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ABSTRACT

 Few studies have directly evaluated the competitive interactions between invasive and 

co-occurring rare plants. Federally threatened Scutellaria montana Chapm. (large-flowered 

skullcap) is a rare herbaceous perennial endemic to southeastern Tennessee and northwestern 

Georgia. The forest understory habitat in which S. montana typically occurs often also contains 

invasive Ligustrum sinense (Chinese privet) and Lonicera japonica (Japanese honeysuckle), and 

these and other invasive plant species have been recognized as a potential threat to its 

conservation. To directly investigate the effects of invasive L. sinense and L. japonica on S. 

montana, a two-year field-based removal experiment was conducted in an S. montana occurrence 

in Chattanooga, TN. An interacting herbivory exclosure treatment was included to help isolate 

the effects of competition from non-insect herbivory, another possible pressure negatively 

influencing S. montana, and to isolate the effects of competition from apparent competition. I 

hypothesized that interspecific competition with L. sinense and L. japonica would negatively 

affect S. montana by reducing its organismal-level growth and fecundity. Additionally, I 

hypothesized that herbivory would negatively influence S. montana individuals due to the direct 

removal of aboveground biomass and that negative impacts would be exacerbated by concurrent 

competition with invasive species. My results suggest that invasive L. sinense and L. japonica do 

not exert any competitive affect on the organismal-level performance of S. montana. Instead, the 

presence of these invasive species favors the growth of S. montana individuals by protecting 
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them from herbivores. However, the demonstrated ability of both L. sinense and L. japonica to 

form monocultures in the forest understory remains a concern given the potential population-

level impacts of such density on germination and recruitment of co-occurring species. Related 

research has suggested that other invasive species exhibiting no competitive effect on adults of 

rare species can suppress their germination and recruitment of juveniles. I suggest that future 

research include investigations of the influence of L. sinense and L. japonica on these processes 

in S. montana.
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CHAPTER 1

LITERATURE REVIEW: THE DIRECT EFFECTS OF INVASIVE SPECIES ON RARE 

PLANT SPECIES

Introduction

 Invasive species are species that have proliferated outside of their native range with 

associated detrimental ecological impacts (Lodge et al. 2006). For example, given their seeming 

ability to monopolize shared resources, invasive species have been associated with the 

replacement or displacement of native species in some systems (Vitousek 1986; Yurkonis and 

Meiners 2004). This is especially concerning for native species that are rare, threatened, and/or 

endangered. At present, invasive species are cited as threats to the continued survival of 

approximately half of all species afforded protection under the U.S. Endangered Species Act 

(Wilcove et al. 1998).  For federally listed plant species in particular, this percentage is 

somewhat greater (~57%; Wilcove and Master 2005; Wilcove et al. 1998). Because the 

Endangered Species Act only covers those species that have gone through the political process of 

protection, it has been suggested that the actual number of plant species threatened by invasive 

species is even greater (Wilcove and Master 2005).

  Lythrum salicaria (purple loosestrife) is a well cited example of the rapid proliferation of 

an invasive plant species into native systems. In wetlands that it invades, this species can replace 

up to 50% of native plant biomass (Thompson et al. 1987).  Another invasive species that has 
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warranted much attention is Ligustrum sinense (Chinese privet). In many habitats, privet 

proliferation has been associated with decreased growth and germination of native species. The 

end result is a decrease not only in native species richness but also a decrease in overall species 

evenness (Greene and Blossey 2012). Invasions like these can affect native plant species at the 

individual, population, and community levels. At the individual level, invasive species have been 

associated with reductions in the amount of vegetative biomass and seeds produced by co-

occurring native species (Gould and Gorchov 2000; Greene and Blossey 2012; Miller and 

Gorchov 2004). Associated reductions in individual fecundity can slow population growth of 

these native species (Greene and Blossey 2012; Miller and Gorchov 2004). Such population-

level impacts can manifest themselves at the community-level as a loss of diversity due to 

reductions in species richness and evenness (Brewer 2008; Flory and Clay 2009; Greene and 

Blossey 2012; Thomson 2005).    

 As invasive species and their effects have become more apparent, the scientific research 

community has focused increased attention on these topics. This research recently has included 

an increased number of investigations studying the potential mechanisms underlying species 

invasiveness, such as allelopathy, germination suppression, and competitive ability (Levine et al. 

2003). Understanding such mechanisms could provide increased knowledge upon which to base 

eradication efforts and other land management decisions.  In this review, I aim to focus on 

competition’s role between invasive and rare plant species.
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The Role of Competition in Plant Species’ Invasiveness

 There are many factors that could influence the proliferation of invasive plant species into 

natural areas and their potential associated impacts on native plant species (Huenneke and 

Thomson 1995). A commonly cited factor is the relative competitive ability of invasive species 

compared with that of native species (Gorchov and Trisel 2003; Hanula and Taylor 2009: 

Huenneke and Thomson 1995; Vila and Weiner 2004).  Grime (1977) classically defined 

competition as ‘the tendency of neighboring plants to utilize the same quantum of light, ion of a 

mineral nutrient, molecule of water, or volume of space.’ More recently, competition has been 

defined more generally as a reduction in fitness due to utilization of the same resource that is in 

limited supply (Gurevitch et al. 2006). Theoretically, a plant species capable of utilizing more 

resources from a shared pool than its neighbors would be competitively superior in a given 

environment. An inferior competitor would experience a greater reduction in fitness than a 

superior competitor, while a superior competitor would benefit both from the fitness reduction of 

its neighbors (reduction in fitness will lower the neighbors ability to utilize resources) and its 

own higher utilization of shared resources.

In a meta-analysis that examined 36 published pair-wise experiments, Vila and Weiner 

(2004), compared the effects of interspecific and intraspecific competition between and within 

invasive and native plant species.  The authors found that native species saw a reduction in 

biomass when grown in competition with invasive species compared to when grown in 

monoculture.  The opposite was true for invasive species, they grew better and accumulated 

more biomass when grown in competition with native species compared to when grown in 

monoculture (Vila and Weiner 2004). These findings led the authors to conclude that invasive 
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plant species are superior competitors compared to native plant species with which they co-

occur.  

 The findings of individual research studies also have exemplified the competitive 

superiority of invasive plant species relative to co-occurring native plant species. Such studies 

have included investigations of invasive species of various life forms in various systems. For 

example, the invasive shrub Ligustrum sinense (Chinese privet) has been shown to outcompete 

co-occurring native herbs for light and soil resources, resulting in decreased stem height and 

numbers of leaves in these individuals (Greene and Blossey 2012; Hanula et al. 2009). Another 

invasive shrub, Lonicera maackii (bush honeysuckle), has been associated with reductions in 

survival and growth of co-occurring native tree saplings in forest understories (Gorchov and 

Trisel 2003). The invasive vine Lonicera japonica (Japanese honeysuckle) has been shown to 

reduce the growth of its tree hosts via below-ground competition for nutrients, specifically 

nitrogen (Dillenburg et al. 1993). The succulent Carpobrotus edulis (ice plant), which has 

invaded the coastal scrub habitat of California, is characterized by a root system that allows for 

better capture of water from fog relative to two co-occurring native shrubs experiencing 

population declines (D’Antonio and Mahall 1991). Similarly, Bromus tectorum (cheatgrass) also 

has been shown to outcompete native species for water, which has been associated with a 

reduction in their biomass in California grasslands (Melgoza et al. 1990).  

 However, not all studies investigating the competitive effects of invasive plant species on 

native plant species have drawn similar conclusions. Such studies have suggested other 

mechanisms to explain the proliferation and dominance of invasive species in native systems. 

The invasion of Tamarisk ramosissima (salt cedar) throughout riparian zones in the southwestern 
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U.S. and its associated replacement of native willow (Salix spp.) and cottonwood (Populus spp.) 

trees offers an example of one alternative mechanism. Because lowered water tables have been 

associated with salt cedar invasions, it was proposed that extremely high rates of transpiration 

(which effectively draw water from the soil, through the plant, and into the atmosphere) enable 

salt cedar to outcompete native species for water (Di Tomaso 1998). But recent research has 

shown that the transpiration rates of salt cedar do not differ significantly from those of native tree 

species, and that transpiration rates are typically site-specific rather than species-specific (Doody 

et al. 2011; Nagler et al. 2009). Instead, researchers suggested that salt cedar invasion is 

facilitated by its better tolerance of an altered water regime in the region that has lowered water 

table depths and increased soil salinity (Glenn and Nagler 2005). 

 The invasion of some grasslands in California provides another alternative mechanism for 

species’ invasiveness. In these systems, invasive annual grasses have replaced native perennial 

grasses to the extent that many of the native grass species are now rare (Seabloom et al. 2003). 

However, research has shown that the native grasses in these systems utilize more water, 

nitrogen, and light than the invasive grasses, which suggests that the native species are stronger 

competitors (Seabloom et al. 2003). The invasive grasses, however, are able to establish more 

quickly in these systems following common disturbances, such as burning, grazing, and mowing. 

In contrast, recruitment of the native grass species following disturbance is limited by a 

combination of factors including their relatively low seed production, poor dispersal ability, and 

current rarity (Seabloom et al. 2003).  

 A meta-analysis conducted by Daehler (2003) further supports this concept. The analysis 

included 79 studies that directly compared the performance of invasive species with that of co-
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occurring natives species based on a variety of relevant traits. These ‘performance traits’ 

included individual-level growth rates, photosynthetic rates, tissue construction costs, and total 

leaf area; population-level survival rates, dispersal rates, germination rates, productivity, and 

fecundity; and competitive ability. The performance of native species relative to that of invasive 

species was ranked as either inferior, equal, or better (see Daehler 2003). Across all studies 

included in the meta-analysis, only ~13% suggested that invasive species performance was better 

than that of native species in all growing conditions. Of the 16 studies that investigated 

competition specifically as a performance trait, just ~31% concluded that invasive species were 

consistently competitively superior to native species regardless of resource availability. But in 

the remaining ~69% of studies, native species were either equally as competitive or more 

competitive than invasive species in at least some level of resource availability. Often, reduced 

resource availability favored native species, suggesting that they are better adapted to conditions 

in which competition for resources should be very strong. In contrast, native species were never 

more competitive than invasive species when resources were plentiful (Daehler 2003). Of the 31 

studies that investigated fecundity or specific performance traits that influence reproductive 

success, ~45% concluded that invasive species performed better than native species, suggesting 

such traits may be more influential to species’ invasiveness than competitive ability.

 These examples and other similar research findings have impacted the theoretical 

assumption that species’ invasiveness is facilitated by superior competitive abilities of invasive 

species relative to native species by demonstrating that other mechanisms often are influential.  

To better investigate this assumption, the competitive abilities of invasive plant species 

compared to co-occurring native plants is thus now being studied in more systems (see Figure 
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1.1). A search and review of published abstracts conducted in Web of Science included 111 total 

studies that examined competitive interactions between native and invasive plant species.  

Almost 70 percent (76 of the 111) of these studies were published in the past five years. This 

recent search supported an earlier observation by Huenneke and Thomsom (1995) that not many 

studies directly compared the interactions between invasive species and species of concern for 

conservation. However, such studies would provide insight into efforts to manage such species in 

systems that often include invasive species.  
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Figure 1.1.  Results of a Web of Science search comparing the number of studies 
published each year that examine the direct effects of competition 
between invasive and native species. 
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The Role of Competition in Plant Species’ Rarity

 Since rarity has been associated widely with extinction vulnerability (Harnik et al. 2012), 

ecologists are especially concerned about how invasive plants will impact rare native plant 

species via competition and other potential mechanisms such allelopathy or alteration of soil 

conditions preventing germination (Huenneke and Thomson 1995). In general, rare species are 

considered to be those that are very uncommon and scarce, and classic ecological theory 

suggested that rare species are rare because they are poor competitors (Griggs 1940). More 

recently, ecologists developed a more complex view of species’ rarity and its potential causes. 

