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ABSTRACT 

 
 The two distillation columns of Wacker Institute pilot plant at the Chattanooga State 

Community College are investigated for stable operating regions, flooding phenomena that 

occurs in the bubble-cap tray distillation column, weeping phenomena that occurs in the sieve 

tray distillation column, and comparison of operation between the two distillation columns. With 

the use of a distributed control system (DCS) and glass equipment in the pilot plant, these 

phenomena are analyzed visually and with the help of instrumentation readings. The energy 

usage and production limits of both distillation columns are discussed. The flooding of bubble-

cap trays occur before reaching production goals due to a flaw inside the column. The weeping 

of sieve trays does not allow the distillation column to operate efficiently at low flow rates. The 

bubble-cap tray distillation column uses less energy to achieve the same production goals as the 

sieve tray distillation column.    
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CHAPTER I 
 

INTRODUCTION 
 
 
1.1 Wacker Institute Pilot Plant 
 

The Wacker Institute Pilot Plant located at the Chattanooga State Community College 

(CSCC) is a state of the art training facility for chemical operators and students. The pilot plant, 

built by De Dietrich Process Systems, includes distillation columns and utilities used for the 

separation of ethanol and water. The training process in the pilot plant consists of being able to 

read process and instrumentation diagrams (P&IDs), follow standard operating procedures, 

understand the distributed control system (DCS), operate the DCS software, start-up, continuous 

operation, troubleshooting, and shut-down of the pilot plant. The start-up includes checking all 

utilities, equipment, instrumentation, and control valves for safe operation. The continuous 

operation is where the chemical operators and students are trained on being able to run a 

distillation process while meeting production goals using the least amount of energy possible. 

Once the operators are comfortable with the system’s operation, troubleshooting scenarios are 

introduced to show them what to do when things go wrong, how to fix the problem, and how to 

bring the pilot plant back to the same conditions before the problem occurred. Shut-down of the 

pilot plant consists of shutting down the two distillation columns which begins with stopping 

feed and steam supply to the columns, shutting down all the pumps in tank farm area, decreasing 

coolant flow, shutting down the boiler, and closing all manual valves necessary to bring the pilot 

plant to the same conditions found at start-up.
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Through several months of operating the pilot plant, many flaws in the process has been 

found. One of the main flaws has been excessive entrainment and flooding of the trays of one of 

the distillation columns (bubble-cap tray distillation column) before production goals can be 

reached. Analyzing this flooding phenomenon and why it happens below its design 

specifications are one of the purposes for this thesis. The weeping of a few trays on the other 

distillation column (sieve tray distillation column) has been noticed; analyzing this phenomenon, 

finding its root cause, and the effect it has on the process is another purpose of this research. 

 Due to having new chemical operators and students every semester, it is important to 

know the capabilities of the two distillation columns and the parameters at which they can 

operate efficiently. These parameters would also be very helpful to instructors who are 

unfamiliar with the distillation process at the pilot plant. This research is intended to determine 

the most efficient way to operate the distillation columns and find the parameters that allow for 

this to happen. Also, the work is to compare and contrast the flooding and entrainment behavior 

with literature information. The literature is very sketchy about the specifics of these phenomena. 

The work is to carefully document these phenomena in the two distillation columns.  

 
1.2 Continuous Binary Distillation 
 

Binary distillation is the separation of two liquids based on the difference in boiling 

points of the two liquids. This is done using a distillation column which consists of a reboiler at 

the bottom of the column used as the heat source to boil the liquid mixture, equally spaced trays 

used to bring the liquid and vapor phases in contact, and condenser at the top to bring the vapor 

rising from the last tray back to liquid phase for collection in a tank. From this tank, a portion of 

the liquid is sent back to the top tray of the distillation column where liquid and vapor contact on 

each tray is established. This liquid is also called reflux which is used for purification of the low 
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boiler, or more volatile compound. The other portion of the liquid in the tank is collected as the 

low boiler product, also called the distillate product. The ratio of the amount of reflux sent back 

to the top tray to the amount of distillate product collected is called the reflux ratio. The higher 

the reflux ratio is, the higher the purity of the low boiler, but also the higher the energy cost is. 

The high boiler, or less volatile compound, left at the bottom of the column can also be collected 

and is called bottoms product.  

Continuous binary distillation is where a mixture in the distillation column is 

continuously fed with a fresh new mixture to make up for the amount of distillate and bottoms 

products taken out of the distillation column. This fresh mixture is called the feed, and the tray 

on which it enters the distillation column is called the feed tray. The feed is pre-heated before 

entering the feed tray so that the energy required to separate the low boiler from the high boiler 

entering the column is less, which results in increased efficiency of the separation process in the 

distillation column. The section of the distillation column below the feed tray is called the 

stripping section and the section above the feed tray is called the rectifying section. Continuous 

distillation can be very expensive, contributing to more than 50% of plant operating costs 

(Cheremisinoff, 2000), due to constant heat supply to the reboiler for boiling the mixture at the 

high boiler’s boiling point and a constant source of coolant supply to the condenser for 

continuous vapor to liquid phase change. Due to this high cost, distillation columns must be 

operated as efficiently as possible, meaning using the least amount of energy possible to achieve 

production goals. 
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1.3 Background on Bubble-cap and Sieve Trays 
 

The tray hydraulics of bubble-cap and sieve tray distillation columns has been 

extensively studied by Smith (1963). 

Smith’s (1963) study on tray hydraulics of bubble-cap trays states: 

The bubble-cap tray is the best known vapor-liquid contacting device. Through the 
years it has been a standard for the chemical and petroleum industry, and a majority 
of the existing commercial vapor-liquid contacting devices contain bubble-cap trays. 
Because of the widespread acceptance of bubble-cap trays and a wealth of operating 
experience developed on them through the years, designers have in the past been 
wary of specifying alternate contacting devices having relatively unknown hydraulic 
characteristics. One unique advantage of bubble-cap trays is the fixed-seal 
arrangement enabling them to be operated over a wide range of conditions while 
maintaining constant efficiency. (p.474) 
 

There are other types of vapor-liquid contacting devices such as perforated trays. The 

most common perforated tray is a sieve tray. The advantage of using sieve trays is the simplicity 

in their design and a lower cost (Smith, 1963). According to Smith (1963): 

There are two important differences in the way vapor flows up the trays between 
sieve and bubble-cap trays:  

1. For the sieve tray, vapor emerges from a large number of small openings 
(perforations) primarily in a vertical direction. 

2. For the sieve tray, there is no built-in liquid seal and only vapor flow can 
prevent liquid passage through the holes. (p. 543) 

 
1.3.1 Flooding 
 

Flooding in a distillation column is a phenomenon where the rate of liquid coming into a 

tray from a tray above is higher than the rate of liquid leaving that tray through the downcomer, 

which causes the tray to fill up (become flooded) and the liquid begins to get sent at the tray 

above.  

Smith’s (1963) research has found that: 

Flooding on trays may be brought on by either excessive entrainment, where the 
rising vapor stream carries liquid to the tray above or liquid backup in the 
downcomer. The true point of flooding is difficult to determine experimentally, 
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and “maximum capacity” is usually synonymous with an incipient flooding 
condition brought on by either of the two phenomena noted above. Regardless of 
cause, the onset of flooding is detected by a sharp increase in pressure drop and a 
sharp decline in efficiency. 
 

According to Perry (1997): 

Entrainment in a distillation column is that liquid which is carried with the vapor 
from one tray to the tray above. It is detrimental in that the effective tray 
efficiency is lowered because liquid from a tray of lower volatility is carried to a 
tray of higher volatility, thereby diluting the effect of distillation. Entrainment is 
also detrimental when nonvolatile impurities are carried upward to contaminate 
the overhead product from the distillation column. Many experimental studies of 
entrainment have been made, but few of them have been made under actual 
distillation conditions. The studies are often questionable because they are limited 
to the air-water system, and they do not use a realistic method for collecting and 
measuring the amount of entrainment. (p. 14-28) 
 

 There is not much research done on flooding phenomena in tray columns in the recent 

years since distributed control systems came out. One of the most recent studies is done by 

Emerson Process Management with the use of their Rosemount 3051S series differential pressure 

transmitter (Emerson Process Management, 2008). The use of a transmitter to measure the 

differential pressure across the distillation column can help with detecting when flooding starts. 

The research predicts flooding only by sharp increase in differential pressure, and the study was 

done using a packed column (Emerson Process Management, 2008). Most other studies are also 

done using packed columns since the probability of flooding to occur is much greater due to the 

packing in between the trays. There are other studies done where mathematical models are 

developed to predict or estimate flooding capacity in a column using superficial flooding 

velocities of the vapor and liquid (Piche, Larachi, and Grandjean, 2001). Pop, Dulf, and Festila 

(2008) studied flooding in a cryogenic separation column and proposes predicting flooding using 

differential pressure and liquid level in the reboiler data (Pop, Dulf, and Festila, 2008). Still the 

main purpose in this study was to develop mathematical equations to estimate the flooding point 
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using data collected from a test column. Other recent studies focus mainly on the pressure drop 

measurements on distillation columns (Cai, Shariat, and Resetarits, 2009) and computational 

fluid dynamics on the column trays (Chunjiang and Xigang, 2002). Most of the studies done on 

flooding only apply to the small experimental columns, packed columns, and estimation using 

modeling on a computer. There needs to be a better study done in order to observe flooding 

visually with the use of a glass distillation column and a distributed control system software to 

analyze exactly what happens to differential pressure and other variables in the tray distillation 

column. 

 
1.3.2 Weeping 
 
 Smith’s (1963) research on weeping of sieve trays has found: 

Just as entrainment represents an upper limit to tray operation, excessive flow of 
liquid through the perforations of a sieve tray represents a lower limit. Liquid 
passage through the tray may occur to some extent at all vapor rates, but as the 
rate is reduced, the passage becomes pronounced at the “weep point.” Weeping 
may be fairly uniform across the tray, or it may be localized near the point of 
liquid entry to the tray. It is important to note that even though some tray 
bypassing results from weeping, some mass transfer occurs in the vapor zone. The 
influence of weeping on tray efficiency depends on the fraction of total liquid 
downflow that weeps; thus, for cases of low liquid flow a small amount of 
weeping can be relatively serious. 

As vapor rate is reduced below the weep point, serious liquid drainage 
begins at the “dump point.” Dumping is easily observed visually and is 
characterized by a definite drop in tray efficiency. Below the dump point 
operation may be unstable and efficiency so low that effective separation is 
difficult, if not impossible. (p. 547-548). 

 
1.3.3 Stable Operating Region 
 
 It is important to note the qualitative effect of liquid and vapor loads on bubble-cap tray 

performance as limited by tray dynamics (Smith, 1963). A performance chart has been 

developed by William L. Bolles (1963) to illustrate the limit of each dynamic factor for a typical 

bubble-cap tray (Smith, 1963), and is shown in figure 1.1: 
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Figure 1.1  

 
Typical Bubble-cap Tray Performance Chart (Smith, 1963) 

 
 

The area of satisfactory operation is shown surrounded by excessive entrainment, 

overloaded slots, flooding, insufficient downflow residence time, excessive throw over weir, bad 

vapor distribution, dumping, and vapor pulsation (Smith, 1963). This satisfactory region is 

developed mainly for design purposes and can also be called stable operating region. The only 

unsatisfactory region that is of interest in this research is the excessive entrainment/flooding 



      

8 
 

region, which is the upper limit of satisfactory operation. A similar stable operating region chart 

was developed for sieve tray distillation columns (Smith 1963), which is shown below: 

 

 
 

Figure 1.2  
 

Stable Operating Region for Sieve Trays (Smith, 1963) 
 
 

The vapor velocity term on the y-axis of figure 1.2 refers to the rate of vapor flow from the 

distillation column into the condenser. The flow parameter on the x-axis refers to the rate of 

liquid flow into the distillation column which consists of feed and reflux. For the purpose of this 

research; only the flooding, entrainment, and weeping regions are of interest for the 

unsatisfactory operation of the sieve tray distillation column. 
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1.4 Research Objectives 
 

This research thesis is done and applies specifically to the bubble-cap tray and sieve tray 

distillation columns at the Wacker Institute pilot plant. The research objectives of these 

distillation columns are: 

1. Analyze the flooding phenomenon in bubble-cap tray distillation column and find the 

region of flooding with respect to liquid and vapor flow rates. 

