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Abstract

Most forecasting algorithms use a physical time scale data to study price movement

in financial markets by taking snapshots in fixed schedule, making the flow of time

discontinuous. The use of a physical time scale can make traders oblivious to sig-

nificant activities in the market, which poses risks. For example, currency risk, the

risk that exchange rate will change. Directional changes is a different and newer ap-

proach of taking snapshot of the market, which uses an event-based time scale. This

approach summarises data into alternating trends called upward directional change

and downward directional change according to a change in price a trader considers

to be significant, which is expressed as a threshold. The trends in the summary

are split into directional change (DC) and overshoot (OS) events. In this work, we

propose a novel DC-based framework, which uses machine learning algorithms to

forecast when the next, alternate trend is expected to begin. First, we present a

genetic programming (GP) algorithm that evolves equations that express linear and

non-linear relationships between the length of DC and OS events in a given dataset.

Awareness of DC event and OS event lengths provide traders with an idea of when

DC trends are expected to reverse and thus take appropriate action to increase profit

or mitigate risk. Second, DC trends can be categorised into two distinct types: (1)

trends with OS events; and (2) trends without OS events(i.e. OS event length is 0).
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Trends with OS events are those that continue beyond a period when they were first

observed and trends without OS event are others that ends as soon as they were

observed. To further improve trend reversal estimation accuracy, we identified these

two categorises using classification techniques and estimated OS event length for

trends that belong in the first category. We appraised whether this new knowledge

could lead to an even greater excess return. Third, our novel trend reversal estima-

tion approach was then used as part of a novel genetic algorithm (GA) based trading

strategy. The strategy embedded an optimised trend reversal forecasting algorithm

that was based on trend reversal point forecasted by multiple thresholds. We as-

sessed the efficiency of our framework (i.e., a novel trend reversal approach and an

optimised trading strategy) by performing an in-depth investigation. To assess our

approach and evaluate the extent to which it could be generalised in Forex markets,

we used five tailored thresholds to create 1000 DC datasets from 10, monthly 10-

minute physical time data of 20 major Forex markets (i.e 5 thresholds * 10 months

* 20 currency pairs). We compared our results to six benchmarks techniques, both

DC and non-DC based, such as technical analysis and buy-and-hold. Our findings

showed that our proposed approach can return a significantly higher profit at re-

duced risk, and statistically outperformed the other trading strategies compareds in

a number of different performance metrics.
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Chapter 1

Introduction

After the collapse of the gold standard, the Bretton Woods system, a collective

international currency exchange regime was established (Igwe 2018). The United

States (US) dollar became the replacement for gold and other national currencies

were pegged to the US dollar. With the Bretton Woods System in place, volatility

of Forex rates was minimised. However, the US government was unable maintain

international dollar liquidity as foreign claims on gold started to exceed US gold

supply (Garber 2007). In the early 1970’s, US government unilaterally decided to

stop exchanging gold for the US Dollar and the Bretton Woods system was abolished.

In 1973, there were changes in currency policies of the world major currencies and

floating exchange rate regime emerged (Peng, Wang and Yeh 2020).

Financial forecasting in the Forex market are attempts to estimate future ex-

change rate or predict trend reversal through patterns discovery in historical price

or traded volume (Yu, Wang and Lai 2007; Islam et al. 2020). Up to the early 1970s,

exchange rate was mostly determined by the balance of payments of countries and

their level of importation and exportation of goods and services (Chang and Huang

1
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2014). The float rate regime introduced after 1973 has attracted more market partic-

ipants across the globe which has led to significant increase in Forex market size to

about $6.6 trillion in daily turnover as of April 2019 (Wooldridge 2019). The increase

in participants coupled with local and international supply-demand factors, such as

economical, political and psychological have made forecasting in the Forex market a

challenging task. Some of these challenges include: 1) pronounce price fluctuation

in the short term (Folger 2020); 2) low-profit margin in comparison to fixed income

trading (Petropoulos et al. 2017); and 3) noise and chaotic signals, which make sep-

aration of uninteresting features from trends difficult (Abu-Mostafa and Atiya 1996;

Kamruzzaman, Sarker and Ahmad 2003).

Despite these inherent challenges, Forex market presents a major opportunity

for informed traders and algorithmic trading developers to make profit. This has

motivated researchers both in academia and industry to investigate regularities in

the Forex market. There are two main methods for performing this investigation,

namely fundamental analysis and technical analysis.

In fundamental analysis approach, fundamentalists evaluate assets’ primary char-

acteristics and financial data, such as Interest Rates (IR), Employment Reports,

Inflation, Gross Domestic Product (GDP), Consumer Price Index (CPI), Producer

Price Index (PPI), Institute of Supply Management (ISM), Commodity Price Index

(CPI), Industry Production Index (IPI), Retail sales Report, Trade Flow and Trade

Balance, Balance of Payment (BOP), Purchasing Power Parity (PPP), central bank

policies and geopolitical events (Dao, McGroarty and Urquhart 2019). On the other

hand, technicians evaluate historical price values. The motivation for evaluating

historical price value is based on the belief that all the fundamentals that cause a

change in value of an asset have been factored into the current price and repeating

trends are observable in historical price data(Cavalcante et al. 2016). Hence, traders
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are able to discover winning strategies from a series of historical price snapshots.

Both fundamental and technical analysis are complimentary. For example, as-

suming we are interested in purchasing a personal computer brand sometime in the

future. To determine the expected price, we can choose to evaluate the different

components that make up a computer such as hard-drive, memory, processor, mon-

itor, mouse, keyboard, etc. In contrast, historical sales price of the computer brand

in the recent past can be evaluated.

Previously, academics adopted fundamental analysis approach and discarded tech-

nical analysis because they concluded that it did not perform better than random

walk (Malkiel 1999; Lo, Mamaysky and Wang 2000). However, there are works

that recorded success in using technical analysis for forecasting. For example Lo and

MacKinlay (1988) demonstrated that past prices can be used to predict future profit.

This finding was also corroborated by Plastun (2017) who explained that the success

of technical analysis is based on a phenomenon called “Behavioural Finance Market

Hypotheses” (BFMH). BFMH describes the role investors’ emotions and psychology

play in their financial decision making. Investors evaluate disseminated information

and news differently according to their experiences, culture and needs which tech-

nical analyst capitalise on, in the short term (Yildirim 2017). It is now common

practice to use fundamental analysis for long-term prediction and technical analysis

for short-term prediction (Cavalcante et al. 2016).

Majority of technical analysis studies utilise historical market data snapshots

taken at fixed intervals (Aloud 2017). To generate the snapshots, investors decide

how often to sample the data, then snapshots are taken at the chosen frequency

forming an interval-based summary. A drawback of using interval-based summary is

that it ignores market activities between snapshots that could be significant, exposing

market participants to risks such as currency risk, interest-rate risks and so on. An
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alternative approach is to utilise snapshots of markets activities that are significant.

To generate these snapshots, investors decide on what a significance market activity

is, then snapshots are taken when the activity is observed.

In our study, we used directional changes (DC), an approach for taking snapshots

of historical price values on an intrinsic time scale. In the directional changes ap-

proach, data is recorded when there is a change in price by a predetermined threshold

θ. The threshold value is decided in advance by a trader according to his or her belief

of what a significant upwards or downwards price change is. This concept provides

traders with a new way of viewing historical data, allowing them to focus on key

price movements, thereby, blurring out other price details which could be considered

irrelevant or noise.

Furthermore, DC has enabled researchers to discover new statistical properties

that were not previous captured from interval-based summaries (Glattfelder, Dupuis

and Olsen 2011). Thus, these new properties give rise to novel opportunities for

traders and open a whole new area for research.

There are two main types of techniques used for financial analysis, namely sta-

tistical modelling and machine learning (Wang et al. 2011). The main difference

between the two approaches are their purpose. Statistical modelling is the use of

statistics to develop a representation of data, perform inference on the relationships

between data attributes to establish significance (Sidehabi, Tandungan et al. 2016).

In Statistical modelling, a probabilistic model is explicitly specified and attributes

of interest that has effect on the predictor attribute are identified (McCullagh 2002).

On the other hand, machine learning, does not impose a model, it empirically dis-

covers relationships between attributes for the purpose of prediction. Nonetheless,

statistical models could also be used for prediction and to do that, an intermediate

step such as model transformation or independent variable segmentation is performed
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(Julier and Uhlmann 2004; Bach and Ghil 2022).

In this work, we aim to gain further insight into trend reversal forecasting under

DC approach for prediction trends reversal with improved accuracy using machine

learning. DC event is an activity in the market that has caused a change in price

either upward or downward by a predefined threshold considered to be significant by

a user. OS event can be described as the movement in price in the same direction

as a preceding DC event from the point the trend is first confirmed to be occur-

ring until the event that ceases to impact the market and a new DC event in the

opposite direction starts. One of the most interesting regularities discovered in DC

was a scale invariant linear relationship between DC and OS event lengths, which,

when combined gave an estimate of trend reversal points Guillaume et al. (1997);

Glattfelder, Dupuis and Olsen (2011). The regularity was that if on average a DC

takes t amount of physical time to complete, the OS event will take an amount of

2t. Although the regularity, through empirical tests as shown to holds across Forex

financial time series and thresholds Glattfelder, Dupuis and Olsen (2011), it does not

always express the richest relationships in DC event series. We therefore examined

the regularity further, to discovered richer linear and non-linear relationships tailored

to dataset under observation. We explore machine learning algorithms as tools for 1)

discovering whether a relationship exists between DC and OS event lengths; and 2)

discovering richer linear and or non-linear relationships when they exist. Our choice

of machine learning algorithms is influenced by the characteristics of our dataset.

Machine learning algorithms are well suited for exploring dataset where predictor

attribute does not take a predetermined form but is constructed according to infor-

mation derived from the dataset under observation. Assaad and Fayek (2021). Thus,

we explore for richer models from DC event series by generating a dataset where the

predictor attribute is the DC event length and the dependent attribute is the OS
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event length. Then used machine learning techniques to explore their relationship

search space. The insight gained is then exploited in a proposed trading strategy

algorithm that we tested in 20 major Forex markets. We aim to attain higher rate

of return at minimum risk than other trading strategies embedded with earlier pro-

posed DC trend reversal forecasting algorithms and other strategies that are based

on physical time scale technical indicators.

1.1 Thesis Structure

The remainder of this thesis is organised as follows. Chapter 2 presents an overview of

financial forecasting and detail two common approaches: fundamental and technical

analysis. We also present an in-depth analysis of directional changes paradigm from

a financial forecasting perspective. Chapter 3 presents an overview of machine learn-

ing, a well-employed approach for financial forecasting and for developing trading

frameworks. Chapter 4 presents the first contribution of the thesis, a novel approach

for estimating overshoot events’ length using symbolic regression genetic program-

ming. Chapter 5 presents the second contribution of this thesis, an improvement

to our approach for forecasting trend reversal, which combined classification and re-

gression techniques for estimating DC trend reversal. Chapter 6 presents the third

contribution of this thesis, a novel trading framework that used a genetic algorithm

to optimise predictions from multiple trend reversal forecasting models. Chapter 7

presents conclusions and final remarks of the thesis, as well as suggestions for future

research.



CHAPTER 1. INTRODUCTION 7
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Chapter 2

Financial Forecasting

Financial forecasting can be defined as an attempt to predict future market events

through patterns discovery in historical data (Yıldırım, Toroslu and Fiore 2021). In

this work, we developed a Forex trading framework for making decisions according

to certain trading rules and accurate trend reversal forecasting algorithm. The major

challenge is the nature of the data which seem random because of the inherent noise,

making trend reversal forecasting a hard problem (Walczak 2001).

There are two schools of thought concerning financial forecasting. One considers

that the market is perfect and cannot be predicted as it is a summary of all avail-

able information (Zafar 2012). This idea is based on two hypotheses, namely (1)

the efficient market hypothesis (EMH) (Fama 1970) and (2) random walk hypoth-

esis (RWH) (Regnault 1863; Levy 1967; Fama 1995). The other considers that, in

the short term, markets can be predicted by analysing patterns that may exist in

historical market data (Edwards, Magee and Bassetti 2012; Antony 2020).

We expatiate on the two schools of thought in the remainder of the chapter. In

Section 2.1 we present a high-level description of the random walk hypothesis. In

8
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Section 2.2, we present an overview of the efficient market hypothesis and arguments

supporting the unfeasibility of forecasting. In Section 2.3, we describe financial analy-

sis, detailing two common approaches: fundamental analysis and technical analysis.

These two approaches forecast future market movement using snapshots of data,

taken at constant time intervals. In Section 2.4, we present event-based approach, a

new way of summarising data, which is the technique used in this thesis.

2.1 Random walk hypothesis

The idea is that financial market cannot be predicted because price changes are

stochastic and each price change is independent of the preceding and following price

changes (Pesaran and Pick 2008). In essence, it was argued that old price values

do not have the power to forecast future prices and the current publicly available

price is considered the best prediction. Nevertheless, it was shown that underlying

economic factors that determine price can be subjected to structural breaks1 such as

wars, major change in government policy, or any sudden event other than demand

and supply activities generated by the market. It is sometime the case for these

breaks, also known as “Random Walk with a Drift” to be cyclical and recorded

in historical data (Krol 1992; Gabrielli and Valente 2011). These cyclical breaks

introduces deterministic trends creating opportunity for forecasting (Pesaran and

Pick 2008).

gabrielli2011random
1A sudden change in market volatility because of unexpected shift in economic factors (Stawiarski

2015)
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2.2 Efficient Market Hypothesis (EMH)

Similarly to Random Market Hypothesis, EMH is also based on the consideration

that the financial market cannot be predicted. However, the difference lies in the

reason why the financial market is not predictable. The Efficient Market Hypothesis

(EMH) is a proposition that asset-price incorporates and shows all publicly available

information about its value, and it is impossible to earn a profit from forecasting

future prices because the current price is the best price available adjusted for errors

in previous price and future price will adjusts current price accordingly to emergence

of new information (Fama 1970). EMH is based on the following assumptions (1) all

relevant information is available to all investors; (2) investors are rational; (3) the

market is rational; (4) information acquisition cost is the same for all participants;( 5)

there are no taxes; (6) there is no transaction costs; and (7) investors are insensitive

to the currency of earnings (Zafar 2012). There are three types of EMH: weak,

semi-strong, and strong (Eom et al. 2008).