Specifically, modern ecologists typically consider seven distinct forms of rarity based on the 

combination of a species’ population size, range size, and associated habitat type (see Rabinowitz 

1981). In a classic flora designed to classify species of the British Isles, Rabinowitz et al. (1986) 

determined that ~61% of species were rare in some way. Of these species, 7% were characterized 

by small population sizes, 15% were found across a small geographic range, and 59% had 

narrow habitat specificity. Research suggests that the risk of extinction for a given species based 

on its rarity could be influenced by its distinct type of rarity. A meta-analysis of marine fossil 

records spanning 500 million years concluded that geographic range was primarily influential to 

determining extinction, habitat specificity was secondarily influential, and population size had 

little influence on species extinction (Harnik et al. 2012). This suggests that concerns about how 

invasive plants will impact rare native plant species might focus primarily on rare species that 

have small geographic ranges and/or narrow habitats.

The potential for invasive plant species to outcompete rare native plant species depends 

upon the role of competition in plant species’ rarity. It has been suggested that plant species with 
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narrow endemism, in particular, are highly sensitive to competition (Walck et al. 1999b). In 

particular, their typical association with stressful (i.e. resource poor) habitats (Baskin and Baskin 

1988; Casazza et al. 2005) suggests that narrow endemics may be unable to compete for 

resources in more productive habitats (Drury 1974).  Lavergne et al. (2004) compared 20 

endemic plant species from the Mediterranean area with 20 of their more widespread congeners, 

plants within the same genus and with similar traits. As predicted, the narrow endemics were 

found in habitats of steeper, rockier slopes with significantly lower vegetation canopy height, 

lower cover of herbaceous and woody species, and lower numbers of associate species. Overall, 

a combination of specific biological traits such as smaller overall stature and lower inflorescence 

heights combined to suggest that the local endemics in this study may be poor competitors for 

shared resources such as space, light, and pollinators relative to their more common congeners 

(Lavergne 2004). 

 Other research comparing endemic and widespread congeners has suggested similarly 

that narrow endemic plant species may be restricted from less stressful habitats by poor 

competitive ability. By comparing the narrow endemic Solidago shortii (Short’s goldenrod) with 

its widespread congener S. altissima (tall goldenrod), for example, Walck et al. (1999b) found 

that S. shortii allocates more of its total biomass below ground and has a much greater root-to-

shoot ratio, which allows it to better tolerate very dry habitats where competition for water is not 

strong due to the absence of other tolerant species. In contrast, its larger overall aboveground size 

affords S. shortii the ability to overtop its neighbors and acquire more light in less stressful 

habitat that numerous other species can tolerate.
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 Large-scale floristic research also has supported the hypothesis that narrow endemic plant 

species are poor competitors. Specifically, Médail and Verlague (1997) examined ecological 

characteristics of ~3000 total and 215 endemic plant species found across southeastern France 

and Corsica, a region characterized by high species richness and endemism. These researchers 

attributed the high levels of endemism in the region that they studied to the high variability of the 

area and the many extremes of habitats that occur here. A trend observed in their study was that 

the proportion of endemic plant species that comprised the local floral of an area decreased with 

increasing taxa richness. The authors attributed this trend to increased competition from co-

occurring species in areas with high species richness. Notably, the studied region also has 

experienced a relatively low degree of invasion by non-native plant species, which the authors 

suggest could allow less competitive endemic species to thrive (Médail and Verlague 1997). 

 Grime (1977) classically described the life history of species that are able to survive well 

only in stressful habitats as ‘stress-tolerance.’ Stress tolerant species exhibit a range of features 

that represent adaptations for fitness in conditions that promote limited productivity, such as slow 

growth rates, long-lived organs, and slow acquisition and turnover of carbon, water, and mineral 

nutrients (Grime 1977). However, while these traits enable persistence in stressful habitats, they 

also are associated with a sacrifice in competitive ability in more productive habitats (Grime 

1977). Thus, stress-tolerant plant species are not necessarily rare because they lack competitive 

ability but rather because they have evolved to survive in stressful habitats, which also tend to be 

rare (Lloyd et al. 2002).  

 Mechanisms other than poor competitive ability also have been implicated as causal to 

plant species rarity. Some studies have shown, for example, that rare species are often 
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characterized by traits that promote relatively low reproductive rates, suggesting that recruitment 

may be highly influential to plant species rarity. In a greenhouse-based comparison of Cirsium 

fontinale (fountain thistle), a species endemic to low-nutrient serpentine seeps and streams in 

northern and central California, with its more widespread congeners, researchers concluded that 

the endemic species competed well with its congeners even when grown with high nutrient 

availability (Powell and Knight 2009). Rarity in this species may not be due to competitive 

ability but rather another cause. Related investigations found that fountain thistle produced 

relatively low numbers of flower heads and seeds per flower head and experienced a low rate of 

pollinator visits relative to a number of its congeners in their respective natural habitats (Powell 

and Knight 2009; Powell et al. 2011). Similarly, Lavergne et al. (2005) demonstrated that 

pollinator visits were reduced in the narrow Mediterranean endemic Aquilegia viscosa (sticky 

columbine) relative to its more widespread congener Aquilegia vulgaris (common columbine). 

Herbivory also was shown to influence fertility negatively in A. viscosa via flower and seed 

predation (Lavergne et al. 2005).  

 While the previously described studies and others suggest that poor competitive ability is 

not always the cause of plant species’ rarity, some studies indicate that rare plants actually may 

be strong competitors in their habitats, an attribute that could increase their chances of 

persistence as suggested by Rabinowitz et al. (1984). Their comparison of ‘sparse’ grasses with 

more common grasses revealed that the rare species were stronger competitors, at least at the 

seedling stage. Specifically, seedlings of the sparse grass species grew most when surrounded by 

seedlings of common species rather than when grown in higher proportions of its own species.  

In a related assessment of species’ ranges and competitive abilities within families, the Poaceae 
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species of New Zealand exhibited a strong positive correlation between those factors (Lloyd et 

al. 2002). However, the same study revealed an opposite association in the Rosaceae family. 

Specifically, critically endangered and rare Acaena rorida (common name unknown) was a 

stronger competitor than all of its more common congeners. Similarly, Powell and Knight (2009) 

found that rare C. fontinale was affected less by competition than five of its more widespread 

congeners. Collectively, such findings suggest that the classic ecological assumption that rare 

plants are poor competitors is not always true.

Invasive Plant Species as Competitive Threats to Rare Plant Species

 Invasive species and rare species often co-occur (Brigham and Schwartz 2003; 

Farnsworth 2004; Seabloom 2006). In the northeastern U.S., for example, Farnsworth (2004) 

reported that 47% of rare plant species co-occur with invasive plant species in at least one of 

their occurrences. Seabloom (2006) reported a positive correlation between the number of 

imperiled species and the number of non-native species in California; this correlation was 

strongest when only invasive non-native species were considered. 

   Primarily, invasive species tend to be associated with areas characterized by high 

human population densities and anthropogenic disturbance (Farnsworth 2004; Seabloom 2006). 

For example, the presence of invasive species has been shown to correlate positively with human 

population size in New England (Farnsworth 2004) and California (Seabloom 2006). Invasive 

species also correlate positively with development of land for anthropogenic uses in California 

(Seabloom 2006). In contrast, areas characterized by low accessibility and anthropogenic 

disturbance are thought typically to provide a refuge for rare or endemic plants. However, many 
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of these areas have become invaded through time (DeGruchy et al. 2005; Seabloom 2006). For 

example, invasive Lonicera japonica has been found in the understory of old-growth oak forests 

that have not been disturbed in more than 250 years. Many protected ecosystems in our national 

parks also are threatened by the presence of invasive species (Hiebert and Stubbendieck 1993). It 

also has been hypothesized generally that stressful habitats are more resistant to invasion than 

habitats rich in resources (Alpert et al. 2000). However, research findings have suggested that 

some invasive plant species do establish and proliferate in stressful habitats (DeGruchy et al. 

2005).  For example, a study conducted in Peninsula National Park in Ontario, Canada, 

determined that plots of low to high productivity were invaded to equal degrees (DeGruchy et al. 

2005). 

 Research investigating the direct impacts of invasive plant species on specific co-

occurring rare plant species has been limited (Brigham and Schwartz 2003; Denoth and Myers 

2006), and research examining competitive interactions between invasive and rare species 

specifically has been even more scarce. During a comprehensive search of published scientific 

literature to date, I found just 16 studies that specifically reported the findings of research 

examining the direct effects of invasive plant species on rare plant species (see Table 1.1). Of 

these studies, 12 studied or determined competition by invasive plant species as a factor 

influential to rare plant species (see Table 1.1), with the remaining four studies suggesting that 

the outcome of interactions between invasive and rare plant species are determined by 

mechanisms other than competition. Of the 12 studies that do support that competition occurs 

between invasive and rare plant species, findings are mixed.  Just five of these studies support 

the assumption that invasive plants species threaten rare plant species through superior 
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competition for shared resources across habits and life stages. Four of the the remaining eight 

studies suggest that the effects of competition with invasive plant species depends on 

environmental conditions and life stages of rare species. The other three studies suggest that 

competition with invasive plant species have neutral effects on rare plants species (refer to Table 

1.1).
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Table 1.1  Sixteen published papers studying the direct effects of invasive species on rare plants.  

Study Native Species Invasive Species Experimental Design Mechanism of Effect

Invasive Species; Superior CompetitorsInvasive Species; Superior CompetitorsInvasive Species; Superior CompetitorsInvasive Species; Superior CompetitorsInvasive Species; Superior Competitors
Meyer and 

Fourdrigniez 2011
Ophiorrhiza 

subumbellata
Miconia calvesccens

(velvet tree)
in field biocontrol 

experiment
competition for light

Rojas-Sandavol and 
Melendez-Ackerman 

2012

Harrisa protoricensis
(higo chumbo)

Megathyrsus maximus  
(Gunea grass)

in field removal and 
comparison of sites 

study

competition for water

Walck et al. 1999 Solidago shortii T & G
(short’s goldenrod)

Coronilla varia 
(crown vetch)

in field removal and 
glasshouse 

competition study

competition

Rhazi et al. 2009 Isoetes setacea
(spring quillwort)

Bolboschoenus 
maritimus

(saltmarsh bullrush)

greenhouse 
competition study

competition for water

Huenneke and 
Thomson 1995

Cirsium vinaceum
(Mescalero thistle)

Dipsacus sylvestris
(teasel)

in field removal and 
greenhouse 

competition study

competition

Effects of Competition Dependent Upon the SituationEffects of Competition Dependent Upon the SituationEffects of Competition Dependent Upon the SituationEffects of Competition Dependent Upon the SituationEffects of Competition Dependent Upon the Situation
Combs et al.  2011 Astragalus sinuatus 

Piper
(Whited’s milkvetch)

Bromus tectorum L. 
(cheat grass)

in field removal 
experiment

competition with early 
life stages

Lesica and Shelly 
1996

 Arabis fecunda (mt. 
sapphire rockress)

Centaurea maculosa 
(spotted knapweed)

in field removal 
experiment

competition with early 
life stages

Miller and Duncan 
2004

Pachycladon 
cheesemanii 

Hieracium sp. 
(hawkweed)

in field removal 
experiment

competition with early 
life stages

Hamilton et al 1999 Nassella pulchra 
(Backworth purple 

needlegrass)

annual non-native 
grasses

in field and 
greenhouse 
experiment

water availability 
determines effects of 

competition

Rare Species as Good CompetitorsRare Species as Good CompetitorsRare Species as Good CompetitorsRare Species as Good CompetitorsRare Species as Good Competitors
Leege et al. 2010 Trillium reliquum 

Freeman (relict 
trillium)

Lonicera japonica
(Honeysuckle) 

in field removal study no effect seen

Denoth and Myers 
2006

Sidalcea hendersonii 
S. Wats (Henderson’s 

checkerbloom

Lythrum salicaria 
(purple loosestrife)

in field removal and 
greenhouse 

competition study

no effect seen

Powell and Knight 
2009

Cirsium fontinale 
(fountain thistle)