2. Develop a stable operating region chart for the bubble-cap tray distillation column using 

the results from flooding and satisfactory operation to compare with figure 1.1. 

3. Analyze weeping phenomenon in sieve tray distillation column and the effect of it on the 

distillation process. 

4. Develop a stable operating region chart for the sieve tray distillation column and compare 

with figure 1.2. 

5. Find the parameters at which the distillation columns operate most efficiently and 

compare the differences in operation of the two distillation columns.
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CHAPTER II 
 

EQUIPMENT 
 
 
2.1 Introduction 
 

This chapter will discuss the equipment used to analyze the flooding phenomena, 

weeping phenomena, and the stable operating region of the two distillation columns.  The overall 

system in the Wacker Institute pilot plant consists of analytical instrumentation, distributed 

control system (DCS), utilities, tank farm area, bubble-cap tray distillation column, sieve tray 

distillation column, and control instrumentation. The distillation columns are used to separate an 

ethanol (EtOH) and water mixture. The bubble-cap distillation column and sieve tray distillation 

column consist of identical equipment of the same size aside from the type of trays they have. 

For this reason, only one of the column’s equipment will be shown and discussed. The following 

sections of this chapter will discuss in detail all of the equipment in the overall system mentioned 

above. One important difference in these distillation columns compared to distillation columns in 

most plants in the United States is that the first tray (Tray 1) is the lowest tray closest to the 

reboiler and the last tray (Tray 20) is the highest tray closest to the condenser. This is opposite of 

standard tray numbering used in the United States where tray 1 is the highest tray closest to the 

condenser at the top of the column, and tray numbers increase going down the column to the 

reboiler. The schematic of the overall system is shown in figure 2.1:
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Figure 2.1 

 
Schematic of the Overall System 

 
 
2.2 Analytical Instrumentation 
 
 Density meter and refractometer make up the analytical equipment used to analyze feed, 

ethanol (EtOH) -rich product, and water-rich product concentrations of EtOH. The density meter 

is made by Anton Paar model DMA 500 and was used to measure the density and top distillate 

product concentration of alcohol by weight. After an approximately 2 mL sample is collected 

from the distillation columns it is first brought to room temperature (20-25 oC), then a syringe is 

used to put the sample in the density meter where density and concentration of alcohol by weight 
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is measured in less than 2 minutes. A picture of the density meter used is shown below in figure 

2.2: 

 

 
 

Figure 2.2 
 

Density Meter 
 
 

 The refractometer is used for measuring concentration of the bottom water-rich product. 

It consists of the refractometer itself and a chiller unit which uses an ethylene glycol-water as a 

coolant to keep the refractometer at a constant temperature for the most accurate measurement. 

The refractometer gives a refractive index number of the sample being measured, and then a 
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“refractive index” to “ethanol concentration” graph is used to get the value of ethanol 

concentration in the mixture. A picture of the density meter used is shown below in figure 2.3: 

 

 

Figure 2.3 
 

Refractometer (right) and Chiller (left) 
 

The chiller unit for the refractometer is the bigger device on the left side of the refractometer 

shown in figure 2.3. 

 
2.3 Distributed Control System (DCS) 

 The DCS consists of a main I/O control panel (MIOP), remote I/O panels (RIOP) for the 

tank farm area (RIOP-T110), bubble-cap tray distillation area (RIOP-T120), sieve tray 

distillation area (RIOP-T220), Proplus programming computer station, operator control station, 
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two field terminals for the plant area, variable frequency drives (VFDs) by Siemens for all the 

pumps and utilities in the pilot plant, and DeltaV DCS software package by Emerson. The DCS 

was designed and built by De Dietrich Process Systems (DDPS). The control system diagram is 

shown below in figure 2.4: 

 

 

Figure 2.4 
 

Control System Diagram 
 
 

2.3.1 Input-Output Control Panels 
 
 The main I/O control panel (MIOP) components include two power supply switching 

regulators from a 120/240 VAC input to a 24 VDC output, DeltaV system power supply, DeltaV 
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SD Plus PID controller, Ethernet, relays, and DeltaV I/O Charms. A labeled picture of the MIOP 

is shown below in figure 2.5: 

 

 
 

Figure 2.5 
 

Main I/O Control Panel (MIOP) 
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The remote I/O panels (RIOP) are very similar to the MIOP except they only have the DeltaV 

I/O Charms, relays and Ethernet devices. A labeled picture of one of the RIOPs is shown below 

in figure 2.6: 

 

 
 

Figure 2.6 
 

Remote I/O Control Panel (MIOP) 
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DeltaV I/O 
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2.3.2 DeltaV DCS System Software  
 
 The DeltaV DCS system software package by Emerson is the computer software program 

used to control the distillation process in the pilot plant. The Proplus programming station, 

operator station, and both of the remote terminals in the plant area all use this software to run the 

pilot plant. The software package provides means for writing, editing, and maintaining logic 

code for processing inputs and driving outputs from programmed sequences. It also provides 

means for developing operator interface screens for control, annunciation, and monitoring of the 

process (DDPS, 2011).  

 DeltaV software has four different interface screens where the process can be monitored 

or the process conditions can be adjusted. The first screen interface is the overview of the overall 

process and is shown in figure 2.7: 

 

 
 

Figure 2.7 
 

Overview Screen Interface of DeltaV DCS system software 



      

18 
 

Figure 2.7 shows left to right the tank farm area (T110), bubble-cap tray distillation area (T120), 

and the sieve tray distillation area (T220) mentioned in the introduction section of this chapter. 

This overview screen is used only to monitor the process variables and cannot be used to make 

any changes in the process conditions. The process lines are ethanol-rich stream in green, 

ethanol-water feed mixture stream in white, steam in orange, vent gas in yellow, water-rich 

stream in blue, and coolant is shown by the pink lines. 

 The figure below shows the tank farm area (T110) main screen: 

 

  
 

Figure 2.8 
 

T110 Screen Interface of DeltaV DCS system software 
 

 
Figure 2.8 shows the T110 area and the variables that can be changed from the screen. The 

yellow numbers represent the process variables as also seen in figure 2.7 since these are just 
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readings from the transmitters in the system and cannot be changed. The blue numbers are 

control variables and can be adjusted. The control variables on figure 2.8 are the speed of the 

pumps in terms of percent power. The green color of the pump indicates that it is running and the 

red indicates that it is stopped. 

 The two distillation column screens are identical except for the numbering of the 

equipment. The bubble-cap tray distillation area has a “1” and sieve tray has a “2” for the first 

number in the equipment identification. Since the only difference is that and the type of trays, 

only one of the screens is shown for demonstration, shown in figure 2.9: 

 

 

Figure 2.9 
 

T120 Screen Interface of DeltaV DCS system software 
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The dotted lines on figure 2.9 indicate the control signals. The color coding matches the same 

ones used for the variables. The white numbers shown on the screen shot are set-points. The blue 

dotted lines are connected from the valves to the black boxes indicate a control loop. On manual 

mode (MAN), the percent valve opening can be adjusted with the blue control variable. On 

automatic mode (AUTO), the control loop activates and the white colored set-point can be 

adjusted. These include flow rates and levels on the tanks. The white dotted lines going from one 

black box to another indicate the cascade controls. On cascade mode (CAS), a secondary control 

takes over and another variable set-point can be controlled. This is the case for the two 

temperature controls (TIC) and the reflux ratio control (FFIC). 

 
2.4 Utilities 
 
 The utilities consist of two air compressors, nitrogen generator, boiler, condensate return 

system, and the chiller unit. One of the air compressors is only used to feed air into the nitrogen 

generator, where nitrogen in the air gets separated using molecular sieves. The other air 

compressor is used for air supply to all the control instrumentation, which are air actuated control 

valves. A picture of the air compressor is shown in figure 2.10: 
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Figure 2.10 
 

Air Compressor 
 
 

The nitrogen generator supplies nitrogen gas to all of the glass tanks and equipment in the 

pilot plant. Since the process equipment has denatured ethanol in it and is explosive in the 

presence of oxygen, nitrogen is filled in all the empty space in the tanks for safety purposes. A 

labeled picture of the nitrogen generator is shown in figure 2.11: 
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Figure 2.11 
 

Nitrogen Generator 
 
 
The air enters as shown with the red arrow in figure 2.11 above, goes through three filters to 

remove particulates in air, then gets sent to the plant after regulating the pressure of the nitrogen. 

Nitrogen is also used in the start-up of the distillation process to mix the initial ethanol-water 

mixture. 
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 The boiler in the system is electrically operated and is used to generate a saturated steam 

supply to the distillation columns from an inlet water supply. The pressure of the steam in the 

boiler is controlled at approximately 80 psig. A picture of the boiler is shown below in figure 

2.12: 

 

 
 

Figure 2.12 
 

Boiler 
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The steam sent from the boiler to the distillation columns is then adjusted to 29 psig (2 barg) 

using a self-actuated pressure regulator. After the saturated steam goes through the coils in the 

reboiler of the distillation column it transfers its heat to the ethanol-water mixture and turns into 

liquid condensate. This condensate then gets sent to a condensate return system where its 

pumped back into the boiler. The condensate return system is shown in figure 2.13 below:  

 

 

Figure 2.13 
 

Condensate Return System 
 
 

The last of the utilities is a chiller unit for cooling purposes. The coolant from the chiller is used 

in the condensers for the top distillate vapor, distillate coolers, and bottom product cooler. The 

type of coolant the chiller unit uses is 50% ethylene glycol and 50% water by weight. The 

ethylene glycol is DOWTHERM SR-1 and the water in the mixture is distilled water. The chiller 

unit is located outside of the pilot plant; a picture of it is shown in figure 2.14: 
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Figure 2.14 
 

Chiller 
 
  

2.5 Tank Farm (T110) 
 
 The tank farm (T110) area is where the initial feed mixture is located and where it is sent 

to the two distillation columns. The 1000 L feed tank (AB001) is filled with approximately 600 

L of a 50% distilled water and 50% denatured ethanol (EtOH) by weight. T110 is also the 

location where the EtOH-rich and water-rich products are sent to and collected. The EtOH-rich 

product gets collected in the EtOH-rich product tank (AB002). The water-rich product first goes 

through the bottom product cooler (AW001), then gets collected in the water-rich product tank 

(AB003). The safety equipment in T110 includes a waste gas separator (AB004) and an activated 

carbon filter (AF001). In the case of waste gases escaping the top of the distillation columns, 

they get sent to AB004 and then the volatile compounds get trapped in AF001 before getting sent 

out to the atmosphere. The process and instrumentation diagram (P&ID) of T110 is shown in 

figure 2.15:
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Figure 2.15 
 

P&ID of T110 
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A clearer and labeled picture of T110 is shown below in figure 2.5.2:                    

 

 

Figure 2.16 
 

Labeled picture of T110 
 
 
The tanks and pipelines are made of borosilicate glass manufactured by QVF (DDPS, 2011) 

