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Abstract
Machine learning and in particular deep learning techniques have demonstrated the most efficacy in training,
learning, analyzing, and modelling large complex structured and unstructured datasets. These techniques have
recently been commonly deployed in different industries to support robotic and autonomous system (RAS)
requirements and applications ranging from planning and navigation to machine vision and robot manipulation in
complex environments. This paper reviews the state-of-the-art with regard to RAS technologies (including
unmanned marine robot systems, unmanned ground robot systems, climbing and crawler robots, unmanned aerial
vehicles, and space robot systems) and their application for the inspection and monitoring of mechanical systems
and civil infrastructure. We explore various types of data provided by such systems and the analytical techniques
being adopted to process and analyze these data. This paper provides a brief overview of machine learning and
deep learning techniques, and more importantly, a classification of the literature which have reported the
deployment of such techniques for RAS-based inspection and monitoring of utility pipelines, wind turbines, aircrafts,
power lines, pressure vessels, bridges, etc. Our research provides documented information on the use of advanced
data-driven technologies in the analysis of critical assets and examines the main challenges to the applications of
such technologies in the industry.

Keywords: Machine learning, Deep learning, Robotics and autonomous system (RAS), Inspection, Monitoring,
Mechanical systems, Civil infrastructure

1 Introduction
There has been considerable literature concerning the de-
terioration of critical systems and infrastructure around
the world, and the resulting health and safety implications,
whether these are roads, bridges, or energy related infras-
tructure. As reported by [1], there are at least 150,000
bridges in the United States alone that have lost their struc-
tural integrity and are no longer fit for purpose. Mechani-
cal systems and civil infrastructure deemed critical assets
by both government and industry, are vulnerable to dam-
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age mechanisms, which can adversely affect social services
and the overall productivity of an economy.

This has ensured that regular inspection and main-
tenance is now standard practice. The operation and
maintenance (O&M) costs, resulting from standardized
inspection and maintenance practices, have been quite
considerable for government and industry. O&M cost ac-
counts for a large proportion of lifecycle costs in criti-
cal systems; for instance, the O&M expenditure in the
wind energy industry amounts to 25%-30% of total costs
[2]. Challenges to conventional maintenance and inspec-
tion practices of civil infrastructure and mechanical sys-
tems involves the fact that most methods and protocols
employed are bureaucratic and labour intensive. The in-
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spection and monitoring of assets are usually undertaken
manually, with technicians and operators having to travel
sometimes to distant locations hundreds of miles away. In
some cases, operators and technicians must work in envi-
ronments which are subject to intensive conditions caused
by heat, cold, noise, wetness, dryness, etc. In other cases,
the location may be inaccessible to human technicians, as
in the case of large storage tanks or underground pipelines.

Technological advancements and emergence of robotics
and autonomous systems (RAS) have begun to revolution-
ize monitoring and inspection of mechanical systems and
civil infrastructure. This revolution has provided an inter-
est and demand for the use of RAS technologies to support
the monitoring, inspection and maintenance of offshore
wind farms, gas and utility pipelines, power lines, bridges,
railways, high rise buildings, vessels, storage tanks, under-
water infrastructure, etc., in order to mitigate the current
health and safety risks that human operators currently ex-
perience while inspecting or monitoring such infrastruc-
ture within the energy, transport, aerospace and manufac-
turing sectors [3]. There is a drive in both industry and
government for the development and availability of RAS
technologies that can be deployed to provide data on the
condition of assets and help technicians undertake actions
deemed necessary, based on the information provided by
RAS. This information can be signals provided by hard-
ware instruments, or images taken by cameras from dam-
aged, shadowed, rough, or rusty surfaces.

Robot inspections have been proven to be more efficient
and faster than human inspections. For instance, the in-
spection of wind turbines using unmanned aerial vehicles
(UAVs) take considerably shorter time than that using con-
ventional visual inspection [3]. As indicated in a case study
reported by [4], the traditional rope access method can in-
spect only one wind turbine per day, whereas a UAV can
inspect up to three wind turbines in a day. Vast amount
of data with diverse formats (such as, audio, video, or
digital codes) can be collected by numerous RAS tech-
nologies that are deployed to monitor and inspect in-
frastructure. However, it will be quite time-consuming, if
not impossible for human operators to analyze this vol-
ume of incoming data using conventional computing mod-
els. Machine learning (ML) techniques provide advanced
computational tools to process and analyze all the data
provided by RAS technologies efficiently, speedily, and ac-
curately. The evolution from teleoperated robot systems
which require remote human control to autonomous sys-
tems, which when pre-programmed can operate without
human intervention has helped in the maturity and as-
cendance of RAS technologies which remove the need for
travel, bureaucratic paperwork requirements, etc. While
there might still be a number of RAS technologies that
work offline, there is a growing number of RAS tech-
nologies that are wireless, remotely transferring data, e.g.,

images of structures, materials, etc. to a control office
through inter-networks for analysis.

The aim of this paper is to provide an academic contribu-
tion by reporting on literature and research related to the
use of ML in RAS-based inspection and monitoring of me-
chanical systems and civil infrastructure. It also proposes a
classification and analysis of different ML techniques used
for the analysis of data yielded from RAS-based inspec-
tions. This means that the research in this paper investi-
gates and identifies which study, in which literature, has
used which ML technique, to support different RAS tech-
nologies deployed for inspection purposes. To achieve this
aim, we identify the relevant literature with keywords in-
cluding: robotics, inspection, machine learning, mainte-
nance, mechanical engineering, civil infrastructure, and
asset. We will also provide a review and classification of
ML techniques; the types of damage mechanisms being
considered, e.g., corrosion, erosion, fatigue, cracks, etc.;
the types of inspections; and robotic platforms that have
been used to support both industry and academic re-
search. In addition, a review will be conducted on the char-
acteristics of datasets collected during RAS inspections
of civil and mechanical infrastructure, including: sources
of data (public or non-public); types of data (e.g., image,
video, documents etc.); size of data; velocity or rate of data
generation and transmission; and the variety of data (struc-
tured or unstructured). Following on from this, there will
be an evaluation of the results and findings. Finally, there
will an exploration of potential development in RAS for
inspection and monitoring of future assets.

The rest of this paper is organized as follows. Section 2
reviews different types of RAS technologies that have been
proposed and designed to support the inspection and
monitoring of mechanical systems and civil infrastructure.
Section 3 reviews the characteristics of the data collected
by RAS systems for inspection and monitoring purposes.
Section 4 reviews various types of ML techniques that can
and have been used to process and analyze data from RAS
inspections. Section 5 discusses the findings of the litera-
ture review undertaken in this research and then finally,
Section 6 reviews some of the current technology gaps
and challenges in the application of ML techniques for
RAS based inspection of mechanical systems and civil in-
frastructure. The organization of this literature review is
schematically illustrated in Fig. 1.

2 RAS technologies for monitoring and inspection
Today, there are a variety of robotic and autonomous
systems being developed and deployed in various indus-
tries, including aerospace, manufacturing, energy, trans-
port, agriculture, healthcare, etc. RAS systems are widely
used to support monitoring, maintenance and inspec-
tion of mechanical systems and civil infrastructure. These
technologies are provided with artificial intelligence (AI),
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Figure 1 Schematic illustration of organization for the literature review

sometimes referred to as machine learning (ML), to en-
able and complete complex tasks, as well as process vast
amounts of data. The mechanical design for an RAS sys-
tem used to support inspection, monitoring and mainte-
nance purposes, can be categorized by specific locomotion
and adhesion mechanisms. The adoption of an inspection
robot’s locomotion and adhesion mechanisms is some-
times offset against task or application specific require-
ments such as payload, power requirements, velocity, and
mobility [5, 6].

Locomotion in robotics specifically refers to directional
movement that makes it possible for an object to move
from location to another, the mechanism that makes a
robot capable of moving in its environment. The litera-
ture states that there are four main types of locomotion
that a robot system could be fitted with, depending on
the task and environment they are being built to support
[5]. These four locomotion types include: arms and legs,
wheels and chains, sliding frame, and wires and rails. Con-
sidering the pros and cons of each type, arm and legged
robots are better suited for maneuver around obstacles
in the environment when compared to other locomotion
systems. Conversely, wheels and chain-driven locomotion
are best suited to environments with a flat and even sur-
face and ill-suited for navigating obstacles in the envi-
ronment. The sliding frame locomotion mechanism com-
prises of a mechanical design that has two frames which
move against one another in rotation. This mechanical
design however provides for low speeds. Finally, locomo-
tion involving wires and rails comprises of a simple system

where the robot is held in place by wires and rails [5]. Ad-
hesion in robotics refers to the mechanism by which robot
systems can attach or cling to surfaces in their environ-
ment. Common adhesion mechanisms for RAS systems
that support inspection tasks ranging from magnetic ad-
hesion and pneumatic adhesion (whether that be the pas-
sive suction cups type or active suction chambers type or
vortex thrust systems type) to vacuum sucker, propeller,
and dry adhesion.

In the following subsections, we review RAS-based in-
spection systems that are currently being used in differ-
ent industry sectors. These systems range from platforms
operating below sea level to those operating within the
troposphere (ground level to about 10-20 km above sea
level) and the ones purposed to operate in the thermo-
sphere and exosphere (space and beyond). We therefore
suggest five robot categories, including: unmanned marine
robots, ground-based robots, climbing and crawler inspec-
tion robots, unmanned aerial robots, and space inspection
robot systems.

2.1 Unmanned marine robot systems
Some literature use the term ‘unmanned marine vehicles
(UMV)’ as an umbrella term for unmanned surface ve-
hicles (USV) and unmanned underwater vehicles (UUV)
respectively [6]. UUVs however can be further classified
as either autonomous underwater vehicles (AUV) or re-
motely operated vehicles (ROV) [7].

AUVs are unmanned, pre-programmed robot vehicles,
purposed and deployed into the ocean depth, autono-
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mously without the support of cabling and human inter-
vention. When the AUV completes its task, it returns to a
pre-programmed location, where its data can be retrieved,
downloaded, processed, and analyzed. An ROV is an un-
manned robot which is deployed into ocean depths; how-
ever, the difference is that an ROV is connected to a ship
by cables. An operator located on the ship pilots the ROV.
The cables attached to an ROV are used to transmit com-
mands and data between the operator and robot. AUVs
can be deployed to support inspection of hazardous ob-
jects, surveying and mapping wrecks, and deep underwa-
ter infrastructure (e.g., subsea cables). ROVs are usually
deployed into dangerous or challenging deep water en-
vironments for human divers. Therefore, both AUV and
ROV robot systems are fitted with and supported by a va-
riety of sensors to collect data. The data provided may be
used for military or civilian surveys, inspections, surveil-
lance, and exploration purposes. AUVs and ROVs are usu-
ally equipped with cameras for obtaining video images un-
derwater. ROVs use cameras to transmit video telemetry to
human operators for analysis and decision-making. Sound
navigation ranging (sonar) and fiber optic gyros (FOG)
support object detection, obstacle avoidance and naviga-
tion. ROVs might also be fitted with robotic arms for col-
lecting underwater samples [8].

2.2 Unmanned ground robot systems
Unmanned ground-based robots operate autonomously
on ground surfaces. They are sometimes referred to as mo-
bile robots in some academic literature, alternatively they
are otherwise referred to as unmanned ground vehicles
(UGV) or land-based robots. Ground-based robots in lit-
erature are also sometimes categorized based on their lo-
comotion, which among other criteria is based on the envi-
ronment it is deployed into, which are usually even, stable
environments. A ground-based robot has the advantage of
being able to support and carry maximum amounts of pay-
load where appropriate, however the disadvantage of these
robot types is their lack of mobility with uneven terrain [6].

