
MESH GENERATION USING A CORRESPONDENCE DISTANCE FIELD

By

Nicholas Szapiro

Approved:

Steve Karman Jr.
Professor of Computational Engineering
(Director of Thesis)

Tim Swafford
Professor of Computational Engineering
(Committee Member)

Kyle Anderson
Professor of Computational Engineering
(Committee Member)

William H. Sutton
Dean of College of Engineering and Computer
Science

A. Jerald Ainsworth
Dean of the Graduate School

MESH GENERATION USING A CORRESPONDENCE DISTANCE FIELD

By

Nicholas Szapiro

A Thesis
Submitted to the faculty of

The University of Tennessee, Chattanooga
in Partial Fulfillment of the Requirements

for the Degree of Master of Science
in Computational Engineering

The University of Tennessee, Chattanooga
Chattanooga, Tennessee

August 2012

ii

Copyright c© 2012

By Nicholas Szapiro

All Rights Reserved

iii

ABSTRACT

The central tool of this work is a correspondence distance field to discrete surface points

embedded within a quadtree data structure. The theory, development, and implementation

of the distance field tool are described, and two main applications to two-dimensional mesh

generation are presented with extension to three-dimensional capabilities in mind.

First is a method for surface-oriented mesh generation from a sufficiently dense set of

discrete surface points without connectivity information. Contour levels of distance from

the body are specified and correspondences oriented normally to the contours are created.

Regions of merging fronts inside and between objects are detected in the correspondence

distance field and incorporated automatically.

Second, the boundaries in a Voronoi diagram between specified coordinates are detected

adaptively and used to make a Delaunay tessellation. Tessellation of regions with holes is

performed using ghost nodes.

Images of meshes for each method are given for a sample set of test cases. Possible

extensions, future work, and CFD applications are also discussed.

iv

DEDICATION

To the reader:

Standing on enough shoulders, everyone is a giant.

v

ACKNOWLEDGEMENTS

To pursue a topic out of curiosity is a great privilege. With deep gratitude, I thank all

of those who contributed to this opportunity. Among the many, I would like to thank the

following in particular. I thank Dr. Karman for both his guidance and Jedi-like faith in

using the tree. I thank my family for their love and support. I thank my friends for sharing

their worlds with me.

This work was funded by a grant originating from several Chattanooga-based foundations,

specifically: the Lyndhurst Foundation, the Benwood Foundation, the Tucker Foundation,

the UC Foundation, the Maclellan Foundation, the Community Foundation of Greater

Chattanooga, as well as several anonymous donors. This support is gratefully acknowledged.

vi

TABLE OF CONTENTS

ABSTRACT . iv

DEDICATION . v

ACKNOWLEDGEMENTS . vi

LIST OF FIGURES . xi

CHAPTER

1 INTRODUCTION . 1

Overview . 1
Background . 2
Motivation . 5
Development . 6

2 TECHNICAL FRAMEWORK . 10

Applications . 10
Biological Simulation . 10

Voxelisation . 11
Models . 11

Input Data . 13
Digital Image Processing . 13

Morphology . 14
Histograms . 18
Active Contours . 20

Hierarchical . 22
Boundaries . 24

Cut cell . 24
Smooth surface nodes . 25
Buffer layers . 26

Distance field . 27

vii

Motivation . 29
Computation through Spatial Partitioning 33
Voronoi Meshing . 34

Normal Evolution of Fronts . 36
Explicit . 37
Implicit . 38

Isosurface Meshing . 41
Analytical . 41

Mapping . 41
Cell division/Templates . 42
Advancing Front . 44

3 TOOLS . 46

CDF Computation . 46
Spatial Quadtree . 46
Data Structure . 48

Neighbor Finding . 48
All Neighbors . 49
Face Neighbors . 49
Corner Neighbors 49

Distance Bounds and Correspondence 50
Computation over a Box 50
Data Structure . 52
Computation over the Tree 52

Root-down . 52
Surface-out . 53

Feature Adaptation . 53
Adaptation to Distance Level 54
Adaptation to Multiple Points 54

Contouring of a Feature . 56
Coordinates . 56

Distance Level . 56
Merged Region . 57

Contour Connectivity . 57
Offset Contour Connectivity 57
Surface and Merging Region Connectivity 58

Merging Regions . 59
Interior . 59
Between Objects . 60

Normal Correspondences . 60
Finding the closest coordinate 61

viii

Edges to Cells . 62

4 COMPOSITE ALGORITHMS . 64

Surface-oriented Meshing . 64
Pre-processing . 64

Parametric Boundaries 64
Digital Images . 65

Density Requirements . 65
Algorithm . 66
Input . 67
Example . 67

Voronoi-dual Meshing . 69
Holes . 69

Oriented Segments . 71
Algorithm . 71
Input . 72

Abstraction of Approaches . 72

5 RESULTS AND DISCUSSION . 74

Surface-oriented Meshing . 74
Parameter Choices . 74

Leaf Size and Subsamples 75
Distance Levels . 77

Image Geometry . 78
Airfoil Geometry . 85
Viscous Spacing . 88
Discussion . 91

Voronoi Meshing . 94
Simple Case . 94
Combined Case . 96
Discussion . 98

6 CONCLUSIONS . 99

Extensions . 99
3D CDF . 100
Approximate Medial Axis . 100
Point Generation . 100

Future Work . 101
3D Voronoi Meshing . 101
Couple with Flow Solver . 101

ix

CFD Applications . 102
Sequential Sizing . 102
Smarter Correspondences . 103
Parallelization . 103
Geometry Definition . 103

REFERENCES . 105

VITA . 112

x

LIST OF FIGURES

1.1 Density field for Euler flow over a triangular mesh 3

1.2 A variety of meshing algorithms [Owen, 2005] 4

1.3 Examples of CFD applications not originating from parametric geometry
[Moore et al., 1999], [Dong et al., 2010] . 6

1.4 Body-fitting curves and markers about a cut circle for our preliminary surface-
oriented meshing . 8

1.5 Body-fitting curves and markers about various rectangles for our preliminary
surface-oriented meshing . 9

2.1 Analytic model of a vessel made by lofting surfaces through contours [Wang,
2001] . 12

2.2 Markers used to reconstruct dragonfly motion [Dong et al., 2010] 12

2.3 An example of several morphological operations [Maragos and Schafer, 1990] 16

2.4 Histogram segmentation based on distinct objects 19

2.5 Active contour segmentation based on minimizing energy [Chan and Vese, 2001] 21

2.6 Root-down octree subdivision [Bloomenthal, 1988] 23

2.7 Surface-out front tracking [Bloomenthal, 1988] 23

2.8 An example of projecting an integer boundary to the surface [Dawes et al.,
2007] . 26

2.9 An example of buffer layers in a hierarchical mesh [Druyor Jr, 2012] 27

2.10 Contours of the distance field generated from four points 28

xi

2.11 Using an implicit representation to manage various types of geometries
[Freytag et al., 2006] . 30

2.12 Offset curves for a right angle . 30

2.13 Medial axis examples [Katz and Pizer, 2003] 32

2.14 An example of adaptive hierarchical sampling [Frisken et al., 2000] 34

2.15 A Voronoi diagram for eight sites [Aurenhammer, 1991] 35

2.16 An example of advancing layers meshing [Garimella and Shephard, 1998] . . 38

2.17 Level sets used to model crack propagation [Colombo and Massin, 2011] . . . 39

2.18 An example of Sethian’s grid generation method using level sets [Sethian, 1994] 40

2.19 Lookup table for original Marching Cubes algorithm [Lorensen and Cline, 1987] 43

2.20 An example of sampling for MC, EMC, and dual contouring [Ju et al., 2002] 44

2.21 Unconstrained paving of multiple regions [Staten et al., 2005] 45

3.1 Tree representation of three levels in a quadtree 47

3.2 Voxel representation of five levels in a quadtree 47

3.3 Objects for capturing corner, face, and all neighbors of a voxel 49

3.4 Example used to demonstrate surface points generating distance bounds over
a box . 51

3.5 Adaptation to 22, 52, 82 d levels about (0, 0) 54

3.6 Adaptation to multiple corresponding points 55

3.7 Examples of coordinates for various contours 57

3.8 Examples of connectivities along contours 58

3.9 Finding the closest corresponding point through a flood-fill approach 62

3.10 Sorting edges by angle into a polygon . 63

4.1 An example of an image and its boundary points 65

xii

4.2 A depiction of surface density requirements. In short, close objects must be
neighbors, and disjoint objects must not be close. 66

4.3 Step by step example of surface-oriented meshing algorithm without merging
regions from surface points, to distance level adaptation, to contours of offsets,
to normal correspondences . 68

4.4 Location of ghost points for a hole region . 70

5.1 Base case of sine curve for effects of parameters on surface-oriented meshing 75

5.2 Aliasing of coordinates due to coarse subsampling 76

5.3 Greater contour sampling and element count due to smaller leaf size 76

5.4 Feature preservation and smoothing based on choice of distance levels 78

5.5 Rectangle and diamond geometry . 79

5.6 Far view of rectangle and diamond geometry 79

5.7 Interior of rectangle in rectangle and diamond geometry 80

5.8 Interior of diamond in rectangle and diamond geometry 81

5.9 Merging regions in rectangle and diamond geometry 81

5.10 Donut geometry . 82

5.11 Far view of donut geometry . 82

5.12 Merging regions between ellipses of donut geometry 83

5.13 Interior merging regions of donut geometry 83

5.14 Branch geometry . 84

5.15 Far view of branch geometry . 84

5.16 Merging regions of branch geometry . 85

5.17 Far view of airfoil mesh . 86

5.18 Close view of airfoil mesh . 86

5.19 Zero-contour approximation of surface . 87

xiii

5.20 Viscous spacing for a line geometry . 89

5.21 Viscous spacing for a sine curve geometry . 90

5.22 Counterexample geometries for surface recovery methods 93

5.23 Delaunay tessellation of coordinates and ghost nodes 95

5.24 Delaunay tessellation of coordinates with center hole enforced 95

5.25 Surface-oriented meshing about a NACA0012 and a Voronoi-dual mesh of the
coordinates . 97

xiv

CHAPTER 1

INTRODUCTION

Overview

Meshes are used to discretize space for finite mesh-based methods in computational

field simulations. The mesh describes the geometry and topology of the spatial domain

explicitly through cells with connectivity. For the reader unaccustomed to these topics, a

brief [background] is provided. Note that all [text] is a mouse-aware link in the PDF version

of this thesis.

The shapes of the cells and the orientation of the mesh can affect the accuracy of the

numerical solution. While the numerical solution is the true test of the quality of the mesh,

there are guidelines for a-priori metrics. Two qualities are of specific interest to this work,

shape and orientation. Regarding the shapes, high aspect ratios and skewness may lead to

diffusion, slowed convergence, or instability. Regarding orientation, for viscous flow about

an object, an orientation normal to the surface may lead to higher accuracy or a smaller

number of elements. See [Shewchuk, 2002b] for a more precise, fuller discussion.

We discuss methods to address each of these concerns using the central tool of this work,

a correspondence distance field (CDF) to discrete surface points embedded within a quadtree

data structure. The theory and development of the CDF within the context of the technical

literature is given in Chapter 2. Chapter 2 also provides the context for understanding the

process of geometry definition to mesh generation for simulation. Our implementation of

the distance field tool is described in Chapter 3, including various applications of extracting

information and features of interest from the field.

1

Chapter 4 builds the implemented tools into the two main algorithms of this work. First

is a method for surface-oriented mesh generation from discrete surface points intended to

create a mesh oriented normally to the body. Contour levels of distance from the body

are specified and correspondences oriented normally to the contours are created. Regions

of merging fronts inside and between objects can be detected in the CDF and incorporated

automatically. The implicit representation of the geometry allows the input geometry to

originate from images or sufficiently dense point clouds with no connectivity information. In

the second method, the boundaries in a Voronoi diagram between specified coordinates are

detected in an adaptive fashion and used to make a Delaunay tessellation. Known properties

of Delaunay triangulations ensure that the elements are ”round.” Tessellation of regions with

holes is performed using ghost nodes.

Chapter 5 applies these algorithms to a set of test cases. A discussion also helps the

reader understand the capabilities and limitations of the implemented approaches. Chapter

6 concludes, including a discussion of possible extensions and directions for future work.

Background

Conservation laws such as conservation of energy or conservation of momentum arise

from symmetries in an underlying space [Noether, 1918]. A number of physical phenomena

in fields such as fluid dynamics, solid mechanics, and electromagnetics can be modeled for

engineering use by casting conservation laws as partial differential equations (PDEs). Some

famous systems are the Navier-Stokes equations, Newton’s Laws, Lagrange’s equations, and

Maxwell’s equations. It is a fundamental role of an engineer to judge whether the model is

sufficiently accurate for the application.

In general, analytic solutions of these governing PDEs are difficult to obtain, so we

must resort to numerical solution. Note that our background is mainly in the equations

2

Figure 1.1 Density field for Euler flow over a triangular mesh

of computational fluid dynamics (CFD), and no distinction needs to be made between

integral and differential equations for this work. The traditional tools for solving the coupled,

nonlinear system of PDEs are the finite element, finite difference, and finite volume methods.

In these, the space is discretized into a mesh consisting of a finite number of elements with

connectivity, which cover the domain. Using these relationships and numerical methods,

the governing equations can be transformed into a system of algebraic equations [Thompson

et al., 1985]. The solution of these algebraic equations on the discretized domain produces

an approximation of the PDEs on the entire domain, where the accuracy of the approximate

solution depends on the discretization [Freitag and Ollivier-Gooch, 1997]. A universal

definition for a “good” grid does not exist and is heavily dependent on the particular problem

posed and the approach taken to solve the specific physics [Knupp, 2008]. Fig. 1.1 shows a

density field for transonic Euler flow over a 2D NACA0012 airfoil. The mesh is composed of

the triangular elements that cover the space, and the flow field can be used, for example, to

compute lift and drag on the airfoil.

3

Figure 1.2 A variety of meshing algorithms [Owen, 2005]

Although not a topic of this research, it is worth noting that there are alternatives to

these traditional methods. For example, particle methods establish algebraic equations for

the whole problem domain without the use of a predefined mesh. They scatter a set of nodes

within the problem domain and on the boundaries to represent the field so that no explicit

topology is required. A local reconstruction of the field is usually obtained through a moving

least-squares approach [Liu, 2003].

There exists an extensive literature for mesh generation with significant contributions

from computer graphics, computational geometry, and the field simulation communities. A

full review is beyond the scope of this work, but Fig. 1.2 shows a sampling of algorithms

with surveys given in [Owen, 1998] and [Thompson et al., 1985]. In this categorization, the

surface-oriented meshing lies in the unstructured, advancing layers region, and the Voronoi-

dual meshing lies in the unstructured, Delaunay category.