Cirsium vulgare
(spear thistle)

greenhouse 
competition study

rare plant superior 
competitor

Negative Ecological Effects but Not Due to CompetitionNegative Ecological Effects but Not Due to CompetitionNegative Ecological Effects but Not Due to CompetitionNegative Ecological Effects but Not Due to CompetitionNegative Ecological Effects but Not Due to Competition
Thomson 2005 Oenthera deltoides 

spp. howelli (antioch 
dunes native primrose)

Bromus diandrus  
(ripgut brome)

In field removal 
experiment

dead thatch preventing 
germination

McKinney and 
Goodell 2010

Geranium maculatum 
(spotted geranium)

Lonicera maackii 
(bush honeysuckle)

in field removal 
experiemnt

reduction of pollinator 
visits

Dangremond et al. 
2010

Ammophila arenaria 
(European beachgrass)

Lupinus tidestromii 
(Tidestrom’s lupine)

in field seed predation 
study

apparent competition

Kellner et al. 2012 Rosa mollis (soft 
downy rose)

Rosa rugosa (Japanese 
rose)

DNA and 
morphological traits 

comparison

hybridization 
decreasing fitness
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 Collectively, the five published studies that evidence the potential for invasive plant 

species to outcompete rare plant species across all habitats and life stages suggest that 

competition can involve various resources and species of various habits and influence a variety 

of traits influential to fitness. For example, Meyer and Fourdrigniez (2011) found that 

interspecific competition for light by the invasive tree Miconia calvescens (velvet tree) 

negatively affected the rare shrub Ophiorrhiza subumbellata (common name unknown) in the 

understory of montane cloud forests of Tahiti, French Polynesia. Specifically, the successful 

introduction of a fungal pathogen for biological control of M. calvescens increased light 

availability in the forest understory, which was associated with increased flower and fruit 

production, seed recruitment, and juvenile recruitment of O. subumbellata (Meyer and 

Fourdrigniez 2011). Via an experiment involving partial and complete removal treatments, 

Rojas-Sandavol and Melendez-Ackerman (2012) elucidated that competition by the invasive 

grass Megathyrus maximus (Guinea grass) for water reduced survival, growth, and reproduction 

of the rare cactus Harrisia portoricensis (higo chumbo) on Mona Island, Puerto Rico, USA. In 

another field removal study, Walck et al. (1999a) determined that competition from the invasive 

forb Coronilla varia (crown vetch) and Festuca arundinacea (tall fescue) reduced the number of 

flowering ramets produced by the extremely rare herb Solidago shortii in an early successional 

site in northeastern Kentucky, USA. The same study also reported the findings of a related 

greenhouse experiment in which S. shortii was grown without and with various densities of the 

commonly co-occurring invasive grass F. arundinacea. These findings suggested that both 

relative yield and flowering of S. shortii were suppressed by competition with C. varia and F. 

arundinacea (Walck et al. 1999a).  A greenhouse experiment also examined competition between 
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the rare quillwort Isoetes setacea (spring quillwort) and invasive Bolboschoenus maritimus 

(saltmarsh bullrush), two plants that co-occur in temporary pools in southern France (Rhazi et al 

2009). Groups of I. setacea were planted in monoculture or in competition with B. maritimus. 

The accumulation of biomass in underground tubers was measured for both species across 

different hydrological conditions, and types of substrate. The invasive B. maritimus accumulated 

much greater tuber biomass than I. setacea across all treatments along with decreasing 

performance of the rare species when grown in competition (Rhazi et al. 2009).  Although the 

driest conditions greatly reduced the competitive advantage of B. maritimus, competition never 

effected the invasive species performance while always negatively effecting the rare I. setacea 

(Rhazi et al. 2009). In another greenhouse study, Huenneke and Thomson (1994) concluded that 

competition with the invasive species Dipsacus syclvestris (teasel) negatively affected rare 

Cirsium vinaceum (Mescalero thistle) with which it co-occurs in the Lincoln National Forest in 

California. Specifically, a greenhouse-based competition experiment was used to demonstrate 

that interspecific competition greatly reduced rosette diameter of C. vinaceum as a measure of its 

growth (Huenneke and Thomson 1994). 

   Four additional studies suggest that competition with invasive species can affect rare 

species in certain circumstances, with competition limited to early life stages or only under 

specific resource availability. For example, Combs et al. (2011) demonstrated that recruitment of 

Astragalus sinuatus (Whited’s milkvetch) in sagebrush steppe communities of Washington 

greatly increased when the co-occurring invasive grass Bromus tectorum (cheatgrass) was 

removed. The authors hypothesized that B. tectorum depletes moisture at the soil surface and 

suppressed A. sinuatus recruitment; however, the long tap root of fully developed A. sinuatus 
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would allow adults of this species to avoid competition for water by the invasive grass (Combs et 

al. 2011).  Another field-based removal experiment also found that competition with an invasive 

species affected recruits of a rare plant species but not later life stages (Lesica and Shelly 1996 ). 

Specifically, researchers found that the presence of invasive Centaurea maculosa (spotted 

knapweed) in open rocky sites of the foothills in  southwestern Montana did not influence 

survivorship, fecundity, or growth of rare Arabis fecunda (Mt. Sapphire rockcress) adults, but 

increased the mean age of its populations through time via suppression of germination and early 

establishment (Lesica and Shelly 1996). Miller and Duncan (2004) utilized a field-based removal 

experiment in rocky outcrops of alpine grasslands in New Zealand to test the competitive effects 

of invasive Hieracium sp. (hawkweed) on the rare herb Pachycladon cheesemanii (common 

name unknown). In their experiment, seeds of the rare species were added to plots established in 

suitable habitat for P. cheesamanii. Removal of Hieracium from plots resulted in increased 

recruitment and survival of P. cheesamanii seedlings but the influence of the invasive species on 

plants of later life stages was not assessed (Miller and Duncan 2004). 

In other studies investigating the effect of invasive plant species on rare species, resource 

availability rather than plant life stages was an influential factor in determining competitive 

effects. For example, Hamilton et al. (1999) determined that water availability influenced 

competition between invasive annual grasses and the rare bunchgrass Nassella pulchra 

(Barkworth purple needlegrass) in grasslands of California.  Specifically, with a field-based 

removal experiment, these researchers showed that both aboveground biomass and seed 

production of N. pulchra were suppressed by the presence of invasive grasses when water was a 

limiting resource in the system (Hamilton et al. 1999).  An associated greenhouse experiment 
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examined the effects of drought which also favored the rare species.  Above ground biomass was 

diminished greatly in the invasive annual grasses but no difference was seen in density of 

seedlings or accumulation of biomass for N. pulchra (Hamilton et al. 1999).  The invasive annual 

grasses are better competitors for water when water is a limiting resource and but are not as 

drought resistant as the rare N. pulchra, a specific range of water availability favored the 

invasive species.  

In contrast to previously described research reports, three studies suggest that invasive 

plant species have neutral effects on rare plant species. Leege et al. (2010) studied the invasive L. 

japonica effects on the rare trillium Trillium reliquum (relict trillium) in  understory hardwood 

forest ecosystems in Georgia. The removal of L. japonica from experimental plots had no effect 

on leaf area as a growth metric of T. reliquum (Leege et al. 2010).  Research conducted by 

Denoth and Myers (2007) in wetlands of the Pacific Northwest similarly determined that 

invasions of Lythrum salicaria had no effect historically on the frequency of rare Sidalcea 

hendersonii (Henderson’s checkerbloom) in their shared habitat.  In a related manipulative 

=experiment, removal of L. salicaria had the same effect on both stem height and biomass 

accumulation of S. hendersonii as removal of co-occurring native competitors (Denoth and 

Myers 2007). Consequently, any replacement of native plant species by L. salicaria in these 

habitats did not increase competitive pressure on S. hendersonii. In an associated greenhouse-

based experiment, the rare species was more negatively influenced by competition with native 

species than with the invasive species (Denoth and Myers 2007). Greenhouse experimentation 

was used by other researchers to show that rare Cirsium fontinale (fountain thistle) accumulates 

the same amount of biomass when grown with intraspecific competition as when grown with 
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interspecific competition from invasive Cirsium vulgare (spear thistle; Powell and Knight 2009). 

Collectively, these results refute typical assumptions that invasive species are superior 

competitors compared to the native specie they may replace or the rare species they are co-

occurring with.

 The four final research studies of the 16 examining interactions between invasive and rare 

plant species have supported the assumption that invasive species negatively impact rare species, 

however these studies show that factors other than competition are responsible. For example, 

Thomson (2005) found that recruitment rates of rare Oenothera deltoides ssp. howellii (Antioch 

Dunes native primrose) increased in grasslands following removal of the invasive grass Bromus 

diandrus (ripgut brome). However, this response only occurred when the removal treatments 

included the removal of dead B. diandrus thatch. Thus, active competition for resources from B. 

diandrus  did not influence the rare species in these systems (Thomson 2005). In another study, 

McKinney and Goodell (2010) determined that presence of the invasive shrub Lonicera maackii 

(bush honeysuckle) decreased pollinator visits to flowers of Geranium maculatum (spotted 

geranium) in forests of Ohio, which suggested that invasive species was outcompeting the rare 

species for shared pollinators. However, pollinator visits to G. maculatum decreased similarly 

even when flowers of L. maackii were removed. Consequently, the researchers suggested that 

reduced light availability when L. maackii was present caused the associated decrease in 

pollinators by reducing flower access and/or visibility (McKinney and Goodell 2010).  Invasive 

plant species have been shown to negatively impact race plant species through apparent 

competition, the presence of the invasive plant species increases pressure from herbivores or 

predators on the rare plant species.  Specifically, the invasion of Ammophila arenaria (European 
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beachgrass) in California foredune grasslands reduces establishment and long-term population 

growth of rare Lupinus tidestromii (Tidestrom’s lupine) by attracting granivorous Peromyscus 

maniculatus (deer mice) to their shared habitat (Dangremond et al. 2010). Additionally, A. 

arenaria also is thought to stabilize the dune landscape, reducing wind disturbance upon which 

L. tidestromii recruitment depends (Dangremond et al. 2010). Hybridization also can reduce 

recruitment of populations of  rare plant species, in particular when these species are closely 

related. For example, a study comparing co-occurring populations of invasive Rosa rugosa 

(Japanese rose) and rare Rosa mollis (soft downy rose) in Germany determined that 45% of the 

supposed R. mollis population was actually comprised of hybrid individuals. Low genetic 

diversity and seed set of this population was a result of hybridization rather than competition for 

shared resources with the invasive species (Kellner et al. 2012).          

 Although there is no singular trait shared universally by all invasive plant species or all 

rare plant species that determines the outcomes of their interactions, the previously described 

research collectively suggests that competitive ability can play a role in interactions between 

invasive and native species, but that other mechanisms also can influence interactions between 

their interactions. Research conducted by Witkowski (1991) suggests that in some situations, 

both competition and other mechanisms can simultaneously influence such interactions. 

Specifically, Witkowski (1991) describes that replacement of native Protea repens (common 

sugarbrush) by the invasive shrub Acacia saligna (orange wattle) is the South African fynbos 

involves superior competitive ability of the invasive species, but also comparatively high seed 

production by A. saligna and its alternation of the local fire regime in a way that promotes its 

survival relative to that of to P. repens. I suggest that similar interactions and combinations of 
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mechanisms can determine the outcome of interactions between invasive and rare species. 