Unmanned ground-based robots can be categorized
as wheeled robots, walking (or legged) robots, tracked
robots, or robots with a hybrid of either wheeled, legged
or tracking [9]. Wheeled robots navigate on the ground us-
ing motorized wheels to propel themselves [9]. Literature
states that there are four types of wheeled robot, which
can be differentiated by the number of degrees of freedom
(DOF) they hold. DOF is defined as the number of inde-
pendent variables that can define the motion or position
of an object (or mechanism) in space. These four types in-
clude the fixed standard wheel; the castor wheel; Swedish
wheel, and finally the ball or spherical wheel. There are
also several types of wheeled robots, including the single-
wheeled robot, two-wheeled robot, three-wheeled robot,
and so on, each with their unique mobility feature or char-
acteristic [9].

Legged (or walking) robots, unlike wheeled robots, nav-
igate on both even and uneven surfaces, hard and soft sur-
faces, and can detect obstacles in their path or environ-
ment. Legged robots can be classified as one-legged (hop-
pers), two-legged (humanoid), three-legged, four legged
(quadruped), five-legged, six-legged (hexapod), and so on
[9]. Hybrid ground-based robots are robots that combine
legged, wheel and track locomotion systems in any given
configuration [9].

The applications of unmanned ground robots are nu-
merous, and they range from the nuclear industry, where
human operators are replaced by robots to operate in ra-
dioactive environments, to military operations for surface
repairs, navigating minefields, explosive ordinance dis-
posal (EOD), carrying and transporting payload, etc. Other
state-of-the-art applications include reconnaissance, sur-
veillance, and target acquisition operations; and space ex-
ploration as in the case of NASA’s planetary rovers [10].
Unmanned ground-based vehicles are also fitted with ar-
ray of sensor payload options to support autonomous op-
erations, navigation through the environment and data
collection. Cameras are used to scan the robot’s environ-
ment and support calculation of its position. Furthermore,
motion detectors, infrared (IR) sensors, temperature and
contact sensors support object detection, obstacle and
collision avoidance and obstacle localization. Laser range
finder sensors which use a laser beam to generate distance
measurements, producing range data, also support object
detection and obstacle avoidance [8].

2.3 Climbing and crawler inspection robots
Wall climbing and crawler robots were developed for
movement on vertical plane environments for the inspec-
tion and maintenance of a range of assets such as stor-
age tanks, nuclear power facilities, and high-rise buildings
[11, 12]. Oil refineries consist of storage tanks that require
cleaning; along with a requirement for routine inspection
and non-destructive testing (NDT) of these tanks to check
for cracks and leaks. The traditional and manual imple-
mentation of these routine inspection and maintenance
tasks results in very high labor and financial costs. The de-
velopment and deployment of climbing and crawling robot
systems can help with automating these tasks [12].

Climbing robots adopt an adhesion mechanism, based
on the type of the environment they are deployed into
[6]. These robots employ magnetic adhesion or pneumatic
or negative pressure (depending on the suction or thrust
type) adhesion. According to literature, climbing robot
systems are usually fitted with arm and leg locomotion
mechanism systems. The number of arms and legs can
vary from two to eight legs, albeit eight legged robots are
not as common. Alternatively, climbing and crawler robots
can otherwise be fitted with wheels of chain-driven lo-
comotion [5]. The adhesion mechanisms available today
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make climbing and crawling robots capable of attaching
to structures and materials, while also providing a reliable
platform for attached payload and tools [6].

Literature reports some information about the velocity,
and mobility of the climbing and crawler robots. Climb-
ing robot systems might need to reach high velocity on
a vertical plane, for optimal movement between inspec-
tion locations. With respect to mobility, climbing robot
systems which are fitted with arms and legs can navigate
uneven surface, steps, and other objects in the environ-
ment [5]. When considering the payload requirements for
climbing and crawler robots, some sensors such as ultra-
sonic sensors, gravity sensors, acceleration sensors etc. are
used to measure and provide data about the distance of
objects or obstacles in front [5, 6, 11–13]. The literature
provides a varied advice on the weight of the payload ca-
pacity, ranging between 10 kg and 30 kg. Obviously, the
weight requirements will be dependent on the tasks that
the robot system is deployed to complete [5, 11, 12]. How-
ever, robotics engineers must engage with the problem that
climbing and crawling robots will need to suitably offset
the take up of heavy payloads, while securing adhesion on
the challenging surfaces that they are designed for [6].

2.4 Unmanned aerial robot systems (or drones)
Unmanned aerial robot systems are interchangeably re-
ferred to as unmanned aerial vehicles (UAVs), and more
commonly referred to as drones in the literature. Various
multidisciplinary disciplines, ranging from environmental
monitoring to civil engineering are increasingly deploy-
ing drones to support with various inspection type ap-
plications [14]. This is because research has continuously
shown that the use of drones for inspection-based tasks
reduce the need for human actors, their risk and expo-
sure to injury and fatality, maintenance, and downtime
costs [14–16]. Seo et al. [14] indicates that the selection
of a drone for a particular application is based on some
criteria including the mission duration, battery life, cam-
era and video resolution, payload capacity, GPS and col-
lision avoidance and cost performance [14]. Locomotion
in drones is provided by propellers, or as referred to ro-
tors in certain literature. The term propellers and rotors
are used interchangeably in the literature, although tech-
nically, a rotor could be considered a horizontal propeller
(such as those mounted on a helicopter), while propeller
could technically be the vertical rotor mounted on an air-
plane. Nevertheless, they are identical objects seen from
different angles. A propeller propels an object, using the
thrust as the force for horizontal movement and lift for
vertical movement – providing for a vertical take-off and
landing (VTOL) capability. Motors provide power to pro-
pellers and spin them at high speeds. These high speeds in
turn create the thrust or lift which provide the drone with
the required locomotion [15]. Lattanzi et al. [6] contended

that drones compromise with having reduced stability and
how much payload they can support, with the advantage of
increased movement and mobility [6]. In literature, flight
time or duration of operation is inextricably linked to bat-
tery life or number of batteries available in a drone. The
battery provides the electricity to power the drone, and
most drones are only capable of providing enough power
to support 20-30 minutes of flight time [14].

Drones are described in literature as technology plat-
forms that can support a variety of applications and carry a
variety of sensor payloads. Sensor payloads can vary from
thermal and infrared to optical cameras. Light detection
and ranging (LIDAR) is used to measure and provide data
on the distance of objects, and with radar, the angle and ve-
locity of objects as well [16]. Literature indicates that the
higher the number of propellers (or rotors) supporting the
drone, the greater the drone’s payload capacity. Although
there are caveats to this guidance, one of which is that in-
creased payload results in a decrease in the drone’s flight
time and range capacity [17]. Drones can support payload
from 150 g to 830 g, depending on battery life [17]. Liter-
ature and research that have deployed drones for infras-
tructure inspection have indicated the use of commercial
cameras with resolutions of 12 to 18 megapixel, with each
15-minute flight instance providing over 1200 images [18].

2.5 Space inspection robot systems
RAS systems have increasingly become a critical aspect of
space technology, supporting a variety of space missions.
Space robotics can be classified as either small or large ma-
nipulators, or humanoid robots [19]. Space robots, also re-
ferred to as space manipulators in some literature, meet
decreased and applied gravitational forces on them. In
most cases, these robots rotate and hover and glide in orbit
[20]. Literature demonstrates two types of applications for
space-based robotics, these include on-orbit assembly and
on-orbit maintenance (OMM). OMM applications involve
repair, refueling, debris removal, inspection, etc.

Since the scope of this paper is concerned with inspec-
tion purposed platforms, we review only those space robot
systems that are developed to support inspection tasks.
This includes the development of the orbiter boom sen-
sor system (OBSS) by the Canadian Space Agency (CSA).
The OBSS was deployed to inspect the façade of the ther-
mal protection system of space shuttles [19]. Space robots
can be deployed to ferry varied payloads of kilograms to
tons on space installations [21].

[22] provided a description of the teleoperated robotic
flying camera called the Autonomous Extra Vehicular
Robotic Camera (AERCam), that is used to support astro-
nauts by providing them with a way to inspect and monitor
the shuttle and space station. The first version of the robot
was called AERCam Sprint and was deployed on a shut-
tle in 1997. The AERCam Sprint was fitted with a ring of
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twelve infrared detectors and two color cameras to enable
vision capability [22]. [23] provided a report on a space
inspection robot developed by NASA, called Tendril. The
Tendril is a manipulator robot type purposed to support
space missions by inspecting difficult to reach locations,
e.g. fissures, craters, etc. Nishida et al. [24] provided a re-
port on a prototype model for what they describe as an
‘end-effector’ for an inspection and diagnosis space robot.
Pedersen et al. [25] mentioned a space robot designed to
inspect the Mir station called Inspector, indicating how-
ever that it failed while in flight.

3 Features of data collected from RAS-based
inspections

This section reviews the characteristics of data collected
by RAS technologies, which are then processed and ana-
lyzed by analytical methods and techniques to support the
monitoring and inspection of mechanical systems and civil
infrastructure. We will explore the characteristics of input
data collected by RAS systems using the four Vs data model
[26–29]. Literature indicates that data can be categorized
through its volume, which refers to the quantity of data
that can be generated and stored; veracity, which refers to
the quality of data collected as input; velocity, which refers
to the speed at which data can be produced; and variety,
which refers to the type and format of data collected. These
four characteristics are briefly described below:

3.1 Volume (quantity or size of data)
Meyrowitz et al. [8] advised that there is a direct rela-
tionship between the type of sensor fitted to a robotic au-
tonomous system and the volume of data produced. This
position considers that certain sensors by default generate
larger quantities of data compared to others, e.g., cameras
which produce video data can generate millions of bits of
data.

3.2 Variety (type and format of data)
Literature review showed that most research papers that
have deployed climbing and crawler robots fit them with
an array of sensors to collect a variety of data types. The
data types include sound waves and their distance to an
object, using ultrasonic sensors; acceleration and velocity
using accelerometers and gravity sensors [13]. Climbing
and crawling robots also collect image and video data us-
ing cameras [11, 13]. Literature review of the types of data
collected by UAVs have demonstrated that they have been
purposed to collect image and video data [15, 18, 30–32].
In a study by Alharam et al. [33], the UAVs have also
been purposed to collect data on gas leakage, specifically
methane (CH4) from oil and gas pipelines. The types of
data collected by UUVs, specifically ROVs for underwater
inspection, include image and video data; angular, veloc-
ity, orientation, depth, and pressure data, collected by op-
tical and gyro sensors [7, 13]. The types of data collected

by unmanned ground robots (UGRs) vary from images and
videos collected by cameras; distance measurements col-
lected by range finder sensors; and sound wave data col-
lected by ultrasonic sensors [10].

3.3 Velocity (speed of data generation)
While the literature indicates that certain types of sen-
sors produce higher volumes of data compared to oth-
ers, it is also indicated that the speed of data generation
and transmission has a direct correlation with the trans-
mission medium or link used, and sometimes the envi-
ronment the data is transferred within [8]. Except for on-
board RAS data processing and analysis, data rates are
slowed depending on their environment, Meyrowitz et al.
[8] demonstrated that, with current technology, underwa-
ter RAS systems operate in an environment that reduce the
rate of data transmission [8].