Weak EMH is based on the assertion that excess return cannot be made from

analysing historical prices because the current price includes all past information.

Thus, an investor is unable to profit from publicly available information. Any future

price adjustment would be the result of new information. The time of arrival of

the new information is arbitrary, consequently, future price will also be arbitrary

(Stasinakis and Sermpinis 2014).

Semi-strong EMH asserts that excess return cannot be made from analysing pub-

licly available information because all investors have access to new information, which

will rapidly reflect in the next future price. Publicly available information can be

of financial nature, like historical prices, data reported in financial statements, divi-

dend announcements and merger plan announcements. It can also be non-financial



CHAPTER 2. FINANCIAL FORECASTING 11

such as innovation plans, patent applications, etc. The assumption here is stronger

than weak EMH, because the eventual price of an asset has already taken into con-

sideration all publicly available information. Excess return can only be made if an

investor is in possession of information that is unknown to the market (Stasinakis

and Sermpinis 2014).

Strong EMH asserts that excess return cannot be made from analysing both

publicly and privately available information. It is impossible to profit on privately

available information for two reasons, (1) it is a crime and an illegal activity (Woody

2020), and (2) the excess demand/supply will cause under-priced or overpriced asset

to adjust swiftly to the level supported by the new information (Stasinakis and

Sermpinis 2014).

Earlier research works supported the claim that it is impossible to profit from

financial forecasting (Fama 1970; Jensen 1978). However, more recent studies demon-

strated that it is possible, rejecting the EMH (Fernandez-Rodrıguez, Gonzalez-Martel

and Sosvilla-Rivero 2000; Kyriazis 2019). The rational supporting this claim in-

cludes predictable and deliberate human error in reasoning and processing informa-

tion (Neely, Weller and Dittmar 1997). Human emotions also play a role when taking

trading decisions, for example, some investors can be more reactive than others to

new financial market related information (Zafar 2012). Additionally, if the market

is perfectly efficient there would be no motivation for professionals and investors to

trade (Grossman and Stiglitz 1980). Consequently, financial analysis is an impor-

tant tool for understanding market behaviour and supporting trading activities. This

topic will be discussed in the next section.
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2.3 Overview of financial analysis

Financial Analysis
Fundamental Analysis

Data
Balance of Payment

Asset Market
Political and Social Powers

· · ·

Indicators
Balance of Payment

Consumer Price Index
Gross Domestic Product

· · ·

Trading Strategy
Mid to Long term

Technical Analysis

Data
Historic price

Historic volume
· · ·

Physical Time
10-mins Interval Price
Close of business Price

· · ·

Indicators
Stochastic oscillator

Moving Average
Bollinger bands

· · ·

Trading Strategy
Short term

Intrinsic Time

Zig-zag Directional changes

Indicators
DC magnitude:OS magnitude

DC length:OS length
· · ·

Trading Strategy
Short term

· · ·

Figure 2.1: Classification of financial analysis.

The goal of financial analysis is to understand market behaviour and use the

knowledge gained in making future decisions that can potentially provide beneficial

outcomes to investors in maximising profit and reducing risk (Schneeweis 1983). Fig-

ure 2.1 illustrates the two approaches used in performing financial analysis, namely

fundamental and technical analysis. Fundamental analysis is based on the study of

economic factors that influence the demand and supply of an asset to determine its

intrinsic value (Petrusheva and Jordanoski 2016). It is a technique primarily used

by passive investors who do not seek immediate gain, instead they prefer to take a
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longer-term investment approach. They are willing to wait for the right moment as

long as short losses are within a tolerable limit (Shiryaev, Xu and Zhou 2008).

Financial analysis is data driven, fundamental analysis is based on data generated

from macroeconomic activities while technical analysis is based on historical market

price and volume (Hu et al. 2015; Datta et al. 2021). Indicators are tools for finding

signals of strengths or weaknesses. In both fundamental and technical analysis,

indicators are applied to gain insight into and interpret changes in the macroeconomy

(fundamental analysis) or historical market data (technical analysis). There are two

categories of indicators, (1) lagging indicators explain changes in trends and (2)

leading indicators are used to predict future market direction. Signals picked up

using indicators are then used to develop a framework of rules and predefined criteria

for making trading decisions such as, (1) what to buy and sell; (2) when to buy and

sell it; and (3) what quantity to buy and sell (Hayes 2021; Balasubramaniam 2021).

In this work, the focus is on technical analysis. Notwithstanding, we present a

brief description of fundamental analysis.

2.3.1 Fundamental Analysis

In fundamental analysis, investors evaluate information such as company revenue,

expenses, asset and liabilities to determine performance and potential for future

economic growth or contraction (Hu et al. 2015). The analysis is used to aid in-

vestors when deciding on 1) long term investment in undervalued assets or assets

with growths prospect and 2) sale of overpriced assets or assets tending towards a

decline in value. In Forex trading specifically, an investor analyses data to determine

a rate that a currency should be exchanged for another. The rate reflects the bal-

ance of trade between two economies. However, forecasting the Forex market using
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fundamental analysis approach is challenging because data used are mostly publicly

available and their fundamental value is known to a degree of certainty (Kaltwasser

2010). Hence, there is little competitive advantage from a face-value analysis of such

data.

Data

Three types of data employed in analysing the Forex market from the fundamental

analysis perspective are, (1) demand and supply of Forex, (2) asset market activities,

and (3) political and social events (Lui and Mole 1998; Korczak, Hernes and Bac

2016).

Demand and supply of a currency in exchange for another is swayed by changes

in the inflation rate, unemployment rate, interest rates and the balance of imports

to exports. When disparity exists, investors, guided by the principles of interest

rate parity2 and carry trade3 are lured into investing in the higher interest rate

country. As a result, the demand for the currency of the higher interest rate country

is increased, strengthening the currency. Export to import imbalance between two

countries can also lead to the higher valuation of the exporting country’s currency.

However, it is not uncommon for countries to use external intervention to ensure that

export remains competitive as currency valuation goes up. To analyse the impact

of changes to interest rate and balance of trade to currency valuation, indicators are

employed. Some of these indicators are Balance of Payment, Consumer Price Index,

Gross Domestic Product and so on (Korczak, Hernes and Bac 2016).
2Interest rate parity is the difference between forward exchange rate of one currency and the

spot rate of another currency.
3Carry trade is the sale of lower interest rate currency to purchase asset denominated in higher

interest rate currency to benefit from greater yield on investment.
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Asset market comprises of the stock and commodity markets which provide lead-

ing signs of the direction of the currency. These signs are sourced from media coverage

and reports generated by participating firms in these markets. For example, a sudden

sell-off in the stock market could be an indication of an eminent economic downturn

which can affect the value of a currency. Also, in a commodity-based economy, an

increase of exported commodity prices by a country could lead to appreciation of

her currency. A common indicator for analysing these markets include Stock Market

Index, Commodity Index, Consumer Price Index and many more (Degiannakis and

Filis 2019).

Political and social landscape of a country also influence the strength of a cur-

rency. Fundamental analysts always keep abreast with such information to evaluate

the impact on Forex rate. Example of events that they pay close attention to includes

election outcomes, climatic stability, government debt, diseases outbreaks, conflicts,

wars and so on (Attigeri et al. 2015; Remias 2021).

Fundamental Indicators

There are several fundamental indicators available to modern Forex traders (Nti,

Adekoya and Weyori 2019). Their exhaustive listing and description are beyond the

scope of this thesis, howbeit we describe some commonly used ones.

Balance of Payment (BOP) is the booking-keeping of all transactions (import,

export, investments) between a country and the rest of the world during a specific

period e.g., quarterly, annually, etc (Kenton 2021). Balance of trade, the total export

value net total import value, is the main component of BOP. A positive balance of

trade occurs when the total value of goods and services that domestic producers vend
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to foreign countries surpasses the total value of foreign goods and services that do-

mestic consumers purchase and vice versa. BOP cannot be used as the only indicator

to forecast exchange rate or trend reversal because it is common for policymaker,

motivated by different goals for their currency to intervene through economic poli-

cies and tariffs(Bernanke 2017; Habib, Mileva and Stracca 2017). Therefore, BOP is

interpreted in the context of macroeconomic policies in place around the same period

(Wong et al. 2019).

Consumer Price Index measures the weighted average of prices of a basket of

consumer goods and services. It is a frequently used measure for identifying periods of

inflation or deflation which at extreme levels can influence exchange rates (Giannellis

and Koukouritakis 2013).

Gross Domestic Product is the total market value of all the finished goods and

services produced within a country in a given time period (Fernando 2021). It is a

lagging indicator to confirm economists’ assessments of long term trends. In Forex

fundamental analysis, it can be used to assess the impact of currency fluctuation on

domestic production.

buy-and-hold is a trading strategy that fundamental analysis traders employ

(Du Plessis 2012; Tun 2020) and it is common to benchmark technical analysis based

strategy against it.

Buy-and-hold

Buy-and-hold (BandH), a common benchmarking strategy for performing compari-

son test of trading strategies, is a forbearing investment strategy used by long-term

investors (Yam, Yung and Zhou 2009). Investors buy an asset (e.g., US dollars in

exchange for British pounds) and hold it for a long period of time, without being
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concerned about short-term price movements or market volatility (Stasinakis and

Sermpinis 2014). The advantages of BandH include fewer fees, lesser commission

and tax benefits, which can add up to net investment. BandH investors focus on

building a portfolio of shares or currencies that will potentially grow over time using

passive elements, such as dollar-cost averaging and index funds (Shiryaev, Xu and

Zhou 2008). BandH is not a completely risk-free investment strategy, for example,

an investor who bought RIM (Blackberry) in 2008 at its all-time high price would

have lost 70% of its share price by 2012 and the shares never recovered. Researchers

have performed comparison tests of different trading strategies, using BandH as the

benchmark and their results show that BandH strategy can be outperformed. How-

ever, there have also been cases of BandH outperforming technical analysis strate-

gies (Neely 2003), generating returns in excess of over 10% per annum in some cases

(Stasinakis and Sermpinis 2014).

Fundamental analysis works well if all market participants’ logical expectations

are the same, i.e., wait for the release of fundamental data about an asset before

taking decisions (Achelis 2001). In reality, decisions are made in a shorter time

frame by hesitant or over-reactive investors who do not have complete information

to correctly value assets but react tardily or prematurely (Critchley and Garfinkel

2018). Information will eventually reach all investors and the market will adjust in

the direction of fundamental analysis. However, before this adjustment takes place,

technical analysis can capitalise on market inefficiency to make short-term gains by

evaluating market data using appropriate indicators to find repeating patterns.
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2.3.2 Technical analysis

Technical analysis are sets of techniques for examining historical market data with the

aim of identify repeating patterns that can be used in predicting future market trends

in the short term (Picasso et al. 2019). Technical analysis was first introduced in the

1800s by Charles Dow (Murphy 1999) for studying market inefficiency in the stock

market. Since the early 1970s, after the end of Bretton Woods system of currency

valuation agreement, traders have used technical analysis for forecasting in Forex

markets (Bordo 2019). Technical analysis approaches can either be charting or tech-

nical indicators. Charting is the identification of patterns and meaningful pictures

from visual representation of the data to aid trading decision making (Schabacker

2005). Technical indicators are mathematical calculations applied to historical data

to gauge price movement and empirically confirm existence of repeating patterns.

In contrast, charting is an approach that relies on instinct and experience to in-

terpret the visual representation of historical data for pattern discovery and future

predictions (Stasinakis and Sermpinis 2014).

Data

Technical analysis looks to predict future changes in the financial market by searching

for repeating patterns in historical market data, mainly price and volume.(Seth 2021).

In technical analysis, first a frequency when snapshots of the market are to be taken

is decided. On the stroke of the chosen frequency, snapshots are taken to create a

physical time series. Technical indicators are then applied to the physical time series

to identify repeating patterns.

There is evidence of higher success in finding repeating patterns when technical

indicators are applied to data snapshots taken in high frequency (Hongguang and
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Ping 2015). High-frequency data4, has created new opportunities for traders to find

more complex patterns to base their trading strategies (Caginalp and Balevonich

2003).

Technical Indicators

As aforementioned whilst presenting fundamental indicators, the exhaustive listing

of technical indicators is also beyond the scope of this thesis. Instead, the readers

is directed to “The encyclopedia of technical market indicators” by Colby (2003)

for a more detailed look at indicators for technical analysis. Here we present two

commonly used technical indicators named: (1)Moving Average, and (2) Bollinger

bands.

Moving Average (MA) is a trend following indicator for evaluating a series of

price averages to determine the direction of market trends. A rising MA indicates

an uptrend while a declining MA indicates a downtrend. It forms the building block

for many of the other technical indicators like simple moving average, Stochastic

oscillator, Bollinger bands, Exponential Moving Average, moving average conver-

gence/divergence and many more (Macedo, Godinho and Alves 2020).