We can summarize the traditional approaches to meshing based on an alternate

categorization of extrusion, refinement, and smoothing. Extrusion is where points are created

4

off of a mesh or boundary that covers a local region of the domain. Techniques such as

advancing front and advancing layers are prime examples. Refinement is where we take a

coarse mesh of the domain and successively divide elements. Hierarchical adaptation and

Delaunay insertion algorithms are widely used techniques. Our approaches fall under this

category. Smoothing is where the coordinates of or connectivities between a known number

of nodes are adjusted. This would include techniques based on elliptic PDEs, transfinite

interpolation, and optimization. The relevant approaches are discussed more fully in Chapter

2.

Motivation

There are a number of practical CFD applications where the geometry is not defined by

parametric surfaces. For examples, Fig. 1.3 shows a possible transformation of a medical

image of an artery into a mesh, and markers used to reconstruct the flight of a dragonfly.

The medical applications may be used to better understand the human body and improve

healthcare. The analysis of dragonfly and hummingbird flight has applications in the design

of highly maneuverable small unmanned aerial vehicles. Some discussion of the research that

exists on these topics is included in Chapter 2.

To our knowledge, any geometry format can be transformed into a collection of points.

Our surface-oriented meshing algorithm leverages an implicit representation of the geometry

to base an approach on a discrete set of surface samples. Given a method for meshing these

geometries, our intent is to add tools to the fields that analyze such systems.

5

Figure 1.3 Examples of CFD applications not originating from parametric geometry [Moore
et al., 1999], [Dong et al., 2010]

Development

A brief summary of the core of the historical progression of this research project may be

helpful to the reader for orientation and synthesis.

For a research project looking to improve automatic target recognition software, the

author gained familiarity with the tools of image segmentation. Specifically, we focused on

the extraction of ships from images, including cases with atmospheric noise such as haze.

During this project, the author gained additional familiarity with level sets through studying

the active contour methods, and colleagues using level sets to measure geometric properties

of placentas defined through slices of medical images.

After a brief period of generating structured grids ”by hand” using Pointwise [Pointwise,

2012], the author was motivated to do research in the field of automated mesh generation.

Noting the motivating applications, initial research was conducted along the lines of that

presented in [Sethian, 1994]. Sethian’s work is discussed more fully in the technical

framework. For context, we present our unpublished approach here.

6

Given an image of an object, we segment the image using the tools in MATLAB’s

image processing toolbox [MATLAB, 2011]. This solid representation of the body is then

used to generate the distance field over a uniform mesh with the same dimensions as the

original image with MATLAB’s bwdist() function. The user then specifies the desired levels

for contours from the body. These contours are represented explicitly as polygons using

MATLAB’s contourc() function. At this point, we have explicit representations for the

body-fitting curves at the specified distance levels.

We then need the edges that traverse these level curves to form a mesh. Unlike the

approach taken in [Sethian, 1994], the user samples the surface by clicking in a GUI showing

the original image. To generate markers, these sample coordinates are then projected onto

the closest node in the polygonal representation of the surface. To create the transversals,

we create correspondences between levels by connecting a point on every level to the closest

point on the previous level and the next level. We identify the closest point by computing

the point to point distance to all points on the relevant level. We treat convex corners as a

special case by creating multiple markers to fill the resulting portion of the circle.

Figs. 1.4-1.5 show some sample results displayed as the locations of the markers overlayed

on contour curves. In Fig. 1.4, note how the sampling of the field, in effect, is determined by

the user’s original samples. The samples on the uniformly curved surface simply propagate

linearly outwards, and the markers split from the convex corners disperse. The concave

corner results in markers merging to a small tolerance. We term the regions of expansion

fans and regions of collapse shocks. Fig. 1.5 demonstrates the effects of choosing different

contour levels.

The ad hoc approach to resolving the shocks and fans of highly curved surfaces and the

lack of a robust method for running transversals between multiple objects led us to design

the surface-oriented approach presented in this work. A central distinction is the use of a

background mesh to sample the body-fitting curves rather than a sampling of the surface.

7

Figure 1.4 Body-fitting curves and markers about a cut circle for our preliminary surface-
oriented meshing

Thus, we capture the features implicit to the shape information embedded in the field and

allow the sampling to be a natural product of the features themselves.

Given this surface-oriented meshing tool, we realized that the background mesh could

be adapted to a variety of features, not simply distance levels. The Voronoi-dual meshing

approach is an example of this adaptation. It exploits adaptation to cells with multiple

points to search for edges in a Voronoi diagram.

Given an introduction to the field and specific context on the author’s experience with

this work, we proceed to discuss some work of the broader technical community.

8

Figure 1.5 Body-fitting curves and markers about various rectangles for our preliminary
surface-oriented meshing

9

CHAPTER 2

TECHNICAL FRAMEWORK

In this chapter, we provide the technical context for each component of our work. We

begin with the intended applications and geometries for the surface-oriented meshing. Then,

we discuss the distance field and its properties, including its connection to the Voronoi

diagram. Using the implicit representation of the shape of the geometry in the distance

field, we discuss methods to extract various features. These features include the tracking,

representation, and evolution of curves in the field.

Applications

Mesh generation is a widely used tool in computational physics, geometry, and vision.

Our work can be applied to a number of problems in each of these areas. We discuss one

of the motivating problems for this work, biological simulation and specifically biomedical

simulation.

Biological Simulation

A possible application (after significant work) of our surface-oriented meshing algorithm

is to create CFD meshes for biological flows. As such, we provide a brief introduction to

some relevant research. In these cases, CFD is used as an analysis tool to better understand

certain flow parameters or to guide design.

A practical summary of medical imaging and guide to the use of the Insight Toolkit

for manipulating real data is given in [Yoo, 2004]. Most medical images come in the form

10

of regularly gridded images, originating from some scanning method. ”Imaging modalities

currently in use are: Digital Subtraction Angiography (DSA), Magnetic Resonance Angiog-

raphy (MRA), Computed Tomography (CT), and Xenon-CT (XeCT). The overall quality

(sharpness) of medical images depends not only on hardware factors (resolution, wavelength,

etc.), but also on the type of contrast agent used, the skill of the radiologist and patient-

specific factors” [Löhner et al., 2003]. Considerable work has been done on automatically

extracting the geometries of interest from ”noisy” images.

It may also take considerable work to obtain more than qualitative results. As [Prakash

and Ethier, 2001] demonstrated through the use of adaptively refined meshes, extremely fine

local mesh densities are required to resolve the gradient of the velocity field to within 10%.

This suggests that virtually all CFD studies based on meshes created using image-based

techniques are under-resolved in terms of element density [Steinman, 2002].

Voxelisation

In the simplest form, a voxel in the image that corresponds to the anatomy of interest

is converted to a cubic element in the finite element mesh. Smoothing of the surface can be

performed to avoid artifacts in the flow field resulting from pixelated boundaries. The work

in [Keyak et al., 1993] takes these approaches to generate a mesh directly from a data set of

stacked images.

Models

When knowledge of the geometry is known before meshing, we can create a map between

a specific geometry and a model. If the model is analytically defined, we can then apply a full

realm of mesh generation techniques. In [Wang, 2001], analytic surfaces are lofted through

11

Figure 2.1 Analytic model of a vessel made by lofting surfaces through contours [Wang, 2001]

Figure 2.2 Markers used to reconstruct dragonfly motion [Dong et al., 2010]

profiles representing cross-sections of blood channels as shown in Fig. 2.1. The surface mesh

is generated through the finite octree technique of [Shephard and Georges, 1991].

Another approach is given in [Pivkin et al., 2005]. Markers on a bat’s body and wings are

used to define the motion of a polygonal representation for simulation. Similar work is given

in [Dong et al., 2010] on simulating the flight of a dragonfly. Fig. 2.2 shows the integration

of the markers to reconstruct the surfaces of the wings.

12

Input Data

For our surface-oriented meshing algorithm, we require a description of the surface with

a collection of points. As discussed, a practical source of such inputs could be medical

imaging including digital images, MRI and CT scans, and ultrasounds [Steinman, 2002].

The precision of an input can range from a point cloud to an analytical surface.

For simple generality, we designed our algorithms to generate the distance field based

on surface points. Each type of input data has a corresponding literature on dealing with

noise. For examples, point clouds may have errors in the coordinates or gaps in the surface

[Remondino and El-Hakim, 2006] and CAD models may have overlaps or holes [Barequet

and Kumar, 1997]. As most of our work has been done on images, we focus our discussion

to this field.

Digital Image Processing

If the input is a digital image, we make use of the tools of the image segmentation

community to extract the surface. In our framework, segmentation converts the given

image to binary with black objects and a white background. The literature is extensive and

numerous approaches exist including thresholding, clustering, and level set based approaches.

The particular goals of the segmentation and character of the data (e.g. noise) are driving

factors. Reducing the surface to a set of points loses the connectivity information we can

expect to obtain from the segmentation. For certain future cases, it may be worthwhile to

maintain this information as, say, boundary edges.

For concreteness, we introduce morphology for preparing images and histograms and

active contours for segmentation. This discussion is taken from a previous research project.

13

Morphology

Mathematical morphology is rooted in understanding images as being composed of

objects in space. The purpose of the morphological framework is to describe the spatial

organization of these objects within the image. Morphology’s goal is to produce a simpler

but representative derivative of the original image by managing the loss of unnecessary

information through successive transformations [Serra, 1986]. The key to using mathematical

morphology effectively is a solid understanding of the fundamental operations used to

transform images in order to reveal their essential shape characteristics and eliminate

irrelevancies [Haralick et al., 1987]. A summary of several basic operations using the language

of set theory to represent the geometric manipulations follows.

There is a hierarchy of complexity to morphological operations. The foundation to this

hierarchy is the structuring element. In general, the structuring element prescribes the

neighborhood in the image about which we examine each pixel. For the most effective

operations, it should be in the shape of the objects sought. The size is critical because

only objects smaller than the structuring element will be affected by transformations. Next

in the hierarchy are the two fundamental operations: erosion and dilation. If we express

the reflection of a set B about some origin (that of the structuring element for us) by

Br = {p : p = −b ∀b ∈ B} and translation by Bx = {p : p = b + x ∀b ∈ B}, then we can

define the dilation of a set A by B as:

A⊕B = {x : Br
x ∩ A 6= ∅}. (2.1)

Similarly, the erosion of A by B is defined as:

A	B = {x : Bx ⊆ A}. (2.2)

14

We can think of dilation as expanding an image by increasing the valleys and enlarging

the maxima and erosion as a shrinking operation that reduces the peaks and enlarges the

minima [Maragos and Schafer, 1990]. While erosion and dilation are not inverses, they are

duals in that the erosion of the foreground of an image is equivalent to the dilation of the

background.

The power of morphology lies in the successive use of the erosion and dilation operations.

As examples, we will describe the opening and closing operations in detail. The opening of

A by B is defined as:

A ◦B = (A	B)⊕B (2.3)

The erosion then dilation operation tends to “blob” an image by rounding objects from the

inside, i.e. opening smooths by cutting down peaks. Analogously, the closing of A by B is:

A •B = (A⊕B)	B (2.4)

Dilation then erosion tends to sharpen by smoothing from the outside, i.e. closing smooths

by filling in valleys. Fig. 2.3 summarizes these operations.

Opening and closing both change the features of the image. To attenuate this impact, we

can reconstruct the image from a subset by iteratively dilating the subset and intersecting

the dilation with the original image until idempotence [Vincent, 1993]. Concretely, if we let

J ⊂ I, then the reconstruction ρI(J) of mask I from marker J is the union of the connected

components of I which contain at least a pixel of J. Functionally, reconstruction is the limit

of the following operation with a small structuring element B :

ρI(J) = ((J ⊕B) ∩ I)⊕B) ∩ I... (2.5)

15

Figure 2.3 An example of several morphological operations [Maragos and Schafer, 1990]

These tools can be combined in a multitude of ways. To find a boundary of an object

within the image, we can compare the original image and an eroded version:

∂A = A− (A	B) (2.6)

To eliminate salt and pepper noise, we can open A by B and close the result by B. To operate

on grayscale images, we simply need to alter the constructions of erosion and dilation so that

they operate as local minimum and maximum operators within the neighborhood defined by

the structuring element.

These operations are tools to transform an image by emphasizing the desired features. To

actually segment an image, the traditional tool in morphology is the watershed transform.

As described in [Haris et al., 1998], the motivation for the watershed transformation lies in

conceiving of the eventual gradient of the original image as a topographical map with regions

of high change corresponding to low points on the topographical surface. The local minima

16

in this topographical surface are then pierced and the entire surface is submerged. As the

surface fills from the basins surrounding the minima and the water climbs up the surface,

water from different basins will begin to meet. These meeting points are the watershed

boundaries dividing the catchment basins.

The high sensitivity to noise of the watersheds algorithm yields a very large number of

catchment basins, leading to over-segmentation. Prior to the application of the watershed

transform, the intensity image can be modified so that its regional minima are identical

to a predetermined set of markers. This method achieves the suppression of the minima

not related to the markers by applying geodesic reconstruction techniques and can be

implemented efficiently using queues of pixels.

Because of the problem with over-segmentation, we have found morphology to be more

useful to clean the image rather than use it as a segmentation method. This type of use

is well documented. Morphological filtering allows for greater flexibility than median-type

filters while better preserving edges [Rodŕıguez et al., 2002]. In [Nallaperumal et al., 2006],

morphology was used to segment an image corrupted with noise. The segmentation algorithm

involves three passes. In the first pass, the image is preprocessed by using an Iterative

Adaptive Switching median filter which reduces the impact of impulses that cause over

segmentation. In the second pass, the multiple scales of bright and dark features of different

objects are extracted by the respective opening and closing of the preprocessed image. The

resultant image is binarized using an optimum threshold, obtained by the fuzzy Gaussian

measure. The process is repeated for multiple scales of the structuring element until all the

features are extracted. In the last pass, valid segments of the bright top-hat (the difference

between an image and its opening) and dark bottom-hat (the difference between an image

and its closing) images are detected and the contours of these images are combined to give the

final segmented image. In [Lee and Wong, 1996], morphology was used to segment images

highly corrupted by noise. They separate the foreground speck noise, the object surface

17

and the noisy background in the image by means of the grayscale skeleton transformation

(morphological thinning) and the concept of maximal inscribed blocks. By removing the

varying background and speck noise, the image is enhanced. To successfully recognize and

separate the unwanted components, a size characterization algorithm is formulated based on

the grayscale morphological opening. Finally, a global thresholding can be applied to the

enhanced image to obtain the object from the background.

Histograms

In general, a histogram measures the frequency of occurrence of a certain feature. The

histogram itself is a graphical display of those frequencies as a bar chart. The histogram of

a grayscale image with a bar (or bin) every unit will display the number of pixels with each

integer intensity value from 0 to 255. If an image contains intra-uniform and inter-distinct

regions, the histogram will contain distinct and separable humps. To isolate any particular

region, we threshold away any humps that do not correspond to that region. Fig. 2.4 shows

an example of separating the humps to isolate the ship and sea from the sky. The ship and

sea can then be separated through the horizon.