3.4 Veracity (quality and accuracy of data)
Literature indicates that the quality and accuracy of data
can be directly linked to the frequency and type of trans-
mission link used for data on RAS systems. In the instance
of UUVs, Meyrowitz et al. [8] provided the instance of
sonar imaging, where the combination of low frequency
and bad transmission links result in reduced resolution
and lots of interference that will require cleaning in im-
age and acoustic data [8]. This has led to research into the
development of better, high performance data transmis-
sion links, ranging from fibre optics to laser links. Alter-
natively, RAS systems with ML technology on-board, can
process and analyze data with greater veracity because the
data has not yet been subject to the degradation that is di-
rectly linked to transmitting the input data.

4 Machine learning techniques
A review of literature provides a distinct categorization
between different ML algorithms. These algorithms are
referred to as either supervised learning, unsupervised
learning, or reinforcement learning algorithms. This sec-
tion provides an overview of some of the popular ML tech-
niques documented in literature and used to process and
analyze data collected from RAS-based inspection opera-
tions.

4.1 Supervised learning
There are supervised learning techniques that are used to
provide prediction-based solutions for problems that can
either be categorized as classification or regression. These
techniques require vast amounts of labelled data as input.
In this approach to ML, the outputs (sometimes referred
to as targets in literature) are pre-determined and directed
towards interpretation and prediction. The dataset pro-
vided is separated into a training set and test set respec-
tively, and then it is labelled with features of interest. When
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trained, the system can identify and apply these labels to
new data, e.g., when taken through the supervised ML pro-
cess, a system can be trained to identify new images of an
object. Therefore, given input (x) and output (y), a super-
vised learning algorithm can learn the mapping function y
= f(x); so that given input (x), this can lead to a prediction
of output (y) for the given data [34–37].

There are two types of supervised learning approaches to
ML. The first type is the regression learning process, where
a model predicts a continuous quantity based on its input
variables. Regression predicts continuous values such as
height, weight etc., these values are referred to as continu-
ous because they reside within an infinite number of pos-
sibilities, e.g., weight is a continuous value because there is
an infinite number of possible values for a person’s weight
[38, 39]. The other type refers to the classification-based
supervised learning process, where the output or target is
categorical (discrete or finite number of distinct groups or
classes). Classification refers to the process of identifying a
model that takes a given dataset and sorts the data within
it into distinct or separate classes or labels. Classification
models in supervised machine learning are often described
as a technique for predicting a class or label [34–37, 40, 41].

While most ML algorithms can be applied to solve both
classification and regression problems, algorithms best
suited to support classification-based problems include
the K-nearest neighbors (KNN), logistic regression, sup-
port vector machine (SVM), decision tree, naive bayes,
random forest, and artificial neural network (ANN). Con-
versely, algorithms best suited to support with regression-
based problems include linear regression as well as ran-
dom forest [39]. These techniques are briefly reviewed in
the following.

4.1.1 Linear regression
Linear regression is a supervised model or algorithm used
to predict the value of a variable based on the value of an-
other variable. The model assumes that linear relationship
between the input variables (x) and a single output (y), and
that the output (y) can be calculated from a linear com-
bination of the input variable (x). This is referred to as a
simple linear regression. Literature describes multiple in-
put variables as multiple linear regression. Linear regres-
sion models fit a straight line to a dataset, to describe the
relationship between two variables.

4.1.2 Support vector machine (SVM)
SVM is a supervised machine learning algorithm that
can be applied to both classification and regression ap-
proaches. SVM algorithm identifies a “decision boundary”
or “hyper plane” to separate a dataset into two distinct clas-
sifications. The algorithm attempts to maximize the dis-
tance between the nearest data points of the two classes
within the dataset. Support vectors are the data points

nearest to the decision boundary; and a change in the po-
sition of the support vectors will result in the change in
the position of the decision boundary. The greater the dis-
tance the data points are from the decision boundary, the
more concrete their classification. The distance between
the decision boundary and the nearest data point is called
the margin. SVM is very accurate and works very well with
small datasets. However, with large datasets it usually re-
sults in longer training times [33, 35, 42–44].

4.1.3 Decision trees (DT)
Decision Trees (DTs) are a supervised ML algorithm, that
builds classification or regression models. DTs take the
form of a tree diagram, breaking down a dataset into
smaller subsets, to facilitate the development of a tree with
a root node, a decision node, with each outward branch
of the node representing a possible decision, outcome, or
reaction. The decision tree comprises of decision nodes
and leaf nodes, with leaf nodes representing a classifica-
tion or a decision. DTs are typically used to determine a
statistical probability or more simply, a course of action
for complex problems. DTs provide a visual output of a
given decision-making process and they can process both
numerical and categorical data. However, DTs are suscep-
tible to unbalanced datasets which generate biased mod-
els. DTs are also susceptible to overfitting - which occurs
when a model fits too closely to the training data and is less
accurate when introduced to new and previously unseen
data [33–35, 42–44].

4.1.4 Random forest (RF)
Random forest is a supervised ML algorithm that can be
applied to both classification and regression-based prob-
lems. It grows multiple individual decision trees for a given
problem and merges them together to make a more accu-
rate prediction. The RF technique uses randomness and
ensemble learning to produce uncorrelated forests of de-
cision trees. Ensemble learning is a method that com-
bines various classifiers such as decision trees, and takes
the aggregation of their predictions to provide solutions.
The most commonly known ensemble methods are bag-
ging and boosting. Bagging creates a different subset from
the training data, with the final output based on major-
ity voting. Boosting on the other hand is a method (e.g.,
ADA Boost, XG Boost) that combines “weak learners” into
“strong learners” by creating sequential models so that
the final model generated delivers the highest accuracy.
Random forests, unlike DTs, are not susceptible to over-
fitting, however, they are a time-consuming and resource-
intensive technique [33].

4.1.5 XGBoost (Extreme Gradient Boosting)
XGBoost is short for ‘Extreme Gradient Boosting’. The
XGBoost is a supervised ML algorithm implementing



Macaulay and Shafiee Autonomous Intelligent Systems             (2022) 2:8 Page 8 of 25

the gradient boosting decision tree framework. The al-
gorithm can be applied to solve classification, regression,
and prediction problems. It creates and works to optimize
(through a boosting technique) each upcoming decision
tree, so that the errors of each following decision tree are
reduced compared to the previous tree that came before
it. The boosting technique involves a process where there
is a gradual learning from data, resulting in improved pre-
diction for building subsequent decision iterations.

4.1.6 K-Nearest Neighbor (K-NN)
The KNN algorithm is a supervised ML algorithm, best
suited to classification models. The algorithm makes an es-
timation of the probability that a new data point belongs
to a particular group. This process involves looking at the
data points in proximity and then identifying which data
points have similar features to the new data point. The new
data point is then assigned to the group which has most
data points with similar features close the new data point.
The KNN algorithm is very easy to implement and fast to
execute. However, KNN does not classify data points very
well and the accuracy of the algorithm is dependent on the
quality of the dataset [35, 42–44].

4.1.7 Naive Bayes
Naive Bayes is a supervised ML technique used to solve
classification problems, and is based around counting and
conditional probability. It uses the Bayes theorem to clas-
sify data. The Naive Bayes algorithm naively assumes that
all characteristics of a data point are independent of one
another. The Bayes’ theorem is based on the understand-
ing that the probability of an event may require to be up-
dated as new data becomes available. The algorithm seems
to perform much better with categorical data (for example,
it works well when applied to document classification and
spam filtering) than with numerical data [34, 35, 42].

4.1.8 Logistic regression
Logistic regression is a supervised learning and classifica-
tion algorithm for predicting a binary outcome, where an
event occurs (True) or does not occur (False). The algo-
rithm is used to distinguish between two distinct classes.
It is considered a supervised ML algorithm because it has
X input features and a y target value, and uses labels on the
dataset for training. The algorithm works to find the logis-
tic function of best fit to describe the relationship between
X and y. Logistic regression algorithm is similar to the lin-
ear regression algorithm, except that the linear regression
works with continuous target variables (numbers within a
range) while the logistic regression is used when the target
variable is categorical. The algorithm transforms its out-
put using the sigmoid function to return a value which is
then mapped to two or more discrete classes. Binary re-
gression, multinominal logistic regression and ordinal re-

gression are the three main types of logistic regression. Bi-
nary regression is used to process Boolean values, multi-
nomial is used to process n ≥3 values, and ordinal logistic
regression processes n ≥3 ordered classes. Logistic regres-
sion has been used to support various applications from
medical diagnosis to fraud detection in banking [34, 42].

4.1.9 Artificial Neural Network (ANN)
Artificial Neural Networks (ANNs), which can solve both
regression and classification problems, are modelled on
the neural networks in the human brain. Like the human
brain that contains billions of neuron cells that are con-
nected and distribute signals in the human brain, ANNs
are made up of artificial neurons, called units, grouped
into three different layers. The first layer is called the ‘in-
put layer’ which receives data and then forwards the data
received to the second layer called the ‘hidden layer’. The
hidden layer performs mathematical computations on the
data received from the input layer. The last layer is the out-
put layer, which returns data as output. Deep neural net-
works (sometimes called deep learning in academic liter-
ature) refers to neural networks that contain multiple hid-
den layers [35, 42–46].

4.1.10 Convolutional Neural Network (CNN)
Convolutional Neural Network (CNN) is a type of ANN
that detects patterns and helps with processing of vision-
based tasks. CNN is made up of an ML unit algorithm,
called perceptions. A CNN can make predictions by ana-
lysing an image, check to identify features, and classify the
images based on this analysis. CNN consists of multiple
layers that process and extract features from data. These
layers include the Convolutional Layer, Rectified Linear
Unit (ReLU), Pooling Layer, and Fully Connected Network
(FCN). The Convolutional Layer contains filters that per-
form the convolution operation, while the ReLU layer per-
forms operations on elements and outputs a rectified fea-
ture map. The Pooling Layer takes the rectified feature map
as input, and performs a ‘down-sampling’ operation that
reduces the dimensions of the feature map. The pooling
layer then converts the two-dimensional array output from
the pooled feature map into a linear vector by flattening it.
FCN layer takes the flattened matrix from the pooling layer
as input and then proceeds to classify and identify the im-
ages [45–48].

4.2 Unsupervised learning
Literature tells us that unsupervised learning is where al-
gorithms identify patterns within a given dataset. Unsu-
pervised learning process involves searching for similari-
ties that can be used to group data. Some of the most used
unsupervised learning algorithms include the K-means
clustering algorithm, Hierarchical clustering, Anomaly de-
tection, principle component analysis (PCA), Independent
Component Analysis, Apriori algorithm, singular value
decomposition [34–37].
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4.3 Reinforcement learning
Reinforcement learning (RL) takes an alternative approach
to supervised and unsupervised learning. RL does not re-
quire the system to learn from data, instead learning is
the result of feedback and reward. This involves a se-
ries of trial and error by a software agent. Some of the
most common unsupervised learning algorithms include:
SARSA – Lambda algorithm; Deep Q Network (DQN)
algorithm; Deep Deterministic Policy Gradient (DDPG)
and the Asynchronous Advantage Actor-Critic algorithm
(A3C) [35–37].

4.4 Deep learning
The term deep learning refers to a subset of ML tech-
niques that requires vast amounts of data to train mod-
els to output values, interpretations, or predictions. Deep
learning methods are ANNs with more than one hidden
layer and they can be supervised or unsupervised. Appli-
cations that require the application of deep learning tech-
niques as supervised learning, include image classification,
object detection and face recognition. Alternatively, appli-
cations that require the deep learning techniques as unsu-
pervised learning are usually instances where there is no
labelled data and for clustering problems, e.g., image en-
coding and word embedding.

