6.3 and the fact that very few of

these are exposed in the target location due to terrain steering shown in Figure 6.2. More

importantly, however, these minima exist across the entire design space. This implies that

with the objective function selected, gradient based design methods are not guaranteed to

predict the original plume location given discrete sensor data.
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Figure 6.4 Line search objective function values

As an illustrative example of this phenomenon, shown in Figure 6.5, consider a sensor

field which contains only 3 sensors. Sensor 1 is directly behind the original plume location

and gives a strong signal in the target case. Sensors 2 and 3 at approximately the same

downstream distance as sensor 1 but are two plume widths to one side of Sensor 1. Consider

a potential starting point for the plume that would give a strong signal at sensor 2 but not

at sensors 1 or 3. As the plume moves across the field in the lateral direction the objective

function value is high (sensor 3 active), then lower (between sensors 2 and 3), then high

(sensor 2 active), lower again (between sensors 1 and 2), and finally minimized as sensor 1

becomes active. The difficulty arises from the discontinuous nature of the plume and the

discrete sensing of flowfield parameters. The combination of the two results in an objective

function which does not uniformly move towards a minimum at the target location.
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Figure 6.5 Illustration of pathologically constructed example case

Configurations do exist for plume magnitude, terrain, sensor location, wind direction, etc.

under which gradient based design methods may be successfully applied to plume inversion.

However, the work performed in this study suggest those cases are certainly less common

than circumstances for which the method fails. A more global optimization method, such

as a genetic algorithm or one based on response surfaces, should be employed due to their

ability to traverse local minima.
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CHAPTER 7

WASHINGTON DC PLUME STUDY

The target problem is the plume release of Sarin nerve agent near the Washington DC Mall.

The geometry used in this case, shown in Figure 7.1 consists of the surface topology as

well as the structures which comprise the area surrounding the Mall for several blocks in

each direction. The mesh contains approximately 15.5 million nodes and 61 million cells.

Resolution from the wall is approximately 1 meter and is shown if Figure 7.2. A Spalart-

Allmaras turbulence model is enabled to compute turbulent viscosity. A freestream flow

velocity of 3.8 m/s is imposed at all external boundaries. Flow enters from a West-Northwest

direction (285 degree azimuth). Atmospheric boundary layer velocity profiles are imposed

at these boundaries and follow a power law distribution. This avoids numerical instabilities

encountered due to a viscous wall intersecting a farfield boundary condition. Average flow

velocity at ground level is approximately 2 m/s due to obstruction effects as shown in Figure

7.3. Molecular diffusion is not simulated here as primary mixing is assumed through large

scale turbulent effects. Sarin is introduced following a Gaussian distribution in density

upstream of the Washington Monument. The maximum density of Sarin vapor is 1.15e-3

kg/m3 with Gaussian distribution parameters σx = σy = 6 m. The maximum injection

velocity is set equal to freestream. This set of parameters gives an injection mass flow rate

of approximately 1.1 tons per second. A 300 pound TNT equivalent explosive does contain
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sufficient energy to vaporize this quantity of Sarin agent upon detonation. In this case the

simulation is run to steady state with a constant injection mass flow. It is unlikely that a

delivery mechanism could be conceived to maintain this mass flow for an extended duration.

However, the examples shown here are still of interest to investigate plume behavior.

Figure 7.1 Geometry of Washington DC Mall area
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Figure 7.2 Illustration of mesh node clustering near boundary layer

Figure 7.3 Illustration of velocity profile near ground level
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Sarin vapor is assumed to transform into a secondary species as a result of exposure to

OH radicals in the urban environment. Sarin is chemically similar to many organophosphates

utilized as pesticides and a considerable amount of data is available on their decomposition

under exposure to OH radicals in urban atmospheres [56, 57]. Chapter 5 covers this particular

agent in more detail. The transformation is assumed to take place in an unstable way in this

work resulting in a fast rate of 69.7e-6 mol/m3·s. Figure 7.4 shows density isosurfaces for

Sarin and the byproduct at an acute exposure guideline level (AEGL) 1 for 30 minutes [54].

Figure 7.5 shows the density isosurface for Sarin only. It is apparent that the combination

of reducing density (due to diffusion) and obstructions act to loft the plume shortly after

encountering the leading edge of the cityscape.