Bollinger bands is a trend following indicator to signal price move within or

outside pre-defined bands known as support and resistance level. The bands are set

by adding and subtracting one or two standard deviation from the moving average,

indicating levels that prices are considered too high or too low relative the average

price. The lower band is called support i.e., a trough level where price is expected

to revert upward towards the mean price and the upper band is called resistance, a

peak level where high price is expected to revert downward towards the mean price.
4High frequency data is a series of data snapshots collected at an extremely fine scale to create

a time-series
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Price moves toward the direction of the bands are as a result of buy and sell interest.

If price move reaches the lower band and reverts back, crossing the average price

level, it is considered an uptrend. In uptrends, trend following investors tend to

target the resistance level as the peak price . Similarly, if price move reaches the

higher band and reverts, crossing the average price level, it is considered a downtrend

and trend following investors tend to target the support level as the trough price.

Additionally, it can be used to anticipate market volatility by observing the expansion

and contraction of the bands. Contraction of the bands is customarily followed by a

significant price level that lies beyond the bands which can be an indication that a

volatile period is approaching (Macedo, Godinho and Alves 2020).

Most of the published work in fundamental and technical analysis use historical

data sampled on a physical time scale. As already explained physical time scale data

is generated by first deciding on a sampling interval, then successive data points

at the decided interval are captured. However, sampling data at constant intervals

has the possibility of omitting important details between adjacent data points. This

is due to the assumption that important market events occur constantly in time

which is not always the case. For instance, assuming it is decided to sample price

using daily closing price, the flash crash which occurred across US stock indexes

on the 6th of May 2010 from 2:32 pm EDT till 3:08 pm EDT would be ignored as

prices rebounded shortly afterwards. An alternative approach to sampling physical

time data at a predetermined constant interval is intrinsic time data sampling. In

this approach, data is sampled when events considered to be significant occurs in the

market, obfuscating noise and enabling traders to focus their strategies on important

price moves.
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2.4 Event-based approach

Mandelbrot and Taylor (1967) put forward the idea that physical time scale might

not be the fundamental scale for analysing market movement and proposed an event-

based approach as a potential alternative. Event based approach (EBA) captures

important events in price movement. In EBA, data is sampled to model discontinuous

movement in the financial market by summarising changes that are considered to be

significant by an observer (Glattfelder, Dupuis and Olsen 2011).

There are many techniques for transforming physical time-series data into intrin-

sic time-series data, examples are Perceptual Important Points (Chung et al. 2001;

Chen and Chen 2016), Zig-Zag (Raftopoulos 2003; Azzini, da Costa Pereira and

Tettamanzi 2010), Turning Point (Bao and Yang 2008; Yin, Si and Gong 2011) and

Directional Changes (DC) (Guillaume et al. 1997; Gypteau, Otero and Kampouridis

2015). To the best of our knowledge, DC approach is one of the actively researched

EBA approaches (Ao 2018; Bakhach 2018; Petrov, Golub and Olsen 2019a,b; Chen

and Tsang 2020; Petrov, Golub and Olsen 2020; Adegboye and Kampouridis 2021). It

has also demonstrated the ability to yield profitable returns that outperforms state-

of-the-art techniques that are based on physical time technical analysis indicators

(Kampouridis, Adegboye and Johnson 2017; Aloud 2016b).

In directional changes approach, data summary is generated by recording key

events in the market according to a threshold θ, expressed in percentage, and pre-

determined by a trader according to his or her belief of what is a significant change.

Also, to the best of our knowledge, directional changes is the only event based ap-

proach that has the concept of determine the occurrence of a trend whilst the trend

is ongoing. This is an interesting feature because it has the potential for forecasting

trend reversal without additional statistical measures.
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2.4.1 Directional Changes (DC)

Directional changes is a technique employed in transforming physical time-scaled

market data into an intrinsic time-series. The idea is to identify and capture im-

portant alternating events, also known as trends, while ignoring noise and irrelevant

price fluctuations. DC framework is composed of different parts as can be seen in

Figure 2.2.

Figure 2.2: Projection of a DC events defined by a threshold θ = 3.0%. Source: (Tsang
et al. 2017)

DC event

A directional changes event highlighted with red lines in Figure 2.2 is characterised

by a scalable threshold that price needs to exceed to be considered significant. The

threshold is a value expressed in percentages and specified by investors according to

their belief of what a significant price change is. When price reaches or surpasses the
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threshold, the start and end of DC event are recorded, while fluctuations between

these two points are ignored. The start point of a DC event is called extreme point

(EXT) and the end is called is called directional changes confirmation point (DCC).

There are two types of DC events, known as upward DC event and downward DC

event. To confirm an upward DC event, the current price level Pt is set as the last

low price Pl . As price moves, if a price lower than Pl is recorded, Pl is updated

with the lower price. Upward DC event occurs when the difference between the Pt
and Pl is equal to or greater than the size of the specified threshold calculated using

Equation 2.1. Similarly, in downward DC, the current price Pt is confirmed as the

last high price Ph. As price moves, if a price higher than Ph is recorded, Ph is updated

with the higher price. Downward DC event occurs when the difference between Pt

and price Ph is equal to or lower than the size of the specified threshold and can be

calculated using Equation 2.2.

Pt ≥ Pl × (1 + θ) (2.1)

Pt ≤ Ph × (1− θ) (2.2)

Overshoot Event

Overshoot event (OS), highlighted with light green lines in Figure 2.2, is a period

between two alternating DC events. It indicates the continuous impact a prior DC

event has on price movement beyond the point when it was first observed. For

example in 10 mins high frequency data, if there are two DC events 13:00-13:40 and

15:00-15:15. The period between 13:40 and 15:00 is considered as the OS event of

the preceding DC event. Two types of OS events exist, downward OS event that
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follows a downward DC event, and an upward OS event that follows an upward DC

event. We discovered that not all DC trends are composed of DC and OS events

and it was possible to have DC event followed by another DC event in the opposite

direction. In these cases, which we discuss in Chapter 5, immediately after the DC

trend is observed, the trend is reversed and OS event can be considered to have a

length of zero or not to exist.

Algorithm 2.1 Pseudocode for generating directional changes events given thresh-
old θ.
Require: Initialise variables (event is Upturn event, ph = pl = p(t0), ∆xdc(Fixed) ≥

0, tdc0 = tdc1 = tos0 = tos1 == t0 )

1: if event is Upturn Event then
2: if p(t) ≤ ph × (1− θ) then
3: event← Downturn Event
4: P l ← p(t) //Price at end time for a Downturn Event
5: tdc1 ← t //End time for a Downturn Event
6: tos0 ← t+ 1 //Start time for a Downward Overshoot Event
7: else
8: if ph < p(t) then
9: ph ← p(t) //Price at start of Downturn event

10: tdc0 ← t //Start time for Downturn event
11: tos1 ← t− 1 //End time for a Upturn Overshoot Event
12: end if
13: end if
14: else
15: if p(t) ≥ pl × (1 + θ) then
16: event← Upturn Event
17: P h ← p(t) //Price at end time for upturn event
18: tdc1 ← t //End time for a Upturn Event
19: tos0 ← t+ 1 //Start time for a Upturn Overshoot Event
20: else
21: if pl > p(t) then
22: pl ← p(t) //Price at start time for upturn event
23: tdc0 ← t //Start time for a Upturn Event
24: tos1 ← t− 1 //End time for a Downturn Overshoot Event
25: end if
26: end if
27: end if
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Downturn
DC Event

Downturn
Overshoot Event

Upturn
DC Event

Upturn Over-
shoot Event

Figure 2.3: DC framework summarising price movement in a four-event cycle.

Directional Changes Run

Directional changes trend (DCT) is an epoch between two successive DC extreme

points. As can be seen in Figure 2.2, it is the sum of DC and OS event lengths

shown with adjacent red and green lines. A DCT can either be downward or up-

ward. Algorithm 2.1 shows the pseudocode of how DC trends are recorded from

physical time-series. The algorithm uses Equations 2.1 and 2.2 to record successive,

alternating DC/OS events from the physical time-series. Figure 2.3 is a flowchart

that depicts the sequence of how the events are captured. DCT is detected in hind-

sight at the DC confirmation point after it has already started. Therefore, Algorithm

2.1 determines the end of the previous DCT only after the next DCT is confirmed.

After the next DCT is confirmed, the previous DCT’s OS event region is determined

also in hindsight.



CHAPTER 2. FINANCIAL FORECASTING 26

2.4.2 Directional Changes scaling laws

Scaling laws, refers to properties of an object that does not change even if certain

variables that describes the object are scaled up or down. This concept, already es-

tablished in the fields of physics, and mathematics was first pioneered in the financial

market by (Mandelbrot 1967; Mandelbrot and Taylor 1967). The financial market

is a complex system composed of multitude of attributes that influence price move-

ment. The exact impact of an individual attribute’s influence on price movement is

still unknown and simple deterministic models are unable to reproduce them (Cont,

Potters and Bouchaud 1997). However, certain properties have been empirically dis-

covered from historical price movement and accepted as truth due to their statistical

consistency across different snapshot size of historical data and different financial

market types. A number of scaling laws have been discovered in DC event series

specifically (Sewell 2011; Tsang, Tao and Ma 2015; Tsang et al. 2017). These laws,

46 in total and described in Section 2.5.1, are used in building a profile of general

DC price evolution.

OSt = 2×DCt (2.3)

OSm = DCm (2.4)

In one of the scaling laws, it was observed that if a DC event is snapshot with

threshold θ, the magnitude m of DC event is on average equal to magnitude m of

the following OS event (Glattfelder, Dupuis and Olsen 2011). Similarly, it was also

observed that if a DC event takes t amount of physical time to complete, the cor-

responding OS event on average takes twice the amount of time (2t) (Glattfelder,

Dupuis and Olsen 2011). These two observations shown in Equation 2.3 and 2.4 are
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critical in forecasting expected trend reversal points. In this work, we explore Equa-

tion 2.3 further by investigating for equations that better express the relationships

between DC and OS event lengths.

2.5 Related works in DC

We divide this section into two categories: (1) related research works on DC scal-

ing laws, and (2) related research works on the application of DC scaling laws in

forecasting DC trend reversal, monitor volatility and develop trading strategies.

2.5.1 Scaling Laws Discovery

Scaling laws have been discovered in DC event time series. Some of these laws include

the average directional change tick count as a function of the directional change

threshold, the average length of an overshoot after a DC event is confirmed, the

average magnitude of overshoot after a DC is confirmed, and many more (Glattfelder,

Dupuis and Olsen 2008). These properties are used by traders to empirically monitor

volatility and trends and forecast trend reversal to achieve their financial goals. There

has been advancement in the discovery of scaling laws in DC approach. To be best

of our knowledge, there are 46 DC scaling laws and Table 2.1 presents them in

chronological order.
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Table 2.1: DC scaling laws discovery

Author and year Number of Scaling laws
Glattfelder, Dupuis and Olsen (2008) 17
Glattfelder, Dupuis and Olsen (2011) 12
Bisig et al. (2012) 1
Aloud and Fasli (2013) 4
Aloud (2016c) 5
Tsang et al. (2017) 4
Ma et al. (2017) 1
Tsang and Chen (2018) 1
Wang and Wang (2021) 1

2.5.2 DC Trend Reversal Estimations and Trading

A trend is the perceived tendency of financial markets to move in a particular di-

rection over time (Fontanills and Gentile 2002). Trend reversal is a change in the

direction from upwards to downwards or vice-versa. A successful trading frame-

work is expected to identify trading opportunities that minimise risk and maximise

profit. A trend reversal estimation algorithm is a crucial component of the frame-

work. Table 2.2 presents a summary of DC works that used discovered scaling laws

in trading strategies or trend reversal forecasting algorithms. The work by Aloud,

Tsang and Olsen (2014) focused on gaining insight into market activities through

the understanding of the dynamics of how a human trader makes trading decisions.

The behaviours of interest included traders’ profit objective, risk appetite and limit

order criteria. They modelled this behaviour into artificial agents that emulated hu-

man traders. One of the challenges encountered by Aloud, Tsang and Olsen (2014) is

the complexity involved in emulating human trader interactions in the Forex market.

They argued that this was because of the heterogeneous nature of human traders’ be-

haviour and the asynchronous nature of the Forex market. Aloud, Tsang and Olsen

(2014) therefore used individual traders’ historical transactions to model agent’s



CHAPTER 2. FINANCIAL FORECASTING 29

behaviour. To trade, the agents employed a strategy called ZI-DCT0. The charac-

teristics of ZI-DCT0 are, (1) random choice by the agent of either trend following

or contrarian trading strategies, and (2) random choice of thresholds to create event

series for trading by the agents. They reported to have successfully constructed an

agent-based model of the Forex market. However, comparison result to similar work

was not presented. In a subsequent work, a trading strategy called ZI-DCT1 was

proposed as improvement to ZI-DCTO (Aloud 2016a). The new strategy incorpo-

rated a model to dynamically select tailored DC threshold that captures the most

significant events in a physical time series. Comparative trading results between ZI-

DCT0 and ZI-DCT1 showed that ZI-DCT1 was more profitable. To further improve

profitability and accuracy at forecasting DC trend reversal, a trading framework

(DCT2) with adapting threshold capability was proposed by Aloud (2016b). In this

approach, they separated DC event series in upward trend event series and downward

event series. This way, separate thresholds can be selected for the subgroups. The

strategy adapted to market conditions to remain profitable by updating threshold

as the trading session progressed. The average return on investment of ZI-DCT,

ZI-DCT1 and DCT2 were 4%, 30% and 58% respectively.