The exploitable characteristics of the histogram are the features being counted (i.e. the

color space under consideration) and the thresholding method used to distinguish between

humps or objects. Both are well documented.

A summary of the different color spaces can be found in [Chang et al., 2001]. For use of

HSV space instead of RGB for color image segmentation, see [Sural et al., 2002]. We can also

combine histograms in different spaces, fusing the pieces together for a more comprehensive

result [Kurugollu et al., 2001]. An extensive summary of thresholding is found in [Sezgin

and Sankur, 2004]. Typically the valleys are used as thresholding locations since peaks

correspond to objects. Iterative thresholding can be applied to find the correct number of

18

Figure 2.4 Histogram segmentation based on distinct objects

objects as in [Chang and Wang, 1997], but iterating the threshold based on the quality of

the segmented result is a much more sophisticated and involved task.

19

Active Contours

Active contours algorithms use level sets to subject an initial contour to constraints from

an image, thus evolving the contour to boundaries of objects in the image. First proposed

in [Kass et al., 1988], classical active contours algorithms evolve this initial contour by

minimizing a functional with terms for curve smoothness and intensity changes of adjacent

pixels (numerical gradients of intensity functions). By using level sets to formulate the

minimization, they allow for sudden topological changes like corners or cusps. These classical

methods generally use either parametrically defined active contours or contours based on

geometric minimal distance curves, as in [Caselles et al., 1997]. However, their reliance on

gradients means that the classical algorithms perform poorly with blurred images which do

not have sharply defined intensity changes at object boundaries. Various modifications have

been proposed, including use of an external force based on gradients in the image [Xu and

Prince, 1998], but this method still relies on gradient changes to segment an image.

To improve upon classical active contours models, Chan and Vese propose an active

contours algorithm that does not rely on edge detection and intensity changes [Chan and

Vese, 2001]. They assume that the image should be segmented into two regions (background

and foreground), both of approximately uniform intensity. If C is the initial contour on an

image, they show that the functional

F =

∫
inside(C)

(u− c1)2 dx dy +

∫
outside(C)

(u− c2)2 dx dy (2.7)

is minimized with respect to C when C is the boundary of the object in the image. In this

equation, u is the intensity of the image, c1 the average intensity inside C, and c2 the average

intensity outside C.

20

Figure 2.5 Active contour segmentation based on minimizing energy [Chan and Vese, 2001]

To control for noise, Chan and Vese add a length term µ × length(C), arriving at the

following functional

F = µ× length(C) + λ1

∫
inside(C)

(u− c1)2 dx dy + λ2

∫
outside(C)

(u− c2)2 dx dy (2.8)

where λ1 and λ2 are fixed parameters. The length term smooths the contour and avoids

intricate boundaries that consider noise. Fig. 2.5 shows results for various choices of

parameters.

The functional F represents a special case of the Mumford-Shah energy functional,

proposed in 1989 as a method of image segmentation [Mumford and Shah, 1989]. The

length term encourages a smooth contour and the other terms minimize regional variation.

Chan and Vese propose minimizing F with a numerical approximation of level sets, a method

developed in [Osher and Sethian, 1988]. Since then, several other active contours methods

21

have been proposed using versions of these equations. For example, MATLAB and C source

codes have been made available for the work in [Bresson et al., 2007] by Bresson.

A particularly useful result of obtaining the object from segmentation is that the geometry

may be made quickly using any standard image manipulation software (e.g. Paint). We can

make use of tools based on all three approaches depending on the character of the input

image.

Hierarchical

A tree is a fundamental data structure with a correspondingly large number of

applications. Hierarchical meshing approaches are rooted in the tree structure and use

some form of regular splitting of cells to obtain leaves that cover the domain. We can divide

the field according to the type of cell and dimension (e.g. square, hexahedron, tetrahedron),

subdivision conditions, and treatment of boundaries. Of particular importance to our work

is the adaptation capabilities of the branching structure coupled with an organization of

space.

For clarity, we discuss the application of isosurface tracking. An early work is that of

[Bloomenthal, 1988], where distance values to the surface are stored in the corners of cells

in an octree. In order to capture an isosurface defined implicitly by a distance level to

the original surface, two methods of adapting the local resolution are presented. The first

is what we term root-down and involves recursively subdividing cubes that intersect the

surface. Depending on the subdivision criteria, small surface detail may not be captured by

a large cell and thus not trigger refinement. The other is what we term surface-out. Here,

a small (relative to surface detail) initial seed cell is identified on the surface. New cells are

obtained by propagating along cell edges that cross the surface. Obtaining the initial seed

may require significant work. Figs. 2.6 and 2.7 show both of these approaches.

22

Figure 2.6 Root-down octree subdivision [Bloomenthal, 1988]

Figure 2.7 Surface-out front tracking [Bloomenthal, 1988]

23

Anisotropic refinement can reduce the number of cells that are required to accurately

resolve complex geometries. In [Domel and Karman, 2000], an omni-tree allowed cells to

be split in any combination of the three Cartesian directions with a limited aspect ratio. A

control on gradation of the sizes of leaves over a region is important for some applications

and can be enforced through refinement based on local neighbor properties.

Boundaries

The axis-aligned framework is an inherent barrier to resolving boundaries. While we can

flag cells as inside or outside the domain defined by the surface, taking the hierarchical cells

results in an integer approximation to the surface. For cases when a pixelated resolution is

not sufficient, there are a number of approaches to better approximating the surface with

the mesh:

• Cut cell

• Smooth surface nodes

• Buffer layers

There are alternate approaches that rely on the PDEs solver to generate the effects

of boundaries by distributing forces over immersed boundaries, see [Yang et al., 2007] for

example. We will only discuss methods that represent the boundary explicitly in the mesh.

Cut cell

The cut cell method is an extension of creating a pixelated representation of the boundary.

If we frame this as a problem of meshing an isosurface, all of the techniques discussed in

the isosurface meshing section apply. In short, the definition of the surface is used to create

additional nodes in the cell through the determination of intersections. Those points are then

connected inside and between cells. This introduces a polygonal surface on the boundary.

24

The method in [Coirier et al., 1996] uses the polygon clipping algorithm of [Sutherland

and Hodgman, 1974]. This cutting can produce sliver cells that need to be optimized before

attempting a numerical solution.

Smooth surface nodes

We can also better approximate the surface without changing the connectivity by

adjusting the coordinates of the nodes on the pixelated boundary. The approach taken

in [Dawes et al., 2007] is to project the octree front onto the surface through an optimizer

based on following the local gradient of the distance field. A schematic is shown in Fig. 2.8.

25

Figure 2.8 An example of projecting an integer boundary to the surface [Dawes et al., 2007]

Buffer layers

If we can accept hybrid meshes, better quality and flexibility may be obtained by utilizing

a method designed for creating more resolved meshes near surfaces. A representative

approach is given in [Druyor Jr, 2012] and shown in Fig. 2.9. Here, cells are cut to

allow sufficient space between the surface and the integer front. A simple advancing layers

algorithm based on normals at the nodes is then used to extrude the surface layers. The

extrusion stops locally if a front merges sharply or separate fronts collide. The outer layer

of the extrusion is then stitched to the integer front with a Delaunay triangulation.

We utilize a quadtree hierarchy as a core structure in our algorithms. The surface-

oriented meshing to be presented may also be applied as a method of inserting buffer layers

in a hierarchical mesh.

26

Figure 2.9 An example of buffer layers in a hierarchical mesh [Druyor Jr, 2012]

Distance field

The distance field is the most fundamental aspect of this research. The following concepts

are key to both of the meshing applications presented in Chapter ??. Given a set S in a

metric space M, the value of the unsigned distance field at a point p0 in M is

d(p0) = inf
s∈S
||p0 − s||. (2.9)

For this work, the metric is the squared Euclidean distance (d(p0, p1) = ∆x2 + ∆y2), and

d represents the function in the level set definition. Fig. 2.10 shows contours in the field

generated by four points. Note how the contours emanate as circular curves until the offset

curves interact.

There are a number of techniques and applications of the distance field to computer

graphics, physics, and geometry [Jones et al., 2006]. Research is divided between applications

of shape information (skeletonisation, rendering, etc.) and fundamental algorithms for

calculating the field [Satherley and Jones, 2001]. Among the representations are signed

distance fields distinguishing between the inside and outside of objects, vector distance fields

27

Figure 2.10 Contours of the distance field generated from four points

to the closest point in S, and correspondence distance fields that store the points in S that

generate the local distance field.

28

Motivation

The use of an implicit representation to handle a wide variety of geometry definitions is

not a novel approach. Fig. 2.11 shows the flexibility that this approach provides. In [Freytag

et al., 2006], the flexibility is taken even further to use the implicit representation directly

for simulating physics.

We can also extract information about the shape to guide the construction of an explicit

representation such as a mesh. One particular relationship of interest is the connection

between curve offsets and the local normal. A differential geometric definition of a normal

to a surface is defined through derivatives and tangent planes [McCleary, 1994]. We utilize

a dual notion of a normal based on offset curves.

Given a curve offset from a surface at length l, we define the normal direction(s) at each

surface point to be the vectors to the closest point(s) on the offset curve. The local normal

is thus obtained by creating correspondences among neighboring contour levels. For a given

offset length, the normal then provides the direction of travel that yields the farthest distance

from the surface.

It is through this direction of steepest descent that we can link the dual concepts. If l is

infinitesimal, the offset curve and differential normals are both gradients of the distance field

(except where the differential normal does not exist, for example at corners). For the offset

normals, the choice of l provides a parameter for specifying the local region of influence. Our

idea of offset curves is to imitate an extrusion of the surface near the body so the precise

distance needs to be a function of the features of interest in a given geometry.

An intuitive understanding of offset curves is helpful for understanding the surface-

oriented meshing algorithm. Fig. 2.12 is of a simple case of a right angle. If we offset

the curve outward (to the top left), we see that the flat parts of the original surface are

simply copied over. However, the convex corner creates the portion of the circle. If we offset

29

Figure 2.11 Using an implicit representation to manage various types of geometries [Freytag
et al., 2006]

Figure 2.12 Offset curves for a right angle

30

inward, we see the same behavior with the flat regions, but the concave corner collapses to

a single point. There is a generation and destruction of material along offset curves based

on the curvature of the surface.

More generally, offset curves can merge and interact. It is because of these interactions

that offsetting is not invertible. Each of these merging regions is a subset of the medial axis

[Pizer et al., 1994]. The medial axis is formally defined as the locus of the centers of the

maximal spheres inscribed within an object. Fig. 2.13 shows these maximal spheres and

interactions inside of a leaf shape. One of the most salient properties of the distance field

representation is the natural embedding of these merging regions.

31

Figure 2.13 Medial axis examples [Katz and Pizer, 2003]

32

Computation through Spatial Partitioning

Considering the definition in Eq. 2.9, we see that the distance value at a point is a function

of every point in S. It is inefficient and likely prohibitive for an algorithm to perform all of

these operations for every point in the field. Attempts to reduce this cost by localizing

computations through approximations are collectively termed transform methods. A full

discussion of a number of transform methods is given in [Cuisenaire, 1999].

One type of approach is to limit the number of points that can influence the considered

location in the field. This can be inexact or exact. We focus on exact methods that utilize

a method of spatial partitioning, either marching or restricting from known values.

We can exploit the spatial organization and adaptivity of a hierarchical data structure

to reduce the number of distance computations. A crucial property is that the distance field

over a a subset of a cell is covered by the distance field over the original cell. Thus, we

can avoid sampling in regions that are not of interest. Moreover, we can approximate the

distance values of a subset from the original cell. For octrees, a common approach is to use

trilinear interpolation to reconstruct the field to subcell accuracy.

As emphasized in [Frisken et al., 2000] in the development of adaptively sampled distance

fields, large meshes are required for regularly sampled distance fields when any fine detail

is present, even if the detail is only in a small, localized portion of the volume. The use of

of a tree structure allows for arbitrarily high sampling frequencies and storage for efficient

access of shape information. In Fig. 2.14, the top right R was generated by subdiving to a

predetermined resolution and has 23,573 cells. The bottom right R has 1,713 cells and was

generated by subdividing a boundary cell when its distance field was not well-approximated

by a bilinear interpolation of its corner values. To determine whether an adaptive appraoch

is more efficient than using a uniform mesh, we must also account for the structure and

operations necessary to achieve the adaptation.

33

Figure 2.14 An example of adaptive hierarchical sampling [Frisken et al., 2000]

Voronoi Meshing

For a finite collection of points P and sites S, define the Voronoi map of p0 ∈ P to S as

V (p0) = s such that ||s− p0|| is a minimum. This map associates every point in a set to the

closest point in another set. Intuitively, this partitions a set into its nearest neighbors. A

point equidistant to two sites will be mapped to both of them. For the rest of our discussion

in this work, the norm is the Euclidean distance.

Fig. 2.15 shows a simple case, where the points generate the distance field, and the lines

represent regions where points are equidistant. The polygons are regions of the plane that

are mapped to the enclosed site.

The Voronoi diagram is a graphical representation of the mapping, and its history

can be traced to the middle of the nineteenth century with a number of applications.

Emphasis has been on its use in modeling natural phenomena in fields such as crystallography

34

Figure 2.15 A Voronoi diagram for eight sites [Aurenhammer, 1991]

and meteorology, character as a mathematical object, and computational construction and

representation [Aurenhammer, 1991].

In R2, a dual construct is the Delaunay triangulation, which consists of a line segment

between two sites in the plane if their Voronoi regions share an edge. Co-circular points

are a special case as any number of points can share a vertex at the center of the circle.

An important feature of a Delaunay triangulation is that it maximizes the minimum angle

over all triangulations of a given set of sites [Lawson, 1986]. Delaunay refinement of a given

triangulation will eliminate elements of ”poor quality” [Shewchuk, 2002a]. For finite element

simulations, poorly shaped elements can affect the numerical accuracy and algorithmic

efficiency [Freitag and Ollivier-Gooch, 1997]. For example, as element angles become too

large, the discretization error increases [Babuska and Aziz, 1976]. As angles become too

small, the condition number of the element matrix increases [Fried, 1972].

There are a number of algorithms for forming Delaunay triangulations including Bowyer-

Watson’s, Lawson’s, Fortune’s, and divide and conquer. Our focus is on the approaches

based on the distance field. These rely on detecting merging regions in the distance field.

In [Maignan and Gruau, 2008], boundaries of the medial axis are detected as local

maxima. In [Xia and Tucker, 2009], the Laplacian or determinant of the Hessian of the

35

distance field are used. [Vleugels and Overmars, 1998] approximates Voronoi maps in any

dimension to a specified precision by locally refining hypercubes in regions of interest. More

efficient identification of those regions is accomplished by exploiting the connectedness of

the medial axis.