4.4.1 Deep Neural Network (DNN)
A deep neural network (DNN) are ANNs that have more
than one hidden layer (therefore the term “deep”), that
are trained with vast amounts of data. Each hidden layer
comprises of neurons that map a function to input to pro-
vide an output. DNNs are trained through the adjustment
of its neurons, biases and weight features. These types
of neural networks are also supported by various tech-
niques such as the back-propagation algorithm and op-
timization methods such as stochastic gradient descent.
Three types of deep neural networks include multi-layer
perceptrons (MLP), convolutional neural networks (CNN)
and recurrent neural networks (RNN). DNN features sup-
port speech recognition systems, and translation systems
like Google Translate [49, 50].

4.4.2 Deep Belief Networks (DBNs)
Deep belief networks (DBNs) consist of unsupervised net-
works, that comprise of a stack and sequence of connected
restricted Boltzmann machines (RBMs). The DBN trains
each of the Boltzmann machine layers until they con-
verge. The value of the output layer of a Boltzmann ma-
chine is input into the next Boltzmann machine in the se-
quence, then again trained until convergence is reached.
This process is repeated with each Boltzmann machine un-
til the whole network has been successfully trained. Appli-
cations of DBNs vary from generating of images to video
sequences and motion capture [51–53].

4.4.3 Recurrent Convolutional Neural Networks (RCNN)
Recurrent Convolutional Neural Networks (RCNN) algo-
rithms detect and localize objects in an image. This is done
by drawing rectangular boundary like boxes around ob-
jects contained within an image, placing a label on, or cat-
egorizing each defined box in an image, extracting features
in the image using the SVM algorithm, and then process-
ing the features using a pre-trained CNN. The last stage in
the process brings separate regions together to obtain the
original image with the identification of the objects within
the image [47, 54–58].

4.4.4 Fast R-CNN
An iteration or evolution and improvement of the R-CNN
model can be found with the Fast R-CNN algorithm. Fast
R-CNN model takes the image as a whole and passes it to
its neural network to output, the output is then sliced into
region of interests (ROI).

4.4.5 Faster R-CNN
A further evolution of the R-CNN model is the Faster R-
CNN algorithm [59]. Faster R-CNN is a better perform-
ing and faster algorithm than R-CNN and Fast R-CNN,
because it only uses CNNs and does not use SVMs, and
provides a single feature extraction of an image, instead of
region-by-region extractions of an image like R-CNN. Ac-
cording to literature, this results in Faster R-CNN train-
ing networks at least nine times faster, with more accuracy
than R-CNN [59, 60]. However, what makes Faster R-CNN
distinct to its predecessor Fast R-CNN is the use of the Re-
gion Proposal Network (RPN) technique [60].

4.4.6 Mask R-CNN
The Mask R-CNN is an extension of the Faster R-CNN
technique. Literature describes the Mask R-CNN tech-
nique as an advanced image segmentation method, which
takes a digital image and breaks it down into segments or
pixels, and then categorizes the segments. For example, a
single image is segmented and categorized to identify mul-
tiple objects in the image [61].

4.4.7 R-FCN
Literature describes the R-FCN model as being based on
region proposal. The difference between the R-FCN and R-
CNN techniques (which is also based on region proposal)
is that R-FCN applies the selective pooling technique that
extracts features for prediction on the last layer of its net-
work [62].

4.4.8 Single Shot Detector (SSD)
The Single Shot Detector (SSD) is an ML technique that
breaks down an image into a grid of cells. In turn each cell
has the function of detecting objects, by predicting the cat-
egory and location of objects in the region where the im-
ages are located within. Literature indicates that the SSD
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model is faster than the Faster R-CNN model. However,
when the object size is small, the model’s performance de-
creases [63].

4.4.9 You Only Look Once (YOLO)
The YOLO (You Only Look Once) algorithm uses CNNs
to detect and recognize objects in a picture in real-time.
YOLO first takes an entire image as input, divides the im-
age into grids (this is different to R-CNN that uses regions
to localize objects in an image), image classification and
localization are applied to each grid. The algorithm then
predicts the rectangular (bounding) boxes and their asso-
ciated classes. The YOLO model does however find it dif-
ficult to localize objects properly compared with R-CNN
[37, 64].

4.4.10 Recurrent Neural Networks (RNNs)
Classic neural networks are described as ‘feed forward’
networks because they channel information in a single for-
ward direction, through a series of mathematical opera-
tions performed at the nodes of the network. Data is fed
through each node as input, never visiting a node more
than once, before being processed and converted into an
output. Feed forward networks only perceive the current
sample data that has been provided in present time and
have no facility for memory with respect to previous data
samples processed. In other words, classic neural networks
do not have the facility for data persistence.

RNNs are a type of deep neural network, and unlike clas-
sic neural networks they take both the current data sam-
ple and the previously received samples as input. RNNs
can process data from the first input to the last output and
initiate feedback loops throughout the entire computation
process, enabling the loop of data back into the network.
RNNs are distinct from feed forward networks by the feed-
back loop connected to their past decisions. RNNs allow
previous outputs to be provided as inputs, while also hav-
ing hidden states. RNN models are commonly used in the
natural language processing (NLP) and speech recognition
domain [65, 66].

4.4.11 Long Short-Term Memory Networks (LSTMs)
LSTMs are a special type of RNN that help preserve the
error that can be back propagated through layers and
time. LSTMs provide recurrent networks with the ability
to learn over time. This is made possible in large part to
LSTMs’ gated cell, from which data can be written to, read
from and stored into, all external to the back and forth of
the recurrent network [67].

4.4.12 Generative Adversarial Networks (GANs)
GANs are described as generative deep learning unsuper-
vised learning algorithms. The technique was introduced
in 2014 by Ian Goodfellow. The premise of GANs involves
a neural called a generator, which produces fake data sam-

ples. The generator works in concert with another network
called the discriminator which has to differentiate between
two different input data samples. The first being the origi-
nal data samples and the second being the fake data sam-
ples being created and output by the generator. The dis-
criminator has to evaluate, learn and make decisions as to
which data sample is from the actual training set and which
are form the generator [68, 69].

4.4.13 Multilayer Perceptrons (MLPs)
A perceptron is an input layer and an output layer that
are fully connected; and comprise of input values, weights
and bias, net sum, and an activation function. A fully con-
nected neural network with multiple layers is called Multi-
layer Perceptron (MLP). MLP is a supervised learning feed
forward deep neural network that connects multiple layers
in a directed graph, in other words, where the signal path is
through a single direction through the nodes, between the
input and output layers. In this network, every node, with
the exception of the input nodes, contains a non-linear
activation function. MLPs can be used to build speech-
recognition, image-recognition, and machine-translation
applications [70, 71].

4.4.14 Restricted Boltzmann Machines (RBMs)
Boltzmann machines are non-deterministic, generative
deep learning models with only two types of nodes - hid-
den and visible nodes. There are no output nodes, which
provides them with the non-deterministic feature. Boltz-
mann Machine has connections among the input nodes,
with all nodes connected to all other nodes including input
or hidden nodes. This allows universal information shar-
ing of parameters, patterns and correlations of the data.
Restricted Boltzmann Machine (RBM) are a special class
of Boltzmann Machines. RBM is an unsupervised two-
layered (visible layer and hidden layer) neural network.
RBM is characterized by restrictions where every node in
the visible layer is connected to every node in the hidden
layer but no two nodes in the same group are connected to
each other [51–53].

4.4.15 Autoencoders
Autoencoders are an unsupervised type of neural network
that can be used to detect patterns or structure within data
to learn a compressed representation of data provided as
input. The autoencoder learns how to compress the data
based on its attributes during training. An autoencoder is a
feed forward neural network where the input is the same as
the output. It is made up of encoder and decoder models.
The encoder compresses the input, and the decoder works
to re-create the input from the compressed version of the
input that was provided by the encoder. Applications of au-
toencoders vary from anomaly detection, data denoising
(audio and images), dimensionality reduction etc. [72–76].

Table 1 reviews the advantages and disadvantages of dif-
ferent ML techniques reviewed in Section 4 of this paper.
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Table 1 Review of advantages and disadvantages of different Machine Learning techniques

Technique Design Advantages Disadvantages

SVM (Support
Vector

Machine)

An SVM algorithm, through the use of its
decision boundary, attempts to maximize
the distance between the nearest data
points of the two classes withn the dataset
[33, 35, 42–44].

SVM algorithms work well on
small datasets. The algorithm also
provides greater accuracy than
contemporary algorithms.

SVM algorithms do not work well with large
datasets. Training times with large datasets
are high.

Naive Bayes The Naive Bayes algorithm naively assumes
that all characteristics of a data point are
independent of one another [34, 35, 42].

The Naives Bayes algorithm is easy
to implement, can be trained with
ease, and scales well with a given
dataset.

Performance is significantly reduced when
independent assumption does not hold.
Method provides zero probabilities with
discovery of words in a class in test data,
not found in training data.

Logistic
Regression

Logistic regression is a classification
algorithm for predicting a binary outcome,
where an event occurs (true) or does not
occur (false) [34, 42].

Logistic regression is simple to
implement. It is an optimal
algorithm for analysis and working
with binary data.

Logistic regression algorithms perform
poorly on non-linear datasets e.g., images.
The algorithm also performs quite poorly
next to other algorithms.

Decision Trees DTs take the form of tree a diagram, the
algorithm breaks down a dataset into
smaller subsets. The decision tree
comprises of decision nodes and leaf
nodes, with leaf nodes representing a
classification or decision. DTs are typically
used to determine a course of action for
complex problems [33–35, 42–44].

They provide a user-friendly
interpretable and visual method
for solving problems and making
decisions. DTs can manage
numerical and categorical data.
They also require minimal data
preparation.

Results from decision trees can be unstable.
DTs are sensitive to the specific features in a
dataset and therefore small changes to the
data result in significant changes to a tree,
sometimes providing a completely different
tree. This problem has been mitigated with
the application of techniques such as
‘Bagging’ and ‘Boosting’. Boosting is where
(in the case of regression trees) much new,
stronger trees (trees with less errors) grown,
are spawned from a collection of weaker
trees (trees with more errors) [77].

Random Forest Random forest is a supervised machine
learning algorithm that grows multiple
individual decision trees for a given
problem, and merges them together for a
more accurate prediction [33].

The random forest algorithm can
manage large datasets quite
efficiently, with more accurate
predictions. The algorithm also
works well with datasets with
missing data.

The algorithm can be time consuming
when handling large datasets, because of
the computing time required to build,
manage and merge all the individual trees.
The algorithm requires and consumes more
resources, especially when managing large
data sets, requiring storage. The algorithm is
more complex as the prediction of an
individual decision tree is easier to interpret
compared to a forest of trees.

Linear
Regression

Linear regression is a model or algorithm
used to predict the value of a variable
based on the value of another variable.
Linear regression models fit a straight line
to a dataset, in order to describe the
relationship between two variables.

The model is easy to interpret and
implement.

The linear regression model oversimplifies
real-world problems by assuming a linear
relationship (or straight line) between
variables. The model is also very sensitive to
outliers (anomalies) and therefore requires
the extraction of outliers from a dataset,
before the model can be applied.

XGBoost
(Extreme
Gradient
Boosting)

The XGBoost algorithm creates and works
to optimize (through a boosting technique)
each upcoming decision tree, so that the
errors of each following decision tree is
reduced compared to the previous tree that
came before it.