 
 
2.6 Distillation Columns 
 
 There are two distillation column areas as mentioned previously, bubble-cap tray 

distillation column area (T120) and sieve tray distillation column area (T220). The only 

difference in the two distillation columns is the type of tray each one has. The height of each 

distillation column is 6000 mm or approximately 20 ft. The diameter is 200 mm and the number 

of trays in each column is 20. The feed tray location can either be between trays 5-6 or 10-11 

depending on the amount of stripping and rectifying that needs to be applied in the process. The 
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material of construction of the distillation columns is Borosilicate glass 3.3, which is the same 

material that was used for all the tanks and pipelines in the T110 area. Tables 2.1 and 2.2 below 

show a summary of the specifications for the distillation columns: 

 
Table 2.1 Bubble-cap Tray Distillation Column (AK122) Specifications 

 
Bubble-cap Tray Distillation Column (AK122) 
Material of Construction: Borosilicate glass 3.3 

Column Height: 6000 mm 
Column Diameter: 200 mm 
Number of Trays: 20 

Tray Spacing: 208 mm 
Operating Pressure: 1 atm 

Tray Type: Crossflow 
Tray Material: Stainless Steel (316Ti) 

Tray Diameter: 190 mm 
Number of Caps per Tray: 2 

Bubble-cap Size: 152 mm X 28.5 mm 
Downflow Area: 3226 mm2 

 
 
Table 2.2 Sieve Tray Distillation Column (AK222) Specifications 
 

Sieve Tray Distillation Column (AK222) 
Material of Construction: Borosilicate glass 3.3 

Column Height: 6000 mm 
Column Diameter: 200 mm 
Number of Trays: 20 

Tray Spacing: 208 mm 
Operating Pressure: 1 atm 

Tray Type: Crossflow 
Tray Material: Stainless Steel (316Ti) 

Tray Diameter: 190 mm 
Number of Holes per Tray: 66 

Hole Diameter: 8 mm 
Downflow Area: 3226 mm2 
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Pictures of a model of one of the trays for each column are shown below in figures 2.17 and 

2.18: 

 

Figure 2.17 
 

Bubble-cap Tray 
 
 

 
 

Figure 2.18 
 

Sieve Tray 
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The distillation column areas (T120/220) also have other equipment besides the columns 

their selves. These equipment include a recirculation evaporator (AW126/226), feed pre-heater 

(AW125/225), condenser (AW127/227), respirator (AA101/201), buffer tank (AB101/201), and 

distillate cooler (AW128/228). The details of this equipment will be discussed in the following 

subsections. Since both T120 and T220 have the same exact equipment and only different in 

their identification number, only one from either column will be discussed. These do not include 

the various pumps, control valves, and instrumentation which will be discussed in the later 

sections of this chapter. 

 
2.6.1 Recirculation Evaporator 
 
 The recirculation evaporator has a heat exchange surface area of 1 m2 and included inside 

it is a stainless steel heating coil for steam to go through. The recirculation evaporator is a type 

of heat exchanger and also is used for mixing the ethanol-water mixture in order to avoid flash 

evaporation in the distillation column. This is done using the bottoms pump and also by 

introducing nitrogen gas to the bottom of the recirculation evaporator. The portion of this device 

in the P&ID (DDPS, 2011) of T120 is shown in figure 2.19 highlighted in yellow:
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Figure 2.20 

 
Picture of Recirculating Evaporator (AW126) in T120 

 



      

32 
 

A picture of AW126 is shown below in figure 2.20: 
 
 

 

Figure 2.20 
 

Picture of Recirculating Evaporator (AW126) in T120 
 
 
2.6.2 Feed Pre-Heater 
 
 The feed pre-heater is used in the distillation column to warm the feed mixture closer to 

its boiling point so that the process runs more efficiently. This device has a heat exchange 

surface area of 0.4 m2 and also has a heating coil inside it. The portion of this device in the P&ID 

(DDPS, 2011) of T120 is shown in figure 2.21 highlighted in yellow:
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Figure 2.21 

 
P&ID of Feed Pre-Heater (AW125) in T120 
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A picture of AW125 is shown below in figure 2.22: 
 
 

 

Figure 2.22 
 

Picture of Feed Pre-Heater (AW125) in T120 
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2.6.3 Condenser 
 
 The condenser in the distillation column is used to condense the vapors going up the 

distillation column. This device is a type of counter-flow shell and tube heat exchanger. It uses 

coolant on the tube side and the vapors from the distillation column condense on the shell side. 

The heat exchange surface area of this device is 2.5 m2 and is horizontally tilted in order for the 

condensate to travel with the aid of gravity. The condenser’s top is opened into a vent gas line in 

case the vapors escape the condenser in the case where cooling rate is insufficient compared to 

the rate of vapor going up the column. This vent line is connected to a rupture disk and then the 

respirator. In the case of a vacuum condition in the column, this line is also used to supply 

nitrogen gas into the column through the condenser. The portion of this device on the P&ID 

labeled and a picture of it is shown with figures 2.23 and 2.24: 

 

 
 

Figure 2.23 
 

Labeled P&ID of Condenser (AW127) in T120 
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Figure 2.24  
 

Picture of Condenser (AW127) in T120 
 
 

2.6.4 Respirator 
 
 The respirator is a mechanical device with two weights used to keep an equilibrium 

pressure inside the distillation column. The nitrogen supplied to blanket all the tanks and the 

distillation column is done through this device. Nitrogen is supplied to the device at 0.04 Barg 

and enters through one of the inlets with a weight on top of it. In the case of exceeding a certain 

pressure in the column, this weight closes and the other one lifts to release the gas through the 

vent gas line and gets sent to AB004. The respirator for T120 (AA101) on the P&ID is shown in 

figure 2.25: 
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Figure 2.25 
 

P&ID of Respirator (AA101) in T120 
 
 
Figure 2.25 above illustrates how the nitrogen is supplied at 0.04 bar, which can be checked with 

the pressure indicator (PI AA101-01), then goes in the left side of AA101 after a manual hand 

valve. This nitrogen supply then enters the condenser, column, and all the tanks from the middle 

AA101. The vent gases from the condenser AW127 in an emergency situation would go in 

through the same place nitrogen enters the condenser, middle portion of AA101, shown by the 

two directional arrows. A picture of this actual device in T120 can be seen in figure 2.26: 
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Figure 2.26 
 

Picture of Respirator (AA101) in T120 
 

2.6.5 Buffer Tank 
 
 The buffer tank, also called a reflux drum in many distillation applications, is the tank 

where the top distillate product condensate gets collected. This is a 50 L tank and is the place 

where reflux splitting takes place. The reflux is sent back to the top of the column and also the 

distillate EtOH-rich product gets sent to the distillate cooler before getting collected in the 

product tank AB002 in the tank farm area T110. The level in the tank is controlled in a loop by 

the distillate EtOH-rich product return valve (LV AB101/201-01) and a constant reflux ratio can 

be achieved by using the cascade control (FFIC-AK122/222) for the reflux valve (FV 

AK122/222-01). A portion of this device in the T120 P&ID (DDPS, 2011) is labeled and 

highlighted in yellow in figure 2.27: 
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Figure 2.27 
 

Labeled P&ID of Buffer Tank (AB101) in T120 
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A picture of front and back view of AB101 is shown below in figure 2.28: 

 

 
 

Figure 2.28 
 

Picture of Front (Left) and Back (Right) View of Buffer Tank (AB101) in T120 
 
 
2.6.6 Distillate Cooler 
 
 The distillate cooler is another heat-exchanger device that is used to cool the EtOH-rich 

distillate product and keep it below 32oC before it gets sent to the EtOH-rich product tank 

AB002 in the tank farm T110. This is also a shell and tube heat exchanger with the coolant on 

the shell side and the EtOH-rich distillate product on the tube side. The heat exchange area of 

this device is 1.0 m2. The P&ID for the distillate cooler AW128 in the bubble-cap distillation 

column area T120 and its picture is shown in figures 2.29 and 2.6.30 respectively:
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Figure 2.29 
 

P&ID of Distillate Cooler (AW128) in T120 
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Figure 2.30 
 

Picture of Distillate Cooler (AW128) in T120 
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2.7 Pumps, Control Valves, and Measuring Devices 
 
2.7.1 Pumps 

There are two different types of pumps used in the pilot plant facility, the ones used in the 

tank farm area T110 and the ones used in the distillation column areas T120 and T220. This 

section does not include or discuss the pumps for the condensate return system, the boiler, and 

the chiller unit. The pump used in T110 is a side-channel centrifugal pump with two impellers. It 

is used for the feed tank (feed pump AP001) and both of the product tanks (Water-rich product 

tank pump AP002 and EtOH-rich product return pumpAP003), shown below in figure 2.31: 

 

 

Figure 2.31 
 

Tank Farm T110 Pump 
 
 

The other type of pump used in the two distillation columns is also a side-channel centrifugal 

pump except that it only has one impeller. This pump is used for the bottom recirculation/bottom 
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water-rich product return (called bottoms water pump AP122/222) and for buffer tank 

recirculation/reflux/EtOH product return (called EtOH distillate pump AP123/223). This pump is 

shown below in figure 2.32: 

 

 

Figure 2.32 
 

Distillation Column Area T120/220 Pump 
 
 
2.7.2 Control Valves 

There are two different types of control valves for the distillation columns; a Fisher 3661 

positioner with a Baumann pneumatic control valve and actuator, and a Samson pneumatic valve 

and actuator. The Fisher/Baumann control valve is used for controlling the steam supply to 

recirculating evaporators AW126/226, steam to feed-preheaters AW125/225, coolant supply to 

condensers AW127/227, coolant supply to distillate coolers AW128/228, and bottoms water-rich 

product return to the water-rich product tank AB003. The Samson control valve is used for 
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controlling the feed flow rate, reflux, and distillate EtOH-rich product return to EtOH-rich 

product return tank AB002 for both of the distillation column areas T120 and T220. Pictures of 

one of each of these valves are shown in figures 2.33 and 2.34: 

 

 

Figure 2.33 
 

Fisher 3661 Positioner with a Baumann Pneumatic Control Valve and Actuator 
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Figure 2.34 
 

Samson Pneumatic Valve and Actuator 
 
 

2.7.3 Measuring Devices 

There are total of three different kinds of flow meters used in the distillation process for 

measuring flow of fluids. The two main ones are a Rosemount 8800D Vortex flowmeter and a 

Micro Motion F-Series Coriolis flowmeter. The Rosemount Vortex flowmeter is used for 

indicating steam and coolant flow rates in kg/hr. A picture of this device is shown in figure 2.35: 
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Figure 2.35 
 

Rosemount 8800D Vortex Flowmeter 
 
 
The Micro Motion Coriolis flowmeter is used for indicating feed, EtOH-rich distillate product, 

and reflux flow rates in L/hr for both of the distillation columns. A picture of this device is 

shown in figure 2.36: 



      

48 
 

 

Figure 2.36 
 

Micro Motion F-Series Coriolis flowmeter 
 

The last type of flowmeter used is a Rotameter which is used for indicating the flow rate of 

bottoms recirculation into recirculating evaporator measured in gal/min. A picture of this device 

is shown in figure 2.37: 
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Figure 2.37 
 

Rotameter 
 
 

 There are two different types of level measuring devices used in the distillation process. 