There are cases where we wish to guarantee that a particular set of edges appears in

the Delaunay triangulation. Approaches that enforce certain edges are termed constrained

Delaunay approaches. Note that satisfying this constraint will likely sacrifice the Delaunay

properties locally. The main categories are constructive and recovery methods. Constructive

methods enforce the existence of the constrained edges through the entirety of the

triangulation process. Recovery methods treat the constraint by post-processing the resulting

triangulation. A common approach is to flip edges of the triangulation until the constrained

edge appears in the mesh.

Normal Evolution of Fronts

For certain types of physics, an intentional orientation of the mesh may increase the

accuracy of a simulation. For example, to resolve high gradients in flow properties near the

surface in high Reynolds number flow over an object, small spacing normal to the surface is

needed in order to have an acceptable number of elements [Ito and Nakahashi, 2002].

We can classify the typical approaches to obtaining a normal orientation into two broad

approaches:

• Explicit/Lagrangian/particle/advancing layers approach

• Implicit/Eulerian/field/level set approach

Explicit approaches represent the topology of the front directly by storing the nodes and their

connectivities. Collisions between fronts must be resolved on the level of these nodes and

36

connectivities. Implicit approaches embed the front and its topological information within

a field. Collisions are naturally handled within the field.

Explicit

A Lagrangian approach to evolving a front is to discretize the front into markers and

evolve the individual markers according to the proper equations of motion. This method is

entirely natural and particularly useful if the curve does not interact with itself since the

markers can move independently. However, it is difficult to resolve changes in topology

because of this independence. Surgery or reconnection methods are required when the

markers merge or diverge. An effective implementation of this approach is given in [Leung

and Zhao, 2009], including interface movement in the normal direction.

Applied to mesh generation, a standard and industrialized approach is the advancing

layers algorithm. Here, a mesh of the object’s surface is marched normal to itself based on

a differential geometric conception of a local normal as shown in Fig. 2.16.

Consider approximating a sphere as a soccer ball and extruding the vertices between

panels outwards based on a local normal direction. Given a discretization of the surface, the

necessary elements to this approach are a way to define the surface normals and a heuristic

to resolve collisions and separations of neighboring faces. The idea relies on an accurate

original representation of the surface because the algorithm is primarily local.

Another approach is to offset the faces instead of the nodes. As described in [Jiao, 2007],

planar faces are moved under advective or wavefrontal motion. The nodes are reconstructed

through an eigenvalue analysis of the incident planes and redistributed in the interests of

mesh quality.

37

Figure 2.16 An example of advancing layers meshing [Garimella and Shephard, 1998]

Implicit

For our purposes, it is sufficient to define the level set of a function f : Rn → R as the

collection of points p ∈ Rn such that f(p) = c for some scalar c ∈ R. Level sets arise as a

natural way to examine the behavior of a higher dimensional function. The specific character

of a level set is intimately related to the function f . A familiar example is a topographical

map of terrain altitudes. Fig. 2.17 shows a collection of level sets used in modelling crack

propagation in [Colombo and Massin, 2011].

An Eulerian approach to front evolution involves using scalar functions with the interface

embedded within a field. The level set approach is to evolve an n-dimensional curve by

traversing the level sets of an n+1-dimensional surface. Topological change is natural

and curve self-independence is difficult to achieve. See [Osher and Sethian, 1988] for the

foundation of the method, where the offset curves are weak solutions to the eikonal equation

[Wang et al., 2005]. Considerable research has been done on the choice of stencil and

numerical schemes for approximating derivatives, and narrow band methods reduce the

38

Figure 2.17 Level sets used to model crack propagation [Colombo and Massin, 2011]

computational cost. If the curve propagates “one way”, a more efficient implementation

is the fast marching method [Sethian, 1996].

For concreteness, consider the evolution of a shrinking square. We embed the 2D square

into a 3D surface, here a four-sided pyramid like those in Giza. If we imagine the initial

square as the stone blocks making up one layer, then shrinking that square is like considering

higher levels of the pyramid. Eventually, we come to the tip of the pyramid as the square

shrinks to a point.

In [Sethian, 1994], Sethian provides an application of level sets to grid generation. In

this work, the curve is transformed into the zero-level contour of a distance field from the

surface. The curve is then moved with velocity based on the local curvature and normal,

both intrinsic to the level set. Using upwinding numerics where conflicting fronts of the

curve merge, these body-fitting curves are generated with larger spacing in concave regions

and smaller in convex. The original curve is parametrized by arc length to form markers,

which are then run normal to the body-fitting curves. The paths of these markers cannot

merge if curvature was incorporated into the evolution of the body-fitting curves. Spacing

constraints are incorporated into layers away from the body by penalizing deviations in cell

sizes tangential to the body, thus trading orthogonality far from the body for more consistent

39

Figure 2.18 An example of Sethian’s grid generation method using level sets [Sethian, 1994]

spacing in the grid. Special care is given to place markers at fan points to ensure that the

grid limits the rarefaction from the diverging normal directions. The entire approach creates

a body-fitted structured grid with automatically detected special points at corners as shown

in Fig. 2.18.

While we categorized explicit and implicit techniques separately, these approaches can be

combined to benefit from using both together. In [Enright et al., 2002], Lagrangian marker

particles are used to rebuild the level set in regions which are under-resolved. The origin of

the work is to simulate advecting fluid flow. For regions where the mesh is not sufficiently

dense, Eulerian capturing methods can not accurately tell if characteristics merge, separate,

or are parallel. The weak solution calculated with level sets can delete characteristics

when they appear to be merging. Additional information is exploited from markers placed

randomly along the interface. If the markers cross the interface by a certain tolerance, there

is an error in the representation of the level set locally. The characteristics tracked by these

crossing markers are used to regain a higher order of accuracy.

40

While we rely on the theory of level sets, we do not use evolution functions requiring the

numerical solution of PDEs. However, in principle, our approach could also be applied to a

more complex field.

Isosurface Meshing

The goal is to have a tessellated representation of a level set in a field that approximates

the isosurface. Although not necessarily explicitly stated in the works that follow, the level

set is typically assumed to be at least piecewise continuous.

Analytical

One approach is to first generate an approximation of the isosurface with an interpolation,

with the most general form being a NURBS surface in practice. A mesh can then be

generated on the analytical surface through sampling, structured mappings, or one of the

other approaches below.

A practical example of the use of such an analytical surface is discussed in the [biomedical

models] subsection. The analytical surface can be used to provide both a precise surface

definition and a local topology for ordering.

Mapping

Structured grid generation has a long history of mapping simple domains with a known

mesh to the domain of interest. As this field is tangential to our work, we will provide only

a few examples of approaches.

Transfinite interpolation is an industrialized approach utilizing algebraic operations to

interpolate coordinates between specified boundaries [Gordon and Hall, 1973]. The boundary

41

points are required to map one-to-one, and smoothing functions can be used to attempt to

achieve a desired clustering.

Conformal mapping is a classical approach with a strong underlying mathematical theory

in complex analysis. By conformal, we mean that the angles between edges are preserved

under the transformation. The Riemann mapping theorem proves a critical property that,

for two topological disks, there exists a conformal map between the interiors. The meat

of the problem then becomes constructing the map between the two spaces. Specific

recommendations and tools can be found in [Ives, 1982].

Cell division/Templates

For a field embedded in a background mesh with some regularity, this is a common

approach.

[Teran et al., 2005] generates tetrahedral meshes suitable for deformation simulations by

subdividing based on local curvature and distance to the surface. The surface is then better

approximated by ”compressing” the hierarchical front to the boundary with a relaxation

algorithm.

Marching cubes and its descendants [Lorensen and Cline, 1987],[Chernyaev, 1995] are

popular algorithms. The methods classify vertices as positive or negative, according to their

comparison with a given isovalue. Then, a lookup table is used to tile the surface inside the

cube. The original lookup table may lead to cracks or incorrect topology and is shown in

Fig. 2.19. Interpolation of the field can be performed on the relevant edges to obtain the

coordinates.

While the templates are designed to cover the possible configurations of the corner values,

the actual isosurface within the cell may have a complicated shape and topology which cannot

42

Figure 2.19 Lookup table for original Marching Cubes algorithm [Lorensen and Cline, 1987]

be reconstructed correctly using Marching Cubes. [Natarajan, 1994] use saddle information

of a linear interpolation in the interior and faces to determine the proper polygonization.

Dual cube methods generate a node for each cell that crosses the isosurface. Since the

vertices are not restricted to lie on an edge, the resulting polygons typically have better

aspect ratios. Extended marching cubes is a hybrid method that uses normal information

to identify cells with features. It uses Marching Cubes in featureless cubes, and a vertex

placed to minimize a quadratic functional in cubes with features. Dual contouring [Ju et al.,

2002] uses a quadratic error functional in all cubes to position vertices. For every edge that

crosses the isosurface, a quad connects the four cells that contain the edge.

These approaches to sampling are summarized in Fig. 2.20.

We can also perform a Delaunay-like refinement algorithm with some concept of error to

the surface. [Boissonnat and Oudot, 2005] inserts points in the centers of Delaunay balls to

obtain successively better approximations.

43

Figure 2.20 An example of sampling for MC, EMC, and dual contouring [Ju et al., 2002]

Advancing Front

Given an initial mesh, the goal is to cover the domain by continuing to add cells to the

front. A number of approaches exist for determining where to add elements. For examples,

[Frey and Borouchaki, 2003] uses notions of curvature, and [Schreiner et al., 2006] focuses

on generating a guidance field for edge and triangle sizes. [Schöberl, 1997] provides an

abstraction for the rules used to generate elements.

Paving and plastering are methods designed to create all square or hexahedral meshes.

In [Staten et al., 2005], rows are advanced from the boundaries and the voids between the

expanding fronts must be resolved with squares. Fig. 2.21 shows an example from this work.

44

Figure 2.21 Unconstrained paving of multiple regions [Staten et al., 2005]

45

CHAPTER 3

TOOLS

In this chapter, we describe our implementation of the CDF and some of its basic

applications. These tools are our implementations of the concepts presented in Chapter

2. The reader may find it worthwhile to refer back to this chapter when reading Chapter 4.

Except where noted, all software was implemented in C++ and makes extensive use of

classes and dynamic memory allocation.

CDF Computation

We use a quadtree to represent the spatial domain and compute bounds on the distance

over the quadtree squares to the surface points. The correspondence information of the

surface points that generate those distance bounds is also stored.

Spatial Quadtree

We make use of the simple, isotropic, and hierarchical structure of the quadtree to

organize space. The quadtree also has a clear extension to an octree in 3D. Examples

of the quadtree structure are given in Figs. 3.1 and 3.2 for tree and spatial representations,

respectively. Each parent is divided into four cells by halving along each axis.

Each cell contains pointers to its parent and child cells. An integer tag is used mainly as

an index into the OwnPt array. A cell-centered approach is taken, which allows us to avoid

creating unique nodes that are shared between cells.

46

Figure 3.1 Tree representation of three levels in a quadtree

Figure 3.2 Voxel representation of five levels in a quadtree

47

Data Structure

We term each cell in the tree a voxel. Each voxel object stores the following information:

Type Description

double[2] x, y coordinate of lower left corner

double Side length of square

Voxel* Parent voxel

(Voxel*)[4] Child voxels ordered lower left to top left

int Used for utility and indexing

The root of the tree can be identified as the Voxel with no parent. The leaves are the

Voxels with no children. The relevant pointer is set to NULL in each case. The memory for

the children is only allocated when the Voxel is subdivided.

Note that we can allocate memory for each voxel’s four children together in a contiguous

chunk from the heap, so we actually only need one pointer that can be incremented to access

all four children. Also, after development of the final versions of our algorithms, the link to

the parent voxel is never utilized, so it can be removed from the data structure. This savings

should be included in any future versions.

There is a trade-off between storing information and re-calculating. As a general rule, we

store the information that does not change and is reused. Thus, for example, the coordinates

of a voxel are stored, but its leaf neighbors are not as the tree continues to branch under

adaptation.

Neighbor Finding

In the surface-oriented meshing algorithm, we need to find the leaves surrounding a given

leaf for contouring features and performing a flood-fill operation. We obtain these neighbors

48

Figure 3.3 Objects for capturing corner, face, and all neighbors of a voxel

from the quadtree structure. There are several approaches to finding the neighbor to a given

voxel, including point and object offsets (top-down) and tree traversal (bottom-up) [Samet,

1982].

As we have an unbalanced quadtree without gradation enforcement with leaves generally

at different levels, we have found the top-down methods to be the cleanest approach. These

are implemented as recursive calls down through a cell’s children testing whether the point

or object in Fig. 3.3 intersects the voxel.

All Neighbors An expanded box is passed down the root. The original voxel is in the

list of neighbors. We use the dashed line shown in Fig. 3.3. These are the 8-connectivity

neighbors.

Face Neighbors A line is created that is outside of that face and shrunken to not capture

the corners. We use the solid lines shown in Fig. 3.3. These are the 4-connectivity neighbors.

Corner Neighbors A point offset is calculated to be just outside each face of the corner.

We use the corner points shown in Fig. 3.3. These are the difference between the 8-

connectivity and 4-connectivity neighbors.

49

For slightly better efficiency, the test for whether the object intersects the voxel depends

on the type of object. For a point, its x-coordinate must fall in the horizontal range of the

box, and y-coordinate must fall in the vertical range of the box. For two overlapping lines,

an endpoint of one falls in the range of the other. To test whether an axis-aligned line crosses

the box, the line must overlap with the appropriate horizontal or vertical bounds of the box.

For two overlapping boxes, we test whether the two axis-aligned lines that represent one box

both overlap with the other box. All of these tests are robust and significantly cheaper than

testing for intersection between two arbitrary polygons.

In order to create these neighbor objects, the user inputs a distance that is smaller than

the smallest voxel edge length. The default is 1e-12, which is likely orders of magnitude

smaller than the smallest voxel edge.

Distance Bounds and Correspondence

We compute the exact minimum and approximate maximum distance over a quadtree

square to all surface points. We also keep track of the surface points whose distance to the

square falls within those bounds.

Computation over a Box

Consider the distance of a single point to the space covered by a box. By inspection, we

note the following:

• If the point falls within the box, the minimum distance is zero

• If the point falls outside of the box, the closest point in the box is the point’s projection

onto the closest face

• A corner of the box is the farthest distance from the point

50

Figure 3.4 Example used to demonstrate surface points generating distance bounds over a
box

• The distance bounds and point correspondences of a subset of the box are covered by

any enclosing box

The first three points are sufficient to give exact bounds to the distance field over a box from

a single point.

Now consider the distance field over the box to multiple points. The minimum of the

minimum distances to each point is exact. For maximum distance, the fronts expanding from

multiple points can interact by merging. So, the minimum of the distances of the points to

each one’s farthest corner is a loose upper bound on the actual maximum distance over the

box. A tighter upper bound can be obtained by sub-sampling the entire space of the original

box and taking the maximum of the subsamples.