The XGBoost algorithm performs
very well on small datasets and
handles mission data well. The
algorithm provides a better
prediction accuracy compared to
other machine learning
algorithms.

Technique is sensitive outliers and does not
perform well on unstructured data.

K-NN (K Nearest
Neighbors)

The K-nearest-neighbor makes a guess or
estimation of the probability a new data
point belongs to a particular group
[35, 42–44].

The KNN algorithm is simple to
understand and implement. The
algorithm adapts with new data
and does not not make
assumptions about data.

The prediction process runs quite slowly
when working with large datasets, and the
algorithm does not work well with
imbalanced data. The algorithm is sensitive
to outliers and cannot manage missing
values. KNN also requires a lot memory to
store the training data, which also makes it a
very computationally expensive algorithm.
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Table 1 (Continued)

Technique Design Advantages Disadvantages

ANN (Artificial
Neural
Networks)

Artificial neural networks (ANN) are made
up of artificial neurons, called units,
arranged in a series of layers [35, 42–46].

ANN algorithms can be applied to
both classification and regression
problems. Neural networks can
model non-linear data with a large
number of inputs e.g., images,
audio and text.

ANNs require a lot of data to train, and are
computationally expensive. Neural network
algorithms run slow with traditional CPUs
and require GPUs.

CNN A convolutional neural network (CNN) can
make predictions by looking at an image
and checking to identify features, and
classifying the image based on this analysis
[30, 31, 45–48].

CNN algorithms independently
and automatically detect features,
and are computationally efficient.

CNN model cannot detect objects within
an image, in other words they cannot tell us
where the objects are located. CNNs do not
encode the position and orientation of an
object in their data routing between layers
and in the resulting output or predictions
[47].

R-CNN The R-CNN algorithm takes an image,
extracts regions (or features) in the image
using a selective search method. The region
of interest (ROI) is placed in a rectangle that
represents the boundary of an object in the
image. R-CNN then processes these
features using a pre-trained CNN. It then
classifies the extracted regions using a
support vector machine (SVM), which
involves determining what type of object is
in the ROI boundary. Finally combining the
regions to obtain the original image with
objects detected in it [47, 54–58].

The R-CNN model can both detect
objects in images as well as
classify them.

Multi-step process requires a lot of time to
train the network because of the significant
number of regions (or features) it needs to
classify for every image. Model also requires
a lot of disk space and is computationally
expensive algorithm. Bounding box
generated does not give any indication
about the shape of the object.

Fast R-CNN In Fast R-CNN, the whole image is passed to
a neural network to produce output
features. Then, a new technique called ROI
Pooling slices out each ROI from the
network’s output sensor. Similarly, to R-CNN,
Fast R-CNN also uses the selective search
method to generate its region of interests.

Fast R-CNN is faster than R-CNN
because it passes the whole
image to neural network to
produce the output features,
unlike R-CNN which processes
each ROI individually.

Technique is still slow for real world.

Faster R-CNN Faster R-CNN is a better performing and
faster algorithm than R-CNN because it only
uses CNNs and does not use the selective
search method or SVMS, and provides a
single feature extraction of an image,
instead of region by region extractions of
an image like R-CNN. According to
literature, this results in Faster R-CNN
training networks at least nine times faster,
with more accuracy than R-CNN [59, 60].
However, what makes Faster R-CNN distinct
to its predecessor Fast R-CNN, is the use of
the Region Proposal Network (RPN)
technique [60].

Faster R-CNN builds a single stage
network, which is more efficient
and better performing than
R-CNN’s multiple stage process.
Faster R-CNN also uses the ROI
pooling technique to share
computation data for the
processing of all objects in an
image.

The process of sampling of multiple regions
from an image results in performance
degradation.

Mask R-CNN Mask R-CNN provides instance
segmentation as well object detection.
Mask R-CNN substitutes an ROI Pooling
method with an ROI Align method, which
can represent fractions of a pixel.

Simple to train and provides good
performance compared to other
models.

Reduced ability to predict instance details.

R-FCN R-FCN stands for Region-based Fully
Convolutional Network.

R-FCN is faster than Fast R-CNN or
Faster R-CNN.

Cannot be implemented in real-time and
still takes a long time to train.

Recurrent Neural
Networks
(RNNs)

RNNs are a type of deep neural network.
RNNs can process data from the first input
to the last output, however, RNNs are also
able to initiate feedback loops throughout
the entire computational process, enabling
the loop of data back into the network.

Advantages include the facility to
process input of any length, the
network computation considers
historical information.

Disadvantages with RNNs include the fact
that computation can be slow, and the
network does not consider future input for
the current state.
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Table 1 (Continued)

Technique Design Advantages Disadvantages

Long Short-Term
Memory
Networks
(LSTMs)

LSTMs are a special type of RNN that help
preserve the error that can be back
propagated through layers and time. LSTMs
provide recurrent networks with the ability
to learn over time. This is made possible in
large part to LSTMs’ gated cell, from which
data can be written to, read from and stored
into, all external to the back and forth of the
recurrent network [67].

LSTMs were developed to manage
the vanishing gradient problem
when training RNNs. LSTMs
provide us with a large range of
parameters such as learning rates,
and input and output biases.

LSTMs require a lot of resources and time to
get trained and become ready for
real-world applications. They are also
affected by different random weight
initialization and prone to overfitting.

Generative
Adversarial
Networks (GANs)

The premise of GANs involves a neural
called a generator, responsible for
producing fake data samples. The
discriminator network has to evaluate, learn
and make decisions as to which data
sample is from the actual training set and
which are from the generator [68].

GANs are unsupervised, therefore
no labelled data is required to
train them, this is cost-saving
since data labelling is an
expensive task. GANs currently
generate the sharpest images.

GANs are more difficult to train, you need to
constantly provide different types of data to
check if it works and is accurate.
Furthermore, given that the generator and
the discriminator networks compete
against each other during the training,
there is always the possibility that the
discriminator network learns too quickly,
becomes successful, the other network may
fail to learn and the generator gradient
disappears and learns nothing. This can
often result in the networks failing to
converge.

Multilayer
Perceptrons
(MLPs)

MLP is a supervised learning feed forward
deep neural network that connects
multiple layers in a directed graph, in other
words, where the signal path is through a
single direction through the nodes,
between the input and output layers. In this
network, every node, with the exception of
the input nodes, contain a non-linear
activation function [70, 71].

MLP networks work well with
large input data and can provide
fast and timely predictions after
training.

The nodes in an MLP are all tightly
connected to one another, sometimes
resulting in unwanted redundancy.
Computations can be difficult and time
consuming.

Deep Belief
Network (DBN)

Deep Belief Network (DBN) is deep neural
networks, where each layer learns about the
input one at a time and uses unsupervised
learning to output data. DBN uses a greedy
learning algorithm to train its networks,
where the selection of an optimal decision
is made at each layer in the network, to
result in a global optimum decision.

DBNs require a small labeled
dataset; also need a short training
time on GPU machines; and less
vulnerable to the gradient
problem.

DBNs place significant of restrictions on
weight connections, and deep neural
networks (DNNs) outperform them on tasks
for which sufficient input data is available.

4.5 Performance evaluation metrics for machine learning
techniques

In this section, we examine the academic conventions
in literature for measuring the performance of machine
learning techniques in the detection of material defects
and equipment failures. Current academic literature has
provided methods for evaluating the performance of com-
puter vision and especially machine learning methods and
techniques, when applied to extract, process and analyze
datasets. The literature indicates that while ML techniques
can be used to extract and analyze data, these techniques
however can also generate false results due to misclassi-
fication or misinterpretation of data collected. This is the
reason for performance measurement metrics, which eval-
uate the performance of ML methods and the ratio of cor-
rect predictions or classifications to misclassification or
incorrect predictions.

Classifiers or classification-based ML techniques in lit-
erature usually use the confusion matrix, accuracy/error,
precision, recall, F1 measure (or F-measure), ROC, AUC,
Hypothesis test (t-test, Wilcoxon signed-rank test, Kappa
test) as the metric system or evaluation measurements
[78]. Regression based problems use MSE (mean squared
error), MAE (mean absolute error), MAPE (mean absolute
percentage error), RMSE (root mean squared error) which
is the square root of the average distance between the ac-
tual score and the predicted score, and quantiles error for
evaluating the performance of machine learning methods
applied as solutions [79].

4.5.1 Confusion matrix
Given that classification is when the output data is one or
more discrete labels, regression however is when the out-
put data or prediction of the model is a continuous quan-
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tity or value. Binary classification is where there are only
two class categories of vector y (target label) (e.g., True or
False, 1 or 0, etc.) in the dataset. Conversely, multi-class
classification is when there are three or more classes or
categories of the vector y (target label) in the dataset. The
performance measure of ML techniques, specifically for
classification tasks (e.g., binary classification, multi-class
classification) are commonly analyzed using a confusion
matrix, which is a two-dimensional matrix that measures
the False Negative (FN), True Negative (TN), False Posi-
tive (FP), and True Positive (TP) for each model used. TP
is in reference to the positive points that are correctly la-
belled by the classifier. TN refers to the negative points that
were correctly labelled by the classifier. FP are the negative
points that were incorrectly labelled as positive, and FN are
the positive points that we mislabeled as negative.

These measurements are then used to calculate the per-
formance metrics: recall, F1 score, accuracy, and precision.
The accuracy is a percentage of predictions that are cor-
rect (TP + TN). The precision measures how accurate the
model being used is for predicting values. The recall mea-
sures the sensitivity of the model to predict positive out-
comes. The F-measure is a combination of the precision
score and recall score [33, 80].

4.5.2 Mean Square Error (MSE) and Mean Absolute Error
(MSD)

The performance measure of a regression model is com-
monly analyzed using either the mean square error (MSE)
or the mean absolute error (MSD). The MSE measures
the average of the squares of the errors, that is the aver-
age squared difference between the predicted value and
the target value. The lower the MSE, the better. The MSD
measures the average of the absolute differences between
model prediction and target value.

4.5.3 Mean Average Precision (MAP)
Some studies have recommended the use of the evaluation
metric called the mean average precision (MAP) to analyse
the performance measure of object detection (localization
and classification) models such as SSD, R-CNN and Faster
RCNN and YOLO [31]. The MAP is also commonly ap-
plied to analyze the performance of computer vision mod-
els and image segmentation problems. In MAP, an object
(the predicted value) is taken as accurate on the condi-
tion it overlaps with what is labelled as the ground truth
(the original damage annotated by human inspectors) that
is greater than a given threshold. This is calculated using
the Intersection over Union measure, which is expressed
as the area overlap (predicted value overlap with the tar-
get value) over the area of union (area of the union of the
predicted value and target value) [81].

5 Findings of literature review
This section provides an overview of the findings of the lit-
erature review in terms of types of mechanical systems and
civil infrastructure assets. We then proceed to examine dif-
ferent types of damage mechanisms that can be found on
these assets. This is followed by a review of our findings re-
garding the application of ML techniques used to support
RAS-based monitoring and inspection.

5.1 Types of assets under inspection
We begin the review of our findings with discussing the
types of various mechanical systems and civil infrastruc-
ture assets that literature indicate are subject to routine
inspection and monitoring due to their vulnerability to
catastrophic damage.