Figure 7.4 Sarin and OH reaction byproduct density isosurfaces - Sarin (blue) and OH
reduced byproduct (pink)
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Figure 7.5 Sarin density isosurface at AEGL 1 for 30 minutes

Figure 7.6 shows a visualization of streamlines impinging on the edge of the defined city

geometry. The fluid takes a complex and convoluted path between buildings and obstructions

making a priori transport predictions difficult. Low velocity flow in and around obstructions

demonstrates the possibility for heavy gas plumes to become entrapped for extended periods

of time in low-lying areas prolonging time for which vapor presents a hazard.
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Figure 7.6 Overview of streamline interaction in Washington DC geometry

Figure 7.7 shows streamlines impinging on the edge of the defined geometry. Narrow gaps

between structures are shown to convect fluid in a crossflow direction and then reintroduce it

into the bulk fluid flow at some distance away. This action demonstrates that contaminants

introduced in a particular location have the potential to be transported in a highly non-

uniform way. This observation leads to the conclusion that terrain resolving CFD analysis

is essential to understand the potential for heavy gas releases to affect surrounding areas.

Methods which do not resolve street level features are not capable of correctly predicting

this transport.
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Figure 7.7 Visualization of fluid mixing on city boundary

Figure 7.8 shows AEGLs for a 30 minute sustained exposure at ground level for the

simulation described above. AEGL 1 (yellow) corresponds to noticeable symptoms appearing

in victims of the disaster. AEGL 2 (orange) corresponds the onset of permanent or lasting

effects in response to exposure to an airborne contaminant. AEGL 3 (red) areas correlate

to fatal exposure levels in the general population upon sustained contact with an airborne

contaminant.
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Figure 7.8 Washington DC Sarin attack 30 minute AEGL contour lines.

Figure 7.9 shows AEGLs for a 10 minute sustained exposure at ground level for the above

simulation. This exposure period is far shorter and possibly more realistic as individuals

are unlikely to remain in the area once the onset of symptoms begins. Unfortunately, the

prognosis does not markedly improve with reduced exposure time. Sarin’s toxicity level is so

high that a reduction of exposure time by 20 minutes only doubles the survivable exposure

concentration. Again, wind facing structure with significant height pose the greatest threat

to personal safety as contaminant becomes trapped by prevailing winds.
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Figure 7.9 Washington DC Sarin attack 10 minute AEGL contour lines.

In this simulation, the presence of terrain as well as structures significantly affects

survivability in areas which may be non-obvious. In particular, the upstream face of many

buildings far downstream of the plume lofting are not survivable locations. Unexpectedly,

several locations very near the release source are, in fact, relatively safe by comparison.

However, much of the physics involved in reliable prediction of these zones such as

atmospheric inversion, solar heating, etc., are neglected in this simulation. This work does

highlight the need, however, for further study with refined physics models in an attempt to

better characterize safe zones in the event of such an occurrence.

The high toxicity and relative ease of acquisition of Sarin nerve agent creates a hazard

which must be considered carefully in disaster planning exercises undertaken by both federal

and local governments. Though the simulation shown here is far beyond the scope of

realizability, the exercise does highlight the need for increased understanding and study
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of complex obstructed flows. The above simulation consumes 160 cores of a 3.0 GHz Xeon

(“Woodcrest”) cluster for approximately 6 days to obtain plume convergence. Parametric

studies on this scale of geometry will require computer resources of at least an order of

magnitude larger to become practical. These resources were not available for this work.
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CHAPTER 8

CONCLUSIONS

A novel low-Mach preconditioner is developed and applied to the Reynolds averaged finite-

rate Navier-Stokes equations. An original formulation for the eigensystem of the finite-rate

Navier-Stokes equations has additionally been derived. This work allowed for the simulation

of a full urban geometry with reacting plume. By retaining a density-based solver structure,

this framework allows for the investigation of explosive events in the presence of low wind

velocities in future research. This capability is unique in the literature to the knowledge

of this researcher. Additionally, an efficient method for computing design derivatives is

presented for reacting flowfields. High accuracy of computed derivatives is demonstrated for

several test problems. Finally, an “inverse chemistry” problem is attempted on a complex

terrain with the sensitivity information computed. It is found that for random sensor

locations the objective function selected has many local minima. This, in turn, makes

gradient based design methods potentially unsuitable for the investigation of this class of

problems. Global optimization algorithms will likely prove more robust in this regard.
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CHAPTER 9

FUTURE WORK

The current research represents a feasibility study to assess the technology necessary to

detect, predict, and deploy resources in the event of a chemical spill or terror event. The

ability of gradient based design methods to predict dispersal locations based on sensor data

alone appears problematic based on the results shown. Global optimization methods such

as genetic algorithms, etc. are not as sensitive to local minima and may prove useful in this

search. However, the computational cost and lead time shown in this study are prohibitive

for this technology to be deployed in that way. It does not appear that the required scale of

computational resource will be cost justified in the near future. Precomputed databases

can decrease the response lead time in the event of catastrophe. Unfortunately, these

methods typically do not reduce the initial cost of performing predictions nor the difficulties

in acquiring meaningful and accurate geometry. Therefore, additional research is required

to reduce the overall computational costs before this technology may be routinely used to

reduce casualties.