Bakhach et al. (2016) proposed a dynamic DC-based trading strategy (contrarian)

called ‘DBA’. In the approach, they arbitrarily selected a threshold for transforming

one minute physical time series in a DC event series. Two parameters DBA up and

DBA down were introduced at uptrend and downtrend respectively. DBA combined

these parameters with the scaling law on the ratio between DC event length and

OS event length to anticipate trend reversal. To trade, positions are opened within

the OS event region if the magnitude of price change is greater than the parameter

value and less than estimated end of the OS event. Open position are then closes at

the confirmation point of the following DC event. To select the best real values for
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these parameters, 100 different values were experimented from 0.01 to 1.00, with a

step size of 0.01. The forecasting algorithm was experimented in three Forex mar-

kets, EUR/CHF, GBP/CHF and EUR/USD. Positive returns were reported in the

markets and buy-and-hold, a comparative strategy yielded negative returns. As a

follow-up work to ‘DBA’, a strategy called “Intelligent Dynamic Backlash Agent”

(IDBA) was proposed by Bakhach et al. (2018). IDBA adopted the same trading

rules as DBA. It incorporated learning modules to manage risk (maximum draw-

down) and moderate quantity traded per transaction. In addition, to overcome the

limitation in DBA, a preliminary threshold selection step was introduced. The tai-

lored threshold was chosen from a range from 0.1% up to 2.5% with a step size of

0.1. The enhancements to the trading framework resulted in improvement in profit

and risk. Reported comparison result to DBA showed that total profit was tripled

while risk (maximum drawdown) was reduced by around 300%.

A DC trend forecasting classifier was proposed by Bakhach, Tsang and Ng (2015).

The goal was to establish the estimative power of the DC approach. To this end, they

proposed 3 new DC indicators derived from a technical indicator. These indicators

were used in forecasting price value at OS extreme point. The accuracy reported

was around 70%. Another DC trend reversal forecasting classifier was proposed by

Bakhach, Tsang and Jalalian (2016). The goal was to forecast DCCs of a DC event

series sampled using a larger threshold. To this end information from event series

sampled using smaller threshold was used. The idea was based on the hypothesis

that extreme points of an event series sampled with smaller threshold can also be

found in the event series sampled with larger threshold and that the DC trends in

the smaller threshold series are confirmed before those in the larger threshold series.

The goal was therefore transformed into a classification problem with two attributes,

(1) A Boolean dependent variable assigned a true value if an extreme points in a



CHAPTER 2. FINANCIAL FORECASTING 31

Table 2.2: A comprehensive list of existing directional changes works on trend forecasting
algorithms and trading strategies works

Author and year Summary

Kablan and Ng (2011)
Dataset: EUR/USD, AUD/USD, GBP/USD, USD/CHF, and USD/JPY.
Aim: Trading period forecasting with sensitivity to intra-day volatility.
Result: Outperforms Buy-and-hold and linear forecasting .

Aloud, Tsang and Olsen (2014)

Dataset: EUR/USD
Aim: Develop a trading strategy (DCT0) based on agent models that mimic
human traders
Result: Agent resembled human trader to a certain degree.

Aloud (2016a)

Dataset: EUR/USD.
Aim: Develop a forecasting algorithm and strategy (DCT1) that outper-
forms DCT0s.
Result: Return on investment is significantly larger.

Bakhach, Tsang and Ng (2015)

Dataset: EUR/USD and Gold price.
Aim: Forecast DC trend reversal points using J48Graft and M5P.
Result: Average recall, precision and accuracy of both algorithms was
0.658909091, 0.643954546,0.687636364 respectively over 11 quartiles.

Gypteau, Otero and Kampouridis (2015)
Dataset: Stock price of Barclays, Marks & Spencer, NASDAQ and NYSE.
Aim: Develop a multi DC-threshold strategy with Genetic Programming.
Result: Outperformed single threshold strategy.

Bakhach, Tsang and Jalalian (2016)

Dataset: EUR/CHF, GBP/CHF, and USD/JPY.
Aim: Predict DC magnitude.
Result: Mixed results. Accuracy of up to 80% in some cases and unable to
outperform dummy strategy in others.

Aloud (2016b)

Dataset: Saudi Arabia stocks - SAMBA, SABB, RAJHI, STC and ZAIN.
Aim: Develop an adaptive trading strategy (DCT2) with capability to
switch thresholds over trading period and compare with DCT0 and DCT1.
Result: Average return on investment was 65% better than trend follow
DCT0.

Bakhach et al. (2016)

Dataset: EUR/CHF, GBP/CHF and EUR/USD.
Aim: Develop a trading strategy with dynamic selection of thresholds.
Result: Profitability comparison outperformed Buy-and-hold. Risk-
adjusted-return comparison outperformed EURO STOXX 50.

Ye et al. (2017)

Dataset: GBP/USD and EUR/USD.
Aim: Develop a trading strategy that combines technical and DC scaling
laws.
Result: Comparison to strategies based on DC only scaling law was not
significant.

Alkhamees and Fasli (2017b)
Dataset: FTSE 100 index.
Aim: Identify and forecast trends in data streams using dynamic threshold.
Result: Same day match of detected trends to published news headlines.

Alkhamees and Fasli (2017a)
Dataset: FTSE 100 index.
Aim: Develop dynamic threshold trading strategy.
Result: Outperformed a single threshold trading strategy.

Kampouridis and Otero (2017)

Dataset: EUR/GBP, EUR/USD, EUR/JPY, GBP/CHF, and GBP/USD.
Aim: Evolve multi-threshold trading strategies.
Result: Statistically outperformed a single threshold trading strategy, other
multi-threshold trading strategies, a technical analysis based strategy and
buy-and-hold at 10% significance level.

Bakhach et al. (2018)

Dataset: AUD/CAD, AUD/USD, GBP/CAD, GBP/NZD, NZD/USD, and
EUR/NZD.
Aim: Develop dynamic threshold trading strategy incorporated with addi-
tional order size and risk management functionality.
Result: Rate of return and maximum-drawdown result statistically outper-
formed a predecessor trading strategy.

Bakhach et al. (2018)

Dataset: FTSE 100, Hang Seng, NASDAQ 100, Nikkei 225 and S&P 500.
Aim: Develop trading strategies based on mean OS length and Median OS
length..
Result: Average rate of return ranged from -14.93% to 62.60%.

Palsma and Adegboye (2019)

Dataset: EUR/GBP, GBP/CHF, GBP/USD and EUR/USD.
Aim: Develop multi-threshold strategies with Particle Swarm Optimization
and Shuffled Frog Leaping Algorithms.
Result: Average return of around 0.01% by Particle Swarm Optimization.
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larger threshold series coincides with an extreme point in the smaller threshold series,

and (2) A real value independent variable, the overshoot event value in the larger

threshold series. J48 algorithm is then used in creating a model that classifies the

DCC point of larger thresholds once the DCC of the smaller threshold is confirmed.

The classification model recorded an accuracy of around 81%.

Bakhach, Tsang and Raju Chinthalapati (2018) proposed the idea of embedding

the forecasting model proposed by Bakhach, Tsang and Jalalian (2016) in a contrar-

ian trading strategy called TSFDC. Bakhach, Tsang and Raju Chinthalapati (2018)

proposed generating separate forecasting models for uptrends and downtrends. De-

pending on the market and DC event type experimented, average rate of return was

between 4% and 81% and maximum drawdown was not worse than – 6%. Bakhach,

Tsang and Raju Chinthalapati (2018) also compared the results to those reported

in Kampouridis and Otero (2017) (another DC-based strategies compared) and con-

cluded that TSFDC performed considerably better.

Ye et al. (2017) proposed 4 types of strategies with similar trade opening approach

(at the DCC point) and different trade exit timing. The first two strategies used

traders experience to decide when to close opened trades. Strategy one used a limit

order to close opened trade while strategy two used a trailing stop order. It is however

unclear how the limit order and trailing order levels were set. Opened trades using

the third strategy were closed according to a DC trend reversal estimation algorithm.

The fourth strategy, an extension of strategy three combined DC with Directional

Movement Index, a technical analysis indicator to measure the strength of the trend.

Trades opened using the fourth strategy were closed using the same approach as

in strategy three if the strength of the trend is above a certain level specified in

the technical indicator. Ye et al. (2017) experimented the strategies in two markets

(EUR/USD and GBP/USD) and with 10 thresholds, the first five thresholds were
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from 0.01 to 0.09, with a step size of 0.02 and the second five thresholds were from

0.1 to 0.9, with a step size of 0.2. Experimental result showed that strategy two was

most profitable across the markets and thresholds while strategy four, a combined

DC trend reversal estimation algorithm and technical indicator strategy was the

least risky. Maximum drawdown (MDD) was used to measure risk. Strategy three

recorded the second-best profitable strategy and the second least risky strategy.

Their result shows that trading using DC trend reversal forecasting techniques can

yield profitable result at comparatively low risk.

Kablan and Ng (2011) proposed a neuro-fuzzy-logic based trading strategy that

can capture the volatility in DC trends. A future price estimation algorithm was

embedded in their trading framework to predict the future price of assets based on

the current price and the immediate past 3 consecutive observations in the market.

The trading strategy’s returns outclassed the physical-time scale trading strategies

they compared with.

Alkhamees and Fasli (2017a) highlighted a problem in summarizing price move-

ments based on single fixed threshold over a long physical-time period. They argue

that assuming a threshold of 0.01% is used in summarising events, if overtime signif-

icant events level drops to 0.009%, the events will not be captured. Alkhamees and

Fasli (2017a) recommended summarising events over a shorter physical time frame

and recalibrate threshold size for new event summaries. They proposed to generate

event series daily with dynamically adjusted thresholds size according to current and

previous day price movement. Comparison results showed that trading on event se-

ries generated in shorter time frame with dynamic threshold was more profitable than

trading on event series generated using fixed threshold over longer periods. Similar

conclusion was reached by Alkhamees and Fasli (2017b) having explored the same

idea of generating event series using dynamically adjusted thresholds in data-stream.
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Evolutionary computation based trading frameworks under DC approach have

also been proposed in the literature. Gypteau, Otero and Kampouridis (2015) pro-

posed a genetic programming (GP) based strategy that combined trend recommen-

dations from multiple thresholds. They argue that sampling DC event series from

physical time series with different thresholds generate different event series. There-

fore, for the same physical time data point one threshold can detect a downward

trend and another detect upward trend. The strategy was used in combining trend

recommendation from multiple thresholds so that strongest trend is selected through

GP evolution. The leaf nodes of the GP tree were Boolean values representing the

type of DC trend detected by randomly selected thresholds. Upward trend resolved

to TRUE while downward trend resolved to FALSE. The inner nodes were logical

operators { AND, OR, NOX, XOR and NOT}. The GP strategy combined the leaf

values using the logical operators to evolve a multi-threshold trend recommendation.

If the recommended trend was an upward a sell action is triggered otherwise a buy

action was triggered. The Strategy was tested on four datasets, two stocks and two

international indices and compared with results from trading using individual thresh-

olds. Results showed that combining thresholds was more profitable than trading on

single threshold.

Kampouridis and Otero (2017) observed that the DC-OS event length ratio does

not always follow the average 1:2 ratio originally proposed by Glattfelder, Dupuis

and Olsen (2008) and, instead ranged between 1.8 and 2.0 of DC event length. Kam-

pouridis and Otero (2017) therefore proposed tailoring the DC-OS event length ratio

to datasets. Like the approach proposed by Aloud (2016b), DC event series was split

into upward event series and downward event series and separate ratios calculated

for each subtype. To anticipate trend reversal point, DC event lengths known at the
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DCC points were summed with estimated OS event length deduced using the appro-

priate subtype ratio. The trend reversal forecasting algorithm was then embedded

in a genetic algorithm based multi-threshold trading strategy that took trading deci-

sions by optimising trend reversal point recommendations from multiple thresholds.

They used two different types of datasets to evaluate the strategy; 1) tick data and 2)

intra-day data at 10-minute intervals and compared its trading result to those from

other DC based strategies and physical-time benchmarks. On tick data, the mean

return of the optimised strategy outperformed all other strategies. On intra-day data

at 10-minute intervals, the mean return of the optimised strategy outperformed all

physical-time benchmarks and all other DC based strategies but one. Howbeit, the

mean return result from that other DC strategy was not statistically significant.

To the best of our knowledge, the only comparative study of optimised multi-

threshold strategy in DC was carried out by Palsma and Adegboye (2019). They

compared strategies where trading recommendations were optimised using genetic

algorithm, particle swarm optimization and shuffled frog leaping algorithms respec-

tively. In the work, the average return by particle swarm optimization was highest.

However, the performance was neither across all datasets nor statistically significant.

We are therefore of the opinion that further investigation is required in this kind of

comparative study.

We are able to conclude from the works reviewed that (1) successful trend reversal

forecasting algorithms and profitable trading strategies can be developed using the

DC approach, (2) systematic selection of threshold size captures significant event

better than arbitrary selection and this was noticeable in the profit reported, (3)

trading strategy based on multiple recommendation is more profitable than single

threshold based strategies, (4) evolutionary algorithm techniques have shown to be

a promising approach for optimising recommendations from individual thresholds.
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We observed that majority of existing works in DC used parametric models in

expressing the relationship between DC and OS event length. As we could see, the

relationship discovered in Ye et al. (2017) was a finite parameter exponential function

and others discovered finite parameter linear functions. We also observed in previous

works on the assumption that a DC trend is always composed of DC and OS event.