5.1.1 Pipelines
Pipelines in the energy industry support the transport and
distribution of water, oil, and gas. Similar to most infras-
tructure, pipelines are subject to internal and external me-
chanical stresses. Such stresses can lead to damage mech-
anisms ranging from corrosion, cracks scale formation etc.
This phenomenon can be mitigated through regular moni-
toring, inspection, and maintenance. There has been some
research aimed at methods and techniques to support the
inspection of pipes or pipelines more efficiently, this re-
search ranges from Mohamed et al. [82], who looked at
the use of mobile in-pipe inspection robots (IPIR) for in-
spection of corrosion and cracks in pipelines, using NDT
sensors, e.g., ultrasonic. There is also the work carried out
by Bastian et al. [30], who applied CNN architecture-based
techniques to detect corrosion from pipeline images and
DNN to extract features from those images.

5.1.2 Wind turbines
Wind turbines are another part of the energy industry and
are generally located in remote environments, which are
subject to extreme external stresses, e.g., wind, water, heat,
etc. Similarly, just like pipelines, wind turbine infrastruc-
ture is also subject to mechanical stresses resulting in dam-
age mechanisms such as erosion, cracks, etc. This is the
reason for the emphasis and importance placed on reg-
ular inspection, monitoring and maintenance in industry
planning and cost allocation. While wind turbine inspec-
tion is generally carried out using traditional methods, in-
volving manual climbing of heights by technical inspection
teams, in sometimes hazardous conditions, the last decade
has seen a lot of research into the development of cost ef-
fective and safe methods and techniques that support the
inspection and monitoring of asset infrastructure. This re-
search has provided the alternative use of robot platforms,
which vary from magnetic climbing robots to unmanned
aerial drones. Current research has also seen the develop-
ment of artificial intelligence-based algorithms and tech-
niques that will analyze the vast amount of data collected
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by robot platforms, during inspection. Wang and Zhang
[2] has researched the use of Haar-like feature algorithms
for the automatic detection of surface crack images col-
lected by UAVs; while Frank et al. [83] proposed applying a
deep convolutional neural network (DCNN) technique on
images from a wind turbine, taken by a multi-robot system.
Shihavuddin et al. [31] carried out research using convolu-
tional neural network (CNN) techniques to extract feature
descriptors from images of wind turbines taken by drones;
and the Faster R-CNN technique to train for object detec-
tion.

5.1.3 Aircraft fuselage
In the aerospace industry, the aircraft fuselage is one of
the core and most important regular inspection tasks per-
formed by maintenance technicians. The process involves
deploying platforms that elevate technicians so that they
can reach and inspect the external surface of the aircraft’s
fuselage, searching for damage mechanisms or defects.
The main damage or defect mechanism found on aircraft
surfaces is corrosion. Corrosion is a main cause of fuselage
fatigue. Alongside checks for corrosion, technicians also
look for rust, cracks, and deformation of the aircraft sur-
face during their inspections. This process has tradition-
ally involved a painstaking, methodical task, undertaken
by a technician, equipped with a flashlight and mobile el-
evation platform [84]. Research into alternative methods
of inspection have been published over recent years. This
includes Malekzadeh et al. [85] work which applied deep
learning techniques: SURF, AlexNet and VGG-F to images
of aircraft fuselage, taken by a custom-made platform. Mi-
randa et al. [86] did similar work when they applied a CNN
based application, along with an SVM model to images of
an aircraft fuselage, taken by UAVs. The most recent work
is research carried out by Brandoli et al. [84] which in-
volved applying CNN models: DenseNet and SqueezeNet
to detect corrosion pillowing in images taken from an air-
craft fuselage.

5.1.4 Power lines
In the energy industry, power transmission lines act as
connections between the source of power (the power
plants) and endpoints (the consumers) [87]. The regular
inspection of power transmission lines is considered vital
in ensuring uninterrupted power supply, as damage to this
part of the electrical infrastructure through rusted con-
ductors etc. can result in downtime and power interrup-
tion [88]. As indicated by Titov et al. [88], the traditional
operation for power line inspection involves a process
characterized by high cost and safety risk, where human
technicians manually taking images from the ground or
from above with the support of a helicopter. There has
been research in recent years that have demonstrated the
use of UAVs (drones) to support the collection of image

data. Jalil et al. [87] carried out work on power lines, em-
ploying a drone, fitted with image capture equipment to
collect data, which is then passed on to a neural network
model for detection and analysis of damage or defects from
the image dataset. Research undertaken by Titov et al. [88]
employed UAVs to take images of power lines for detec-
tion and analysis of cracks on concrete poles, missing or
dirty insulator plates etc. using the YOLO version 3 deep
learning technique.

5.1.5 Vessels
The maintenance of vessels, especially maritime trans-
port ships such as oil tankers or very large crude carriers
(VLCC) require regular monitoring and inspection sched-
ules [89, 90]. These vessels are subject to typical internal
and external phenomenon such as cracks, corrosion etc.
Current inspection procedures for vessels today require
are expensive and the vessel to dock at a shipyard, where
inspectors, with the support of all sorts of mobile plat-
forms undertake visual assessment of the structural health
and condition of the vessel. Recent research over the years
have studied the use of robot platforms in support of ves-
sel inspections [89, 90]. This research has been accompa-
nied with the development of various image processing
and damage (e.g., corrosion and cracks) detection algo-
rithms to analyze image datasets. However, there is evi-
dence of very little to no research of the use of deep learn-
ing (neural network) based techniques.

5.1.6 Bridges
Bridges are typical civil infrastructures that are subject
to external phenomenon such as wind, heat, water, and
vibrations. The inspection of bridges currently requires
manual visual inspection by human inspectors, working
at different levels of elevation, with various levels of risk
associated, to access and view parts of the bridge. This
manual approach requires high time durations, in some
cases road closures, high costs and due to the vast num-
ber of bridges in cities today, a lot of manpower. The last
decade has seen quite a significant amount of research into
the use of robot and autonomous systems (RAS) to sup-
port bridge inspections. These robot platforms are fitted
with sensors ranging from infrared (IR) cameras to ultra-
sonic sensors [14, 91]. This has been accompanied with
research into computer vision and image processing tech-
niques that detect damage mechanisms, defects, and fea-
tures (e.g., cracks) [1]. This research has recently moved
towards the use of deep learning methods to analyze im-
ages and detect cracks [49, 92, 93].

5.1.7 Automotive vehicles (cars)
Currently most literature available has concentrated on the
analysis of image datasets have been focused on vehicle
make and model classification in support of the transport
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and security industry [94] defect and damage detection
and analysis in support of the automotive industry and the
insurance sector that supports it [95, 96]. Most automo-
tive inspection required are focused on analysis of vehic-
ular accidents, requiring image analysis of damages such
as bumper dents, door dents, glass shutters, broken head
lamps and tail lamps, as well as scratches etc. [95–97]. Re-
cent years has produced research in the development of
computer vision and neural network techniques for image
analysis of car damage [95–99].

5.2 Damage mechanisms on mechanical systems and civil
infrastructure

Corrosion and cracks are damage mechanisms associated
with bridges, roads, rail, and levees in literature [1, 49, 93,
100]. Most of the current literature focus on the inspection
of wind turbines on surface damage, specifically, leading
edge erosion, surface cracks, damaged lightning receptors
and damaged vortex receptors [2, 31, 83]. In the case of
pipelines, literature focus inspection of cracks, corrosion,
or erosion [30, 33, 37]. Literature discussions of aircraft in-
spection consistently focuses on the fuselage, for damage
mechanisms such as corrosion pillowing and insulator sur-
face cracks. Some literature on aircraft inspection however
do not specify damage mechanisms, and instead uniformly
refer to defect regions [84–86].

Power lines and transmission lines in literature, are as-
sociated with cracks on concrete poles, identification of
missing or dirty insulator plates, rusted conductors, bro-
ken cables, insulator damage, conductor corrosion and
cracks on insulator surfaces [87, 88, 101, 102]. The con-
centration on the inspection of vessels or ships in litera-
ture surrounds the detection, localization and classifica-
tion of cracks, corrosion, or coating breakdown, pitting,
and buckling [89, 90, 103].

While there could be a case for the monitoring and
inspection of automotive vehicles during servicing and
checkups for damage mechanisms from internal and ex-
ternal phenomenon (e.g., wind, water, heat), such as cor-
rosion, fatigue etc. there seems to be little to no litera-
ture on such research available at this time. The literature
available is mostly focused on damage to cars because of
vehicular accidents [95–99]. A review of literature shows
that corrosion and cracks are the most addressed damage
mechanism, while erosions and fatigue seem to be the least
addressed damage mechanisms. Table 2 demonstrates the
typical research into damage mechanisms on mechani-
cal infrastructure, that machine learning techniques have
been used to detect, classify, and model.

Based on the literature reviewed, manual visual, data col-
lection is still the norm for bridge inspection, however, in
research where a robot platform is deployed to collect im-
age datasets of damage mechanisms on bridges, most pa-
pers have reported the deployment of UAVs [49, 93, 100].

Likewise, literature on wind turbine damage inspection
showed a majority preference for drones to support with
data collection [17, 31, 83].

In the case of pipelines, the literature shows a mixed pic-
ture, with a balanced preference for deploying drones for
some, and a preference for the use of mobile in-pipe in-
spection (IPIR) robots for others [33, 37]. The literature,
however, provides a different landscape for the use of RAS
systems in aircraft inspections. While some literature has
demonstrated the use of UAVs in recent years, the litera-
ture however, indicates a preference for the use of D-Sight
Aircraft inspection system (DAIS) platforms. These are
portable non-destructive devices, that support the visual
analysis of aircraft surface areas of the fuselage [84–86].

While in some cases, piloted helicopters are still used to
gather data, however, literature demonstrates that power
lines and transmission lines inspection overwhelmingly
deploy UAVs for data collection of damage mechanisms
[87, 88, 101, 102]. Literature regarding vessels or ships,
present a very mixed preference for the use of semi-
autonomous micro-aerial vehicles (MAVs) and more re-
cently, climber or UAV robot platforms for inspection and
data collection of damage mechanisms [89, 90, 103]. Lit-
erature review of automotive vehicles for cars, has unfor-
tunately provided very little to no research with respect
to the use of robot and autonomous system platforms for
damage inspection.

5.3 Application of machine learning techniques for RAS
inspection

This section reviews the application of machine learning
techniques used to support RAS system inspection of civil
and mechanical infrastructure (wind turbines, pipelines,
rail, aircraft fuselage, power lines, vessels, and automo-
biles) in literature and performance evaluations of their
use where documented. Gopalakrishnan et al. [49] looked
at the processing and analysis of images of cracks on civil
and mechanical infrastructure, obtained through UAVs (or
drones). They applied deep convolutional neural networks
(DCNN) models to process and analyze the image data
and lauded the efficacy of DCNN as the more efficient
technique for processing and analyzing both images and
video type data [49]. Nguyen et al. [104] reviewed the use
of various deep learning techniques in support of RAS
systems inspection of power line infrastructure and indi-
cated that Region-Based Convolutional Neural Networks
(R-CNN) and the You Only Look Twice (YOLO) tech-
niques as the optimal techniques for object detection for
inspection tasks by RAS systems.

Shihavuddin et al. [31] explored the use of drones to ob-
tain image data of damage on wind turbines (WT), for
processing, analysis and classification using deep learn-
ing techniques. The research paper indicates that the re-
search used Convolutional Neural Networks (CNN) as the
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Table 2 Review of collection and analysis of damage mechanisms analysis on civil and mechanical infrastructure

Asset Infrastructure Industry Damage (or Defect)
Mechanism

Robotic Autonomous System
(RAS)

Technique References

Bridges, roads, rail
and levees etc.