The physical fidelity of the toolchain described herein is an area to which significant

improvements could be made. Though a great deal of effort was made to consider the

physics relevant to the problem of flows in urban environments, many simplifications

were made in an effort to reduce the scope of this work. In particular, the number of
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tracked species very quickly out scaled the available computational resources. Additionally,

the removal of ground obstruction interactions (trees, cars, people, etc.), solar heating

based on surface finish, turbulence model studies, atmospheric inversion layers, unsteady

flow, photochemistry, reaction pathways, and turbulent reaction rate effects could also be

significant in the predictive model. While the exclusion of such effects does not invalidate

the work presented herein, these effects are necessary for a accurate prediction of plume

progression and therefore the correlation to sensor data in a “real” use case. The fidelity of

atmospheric models is a well studied problem and the reader is directed to [59, 60, 61] for a

discussion of model fidelity.

Finally, the application of the toolchain developed herein to problems more amenable

to gradient based design optimization is expected. Shape design for combustors to reduce

emissions or improve performance is of particular interest. Both the reactions involved as

well as the complexity of the flowfield make this area rich for contribution in the future.
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APPENDIX A

DEFINITION OF TRANSFORMATION JACOBIANS
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This appendix describes the process by which the transformation Jacobians are derived.

These terms appear due to the choice of using nonconservative variables in lieu of maintaining

the conservative variables that are required for a fully conservative flux formulation.

The mapping Jacobian for the finite-rate regime is written as

∂Q

∂qp
=



1 0 0 0 0 . . . 0

0 1 0 0 0 . . . 0

0 0
. . . 0 0 . . . 0

u u . . . ρ 0 0 0

v v . . . 0 ρ 0 0

w w . . . 0 0 ρ 0

∂ρet
∂ρ1

∂ρet
∂ρ2

. . . ρu ρv ρw
∂ρet
∂p



(A.1)

The total energy term can be expressed as

ρet =
NS∑
j=1

ρjhj +
1

2

NS∑
j=1

ρj‖~U‖2 − p (A.2)

where ‖~U‖ is the magnitude of the velocity vector. The partial derivative of total energy

with respect to a species partial density is

∂ρet
∂ρi

= hi +
1

2
‖~U‖2 − ∂

∂ρi
(p) (A.3)
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where the partial derivative of pressure with respect to the ith species density with an

equation of state of the form p = p(ρ,R, T ) is

∂

∂ρi
(p) =

∂p

∂T
+
∂p

∂ρ

∂ρ

∂ρi
+
∂p

∂R

∂R

∂ρi

=
∂p

∂ρ
+
∂p

∂R

∂R

∂ρi

(A.4)

and defining

R =
NS∑
i=1

ρi
ρ
Ri (A.5)

with

∂R

∂ρi
= Ri

ρ− ρi
ρ2

−
NS∑
j 6=i

ρjRj

ρ2
(A.6)

Making the appropriate substitutions, without loss of generality for varying equations of

state, yields

∂ρet
∂ρi

= hi −
1

2
‖~U‖2 − ∂p

∂ρ
− ∂p

∂R

(
Ri
ρ− ρi
ρ2

−
NS∑
j 6=i

ρjRj

ρ2

)
(A.7)

In the case of an ideal gas

p = ρRT (A.8)

The following derivatives can be defined for the ideal gas equation of state

∂p

∂ρ
= RT (A.9)

∂p

∂R
= ρT (A.10)

and making the substitutions into Equation A.7 yields

∂ρet
∂ρi

= hi −
1

2
‖~U‖2 −RT − ρT

(
Ri
ρ− ρi
ρ2

−
NS∑
j 6=i

ρjRj

ρ2

)
(A.11)

for ideal gases.

133



A similar procedure is used to arrive at the partial derivative of total energy with respect

to pressure.