Fig. 3.4 is a simple case we use for demonstration. For the top left point, the closest

point in the box is the top left corner. The farthest is the bottom right corner. For the right

point, the closest point is its projection onto the right face. The farthest point is the top

left corner. For both points together, the closest point is the top left corner. The farthest

is the bottom left corner. Given distance bounds, the corresponding points are those whose

distance over the box falls within those bounds. Both points are stored in this case.

51

Data Structure

The object that stores the distance information is termed an OwnPt. Each OwnPt stores

the following information:

Type Description

Voxel* Geometry for the box

std::vector< int > Points corresponding to the distance bounds

double[2] Minimum and maximum distance over the box

All OwnPts are stored in a linear array. To allow for more efficient indexing, the integer

field in the Voxel is set to be the index of the associated OwnPt in the array. Thus, we have

doubly-linked access between the Voxels and OwnPts.

Computation over the Tree

For our purposes, we require the CDF over all leaves in the tree. There are two main

approaches. Root-down exploits the branching structure of the tree, and surface-out exploits

the spatial organization through local neighbor operations.

Root-down Since the root covers the domain, distance field, and surface points, we can

refine it to obtain the regions of interest.

We exploit the property that the root covers the distance field of the child during

subdivision. To compute the field over a child to all surface points, we compute the field

over the child only to those (multiple) points corresponding to the parent.

More efficient usage of memory can be performed if we note that the four children cover

the correspondence distance information of the parent. In fact, the information from the

children is likely more accurate than that of the parent. Once refined, the memory used

52

to store the distance information of the parent can be freed if not allocated as part of a

contiguous chunk if memory capacity is a constraint.

Surface-out Imagine waves propagating outwards from the generating surface points, as

in Fig. 2.10, within a quadtree with some degree of branching. Obtaining the surface voxels

is a matter of searching the tree for leaves containing the surface coordinates. Given the

surface voxels, we can march outwards from the surface through local neighbor operations

using the tree. An iterative procedure uses the following idea for a propagation algorithm.

We add all voxels that contain a surface point to an active queue. While there is a voxel in

the active queue, we take a voxel from the queue and try to update the CDF information

of its 8-connectivity neighbors. If any of the 8-connectivity neighbors updates its distance

information, that neighbor is added to the active queue so that it can update its neighbors

as well.

These approaches can also be combined. We can first perform a surface-out computation

of the CDF over a tree with a given branching. Then, we can use a root-down approach to

refine to regions of interest within a given leaf by using that leaf as the root.

Feature Adaptation

We can use a root-down approach to resolve a given feature in the quadtree by subdividing

the children that contain a feature of interest. Note that for some complicated geometries,

local feature sizes can vary by orders of magnitude [Branets and Carey, 2005]. The quadtree

structure is suited to resolve different levels of resolution through branching.

We discuss resolving two features in particular: a prescribed distance level or offset from

the surface and regions between points.

53

Figure 3.5 Adaptation to 22, 52, 82 d levels about (0, 0)

Adaptation to Distance Level

We can subdivide any leaf that contains a distance level within its bounds. Fig. 3.5

shows the root-down adaptation of a root cell to a fixed resolution to three distance levels.

Note that there is some gradation in the sizes of the cells outside of the specified levels as we

must divide the root regularly to resolve the level of interest. This example also shows how

we will use the CDF and quadtree to resolve the body-fitting curves in the surface-oriented

meshing algorithm.

Adaptation to Multiple Points

We can subdivide any child that contains multiple corresponding points. Fig. 3.6 shows

the subdivision of any cell that has more than one corresponding point in a field generated

by eight points to a maximum leaf size of .01. This example also shows how we can use the

CDF and quadtree to construct a Voronoi diagram.

54

Figure 3.6 Adaptation to multiple corresponding points

If we have an association between surface points and objects, we can subdivide any child

that contains corresponding points from different objects instead.

55

Contouring of a Feature

Our goal is to obtain an explicit representation of a feature represented implicitly in a

field. We represent the feauture explicitly with nodes and connectivities. The problem then

becomes obtaining the coordinates of the nodes and the connections between them.

A traditional approach in Cartesian meshing is to use the local size of the leaves to dictate

the sampling resolution of the geometry and obtain the surface mesh. Here we apply this

idea to sample the features.

Coordinates

We make one coordinate per feature per leaf. The location of the coordinate depends on

the type of feature that is being contoured. For our purposes, we need coordinates for the

features of offset curves and merged regions.

Distance Level

We subsample each box that contains the contour level and average the midpoints of the

subsamples that also cross the contour. Note that, if the distance field is computed just

over the coarser voxel, a subsample is not guaranteed to cross the contour level, since the

maximum distance we calculate is a loose upper bound on the exact maximum distance for

multiple points.

Figure 3.7 show the results for this approach for several types of contours.

Note that this approach is guaranteed to miss certain topological information at the leaf

level. Higher order approximations such as splines, templating, and cell subdivisions used in

the field of isosurface meshing can be utilized if topology preservation is critical and further

refinement is not an option.

56

Figure 3.7 Examples of coordinates for various contours

Merged Region

We subsample each box that contains the contour level and take the midpoint of a

subsample with the greatest minimum distance bound. It would also be reasonable to create

a uniform mesh within the voxel and calculate the distance of each node to the corresponding

surface points. Again, we would take the node with the maximum distance, as representing

the location of a local maxima is a goal.

Contour Connectivity

Since both of these features originate from expanding waves out of the surface points,

they should be piecewise continuous. Our goal is to connect the feature’s path through the

voxels. We do this through local neighbor operations.

For simplicity, we make use of the terminology of image processing to discuss connectivity.

The collection of neighbors of all the faces of a cell are termed 4-connectivity, and 8-

connectivity is the 4-connectivity and corner neighbors.

Offset Contour Connectivity

The offset contours are piecewise continuous. For two neighboring voxels to be connected

along a continous contour, it is necessary for both of them to contain the contour level within

57

Figure 3.8 Examples of connectivities along contours

their distance bounds. However, this is not a sufficient test to generate the correct topology

for the curve. As can be seen in Fig. 3.8, neighboring curves need not connect.

Our approach is to first consider the 4-connected neighbors. We then test whether the

contour passes through the face between the voxels. A subsampled voxel of one on the level

must be a neighbor of a subsample of the other voxel that is also on the level. The number

of refinements taken to obtain subsamples dictates the sharpness of the contour feature that

will yield the correct connectivity.

Fig. 3.8 shows the resulting connectivities for sample cases.

The corner example has been chosen to show the effect of having an under-resolved

geometry. We are essentially left with a hanging segment for the corner.

Surface and Merging Region Connectivity

Since the surface is input as a discrete number of points, the zero contour is not necessarily

4-connected. A clear case is a set of points sampling a line running diagonally through the

corners of the boxes. Since a sample need not lie on the corner, we need to include the corner

neighbors not already connected to a face neighbor. The connectivities for merging regions

are generated in the same fashion.

58

Merging Regions

The two cases we concern ourselves with are regions inside and between objects. Here,

the underlying implicit representation allows us more flexibility than the typical explicit

advancing front schemes, which usually halt the marching when fronts collide and then

stitch the fronts together.

While we can also incorporate the stitching approach, we present another method based

more on the geometry of the domain itself. Note that we use the minimum distance over the

box for the identification of the regions below as it is exact, even to multiple surface points.

Interior

Imagine the interior contour levels of a circular pipe. The contours inside the surface have

successively smaller lengths until they reach a point at the center and then vanish. While

no hole will be present if that center point is specified as a contour level, that is hardly a

robust or desirable solution.

We exploit the distance values in the field to identify these regions. A region where the

front is collapsing inside of an object will have a local maximum. Specifically, we know that

the distance will be greater than any of its neighbors.

Note that sharply concave regions can also be treated with a similar approach. In these

regions, the test is whether points on one contour level have a corresponding point on the

next level as described in Section 3. If not, the corner was sharp enough to collapse the front

away.

59

Between Objects

Imagine the distance field around two points in the plane. As the circular contours expand

from each point, there is a line dividing the two points where the fronts collide. Using the

correspondence information we store, it is simply a matter of identifying the voxels that

contain surface points from different objects.

If surface points are input without any connectivity information, we must first determine

how many objects exist and associate each surface point to its object. In the surface-oriented

meshing approach, edges are created along the zero isosurface. The voxels crossing the surface

are connected along the zero contour and disconnected from the other surface curves as an

input requirement. So, we determine the number of objects and associate the voxels to those

objects by following the paths of those edges.

Normal Correspondences

An apparently unique aspect of our approach is obtaining the normal direction from

correspondences in the distance field rather than derivatives, thus avoiding differentiability

issues in the weak solution that the contour levels represent. It is important to note that

normals coming from the distance field are guaranteed not to cross.

For a more formal description of the normal, let C1, ..., Cn be the body-fitting curves

for the surface C0. For points p ∈ Cm, q ∈ Cm+1, we have three possibilities for these

correspondences, with 2-1 as shorthand for multiple values taking on a single value:

• 1-1: Normal

• 2-1: Shock

• 1-2: Fan

60

While these terms are intended to depict geometric behavior, they also represent physical

processes. For example, the original work on level sets refers to the behavior of burning

flames, crystal growth, and viscous phenomena. The different cases can also be imagined as

the amount of material in the offset curves changing under evolution.

1-1 is the simplest case. It occurs when q has a unique correspondence with a single p.

For typical objects and offset distances, the majority of points will fall in this category.

2-1 occurs in concave regions. Multiple p’s will correspond to the same q. This occurs

when the offset distance is greater than the local radius of curvature. The highly curved

section collapses into a single point under normal motion.

1-2 occurs in convex regions. A single p will correspond to multiple q’s. Essentially, this

is the dual process of the creation of a shock; here, regions of the offset curve collapse into

a single point under normal motion in the opposite direction. For example, any corner is

transformed into a portion of a circle after offsetting.

Finding the closest coordinate

A brute force approach to determining the closest coordinate for correspondence would

be to calculate the distance from the given point to all points on the corresponding level.

If there are many coordinates per level, we can be more efficient by exploiting the point

correspondence and neighbor information in the voxels of the distance field.

Consider the case given in Fig. 3.9. First, we find the point corresponding to the top

right corner of the box in the offset arc. Note that the voxel containing the corner coordinate

has the surface points that generated its distance bounds stored. We first add this original,

containing voxel to a list of candidate neighbors. We then iteratively add to the list the

8-connectivity neighbors of the voxel’s in the list that (1) have a corresponding point in

common with the original voxel and (2) fall between the specified distance levels. Out of

61

Figure 3.9 Finding the closest corresponding point through a flood-fill approach

this candidate list, we can isolate the voxels that lie on the next distance level. We then

take as the corresponding point any coordinate that is the minimum distance to the corner

point. Calculating the minimum of all of the distances in this smaller set requires (far) fewer

distance computations. Note that this flood-fill operation will not find a voxel on the next

level for concave regions where the front collapses and the correspondences vanish. In fact,

this is our method for detecting vanishing regions in merging fronts.

We can also create correspondences from a point on a given distance level to the closest

point on the previous level. The procedure is exactly the same as just described. Importantly,

the flood-fill operation will always find a neighbor on the previous level since the surface

points generate the distance field. For correspondence, the corner of the box goes to some

point in the arc, and all of the points in the arc correspond to the corner.

Edges to Cells

Given edges between nodes, we need to obtain the polygons in the mesh. For a valid

mesh, these polygons are disjoint and cover the domain. In 2D, this is straightforward to do

62

Figure 3.10 Sorting edges by angle into a polygon

by sequentially sorting the edges around a given edge by clockwise angle. We then assemble

a polygon by tracing the counterclockwise path of an edge back to itself. Each internal edge

is a part of two polygons. The edges that form the boundary to the exterior of the domain

are only members of one valid polygon.

Fig. 3.10 shows a simple example of sequentially choosing the most counterclockwise

next node to construct each polygon.

63

CHAPTER 4

COMPOSITE ALGORITHMS

In this chapter, we describe the algorithms for surface-oriented and Voronoi-dual meshing.

The tools described in Chapter 3 were implemented specifically for these algorithms.

Surface-oriented Meshing

We construct a mesh by first making edges along and between offset curves generated

from the distance field. Additional edges may be added to regions between merging fronts.

We then transform these edges into polygons.

Pre-processing

We input the geometry as a collection of points that represent the surface, i.e. a point

cloud. For simplicity, we convert any other format to a point cloud. Any connectivity

information is lost in this conversion, and it may be worthwhile to incorporate that

information separately.

Parametric Boundaries

Given polynomial segments that represent the boundaries, we take a fixed number of

samples for each segment to create a dense set of surface nodes.

64

Figure 4.1 An example of an image and its boundary points

Digital Images

The images given in the results were created in black and white in a typical Paint-type

program. Segmentation was done using thresholding, and surface coordinates were created

at the midpoints of the pixel faces between object and background. Fig. 4.1 shows a result

of this approach.

Density Requirements

For this algorithm to behave as intended, the surface points must be sufficiently dense.

For our purposes, this requires the following conditions depicted in Fig. 4.2:

• Surface voxel size > minimum distance between neighboring surface points → surface

mesh is connected

• First offset distance > maximum distance between neighboring surface points→ offset

curve “looks like” surface

• Points from disconnected surfaces do not lie in neighboring voxels → disjoint objects

• Separate curves on same isosurface must fall in separate voxels→ coordinate represents

one curve

65

Figure 4.2 A depiction of surface density requirements. In short, close objects must be
neighbors, and disjoint objects must not be close.

The first condition ensures that the surface mesh is connected. The second ensures that the

offset curves ”look like” the surface. A separate condition on voxel sizing requires that the

surfaces of disjoint objects must not lie in the same object.

Algorithm

The steps of the algorithm are as follows:

1. Input surface points and distance levels for offsets as data files

2. Make covering root voxel and set parameters for minimum voxel size and number of

refinements for subsamples

3. Refine about the distance contour levels

4. If desired, identify voxels in merged regions and contour the merged features

5. Contour the offset curves

6. Create correspondences between levels (each coordinate comes from the closest

coordinate on the previous level)

66

7. Create correspondences to merged voxels (each coordinate comes from the closest

coordinate on the previous level)

8. If desired, collapse edges whose points are within a specified tolerance

9. Output coordinates and node to node connectivity

10. Generate polygons from node to node information

Input

We take in the following inputs from files:

• Point cloud

• Desired distance levels for body-fitting curves

• Dimensions of the root voxel

• Minimum leaf size and number of refinements for subsamples

Example

We proceed with a simple case to demonstrate the steps of the algorithm. Fig. 4.3

shows the input point cloud of 50 points sampling a circle of radius 1 centered at (4,4),

the adaptation to a resolution of .2 to distance levels of 0, .72, 22, 52 in the quadtree, the

contouring of the offset curves, and the normal correspondences of each level to the closest

coordinate in the previous level. This example is constructed to be instructive, not an

example of a “good” mesh.