Transport Cracks/Corrosion/ UAV (Drones)/Autonomous
mobile robotic system

Deep Convolutional Neural
Network (DCNN)/Navigation
algorithm; Motion Planning
Algorithm; Crack Detection
Algorithm/Mask
R-CNN/modified deep
inception neural network
(DINN)

[1, 49, 93, 100]

Wind turbines Energy Surface damage: leading edge
erosion; surface cracks;
damaged lightning receptors;
damage vortex generators etc.

UAV (Drones) Convolutional Neural Network
[CNN: for extracting feature
descriptors]/Faster R-CNN: to
train for object
detection/Haar-like
features/Deep Convolutional
Neural Network (DCNN)

[2, 31, 83]

Pipelines Energy cracks, corrosion or erosion
(resulting in gas leakage)

UAVs/Drones
(multi-rotor)/mobile robot (IPIR
- In-Pipe Inspection Robot)/

Decision Tree (DT)/Support
Vector Machine (SVM)/Random
Forest (RF)/CNN (architecture
to detect corrosion in pipeline
images)/DNN (for feature
extraction)/

[30, 33, 37]

Aircraft fuselage Aerospace Corrosion pillowing/Damage
mechanisms not specified,
paper refers to damage
mechanisms as defects regions
only/Defects e.g. cracks on
insulator surface/

D-Sight Aircraft inspection
System (DAIS) - portable
non-destructive device for
visual analysis of aircraft surface
areas aimed at inspecting
fuselage joints used/UAVs

DenseNet/SqueezeNet/SURF/
AlexNet/VGG-F/SVM/CNNs/

[84–86]

Power lines (or
insulators)

Energy Defects, e.g., cracks on
concrete poles, missing or dirty
insulator plates etc./rusted
conductors, broken cables,
insulator damage, conductor
corrosion/Defects e.g. cracks
on insulator surface/

UAVs (or piloted helicopter) YOLO v3/CNN/DCNN/SVM [87, 88, 102]

Transmission lines Energy Insulator defects UAVs [i] CNN [II] DCNN [101]
Vessel Transport coating breakdown or

corrosion, cracks, pitting,
cracks, buckling

semi-autonomous multi-rotor
micro-aerial vehicles
(MAVs)/UAVs, Wall Climbers/

Feed forward neural network
(FFNN)/image processing
algorithms/Crack and
corrosion detection algorithm/

[89, 90, 103]

Automotive
Vehicles (Cars)

Automotive bumper dent, door dent, glass
shatter, broken head lamp,
broken tail lamp, scratches,
smashes

Not Applicable CNN (ImageNet/AlexNet)/Mask
RCNN/Custom Mask RCNN/

[95–99]

backbone framework for processing and extracting fea-
tures from image data obtained from WT using drones.
Shihavuddin report their research proceeded to then use
the faster R-CNN technique to train their models for ob-
ject detection. They report achieving high accuracy results
compared to other deep learning type algorithms used to
train the models during their research. Shihavuddin et al.
[31] also indicated that employing the technique called ad-
vanced image augmentation, allows you to expand your
dataset, as this technique creates additional images for the
training model, by altering existing image data obtained
and fed into training sets. The utility of this technique is

invaluable, as the larger the dataset, the more efficient the
training model.

Franko et al. [83]’s research provieded findings in the
use of a combined, multiple RAS platform, ranging from
climbing and multicopter robots, fitted with LiDAR, RGB
and ZED cameras, ultrasonic, radar and other vision type
sensors, to inspect and detect corrosion and welding line
damage mechanisms on the tower surfaces of WTs [83].
Alharam et al. [33] provided a case study in the use of UAVs
to provide inspection of oil and gas pipelines in Bahrain.
The UAVs are fitted with GPS, thermal cameras, and gas
detectors to obtain image and methane (CH4) readings
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from gas and oil pipelines. The research looked at the use
of the Decision Tree (DT), Support Vector Machine (SVM)
and Random Forest (RF) techniques to process and analyze
the data obtained from the drones. Franko et al. [83] re-
ported that the RF technique provided 93% accuracy and
much better performance than other classification tech-
niques used in their research [33].

Bastian et al. [30] studied the external corrosion on
pipelines and used deep neural networks to process and
analyze the image and video data obtained from inspec-
tions. In their research paper, they proposed the use of a
DNN technique, based on the CNN architecture, to ex-
tract and distinguish between images with corrosion and
those without, from image data taken from pipelines by
the UAV. They boast in their paper that CNNs have the
most optimal results in terms of object detection and im-
age classification.

Table 3 shows us that the literature demonstrates that
the DCNN architecture provides up to 90% accuracy for
the detection of cracks in civil infrastructure [49]; 92% ac-
curacy in defect detection in rail infrastructure [105]. Ta-
ble 1 also indicates that while the Random Forest algo-
rithm is the best performing algorithm when compared
to the Decision Tree and Support Vector Machine algo-
rithms for detection of cracks, corrosion, and erosion on
pipelines, with SVM yielding the least precision and ac-
curacy between them [33]. However, custom CNN archi-
tectures have been reported to provide over 93% with re-
spect to precision, accuracy, and other metrics within the
confusion matrix [30]. Table 3 also advises that research
on the RAS inspection and monitoring of aircraft fuselage
has demonstrated that CNNs can provide up to 92% accu-
racy in the detection of surface and joints corrosion [84],
while DNNs can provide a better performing accuracy of
96% [85]. In the case of power lines, Table 1 shows us that
there is a preference for the use of custom -CNNs, Faster
R-CNN or the YOLO v3 technique for extracting, analyz-
ing, and classifying data collected from the RAS inspection
of power lines; with these techniques having been reported
to provide over 90% in their precision or accuracy in clas-
sifying image data [30, 88, 104]. There seems to currently
be very little literature on the use machine learning tech-
niques in the support of RAS inspection of vessels, one of
the exceptions is research documented by Ortiz et al. [103],
where the ANN technique has been used to extract, clas-
sify, and analyze corrosion, cracks and coating breakdown
from image data collected by a micro-aerial vehicle [103].

Most of the limited literature that examines the applica-
tion of machine learning techniques supporting the RAS
inspection of automobiles focuses on the damage classifi-
cation of damaged vehicles, because of accidents and asso-
ciated insurance claims. The research shows a preference
for CNNs or Mask R-CNN object recognition or dam-
age detection of automobiles, with CNNs providing accu-

racy as high as 87% and the Mask R-CNN as high as 94%
[95, 96].

Figure 2 provides an illustration of our findings regard-
ing the frequency of use of popular ML techniques to pro-
cess, analyze and model damage mechanisms on mechan-
ical systems and civil infrastructure.

Table 3 lists and maps the machine learning methods
used in the robot inspection of mechanical systems and
infrastructure that have been reviewed in this paper. Also,
following on from the performance evaluation metrics dis-
cussed in Section 4 of this paper, Table 3 provides us with
performance evaluation figures and results of the machine
learning techniques deployed to process and analyze data
collected by RAS platforms for civil mechanical infrastruc-
ture in reviewed papers.

6 Technology gaps and challenges
This section reviews technology gaps and challenges in the
application of machine learning techniques for robotic in-
spection of mechanical systems and civil infrastructure.

6.1 Challenges of small object detection for deep learning
techniques

Object detection of small (perhaps even undetectable to
the human eye) damage mechanisms on mechanical and
civil infrastructure has invaluable application to industries
ranging from aerospace (for detecting cracks on aircraft)
to energy and utility (for detecting erosion or corrosion).
A small object has been defined by [106, 107] as a 32 × 32
pixels object within an image. Current literature acknowl-
edges that while object detection of medium to large size
objects in image data is now a proven technology, accurate
detection of small objects has not yet been mastered and
it remains a challenge for researchers [106, 108–111].

The reasons for this research gap are a result of several
realities and constraints of current state of the art object
detection technology. The first is that small objects are
challenging to detect because high-level resolution-based
feature maps, that are characteristic of CNN architectures,
used to identify large objects in images, do not support the
identification of small objects in images. This is because
small objects in images are mostly in low resolution. The
second is due to currently limited context data; there is sig-
nificantly less pixels associated with small objects, result-
ing in little to nothing for the detection algorithms to iden-
tify. Furthermore, there is a class imbalance in the datasets
that are currently being used to train deep learning mod-
els. Current image datasets usually comprise of large to
medium sized objects, this results in an imbalance in the
groups of object sizes in images available to deep learning
models for training.

There is a gap in the research and development of
deep learning techniques or models that could provide
the higher precision required for accurate localization for
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Table 3 Evaluation of Machine Learning techniques used for RAS-based inspection

Machine Learning
Techniques

RAS Applications Type of Data Sensors Performance Evaluation of Technique

DCNN (Deep
Convolutional
Neural
Network)

UAVs (or
Drones)

Civil
infrastructure
such as storage
silos, local
roadways, etc.

3D Rendering,
HD images

LiDAR,
High
resolution
cameras

Gopalakrishnan et al. [49] reported that the
proposed method can achieve up to 90%
accuracy in finding cracks.

Faster R-CNN
(Region-Based
Convolutional
Neural
Networks);
YOLO; R-FCN;
ResNet; ANN

UAVs Power line
inspection

optical images Cameras No performance evaluation of ML technique is
provided in literature.

Faster RCNN;
Advanced image
augmentation

Drones Inspection of
leading edge
erosion, vortex
generator
panels with
missing teeth,
and lightning
receptors on
wind turbines

Images Optical
cameras

Shihavuddin et al. [31] reported that Faster
R-CNN is able to achieve 81.10% MAP on
detection of four different types of damage
such as erosion, vortex generator panel, and
lightning receptor on wind turbines. They also
reported that a multi-scale pyramid and
patching scheme could improve precision by
35%.

Deep convolutional
neural networks
(DCNN)

Climbing
ring robot,
Magnetic
climbing
robot,
Multicopter
UAV

Wind turbine
inspection and
maintenance

images RGB
cameras,
ZED
camera,
LiDAR

No performance evaluation of ML technique is
provided.

Decision Tree (DT),
Support Vector
Machine (SVM),
and Random
Forest (RF)

UAV (Drone) Pipeline
inspection (of
cracks,
corrosion or
erosion)

[i] images [ii]
Methane (CH4)
[pipeline
leakage of gas
detector sensor
readings] [iii]
GPS
coordinates

Thermal
camera,
gas
detector,
GPS

The paper reports that the Random Forest (RF)
algorithm gave the highest accuracy of 97.25%
(in terms of measured performance) among
other classifiers, with the Support Vector
Machine (SVM) algorithm providing the lowest
accuracy of 71%. SVM also provided the least
precision, recall and F1-score values, with RF
providing DT algorithms providing better
results.

Custom-CNN UAV (Drone) Pipeline
inspection
(corrosion)

RGB images;
video frames

RGB
camera

Research evaluated custom-CNN, ZFNet and
VGGNET on corrosion pipeline image dataset
found performance increased in proportion
with the input image size, however the
custom-CNN developed by Bastian et al. [30]
outperformed the ZFNet and VGGNET models,
e.g., when provided with an input image 128 ×
128, the respective recall(%), precision(%), F1
score (%) and accuracy(%) for the ZFNet model
was 83.5, 85.2, 84.34, 85.3; and VGGNet model
was 88.0, 92.1, 90.0 and 91.3; with the custom
CNN model performing at 93.3, 94.2, 93.75,
94.5 Bastian et al. [30].