One of them is a Rosemount 3100 Series Ultrasonic Level Transmitter that is used in the buffer 

tank AB101/201 in both of the distillation column areas T120/220 and the feed tank AB001 in 

the tank farm area T110. This device is shown in figure 2.38: 
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Figure 2.38 
 

Rosemount 3100 Series Ultrasonic Level Transmitter 
 
 

The other level device is a Rosemount Guided Wave Radar Level Transmitter which is used to 

determine the level at the bottom of the column/recirculating evaporator and in both of the 

product tanks in the tank farm AB002 and AB003. This device is shown below in figure 2.39: 

 

 

Figure 2.39 
 

Rosemount Guided Wave Radar Level Transmitter 
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Pressure is measured at many places around the distillation column areas, tank farm, and 

utilities. The most common pressure gauge found is the QVF Pressure Gauge located after the 

outlet of every pump. Pressure is measured at these pump outlet and then adjusted with manual 

hand valves to achieve the right pressure for the process. The pressure measurement device that 

is most useful in analyzing flooding phenomena in the distillation columns is the Rosemount 

Differential Pressure Transmitter. This device measures the difference in the pressure from the 

bottom to the top of the distillation column, measured in barg. This pressure transmitter is shown 

below in figure 2.40: 

 

 

Figure 2.40 
 

Rosemount Differential Pressure Transmitter 
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 All of the temperature measurements in the distillation columns are measured by 

resistance temperature device (RTD) made by JMS Southeast. The temperature readings 

indicated by this device are also crucial in analyzing flooding.
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CHAPTER III 
 

PROCEDURES 
 
 
3.1 Introduction 
 
 The flooding phenomena in distillation and determining the stable operating region of the 

two distillation columns were investigated in this research. The procedure for accomplishing this 

is split into four sections. The second section of this chapter will describe the procedure for 

safety which describes checking of all equipment and ensuring that the distillation columns can 

be started-up safely. Also included in the safety section are the details of the hazardous 

chemicals used and the procedures followed to minimize the likelihood of an incident happening. 

The third section describes the start-up process where the procedures for starting up the 

distillation process with total reflux are described. Continuous distillation is the next section of 

procedures where feed is being supplied to the column and product streams are being taken out. 

This section will also describe how the distillation column was brought to its flooding point and 

other important boundary regions in the stable operating region. The last section of this chapter 

will discuss the procedures for stopping flooding, bringing the distillation column back to a safe 

mode, and shutting down the distillation column. 

 The fourth section of procedures most closely relates to the research topic of this thesis. 

This is where all the data are recorded and analyzed to study the flooding phenomena as well as 

the stable operating regions of the two distillation columns.
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3.2 Safety 

3.2.1 Description of Hazardous Chemicals 
 
 The hazardous chemicals in the pilot plant include denatured ethanol for distillation and 

ethylene glycol for coolant supply to the condensers. The ethylene glycol is always contained 

within the coolant pipelines where ethylene travels from the plant to the outside chiller, then 

back to the plant in a continuous cycle. This means there is never any contact with the ethylene 

glycol. The National Fire Protection Association (NFPA) rates this chemical as code 1 for health 

hazard (slightly hazardous), code 1 as a fire hazard (flash point above 200 oF), and code 0 for 

reactivity (stable). The denatured ethanol used in the distillation process is a flammable liquid 

and vapor. It is harmful by inhalation, in contact with skin and if swallowed (MSDS, Denatured 

Ethanol). NFPA rates this chemical as a code 2 for health hazard (hazardous), code 3 for fire 

hazard (flash point below 100 oF), and code 0 for reactivity.  

 For the protection from these hazardous chemicals the pilot plant is equipped with all the 

necessary equipment. Protection from the health hazards includes having a safety shower and an 

eye wash station easily accessible inside the pilot plant. Eye protection equipment such as safety 

glasses or goggles are always worn when inside the pilot plant area and near any of these 

chemicals. Safety gloves are worn when handling samples and during analytics. The following 

measures are taken for protection from the fire hazard of denatured ethanol: 

• All of the equipment inside the pilot plant are intrinsically safe (explosion proof). 

• Oxygen gas is removed from all devices operating with denatured ethanol and replaced 

with nitrogen gas. 

• Fire extinguishers and fire water hose is located inside the pilot plant in the case of an 

explosion or fire. 
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The DeltaV DCS software is programmed with many interlock conditions to stop all equipment 

in the case of a dangerous or hazardous condition in the pilot plant. This includes closing all 

steam valves in the case of denatured ethanol and/or ethylene glycol reaching above normal 

temperatures, shutting down operating of all equipment and opening coolant control valves in the 

case of the chiller and the nitrogen generator failing to operate properly. 

 
3.2.2 Equipment Check for Safe Operation 

 Before starting up the distillation columns, the safety systems are checked to ensure safe 

operation of the process. The very first and most important device to check is the operation of the 

nitrogen generator shown in figure 2.11. All inlet and outlet valves, the pressure inside the tank, 

oxygen concentration, and pressure of the nitrogen gas leaving the nitrogen generator into the 

pilot plant are checked. The regulators for the nitrogen supply to the distillation columns are 

checked to make sure the supply to the recirculating evaporators for mixing is at 0.4 barg, 

nitrogen blanketing to the top of the distillation columns is at 0.04 barg, and the necessary 

manual valves are open in order for the nitrogen gas to enter the respirator. This process ensures 

that there are no leaks and nitrogen is inside all tanks and the distillation columns. These devices 

are checked every hour of operation as necessary.  

The second most important device to check for safety is the chiller unit, shown in figure 

2.14, for coolant supply. The supply of coolant to the pilot plant from the chiller is checked by 

the flow indicating controls on the distillation columns (FIC AW127-01 and FIC AW227-01) 

from the T120 screen interface of DeltaV DCS (figure 2.9) and the T220 screen interface. These 

flow rates are indicated by the vortex flow meters (figure 2.35) for the coolant supply and should 

read approximately 200 L/hr when the plant is not in operation. This check only ensures that the 

pump for the chiller unit is working properly and coolant is being circulated from the chiller to 
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the distillation columns. To check to see if the compressor for the chiller is working and the 

coolant is cooled further once it heats up to a set-point temperature set in the chiller unit control 

panel, a process history of the RTD temperature indicator from the outlet of the condenser 

(AW127 or AW 227) must be checked from the DeltaV DCS process history. This temperature 

indicator for T120 is shown in figure 2.23 labeled TI AW127-01. The process history time axis is 

expanded to show the past 8 hours to see if the temperature on the y-axis has been rising to the 

set-point on the chiller and then dropping in temperature after it reaches this point. This process 

ensures that the chiller is working properly and the compressor will operate to cool the coolant 

once it heats up in the process. 

The waste water pit is checked to make sure that the gate valve is closed and no 

chemicals will be sent to the city sewer line in the case of a large spill. This is followed by 

checking the air compressor (figure 2.10) for air supply to the control valves in the pilot plant. 

This consists of checking the oil level in the compressor and draining the condensate built up in 

the air dryer of the air compressor. Checking of the operation of all control valves, pumps, and 

measuring devices is the next and final step for safety. The control valves are opened to 100% 

and back down to 0% using DeltaV DCS and physically checked to ensure they open and close 

all the way. The pumps are started then stopped while physically checking that they work, 

followed by checking all flow meters, RTDs, level transmitters, and differential pressure 

transmitter to ensure they indicate normal readings for the current conditions of the tanks and the 

distillation columns. The last equipment to be checked is the operation of the boiler shown in 

figure 2.12 and the condensate return system shown in figure 2.13. The water levels in the 

condensate return tank, blowdown tank, and boiler are checked before starting the boiler. After 

the boiler reaches operating pressure (approximately 80 psig), the steam supply ball valve is 
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opened about a quarter turn every 15 minutes to avoid excessive water knocking on the pipes and 

steam is circulated in the steam pipes. The pipes and valves are checked for leaks and the 

condensate return pipelines are checked to make sure all valves are open in order for the built up 

condensate to get sent to condensate return system. A very important safety mark is to remember 

to check all manual (hand operated) valves for the correct position before operating any 

equipment. 

 
3.3 Start-Up 
 
3.3.1 Tank Farm T110 Preparation 
 
 The start-up procedure begins with the preparation of raw mixture in the feed tank 

AB001 in the tank farm area T110. The end products from the previous distillation are contained 

in the tanks AB002 (EtOH-rich) and AB003 (Water-rich). These product tanks are lowered to 

20% level, as indicated by the level transmitters shown in figure 2.39, by sending the EtOH and 

the water to AB001. AB001 is then recirculated at a pressure of 0.5 barg at the feed pump AP001 

for good mixing. After 15 minutes of mixing, a sample is collected to analyze the amount of 

EtOH in the mixture using the density meter (see Section 2.2, figure 2.2). The feed mixture in 

AB001 should have approximately 50 wt% EtOH. If this is not the case, then this is brought to a 

50 wt% EtOH by adding more from AB002 or AB003 as necessary to accomplish this 

concentration of EtOH. Then the mixing and sampling steps are repeated until it is confirmed 

that the mixture in AB001 is 50 wt% EtOH. 

 
3.3.2 Filling up the Bottom of Distillation Column 
 
 After the mixture in tank farm T110 is prepared, the cooling system is started by 

adjusting the coolant flow to the condenser AW127/227 (FIC AW127/227-01) on automatic 
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mode to 1000 L/hr and to distillate cooler AW128/228 (TIC AW128/228-01) on manual mode to 

2%. This is followed by filling up the bottom of the distillation column with a 50 wt% denatured 

ethanol-50 wt% distilled water mixture to a safe level before starting up. The feed pump pressure 

is adjusted to 1.5 barg and feed valve FIC AW125/225-02 is opened to start filling the bottom of 

the distillation column using the feed line. Once the level indicator for the bottom level in 

distillation column (LIC AW126/226-01) is over 70%, the bottoms pump AP122/222 is started 

for recirculation and the recirculation rotameter (see figure 2.37) is adjusted to read 0.8 gal/min 

using the manual valve on the recirculation line. The feed valve is shut once there is enough 

mixture at the bottom of the distillation column which is physically indicated by mixture 

crossing over from the recirculating evaporator AW126/226 to the bottom of the column (see 

figure 2.20). This “cross-over” level is necessary for well mixed EtOH-water mixture and is done 

to avoid flash evaporation which is an unsafe condition in the distillation column. Nitrogen is 

also supplied to AW126/226 at 0.4 barg to help with mixing, but this is stopped after 

approximately 10 minutes.  

 
3.3.3 Heating and Total Reflux 
 
 Once complete mixing is achieved, heating of the system is initiated. Manual valves for 

steam supply to AW126/226 are opened slowly and pressure of the steam is adjusted to 2 barg 

(29 psig) using a self-actuated pressure reducing regulator. The steam control valve FIC 

AW126/226-01 is first opened manually to approximately 20%, and then placed on automatic 

mode to have a steam flow rate ranging from 15 to 35 kg/hr. After the evaporator reaches boiling 

point (82-85 oC), which takes approximately 10 to 20 minutes depending on the steam flow rate, 

and the top tray (20th Tray) reaches approximately 78 oC shortly after boiling (1-5 minutes), 

coolant flow rate is increased to 4000 L/hr to ensure all the vapors get condensed in the 
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condenser, and EtOH distillate pump AP123/223 is started and recirculation in the buffer tank 

AB101/201 (see Section 2.6.5) is started by adjusting the pressure after the pump to 1.5 barg. At 

this time, condensate starts filling up the buffer tank and reflux control valve (FIC AK122/222-

01) is opened to begin total (100%) reflux. The reflux valve is first opened on manual mode to 

40% to 50% then put into automatic mode and given a set-point flow rate. The set-point flow rate 

of this reflux is adjusted to where the level of liquid in the buffer tank stays constant, which 

depends only on the flow rate of the steam going into the recirculating evaporator. The higher the 

steam flow rate is, the higher the reflux flow rate must be to keep a constant level in the buffer 

tank. Since there is no flow meter to measure the rate of condensate coming from the condenser, 

the flow rates of steam and reflux must be adjusted on a trial and error basis. 