67

Figure 4.3 Step by step example of surface-oriented meshing algorithm without merging
regions from surface points, to distance level adaptation, to contours of offsets,
to normal correspondences

68

Voronoi-dual Meshing

Given the correspondence information in the CDF, it is straightforward to adapt the

quadtree to the Voronoi boundaries by refining the leaves with multiple corresponding points.

We can thus resolve the boundaries of the Voronoi diagram to any desired resolution.

We can go even farther to create a divide and conquer approach to the search for Delaunay

edges. Remember that an edge in the Delaunay tessellation occurs when exactly two points

are equidistant. For example, five co-circular points create a pentagon. An adaptive approach

grants us added efficiency since we only need to detect each edge once, and we do not need

to store the full quadtree down to the finest level. The first quality allows us to target our

adaptation in the quadtree, and the second allows better memory management. In short,

we search each leaf individually for undiscovered edges.

Holes

There are a number of cases in which holes exist in the domain. For example, impermeable

objects such as most airfoils are holes in the space through which a fluid can flow. A Delaunay

mesh over the domain will generally cover these holes.

We take one solution where we exploit the CDF to ”block” nodes from ”seeing” across

the hole by the creation of ghost points. Here, we must remember that the Voronoi diagram

is a representation of natural neighbors. Consider two sites in the plane. If we insert a

dense line of additional sites between the original two, the two original sites will no longer

be neighbors. By intelligently adding additional sites between two sites, we can achieve the

same effect as the line.

Fig. 4.4 shows an example of the locations of the ghost points, and the edges they can

block.

69

Figure 4.4 Location of ghost points for a hole region

The construction of the ghost points depends on the definition of the hole. If the segments

are unknown, we need the ghost points to block across the hole but not along the surface.

In practice, this does not seem possible for general boundaries.

70

Oriented Segments

Oriented segments are one way to represent a domain with holes through directed edges.

As we walk along each edge in the specified direction, we define the interior of the domain

to be to the left. Thus, the exterior domain or hole region is to the right. We block such a

hole by creating a ghost node for each boundary node. The coordinates of these ghost nodes

are offset to lie just in the hole. The steps are summarized below.

1. Tag each node as not a boundary node

2. Loop over boundary segments and tag nodes as on a boundary

3. Create ghost node coordinates equal to the corresponding node’s coordinates

4. For each boundary segment

(a) Calculate a normalized normal facing outside the domain

(b) Add as a vector a scaling of the normal to the ghost node’s coordinates

Fig. 4.4 shows an example of the locations of the ghost points, and the segments (in green)

that they are designed to block.

Algorithm

The steps for creating the Voronoi duals are as follows.

1. Input coordinates and definition of holes

2. Refine the quadtree to isolate each coordinate in distinct voxels

3. Generate ghost points for holes

4. Calculate the correspondence distance field over each leaf

5. Make any known boundary-boundary and boundary-ghost edges

6. For each leaf with multiple corresponding points not already connected,

71

(a) Calculate the minimum leaf size as a fraction of the minimum distance between

the corresponding points

(b) Refine the leaf to the undiscovered pairs of points to the minimum distance

(c) If the the points correspond in a small voxel, make an edge between them

7. Output node-to-node information for non-ghost edges

8. Generate polygons from node to node connectivity

The adaptive nature of this algorithm means a storyboard example of each step is difficult

to present. After isolating each coordinate in the quadtree for an initial adaptation, each

leaf is examined much as in Fig. 3.6, but with the refinement terminating whenever an edge

is known. An optimization of the algorithm does exist in the order that we investigate leaves

for the edges. We loop through the cells containing surface points, then the cells that are

smaller than a given multiple of the refinement tolerance, and then the remaining cells. The

effect of this order is to reduce the total number of refinements since we only search for new

edges.

Input

If the domains have no holes, the only input is the coordinates that will be vertices in

the dual tessellation. The vertices are the sites in the plane as shown in Fig. 2.15.

Abstraction of Approaches

We provide a layer of abstraction in order to unite the two specific approaches. A

generalization of the core of the approaches is as follows:

• Detect: Test a region for a given feature

– Surface-oriented: Distance levels from the surface

72

– Voronoi-dual: Multiple points

• Resolve: Adapt the quadtree locally to resolve the detected feature

• Represent: Explicitly describe a resolved feature

– Surface-oriented: Contour offset curves

– Voronoi-dual: Edge for cell with two corresponding points

• Gather additional information

– Surface-oriented: Add edges for normal correspondences and subsets of the medial

axis

• Transform the explicit representations: Edges to polygons

73

CHAPTER 5

RESULTS AND DISCUSSION

In this chapter, we present and discuss the results of our two composite algorithms to

better understand their effectiveness. All cases were executed using a single core of an

Intel(R) Core(TM) i5 CPU 750 at 1.2GHz with over 3GB of RAM.

Surface-oriented Meshing

Parameter Choices

Here we discuss the influences of the choices of the number of subsamples, distance

levels, and leaf size on the resulting mesh. For concreteness and simplicity, our base case

is represented in Fig. 5.1. We can see the sine curve in green, body-fitting curves in blue,

correspondences between levels in purple, and the background quadtree in red. The distance

levels are 0, 12, 22, 32, the number of subsamples is 5, and the maximum leaf size is .4.

74

Figure 5.1 Base case of sine curve for effects of parameters on surface-oriented meshing

Leaf Size and Subsamples

These choices affect the sampling resolution of the given features.

A resolution that is too coarse does not approximate the feature well. For example, not

subsampling a leaf will return the midpoint of the leaf as the coordinate for all contained

features. All contour levels and merged regions would collapse to that point.

Although not as extreme, Fig. 5.2 shows that a coarse subsampling of one level will

also alias the curves as there are not enough samples to obtain a representative average

coordinate. Note that the subsampling is also used to update the bound on the maximum

distance on each leaf.

A resolution that is too fine is more expensive and may lead to an undesirable element

count in the case of leaf size. Fig. 5.3 shows a case with a smaller leaf size of .05.

75

Figure 5.2 Aliasing of coordinates due to coarse subsampling

Figure 5.3 Greater contour sampling and element count due to smaller leaf size

76

Distance Levels

The distance levels determine the locations of the contours and the refinement of the

quadtree. The levels should be chosen to cover the domain of interest. The choice of specific

values depends on the sizes of the features of interest. For a large offset, distinct surface

features will tend to interact and merge. A minimum bound depends on the density of the

surface sample.

Fig. 5.4 shows a case with the distance levels set at 0, .52, 12, 42. The closer spacing near

the surface preserves the curvature of the original surface. The farther spacing to the last

level creates large concave regions without correspondences due to only using the rule that

every coordinate comes from the closest on the previous level. We can also see that there

are larger leaves in the quadtree, and the boundary of the root chops the bottom contour.

77

Figure 5.4 Feature preservation and smoothing based on choice of distance levels

Image Geometry

For all image cases given here, 100 distance contours were specified in increments of 5,

where 1 unit represents the edge length of a pixel in the original image. The sizes of the

images are on the order of 500 pixels by 400 pixels. The adaptation was set to stop refining

once the width of the leaf capturing the feature was less than 5 units.

The far view in Fig. 5.6 shows the captured surfaces, the local maxima, and the regions

between the objects from the original image show in Fig. 5.5. The surface point cloud has

1236 points. The case required 16s to execute, and the mesh has 14,755 nodes with the

maximum number of edges in a polygon as 28.

Fig. 5.7 shows the interior of the rectangle. Note the isotropic appearance of the cells

and the local maxima at the center. In Fig. 5.8, we see the interior of the diamond. Note

the isotropic appearance of the cells and the local maxima at the center. We can also see an

incorrect connectivity for the surface at the top, left, and bottom corners. Fig. 5.9 shows

78

Figure 5.5 Rectangle and diamond geometry

Figure 5.6 Far view of rectangle and diamond geometry

79

Figure 5.7 Interior of rectangle in rectangle and diamond geometry

the region between the rectangle and diamond. Note how the edges for the merging region

act to stitch together the meshes between the separate objects.

The far view in Fig. 5.11 shows the surface represented as an inner and outer ellipse

extracted from the original image show in Fig. 5.10. We also see an elliptical curve where

those surfaces merge. The surface point cloud has 1896 points. This case required 16s to

execute, and the mesh has 15,821 nodes with the maximum number of edges in a polygon

as 26. Fig. 5.12 shows the region between the inner and outer ellipses. Note how the

correspondence edges become arbitrarily small as the distance level approaches the same

space as the merged curve. In Fig. 5.13, we can see the region inside the inner ellipse. Note

how the shrinking offsets develop corners under the sharply concave evolution.

The far view in Fig. 5.15 shows the four curves that represent the surface and the merged

region between all of those curves from the original image show in Fig. 5.14. The surface

point cloud has 1839 points. The case required 12s to execute, and the mesh has 14,717 nodes

with the maximum number of edges in a polygon as 20. Fig. 5.16 shows the merging regions

80

Figure 5.8 Interior of diamond in rectangle and diamond geometry

Figure 5.9 Merging regions in rectangle and diamond geometry

81

Figure 5.10 Donut geometry

Figure 5.11 Far view of donut geometry

82

Figure 5.12 Merging regions between ellipses of donut geometry

Figure 5.13 Interior merging regions of donut geometry

83

Figure 5.14 Branch geometry

Figure 5.15 Far view of branch geometry

84

Figure 5.16 Merging regions of branch geometry

between the four surface curves. Note that the merged curve is not connected. For example,

we see gaps near (150,200). While we spent considerable effort to determine whether this

is due to a coding error or a property of using discrete surface points, we were not able to

establish a conclusive justification.

Airfoil Geometry

We now provide results from an airfoil defined by boundary segments. To sample, we

take one point at the beginning of each line segment. For the distance contours, we create

a geometric progression of 20 levels starting at an offset of .005 with a growth factor of 1.1.

The leaf size is refined to .005 units.

Fig. 5.17 shows the extracted airfoil and the spacing between the body-fitting lines

increasing as we progress farther from the surface. The surface point cloud has 533 points.

The case required 22s to execute, and the mesh has 5457 nodes with the maximum number

of edges in a polygon as 13.

85

Figure 5.17 Far view of airfoil mesh

Figure 5.18 Close view of airfoil mesh

86

Figure 5.19 Zero-contour approximation of surface

Fig. 5.18 shows a closer view of the airfoil. Note how the cells are isotropic near the

surface due to similar spacing along and between levels. As the spacing between levels

increases, the cells become more stretched. In this case, no edges for merged regions are

shown. Note the natural handling of the merging inside the airfoil due to the implicit

evolution. We can also see the curvature on the surface generating the three types of

branchings for the correspondences.

Fig. 5.19 shows the surface points, surface edges, and background quadtree used for

sampling. We see that extraneous edges result from the violation of the density requirement

where disconnected voxels on the same isosurface must be non-neighbors. These ”extra”

edges cut across the corner in the real geometry.

87

Viscous Spacing

By viscous spacing, we mean that the spacing along the contours is greater than the

length of the correspondences between contours. These types of elements are used in flow

simulations that possess high gradients normal to the surface to capture the physics.

However, our approach to isosurface sampling creates only one coordinate per isosurface

per cell. Since we have an unsigned distance field, there is no distinction between offsets

inside and outside of objects. Thus, separate offset curves for the same level near the surface

need to fall in separate leaves. We achieve this by requiring the surface to be sufficiently

dense or thick relative to the voxel size to separate the distinct curves. If the inside and

outside regions are known, it is also possible to create a signed CDF.

For a specific geometry input, we can also generate this thick representation to flood out

the surface in the distance field. For a parametric surface, the orientation of the interior and

exterior of the domain is defined by the ordering of the faces. We can offset ghost points

opposite the direction of interest to thicken the surface. For a segmented image, we have a

representation for the solid object. Thus, we simply sample the faces between the objects

and background as well as the bodies of the objects themselves. For a point cloud with

local normal information such as from a laser scanner, we have an orientation similar to the

parametric case. If no orientation information is available, an alternate approach is needed,

perhaps converting the point cloud into another surface format.

Figs. 5.20 and 5.21 show fine correspondence edges relative to the spacing along contours,

and the background sampling used to generate the field. The axes on the plots indicate the

locations of the zoomed figures. The red points show thick sets of surface points, which are

necessary to separate the viscous offsets. For the line geometry, we can also see an aliasing

of the correspondences due to the regular sampling.

88

Figure 5.20 Viscous spacing for a line geometry

89

Figure 5.21 Viscous spacing for a sine curve geometry

90

Discussion

We begin with a recapitulation of the specific results given and then extend our comments.

The isotropic appearance of the meshes originating from images is achieved by having

the spacing along the contour be similar to the spacing between the contours. Anisotropy

can be obtained by changing the ratio of the leaf size, which controls the spacing along the

contour, to the offset distance.

The surface may not be approximated well by the zero-contour of the distance field.

While averaging of the surface nodes within a voxel provides a reasonable approximation, it

will not generally preserve sharp features exactly. Optimization of the node locations can

also be done. A more serious problem is the incorrect connectivity, as in the sharp edge of

the airfoil shown in Fig. 5.19 for example. This is an expected deficiency of our approach.

Reconstructing the correct topology is a persistent difficulty of contouring algorithms in

general. Note that the correct topology is likely only critical for the surface contour for a

CFD simulation. Until the construction of polygons in the final step of the algorithm, the

connections between surface nodes do not affect any other region of the mesh. The mapping

of surface points to surface curves only matters in the detection of voxels between objects.

A separate approach is needed to recover the correct surface. While many of the isosurface

methods that output topologically correct polygonizations may seem appropriate, those

that require refinement to ensure correct topology will generate many points near corners.

There is an inherent tradeoff between accuracy and the number of elements. It is worth

noting that there may be other solutions specifically for certain applications. If the surface

originates from segments or an image, recovery is straightforward as the boundary segments

or connected segmentation define the surface. If not, a level set or active contour algorithm

designed for point clouds may also be applicable. Our results can couple with such an

algorithm as we can generally construct the proper mapping of surface points to objects.

91

We can also obtain normal directions on the surface from the distance field. Essentially,

while we do not use a surface mesh to construct a mesh in the space around the object, a

surface mesh is required for simulation and is not a product of our approach. We list below

a number of ideas to generate the surface or test candidate edges for future reference.

• Active contour or shrink wrapping around points

• Adaptive refinement of quadtree to edge

• Voronoi-dual meshing with ghost nodes blocking the interior

• Midpoint of edge should be near isovalue

• Edge should be tangent to surface

• Use correspondences in a convex offset curve resolved with small voxels to order

neighbors

• Generate the polygon that encloses all other edges

• Once polygonized, every surface edge should be between the interior and exterior

• Generate a polygon with the maximum length using any edge at most once

Unfortunately, none of the approaches listed above will resolve very well the geometries shown

in Fig. 5.22 given variable surface sampling. The selection of boundary edges, however, is

not a complicated task for the user, especially for the 2D cases presented here. The only

operation needed to delete an edge is the removal of the relevant nodes from each other’s

node-to-node information.