Custom-CNN UAV (Drone) Pipeline
inspection
(corrosion)

RGB images;
video frames

RGB
camera

Research evaluated custom-CNN, ZFNet and
VGGNET on corrosion pipeline image dataset
found performance increased in proportion
with the input image size, however the
custom-CNN developed by Bastian et al. [30]
outperformed the ZFNet and VGGNET models
e.g. when provided with an input image 128 x
128, the respective recall (%).
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Table 3 (Continued)

Machine Learning
Techniques

RAS Applications Type of Data Sensors Performance Evaluation of Technique

Modified deep
inception neural
network (DINN)

Not
Applicable

Sub-surface
damage
inspection of
steel bridges

Thermal data
(video and
images)

Micro-
bolometer

Ali et al. [100] indicated that the modified DINN
developed for their research to analyze
cropped thermal images of damages from
sub-surface steel bridges achieved a 96%
accuracy with the training and testing
processes.

DNNs: vgg-f DNN
(for feature
extraction) and
SVM classifier;
SURF (key point
detector for
identification)

Drone Automatic
image
detection of
defects on
aircraft
fuselage

jpeg images
3888×5184
resolution of
aircraft
fuselage

camera Authors report over 96% accuracy (with onl
3.63% misclassification) at around 15 s
processing time for a high-resolution
(20-megapixel) image. Malekzadeh et al. [85]

CNNs D-Sight
Aircraft
Inspection
System
(DAIS)

Aircraft
fuselage
surface and
joints corrosion
monitoring
and detection

images CCD
camera

Paper reports precision of over 93%. The CNN
architectures respectively used include
DenseNet providing the highest accuracy of
92.2% accuracy, SqueezeNet 91.6% accuracy
and Iceptionv3 90.6% accuracy.

SSD, R-CNN and
YOLO v3

UAVs Powerline
inspection and
monitoring for
defects

images camera Paper indicates YOLO v3 performed the best
with 92% precision with relatively few
misclassifications.

DCNNs unspecified
vehicle

Automatics
detection of rail
surface defects

video video
camera

Paper reports the use of small, medium and
large DCNNs for rail detection of rail defects,
and that rail defects were successfully classified
with almost 92% accuracy. The paper reports
that the large DCNN model performed better
for classification than the small and medium
DCNN model.

ANN micro-aerial
vehicle
(MAV)

Vessel
inspection to
detect
corrosion,
cracks and
coating
breakdown

images cameras No performance evaluation of ML technique is
provided.

CNNs Not
applicable

object
recognition on
damaged (car)
vehicle
datasets

images camera Paper reports using CNN for object recognition
on damaged vehicle datasets and obtaining
accuracy as high 87.9% during experiments,
with customized CNN model yielding 63%
accuracy and VGG-16 model yielding 87.9%
accuracy.

Mask RCNN Not
applicable

Detection and
segmentation
of damaged
areas on
automobiles

images Camera Paper reports that the Mask RCNN algorithm
provided a 94.53% damage detection accuracy,
with an improved mask RCNN algorithm
providing for a 96.68% detection accuracy.
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Figure 2 The use of different Machine Learning techniques in literature

small objects in images; as well as an on-going race be-
tween researchers in the improvement of current object
detection deep learning algorithms for small objects in im-
age datasets [106, 108–111].

6.2 Evaluating accuracy and performance of machine
learning techniques

Following this paper’s review of the methods and met-
rics used in academic literature to evaluate the perfor-
mance of machine learning methods, techniques and mod-
els when trained on datasets to output values, interpreta-
tions, or predictions; this section briefly reviews critics of
these metrics.

There are arguments in literature that contend that the
current methods (such as the confusion matrix, accuracy,
precision, MAP, RSME and quantile error) used for eval-
uating the performance and utility of machine learning
techniques when applied as solutions to extract or analyze
data, et al., can only be understood and applied by subject
matter experts in statistics, computer science, artificial in-
telligence (AI), etc. [78, 112].

Both Shen et al. [112] and Beauxis-Aussalet et al. [78]
contended that non-subject matter experts do not always
have the background knowledge to understand terminol-
ogy such as true negative (TN) or false positive (FP), that
form part of the underlying metric framework for evalu-
ating machine learning techniques. Furthermore, Shen et
al.’s [112] research found that non-experts found it chal-
lenging to both use and relate some of the evaluation met-
rics back to the problem that the techniques are being
applied to solve. Beauxis-Aussalet et al. [78] underscored
the fact that some of the evaluation metrics that exist can
even be misunderstood, misinterpreted, or even deployed
incorrectly to case studies by non-subject matter experts
[78]. It is therefore a contention in literature that there is a
gap or requirement for more accessible methods for eval-
uating the performance of machine learning techniques,

that can be understood and used by both subject matter
experts in AI and their lay colleagues.

6.3 Machine learning challenges with unstructured data
Throughout the course of this paper, we have reviewed
the data collected by RAS systems during inspection of
mechanical infrastructure, the types of data collected, the
techniques that have been deployed to process and analyze
the data collected. This section extends our review of data
collected by robotic and autonomous systems to examine
the structure of this data and the gaps in our ability to work
with this data.

Structured and unstructured is a type of description
that data scientists and researchers use to categorize data.
Structured data categorizes data with a schema, which
means that data is seen as having some sort of logical orga-
nization. Structured data is quantitative and is usually dis-
played as numbers, dates, values, and strings. Structured
data can be queried, searched, and analyzed because it is
organized in rows and columns, e.g., CSV files, spread-
sheets, SQL databases, etc. Traditional sources for struc-
tured data vary from sensors, weblogs, network traffic, etc.

Unstructured data however, cannot be contained in rows
and columns and has no discernable structure or logic.
It is qualitative data, comprising of video, audio, images
etc. Structured data cannot be processed or analyzed with
the same methods used for structured data, e.g., rows and
columns, databases etc.

The challenge for computer scientists and data and AI
scientists is that most of the machine learning tools avail-
able today, are better suited to train on datasets with struc-
tured data. However, most data in the world are unstruc-
tured, data in unstructured formats. As indicated by Rai
et al. [113], literature and research estimate that over 80%
of the collected data in the world is unstructured [113,
114]. Traditional sources for unstructured data include so-
cial media platforms, images videos and audio data [113].
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While there are some AI techniques and tools that can
process, analyze, and train unstructured data, e.g., Natu-
ral Language Processing (NLP) techniques are used to add
structure, such as context and syntax to unstructured text
data, while AI techniques such as autoencoders are used
to extract and analyze unstructured data. However, these
tools are few and the technology has not yet sufficiently
matured. This therefore means that there is a gap or re-
quirement for research and development into effective ma-
chine learning tools and techniques that can process and
analyze unstructured data [113, 114].

6.4 Big data and challenges with real-time data analytics
This paper has reviewed how literature has characterized
the data collected by RAS systems in terms of volume, ve-
racity, variety, and velocity. It is also noteworthy to men-
tion the fact that current literature indicates that the vast
amounts of volume, variety, and complexity of data being
collected by modern day sensors, robotic and autonomous
systems has resulted in today’s large datasets being re-
ferred to as ‘Big Data’. The term Big Data refers to a vari-
ety of high volume and high velocity datasets, comprising
of structured, semi-structured and unstructured data, col-
lected from, and feeding into social networks, academia,
sensors networks, international trading markets, surveil-
lance, and communication networks [82, 115–117].

Big Data is exceeding the capacity and capability of cur-
rent technology to contain, process and analyze in real-
time, without the need for data storage and batch pro-
cessing, in support of real-time dependent applications
for international trading markets, smart city infrastruc-
ture and robot autonomous systems, e.g. self-driving cars
etc. [82, 115, 116, 118]. The very fundamentals of neural
networks (deep learning) techniques means that they are
best suited for the processing and analysis of Big Data, as
neural network algorithms require vast amounts of data to
train on to provide meaningful predictions, pattern recog-
nition or representations of any real use. However, while
these techniques have resulted in technologies e.g., speech
recognition, computer vision and natural language pro-
cessing (NLP) that can be applied to volumes of unsuper-
vised and unstructured data, however, these technologies
are still in their infancy and have not yet matured to the
point of coping with complex variety, high volume, and ve-
locity of Big Data [82, 115–118].

6.5 On-board integration of machine learning with RAS
platforms

In this paper, we have described robotic platforms as au-
tonomous systems. We have also discussed the machine
learning techniques, algorithms that process and analyze
the data they collect. However, Panella [119] made an ar-
gument that while UAVs are capable of semi-autonomous
operation, there is still no integrated unitary technique

providing complete autonomy for UAV platforms, that al-
lows for real-time decision-making within the environ-
ment they are located within; compared to responding to
stimuli or events based on pre-programming. This was one
of the stated reasons for the development of an on-board
integration of various AI or machine learning techniques
to deliver and effect the fully autonomous UAV system that
can “think” like humans and make decisions within their
environment.

Despite current strides in research and development,
there are still challenges in the integration of machine
learning techniques on-board RAS platforms. Ono et al.
[120] noted that while there is a suite of on-board al-
gorithms that can be integrated as part or alongside the
Robot Operating System (ROS) providing robotic systems
with the autonomy to respond to events in their envi-
ronment and complete tasks (e.g., the Mars rover); there
is still a gap in available algorithms and technology that
could provide complete on-board autonomy for future
rover missions [120].

Furthermore, Ono et al. [120] discussed about the gaps
in intelligent algorithms on-board robot systems which
could result in what the paper refers to as the “unnoticed
green monster problem” where human decision-makers
and operators are not able to take real-time action to
events or stimuli detected by the RAS system (the mars
rover in this particular case study), due to delay or loss
of data (imagery or otherwise), being fed from the robot
system, e.g., Mars to the human operator, in this case, a
control centre on Earth. The point being that this demon-
strated the need for the development and on-board in-
tegration of AI algorithms that would provide on-board
decision-making on the robot platform, to enable real-
time responses for what Ono et al. [120] describes as “sci-
entific opportunities and avoid the “green monster prob-
lem” [120].

Hillebrand et al. [121] and Contreras et al. [122] sug-
gested the use of deep learning (neural networks), specifi-
cally reinforcement learning, as a response to the absence
of neural network design methodology in robotic systems
[121, 122]. Chen et al. [123] noted that while autonomous
robot navigation exists as a mainstream technology, the
current capability still has challenges in its ability to man-
age complex and dynamic environments and reduce mis-
classifications by current perception algorithms [123].

7 Conclusions
This review has reported on the types of robotic platforms
deployed for inspection of different mechanical systems
and civil infrastructure such as storage tanks, high rise fa-
cilities and nuclear power plants. While unmanned ma-
rine vehicles are deployed for systems located underwater
(such as subsea power cables); unmanned ground robots
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are better suited to horizontal ground surface environ-
ments, with UAVs mostly deployed for both indoor and
outdoor, remote, hazardous environments.

This paper demonstrated through an extensive literature
review that machine learning, has been used with varied
efficacy, to support the processing and analysis and clas-
sification of data collected by RAS systems during inspec-
tion of mechanical and civil infrastructure. The review re-
vealed that there are few studies demonstrating use of deep
learning techniques for the analysis of datasets collected
during structural health inspections. In these studies, it
was shown that deep learning techniques performed bet-
ter than most machine learning methods in the processing
and analysis of image (damage mechanism) datasets. Fur-
thermore, almost all research reviewed have focused on
the inspection, analysis, and classification of single dam-
age mechanisms, e.g., corrosion, cracks, erosion, etc. This
indicated a research gap in the use and application of ma-
chine learning techniques to analyze and classify multiple
types of damage mechanisms from video or image datasets
collected during the inspection of mechanical systems and
civil infrastructure.
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