 
3.4 Continuous Distillation 
 
3.4.1 Reflux Splitting / Reflux Ratio 
 
 Once total reflux has being continued for approximately 30 minutes, reflux splitting can 

begin. Reflux splitting is where the EtOH-rich distillate product control valve (LIC AB101/201-

01) is opened and EtOH-rich distillate product gets sent to the distillate cooler (see Section 

2.6.6), where temperature of the product is kept at or below 32 oC, followed by getting sent to the 

EtOH-rich product tank AB002. The control valve mentioned is opened manually to get a certain 

flow rate (15 to 25 L/hr) and the reflux flow rate is decreased (45 to 75 L/hr) in order to start out 

with a 3:1 reflux ratio and still keep the buffer tank at a constant level. Once this is accomplished 

manually and the mentioned variables (reflux ratio and buffer tank level) are steady, EtOH-rich 

distillate product control valve is placed on automatic control where the level in the buffer tank 

can be controlled at a set-point level adjusted by LIC AB101/201-01, followed by placing the 

reflux flow control valve on cascade mode where the reflux ratio control (FFIC AK122/222-01) 
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goes in control. The reflux ratio control set-point is set to 3 initially. The way this control works 

is that it receives the flow rate of EtOH distillate product as indicated by the Micro Motion flow 

meter (see figure 2.36), multiplies this flow rate by the reflux ratio control set-point, and sends 

the result of this mathematical operation as a set-point flow rate to the reflux flow control valve. 

The result of this is that the level of the buffer tank always stays constant (+/- 1%) and the reflux 

ratio stays constant (+/- 1% uncertainty) throughout the distillation process. 

 
3.4.2 Introducing Feed 
 
 Feed can be introduced from two different locations on both distillation columns as was 

mentioned in section 2.6. Feed location can either be tray 5 or 10. The feed tray location also has 

an effect on the location where flooding begins as will be discussed later. Feed can begin to be 

introduced once the temperature at the recirculating evaporator reaches above 95 oC. This helps 

the stripping section of the column (section below the feed location) to work more efficiently due 

to most of the EtOH being separated from the feed mixture before making its way down to the 

bottom of the distillation column.  

 Once the condition mentioned above is reached, feed control valve (FIC AW125/225-02) 

is opened manually to 50%, and then set to automatic mode where a set-point flow rate of 30 

L/hr is set for the initial feed flow rate. After feed flow is achieved, steam to the feed-preheater is 

started by opening steam valve (FIC AW125/225-01) to 30%. Since the vortex flow meter for 

this steam line is oversized and is unable to get a reading on steam flows less than 8 kg/hr, the 

valve is left on manual mode. This control valve is adjusted up or down to keep a constant 

average temperature of 60 oC (as indicated by TIC AW-125-01) for the feed entering the column. 

Pre-heating the feed to this temperature brings the feed closer to its flash point (approximately 82 

oC). This leads to EtOH being separated from water much faster and helps less EtOH to go all 
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the way down the column, which leads to decreased temperatures at the bottom and lower purity 

of water-rich product. So it can be said that pre-heating the feed closer to its flash point leads to a 

more efficient distillation process. The reason for not pre-heating the feed to its flash point is for 

safety reasons. The feed is supplied to the feed pre-heater and then sent to the feed tray in a one 

inch glass pipe. The glass pipe is not pressure rated to handle any possible vapors coming from 

the feed pre-heater and will most likely shatter in the event of a high temperature for the feed 

stream.  

 
3.4.3 Collecting Bottoms (Water-rich) Product 
 
 Water-rich bottoms product is ready to be collected once the temperature of the 

recirculating evaporator reaches 100 oC. This temperature can be 1 to 3 degrees higher in certain 

cases depending on the pressure at the bottom of the column, and also very small amount of 

acetic acid in the denatured EtOH staying at the bottom of the column due to having higher 

boiling point than water (118 oC). Once this condition is accomplished, the level indicating 

control valve for water-rich bottoms product (LIC AW126/226-01) is opened to approximately 

20% on manual mode, where the product gets sent to a condenser heat exchanger AW001 in the 

tank farm T110 to drop the temperature of product from 100 oC to approximately 30 oC, 

followed by being sent to and collected in the water-rich product tank AB003. This percentage of 

valve opening is then adjusted to achieve proper level in the recirculating evaporator. Once 

proper level is reached, the valve is adjusted to get a flow rate of water-rich bottoms product to 

mass balance in the column. This means that the EtOH-rich product plus the water-rich product 

flow rates should add up to approximately the feed flow rate entering the column. This will not 

be exact since volumetric flow rates do not balance, but it will be very close. The mass balance 

can also be easily calculated by taking samples of the products and the feed, then using the 
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density reading from the density meter results to convert the volumetric flow rates into mass 

flow rates. After the water-rich bottoms product return valve has been manually adjusted, it is 

placed in automatic mode where a level set-point in the recirculating evaporator is set. This 

allows the bottom of the column to keep a constant level by adjusting LIC AW126/226-01 

automatically. 

 
3.4.4 Stable and Unstable Operating Conditions 
 
 The goal of the distillation process is to have a feed flow rate of 80 kg/hr, achieve greater 

than or equal to 90 wt% EtOH as top distillate product at a flow rate of 40 kg/hr, and less than or 

equal to 1% wt% EtOH in the bottoms water-rich product stream at a flow rate of 40 kg/hr while 

using the least amount of energy as possible.  

 Stable operating conditions are defined as achieving the purity levels mentioned above at 

any inlet and outlet flow rates. This is accomplished by increasing the feed flow rate and steam 

in such a way that the bottom of the distillation column remains at 100 oC, the middle region in 

the range of 80 oC to 85 oC, and the top at 78 oC. This procedure ensures that the products are 

meeting the production purity goals. The following steps are followed in order to accomplish this 

and reach the production flow rate goals: 

• Increasing feed flow rate only when feed tray is increasing in temperature above 82 oC. 

• Increasing feed flow rate in small increments (maximum of 10 L/hr each time) 

• Increase steam rate with small increments (1-5 kg/hr) only when bottom of column 

decreases in temperature below 100 oC.  

• Decrease reflux ratio by small increments (maximum of 0.5 each time) when: 

 Top product purity is greater than 90 wt% EtOH 
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 Feed Flow rate is high (50-70 L/hr) 

 Reflux flow rate is greater than 60 L/hr on bubble-cap tray and 120 L/hr on sieve 

tray distillation columns. 

Unstable operating conditions consist of not having the proper temperature in the distillation 

column which results in poor purity levels, weeping, and flooding of the distillation column 

trays. The weeping point of the sieve tray distillation column’s trays is determined by physically 

seeing the liquid falling through the perforations of the sieve tray. An image of this phenomenon 

is shown in figure 3.1: 

 
 

Figure 3.1 
 

Weeping of a Sieve Tray 
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The procedure to find the weeping point is to keep the distillation column in total reflux where 

no feed is introduced and no product is being taken out of the column. The next step is to adjust 

the steam flow rate to the recirculating evaporator and reflux flow rate to where the buffer tank 

level stays constant (see Section 3.3.3). The steam flow rate then is reduced, while keeping 

reflux flow rate constant, by increments of 1 kg/hr until weeping on all 20 trays are visually 

observed as shown above in figure 3.1. After one weeping point is determined, the reflux flow 

rate is decreased or increased to another constant value and steam rate is again decreased until 

weeping is observed.  

 The flooding point of the distillation column involves more than just a visual inspection. 

Flooding in the bubble tray distillation column can be observed by mainly sudden drops in 

differential pressure across the column followed by continuous increase. Since the distillation 

column is made out of glass, it can also be visually observed for confirmation that the tray is 

actually flooding. A picture of 3 flooded trays is shown in figure 3.2: 
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Figure 3.2 
 

Flooding of 3 Bubble-cap Trays 
 

 
The white foam covering the trays shown above in figure 3.2 is what is described as flooding of 

the trays. This white foam visual is the result of turbulence of the liquid inside that tray. This 

flooding phenomenon will be better observed with the video footages shown in the next chapter. 

The procedure followed to find the flooding points are: 
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1. Start up the distillation column as described in this chapter and proceed to continuous 

distillation. 

2. Keep a constant reflux ratio while increasing feed and steam flow rates and under stable 

operating conditions. 

3. Visually inspect the distillation column periodically to ensure no flooding is occurring. 

4. Keep increasing flow rates until flooding is observed visually and through process 

variables such as differential pressure of the column. 

5. Take samples of top distillate EtOH-rich product to analyze changes in purity. 

6. Record the results. 

 
3.5 Shut-Down 
 
3.5.1 Stopping Flooding 
 
 The following steps are done in order to reduce and then stop the flooding of the trays. It 

is important to never cut off all steam supply to stop flooding. This would cause all of the 

ethanol on the top trays to fall to the bottom of the column where it will flash vaporize due to the 

temperature at the bottom being very high. All of the ethanol will flash vaporize, go rapidly in 

the condenser, and escape through the emergency waste gas line (vent gas) since the condenser 

would not be able to handle condensing the vapor at that velocity. The flooding of the trays must 

be slowed down at a slow and controlled pace. The steps to successfully accomplish this are 

shown below: 

1. Change all controls still in cascade mode to automatic or manual mode. 

2. Decrease steam flow rate to the recirculating evaporator (FIC AW126/226-01) with 

increments of 5-10 kg/hr. 
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3. Close the steam supply to the pre-heater valve (FIC AW125/225-01) followed by closing 

the feed control valve (FIC AW125/225-02) to stop feeding in new mixture into the 

column. 

4. Decrease reflux flow rate to accommodate the decrease in steam rate to keep the constant 

level in the buffer tank AB101/201. 

5. Close the distillate EtOH-rich product return valve (LIC AB101/201-01) in order to avoid 

collecting poor quality product. 

6. Close the bottoms water-rich product return valve (LIC AW126/226-01). 

7. Keep the distillation columns operating on total reflux which is the same condition when 

the column is first starting up (see Section 3.3.3). 

8. Decrease steam and reflux flow rates further if the column’s flooding trays have no signs 

of improving. 

 
3.5.2 Shutting Down the Distillation Columns and Pilot Plant 
 
 The shutdown procedure is done in the order shown below: 

1. All automatic and cascade controls are put back into MANUAL mode 

2. Steam to the feed pre-heater AW125/225 is shut-down 

3. Feed valve is closed followed immediately by closing steam to the recirculation 

evaporator AW126/226. Note: The manual valves for steam flow must also be closed 

in that order to assure no steam is escaping through the control valves. 

4. Distillate EtOH-rich product return control valve is closed (LIC AB101/201-01). 

5. Reflux control valve is remained open but decreased to about 30% to cool down the 

trays of the distillation column AK122/222. Keep the valve open until the 
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temperature of the 20th tray gets below 65°C then stop distillate pump AP123/223 

followed by closing the reflux valve. 

6. The bottoms water-rich return control valve is also remained open in order to keep the 

bottom level of AK122/222 and AW126/226 from filling up. The valve is remains 

open until level gets to 72% (or as low as possible while having the heating coils 

covered with liquid), then the bottoms pump AP222 is shut down followed by closing 

the bottoms water-rich return valve (LIC AW126/226-01). 

7. The coolant valves remain open for at least 10 minutes; if there is no more 

condensation inside the condenser AW127/227, the coolant flow rate can be reduced 

to 200 L/hr. 