Inspection of event series sampled with some thresholds indicated that this is not

always the case even when the stylised fact that on average OS event length is twice

DC event length holds. Nonetheless, estimating OS event where none exists could

lead to incorrect prediction and undesired trading outcomes. In addition, majority

of the works achieved positive returns at minimum risk (i.e., works that reported on

risk metrics). However, it is unknown whether the result can be generalised because

experimentation was carried out using limited datasets.

We are thus, motivated to explore further the question of forecasting trend rever-

sal according to the stylised fact on the relationship between DC event and OS event

length. We explore for non-parametric models that can express richer relationship

between DC event length and OS event length.



Chapter 3

Machine Learning

Machine learning (ML) research focuses on designing algorithms for building problem

solving models that can learn, adapt and in some cases improve over time according

to new signals received from their external environment (Holmes, Donkin and Wit-

ten 1994). ML-based models are well-employed approaches for financial forecasting

and for developing trading strategies (Dymova, Sevastjanov and Kaczmarek 2016;

Huang, Chai and Cho 2020; Sezer, Gudelek and Ozbayoglu 2020; Dixon, Halperin

and Bilokon 2020). ML algorithms are commonly grouped into two categories namely

unsupervised and supervised learning. The difference between the two groups are

the learning goals and types of input variables.

Unsupervised Learning

Unsupervised learning is a group of machine learning techniques for finding patterns

or correlating anomalies in data without specifying a target attribute (Hastie, Tib-

shirani and Friedman 2009) or reward to guide the learning (Sathya and Abraham

37
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Figure 3.1: In (a) an example of DC and OS event length data from DC trend snapshot
in an event series; (b) potential output of an unsupervised learning algorithm, where the
data is grouped into 2 clusters to depicted DC events that have corresponding OS event.

2013). It aims to describe relationships amongst a set of attributes. Some exam-

ples of common unsupervised learning algorithms are K-mean, Local Outlier Factor,

Isolation forest and self-organising map. Unsupervised learning can be used in an-

swering a question like “what types of DC events have a corresponding OS event

(i.e., the OS event length is zero) “? Figure 3.1a illustrates the scattered graph of a

DC event and OS event length attributes of a given DC event series. If we apply an

unsupervised learning algorithm, it could produce an outcome such as in Figure 3.1b

which can be interpreted as ”DC events having lengths between 0 and 10 or greater

than 18 have OS event”.

Supervised Learning

Supervised learning is a group of machine learning techniques for discovering a model

that maps the relationships between predictor attribute(s) and target attribute(s).
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Figure 3.2: In (a) an example of DC event and OS event lengths data from DC trend
snapshot in an event series; (b) potential output of a supervised learning algorithm, that
shows a linear equation of best fit that represents the relationship between DC event length
and OS event length. Attribute X in the linear equation represents DC event length known
at DCC point.

The aim is to use the discovered model in predicting similar relationships in unseen

data. Examples of supervised learning tasks are classification and regression. Linear

regression, support vector machine, ID3 and evolutionary algorithms are examples

of techniques for solving supervised learning tasks (Kotsiantis et al. 2007). Figure

3.2a shows a graphical representation of a dataset from which we are interested in

learning the relationship between DC event length and OS event length. Figure 3.2b

shows a fitted linear equation function representing the discovered relationship which

can be used in predicting future OS event lengths considering DC event length is the

predictor attribute.

In our study, the nature of our problem falls within supervised learning remit.

We are interested in: (1) predicting whether a DC event is followed by an OS event;

this constitutes a classification problem, and we thus provide more information on

classification problems in Section 3.1, (2) predicting the length of an OS event; this
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constitutes a symbolic regression problem, and we provide a discussion on this in

Section 3.2, and (3) optimising trend reversal point recommendation from multiple

thresholds which constitutes a numerical optimisation problem, and we provide more

information about this concept in Section 3.3. To tackle above problems, (1) we used

an automated machine learning tool presented in Section 3.4 to build a classifier that

categorised into DC event is followed by an OS event and others followed by another

DC event, (2) we used Genetic Programming (GP) to evolve a symbolic regression

model for estimating OS event length after DC event is confirms, and (3) and we

used Genetic Algorithms (GA) to solve out optimisation problem. GP and GA

Evolutionary Computation (EC) algorithms. We thus provide a brief description

of EC in Section 3.5, and then detail the specific characteristics of GP and GA in

Sections 3.5.2 and 3.5.3, respectively. Section 3.6 concludes the chapter.

3.1 Classification

Classification is a type of machine learning problem solved by developing prediction

models from patterns discovered in historical observations. The aim is to categorise

similar patterns into predefined groups, called classes, in unseen data. Each recorded

observation is represented by properties called predictor attributes and target at-

tributes. There are four common groups of predictor attributes namely, categorical,

continuous, discrete, and ordinal. Categorical attribute has unordered finite set of

values, for example, set of colours. Continuous attribute has infinite number of nu-

meric real values, for example, DC event length, OS event length and so on. Discrete

attribute has enumerable number of values between a lower and an upper bound, for

example the number of DC event in a DC series. Ordinal attribute has ordered finite

set of values, for example, the test grade of an exam A, B, C, D, E and F, where
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A is considered the highest and descending to the lowest F. Target attributes are

properties we are interested in understanding from historic observations and seeking

to categorise in future observations.

Table 3.1: Dataset for Loan application classification.

Age group Gender Housing Annual Salary Marital Status Dependency Loan Amount Approve Loan (Class)
20s Male Owned 50K Married 3 20K Yes
30s Male Owned 35K Married 2 5K Yes
20s Male Renting 10K Single 3 30K No
50s Male Renting 75K Single 1 20K Yes
40s Male Renting 0 Married 2 25K No
50s Female Renting 0 Single 0 10K No
50s Female Renting 0 Married 0 20K No
50s Female Renting 50K Married 1 20K Yes
60s Female Renting 60K Married 1 100K No
20s Male Renting 35K Single 0 40K No
60s Female Owned 100K Married 1 20K Yes

To further illustrate attribute categories, Table 3.1 shows a dataset of applicants

applying for a loan at a financial institution. In the table, there are 7 predictor

attributes: The first attribute “Age group” {20s, 30s, 40s, 50s, 60s} is an ordinal

attribute; the fourth, sixth, seventh and eighth attributes are continuous attribute;

the second and third and fifth attributes, “Gender” {Male, Female} and “Hous-

ing” {Owned, Rent}, “Marital Status” {Married, Single} are categorical attributes;

the target attribute is the “Approve Loan” {Yes, No}. The common steps in cre-

ating classification models from such dataset are data pre-processing, attribute se-

lection and classification algorithm selection and hyper-parameterisation (Beniwal

and Arora 2012). In the pre-processing step, activities such as data integration,

data cleaning and discretization are carried out first. Then, a subset of predictor

attributes, relevant to the classification task is selected. This step is advantageous

at reducing over-fitting, reducing model complexity and increasing model creation

speed. Attribute selection techniques can be divided into filter and wrapper meth-

ods (Karegowda, Manjunath and Jayaram 2010). The filter method uses statistical
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methods like information gain and correlation between each predictor attribute and

the target attribute as criteria for attribute selection. The wrapper method uses

cross-validation in training classifiers on subsets of predictor attributes at a time.

The subset of attributes that generate the best performing classifier is selected for

the remainder of the modelling process. The wrapper methods tend to perform bet-

ter because consideration is given relationships amongst predictor attributes (Wah

et al. 2018). Nevertheless, it can be costly in a high-dimensional dataset.

Many classification algorithms have been proposed in the literature, including

nearest-neighbour methods, decision tree induction, error back-propagation, rein-

forcement learning, lazy learning, rule-based learning, Bayesian learning and so on

(Ali and Smith 2006). With the vast number of classification algorithms, the choice of

algorithm for a given classification problem remains a challenge. This is because it is

possible for Algorithm A to outperform algorithm B on a certain classification prob-

lem 1, at the same time, it is also possible for Algorithm A to underperform algorithm

B on a different classification problem 2 (Wolpert, Macready et al. 1995). Algorithm

performance is usually measure based on the percentage of correct classification and

computational complexity. The finding is, there isn’t a universal classification algo-

rithm that is the most accurate across all datasets (Michie, Spiegelhalter and Taylor

1994). To evaluate and select the best performing classifier, a common approach is

the cross-validation approach after which the algorithms’ performances are ranked

according to percentage of correction classification and weighted F-measure (Ali and

Smith 2006; Reif et al. 2014). After selecting a classification algorithm, it is im-

portant to configure the algorithm’s parameters, called hyper-parameters, to control

the learning process so that an optimised model that balances between accuracy and

generalization is obtained (Maher and Sakr 2019). Due to different possible combi-

nations for these hyper-parameter values, optimisation techniques are employed to
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find a good set of values (Braga et al. 2013; Feurer, Springenberg and Hutter 2015;

Bergstra et al. 2011). The final step in a classification problem is modelling, which

can either be black-box modelling or white-box model. White-box models differ from

black-box models in terms of interpretability. Besides recognising patterns in unseen

data, the inner workings and mapping of predictor attributes to the target attribute

in white-box models are understandable to practitioners.

3.2 Regression

Regression is another type of machine learning problem solved by developing pre-

diction models from patterns discovered in historical observations. It differs from a

classification problem in two ways, the nature of the target attribute and the ob-

jective. In regression problems, the target attribute is continuous, and the goal is

to assign a real value to unseen data. For example, a company could use regression

models to forecast its potential percentage growth in a financial year from models de-

veloped using past spending on adverts. Regression problems models can be grouped

into 2 main categories, namely parametric and non-parametric regression (Mahmoud

et al. 2021).

3.2.1 Parametric Regression

In parametric regression, the form that the equation describing the relationship be-

tween predictor and target attributes is known (Mahmoud et al. 2021). The task is to

find the best coefficients for the attributes of an equation. The modelling techniques

in this category are simple, fast and models can be created from small dataset. An

example of a parametric modelling approach is Linear regression. Assuming we have
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a dataset {xi1, xi2, ..., xim, yi}ni=1 of n observations, each observation represented by

m predictor attribute values and yi the target attribute value, a linear regression

model takes the form of Equation 3.1.

yi = β0 + ε+
k∑
j=1

βjxij (3.1)

where β0 is the y-intercept, that is, the mean of the target attribute when all pre-

dictor attributes values are set to zero; k is the number of predictor attributes used

in representing n observations; βj is the linear regression coefficient for the j-th pre-

dictor attribute. xij are the j-th predictor attribute values for the i-th instance,

and ε known as residuals is a random error that cannot be explained by the model.

The model searches the space of βj values so that the mean squared error (MSE) of

observed and predicted target attribute is minimized (Xiao 2015).

3.2.2 Non-Parametric Regression

In non-parametric modelling, the form that the equation that maps predictor at-

tributes to the target attribute is unknown. The task is to find the structural form

of the regression function using large amount of data which we show in Equation 3.2.

yi = f(xi) + εi (3.2)

Different from parametric regression, we do not assume the number of parameters

the equation should take, neither do we assume that the data follows a normal

distribution. One of the techniques for finding an acceptable form of the equation

is symbolic regression. The idea is to explore a space of possible mathematical

equations that might fit the data, in search of an equation that best describes the said
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relationship. It is impossible to know if we have found the optimal equation, so the

procedure continuously searches the space of candidate equations until a predefined

stop criteria is reached, or the algorithm converges at a local optima.

3.3 Numerical Optimisation

In numerical optimisation, the task is a search for the best fit values (discrete or

continuous) from a large pool of configuration to assign to attributes under certain

constraints to obtain the best possible outcome. The best possible outcome could

either be to maximise or minimise an objective. Constraints are set of conditions

that input variables are required to satisfy. Optimisation problems are commonly

written in the form maximise f(x), where f is the objective function and x is the

input variable whose optimal value and we expect an optimiser to discover so that

the objective function value is improved. Figure 3.3 is a simple example of a such

function where the objective is to find an x value that maximises equation −x2−x−8

which is -0.5, that is highlighted with a green dot and a constraint could be that

X > −5.

In real life unfortunately, finding global maxima is not as simple, the objective

function can consist of multiple attributes and the optimisation surface can have a

range of local maxima which makes finding the global maxima challenging (Dorigo

and Stützle 2004). A common method for finding the optimal values of input at-

tributes is gradient descent, an algorithm that describes the slope of a function

telling whether it increases or decreases in a certain direction towards the objective.

In a maximisation problem the algorithm takes iterative steps in the direction of

the gradient of the function until maxima point is reached. Some of the challenges

of gradients are (1) choice of learning rate - rates that are too small rate can lead
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Figure 3.3: A graph of an equation where the objective is to find the global maxima which
we illustrate with a green dot.

to slow convergence or hinder convergence and (2) entrapment in numerous local

optima in a complex optimisation surface (Ruder 2016).

An alternative practice is to use meta-heuristic algorithms (Metaxiotis and Liagk-

ouras 2012), a method for finding a near-optimal solution in a reasonable compu-

tational time. Meta-heuristic algorithms can either be based on single solution or

population based. Algorithms that are based on single solution like local search and

simulated annealing focus on exploitative search within a local neighbourhood that

is defined according to certain criteria. Population based algorithms like ant colony

optimization and genetic algorithm are explorative in nature, therefore rely on the

diversity of the population for success. They are non-deterministic, optimal solution

is not guaranteed and they have a poor theoretical foundation (Carr 2014). Never-

theless, they have proven to be successful in practise. Population based numerical

optimisation algorithms share some similarities with non-parametric regression algo-

rithms, they do not have an upper bound on search duration or provide an indication
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of when a discovered solution is close to the optimal solution, therefore a stop criteria

and a fitness function is required.