Although the airfoil geometry case had the smallest surface and resulting mesh, it had

the largest run time. This is likely a product of distribution of points per level. For the

image cases, the surface level had the largest number of points. For the airfoil case, the

farthest three offsets each had about the same number of points as the surface levels of the

image cases. Since normal correspondences are not made for each surface point, there is a

92

Figure 5.22 Counterexample geometries for surface recovery methods

difference in the number of operations. Moreover, the number of points per level decreases

from the surface in the image cases due to the merging fronts and size of the root voxel.

Small edges may occur in the mesh. If the contoured feature oscillates near corners of

the voxels, the neighboring coordinates will be close. The consistency of edge lengths due to

the quadtree sampling also tends to degrade in regions where fronts are merging. Including

local maxima and boundaries between objects are natural attempts to achieve better results.

However, the specification of contour levels before computation of the distance field in effect

eliminates the possibility of avoiding small edges in the mesh. Considering the merging

regions in the branch case, refinement of non-convex polygons will yield a mesh more suitable

for numerical simulation. Thus, we do not need to include any subsets of the medial axis,

and the algorithm is significantly simpler. Regardless, a quality control step where edges

below a certain length are collapsed is simple and could be quite fruitful.

If the contours are close relative to the voxel size and fill the root cell, the quadtree is full

at the finest level. In this case, it would be more efficient to use a uniform mesh. However,

it should be noted that we do not know the regions of interest a-priori.

Quadtree sampling may lead to an aliasing effect. For a straight line, we expect all of

the correspondences between extrusions to be 1-1. This is not the case as shown in Fig. 5.20

93

for several corresponding edges. If the surface line were axis-aligned, the correspondences

would be 1-1.

Assuming that the set of surface points is sufficiently dense to resolve the surface, a

key parameter is the choice of offset contour levels. The distances from the object used to

define the contours should be relative to the local scale of interesting feature sizes. Distances

smaller than the resolution of the object simply create circles around the individual points

and are too local to be meaningful. Distances too far from the body essentially create circles

around the point mass of the object. If levels very near to the surface are required, they

can be interpolated from the existing contours. This refining interpolation can be done

as post-processing due to the inherent ordering of grid points based on distance from the

surface.

A guiding philosophy for making decisions in the construction of this algorithm was to

extract as much use from our own tools as possible. Where alternate approaches may be

beneficial, they were considered (with most introduced in this report) but not necessarily

utilized. The rationale of our approach is that documentation already exists describing the

characteristics of an existing tool.

Voronoi Meshing

Simple Case

A simple, representative test case is shown in Figs. 5.23 and 5.24 for a domain with a

four-sided hole in the middle.

94

Figure 5.23 Delaunay tessellation of coordinates and ghost nodes

Figure 5.24 Delaunay tessellation of coordinates with center hole enforced

95

Combined Case

Our Voronoi-dual method is termed a batch approach in the Delaunay literature as all of

the vertices are known a-priori. As one approach to generating the locations of these vertices,

we can use some of the components of the surface-oriented meshing algorithm. Specifically,

we can output all of the coordinates of the contoured features and use those coordinates as

input to the Voronoi-dual algorithm.

Fig. 5.25 shows the meshes we obtain from the surface-oriented approach and the Voronoi-

dual of those coordinates. The geometry is a NACA0012 airfoil defined by line segments. We

also attempted to recover the boundary using the Voronoi-dual approach. We can identify

the surface points in the surface-oriented approach as the points on the zero-contour. Since

the geometry is convex, we tested the creation of a ghost point for every surface point offset

towards the middle of the airfoil. However, the hole was not recovered at the trailing edge,

and edges along the airfoil were lost.

96

Figure 5.25 Surface-oriented meshing about a NACA0012 and a Voronoi-dual mesh of the
coordinates

97

Discussion

The algorithm connects the neighboring nodes as expected.

As given here, there are no edges between the four coordinates at the far corners of the

simple test case. This is because the root voxel was not large enough for the boundary in

the Voronoi diagram to be detected between these coordinates. We intentionally include this

result to emphasize that the size of the root voxel is a critical parameter.

A number of the previously cited works compute the distance field over a fine mesh. The

adaptive nature of our search for Voronoi boundaries makes our approach considerably more

efficient for cases when the spacing between neighbors varies. This is likely the case for, say,

a CFD mesh for an airfoil as more nodes are typically clustered near the surface to capture

the physics more effectively.

98

CHAPTER 6

CONCLUSIONS

We have presented the theory, development, and implementation of a correspondence

distance field embedded in a quadtree data structure for use in creating meshes for field

simulation. A number of tools based on this field have been implemented and described.

These tools were combined into two composite algorithms. The first generates a surface-

oriented mesh based on contouring the distance field. Results have been presented for

surfaces originating from images and parametric boundaries. As the surface is not generally

approximated very well, we should consider the algorithm an approach to the generation of

a ”volume” mesh.

The second algorithm searches adaptively for boundaries in a Voronoi diagram to create

a Delaunay tessellation. Results have been presented for meshing of regions with holes by

incorporating ghost nodes that ”block“ connectivity across the holes. We also demonstrated

the combination of the two approaches.

We now discuss possible future directions to take this research.

Extensions

There are a number of promising applications that were not pursued due to time

constraints. We believe that implementation of the following topics would be straightforward.

99

3D CDF

The extension of the quadtree to an octree and the other updates resulting from the

increase in dimension are the only changes needed to generate a 3D CDF with the same

capabilities to adapt to features of interest. The framing of the offset contours as level sets

provides a strong mathematical foundation to this extension.

Approximate Medial Axis

Since the focus of this work was on mesh generation, alternate applications were not

fully discussed. Given the correspondence distance field, we can determine arbitrarily small

bounds on the regions where the offset curves collide. There may also be a worthwhile

connection between vanishing correspondences between levels and the discrete λ − medial

axis described in [Chaussard et al., 2009].

Point Generation

There are a number of mesh generation techniques that utilize a known batch of specified

points. For example, some Delaunay insertion algorithms operate in this fashion. As our

surface-oriented meshing algorithm generates a collection of points structured along distance

levels from the body, it provides a sampling of the space with a known structure. In 3D, an

application could be point generation for tetrahedral mesh generation.

100

Future Work

3D Voronoi Meshing

There is little difference between the 2D and 3D algorithms except for the generation of

cells from edges. Sorting edges counterclockwise does not work outside of the plane. As the

cells are convex, a shortest path algorithm should suffice.

The remainder of this section will focus on the surface-oriented mesh generation.

Couple with Flow Solver

As emphasized in [Dawes et al., 2007], the key quality of a mesh for our purposes is

that it be solvable. Making a grid generation algorithm without considering how it will

be used for the flow or a particular flow solver limits the algorithm’s usefulness. Element

shape quality tests can be an a-priori indicator of mesh quality [Beall et al., 2003], although

only generally effective by identifying defective elements that would introduce significant

interpolation errors. For anisotropic or varying flow, element quality metrics become much

more reliant on engineering heuristics with better mesh density achieved by adapting the

mesh to the flow solution. To measure the quality of our meshes, physics simulations should

be executed using different meshes and results compared.

Our process generates more information than is contained in the final polygon output as

well. There are additional steps between polygon definitions and a mesh for a flow solver.

One step is the association of boundary elements to the boundary condition. If the subsets

of the medial axis are not included, every node is associated to a level, and the surface

and outermost offset curves are known. Some turbulence models require the distance to the

nearest wall as discussed in [Tucker et al., 2005]. This can be output easily from our mesh

101

generation process, and properties such as surface curvature can be calculated to a higher

accuracy than that contained in the polygonal mesh.

CFD Applications

The underlying implicit representation of the geometry is intentionally robust to the type

of input that can be addressed. In fact, any explicit format used for representing geometry

can be converted into a set of surface points.

If the segmentation step can resolve an object sufficiently well and an adequate flow

solver is coupled, CFD may be applied to a broader and more realistic range of problems.

Given medical imaging of blood flow through different channels in the body, CFD could

yield information on how the body transports material, quantify the harm of different types

of blockages, and simulate the effects of treatments [Dyedov et al., 2009], [Wang, 2001].

Given sonar imaging of water distribution piping, CFD could determine whether a blockage

is significant enough to require removal. For clandestine intelligence, performance estimates

of foreign aircraft and missiles could be simulated from representations of surfaces found by

laser range-finder depth profiles.

Sequential Sizing

The uniform maximum leaf size was a simple choice. We can also adapt the size of the

voxels to local feature sizes (like curvature). This would likely require creating some form

of a sequence of meshes in order to measure the relevant geometric properties. However,

tight control of voxel size is not possible if subdivision is performed by the regular halving

of quadtrees or octrees.

102

Smarter Correspondences

Some applications may not accept the hanging nodes that are a product of each node on

a contour corresponding to a node on a previous contour. While remeshing of these polygons

is a practical solution, we can also resolve this within our framework.

A solution is to make the correspondences based on the local curvature relative to the

direction of propagation. For convex regions, each node comes from a node on the previous

level. For concave regions, each node goes to a node on the next level. This approach does

require the inclusion of edges in the merged regions to ensure that no edges overlap in the

mesh.

Parallelization

While several works comment that storing the full correspondences is prohibitive, we have

not found that to be the case. If it is later found to be so, we can employ parallelization

to ease memory requirements. There are a number of opportunities to obtain speedups or

lessen memory requirements.

For a shared memory system, contouring features and level-to-level correspondences can

be implemented as parallel multithreaded algorithms. For a distributed memory architecture,

we can use a modified tree where each processor stores its region of the hierarchy and possibly

the leaves outside of its boundary. Every processor can then perform operations within its

stored domain.

Geometry Definition

The goal of defining the geometry as a point cloud for our surface-oriented meshing

algorithm was to have a single representation of all formats. We then represent this point

103

cloud implicitly. It is the implicit representation that we depend on, and this transformation

to a point cloud may lose information such as connectivity or interior and exterior orientations

of the domain. An even more flexible approach would be to calculate the CDF from the given

geometry definition. For example, we could calculate the closest distance to all line segments

defining a parametric surface and store a reference to the line segment as the correspondence

information. This added capability may resolve some of the previously discussed issues that

involve dense surface requirements and orientation in the domain.

104

REFERENCES

F. Aurenhammer. Voronoi diagrams – a survey of a fundamental geometric data structure.
ACM Computing Surveys (CSUR), 23(3):345–405, 1991. xii, 35

I. Babuska and A.K. Aziz. On the angle condition in the finite element method. SIAM
Journal on Numerical Analysis, pages 214–226, 1976. 35

G. Barequet and S. Kumar. Repairing cad models. In Visualization’97., Proceedings, pages
363–370. IEEE, 1997. 13

M.W. Beall, J. Walsh, and M.S. Shephard. Accessing CAD geometry for mesh generation.
In 12th International Meshing Roundtable, pages 31–42. Citeseer, 2003. 101

J. Bloomenthal. Polygonization of implicit surfaces. Computer Aided Geometric Design, 5
(4):341–355, 1988. xi, 22, 23

J.D. Boissonnat and S. Oudot. Provably good sampling and meshing of surfaces. Graphical
Models, 67(5):405–451, 2005. 43

L. Branets and GF Carey. A local cell quality metric and variational grid smoothing
algorithm. Engineering with Computers, 21(1):19–28, 2005. 53

X. Bresson, S. Esedoglu, P. Vandergheynst, J.P. Thiran, and S. Osher. Fast global
minimization of the active contour/snake model. Journal of Mathematical Imaging and
Vision, 28(2):151–167, 2007. 22

V. Caselles, R. Kimmel, and G. Sapiro. Geodesic active contours. International journal of
computer vision, 22(1):61–79, 1997. 20

T.F. Chan and L.A. Vese. Active contours without edges. IEEE Transactions on image
processing, 10(2):266–277, 2001. xi, 20, 21

C.C. Chang and L.L. Wang. A Fast Multilevel Thresholding Method Based on Lowpass and
Highpass Filtering. Pattern Recognition Letters, 18(14):1469–1478, 1997. 19

H.D. Chang, X.H. Jiang, Y. Sun, and J. Wang. Color Image Segmentation: Advances and
Prospects. Pattern Recognition, 34(12):2259–2281, 2001. 18

105

J. Chaussard, M. Couprie, and H. Talbot. A discrete λ-medial axis. In Proceedings of the
15th IAPR international conference on Discrete geometry for computer imagery, pages
421–433. Springer-Verlag, 2009. 100

E.V. Chernyaev. Marching cubes 33: Construction of topologically correct isosurfaces.
Institute for High Energy Physics, Moscow, Russia, Report CN/95-17, 1995. 42

W.J. Coirier, K. Powell, et al. Solution-adaptive cartesian cell approach for viscous and
inviscid flows. In AIAA J. Citeseer, 1996. 25

D. Colombo and P. Massin. Fast and robust level set update for 3d non-planar x-fem crack
propagation modelling. Computer Methods in Applied Mechanics and Engineering, 2011.
xii, 38, 39

O. Cuisenaire. Distance transformations: fast algorithms and applications to medical image
processing. Laboratoire de Telocommunications et Teledetection, 1999. 33

WN Dawes, SA Harvey, S. Fellows, CF Favaretto, and A. Vellivelli. Viscous layer meshes
from level sets on cartesian meshes. In 45th AIAA Aerospace Sciences Meeting & Exhibit,
pages 8–11, 2007. xi, 25, 26, 101

ND Domel and SL Karman. Splitflow: Progress in 3d cfd with cartesian omni-tree grids for
complex geometries. AIAA Paper, 1006, 2000. 24

H. Dong, C. Koehler, ZX Liang, H. Wan, and Z. Gaston. An integrated analysis of a dragonfly
in free flight. In 40th AIAA Fluid Dynamics Conference and Exhibit, AIAA2010-4390,
2010. xi, 6, 12

C.T. Druyor Jr. An adaptive hybrid mesh generation method for complex geometries. PhD
thesis, The University of Tennessee at Chattanooga, 2012. xi, 26, 27

V. Dyedov, D.R. Einstein, X. Jiao, A.P. Kuprat, J.P. Carson, and F. del Pin. Variational
generation of prismatic boundary-layer meshes for biomedical computing. International
journal for numerical methods in engineering, 79(8):907–945, 2009. 102

D. Enright, R. Fedkiw, J. Ferziger, and I. Mitchell. A hybrid particle level set method for
improved interface capturing. Journal of Computational Physics, 183(1):83–116, 2002. 40

L. Freitag and C. Ollivier-Gooch. The effect of mesh quality on solution efficiency. In 6th
International Meshing Roundtable. Sandia National Laboratories, 1997. 3, 35

PJ Frey and H. Borouchaki. Surface meshing using a geometric error estimate. International
journal for numerical methods in engineering, 58(2):227–245, 2003. 44