 Understanding the role that competition plays in interactions between invasive and co-

occurring rare plant species can provide guidance for the development of management and 

conservation plans. Although removal of invasive species due to their assumed ability to 

outcompete rare species is a common plan of action, in some situations (see Denoth and Myers 

2006), disturbance caused by such removal could inadvertently favor the invasive species and 

exacerbate its proliferation. Thomson (2005) concluded that the most successful regime for 

removing invasive B. diandrus from habitats in which it co-occurs with rare O. deltoides 

involved removal in a manner well timed with germination of the rare species. Such conclusions 

exemplify the idea that situations in which removal of invasive species is warranted also could 

benefit from increased information about the specific ways in which invasive species influence 

co-occurring rare plants. Certainly, competition is an important interaction to consider when 

evaluating the effects of invasive plant species on rare plant species. In my review, more than 

80% of relevant studies (=13 of 16) demonstrate that competition occurs between co-occurring 

invasive and rare plants. However, the making the assumption that invasive plant species 

outcompete rare plant species due to superior competitive ability because of the many cited 

studies demonstrating detrimental effects is short-sighted, and this assumption could negatively 

impact the management and conservation of rare plant species.   
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CHAPTER 2

ACCESSSING THE EFFECTS OF INVASIVE LIGUSTRUM SINENSE AND LONICERA 

JAPONICA ON RARE AND FEDERALLY THREATENED SCUTELLARIA MONTANA 

Introduction 

  Invasive plant species are considered a threat to the conservation of many rare plant 

species (Wilcove and Master 2005). Yet, few studies address the direct effects of invasive species 

on rare plants (refer to Chapter 1; Denoth and Myers 2006; Huenneke and Thomson 1995; 

Thomson 2005).   Instead, the negative effects of invasive species on rare species has been 

historically inferred from studies that compare invaded sites to non-invaded sites or from 

observations of the abundance of invasive species in a rare species’ habitat (Gorchov and Tiesel 

2003; Thomson 2005). Similarly, in ecology it has been assumed that invasive species generally 

outcompete rare plants; an assumption due to the importance of competition in invasions 

(Crawley1990) and the detrimental effects of these invasions.  However, the competitive ability 

of invasive species relative to that of rare species often also has been assumed without direct 

testing (Baker 1974, Crawley 1990; Drury 1974; Griggs 1940, Vila and Weiner 2004).  

   A recent meta-analysis by Vila and Weiner (2004) does suggest that invasive plant 

species are generally superior competitors relative to native species. However, a related meta-

analysis by Daehler (2003) suggests that the impacts of invasive plant species on native plant 

species do not always involve differences in their competitive abilities. My review of peer-
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reviewed research of the direct impacts of invasive species on rare species suggested that 

competitive ability can play a role in interspecific interactions between invasive and rare plants, 

but that other mechanisms also can be influential (see Chapter 1). However, given the limited 

number of studies examining the direct effects of native plant species on rare plant species, there 

remains a need for more research investigating such effects (Walck et al. 1999a).     

 Scutellaria montana Chapm. (large-flowered skullcap) is a rare plant species that has 

been afforded federal protection under the U.S. Endangered Species Act since 1986 (USFWS 

1986). This species was first described in 1878 from occurrences on mountains near Rome, 

Georgia (Floyd County; Chapman 1878). Between its discovery and federal listing, only four 

more collections of S. montana were documented over a range of two counties in northwestern 

Georgia (Gordon and Walker counties) and two in Tennessee (Hamilton and Marion counties; 

USFWS 1985). When first listed as endangered, only about 7000 total plants across 10 

occurrences were known (USFWS 1985).  Recovery objectives for downlisting S. montana 

called for documentation of 15 protected or managed self-sustaining populations or 25 total 

protected or managed populations with 10 of those being self-sustaining (USFWS 1996). In 

2002, S. montana was reclassified as threatened because approximately 48,000 individuals across 

32 sites had been documented by that time in nine counties in Georgia and four in Tennessee 

(USFWS 2002).

 Even though it has been downlisted from endangered to threatened, S. montana remains 

relatively rare and endemic to a small geographical range from northwestern Georgia to 

southeastern Tennessee (USFWS 2002). Rabinowitz (1981) classically described seven types of 

species rarity with geographical range, habitat specificity, and population numbers as 

24



determining characteristics. In a recent meta-analysis of 500 million years of marine fossil 

records, Harnik (2012) concluded that geographical range is the most influential form of rarity in 

determining extinction. This is especially concerning for S. montana considering that about 80 

percent of the known individuals of this species are found within an area of only 27,000 acres in 

the Tennessee River Gorge (USFWS 2002). Harnik (2012) also determined that rare species 

characterized by habitat specificity are second-most at risk for extinction. This is concerning for 

S. montana since its associated habitat is becoming increasingly scarce due to land-use changes 

(USFWS 1986). Specifically,  mature oak-hickory hardwood forests with well drained acidic 

soils are typically distinct from the typical forest of the region and have been described as highly 

important where S. montana occurs (Bridges, as cited by USFWS 2000; Fail and Sommers 1993; 

Sutter 1993; USFWS 1985 ).  

 The scarcity of the preferred habitat of S. montana, in particular, was cited by the U.S. 

Fish and Wildlife Service as the primary threat to the continued survival of S. montana when it 

was listed originally as endangered in 1986 (USFWS 1986). However, upon reclassifying S. 

montana as threatened in 2002, the possible negative effects of invasive species like Ligustrum 

sinense (Chinese privet) and Lonicera japonica (Japanese honeysuckle) on the species also were 

recognized (USFWS 2002). Both L. sinense and L. japonica are members of the ‘dirty dozen,’ a 

list that describes the invasive species of highest concern in the southern Appalachians given 

there demonstrated proliferation in habitats of that region (Kuppinger 2000).  

 Research of L. sinense has shown the presence of this species is associated with 

reductions in native species richness and abundance of native plant species in habitats where it 

invades (Wilcox and Beck 2007). The magnitude of reductions in native species diversity, 
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richness, and evenness attributed to L. sinense invasions have been directly linked to the percent 

coverage of L. sinense in invaded habitats (Hart and Holmes 2013; Merriam and Feil 2003).  

Related manipulative experiments have demonstrated increases in both native stems and overall 

species diversity of communities following L. sinense removal (Merriam and Feil 2003). 

 Research of L. japonica also has shown the presence of this species to be associated with 

decreased diversity in the habitats where it invades (Oosting 1942).  Invasion by L. japonica has 

resulted in its dominance in the understory and herbaceous layer as well as altering native 

species coverage and composition (Barden and Matthews 1980; Oostings and Livingston 1964).  

In a study examining local extinctions and colonization the presence of L. japonica was shown to 

decrease diversity in the local plant community by preventing local colonizations by native 

species (Yurkonis and Meiners 2004).  

 Although the competitive ability of neither L. japonica nor L. sinense relative to co-

occurring native species has rarely been assessed directly, their demonstrated proliferation and 

dominance in forest understories that they invade suggests potential competitive superiority. 

Research has evidenced that L. sinense, in particular, negatively affected the individual-level 

performance of 20 native species (Greene and Blossey 2012). Although the scope of the study 

could not determine the exact mechanism by which the performance of native plants was 

suppressed, competition for light was the proposed cause (Greene and Blossey 2012). This 

hypothesis is supported by a comparative study of L. sinense to Forestiera ligustrina (upland 

swampprivet), a confamilial native shrub that occurs in the forests L. sinense is invading. In this 

study, invasive L. sinense had a higher ratio of leaf area to total plant biomass and a more 
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evergreen habit than native F. ligustrina, giving L. sinense a spatial and temporal advantage in 

competition for light (Morris et al. 2002). 

 In contrast, research has suggested that the invasiveness of L. japonica may not be 

explained by superior competitive ability relative to co-occurring native species. Specifically, 

Davison and Forman (1992) suggested that native Podophyllum peltatum (mayapple) competed 

more strongly for light than L. japonica when light became more available in the forest 

understory following disturbance. Although both species expanded their coverage following 

canopy opening, the increased coverage by L. sinense did not result in a reduction in diversity in 

the herbaceous layer whereas the increased coverage of P. peltatum was associated with reduced 

diversity. Surrette and Stephens (2008) came to similar conclusions in their examination of a 

forest in Mississippi invaded by L. japonica. Although low overall species diversity was 

correlated with high percent coverage of L. japonica, abiotic factors such as disturbance, 

decreased fire frequency, and compacted soils were implicated as more influential to the decline 

in overall species diversity than the presence of L. japonica (Surrette and Stephens 2008). In 

addition, research by Leege et al. (2010) that used growth parameters to evaluate interspecific 

competition between L. japonica and rare native Trillium reliquum (relict trillium) found no 

effect of L. japonica on the rare species 

 Given the hypothesis of the poor competitive ability of S. montana (Patrick et al. 1995) 

and its often cited preference of relatively open understory habitat (Mulhouse et al 2008; Nix 

1993; Patrick et al. 1995; Sutter 1993), it may be assumed that both L. sinense and L. japonica 

could threaten the continued survival of S. montana. However, Hopkins (1999) reported that 

there was no correlation between canopy luminance and S. montana biomass at the organismal 
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level in the Tennessee River Gorge in Marion County, Tennessee, which refutes this hypothesis. 

Specifically, Hopkins (1999) found that S. montana plant size was associated positively with 

herbaceous coverage of the forest understory. More direct experimentation is required to improve 

understanding of the potential competitive effects of L. sinense and L. japonica on S. montana at 

both organismal and population levels.

  To directly investigate the impacts of invasive L. sinense and L. japonica on rare S. 

montana, I conducted a manipulative experiment with fully-crossed invasive species and 

herbivory treatments. This research was designed primarily to investigate the response of S. 

montana to interspecific competition with invasive species through removal treatments. 

Herbivore exclosures were included in the research design to help isolate the effects of 

competition from the effects of herbivory, which also could negatively influence the success of S. 

montana (Kile 2011), and to isolate the effects of competition from apparent competition via the 

potential attraction of herbivores to nearby S. montana by invasive species presence. To address 

these goals, I aimed specifically to: 1) quantify the main effects of interspecific competition with 

invasive species on S. montana individuals and 2) determine the effects of interactions between 

the presence of invasive species and herbivory on S. montana individuals. I hypothesized that 

interspecific competition with L. sinense and L. japonica would negatively affect S. montana by 

reducing individual-level growth and fecundity that negative impacts would be exacerbated by 

concurrent herbivory. 
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Methods

Study Species

 The perennial herb S. montana is described as having solitary, square hairy stems that can 

range from 30 to 60 cm tall (Patrick et al. 1995; USFWS 2002). Phyllotaxis is opposite with 

lanceolate to ovate leaves that are 2- to 10-cm long and 3- to 5-cm wide (Coder 1994; Patrick et 

al 1995).  Leaves have a 1- to 2-cm-long petiole with crenate to serrate margins (USFWS 2002).  

An important distinguishing characteristic of S. montana compared to its commonly co-occurring 

congeners S. ovata, S. pseudoserrata, and S. elliptica is the pubescence of its leaves. The leaf 

surface of S. montana has glandular and non-glandular pubescence that covers the entire upper 

and lower leaf surface giving the leaves a velvety feel, while the pubescence or glands of 

congeners does not cover the entire surface (Patrick et al. 1995; USFWS 2002). The florescence 

also distinguishes S. montana since it has the largest corolla of species in its genus (Patrick et al. 

1995) at 2.6- to 3.5-cm in length (USFWS 2002). The flowers of S. montana are irregular with 

two joined petals that form an erect white-fading-to-blue tube with a double lip at the top. The 

upper petal forms a three-lobed hood that caps the flower (Patrick et al. 1995; USFWS 2002).  

The inflorescence is a terminal, leafy-bracted raceme (USFWS 2002).  

 The overall low number of S. montana individual is thought to be in part due to its low 

reproductive success. During a multi-year survey, Hopkins (1999) determined that S. montana is 

pollen limited; many plants were not pollinated and those that were often had very few pollen 

grains deposited. Although different types of pollinators, such as several species of bees 

(Johnson 1991), butterflies, wasps, and hummingbirds (Kemp and Knaus 1990), have been 

observed visiting S. montana flowers, studies suggest that overall visits from pollinators are 
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infrequent (Cruzan 2001, Hopkins 1999).  A specialist pollinator adapted to S. montana has not 

been identified and the lack of a specialist pollinator and low pollinator services are thought to 

limit its seed set (Cruzan 2001; USFWS 2002). The proportion of S. montana flowers that form 

fruits has been shown to be fairly low, (i.e., 30-44 percent as reported by Kemp and Knauss 

1990; 10 percent as reported by Kemp 1987) relative to that of its congeners (i.e., 75-93 percent 

as reported by Collins according to USFWS 2000).