8. Shut down the boiler, do an automatic blowdown, close steam supply valve, and refill 

the blowdown tank back with water. 

9. Shut down all remaining equipment still running on tank farm T110. 

10. Close all manual valves except the ones used for adjusting pressure outlet of pumps 

(recirculation valves) and nitrogen blanketing into the distillation columns
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CHAPTER IV 
 

RESULTS AND DISCUSSION 
 
 
4.1 Introduction 
 
 This chapter presents the data collected and analyzed to explore flooding phenomena in 

the bubble-cap tray distillation column, weeping in sieve tray distillation column, determine the 

stable operating conditions, and compare the differences between the two distillation columns. 

The columns and their operation were described in Chapter III of this thesis. The flooding 

phenomenon only applies to the bubble-cap tray distillation column and weeping only applies to 

the sieve tray distillation column. These phenomena seem to be due to larger tray spacing 

between certain trays and not having the proper downcomer in those trays. The columns were 

started up using the procedures shown in the previous chapter and several experiments were 

conducted to gather the data consisting of concentrations, densities, flow rates, temperatures, and 

the differential pressure across the distillation columns. The differential pressure was very 

important in predicting the initiation stage of flooding in the bubble-cap tray distillation column. 

The weeping points of the sieve trays were observed visually and the data were collected to 

analyze the effects of this phenomenon on the distillation process. The concentration, density, 

and flow rates of the liquid streams in the distillation process were used to develop a stable 

operating curve for each distillation column. These data were also used to make production 

curves and to compare the energy usage versus the production rate for the two distillation
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columns. The production goals and some constant average values in the process are listed in 

table 4.1: 

 
Table 4.1 Production Goals 
 

Production 
Goals 

Concentration 
EtOH wt% Density (kg/L) Flow rate 

(kg/hr) 
Flow rate 

(L/hr) 

Feed 50 0.914 80 88 

Distillate 90 0.814 40 49 

Bottoms 1 0.998 40 40 

 
 
All of the analyses are done based on these production goals. The steam supply to the distillation 

columns is at a pressure of 2 barg. The pressure in the column is approximately 1 atm, but the 

differential pressure from the bottom to the top of the columns can vary anywhere from 0 to 0.15 

barg. 

 
4.2 Bubble-cap Tray Distillation Column 
 
4.2.1 Analysis of Flooding Phenomena 
 
 The flooding phenomena in the bubble-cap tray distillation column were analyzed using 

three constant reflux ratios and following the procedure from Chapter III to try to reach the 

production goals shown in table 4.1. The three experiments will discuss the actions taken leading 

to flooding and negative effects of the flooding on the process. These experiments which include 

the feed tray used, feed rate, and the reflux ratio at the time of flooding are shown below: 

1. Experiment of March 8, 2012 

a. Feed Tray: Tray 10 
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b. Feed Rate: 40 L/hr (37 kg/hr) 

c. Reflux Ratio: 3:1 

In this experiment, the 6th Tray had excessive entrainment the whole time until 15:00. The video 

footage of this heavy entrainment can be found at:  

 
http://doiop.com/Ozkaya-Vid-01 

 
At approximately 15:00, tray 6 temperature suddenly rose to 100 oC (boiling point of water) after 

steam rate @ 2 barg was raised from 37 kg/hr to 38 kg/hr. This means that all the ethanol that 

was entrained in that tray was suddenly removed as shown by the following video footage:  

 
http://doiop.com/Ozkaya-Vid-02 

 
This event also led to a sudden differential drop at approximately 15:05 as it can be seen from 

the red trend line in figure 4.1. Also from figure 4.1, the temperature of tray 6 also began 

oscillating leading up to the sudden differential pressure drop. The sudden differential drop 

caused sudden temperature spike of the trays above tray 6. The trend lines shown in figure 4.1 

are labeled as: 

• Tray 1 temperature – Black line 

• Tray 6 temperature – Dark blue line 

• Tray 11 temperature – Brown line 

• Tray 16 temperature – Pink line 

• Tray 20 temperature – Light blue line 

• Differential pressure – Red line
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Figure 4.1 
 

Temperature and Differential Pressure Profile of AK122 for Experiment 1 
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The ethanol that was removed from tray 6 shot its way up the column where all 5 top trays began 

flooding. This can be noticed from the graph where trays 11 and 16 temperatures suddenly 

started to rise with the differential pressure rising from the time 15:07 on. The screen snap shot 

of the DeltaV DCS screen at 15:19 is shown in figure 4.2. This snap shot of the DeltaV DCS 

screen shows the process variables at the time when flooding started to occur. The feed flow rate 

at this time was 40 L/hr (shown by FIC-AW125-02) and steam flow rate was 38 kg/hr (FIC-

AW126-01). Description of the lines and values in figure 4.2 is stated below: 

• Feed flow – White solid line 

• Steam flow – Orange solid line 

• Water-rich bottoms product flow – Blue solid line 

• EtOH-rich distillate product flow – Green solid line 

• Reflux flow – White solid line 

• Coolant flow – Pink solid line 

• Vent gas – Yellow solid line 

• Control variables – Blue values 

• Process variables – Yellow values 

• Set-Points – White values 

• Control loop connections – Dashed lines (blue, yellow, and white) 
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Figure 4.2 
 

Screen Snapshot of T120 at 15:19 for Experiment 1  
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The video footage of the top of the column fully flooded was recorded at 16:55 and can be found 

at:  

 
http://doiop.com/Ozkaya-Vid-03 

 
The flow conditions leading up to this event is shown in figure 4.3. As soon as the top five trays 

started to flood, the bottoms flow rate (AP122 Flow) indicated by the blue line went down to 0 

L/hr. This was due to the reflux and feed being trapped at the top of the column because of the 

flooding of the trays. This lead to very small amount of liquid coming down the column, causing 

the control valve for bottoms water-rich product return (LV-AW126-01) to shut since the bottom 

level of the column was being automatically controlled at 79% level. This is shown by the 

snapshot of the PCS screen in figure 4.2 and the flow conditions in figure 4.3.
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Figure 4.3 
 

Flow Conditions of AK122 for Experiment 1  
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Actions Taken Leading to Flooding 

• Steam flow rate being increased to 38 kg/hr 

• Average reflux flow rate increasing to 75 L/hr 

Negative Effects on the Process 

• The purity of the top product dropped from 91.6 wt% EtOH at 14:25 PM to 89.1 wt% 

EtOH at 15:21 PM, then to 86.0 wt% EtOH at 15:35 PM. 

• Tray temperatures of column became too high. 

• Liquid level at the bottom of the column got too low 

 

2. Experiment of March 7, 2012 

a. Feed Tray: Tray 10 

b. Feed Rate: 60 L/hr (55 kg/hr) 

c. Reflux Ratio: 2:1 

On this experiment, the first abnormal drop in differential pressure and rise in tray temperatures 

was noticed at approximately 15:55 (see figure 4.4). Soon after this abnormal behavior, the 

differential pressure starts to spike up and down at approximately 16:05 (see figure 4.4). This 

resulted in sudden rise in the temperature of the trays as the differential pressure drops suddenly 

since pressure and temperature are directly related. This condition was the initiation of flooding 

in trays 16, 17, 18, and 19. The video footage of this initiation stage can be seen at:  

 
http://doiop.com/Ozkaya-Vid-04 
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Figure 4.4 
 

Temperature and Differential Pressure Profile of AK122 for Experiment 2  
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The flow conditions leading up to this event is shown below in figure 4.5: 
 

 
 

Figure 4.5 
 

Flow Conditions of AK122 for Experiment 2 
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Keeping the process conditions same resulted in those 4 trays to be fully flooded at around 

16:17. This can be seen in figure 4.4 by when differential pressure gets steady and trays 6 and 11 

suddenly rise in temperature due to entrainment of the reflux in the top of the column. The video 

footage of this event can be found in the following link:  

 
http://doiop.com/Ozkaya-Vid-05 

 
Actions Taken Leading to Flooding 

• Steam flow rate being increased to 39 kg/hr 

• Average reflux flow rate increasing to 66 L/hr 

Negative Effects on the Process 

• The purity of the top product dropped from 90.7 wt% EtOH at 16:02 to 89.4 wt% EtOH 

at 16:25. 

• Temperatures at the stripping section of column became too high. 

• Liquid level at the bottom of the column got too low 

 

3. Experiment of March 19, 2012 

a. Feed Tray: Tray 5 

b. Feed Rate: 70 L/hr (64 kg/hr) 

c. Reflux Ratio: 1.5:1 

The temperature and differential pressure profile of the bubble-cap tray distillation column 

during this experiment is shown by figure 4.6:
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Figure 4.6 

Temperature and Differential Pressure Profile of AK122 for Experiment 3 



      

82 
 

Following the temperature and differential pressure trends in figure 4.6, a spike and oscillation 

can be noticed around 15:15 on the differential pressure and temperatures of the trays. This was 

the initiation of flooding at the top of the bubble tray distillation column. The video footage of 

this event at 15:15 can be seen at the following link: 

 
http://doiop.com/Ozkaya-Vid-06 

 
The flow conditions for this experiment are shown in figure 4.7. These figures show how the 

distillation column is brought to stable operation and end up in flooding. The feed flow rate is 

increased when tray 6 begin to increase in temperature. This is continued until tray 6 reaches a 

stable temperature meaning that the tray is at steady state conditions. Once this is the case, feed 

flow rate is continued to be increased. Once tray 6 temperature begins to decrease, steam flow 

rate is increased to keep tray 6 at a stable temperature around 82 oC again. This process is 

described in the procedures (see Section 3.4) and is continued until flooding is observed. The 

differential pressure and the tray temperatures oscillate during the time of flooding, which is a 

phenomenon that should be investigated further. 
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Figure 4.7 
 

Flow Conditions of AK122 for Experiments 3 
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Actions Taken Leading to Flooding 

• Steam flow rate being increased to 40 kg/hr 

Negative Effects on the Process 

• The purity of the top product dropped from 90.6 wt% EtOH at 15:30 to 90.2 wt% EtOH 

at 16:00, then to 88.5 wt% EtOH at 16:15. 