3.4 AutoML

The efficient selection of classification algorithm for a given problem and the tuning

of the hyper-parameters requires poses a challenge as it requires knowledge and expe-

rience (Khanmohammadi and Rezaeiahari 2014). Advances have been made in cre-

ating tools that automate the learning process so that non-expert can automatically

create well-performing prediction models. These tools, part of a growing research

area called AutoML, automatically perform the steps of non-deterministically select-

ing optimal classification algorithm and tuning the hyper-parameters. It is usually

the case that the only parameter a user is required to specify is the time limit for the

tool to evaluate the best classifier and configuration (Kotthoff, Thornton and Hut-

ter 2017). Examples of such tools are meta-collaborative filtering framework (Smith

et al. 2014), Hyperopt-sklearn (Komer, Bergstra and Eliasmith 2014), Auto-sklearn

(Feurer et al. 2015), TUPAQ (Sparks et al. 2015), Auto-WEKA (Thornton et al.

2013), DAUB (Sabharwal, Samulowitz and Tesauro 2016), MLPlan (Mohr, Wever

and Hüllermeier 2018) and more recently Auto-Keras (Jin, Song and Hu 2019). In

this work, we use Auto-WEKA for selecting and tuning our classifier because it pro-

vides an application programming interface (API) that can easily be incorporated

into our DC trend reversal estimation framework facilitating the creation of custom

model for each dataset we experimented and it is based on Weka (Hall et al. 2009),

a well-known open source package for performing classification tasks.
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3.4.1 Auto-WEKA

Weka (Hall et al. 2009) supports 39 classification algorithms that can potentially be

used for a classification task. However, the performance of the algorithms can vary

from one dataset to another. Therefore, Auto-WEKA framework was introduced. It

uses advances in high-dimensional stochastic optimisation to fully automate the pro-

cess of choosing the best classification algorithm and optimising its hyper-parameter

values. Auto-WEKA can be executed in two modes, namely single-threaded and

multi-threaded. We have chosen to perform our experiments using single-threaded

mode due to limitation of available hardware resources. The default execution time

for Auto-WEKA is 1 minute but to get the best result from Auto-WEKA, tuning is

required to determine the appropriate execution time. Because the search space (i.e.,

39 algorithms) exploration is non-deterministic and result depends on the initialisa-

tion seed, it is recommended to execute Auto-WEKA multiple times with different

seeds, resulting in as many recommended classifiers (Tighe, Lewis-Morris and Fre-

itas 2019; Basgalupp et al. 2020). From the pool of recommended classifier, the best

classifier can then be selected according to a fitness measure.

3.5 Evolutionary Algorithms (EA)

Evolutionary Algorithms are techniques that are based on Darwin inspired biolog-

ical evolutionary theory of natural selection to preserve the fittest individuals for

the procreation of future generations. The fittest individuals’ traits are passed on to

successive generations, resulting in improvement in these traits over the generations.

EA makes use of biological evolutionary concepts such as reproduction, mutation,

recombination, and selection. EAs search for an optimal or near-optimal acceptable
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Figure 3.4: An illustration of EA framework.

solution to optimisation problem by choosing the best-performing solution from a

group of solutions that were stochastically created and evolved over several genera-

tions. Some examples of EA algorithms are evolutionary programming (Fogel, Owens

and Walsh 1966), differential evolution (Storn and Price 1997), genetic programming

(GP) (Koza 1992), genetic algorithm (GA) (Holland 1992) and evolution strategy

(Rechenberg 1973). EAs have a common framework in evolving new individuals

namely initialisation, fitness evaluation, selection strategy, evolutionary operations

and stopping criteria.
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3.5.1 EA Framework

Figure 3.4 presents the building blocks of an EA framework. The process initialises

by stochastically creating an initial population of solutions called individuals. The

aim is to have a diverse population that covers a wide range of potential solutions to

a given problem. As a next step, the fitness of the individuals are evaluated with a

fitness function to determine how well the individuals perform a set out objective. If

an individual performs sufficiently well, the process terminates, and the individual is

presented as an acceptable solution. Otherwise, an evolutionary process is initiated

and genetic operators applied to selected parent individuals that evolve new indi-

viduals, called offsprings. Offsprings constitute a new population that are expected

to have better traits for meeting the set out objective. If the new population is

not able to solve the problem sufficiently, the evolutionary process continues until a

termination criteria is reached. The genetic operators that are applied are mutation,

crossover, and reproduction. During evolution, weak individuals in the population

are eliminated and the best individuals known as elites are preserved across gen-

erations. Preservation of best performing individuals across generations follow the

principle of survival of the fittest. Tournament selection is a common method used

in identifying parent individuals with desired traits for evolution.

Fitness function

Fitness function is a mechanism that describes the objective that individuals are

expected to fulfil (Poli et al. 2008). It is used to guide the EA algorithm towards

regions in the search space with potentially better solutions. An example of a fitness

function is root mean square error that measures the difference between a value

predicted by an individual and the value observed.
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Selection strategy

Similarly to natural evolution, individuals are selected for breeding based on their

fitness level. It is based on the idea that selecting parents with high fitness level

will breed offspring with improved fitness level (Liu et al. 2017). Several selection

strategies can be employed, and tournament selection is commonly used. It involves

choosing random individuals from the population as candidates for breeding. A

contest is then held the fittest individual amongst these candidates is selected for

breeding an offspring. Another selection strategy is the roulette wheel. A probability

is assigned to an individual based on its fitness level in relation to the sum of the

fitness level of all individuals in the population. The probability of the individuals is

then normalized whereby individuals with higher probability have a greater chance

of getting selected in a random selection. Truncation Selection is another selection

strategy. In this case, individuals are ordered according to their fitness level. Can-

didate individuals for evolution are randomly selected from individuals with fitness

level higher than a cut-off point (Poli et al. 2008).

Genetic operators

The main evolutionary operations can be categorised as follows:

• Crossover is a binary operation that recombines two parent individuals by

taking parts of their chromosomes to produce a child individual. The aim is to

exploit regions in the search space where promising solutions have been found

already.

• Mutation is a change in the genetic structure of a single individual. The aim

is to stir the algorithm towards exploring different regions in the search space.
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Mutation can occur at single or multiple sites within the gene structure of an

individual.

• Reproduction is the random copy of a program from one generation to the

next without any modification. The aim is to maintain diversity in the popu-

lation.

Elitism

Elitism is a selection operator for preserving the highest fitness level individual(s) in

future generation. This is done to improve performance by reducing the time spent

rediscovering previously found partial solution. Though it speeds up convergence, it

can reduce population diversity if allowed to dominate the population.

Stopping criteria

Stopping criteria indicates when the evolutionary process should end. Different qual-

ities of the population can be used to determine stopping criteria. Three examples of

stopping criteria are when: an upper bound threshold on the number of generations

is attained, a lower bound in step size improvement from one generation to another

and an upper bound threshold on the number of fitness function evaluation is reached

(Safe et al. 2004). Once the process ends, the individual with highest fitness level in

the latest generation is returned as the best solution.

As a reminder, in this work we aim to (1) estimate as accurately as possible OS

event length once a DC event length is known and use the two lengths to forecast

trend reversal, and (2) optimise forecasting models of multiple DC thresholds to

improve trading. To this end, we utilise genetic programming (GP) and genetic
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Figure 3.5: An illustration of a GP Tree. The terminal nodes of the tree are 5 DC thresh-
olds 0.04, 0.02, 0.34, 0.36 and 0.05. The non-terminal nodes are mathematical operators
×,−,+, /

algorithm (GA). These two techniques are state of the art algorithms for solving

symbolic regression problems and solving optimisation problems respectively.

3.5.2 Genetic Programming

GP is an evolutionary algorithm for evolving computer programs1 to solve a problem

without specifying explicit information on how the problem should be solved or what

the structure of the program should look like in advance but follows the process

illustrated in Figure 3.4 (Koza 1992).

Representation

A typical GP program is composed of variables, constants and functions and can

vary in shape and size. A common way of representing a GP individual is a tree

representation (Koza 1992). Figure 3.5 presents a sample GP tree. The GP tree
1A computer program in this context is a structure that represents a structure e.g., boolean

expression, mathematical equations.
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is composed of interdependent components known as the terminals and functions.

Although tree representation is the most common, other forms of representing GP

exist such as linear and cartesian representation (Nordin 1994; Miller 1999). Linear

GP is a flattened tree that expresses a sequence of programming instructions to

mimic how computer architecture represents programs. Cartesian GP is a directed

graph representation of programs. It is based on the idea of creating and evolving

genetic representations of electronic circuits (Miller 2019).

Terminals set are symbols representing the end of a branch. They consist of

independent variables and constants. Constants are numeric values, either integer

or real (e.g., 4, 3.14). Independent variables represent input values to the program.

For example, in an equation such as x2 + 4x + 5 = 0, x is an independent variable.

Another type of terminals are functions with no argument. For example, Rand()

that returns a different value on each call and Ephemeral random constants (ERC),

a set of randomly generated terminals that retain their values across the population

at initialisation and during evolution.

Function set ( internal nodes of the tree) are symbols representing operations.

The function set consists of different expressions that define permissible relationships

between internal nodes, and between internal nodes and terminal set. The number

of child nodes connected to an internal node is based on the number of operands

the function in the internal node can manipulate. For example, the binary func-

tions “+, −, ×, ÷” in Figure 3.5 can have exactly two child nodes. Other types of

functions include mathematical functions (sin, cos, tan, LOG,EXP ), logical opera-

tors (AND,OR,NOT ), conditional operator (If-Then-Else), comparison operators (

≤ , ≥ , <, >, =, !=) and other domain specific functions.
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GP property

For GP to successfully find the solution to a given problem, it must satisfy certain

properties, namely closure and sufficiency (Koza 1992):

• Closure is the syntactic correctness of a GP tree and the correct handling of

exception that may occur in rare cases. Closure can be divided into type con-

sistency and evaluation safety. Type consistency is the property of a function

set where each function is required to generate outputs that are valid inputs

for other functions in the set. This ensures that the evolved GP trees are syn-

tactically correct at compile time. If a function does not fulfil this requirement,

it can be constrain limiting the number of functions it can receive input from

or send its output to as input. Evaluation safety refers to the syntactic cor-

rectness at runtime. A GP program must be able be to executed from start to

finish successfully without crashing. If this is unavoidable, exception handling

can be introduced in such cases (Poli et al. 2008). In this work, we enforced

closure through function design so that the ones that can potentially output

NaN (not a number) and Inf (infinity) were protected. For example, division

operation was protected by returning a specific value when the denominator

was equal to zero.

• Sufficiency is the completeness of a primitive set so that it can express a

solution to a problem. This is domain-specific, and the user must ensure that

the terminal and functional sets supplied to a GP algorithm is powerful enough

to evolve a valid approximation of the optimal solution (Koza 1992).
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Figure 3.6: An example tree showing the Grow initialisation. The tree terminals are
directional changes thresholds and ERCs while the non-terminal nodes are mathematical
operators.
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Figure 3.7: An example tree showing the Full initialisation. The tree terminals are di-
rectional changes thresholds and ERCs while the non-terminal nodes are mathematical
operators.
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GP Initialisation

GP population is initialised by randomly combining terminals and functions to form

individuals. The aim is to have a diversified set of individuals that sufficiently rep-

resent the solution space (Poli et al. 2008). Two of the common approaches in

generating an initial population are grow and full methods (Koza 1992). There is

also ramped half-and-half initialisation, which is a combination of the grow and full

methods (Poli et al. 2008). In all three methods, the generated individuals must not

exceed a maximum depth specified upfront. Maximum depth is the number of edges

traversed between the root node and every leaf node (Poli et al. 2008).

In the grow method, unbalanced and asymmetric trees of varied sizes and shapes

are created. At first, a root node is randomly chosen from the primitive set (i.e.,

function or terminal), if the root node is a terminal, the tree is not grown further.

On the other hand, if the root node is a function, the tree branches out according

to the arity of the function at the root node. The branches are filled with randomly

selected functions or terminals. Branches of terminals are closed out and branches

of functions are recursively grown until terminals is selected or the maximum depth

is reached. If maximum depth is reached and the furthest node is not a terminal,

a terminal is mandatorily selected. An example of such tree is presented in Figure

3.6 which represents an equation that estimates OS event length as OSl = ((ERC +

DCl)×DCl)− DCl
ERC

) .

The full method creates balanced and symmetric trees of potentially different

shapes and sizes (Poli et al. 2008). It is initiated by deciding on a depth then a root

node is randomly selected from a function set. The tree branches out according to

the arity of the function at the root node. The inner nodes are filled with randomly

picked functions from the set recursively until the maximum depth is reached. At
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maximum depth, a terminal is randomly selected, and recursion ends. An example

of such a tree is presented in Figure 3.7 which represents an equation that estimates

OS event length as OSl = ((DCERC
l )× DCl

ERC
)− (ERC

DCl
) + (ERC × ERC)).

The third type of initialisation is ramped-half-and-half, a combination of grow

and full initialisation which ensures greater diversity of program population. Half of

the tree population is created using grow and the other half is created using full. This

ensures higher structural diversity of the trees in the initial population to improve

search space coverage (Koza 1992).

Genetic operators

These are operators that lead GP process towards a solution to a problem during

evolution by exchanging genetic material in a program with new/different ones. The

main types of operators are crossover, mutation, and reproduction. An operator

is randomly selected for evolving a tree. Excessive use of just one operator might

not yield desired result. Reproduction alone leads to copies of the same program

in the population. Crossover alone leads to early conversion and a locally-optimal

might be selected as the best program. Mutation alone will cause GP to make big

jumps without exploring its neighbourhood of solutions sufficiently. Reproduction is

a random copy of a GP individual from one generation to the next without changes

to the tree. More detail about crossover and mutation operator is provided below.