Study Location

 Our study site was located on property owned by the Volkswagen Group of America 

(Herndon, VA) near their manufacturing facility in Chattanooga, Tennessee, in the Enterprise 

South Industrial Park. Adjacent to the Volkswagen property is the ~1100- ha (2,800-acre) 

Enterprise South Nature Park. Two distinct occurrences of S. montana are found on 

Volkswagen’s property in hardwood forest adjacent to the western edge of the Nature Park. Each 

occurrence is surrounded by a 6-ft chain-link fence and both are managed to provide protection 

for the species (Personal communication with Enterprise South Nature Center park rangers). I 

used one of these occurrences in this study. The chosen occurrence is comprised of about 250 

total individuals across two distinct groups of plants with approximately 100 m between the 

groups. The more northern group occurs in a relatively sparse understory, while the more 

southern group occurs in a denser understory.  Both invasive species are fairly ubiquitous 

throughout the site.  However, L. japonica is the more dense invasive species in the southern 

group and L. sinense is the more dense invasive species in the northern group of S. montana.  

Neither invasive species dominate cover in the understory but both have the highest stem count 
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in their respected group and are observably very prominent species with the entire study site.  

During the summer of 2011, evidence of deer presence and herbivory were observed personally 

within the fenced area. Access to the site by deer was possible through gaps in the fence caused 

by treefalls resulting from severe weather events earlier in the year.  

Experimental Design

   Twelve 1-m2 plots were identified and temporarily flagged in the summer of 2011 within 

the southern group of S. montana in the study site. Plots were established such that each plot 

included at least three individuals of S. montana; more individuals were included in plots when 

possible. There were four possible treatment combination of  interacting invasive species and 

herbivory treatments: 1) plots accessible to non-insect herbivores with invasive plant species 

present (control), 2) plots accessible to non-insect herbivores with invasive plant species 

removed. 3) plots exclosed from non-insect herbivores with invasive plant species present, and 

4) plots exclosed from non-insect herbivores with invasive plant species removed.  Treatments 

were assigned randomly to the 12 plots.  This resulted in three plots for each treatment.  

 Herbivore exclosures were installed in early April 2002. Exclosures consisted of  1-m3 

frames constructed of 0.5-in-diameter PVC (polyvinyl chloride) pipe connected at the corners 

with PVC corner joints. Frames were then wrapped with 1-in-aperture hex-wire mesh (i.e., 

chicken wire) secured to the frames with cable ties as described by Benson (2012) and modified 

from Frankland and Nelson (2003). Additional 1-m2 flat PVC squares were constructed to 

permanently mark non-exclosed plots and help control for the presence of PVC. This facilitated 

the identification of invasive plants for removal from treatment plots throughout the study 
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duration. Exclosures and PVC squares were staked to the ground with 8-in tent stakes attached 

with cable ties.  

  Invasive species removal treatments involved cutting individuals at the soil surface to 

remove biomass while minimizing soil disturbance (Lesica and Shelly 1996). The first removal 

treatment for the 2012 growing season occurred in early May; S. montana plants had emerged 

but had not yet flowered. Due to the exhibited persistence and lack of effectiveness of a single 

removal treatment (Hanula et al. 2009), plots were checked throughout the growing season every  

two to three weeks and any additional sprouting or growth of invasive species were also 

removed. In 2013, the first removal treatment occurred in early April before S. montana 

individuals emerged and was continued through the growing season. 

 The northern group of S. montana within the study site was discovered in spring 

2012 and added to my study at that time, Because these S. montana plants had emerged before 

their inclusion in this study, some individuals had already been browsed. Most notably, three 

individual plants that had been browsed were included in plots with assigned herbivory exclosure 

treatments.  When these browsed plants were removed from our analyses there were no 

qualitative differences compared to when they were included in the analysis.  For this reason I 

included them in my analysis and presented the results in which they were included.  Given the 

size and spatial distribution of plants in the northern group, I was able to established 14 total 

plots in that location, three plots for each the exclosure treatments and four plots for each of the 

non-excluded treatments.

All individual S. montana included in my study were labeled with metal tags to enable 

identification for monitoring in May 2012. In total, 106 S. montana individuals were included in 
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the study in 2012, and 108 individuals were included in the study in 2013. In total, individual 

across both southern and northern groups comprised seven non-exclosed control plots with 

invasive species present, seven non-exclosed plots with invasive species removed, six exclosed 

plots with invasive species present, and six exclosed plots with invasive species removed.  

 

Data Collection

 Data were collected both early and late in the growing season for the 2012 and 2013 

growing seasons. The first data collection coincided with the first observed flowering of S. 

montana, which occurred in mid-May 2012 and early June 2013.  In 2012 data was also collected   

in June.  Flowering of S. montana in 2012 was earlier than expected so data was also collected in 

June as was previously anticipated.  The second data collection coincided with the first observed 

senescence, which occurred in mid-September during both years. Data collected included 

measurements of stem height and counts of the numbers of leaves, branches, stems, and flowers 

of each S. montana individual in the study plots. Each plant also was classified according to its 

life stage as either juvenile (<10-cm tall without evidence of reproduction) or adult (<10-cm tall 

with evidence of reproduction or >10-cm tall) in accordance with definitions used by Benson 

(2012). The presence of damage to aboveground biomass such as stems or leaves also was 

recorded and attributed to either browsing or insects.  Plants were considered browsed if biomass 

such as portions of stems and whole leaves were missing.  Insects were blamed if partial leaf area 

was missing.    
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Data Analysis

  To examine the influence of invasive species and herbivory on growth of S. montana 

individuals, the percent changes in stem height and numbers of leaves during the 2012 growing 

season were calculated as the difference between the September and May measures of these 

variables for each plant divided by its May value and multiplied by 100. Percent change in stem 

height during the 2013 growing season was calculated similarly from early June to September.  

Because no significant difference was seen in percent change in leaf numbers in year 2012, no 

significant differences were seen between treatments in a similar herbivory study by Benson 

(2012), and the numbers of leaves on S. montana are highly variable (personal observation; 

Benson 2012; Boyd et al. 2010), I did not count leaves over the 2013 growing season.  To 

examine the influence of invasive species and herbivory on individual plant growth between 

years, the percent change in stem height from 2012 to 2013 was calculated for both the early and 

late growing season as the difference between the 2013 and 2012 measures of this variable for 

each individual plant divided by its 2012 value and multiplied by 100. To examine the influence 

of invasive species and herbivory on fecundity, the percent change in the number of flowers 

produced per individual plant between years was similarly calculated from early-season data. 

Mean percent changes of all variables of individual plants were averaged within plots. 

Because branching due to herbivory seems to be a typical response in S. montana 

(herbivory removes apical dominance which results in branching), I examined the influence of 

invasive species and herbivory on plant architecture.  The percentage of S. montana individuals 

that experienced branching or had more than one stem in each plot also was calculated for both 

the 2012 and 2013 growing seasons. Similarly, the percentage of total plants browsed in each 
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plot, as well as the percentage of plants of various life stages – adult, flowering, and vegetative 

(i.e., non-flowering) – that were browsed also were calculated for the 2012 growing seasons. No 

herbivore damaged was observed for any S. montana individual included in this study in 2013, 

which was expected because gaps in the chain link fence surrounding the studied S. montana 

occurrence resulting from storm damage were repaired. These repairs were not planned at the 

initiation of our study. As a result, I analyzed the percentage of total plants and plants of different 

life stages browsed in 2012 only. In addition, plants that were present during both the 2012 and 

2013 growing seasons were classified as either experiencing an increase, decrease, or no change 

in their numbers of flowers. To examine the influence of invasive species and herbivory on 

influencing reproductive effort, the mean percentage of plants that experienced an increase in 

flowering and the mean percentage of plants that experienced a decrease in flowering from 2012 

to 2013 were calculated for each treatment combination.  

 A two-way step-wise analysis of variance (ANOVA) was conducted to evaluate the main 

effects and interactions of invasive species and herbivory treatments on S. montana, specifically 

plant architecture, flowering, and growth.  Because there was a significant difference between 

plants occurring in the northern and southern groups of our study site for some calculated 

variables, group was treated as a random factor in the model. In the analysis, factors were 

removed in a stepwise manner with the least significant factor beginning with interactions and 

then addressing main effects removed from each step.  If an effect had a P < 0.15 it was kept in 

the model because it was considered influential.  The last step in which a factor was included in 

the model was the model from which the F- and P- values were determined.  Effects were still 
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only reported as significant if they had a P < 0.05.  All statistical analyses were performed using 

IBM SPSS Statistics Version 20 software (IBM Corp., Armonk, NY).

Results

Individual-level Growth

 The mean percent change in stem height during the 2012 growing season differed 

significantly between the northern and southern groups of S. montana in our study site (F1, 20 

=6.738, P=0.017) and was influenced significantly by the presence of invasive species (F1, 20 

=7.028, P=0.015). In contrast, mean percent change in stem height during the 2012 growing 

season was not influenced by non-insect herbivory or interactions (P >0.28 in all cases).  Across 

invasive species and herbivory treatments, the southern group of plants experienced a small 

decrease in stem height while the northern group of plants experienced an increase in stem height 

during the 2012 season (-1.23% versus 6.46%; Figure 2.1). Across specific locations and 

herbivory treatments, S. montana individuals exhibited a greater percent increase in stem height 

when invasive species were present than when invasive species were removed (7.19% versus 

-0.62% respectively; Figure 2.2).  
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Figure 2.2  Mean percent change of stem height 
(+SE) of S. montana during the 2012 
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In 2013, mean percent change in stem height during the growing season did not differ 

significantly between groups, herbivory treatments, or invasive species treatment levels (P>0.20 

in all cases).  Similarly, the mean percent change in leaf number during the 2012 growing season 

did not differ significantly between groups, herbivory, removal treatments, or interactions 

(P>0.15 in all cases).  
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The mean percent change in stem height of S. montana individuals from the beginning of 

the growing seasons between 2012 to 2013 was significantly influenced by the interaction of 

plant location and herbivory treatments (F3, 22=9.328, P<0.001; Figure 2.3). Specifically, 

individuals exposed to herbivores (i.e., in non-exclosure plots) in the southern group experienced 

a decrease in mean stem height between years, compared to an increase in all other treatment 

combinations.  However, the mean percent change in stem height late in the growing seasons was 

not influenced significantly by the main or interactive effects of treatments (P>0.40 for all cases).
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Flowering and Reproductive Effort 

 The mean percent change in the number of flowers produced by S. montana individuals 

from 2012 to 2013 did not differ significantly between groups, herbivory, or invasive species 

treatment levels (P>0.175 in all cases).  The mean percentage of total S. montana plants per plot 

that experienced decreased flowering from 2012 to 2013 differed significantly between the 

northern and southern groups in my study site (F1,22=12.069, P=0.002) and was influenced 

significantly by herbivory (F1, 22=8.767, P=0.007).  Specifically, a greater percentage of total 

plants experienced decreased flowering between years in the southern group, the group with the 

much denser understory, than in the northern group (13.7% versus 42.4% respectively; Figure 

2.4).  
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Across groups and invasive species treatments, a greater percentage of plants protected from 

herbivores (i.e., in exclosed plots) experienced decreased flowering from 2012 to 2013 than 

plants accessible to herbivores (14.7% versus 39.2% respectively; Figure 2.5).  Although not 

significant (F1, 24=2.724, P=0.112), plots accessible to non-insect herbivores (i.e., non-exclosed) 

housed a higher percentage of plants that experienced increased flowering from 2012 to 2013 in 

comparison with plots protected by herbivores (57.7% versus 32.8%, respectively).
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Figure 2.5  Mean percent of flowers per plot decreasing
flowering (+SE) in S. montana between the 2012 
and 2013 growing season comparing herbivory 
treatments
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Plant Architecture and Herbivory

  During the 2012 growing season, herbivory had a significant influence on the mean 

percentage of S. montana individuals that had more than one stem. Specifically, plots accessible 

to non-insect herbivores (i.e., non-exclosed plots) housed a greater mean percentage of multi-

stemmed individuals than plots protected from herbivores (64.9% versus 49.1% respectively; F1, 

24=4.339, P=0.048; Figure 2.6). There also was a higher percentage of plants that exhibited 

branching in plots accessible to herbivores in 2012 in comparison with plots protected from 
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herbivores, although this trend was not significant (60.7% versus 43.4% respectively; F1, 

24=2.548, P=0.12  Figure 2.6).
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In contrast to 2012, no significant differences were seen during the 2013 growing season 

between groups, herbivory, or invasive species treatment levels in either the mean percentage of 

S. montana individuals that exhibited or had more than one stem (P>0.07 in all cases). 

 I analyzed the percentage of total plants and plants of different life stages browsed in 

2012, the only year herbivory was present in this study. There were no significant differences in 

the mean percentages of total plants, adult plants, or flowering plants browsed due to the main or 

interactive effects of groups, herbivory, and invasive species treatment levels (P>.20 in all cases). 