 
4.2.2 Stable Operating Curve 
 
 The stable operating region analysis was accomplished by running the distillation column 

100 different days. The stable conditions were achieved by following the procedure described in 

Section 3.4.4. The table shown below consists of the average flow rates for the steam, feed, 

reflux, distillate, and bottoms product found for the stable operation, and flooding (unstable 

operation) of the bubble-cap tray distillation column (AK122): 

 
Table 4.2 AK122 Average Flow Rates for Stable Operation and Flooding 

Bubble-
cap 

Tray 

Steam 
Flow 
Rate 

(kg/hr) 

Feed 
Flow 

Rate, F 
(L/hr) 

Reflux 
Flow Rate, 

R (L/hr) 

Distillate 
Flow Rate, 

D (L/hr) 

Bottoms 
Flow Rate, 

B (L/hr) 
Reflux 

Ratio, R/D 

Stable 
Operation 

25 30 48 16 14 3 
27 32 54 18 15 3 
30 40 55 22 19 2.5 
32 48 54 27 22 2 
34 53 60 30 24 2 
35 65 56 37 29 1.5 
36 70 59 39 32 1.5 

Flooding 
38 40 75 25 16 3 
39 60 66 33 28 2 
40 70 60 40 31 1.5 
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The flooding point flow rate values are the results obtained from the flooding analysis 

experimentation shown previously. Developing a stable operating region consists of calculating 

the total amount of vapor going up the distillation column into the condenser and the total 

amount of liquid coming back down the distillation column. Since the density of the liquid and 

vapor streams are different, this analysis cannot be done using the volumetric flow rate results 

shown in table 4.2.1. The only way to accomplish the analysis is by using either mass or molar 

flow rates. The density readings taken for the feed, distillate EtOH-rich product, and bottoms 

water-rich product were used to convert the volumetric flow rates into mass flow rates for the 

analysis. The average densities shown previously in the production goals table (see Table 4.1) 

were used for this conversion. The results from this are shown below in table 4.3: 

 
Table 4.3 AK122 Average Flow Rate Conversions from L/hr to kg/hr for Stable Operation 

and Flooding 

Bubble-
cap 

Tray 

Steam 
Flow 
Rate 

(kg/hr) 

Feed 
Flow 
Rate, 

F 
(kg/hr) 

Reflux 
Flow 

Rate, R 
(kg/hr) 

Distillate 
Flow 

Rate, D 
(kg/hr) 

Bottoms 
Flow 

Rate, B 
(kg/hr) 

Liquid 
Flow 
Rate, 
F+R 

(kg/hr) 

Vapor 
Flow 
Rate, 
R+D 

(kg/hr) 

Reflux 
Ratio, 
R/D 

Stable 
Operation 

25 27 39 13 14 66 52 3 
27 29 44 15 15 73 59 3 
30 37 45 18 19 81 63 2.5 
32 44 44 22 22 88 66 2 
34 48 49 24 24 97 73 2 
35 59 45 30 29 105 75 1.5 
36 64 48 32 32 112 79 1.4 

Flooding 
38 37 61 20 16 98 81 3 
39 55 54 27 28 109 81 2 
40 64 49 33 31 113 81 1.5 
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The liquid flow rate (F+R) from table 4.3 is found by adding the amount of feed (F) and reflux 

(R) entering the distillation column. The vapor flow rate (R+D) entering the condenser is 

calculated by adding the amount of reflux and distillate leaving the buffer tank AB101. The 

reason for this is that since the level in AB101 is being automatically controlled by the distillate 

EtOH-rich product return valve and reflux flow valve is in cascade control to always keep a 

constant reflux ratio, the amount of vapor going into the condenser and turning into liquid to fall 

into the buffer tank must be same rate as what is coming out of the buffer tank if the level is 

staying constant. This concept is also explained in the procedure for total reflux and continuous 

distillation (see Sections 3.3.3 and 3.4.1). A graph was developed using the total vapor and liquid 

rates in the bubble-cap tray distillation column (AK122), shown in figure 4.8: 
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Figure 4.8 
 

Stable Operating Curve for AK122 
 
 

The black line in figure 4.8 is the stable region for operation (or stable operation region). The red 

line indicates flooding of the distillation column, or unstable operating region. The flooding 

region of AK122 is shown to be at a vapor flow rate of approximately 81 kg/hr. This region 

represents an upper limit for the operation of the bubble-cap tray distillation column.  

 Using the stable operating region results and average volumetric flow rate values from 

this region shown in table 4.2, a production curve was developed using the steam mass flow rate 

as the independent variable and liquid volumetric flow rates in the column (feed, reflux, distillate 
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EtOH-rich product, and bottoms water-rich product) for stable operation. This production curve 

for AK122 is shown in figure 4.9. The production curve shown above will be very useful for 

anyone operating the bubble-cap tray distillation column. For any given steam flow rate, the 

production curve in figure 4.9 will give the approximate liquid flow rate the distillation column 

should have for stable operation. It will also help operators of the distillation column to figure 

out what the production flow rates (EtOH-rich distillate and water-rich bottoms products) should 

be at a given feed and steam flow rate for stable operation. This is usually not that easy for 

operators to figure out since not all volumes are additive (for example EtOH and water) and the 

production flow rates will not always add up to the amount of feed going into the distillation 

column. Also, the more volatile compound (EtOH) with less density will have a higher 

volumetric flow rate then the less volatile compound with higher density using a 50/50 by weight 

mixture in the feed. This flow rate difference of the products is shown in figure 4.9. 
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Figure 4.9 
 

Production Curve for AK122 
 
 

The y-axis of the figure above shows the liquid flow rates going in and out of the bubble-cap tray 

distillation column in L/hr. The x-axis shows the steam flow rate sent to the recirculating 

evaporator AW126. The reflux flow line, shown by the red line, does not increase steadily like 

the other flow lines due to reflux ratio decreased throughout the stable operation of the bubble-

cap tray distillation column. Since the reflux flow rate is lowered due to lower reflux ration, the 

reflux flow line crosses the feed flow line in figure 4.9 because the feed flow rate becomes 
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higher than the reflux flow rate. The black line is the feed flow rate, the green line is the EtOH-

rich distillate product flow rate, and the blue line is the water-rich bottoms product flow rate. The 

minimum steam flow rate is 25 kg/hr and maximum is 36 kg/hr for stable operation. 

 
4.3 Sieve Tray Distillation Column 

4.3.1 Analysis of Weeping Phenomena 
 
 The weeping points of the sieve tray distillation column (AK222) were found by visually 

inspecting the sieve trays at total reflux and checking the purity of the top distillate EtOH-rich 

product. The procedure for this analysis is described in Section 3.4.4. The classification of 

weeping for AK222 was to have all trays having liquid going down from their perforations. This 

is the case for trays 6, 11, and 16 at all times throughout the distillation process, but this 

inconsistency will be explained later in the chapter. The results for weeping points at total reflux 

are shown below in table 4.4: 

 
Table 4.4 AK222 Weeping Points at Total Reflux 

Steam Flow 
(kg/hr) 

Reflux Flow 
(l/hr) Reflux Ratio 

EtOH 
wt% 

20 30 Infinity 89.8 

28 50 Infinity 90.9 

32 70 Infinity 92.1 

32 80 Infinity 92.2 

34 100 Infinity 93.5 

36 120 Infinity 94.6 
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From the weeping point results shown in table 4.4, the EtOH purity of the top distillate product 

meets the production goal purity (greater than 90 wt% EtOH) for all of the steam and reflux flow 

rate combinations except for the lowest combination (20 kg/hr steam and 30 L/hr reflux). It is 

also noticed that the purity of the top distillate product increased as the reflux flow rate 

increased. As a result, the weeping point analysis at total reflux did not have a significant effect 

on the distillate purity. This was only the results for keeping total reflux at a constant reflux flow 

rate and decreasing steam until weeping is visually observed. Operating the sieve tray distillation 

column through a normal start-up has shown that at low flow rates of steam (less than 35 kg/hr) 

and reflux (less than 70 L/hr) leads to low concentrations of EtOH on the top distillate product 

(less than 90 wt%).  

 
4.3.2 Stable Operating Curve 
 
 The stable operating region analysis was done following the same guidelines discussed 

for the bubble-cap tray distillation column results in section 4.3.2. There is no flooding that 

occurs in the sieve tray distillation column due to other upper limits which will be discussed in 

the later sections. Table 4.5 consists of the average flow rates for the steam, feed, reflux, 

distillate, and bottoms product found for the stable operation of the sieve tray distillation column 

(AK222): 
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Table 4.5 AK222 Average Flow Rates for Stable Operation 

Sieve 
Tray 

Steam 
Flow 
Rate 

(kg/hr) 

Feed 
Flow 

Rate, F 
(L/hr) 

Reflux 
Flow Rate, 

R (L/hr) 

Distillate 
Flow Rate, 

D (L/hr) 

Bottoms 
Flow 

Rate, B 
(L/hr) 

Reflux 
Ratio, R/D 

Stable 
Operation 

40 45 78 26 20 3 

45 50 84 28 23 3 

48 55 93 31 25 3 

50 60 99 33 28 3 

52 65 108 36 30 3 

54 70 109 39 32 2.8 

55 80 119 44 37 2.7 

58 90 125 50 42 2.5 
 

Table 4.5 above shows the recommended operation of the distillation column on total reflux 

highlighted in green and the rest of the table indicates the average flow rates of stable operation 

of the sieve tray distillation column. Converting the flow rates into mass flow rates, as it was 

done for AK122 in section 4.2.2, results in the table of average flow rates for AK222 shown in 

table 4.6: 
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Table 4.6 AK222 Average Flow Rate Conversions from L/hr to kg/hr for Stable Operation 

Sieve 
Tray 

Steam 
Flow 
Rate 

(kg/hr) 

Feed 
Flow 

Rate, F 
(kg/hr) 

Reflux 
Flow 

Rate, R 
(kg/hr) 

Distillate 
Flow 

Rate, D 
(kg/hr) 

Bottoms 
Flow 

Rate, B 
(kg/hr) 

Liquid 
Flow 
Rate, 
F+R 

(kg/hr) 

Vapor 
Flow 
Rate, 
R+D 

(kg/hr) 

Reflux 
Ratio, 
R/D 

Stable 
Operation 

40 41 63 21 20 105 85 3 

45 46 68 23 23 114 91 3 

48 50 76 25 25 126 101 3 

50 55 81 27 28 135 107 3 

52 59 88 29 30 147 117 3 

54 64 89 32 32 153 121 2.8 

55 73 97 36 37 170 133 2.7 

58 82 102 41 42 184 142 2.5 

 

The calculation of these results including the total liquid and vapor flow rates were done as 

described in section 4.2.2 for AK122. Just as it was done for AK122 in section 4.2.2, the stable 

operating curve and the production curve developed for AK222 using tables 4.5 and 4.6 are 

shown in figures 4.10 and 4.11.  
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Figure 4.10 
 

Stable Operating Curve for AK222 
 
 
The vapor flow rate in kg/hr is on the y-axis and the liquid flow rate in kg/hr is on the x-axis of 

figure 4.10. The vapor flow rate is the total amount of vapor going into the condenser AW226, 

turning into a liquid, and being collected in the buffer tank AB201. This flow rate is found by the 

addition of reflux and EtOH-rich distillate product flow rates as described previously. The liquid 

flow rate is the addition of feed and reflux flow rates. The stable operating curve in figure 4.10 

begins at a liquid flow rate of 105 kg/hr and a vapor rate of 85 kg/hr. The curve has a linear 

behavior and ends at a liquid flow rate of 184 kg/hr and a vapor rate of 142 kg/hr. 
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Figure 4.11 
 

Production Curve for AK222 
 
 
The production curve above in figure 4.11 shows the liquid flow rates (y-axis) and steam flow 

rates (x-axis) for stable operation of the sieve tray distillation column (AK222). All of the flow 

lines including feed, reflux, EtOH-rich distillate product, and water-rich bottoms product flows 

increase as the steam rate to the recirculating evaporator AW226 increases. The minimum steam 

flow rate is 40 kg/hr and the maximum is 58 kg/hr for stable operation of AK222. 
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4.4 Comparison of the Distillation Columns 
 
 The bubble tray distillation column (AK122) and the sieve tray distillation column 

(AK222) have many differences in their stable operating regions. Each distillation column has its 

advantages and disadvantages. The comparison of each column’s stable operating curve is shown 

below in figure 4.12: 

 

 
 

Figure 4.12 
 

Stable Operating Curve Comparison of Bubble-Cap and Sieve 
 
 
where the red line represents the stable operating curve for the bubble-cap tray distillation 

column (AK122) and the black line represents the stable operating curve for the sieve tray 
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distillation column (AK222). The stable operating region for AK222 is at much higher flow rates 

than AK122 as indicated by figure 4.12. AK122 can achieve higher purity of EtOH-rich distillate 

product and water-rich bottoms product at much lower flow rates and reflux ratio than AK222. 