Mutation is a genetic operation that changes the genetic structure of a single tree.

The aim is to maintain diversity in the population by exploring different regions

in the search space. In Figure 3.8, we present sample mutation operation, this

mutation is known as subtree mutation. A new offspring is created by removing

a random node which we highlight in red and its substructure from a tree. The
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(a) Parent tree

(b) Offspring tree

Figure 3.8: An illustration of how an offspring tree is evolved with the mutation operator.
Terminals 0.04, 0.02, 0.05 are DC thresholds and rest of the terminals are ERC. The
function set are /, +, −, Pow, Sin, Cos and ×
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removed node is replaced with a randomly generated tree. The new program in

Figure 3.8b is then copied to the next generation. Another form of mutation is point

mutation, a single node is replaced with a different member of the primitive set with

the same arity and return type. It is not possible to list all the different types of

mutation operator. Nonetheless, we acknowledge other types of mutation such as

Size-fair subtree mutation (Langdon 1998), Hoist mutation (Kinnear 1994), Shrink

mutation (Angeline 1996), Permutation mutation (Koza 1992; Maxwell and Koza

1996), Constant mutation (Schoenauer et al. 1996) to mention a few.

Crossover is a binary operation that creates a new tree (i.e., offspring) by combin-

ing copies of two selected parent trees. To select each parent, candidate parents are

stochastically selected from the population, then a tournament is held amongst them

and the winner of the tournament emerges as a parent tree. Crossover points are

points of division where a subtree is selected from both parent trees. For example, in

Figure 3.9, crossover points in parent trees A and B, which we highlight in red and

black are selected. The subtree at the crossover point in parent tree A is removed

and replaced with the subtree at crossover point in parent B. The new tree as can

be seen in Figure 3.9c is a new offspring and it is copied to the next generation.

The type of crossover described in this example is known as subtree crossover (Poli

et al. 2008). There are several types of crossovers cited in the literature like, one-

point crossover (Poli et al. 2008), two-point crossover (O’neill et al. 2003), uniform

crossover (Poli et al. 2008), context-preserving crossover (D’haeseleer 1994), size-fair

crossover (Langdon 2000), depth-based crossover (Harries and Smith 1997) and so

on. There are also crossover operators that are based on GP representation such

as ripple crossover (O’neill et al. 2003) for grammatical evolution and a real-valued

inspired crossover (Clegg, Walker and Miller 2007) for Cartesian GP.
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(a) Parent tree A (b) Parent tree B

(c) Offspring tree

Figure 3.9: An illustration of how an offspring tree is evolved with the crossover operator.
Terminals 0.04, 0.02, 0.05 are DC thresholds and rest of the terminals are ERC. The
function set are /, +, −, Pow and ×

3.5.3 Genetic Algorithm (GA)

Genetic Algorithm (GA) is an Evolutionary algorithm to search in a solution-space

for either the optimal or the near-optimal solution to an optimisation problem (Atil-

gan and Hu 2018). An example of such problem is finding the appropriate weight to

assign to thresholds in a multi-threshold trading strategy.
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Representation

A common form of representing GA is an array of binary bits. The gene array

in this representation holds the value of either 0s or 1s as can be seen in Figure

3.10. Other forms of representation exist such as integer-value representation, real-

value representation, permutation representation and so on. The determining factor

in choosing a representation is the type and number of attributes that define the

problem to be solved. Once determined, the gene type and chromosome size are

fixed throughout the initialisation and evolution phases.

0 1 0 1 · · · 1

Figure 3.10: A sample representation of a binary bit genetic algorithm. The array of bits
is known as a chromosome and each cell in the array is a gene.

GA initialisation

GA population is commonly initialised randomly, heuristically or a mixture of both.

In random initialisation, random values are assigned to chromosomes of the gene.

The idea is to have a diverse population that is representative of the search space.

Heuristic initialisation, on the other hand, encodes the population based on prior

knowledge of how to solve a problem. For example, specific values can be assigned

to the chromosomes. This kind of initialisation requires care to avoid the population

from being homogenous, which could inhibit the GA from solving the optimization

problem. The third approach is the combination of random and heuristic initialisa-

tion where only a hand full of individuals are initialised heuristically and the rest are

randomly initialised.
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Genetic operators

Genetic operators lead GA towards an optimal solution to a problem through the

exchange of genetic materials in a GA population. Similar to GP, the main types of

operators are crossover, mutation, and reproduction.

Mutation is used to keep genetic diversity during evolution to prevent convergence

to a locally-optimal solution. Mutation is done by modifying one or more gene values

of a chromosome. Different ways of mutating the genome of a GA individual exists.

In a binary problem represented with 0s and 1s, mutation can be done by flipping

the genes of the individual as illustrated in Figure 3.11. Others are mutations are

uniform mutation, Interchanging mutation, reverse mutation, boundary mutation

and so on (Sivanandam and Deepa 2008).

1 0 0 1 1
parent

0 1 1 0 0
child

Figure 3.11: An illustration of GA evolution using a flip mutation. 0 bit genes are flipped
to 1 and vice-versa.

Crossover is used to implements a search within a region in the solution space

where individuals with high fitness levels have already been found. Crossover is done

by selecting two parent individuals from a mating pool. Then mating sites from the

parent individuals are selected at random along their lengths. Then values at the

mating sites in both parents are swapped to generate the new offspring. Traditional

GA uses a single point crossover illustrated in Figure 3.12.

In single point crossover, genes after a mating site in one parent are replace with

genes after mating site in a second parent. Other types of crossovers are two point
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0.1 0.1 0.2 0.3 0.4

0.5 0.8 0.9 0.4 0.2
parents

0.1 0.1 0.9 0.3 0.2

0.5 0.8 0.2 0.4 0.4
child

Figure 3.12: An illustration of GA evolution using a single point crossover. Genes after
the mating site in one parent are replaced with those from the second parent. Either of
the children can be selected for the next generation

crossover, uniform crossover, shuffle cross and so on (Sivanandam and Deepa 2008).

3.6 Summary

In this chapter, we briefly discussed two types of machine learning algorithms: un-

supervised and supervised learning algorithms. We discussed supervised learning

algorithms, where our interest lies. We detailed the two main supervised learning

tasks: classification and regression. Both tasks find patterns in predictor attributes

that express how they relate to a target attribute. The goal in classification task is

to predict a categorical value, while in regression the goal is to predict a continuous

value.

Furthermore, we discussed techniques that can be applied to tack the three prob-

lems studied in this work: our three supervised learning task: AutoML for classifica-

tion task, i.e., classify DC trends into two categories; consisting of DC and OS events

or only DC events; symbolic regression GP for non-parametric regression task, i.e.,

evolve a function that estimate OS event length given a DC event length; and GA

for optimisation task i.e. evolve an optimised multi-threshold trading strategy.



Chapter 4

Symbolic Regression forecasting

model

Directional Changes (DC) is an alternative approach for sampling price movement

and described in Chapter 2.5, the occurrence of a DC event is known only in hind-

sight. Additionally, the length of the corresponding OS event remains unknown until

the next DC event in the opposite direction is confirmed i.e., when the trend is re-

versed. The challenge in trend reversal forecasting from a DC perspective is the

ability to determine the length of OS event before the next DC event is detected.

There has been an empirical study that investigated regularities i.e., scale invariant

properties in DC summarised data (Glattfelder, Dupuis and Olsen 2011). One of

the regularities is the existence of a power law distribution between DC and OS

event lengths. It was empirically observed that irrespective of the threshold used

in sampling DC series, on average, if DC event takes t amount of physical time, its

corresponding OS event will take twice the amount (2t). Such regularities provide

traders with greater understanding of price movements, which can be leveraged for

65
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trend1 reversal prediction and trade strategy modelling. This is because if investors

can accurately estimate OS event length, they will be able to anticipate when a DC

trend is expected to end. Thus, with this OS length regularity, investors can devise

new strategies to generate profit on their investments. Other richer relationships

exists between DC and OS event length albeit scale variant, which can be more

benefial to investors for profit maximisation (Kampouridis and Otero 2017). This

has motivated us to explore for equations that express richer relationships yet to be

discovered by existing algorithms (Glattfelder, Dupuis and Olsen 2011; Kampouridis

and Otero 2017).

To this end, we developed a tailored GP that creates equations to describe the

DC-OS event length relationship. Our goal is twofold: (1) demonstrate that symbolic

regression GP (SRGP) can be used to estimated OS event length, thus anticipating

trend reversal in Forex data, and (2) demonstrate that the SRGP derived equations

can improve trading profitability. We thus replace OS event length estimation equa-

tion of a DC-based trading strategy first proposed by Kampouridis and Otero (2017)

with our SRGP created ones.

We acknowledge that risk is an important trading metric. However, as a first step

we focus on profitability measure of the trading strategy. We analyse profitability

and risk in our proposed trading strategy described in Chapter 5.

The rest of the chapter is organized as follows: Section 4.1 describes the uncov-

ered linear relationships between DC and OS event lengths. Section 4.2 presents our

methodology, where we explain in detail how we use a tailored SRGP in estimating

OS event length, thus forecasting trend reversal. Section 4.3 presents the experimen-

tal setup, and Section ?? presents and discusses our findings. Section 4.5 concludes
1

In the context of directional changes, trend can be described as sum of DC event length and OS event length. At the end of a trend,

another one begins in the opposite direction. Just before the start of the new trend, is the trend reversal point of the trend that just ended.
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the chapter.

4.1 Linear and non-linear DC-OS Relationships

There are two works that described the linear relationships between DC and OS

event lengths, Glattfelder, Dupuis and Olsen (2011); Kampouridis and Otero (2017).

Glattfelder, Dupuis and Olsen (2011) found that an OS event lasts on average twice

the length of a DC event and proposed Equation 4.1 which we call Factor-2. Kam-

pouridis and Otero (2017) confirmed the scaling law and, also discovered richer linear

relationship, howbeit, not scaling invariant and proposed Equation 4.2 a tailored real

value representing the observed relationship per dataset which we call Factor-M.

OSl ≈ 2×DCl (4.1)

OSl = C ×DCl (4.2)

where :

OSl = the length of an OS event

DCl = the length of a DC event.

C = a time-varying2 constant, which can take any positive real value, C > 0.

We propose re-writing Equations 4.2 in a general form as Equation 4.3. Using

the new equation, we explore for relationships between DC and OS event lengths

that could be either linear or non-linear. To discover the form and parameter values

of the underlying equation, we developed a tailored symbolic regression genetic pro-

gramming (GP). GP is a state-of-the-art algorithm for evolving unknown solution for
2value changes according to the DC trend and the DC:OS ratio in the dataset
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a task, in our case a mathematical expression describing the relationship (Žegklitz

and Poš́ık 2020; Wang, Wagner and Rondinelli 2019).

OSl = f(DCl) (4.3)
where :

OSl = the length of an OS event

DCl = the length of a DC event

4.2 GP - based OS length Estimation

In this section we present the composition and evaluation of our SRGP-based OS

length estimation algorithm. The algorithm is a tree based SRGP and uses as input

the DC length.

First, a threshold is used in transforming physical time-based dataset into DC-

based dataset. Then, the DC dataset was split into separate upward and downward

DC datasets. Finally, we apply a SRGP that searches for an equation f(DC) which

maps DC event length to OS event length. The sum of the DC event length observed

in the dataset and the estimated OS event length by our SRGP algorithm becomes

our forecasted trend reversal point i.e., the start point of the next DC event in

the opposite direction. In our approach there are separate equations tailored for

upward DC trend and downward DC trend respectively. The rational is based on

our preliminary experiment that showed varying ratio between the two types of DC

trends and was also reported by Aloud (2016b). For the equation created by our

SRGP to be valid, the expression must have at least one DC event length as a

parameter to express the equality relationship between DC and OS event lengths.
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Figure 4.1: Sample SRGP individual trees where internal nodes are represented by arith-
metic functions. The leaf nodes are represented by numeric constants and the DC length,
denoted as DCl. Given a DC event length the tree estimates the corresponding OS length.

4.2.1 Model representation

To make the SRGP satisfy the closure property, we catch these errors using run-time

exceptions and reduce the fitness of such programs. This is done to reduce the chance

such programs from getting reproduced in future generations (Poli et al. 2008).

We represent our evolved SRGP individuals using tree structures. The inner

nodes of the trees are composed of linear and non-linear functions. We utilised 2-

arity functions {addition, subtraction, division, multiplication, power} and 1-arity

functions {sine, cosine, power, logarithm, exponential}. In certain cases, it was

possible for SRGP composed of division, logarithm, power and exponential functions

to output undef3 (undefined), NaN4 (not a number) or Inf5 (infinity). We therefore

protected, these functions to ensure that valid numerical values are always returned

as output by first checking for potential problems before execution and returning

a default value in such cases. The terminal nodes consisted of an ERC6 and an
3If Divisor is 0.
4If the argument of the Logarithm function less than 0, if the first argument of power function

is a negative real number and the second argument is a positive real number.
5 If the argument to the Logarithm function is 0 or the first argument to the power function is

greater than 0 and the second argument is less than 0 or the argument to the exponential function
is a real number greater than a certain value.