In contrast, the mean percentage of vegetative (i.e., non-flowering) plants evidencing damage by 

herbivores was influenced significantly by invasive species when considered across groups and 

herbivory treatment levels. Specifically, this variable was greater for plots in which invasive 

species were removed than plots with intact invasive species  (53.8% versus 22.2% respectively; 

F1, 1=07.447, P=0.016; Figure 2.7).  Because the northern group of S. montana was included in 

this study post-emergence in 2012 and plants had already experienced some herbivory, I also 

analyzed this variable in the southern group only to exclude the influence of pre-study herbivory 

in these results. Within the southern group, a greater mean percentage of vegetative plants also 

was browsed in plots in which invasive species were removed versus plots in which invasive 

species were intact (66.7% versus 16.7% respectively; F1, 5=6.154, P=0.056; Figure 2.7).  
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Discussion

 Although I hypothesized that co-occurring invasive plant species would negatively 

influence growth and fecundity of rare S. montana, the results of this study suggest that 

interspecific competition from invasive L. sinense and L. japonica does not negatively impact the 

individual-level performance of S. montana. In contrast, variables that were significantly 

influenced by invasive species treatment levels in this study (mean percent change during the 

2012 growing season and the mean percent of vegetative S. montana individuals browsed) 

suggest that invasive species may facilitate the success of S. montana by providing it with 

protection from non-insect herbivores.  Specifically, the mean stem height of S. montana 

individuals from the beginning to the end of the 2012 growing season decreased when invasive 

species were removed from the immediate vicinity (refer to Figure 2.2)  which could be 

attributed to greater visibility and accessibility of S. montana to non-insect herbivores. This 

conclusion is supported by the lack of any difference in the mean percent change in stem height 

of S. montana between invasive species treatment levels during the 2013 growing season 

following fence repairs that excluded deer from the studied occurrence. Although the numbers of 

leaves produced per S. montana individual were not similarly influenced positively by invasive 

species presence during the 2012 growing season, the lack of significant effects of invasive 

species on these variables supports the idea that competition from invasive species is not 

negatively affecting S. montana’s performance.  

 Removal of invasive species in this study was associated with a greater percentage of 

vegetative S. montana individuals browsed during 2012 (refer to Figure 2.7), which further 

supports the idea that invasive species could protect S. montana individuals from non-insect 
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herbivores. However,  invasive species presence did not similarly influence browsing of 

flowering plants or plants of various ages (i.e., adults versus juveniles). Because white-tailed 

deer are relatively sensitive to short wavelengths of the visible spectrum, including blue light 

(Jacobs et al. 1994; VerCauteran and Pipas 2003), I suggest that S. montana plants with the 

characteristic bluish-purple flowers of this species may have been highly visible to deer, even if 

protected under a cover of co-occurring invasive plant species.  In contrast, non-flowering S. 

montana plants could be afforded comparatively effective protection from herbivores by invasive 

species presence in their immediate vicinity.

 In multiple studies plants have shown increased growth and survivorship facilitated by 

protection from herbivory by a neighbor (Callaway et al. 2005; Gorchov and Trisel 2003; 

Rebollo et al. 2002; Rousset and Lepart 2000).  Inedible plants such as Cirsium obalatum 

(wavyleaf thistle) and Veratrum lobelianum (white hellebore) or plants with natural defenses 

such as the spines of Opuntia polyacantha (plains pricklypair) protect neighboring plants from 

herbivory and resultantly increase diversity and individual plant growth in their given 

communities (Callaway et al. 2005; Rebollo et al. 2002).  Shrubs have also been shown to simply  

hide saplings from herbivores and increase survival and plant growth (Rousset and Lepart 2000).  

Even an invasive shrub, Lonicera maackii (bush honeysuckle) has been shown to provide 

protection and increase survival and growth for native tree saplings in a recovering field woodlot 

in Ohio (Gorchov and Trisel 2003). Removal of L. maackii resulted in decrease growth of 

Quercus rubra (red oak) and Acer saccharum (sugar maple) saplings due to herbivory.  The 

decrease in stem height over the 2012 growing season in plots where invasive species were 

removed (refer to Figure 2.2) and the increase in vegetative plants browsed in plots where the 
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invasive species were removed (refer to Figure 2.7) supports that the presence of L. sinenense 

and L. japonica seem to shelter S. montana from herbivory.  The invasive species L. japonica 

and L. sinense are not preferential food for deer during spring and summer (Crawford 1982) and 

help protect S. montana from herbivory.

 The importance of a sparse understory, as cited by Nix (1993), was also reiterated in the 

results of my study.  There was a significant difference between change in stem height for the 

2012 growing season between the northern and the southern group.  The southern group saw a 

decrease in stem height compared to an increase in stem height observed in the northern group.  I 

attribute this difference in change in stem height to the difference in understory cover for each 

group, the southern group which is located under the observably denser understory between the 

two groups saw less growth over the season (refer to figure 2.2).  The importance of a sparse 

understory is also demonstrated by the significant difference seen in flowering between the 

southern and northern group.  The much denser understory of the southern group shows a higher 

percentage of plants decreasing flowering between years (refer to figure 2.4).

Also, my examination of the percentage of S. montana individuals experiencing increased 

or decreased flowering from 2012 to 2013 suggests that non-insect herbivory also plays an 

important role in determining fecundity and reproductive effort in this species. Specifically, a 

greater percentage of plants protected from non-insect herbivores (i.e., in exclosed plots), 

experienced reduced numbers of flowers between years of this study than plants accessible to 

herbivores (refer to Figure 2.5). Conversely, the percentage of plants experiencing increased 

numbers of flowers showed a trend of increasing (although not significantly so) in plots exposed 

to herbivores than those protected by exclosures.  Considered collectively, these results suggest 
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that herbivory stimulates flower production. As suggested by Benson (2012), thinning of the 

understory by herbivores could decrease competition for shared resources by co-occurring plants, 

which could benefit S. montana. In an earlier study, Nix (1993) reported that S. montana does not 

perform well within relatively dense understories and prefers some openness in its habitat. Here, 

I suggest that the overall thinning of vegetation by non-insect herbivores increased resources 

available to S. montana to allocate toward reproduction. This possibility is supported by the 

significant differences in how flowering changed from 2012 to 2013 among the two S. montana 

groups in my study site. Specifically, the northern group, which occurs in an observable less 

dense understory than the southern group, experienced a comparatively lower percentage of 

plants with decreased flowering from 2012 to 2013. 

  In contrast to my findings, Kettering et al. (2009) found a reduction in growth and 

flowering in the endangered Liatris ohlingerase (scrub blazing star) due to pressure from 

herbivory, which suggests that other rare plant species respond to herbivory differently than S. 

montana. However, Kettering et al. (2009) also reported that plants experiencing herbivory were 

more likely to produce multiple stems than individuals protected from herbivores, a result 

confounded by my findings. In addition, the increased branching I observed for S. montana 

accessible to herbivores (i.e., in non-exclosed plots; refer to figure 2.6) supports findings by King 

(1992) and Benson (2012) in their studies of this species. Increased numbers of stems and 

branches could theoretically support more leaves and therefore increase the total photosynthetic 

capacity of a plant. As such, herbivory could promote increased energy acquisition via 

photosynthetic activity and positively influence reproductive efforts as a result.  These are 

exactly the results the perennial herb Sedum maximum (giant stonecrop) demonstrates resulting 
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in more flowers and higher underground biomass accumulation when browsed (Olejniczak 

2011).  Additionally, the thinning of surrounding vegetation by herbivores also could promote 

photosynthetic activity by providing S. montana individuals with increased light availability, 

which also could ultimately increase the energy availability for reproduction in this species.  

 The significant percent decrease in stem height that occurred from early in the growing 

seasons in 2012 to 2013 across S. montana individuals in the southern group accessible to non-

insect herbivores (see figure 2.3) suggests that herbivory pressure may have increased 

throughout the two-season duration of this study. However, this suggests the change reflects 

differences in plant phenology between years given the complete lack of browsing damaged 

observed for any plants in 2013. During 2012, S. montana emerged earlier in the season (mid-

April) than its late May emergence in 2013, which could have resulting in taller plants by June 

2012 than June 2013. In contrast, there were no significant differences in the mean percent 

change in stem height among herbivory treatment levels within or across groups when this 

variable was compared in the late growing season ( i.e., Sept) between years.

Conclusion

 The importance of a sparse understory was reiterated by my study.  However, 

interspecific competition with L. sinense and L. japonica did not have detrimental effects on S. 

montana as suggested by the lack of a positive response by S. montana to invasive species 

removal in this study.  Instead, the presence of the invasive species appeared to facilitate growth 

of S. montana by protecting it from non-insect herbivores. However, my results also suggest that 

herbivory may increase reproductive output by S. montana. As such, the protection from 
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herbivores afforded to S. montana by invasive species presence could have negative implications 

for this species at the population-level due to potentially suppressed recruitment as a 

consequence of decreased seed production.  Future research utilizing multiple levels of an 

artificial thinning treatments could help to elucidate the mechanisms underlying the growth and 

reproductive responses observed in this study.  An interacting herbivory exclosure treatment 

could be included to help isolate the effects of increase light availability from compensatory 

growth resulting from thinning by herbivores.  A simulated herbivory treatment of S. montana 

grown from seed and under controlled conditions could also be useful in separating the effects of 

herbivory on compensatory growth.  Although competition with the invasive species L. sinense 

and L. japonica did not negatively influence S. montana in this study, the demonstrated ability of 

these invasive species to suppress the recruitment and germination of native plant species (see 

Greene and Blossey 2012; Yurkonis and Meiners  2004) remains a concern, especially given their 

potential indirect link to reproduction via herbivory protection as suggested by my results.  

Invasive species that do not negatively impact existing rare plants have been shown through 

competition to prevent germination (Combs et al. 2001; Lesica and Shelly 1996; Miller and 

Duncan 2004) and these interactions should be examined between the invasive species L. sinense 

and L. japonica and the rare plant S. montana.
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CHAPTER 3

MANAGEMENT, CONSERVATION, AND RESEARCH IMPLICATIONS

 Invasive plant species are considered a threat to the continued persistence of rare plant 

species (Wilcove and Master 2005); however, research examining interactions between these 

types of species is limited (Brigham and Schwartz 2003; Denoth and Myers 2006). This thesis 

comprehensively reviewed this limited literature and added to the body of research investigating 

the direct effects of invasive plant species on rare plant species. Specifically, the study described 

in this thesis investigated potential competition between invasive Ligustrum sinense (Chinese 

privet) and Lonicera japonica (Japanese honeysuckle) and rare and federally endangered 

Scutellaria montana (large-flowered skullcap). Although this particular species is known to 

occur in only nine counties in northwestern Georgia and four counties in southeastern Tennessee 

(USFWS 2002), S. montana exemplifies a rare plant species potentially threatened by invasions 

of non-native species into its habitat. 