∂ρet
∂p

=
NS∑
j=1

ρj
∂hj
∂T

∂T

∂p
− 1 (A.12)

Equation 2.110 also requires the definition of

∂qp
∂qT

=



1 0 0 0 0 . . . 0

0 1 0 0 0 . . . 0

0 0
. . . 0 0 . . . 0

0 0 . . . 1 0 0 0

0 0 . . . 0 1 0 0

0 0 . . . 0 0 1 0

0 0 . . . 0 0 0 ∂p
∂T



(A.13)

The following relation eliminates the need to explicitly form ∂Q
∂qT

and ∂qT
∂qp

∂Q

∂qT

∂qT
∂qp

=
∂Q

∂qp
(A.14)

which is required for the temporal discretization shown in Equation 2.110.
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LEAST SQUARES GRADIENTS
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The least squares formulation can be derived by considering a vertex i and its surrounding

neighbors j along with their locations in space. Following the dissertation of Hyams [28],

using a first order Taylor series expansion, the solution at a node which is a neighbor to i

can be written as

Qj = Qi + (~xj − ~xi) · ∇Qi (B.1)

This equation can be expressed in a linear system for each neighbor of node i.



∆x1 ∆y1 ∆z1

∆x2 ∆y2 ∆z2

∆x3 ∆y3 ∆z3

...
...

...

∆xN ∆yN ∆zN




Qxi

Qyi

Qzi





Q1 −Qi

Q2 −Qi

Q3 −Qi

...

QN −Qi


(B.2)

Equation B.2 may be modified with the addition of weights to arrive at the weighted least

squares formulation. Both the left and right hand sides are are multiplied by weight w.



w1∆x1 w1∆y1 w1∆z1

w2∆x2 w2∆y2 w2∆z2

w3∆x3 w3∆y3 w3∆z3

...
...

...

wN∆xN wN∆yN wN∆zN




Qxi

Qyi

Qzi





w1(Q1 −Qi)

w2(Q2 −Qi)

w3(Q3 −Qi)

...

wN(QN −Qi)


(B.3)

where ~w is a vector of weights. In this case, an inverse distance weighting is used where

wj =
1√

(xj − xi)2 + (yj − yi)2 + (zj − zi)2
(B.4)
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This can be rewritten as

[
M1 M2 M3

]
Qxi

Qyi

Qzi

 = [Q̃] (B.5)

where the notation Q̃ refers to the vector of weighted solution vector jumps. This should

not be confused with the vector Q which will be introduced shortly due to factorization.

The equation represented above is over constrained. Thus, the choice is made to solve the

equation in the least squares minimizing sense. Both sides are premultiplied by the transpose

of the matrix to arrive at a square system.

ATAx = AT b (B.6)

While the system can be solved directly as shown above using the normal equations, this

is computationally wasteful. A more efficient method based on QR factorization is used

instead.

The QR factorization requires that an orthonormal basis is formed. This is accomplished

with the Gram-Schmidt process. These basis vectors are

q1 =
M1

‖M1‖
(B.7)

q2 =
M2 − (qT1 M2)q1

‖M2 − (qT1 M2)q1‖
(B.8)

q3 =
M3 − (qT1 M3)q1 − (qT2 M3)q2

‖M3 − (qT1 M3)q1 − (qT2 M3)q2‖
(B.9)

Using the following definitions to simplify the derivation

r11 = ‖M1‖2 (B.10)
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r22 = ‖M2 − (qT1 M2)q1‖2 (B.11)

r33 = ‖M3 − (qT1 M3)q1 − (qT2 M3)q2‖2 (B.12)

r12 = MT
1 M2 (B.13)

r13 = MT
1 M3 (B.14)

r23 =

(
M2 −

r12

r11

M1

)T
M3 (B.15)

These definitions are substituted back into the basis derived earlier

q1 =
M1√
r11

(B.16)

q2 =
M2 − r12

r11
M1

√
r22

(B.17)

q3 =
M3 − r13

r22
M1 − r23

r22
(M2 − r12

r11
M1)

√
r33

(B.18)

These factors are then used to compute a QR factorization. Consider a decomposition of a

matrix, A, where

A = QR (B.19)

where Q is a matrix with orthonormal columns and R is upper triangular. A set of orthogonal

vectors is given above for the non-square matrix A which defines the least squares gradient

at a vertex, i. Clearly the q vectors above satisfy part of the factorization. The vectors M

can now be written in terms of the orthonormal basis.