On the other hand, AK222 can handle much higher flow rates into the distillation column and 

higher production rates of both products. To compare the energy usage of the distillation column 

to the production rate it can achieve, a plot of the steam flow rate and the EtOH-rich distillate 

product flow rate is developed to compare AK122 and AK222. Since the production rates of 

EtOH-rich distillate product and water-rich bottoms product are approximately equal to each 

other in terms of mass, only the distillate product rate is used in the graph in terms of mass flow 

rate. This graph is shown in figure 4.13: 
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Figure 4.13 
 

Production Rate vs. Energy Usage Comparison of Bubble-Cap and Sieve 
 
 

4.5 Discussion of the Results 
 
 Both of the distillation columns, AK122 and AK222, have identical equipment and 

dimensions, varying only on the type of tray inside the distillation column. The results shown in 

the previous sections show how different type of a tray in the column results in very different 

operating regions.  

From figure 4.8, AK122 (bubble-cap) is shown to operate efficiently through very low 

liquid and vapor flow rates and continues that way until flooding region is reached around 81 
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kg/hr vapor rate, which is equivalent to approximately 100 L/hr condensate entering the buffer 

tank AB101. Table 4.2 shows that the reflux ratio can be as low as 1.5 and AK122 (sieve) can 

still achieve the production goal concentration of EtOH wt% in both of the products (see Table 

4.1). This advantage of AK122 is offset by flooding which occurs before the distillate and 

bottoms products’ flow rates can reach the production goals shown in table 4.1 and represents an 

upper operating limit for the distillation column. The flooding analysis from section 4.2.1 shows 

that the flooding occurs when the differential pressure in the column rises above 0.13 barg, 

suddenly drops and rises in the initiation stage of flooding, and continues to rise once all of the 

top 5 trays are fully flooded. This phenomenon results in reflux being thrown into the condenser 

AW127 without making its way down the column. The first two experiments (reflux ratio of 3 

and 2) were done using tray 10 as the feed tray and the last experiment with a reflux ratio of 1.5 

was done using tray 5 as the feed tray. The two experiments using tray 10 as the feed tray had 

problems with heavy entrainment in tray 6 throughout the distillation process before flooding 

occurred. The flooding of the top trays was initiated by sharp rise in the lower tray temperatures 

(trays 6 through 10) as it is seen in figures 4.1 and 4.4. This meant that all of the ethanol being 

fed into the column was being sent up the column before making its way down to the lower 

trays. This caused a dangerous situation in the distillation column due to low liquid level at the 

bottom of the column, high temperatures in the feed tray, and ethanol condensate getting too hot 

coming out of the condenser into the buffer tank AB101. The third experiment where tray 5 was 

used as the feed tray, no such sudden temperature rise occurred when the top trays began 

flooding. In both cases, the distillate product purity dropped suddenly below production 

standards leading to inoperable conditions for the distillation column. It has also been determined 

that tray 5 is better to use as the feed tray due to the fact that trays 6 through 10 can flood very 
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easily at high flow rates when using tray 10 as feed tray, which has never occurred when using 

tray 5 as the feed tray. The reason for this phenomenon to occur before production goals are met 

and different behavior while using the higher tray as the feed tray is the design error of certain 

sections of the distillation column. Even though tray spacing was indicated to be 208 mm is the 

column specifications (see Table 2.1), the tray spacing between trays 5-6, 10-11, and 15-16 are 

double the size (416 mm) due to having sectional connections of the column at these locations. 

The tray spacing in these sections are double the spacing of regular trays, yet the downcomer 

from at these trays (trays 6, 11, and 16) are the same length and have flat opening at their bottom 

section leaving a 208 mm air gap from the lower tray to the downcomer. This design flaw results 

in vapors from the lower trays (trays 5, 10, and 15) to enter the tray above through the 

downcomer, which is the path of least resistance, and block the liquid on the tray above from 

easily coming down from the downcomer. At low flow rates; the weight of the liquid on the tray 

can overcome the force of the vapor going up, but high vapor and liquid rates lead to flooding 

due to this design flaw of the downcomer. Tray 1, which also has a big air gap below due to 

bottom of the column and recirculating evaporator AW126 being located there, has a different 

type of downcomer that has the bottom portion closed and curved up to not allow the vapors 

rising from AW126 to go through the downcomer. A picture model of this type of downcomer is 

shown in figure 4.14: 
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Figure 4.14 
 

Picture Model of Bubble-Cap Tray with Downcomer Used in Tray 1 
 

 
In order to stay away from flooding the bubble-cap trays, figures 4.8 and 4.9 must be followed, 

differential pressure of the column must stay below 0.13 barg, and the rate of reflux plus EtOH-

rich distillate product flow rates must be less than 100 L/hr. 



      

102 
 

 The weeping effect of the sieve tray distillation column represented the lower operating 

limit of AK222. The table of results for the experiments ran (see Table 4.4) did not have much 

use for the stable operating curve due to experiments done only at total reflux. Table 4.4 does 

show that decreasing flow rates of steam and reflux results in lowered concentration of EtOH of 

the top EtOH-rich distillate product. Table 4.5 and figure 4.11 show that the minimum amount of 

steam supply during stable operation is 40 kg/hr compared to 25 kg/hr of AK122. This was 

calculated by operating the distillation columns in many instances and noticing that steam rates 

lower than 40 kg/hr on AK222 resulted in product purity of top distillate product to be less than 

90 wt% EtOH. This is due to AK222 having sieve trays which have perforations that the liquid 

can flow through (weeping) instead of going down the downcomer. Steam and liquid rates inside 

AK222 must be high enough to develop a liquid layer on each tray in order to achieve good mass 

transfer and separation.  Also, due to the same design flaw of the tray spacing and downcomer 

issue discussed for AK122, the same trays that have excessive entrainment in AK122 have 

weeping on AK222. This is the case all throughout the operation of AK222 and can be seen for 

tray 16 at the following website:  

 
http://doiop.com/Ozkaya-Vid-07 

 
 Since weeping is only a factor at low flow rates, it is not as bad of a condition as flooding 

for AK122. AK222 can achieve production goals with no problems, but uses a very high steam 

flow rate to do so when compared to AK122. The upper limit for operating AK222 is the 

temperature of the condensate coming from the condenser AW227 into buffer tank AB201 being 

too high (greater than 70 oC). The condenser AW227 cannot handle steam flow rates higher than 

58 kg/hr, which is the maximum steam rate as shown in table 4.5 and figure 4.11. There is a 
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flooding region in every distillation column, but AK222 does not reach this region operating the 

column at its designed production goals. 

 The graph developed to compare the stable operating regions of both columns (see figure 

4.12) show how much higher flow rates at which AK222 can operate. A better comparison is 

shown by figure 4.13 where the energy usage (steam supply) is compared to the distillate 

production rate for both columns. This graph indicates that it is more feasible to operate AK122 

when production goal of EtOH-rich distillate product flow rate is in the range of 13 to 32 kg/hr, 

because AK122 is able to use much less steam supply and reflux ratio to achieve this production 

rate compared to AK222. AK122 can achieve a distillate product rate of 32 kg/hr at 36 kg/hr 

steam rate while AK222 achieves the same distillate production rate at 54 kg/hr steam flow rate. 

The advantage of AK222 is when distillate production rate is above 32 kg/hr all the way up to 41 

kg/hr. AK122 is almost at its flooding region when trying to produce 32 kg/hr so in terms of 

production rate, AK222 wins. In terms of efficiency, AK122 is much better than AK222 because 

of its ability to achieve its production rates using much less energy than AK222.
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CHAPTER V 
 

CONCLUSIONS AND RECOMMENDATIONS 
 
 
5.1 Conclusions 
 
 There are five conclusions made in this thesis; these are shown below:  

1. The flooding phenomenon in the bubble-cap tray distillation column occurred at a vapor 

rate of 81 kg/hr and before the production goals could be reached. Flooding is indicated 

by an increase in differential pressure in the column, rising above 0.13 barg. This 

phenomenon resulted in inoperable, dangerous conditions inside the distillation column 

and lowered the top distillate product purity below production goals. The reason for 

flooding to occur before production goals could be reached was found to be the design 

flaw of the downcomers on the trays which had double the tray spacing compared to the 

rest of the trays in the bubble-cap tray distillation column. 

2. The stable operation analysis of bubble-cap tray distillation column resulted in 

development of a stable operating curve. The flow rates in this curve fall way below the 

performance chart shown in figure 1.1. This was due to the fact that the chart in figure 1.1 

was developed for large industrial distillation columns with much higher flow rates. Also, 

the stable operating curve in figure 4.8 was a line instead of a region, this is because the 

distillation process has specific purities of the products as production goals and there is 

only one way to reach these goals. Thus, the distillation process in bubble-
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cap tray distillation column is not flexible in its operating conditions and does not have a 

region of satisfactory operation for these specifications.  

3. Weeping phenomenon analysis for the sieve tray distillation column at total reflux 

showed that efficiency of separation in the column decreased as the vapor and liquid flow 

rates decreased. This was observed by decrease in the purity of the top distillate product 

at low flow rates. Weeping was also noticed at the same tray locations as bubble-cap tray 

distillation column due to the same flaw in downcomers and tray spacing. 

4. The stable operating curve was also developed for the sieve tray distillation column 

which included the minimum and maximum limits of stable operation. The maximum 

limit was not due to flooding, instead it was the result of the condenser not being able to 

handle steam flow rates over 58 kg/hr. The stable operating region chart shown in figure 

1.2 did not resemble the stable operating curve due to the same reason mentioned above 

in conclusion 3. 

5. The production curves developed for both columns in figures 4.9 and 4.11 were a 

representation of the capabilities of the distillation columns and the parameters at which 

they operated most efficiently. The comparison of the columns showed that the bubble-

cap tray distillation column uses much less energy to reach the same production goals as 

the sieve tray, but sieve tray distillation column actually was able to reach production 

flow rate goals while bubble tray flooded way before reaching the flow rate goals. 

 
5.2 Recommendations 
 

All of the distillation experiments and regular operation of the pilot plant were done using 

constant production goals, concentration of ethanol in feed mixture (50 wt%), steam pressure (2 

barg). For more detailed analysis of the stable operating regions of the distillation columns, it is 
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recommended that the feed mixture concentration ethanol be changed and the steam pressure be 

varied to analyze the system to see how different it behaves. It is recommended that pure ethanol 

instead of denatured ethanol be used in the distillation, which effects the operation due having 

chemicals such as methanol and acetic acid mixed in the ethanol (MSDS, Denatured Ethanol).  

Due to bubble-cap tray distillation column flooding at a differential pressure higher than 0.13 

barg and steam flow rates between 36-40 kg/hr, alarms should be readjusted to warn the operator 

that the distillation process is about to become unstable due to flooding of the trays. The flooding 

and weeping of trays due to the large tray spacing between trays 5-6, 10-11, and 15-16 can be 

fixed by changing the downcomers of trays 6, 11, and 16 to have a closed bottom section like the 

ones used for tray 1. It is recommended that this analysis of the distillation column be done again 

after those downcomers are changed in the distillation columns. 

 
5.3 Future Work 
 

It would be interesting to study the effect of preheating the feed going into to the 

distillation column (see Sections 1.2 and 3.4.2). Does preheating reduce energy costs? Would it 

be better to superheat the feed? What kind of impact does preheating or superheating the feed 

have on energy costs, product quality, and production rate?  

The oscillating behavior observed for the differential pressure and tray temperatures in 

the flooding analysis for bubble-cap tray distillation column should also be studied further to find 

the causes and effects of this phenomenon. These oscillations are not observed in any other 

previous studies done on column flooding and should be further studied.
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