It often has been assumed by ecologists that invasive plant species negatively impact rare 

plant species and that the mechanism of this impact is a stark difference in their competitive 

abilities. However, the negative impact of invasive plant species on rare plant species has been 

inferred from studies that observed the abundance of invasive species in rare species’ habitat or 

compared rare plant occurrences in invaded sites with those in non-invaded sites without direct 

testing ( Gorchov and Tiesel 2003; Thomson 2005). In my study, the lack of any competitive 

effect of Ligustrum sinense (Chinese privet) or Lonicera japonica (Japanese honeysuckle) on S. 

montana supports the nearsightedness of the assumption that invasive species are superior 
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competitors relative to rare plant species. Collectively, my research and that described in the 16 

published studies that directly examined interactions between invasive and rare plant species 

suggest that it is just as likely that invasive plant species will have no competitive effect on co-

occurring rare plant species. Consequently, I suggest that plans developed for the management 

and conservation of rare plant species consider the possibility that invasive plant species may 

post a threat, but not assume that this will be the case.

 Although competition with invasive species did not negatively affect the growth of S. 

montana at the organismal level in my study, the influence of invasive species on its germination 

and recruitment were not assessed. These variables and their population-level implications are a 

concern, however, since I observed very few S. montana juveniles in my study sites. While it is 

possible this could be due to the inherently low reproductive rates of S. montana (Cruzan 2001; 

Hopkins 1999), it has been demonstrated that both L. sinense and L. japonica can suppress 

germination and recruitment of co-occurring native plant species (see Greene and Blossey 2012; 

Yurkonis and Meiners 2004). Other invasive plant species have been shown to directly reduce 

population of rare plant species, in particular, by suppressing their germination (see Combs et al. 

2011; Lesica and Shelly 1996; Miller and Duncan 2004). A future removal study examining the 

effects of both L. sinense and L. japonica on germination and recruitment of S. montana would 

help to further understanding of their impacts on this rare species.  

 In contrast to assumption about the negative impacts of invasive species on rare plant 

species, my study demonstrated that the presence of invasive L. sinense and L. japonica 

protected S. montana from herbivory to some extent. Although this protection was associated 

with increased growth of S. montana individuals, I also found that a  lack of herbivory was 
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associated with decreased reproduction of S. montana, which suggests that such protection may 

limit population-level growth of S. montana. In the perennial herb Sedum maximum (giant 

stonecrop) herbivory has been shown to increase fecundity immediately and during future 

growing seasons through a release of apical dominance, which stimulates branching, new leaf 

production, and greater energy acquisition via photosynthetic activity (Olejniczak 2011). If 

herbivory benefits S. montana similarly, invasive species could negatively influence its fecundity 

through the protection they provide from  herbivory. 

 In previous research investigating the impacts of non-insect herbivores on S. montana, 

herbivory was also shown to be beneficial to S. montana (see Benson 2012). While it was 

assumed that associated thinning of competing understory vegetation increase light availability 

to S. montana (see Benson 2012, also Mulhouse 2008), this was not explicitly tested. Future 

research imposing different levels of artificial thinning in S. montana occurrences could help to 

elucidate better how light availability affects this rare species. A interacting herbivory exclosure 

treatment could be included to help isolate the effects of increase light availability from potential 

compensatory growth resulting from thinning by herbivores. 

 The results of my research and subsequent related studies could be used by the 

Volkswagen Group of America (Herndon, VA) to best support occurrences of S. montana on the 

property of their manufacturing facility in Chattanooga, TN, as well as by land managers of 

protected occurrences in the adjacent Enterprise South Nature Park. My study site as well as 

another occurrence of S. montana on Volkswagen property currently are surrounded by a 6-ft-tall 

chain link fence, which successfully excluded deer from my study site during the 2013 growing 

season. Because no non-insect herbivore damage was observed on S. montana individuals 
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included in my study during the 2013 growing season, I assume that deer are the primary 

browser of this species. Although I would not recommend removal of the fence at this point, 

based on my results, I also would not recommend repairing any damage to the fence if it were to 

occur. Ironically, the use of a fencing to protect S. montana from herbivory to increase its 

survival may be detrimental to its protection from extinction. However, if future research is able 

to elucidate the mechanisms by which herbivory influences S. montana, removal of the fence or 

at least providing openings in the fence through which deer can enter may be the best course of 

action. 

 Continued monitoring of S. montana on the Volkswagen property in Chattanooga, TN, is 

encouraged along with efforts to minimize the invasion of L. sinense and L. japonica.  Although 

my study does not show effects due to competition due to the densities the invasive species exist 

at my study site at this point, it did show the importance of a sparse understory.  Although both L. 

sinense and L. japonica are ubiquitous throughout the site, they are fairly small or young plants.  

The invasion of the site at Volkswagen is probably fairly new and compared to many other 

invasions is not that far advanced, neither of the two invasive species dominate the understory as 

they are capable of doing (refer to Greene and Blossey 2012; Barden and Matthews 1980).  

Although S. montana is not being negatively impacted through competition, as L. sinesne and L. 

japonica continue to persist and proliferate throughout the site there is a strong possibility they 

will change the composition and structure of the understory and negatively effect S. montana by 

altering the important sparse understory.  For this reason, I would suggest continued monitoring 

along with removal treatments in order to keep the invasion of L. sinense and L. japonica from 

altering the understory and negatively effecting S. montana.
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APPENDIX A

TABLE A.1 SUMMARY OF STEP WISE TWO-WAY ANOVA RESULTS FOR MEAN 
PERCENT CHANGE IN STEM HEIGHT FOR 2012 OF SCUTELLARIA MONTANA 

INDIVIDUALS
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Table A.1 Summary of step wise two-way ANOVA results for mean percent change in stem 
height for 2012 of Scutellaria montana individuals within each of the four treatment 
combinations (non-exclosed plots with invasive species present, Control; non-exclosed 
plots with invasive species removed; exclosed plots with invasive species present; 
exclosed plots with invasive species removed) at both groups in the study site.  Mean 
percent change was calculated for the period from June to September in 2012, where 
herbivory and removal were considered the fixed independent variables and group was 
considered a random factor.

Source of variation degrees of freedom error df F Ratio P
removal × group 1 16 0.000 0.991
herbivory × group 1 17 0.298 0.592
removal × herbivory 1 18 1.234 0.281
herbivory 1 19 0.402 0.533
removal 1 20 7.028 0.015
group 1 20 6.738 0.017
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APPENDIX B

TABLE A.2 SUMMARY OF STEP WISE TWO-WAY ANOVA RESULTS FOR MEAN 
PERCENT CHANGE IN STEM HEIGHT FOR 2013 OF SCUTELLARIA MONTANA 

INDIVIDUALS
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Table A.2 Summary of step wise two-way ANOVA results for mean percent change in stem 
height for 2013 of Scutellaria montana individuals within each of the four treatment 
combinations (non-exclosed plots with invasive species present, Control; non-exclosed 
plots with invasive species removed; exclosed plots with invasive species present; 
exclosed plots with invasive species removed) at both groups in the study site.  Mean 
percent change was calculated for the period from June to September in 2013, where 
herbivory and removal were considered the fixed independent variables and group was 
considered a random factor.

Source of variation degrees of freedom error df F Ratio P
removal × herbivory 1 16 0.0002 0.990
removal × group 1 17 0.045 0.834
herbivory × group 1 18 0.173 0.682
removal 1 19 0.083 0.776
group 1 20 0.578 0.455
herbivory 1 21 1.729 0.201
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APPENDIX C

TABLE A.3 SUMMARY OF STEP WISE TWO-WAY ANOVA RESULTS FOR MEAN 
PERCENT CHANGE IN STEM HEIGHT FOR 2013 OF SCUTELLARIA MONTANA 

INDIVIDUALS
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Table A.3 Summary of step wise two-way ANOVA results for mean percent change in leaves for 
2012 of Scutellaria montana individuals within each of the four treatment 
combinations (non-exclosed plots with invasive species present, Control; non-exclosed 
plots with invasive species removed; exclosed plots with invasive species present; 
exclosed plots with invasive species removed) at both groups in the study site.  Mean 
percent change was calculated for the period from June to September in 2012, where 
herbivory and removal were considered the fixed independent variables and group was 
considered a random factor.

Source of variation degrees of freedom error df F Ratio P
removal × herbivory 1 19 0.002 0.961
removal × group 1 20 0.051 0.824
removal 1 21 0.010 0.923
herbivory 1 1 0.155 0.761
group 1 2 0.589 0.523
herbivory × group 1 22 1.937 0.153
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APPENDIX D

TABLE A.4 SUMMARY OF STEP WISE TWO-WAY ANOVA RESULTS FOR MEAN 
PERCENT CHANGE IN STEM HEIGHT BETWEEN YEARS FOR JUNE OF 

SCUTELLARIA MONTANA INDIVIDUALS
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Table A.4 Summary of step wise two-way ANOVA results for mean percent change in stem 
height between years for June of Scutellaria montana individuals within each of the 
four treatment combinations (non-exclosed plots with invasive species present, 
Control; non-exclosed plots with invasive species removed; exclosed plots with 
invasive species present; exclosed plots with invasive species removed) at both groups 
in the study site.  Mean percent change was calculated between June 2012 and June 
2013, where herbivory and removal were considered the fixed independent variables 
and group was considered a random factor.

Source of variation degrees of freedom error df F Ratio P
removal × herbivory 1 19 0.750 0.397
group 1 1 0.027 0.893
removal 1 1 0.211 0.726
herbivory 1 1 0.298 0.682
removal × group 2 20 1.569 0.233
herbivory × group 3 22 9.328 0.0004
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APPENDIX E

TABLE A.5 SUMMARY OF STEP WISE TWO-WAY ANOVA RESULTS FOR MEAN 
PERCENT CHANGE IN STEM HEIGHT BETWEEN YEARS FOR SEPTEMBER OF 

SCUTELLARIA MONTANA INDIVIDUALS
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Table A.5 Summary of step wise two-way ANOVA results for mean percent change in stem 
height between years for September of Scutellaria montana individuals within each of 
the four treatment combinations (non-exclosed plots with invasive species present, 
Control; non-exclosed plots with invasive species removed; exclosed plots with 
invasive species present; exclosed plots with invasive species removed) at both groups 
in the study site.  Mean percent change was calculated between September 2012 and 
September 2013, where herbivory and removal were considered the fixed independent 
variables and group was considered a random factor.

Source of variation degrees of freedom error df F Ratio P
removal × herbivory 1 19 0.032 0.861
herbivory × group 1 20 0.233 0.635
removal × group 1 21 0.637 0.434
removal 1 22 0.264 0.612
herbivory 1 23 0.414 0.526
group 1 24 0.662 0.424
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APPENDIX F

TABLE A.6 SUMMARY OF STEP WISE TWO-WAY ANOVA RESULTS FOR MEAN 
PERCENT CHANGE IN FLOWERS BETWEEN YEARS OF 

SCUTELLARIA MONTANA INDIVIDUALS
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Table A.6 Summary of step wise two-way ANOVA results for mean percent change in flowers 
between years of Scutellaria montana individuals within each of the four treatment 
combinations (non-exclosed plots with invasive species present, Control; non-exclosed 
plots with invasive species removed; exclosed plots with invasive species present; 
exclosed plots with invasive species removed) at both groups in the study site.  Mean 
percent change was calculated between May 2012 and June 2013, where herbivory and 
removal were considered the fixed independent variables and group was considered a 
random factor.