M1 = (qT1 M1)q1 (B.20)

M2 = (qT1 M2)q1 + (qT2 M2)q2 (B.21)

M3 = (qT1 M3)q1 + (qT2 M3)q2 + (qT3 M3)q3 (B.22)
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These equations can be written in terms of a linear system which gives

[
M1 M2 M3

] [
q1 q2 q3

]
=


qT1 M1 qT1 M2 qT1 M3

0 qT2 M2 qT2 M3

0 0 qT3 M3

 (B.23)

which represents A = QR. This system is easily solved by

QR x = b (B.24)

QTQR x = QT b (B.25)

(B.26)

The orthonormal property of Q gives QTQ = I which results in

R x = QT b (B.27)

The solution to the above system is simple due to the upper triangular nature of R. The

solution x is found by back substitution. Make the substitution of the above definitions into

Equation B.3 to arrive at


qT1 M1 qT1 M2 qT1 M3

0 qT2 M2 qT2 M3

0 0 qT3 M3



Qxi

Qyi

Qzi

 =


qT1 Q̃

qT2 Q̃

qT3 Q̃

 (B.28)

Define for convenience

r′22 = qT2 M2

√
r22 (B.29)

r′33 = qT3 M3

√
r33 (B.30)

139



Using the definitions made in the previous section, the following simplification can be made


r11√
r11

r12√
r11

r13√
r11

0
r′22√
r22

r23√
r22

0 0
r′33√
r33



Qxi

Qyi

Qzi

 =


qT1 Q̃

qT2 Q̃

qT3 Q̃

 (B.31)

Now, back substitution is used to solve the QR factorization of the least squares system

explicitly

Qzi =

[
M3 − r13

r11
M1

r23

r22

(
M2 − r12

r11
M1

)]T
Q̃

r′33

= (Wz)
T Q̃ (B.32)

Qyi =

[
M2 − r12

r11
M1 − r23Wz

]T
Q̃

r′22

= (Wy)
T Q̃ (B.33)

Qzi =
[M1 − r12Wy − r13Wz]

T Q̃

r11

= (Wx)
T Q̃ (B.34)

Finally, the gradient at a node i can be written as

Qxi =

nedges∑
j

= Wx,j(w1(Qj −Qi)) (B.35)

Qyi =

nedges∑
j

= Wy,j(w2(Qj −Qi)) (B.36)

Qzi =

nedges∑
j

= Wz,j(w3(Qj −Qi)) (B.37)

The above equations can once again be expanded in terms of the edge geometry and solution

jumps only. This expansion is

Wz,j =
1

r′33

[
∆̄zj −

r13

r11

∆̄xj −
r23

r22

(
∆̄yj −

r12

r11

∆̄xj

)]
(B.38)
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Wy,j =
1

r′22

[
∆̄yj −

r12

r11

∆̄xj − r23Wz,j

]
(B.39)

Wx,j =
1

r11

[
∆̄xj − r12Wy,j − r13Wz,j

]
(B.40)

where the following definitions have been expanded as well

r11 =

nedges∑
j

(∆̄xj)
2 (B.41)

r22 =

nedges∑
j

[
∆̄yj −

r12

r11

∆̄xj

]2

(B.42)

r13 =

nedges∑
j

∆̄xj∆̄yj (B.43)

r23 =

nedges∑
j

[
∆̄yj −

r12

r11

∆̄xj

]
∆̄zj (B.44)

r33 =

nedges∑
j

[
∆̄zj −

r13

r11

∆̄xj −
r23

r22

(
∆̄yj −

r12

r11

∆̄xj

)]2

(B.45)

r′22 =

nedges∑
j

[
∆̄yj −

r12

r11

∆̄xj

]
∆̄yj (B.46)

r′33 =

nedges∑
j

[
∆̄zj −

r13

r11

∆̄xj −
r23

r22

(
∆̄yj −

r12

r11

∆̄xj

)]
∆̄zj (B.47)

where

∆̄xj = wj(∆xj) = wj(xj − xi) (B.48)

∆̄yj = wj(∆yj) = wj(yj − yi) (B.49)

∆̄zj = wj(∆zj) = wj(zj − yi) (B.50)
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Note that the least squares gradient coefficients given above are in terms of edges, or

control faces, and would require that all of the r coefficients are on an edge by edge basis.