M. Freytag, V. Shapiro, and I. Tsukanov. Field modeling with sampled distances. Computer-
Aided Design, 38(2):87–100, 2006. xii, 29, 30

106

I. Fried. Condition of finite element matrices generated from nonuniform meshes. Aiaa
Journal, 10:219–221, 1972. 35

S.F. Frisken, R.N. Perry, A.P. Rockwood, and T.R. Jones. Adaptively sampled distance
fields: A general representation of shape for computer graphics. In Proceedings of the 27th
annual conference on Computer graphics and interactive techniques, pages 249–254. ACM
Press/Addison-Wesley Publishing Co., 2000. xii, 33, 34

R.V. Garimella and M.S. Shephard. Boundary layer meshing for viscous flows in complex
domains. In 7th Int. Meshing Roundtable, pages 107–118. Citeseer, 1998. xii, 38

W.J. Gordon and C.A. Hall. Transfinite element methods: blending-function interpolation
over arbitrary curved element domains. Numerische Mathematik, 21(2):109–129, 1973. 41

R.M. Haralick, S.R. Sternberg, and X. Zhuang. Image Analysis Using Mathematical
Morphology. IEEE Transactions on Pattern Analysis and Machine Intelligence, 9(4):
532–550, 1987. 14

K. Haris, S.N. Efstratiadis, N. Maglaveras, and A.K. Katsaggelos. Hybrid Image
Segmentation Using Watersheds and Fast Region Merging. IEEE Transactions on Image
Processing, 7(12):1684–1699, 1998. 16

Y. Ito and K. Nakahashi. Unstructured mesh generation for viscous flow computations. In
Proceedings of the 11th International Meshing Roundtable, pages 367–377. Citeseer, 2002.
36

D.C. Ives. Conformal grid generation. Applied Mathematics and Computation, 10:107–135,
1982. 42

X. Jiao. Face offsetting: A unified approach for explicit moving interfaces. Journal of
Computational Physics, 220(2):612–625, 2007. 37

M.W. Jones et al. 3D distance fields: A survey of techniques and applications. IEEE
Transactions on Visualization and Computer Graphics, pages 581–599, 2006. 27

T. Ju, F. Losasso, S. Schaefer, and J. Warren. Dual contouring of hermite data. ACM
Transactions on Graphics (TOG), 21(3):339–346, 2002. xii, 43, 44

M. Kass, A. Witkin, and D. Terzopoulos. Snakes: Active contour models. International
journal of computer vision, 1(4):321–331, 1988. 20

R.A. Katz and S.M. Pizer. Untangling the blum medial axis transform. International Journal
of Computer Vision, 55(2):139–153, 2003. xii, 32

JH Keyak, MG Fourkas, JM Meagher, and HB Skinner. Validation of an automated method
of three-dimensional finite element modelling of bone. Journal of Biomedical Engineering,
15(6):505–509, 1993. 11

107

P.M. Knupp. Remarks on mesh quality. In AIAA 46th Aerospace Sciences Meeting and
Exhibition, 2008. 3

F. Kurugollu, B. Sankur, and A.E. Harmanci. Color Image Segmentation Using Histogram
Multithresholding and Fusion. Image and Vision Computing, 19(13):915–928, 2001. 18

C.L. Lawson. Properties of n-dimensional triangulations. Computer Aided Geometric Design,
3(4):231–246, 1986. 35

C.K. Lee and S.P. Wong. A Mathematical Morphological Approach for Segmenting Heavily
Noise-Corrupted Images. Pattern Recognition, 29(8):1347–1358, 1996. 17

S. Leung and H. Zhao. A grid based particle method for moving interface problems. Journal
of Computational Physics, 228(8):2993–3024, 2009. 37

G.R. Liu. Mesh free methods: moving beyond the finite element method. CRC, 2003. 4

R. Löhner, J. Cebral, O. Soto, P. Yim, and J.E. Burgess. Applications of patient-specific
cfd in medicine and life sciences. International journal for numerical methods in fluids, 43
(6-7):637–650, 2003. 11

W.E. Lorensen and H.E. Cline. Marching cubes: A high resolution 3d surface construction
algorithm. In ACM Siggraph Computer Graphics, volume 21, pages 163–169. ACM, 1987.
xii, 42, 43

L. Maignan and F. Gruau. Integer gradient for cellular automata: Principle and examples. In
Self-Adaptive and Self-Organizing Systems Workshops, 2008. SASOW 2008. Second IEEE
International Conference on, pages 321–325. IEEE, 2008. 35

P. Maragos and R.W. Schafer. Morphological systems for multidimensional signal processing.
Proceedings of the IEEE, 78(4):690–710, 1990. xi, 15, 16

MATLAB. version 7.10.0 (R2010a). The MathWorks Inc., Natick, Massachusetts, 2011. 7

J. McCleary. Geometry from a differentiable viewpoint. Cambridge Univ Pr, 1994. 29

JA Moore, DA Steinman, DW Holdsworth, and CR Ethier. Accuracy of computational
hemodynamics in complex arterial geometries reconstructed from magnetic resonance
imaging. Annals of biomedical engineering, 27(1):32–41, 1999. xi, 6

D. Mumford and J. Shah. Optimal approximations by piecewise smooth functions and
associated variational problems. Comm. Pure Appl. Math, 42(5):577–685, 1989. 21

K. Nallaperumal, K. Krishnaveni, J. Varghese, S. Saudia, RK Selvakumar, R. Subban, and
JJ Ranjani. Fuzzy Optimal Thresholded Multiscale Morphological Segmentation of Digital
Images. In Wireless and Optical Communications Networks, 2006 IFIP International
Conference on, page 5, 2006. 17

108

B.K. Natarajan. On generating topologically consistent isosurfaces from uniform samples.
The Visual Computer, 11(1):52–62, 1994. 43

E. Noether. Invariante Variationsprobleme. Nachr. v. d. Ges. d. Wiss. zu Gttingen, Math-
phys. Klasse, pages 235–257, 1918. 2

S. Osher and J.A. Sethian. Fronts propagating with curvature-dependent speed: algorithms
based on Hamilton-Jacobi formulations. Journal of computational physics, 79(1):12–49,
1988. 21, 38

S.J. Owen. A survey of unstructured mesh generation technology. In 7th International
Meshing Roundtable, volume 3. Citeseer, 1998. 4

S.J. Owen. An introduction to mesh generation algorithms. International Meshing
Roundtable, 2005. xi, 4

I. Pivkin, E. Hueso, R. Weinstein, D. Laidlaw, S. Swartz, and G. Karniadakis. Simulation
and visualization of air flow around bat wings during flight. Computational Science–ICCS
2005, pages 15–36, 2005. 12

S.M. Pizer, C.A. Burbeck, J.M. Coggins, D.S. Fritsch, and B.S. Morse. Object shape before
boundary shape: scale-space medial axes. Journal of Mathematical Imaging and Vision,
4(3):303–313, 1994. 31

Pointwise. V17.0 Release 2 Candidate 2. Pointwise, Inc., Fort Worth, Texas, 2012. 6

S. Prakash and C.R. Ethier. Requirements for mesh resolution in 3d computational
hemodynamics. Journal of biomechanical engineering, 123:134, 2001. 11

F. Remondino and S. El-Hakim. Image-based 3d modelling: A review. The Photogrammetric
Record, 21(115):269–291, 2006. 13

R.M. Rodŕıguez, T.E.M. Alarcón, and I.B. Castellanos. A Strategy for Reduction of Noise
in Segmented Images. Its Use in the Study of Angiogenesis. Journal of Intelligent and
Robotic Systems, 33(1):99–112, 2002. 17

H. Samet. Neighbor finding techniques for images represented by quadtrees. Computer
Graphics and Image Processing, 18(1):37–57, 1982. 49

R. Satherley and M.W. Jones. Hybrid distance field computation for volumetric objects. In
Proceedings International Workshop on Volume Graphics 2001, pages 121–133, 2001. 27

J. Schöberl. Netgen an advancing front 2d/3d-mesh generator based on abstract rules.
Computing and visualization in science, 1(1):41–52, 1997. 44

J. Schreiner, CE Scheiclegger, and C.T. Silva. High-quality extraction of isosurfaces from
regular and irregular grids. Visualization and Computer Graphics, IEEE Transactions on,
12(5):1205–1212, 2006. 44

109

J. Serra. Introduction to Mathematical Morphology. Computer Vision, Graphics, and Image
Processing, 35(3):283–305, 1986. 14

JA Sethian. Curvature flow and entropy conditions applied to grid generation. Journal of
Computational Physics, 115(2):440–454, 1994. xii, 6, 7, 39, 40

J.A. Sethian. A fast marching level set method for monotonically advancing fronts.
Proceedings of the National Academy of Sciences of the United States of America, 93
(4):1591, 1996. 39

M. Sezgin and B. Sankur. Survey Over Image Thresholding Techniques and Quantitative
Performance Evaluation. Journal of Electronic Imaging, 13:146, 2004. 18

M.S. Shephard and M.K. Georges. Automatic three-dimensional mesh generation by the
finite octree technique. International Journal for Numerical methods in engineering, 32
(4):709–749, 1991. 12

J.R. Shewchuk. Delaunay refinement algorithms for triangular mesh generation.
Computational geometry, 22(1):21–74, 2002a. 35

J.R. Shewchuk. What is a good linear finite element? interpolation, conditioning, anisotropy,
and quality measures. University of California at Berkeley, 2002b. 1

M. Staten, S. Owen, and T. Blacker. Unconstrained paving & plastering: A new idea for all
hexahedral mesh generation. In Proceedings of the 14th International Meshing Roundtable,
pages 399–416. Springer, 2005. xii, 44, 45

D.A. Steinman. Image-based computational fluid dynamics modeling in realistic arterial
geometries. Annals of Biomedical Engineering, 30(4):483–497, 2002. 11, 13

S. Sural, G. Qian, and S. Pramanik. Segmentation and Histogram Generation Using the
HSV Color Space for Image Retrieval. In International Conference on Image Processing
(ICIP), pages 589–592, 2002. 18

I.E. Sutherland and G.W. Hodgman. Reentrant polygon clipping. Communications of the
ACM, 17(1):32–42, 1974. 25

J. Teran, N. Molino, R. Fedkiw, and R. Bridson. Adaptive physics based tetrahedral mesh
generation using level sets. Engineering with Computers, 21(1):2–18, 2005. 42

J.F. Thompson, ZUA Warsi, and C.W. Mastin. Numerical grid generation: foundations and
applications. North-holland Amsterdam, 1985. 3, 4

P.G. Tucker, C.L. Rumsey, P.R. Spalart, R.E. Bartels, and R.T. Biedron. Computations of
wall distances based on differential equations. AIAA journal, 43(3):539–549, 2005. 101

110

L. Vincent. Morphological Grayscale Reconstruction in Image Analysis: Applications and
Efficient Algorithms. IEEE Transactions on Image Processing, 2(2):176–201, 1993. 15

J. Vleugels and M. Overmars. Approximating voronoi diagrams of convex sites in any
dimension. International Journal of Computational Geometry and Applications, 8(2):201–
222, 1998. 36

K.C.Y. Wang. Level set methods for computational prototyping with application to
hemodynamic modeling. PhD thesis, stanford university, 2001. xi, 11, 12, 102

Y. Wang, F. Guibault, R. Camarero, and K.F. Tchon. A parameterization transporting
surface offset construction method based on the Eikonal equation. In Seventeenth AIAA
CFD Conference. Citeseer, 2005. 38

H. Xia and P.G. Tucker. Distance solutions for medial axis transform. Proceedings of the
18th International Meshing Roundtable, pages 247–265, 2009. 35

C. Xu and J.L. Prince. Snakes, shapes, and gradient vector flow. IEEE transactions on
image processing, 7(3):359–369, 1998. 20

J. Yang, N. Sakamoto, Z. Wang, P. Carrica, and F. Stern. Two phase level-set/immersed-
boundary cartesian grid method for ship hydrodynamics. In Proc. Nineth Int. Conf.
Numer. Ship Hydrodynamics, Ann Arbor, MI, 2007. 24

T.S. Yoo. Insight into images: principles and practice for segmentation, registration, and
image analysis. AK Peters, Ltd., 2004. 10

111

VITA

Nicholas Szapiro was born in Colorado in 1987 to parents from Argentina. He obtained

Bachelor’s degrees in engineering and math from Swarthmore College. He continued his

studies at the SimCenter to learn the computational tools used to solve cool problems. He

will continue to apply these studies at the University of Oklahoma in meteorology.

112

	ABSTRACT
	DEDICATION
	ACKNOWLEDGEMENTS
	LIST OF FIGURES
	Chapter

	CHAPTER
	1 INTRODUCTION
	Overview
	Background
	Motivation
	Development

	2 Technical Framework
	Applications
	Biological Simulation
	Voxelisation
	Models

	Input Data
	Digital Image Processing
	Morphology
	Histograms
	Active Contours

	Hierarchical
	Boundaries
	Cut cell
	Smooth surface nodes
	Buffer layers

	Distance field
	Motivation
	Computation through Spatial Partitioning
	Voronoi Meshing

	Normal Evolution of Fronts
	Explicit
	Implicit

	Isosurface Meshing
	Analytical
	Mapping
	Cell division/Templates
	Advancing Front

	3 Tools
	CDF Computation
	Spatial Quadtree
	Data Structure
	Neighbor Finding
	All Neighbors
	Face Neighbors
	Corner Neighbors
	Distance Bounds and Correspondence
	Computation over a Box
	Data Structure
	Computation over the Tree
	Root-down
	Surface-out
	Feature Adaptation
	Adaptation to Distance Level
	Adaptation to Multiple Points

	Contouring of a Feature
	Coordinates
	Distance Level
	Merged Region
	Contour Connectivity
	Offset Contour Connectivity
	Surface and Merging Region Connectivity
	Merging Regions
	Interior
	Between Objects
	Normal Correspondences
	Finding the closest coordinate

	Edges to Cells

	4 Composite Algorithms
	Surface-oriented Meshing
	Pre-processing
	Parametric Boundaries
	Digital Images

	Density Requirements

	Algorithm
	Input
	Example
	Voronoi-dual Meshing
	Holes
	Oriented Segments
	Algorithm
	Input

	Abstraction of Approaches
	5 Results and Discussion
	Surface-oriented Meshing
	Parameter Choices
	Leaf Size and Subsamples
	Distance Levels

	Image Geometry

	Airfoil Geometry
	Viscous Spacing
	Discussion
	Voronoi Meshing
	Simple Case
	Combined Case
	Discussion

	6 Conclusions
	Extensions
	3D CDF
	Approximate Medial Axis
	Point Generation
	Future Work
	3D Voronoi Meshing
	Couple with Flow Solver
	CFD Applications

	Sequential Sizing
	Smarter Correspondences
	Parallelization
	Geometry Definition
	REFERENCES

	VITA