Source of variation degrees of freedom error df F Ratio P
removal × herbivory 1 11 0.292 0.600
herbivory × group 1 12 0.957 0.347
removal × group 1 13 2.049 0.176
removal 1 14 1.349 0.265
group 1 15 1.927 0.247
herbivory 1 16 1.442 0.186
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APPENDIX G

TABLE A 7 SUMMARY OF STEP WISE TWO-WAY ANOVA RESULTS FOR MEAN 
PERCENT PER PLOT OF INDIVIDUALS WITH DECREASED FLOWERING 

BETWEEN YEARS OF SCUTELLARIA MONTANA INDIVIDUALS 
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Table A.7 Summary of step wise two-way ANOVA results for mean percent per plot of 
individuals with decreased flowering between years of Scutellaria montana individuals 
within each of the four treatment combinations (non-exclosed plots with invasive 
species present, Control; non-exclosed plots with invasive species removed; exclosed 
plots with invasive species present; exclosed plots with invasive species removed) at 
both groups in the study site.  Mean percent was calculated between May 2012 and 
June 2013, where herbivory and removal were considered the fixed independent 
variables and group was considered a random factor.

Source of variation degrees of freedom error df F Ratio P
removal × herbivory 1 18 0.022 0.884
herbivory × group 1 19 0.508 0.484
removal × group 1 20 1.475 0.238
removal 1 21 0.812 0.377
herbivory 1 22 8.767 0.007
group 1 22 12.069 0.002
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APPENDIX H

TABLE A.8 SUMMARY OF STEP WISE TWO-WAY ANOVA RESULTS FOR MEAN 
PERCENT PER PLOT OF INDIVIDUALS WITH INCREASED FLOWERING 

BETWEEN YEARS OF SCUTELLARIA MONTANA INDIVIDUALS
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Table A.8 Summary of step wise two-way ANOVA results for mean percent per plot of  
individuals with increased flowering between years of Scutellaria montana individuals 
within each of the four treatment combinations (non-exclosed plots with invasive 
species present, Control; non-exclosed plots with invasive species removed; exclosed 
plots with invasive species present; exclosed plots with invasive species removed) at 
both groups in the study site.  Mean percent change was calculated between May 2012 
and June 2013, where herbivory and removal were considered the fixed independent 
variables and group was considered a random factor.

Source of variation degrees of freedom error df F Ratio P
removal × herbivory 1 19 0.003 0.958
removal × group 1 20 0.553 0.466
herbivory × group 1 21 1.847 0.185
group 1 22 0.0002 0.997
removal 1 23 1.104 0.304
herbivory 1 24 2.724 0.112
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APPENDIX I

TABLE A.9 SUMMARY OF STEP WISE TWO-WAY ANOVA RESULTS FOR MEAN 
PERCENT PER PLOT OF INDIVIDUALS WITH MORE THAN ONE STEM OF 

SCUTELLARIA MONTANA INDIVIDUALS
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Table A.9 Summary of step wise two-way ANOVA results for mean percent per plot of 
individuals with more than one stem of Scutellaria montana individuals within each of 
the four treatment combinations (non-exclosed plots with invasive species present, 
Control; non-exclosed plots with invasive species removed; exclosed plots with 
invasive species present; exclosed plots with invasive species removed) at both groups 
in the study site.  Stems were counted in the 2012 growing season, where herbivory 
and removal were considered the fixed independent variables and group was 
considered a random factor.

Source of variation degrees of freedom error df F Ratio P
removal × herbivory 1 19 0.167 0.688
removal × group 1 20 1.425 0.247
herbivory × group 1 21 2.213 0.152
group 1 22 0.014 0.925
removal 1 23 0.023 0.884
herbivory 1 24 4.339 0.048
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APPENDIX J

TABLE A.10 SUMMARY OF STEP WISE TWO-WAY ANOVA RESULTS FOR MEAN 
PERCENT PER PLOT OF INDIVIDUALS WITH BRANCHING FOR 2012 OF 

SCUTELLARIA MONTANA INDIVIDUALS
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Table A.10 Summary of step wise two-way ANOVA results for mean percent per plot of 
individuals with branching of Scutellaria montana individuals within each of the four 
treatment combinations (non-exclosed plots with invasive species present, Control; 
non-exclosed plots with invasive species removed; exclosed plots with invasive 
species present; exclosed plots with invasive species removed) at both groups in the 
study site.  Branching was observed in the 2012 growing season, where herbivory and 
removal were considered the fixed independent variables and group was considered a 
random factor.

Source of variation degrees of freedom error df F Ratio P
removal × group 1 19 0.163 0.691
removal × herbivory 1 20 0.165 0.689
herbivory × group 1 21 0.230 0.637
group 1 22 0.08 0.768
removal 1 23 0.0863 0.363
herbivory 1 24 2.584 0.121

84



APPENDIX K

TABLE A.11 SUMMARY OF STEP WISE TWO-WAY ANOVA RESULTS FOR MEAN 
PERCENT PER PLOT OF INDIVIDUALS WITH BRANCHING FOR 2013 OF 

SCUTELLARIA MONTANA INDIVIDUALS 
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Table A.11 Summary of step wise two-way ANOVA results for mean percent per plot of 
individuals with branching of Scutellaria montana individuals within each of the four 
treatment combinations (non-exclosed plots with invasive species present, Control; 
non-exclosed plots with invasive species removed; exclosed plots with invasive 
species present; exclosed plots with invasive species removed) at both groups in the 
study site.  Branching was observed in the 2013 growing season, where herbivory and 
removal were considered the fixed independent variables and group was considered a 
random factor.

Source of variation degrees of freedom error df F Ratio P
herbivory × group 1 15 0.103 0.751
removal × herbivory 1 16 0.225 0.641
removal × group 1 17 0.233 0.634
herbivory 1 18 1.490 0.235
removal 1 19 2.154 0.156
group 1 20 3.492 0.074
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APPENDIX L

TABLE A.12 SUMMARY OF STEP WISE TWO-WAY ANOVA RESULTS FOR MEAN 
PERCENT PER PLOT OF INDIVIDUALS WITH MORE THAN ONE STEM FOR 2013 OF 

SCUTELLARIA MONTANA INDIVIDUALS 
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Table A.12 Summary of step wise two-way ANOVA results for mean percent per plot of 
individuals with more than one stem of Scutellaria montana individuals within each of 
the four treatment combinations (non-exclosed plots with invasive species present, 
Control; non-exclosed plots with invasive species removed; exclosed plots with 
invasive species present; exclosed plots with invasive species removed) at both groups 
in the study site.  Stems were counted in the 2013 growing season, where herbivory 
and removal were considered the fixed independent variables and group was 
considered a random factor.

Source of variation degrees of freedom error df F Ratio P
herbivory × group 1 15 0.0002 0.990
removal × group 1 16 0.045 0.834
removal × herbivory 1 17 0.173 0.682
herbivory 1 18 0.083 0.776
removal 1 19 0.578 0.455
group 1 20 1.729 0.201
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APPENDIX M

TABLE A.13 SUMMARY OF STEP WISE TWO-WAY ANOVA RESULTS FOR MEAN 
PERCENT PER PLOT OF INDIVIDUALS BROWSED FOR OF SCUTELLARIA MONTANA 

INDIVIDUALS 
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Table A.13 Summary of step wise two-way ANOVA results for mean percent per plot of 
individuals browsed of Scutellaria montana individuals within each of the four 
treatment combinations (non-exclosed plots with invasive species present, Control; 
non-exclosed plots with invasive species removed; exclosed plots with invasive 
species present; exclosed plots with invasive species removed) at both groups in the 
study site.  Browsing was observed in the 2012 growing season, where herbivory and 
removal were considered the fixed independent variables and group was considered a 
random factor.

Source of variation degrees of freedom error df F Ratio P
removal × herbivory 1 19 0.018 0.095
herbivory × group 1 20 0.40 0.529
removal × group 1 21 1.425 0.246
removal 1 22 0.011 0.916
group 1 23 0.124 0.728
herbivory 1 24 12.363 0.002
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APPENDIX N

TABLE A.14 SUMMARY OF STEP WISE TWO-WAY ANOVA RESULTS FOR MEAN 
PERCENT PER PLOT OF INDIVIDUAL ADULTS BROWSED OF 

SCUTELLARIA MONTANA INDIVIDUALS
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Table A.14 Summary of step wise two-way ANOVA results for mean percent per plot of 
individual adults browsed of Scutellaria montana individuals within each of the four 
treatment combinations (non-exclosed plots with invasive species present, Control; 
non-exclosed plots with invasive species removed; exclosed plots with invasive 
species present; exclosed plots with invasive species removed) at both groups in the 
study site.  Browsing was observed in the 2012 growing season, where herbivory and 
removal were considered the fixed independent variables and group was considered a 
random factor.

Source of variation degrees of freedom error df F Ratio P
removal × herbivory 1 19 0.079 0.781
herbivory × group 1 20 0.291 0.596
removal × group 1 21 1.335 0.261
removal 1 22 0.051 0.824
group 1 23 0.796 0.382
herbivory 1 24 15.649 0.001
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APPENDIX 0

TABLE A.15 SUMMARY OF STEP WISE TWO-WAY ANOVA RESULTS FOR MEAN 
PERCENT PER PLOT OF FLOWERING INDIVIDUALS BROWSED OF 

SCUTELLARIA MONTANA INDIVIDUALS
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Table A.15 Summary of step wise two-way ANOVA results for mean percent per plot of 
flowering individuals browsed of Scutellaria montana individuals within each of the 
four treatment combinations (non-exclosed plots with invasive species present, 
Control; non-exclosed plots with invasive species removed; exclosed plots with 
invasive species present; exclosed plots with invasive species removed) at both groups 
in the study site.  Browsing was observed in the 2012 growing season, where 
herbivory and removal were considered the fixed independent variables and group was 
considered a random factor.

Source of variation degrees of freedom error df F Ratio P
removal × herbivory 1 15 0.081 0.780
herbivory × group 1 16 0.406 0.533
removal 1 17 0.012 0.913
group 1 1 0.124 0.784
removal × group 1 18 0.303 0.228
herbivory 1 20 1.113 0.304
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APPENDIX P

TABLE A.16 SUMMARY OF STEP WISE TWO-WAY ANOVA RESULTS FOR MEAN 
PERCENT PER PLOT OF VEGETATIVE INDIVIDUALS BROWSED OF 

SCUTELLARIA MONTANA INDIVIDUALS
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Table A.16 Summary of step wise two-way ANOVA results for mean percent per plot of 
vegetative individuals browsed of Scutellaria montana individuals within each of the 
four treatment combinations (non-exclosed plots with invasive species present, 
Control; non-exclosed plots with invasive species removed; exclosed plots with 
invasive species present; exclosed plots with invasive species removed) at both groups 
in the study site.  Browsing was observed in the 2012 growing season, where 
herbivory and removal were considered the fixed independent variables and group was 
considered a random factor.

Source of variation degrees of freedom error df F Ratio P
removal × herbivory 1 12 0.022 0.883
herbivory × group 1 13 0.139 0.715
group 1 14 0.615 0.446
removal × group 1 15 4.086 0.066
removal 1 1 7.447 0.016
herbivory 1 1 33.187 0.0000
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APPENDIX Q

TABLE A.17 SUMMARY OF TWO-WAY ANOVA RESULTS FOR MEAN PERCENT PER 
PLOT OF VEGETATIVE INDIVIDUALS BROWSED OF SCUTELLARIA MONTANA 

INDIVIDUALS
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Table A.17 Summary of two-way ANOVA results for mean percent per plot of vegetative 
individuals browsed of Scutellaria montana individuals within each of the four 
treatment combinations (non-exclosed plots with invasive species present, Control; 
non-exclosed plots with invasive species removed; exclosed plots with invasive 
species present; exclosed plots with invasive species removed) at the southern group in 
the study site.  Browsing was observed in the 2012 growing season, where herbivory 
and removal were considered the fixed independent variables and group was 
considered a random factor.

Source of variation degrees of freedom F Ratio P
removal 1 6.154 0.056
herbivory 1 24.615 0.004
removal × herbivory 1 6.154 0.056
error 5
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