This requires an immense amount of storage. In comparison, if the coefficients could be

stored via the control volume, or vertex, the storage requirements would decrease by 5 times

the number of connecting edges in a mesh on average. The control volume based coefficients

are

s11 =

nedges∑
j

(∆̄xj)
2 (B.51)

s12 =

nedges∑
j

∆̄xj∆̄yj (B.52)

s13 =

nedges∑
j

∆̄xj∆̄zj (B.53)

s22 =

nedges∑
j

(∆̄y)2 (B.54)

s23 =

nedges∑
j

∆̄yj∆̄zj (B.55)

s33 =

nedges∑
j

(∆̄zj)
2 (B.56)

The edge quantities can then be reconstructed as

r11 = s11 (B.57)

r12 = s12 (B.58)

r13 = s13 (B.59)

r22 = s22 −
r2

12

r11

(B.60)

142



r23 = s23 −
r12

r11

r13 (B.61)

r33 = s33 −
r2

13

r11

− r2
23

r22

(B.62)

r′22 = r22 (B.63)

r′33 = r33 (B.64)
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APPENDIX C

QUADRATURE FOR 2D GAUSSIAN
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The quadrature used in computing density contributions from a two-dimensional

Gaussian plume source are outlined below. The quadrature rules are applied as projections

such that vertical surfaces receive no contributions and therefore, mass is only injected from

a single plane.

The basis functions for a linear triangle are

N1(ζ, η) = 1− ζ − η

N2(ζ, η) = ζ

N3(ζ, η) = η

These define a linear mapping from real space to a normalized space shown in Figure C.1

where quadratures are evaluated.

Figure C.1 Illustration of standard triangle

This transformation is represented by


x

y

z

 =


x1 x2 x3

y1 y2 y3

z1 z2 z3




N1

N2

N3

 (C.1)

The quadrature points and weight associated with a fourth order triangle are shown are

given in Table C.1.
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Table C.1 Quadrature points and weights for a fourth order triangle

ζ η W
1 0.091576213509771 0.091576213509771 0.109951743655322
2 0.445948490915965 0.108103018168070 0.223381589678011
3 0.816847572980459 0.091576213509771 0.109951743655322
4 0.108103018168070 0.445948490915965 0.223381589678011
5 0.445948490915965 0.445948490915965 0.223381589648011
6 0.091576213509771 0.816847572980459 0.109951743655322

Figure C.2 Illustration of standard quadrilateral

Likewise, the basis functions for a linear quadrilateral are

N1(ζ, η) =
1

4
(1− ζ)(1− η)

N2(ζ, η) =
1

4
(1 + ζ)(1− η)

N3(ζ, η) =
1

4
(1 + ζ)(1 + η)

N4(ζ, η) =
1

4
(1− ζ)(1 + η)

Nk(ζ, η) =
1

4
(1 + ζkζ)(1 + ηkη)
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Again, the basis functions define a linear mapping from real space to normalized space shown

in Figure C.2 to simplify quadrature evaluation. This transformation is


x

y

z

 =


x1 x2 x3 x4

y1 y2 y3 y4

z1 z2 z3 z4





N1

N2

N3

N4


(C.2)

The quadrature points and weight associated with a fourth order quadrilateral are found in

Table C.2.

Table C.2 Quadrature points and weights for a fourth order quadrilateral

i,j ψ W
1 -0.8611363115940526 0.34785484513745386
2 -0.3399810435848563 0.65214515486254614
3 0.3399810435848563 0.65214515486254614
4 0.8611363115940526 0.34785484513745386

The location of each of the sixteen Gauss points is given by

(ζi, ηj) = (ψi, ψj) (C.3)

and the quadrature weight is given by

W (ζi, ηj) = Wi Wj (C.4)
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These basis functions permit an isoparametric mapping, which allow for the evaluation

of the Gaussian plume in normalized space. That is

x =
nbasis∑
i=1

Ni(ζ, η)ζi (C.5)

y =
nbasis∑
i=1

Ni(ζ, η)ηi (C.6)

where (ζi, ηi) are the Gauss points in normalized space. By substitution a Gaussian source

term in normalized space can be written as

g(ζ, η) = A exp

−

([

nbasis∑
i=1

Ni(ζ, η)ζi

]
− x0

)2

2σ2
x

+

([
nbasis∑
i=1

Ni(ζ, η)ηi

]
− y0

)2

2σ2
y



 (C.7)

Therefore, the integrated value of the plume source Gaussian is

∫
Ω

g(x, y)dΩ =

ngauss∑
k

nbasis∑
j

Wk g(ζk, ηk) Nj (C.8)

where Wk are the quadrature weights associated with each Gauss point i.
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