6Ephemeral random constants, explained in Chapter 3.5
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external input to represent DC event length. We selected an ERC with a probability

Pr; the DC event length with probability 1 − Pr. All our functions and terminals

are presented in Table 4.1. To initialise the population, we used ramped half-and-

half technique, a technique already described in Chapter 3.5.2. Figures 4.1a and

4.1b show sample trees our GP can create. Figure 4.1a and 4.1b are trees which

represent equations that estimate OS length as ((DCl−2.5)×1.51)+(1.8+DCl) and

((1.84
2.02)×DCl) + (cos(DCl)1.22) respectively and the DCl in both equations represent

the length of DC event.

Table 4.1: Configuration of the proposed SRGP algorithm

Configuration Value

Function set addition, subtraction, protected
division, multiplication, sine, co-
sine, power, log, exponential

Terminal set input variable (i.e., DC events
length) and ephemeral random
constant.

Genetic opera-
tion

subtree mutation and subtree
crossover

4.2.2 Model evaluation

To evaluate our trees, we measure error between actual OS length (OSl) and OS

length that the SRGP estimates (ÔSl). The prediction error ε was calculated using

root mean square error shown in Equation 4.4.

ε =

√∑N
i=1(OSl − ÔSl)2

N
(4.4)

where :
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N = The sample size

ε = The root mean squared error

During evolution, we penalise by reducing fitness of tree constructs that (1) have

only constants as terminal nodes since they do not use the DC event length in the

estimation, and (2) estimate a negative value since OS event occurs after DC event

in time and the dimension of time in financial time series is irreversible (Flanagan

and Lacasa 2016). Tournament selection is used to select parents based on fitness

level. If there are more than one candidate trees with the same (highest) fitness, we

evaluate tree size to break the tie and the tree with the smaller depth is selected.

4.2.3 Genetic operators

We use standard genetic operators to evolve the trees. The operators used are subtree

mutation and subtree crossover (see Table 4.1). The evolution was controlled by a

crossover ratio Pe. At Pe we selected subtree crossover operator and at 1 − Pe we

selected subtree mutation operator. We used an elitism ratio to select the best

performing trees and carried them forward from a generation to the next without

modification. To control growth, we used hard limits on the depth of offspring trees.

4.3 Experimental setup

This section presents the experimental setup to accomplish our two goals. As a

reminder, our first goal is to demonstrate that the SRGP evolved equations can be

used to anticipate trend reversal; the second goal is to demonstrate that accurate

anticipation of trend reversal can improve profitability. This is because forecasting

closely to the true trend reversal point allows traders to make better decisions that
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Algorithm 4.1 Pseudocode for evolving Equation 4.3 i.e., equation to estimate OS
event length given a DC event length.
Require: Initialise variables (PopulationSize= 500; GenerationSize= 35; Tournamente-

Size = 3; CrossoverRate = 0.98; MutationRate = 0.02; MaximumDepth = 3; Elitism-
Ratio = 0.1; Prune = True )

1: Initialise population: P ← Generate PopulationSize individuals (Candidate programs)
using ramped half-and-half

2: Evaluate: for each p in P , calculate Fitness with Equation 4.4
3: while termination condition not satisfied do
4: Pg ← Initialise new population for generation g
5: Get elite individuals in P : ER[1,. . . ,( ElitismRatio × PopulationSize)]
6: Add elite individuals to Pg
7: for i = ER+ 1 to Pg do
8: if RandomNumber < CrossoverRate then
9: Select parent1: probabilistically select TournamenteSize individuals from P

10: Select parent2: probabilistically select TournamenteSize individuals from P
11: Pgi : ← Perform crossover between parent1 and parent2
12: end if
13: if RandomNumber < MutationRate then
14: Pgi : ← Perform mutation on Pgi
15: end if
16: end for
17: Update: P ← Pg
18: Evaluate: for each p in P , calculate Fitness with Equation 4.4
19: end while
20: Return the individual (i.e., equation) with the highest fitness from P

increases profit Chen et al. (2021). To achieve these goals, our experiments are

divided into two parts. In the first part, we use our SRGP algorithm presented in

Algorithm 4.1 to uncover hidden DC-OS relationships i.e., evolve OS event length

estimation equations. We then compared SRGP’s regression error with previous

works in this field (Glattfelder, Dupuis and Olsen 2011; Kampouridis and Otero

2017), i.e., Equation 4.1 and Equation 4.2. In the second part of our experiments, we

embed the equations returned by our SRGP in an existing DC trading strategy, which
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was first presented by Kampouridis and Otero (2017), to demonstrate that richer DC-

OS relationships, improves trend reversals estimation leading to improved trading

results. We compare the trading results’ returns to other DC trading strategies and

popular financial benchmarks, such as technical analysis, and buy-and-hold.

4.3.1 Data

We used 10-minute interval high frequency data of the following currency pairs:

EUR/GBP (Euro and British Pound), EUR/USD (Euro and US dollar), EUR/JPY

(Euro and Japanese Yen), GBP/CHF (British Pound and Swiss Franc), and GBP/USD

(British Pound and US dollar) from June 2013 to May 2014. We considered each

month in the period as a separate physical-time dataset. Datasets from the months

of June and July 2013 were used for tuning OS length prediction and trading strat-

egy algorithms. The remaining dataset from the month of August 2013 to May 2014

were used for testing the tuned algorithm. Each tuning and non-tuning DC dataset

was split in 70:30 ratio for training and testing.

4.3.2 GP parameter tuning

In total, we used 50 DC datasets for tuning. To generate the datasets, we used

thresholds 0.010%, 0.013%, 0.015%, 0.018% and 0.020% in summarising the 50 DC

event series from 10 minute high frequency Forex data of June and July 2013, of 5

currency pairs: EUR/GBP, EUR/USD, EUR/JPY, GBP/CHF and GBP/USD (i.e

5 × 2 × 5). The selected thresholds were the same as those in previous work by

Kampouridis and Otero (2017) that we build on. The thresholds were reported to

have been selected after a threshold tuning step but the range of thresholds were not

reported. As we have not carried out the threshold tuning ourselves and the range
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unreported, it is possible that these values are not optimal. In addition, using the

same thresholds across datasets might not take into account the peculiarity of each

dataset.

Despite the undocumented threshold selection range, our first goal is to demon-

strate that symbolic regression GP is able to discover scale variant richer relationship

between DC and OS event length and having similar experimental setup as Kam-

pouridis and Otero (2017) is critical for such evaluation. With the same set of

threshold, we are able to have an unbiased comparison of our trend reversal forecast-

ing algorithm to the published work. In Chapter 5 we provide our own approach for

threshold selection.

Table 4.2: IRACE setup for tuning the parameters of our SRGP.

Parameter Type Values

Population Size Categorical 100, 200, 300, 400, 500, 600, 1000
Generation Categorical 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75
Tournament size Integer 2 - 7
Tree Depth Categorical 3, 4, 5, 6, 7, 8, 9
Pruning Categorical True, False
Crossover probability Real 0.7 - 1
Mutation probability Real 0.1 - 0.2
Elitism Real 0 - 0.20

Table 4.2 presents the setup for tuning the parameters of our GP using the I/F-

Race package (López-Ibánez et al. 2011). I/F-Race package is an extension of an

iterated racing procedures. It implements racing methods for selecting the best con-

figuration for an optimisation algorithm. The idea is to iteratively evaluate a set of

candidate configurations that are associated with a sampling distribution and em-

pirically choose an appropriate settings that maximises an objective (Birattari et al.

2010). After each iteration, the performance of the configurations are measured
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against an objective function which in our case is the root mean squared error af-

ter estimating OS event length. Candidate configurations that do not perform well

enough are eliminated and those that performs well are preserved for future race

iterations. Before the next iteration, the sampling distribution of the configurations

is updated so that it is biased towards the best configurations and the process is

repeated until a stopping criterion is met (López-Ibánez et al. 2011). For our work,

we ran irace procedure with a budget of 2000 iterations. At the end of the irace run,

4 candidate SRGP configurations are presented. From the 4 candidate configura-

tions, we choose a configuration with the highest population size because in SRGP,

population diversity is important in preventing early convergence or convergence in

local optima (Rosca 1995; Langdon 1996; Banzhaf et al. 1998). Table 4.3 presents

our SRGP configuration after the tuning step.

Table 4.3: Regression GP experimental parameters for detecting DC-OS relationship, de-
termined using I/F-Race.

Parameter Configuration

Population 500
Generation 35
Tournament size 3
Crossover probability 0.98
Mutation probability 0.02
Maximum depth 3
Elitism 0.10

4.3.3 Results

To evaluate our algorithm, we used 250 DC datasets. These datasets were generated

using 5 DC thresholds (i.e., 0.010%, 0.013%, 0.015%, 0.018%, 0.020%) and the 10

months dataset from 5 currency pairs described in Section 4.3.1. We observed that on
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the average, the ratio between DC and OS lengths varied between 1.5 and 2.5, which

corroborates the scaling law findings in (Glattfelder, Dupuis and Olsen 2011). Table

4.4 presents the average of root mean squared error for these datasets. From the

table we see that the Reg-GP consistently outperformed both Factor-2 and Factor-

M at estimating OS length in all currency pairs. To confirm the above results, we

applied Friedman’s non-parametric statistical test and compared the result of the

best OS event length estimation equation (control method) to others to measure

statistical significance. Our null hypothesis was that the algorithms come from the

same continuous distribution. The result of the statistical test presented in Table

4.5 shows Equation Reg-GP ranking the highest. The adjusted p-value at the α =

0.05 level, according to the Hommel post-hoc7, shows the differences in ranks of our

results to be statistically significant.

Table 4.4: Estimation results by OS length estimator algorithms on 10-minute interval out-
of-sample data. Results show RMSE value. They are averaged over 5 different thresholds
(0.010%, 0.013%, 0.015%, 0.018%, 0.020%), 5 different currency pairs and 10 different
datasets (August 2013 to May 2014).

Algorithm Reg-GP Factor-2 Factor-M
EUR/GBP 6.77462 6.82228 7.15624
EUR/JPY 4.08026 4.70026 4.42172
EUR/USD 5.77218 6.41959 6.27207
GBP/CHF 5.86789 6.33501 6.36392
GBP/USD 6.09010 6.42833 6.66513
Mean 5.71024 6.13421 6.16841

The above results demonstrate that Reg-GP is able to create tailored8 equations

that better describe the relationship DC and OS lengths in given datasets, and this

is shown by the significantly smaller error recorded in comparison to Factor-2 and
7An adjustment applied to the probability of obtaining a significant difference between algo-

rithms after testing them under similar conditions with the same out-of-sample data.
8The equation is different for each DC event dataset
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Factor-M. Our interest now shifts to using these new equations as part of a DC-based

trading strategy to investigate whether these new and improved equations can lead

to increased profit margins.

Table 4.5: Statistical test results of OS length prediction according to the non-parametric
Friedman test adjusted with the Hommel post-hoc (using the best method (GP) as the
control (c) method. Significant differences at the α = 0.05 level. Statistically significant
ranking in bold text.

Algorithm Average Rank AdjustpHomm

Reg-GP (c) 1.272 -
Factor-2 2.332 2.12E-32
Factor-M 2.396 6.44E-36

4.4 Trading setup and result

Having shown that Reg-GP is able to evolve equations that better describe the

relationship between DC and OS event lengths, we now aim to show that accurate

trend reversal forecasting impacts profitability positively. We embed our SRGP

into an existing DC-based trading strategy previously presented in Kampouridis and

Otero (2017). The trading strategy which we detailed next used a real-value encoding

genetic algorithm to optimise trend reversal estimation recommendations of multiple

DC thresholds. To test the effectiveness of our SRGP created equations, we replaced

Equation 4.2 originally in Factor-M+GA with the best performing equation returned

by our SRGP and called the modified trading algorithm Reg-GP+GA. We also tested

the strategy with Equation 4.1 as the OS event length estimator and called this

version of the strategy Factor-2+GA. Lastly, we run experiments with a technical

analysis algorithm and buy-and-hold.
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4.4.1 Factor-M+GA

This is the original multi-threshold based trading strategy (i.e., Factor-M+GA) by

Kampouridis and Otero (2017), which used Equation 4.2 (i.e., Factor-M) to estimate

OS event length. To better understand how the strategy works in practice, we

describe the strategy in a single threshold scenario. The trend following strategy

is designed to take trading action towards the end region of a trend, just before

trend reversal in order to maximise profit. To achieve this goal, buy actions are

timed as closely as possible to trend reversal point in a downtrend and sell actions

to trend reversal point in uptrend. At the DCC point of trends in the DC dataset,

Equation 4.2 was used to calculate the OS event length. The value of the estimated

OS event length is then combined with DC event length to estimate trend reversal

region. However, this was an average over a dataset and in reality, it was possible

for individual DC trends in the dataset to have longer or shorter OS event length

than computed by the equation. To improve OS event estimation accuracy, they

calculated separate DC to OS event length ratios for upward trends and downward

trends and named them ru and rd respectively. In addition, they created two user-

specified parameters namely b1 and b2. These parameters were used to define a

range of time within an OS event period where trading was allowed. This was done

to ensure that trading actions were taken towards the end of the OS event period.

Equation 4.5 presents their formulas for computing the starting and ending periods

in upward and downward OS event period where trading actions were allowed. tu0

and tu1 were calculation for start and end trading times in upward OS periods, and td0
and td1 were calculation for start and end trading times in downward OS periods. tdc1

and tdc0 were start and end times for individual trend’s DC event and the difference of

the two values gave the DC event length. ru and rd, and b1 and b2 as afore explained
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were the average ratio of OS events lengths of upward and downward trends in the

DC dataset, and allowed user-specified trading action range respectively.

In high frequency data, it was possible to have multiple profitable trading op-

portunities within an action range (i.e. from b1 to b2) especially in high frequency

data and it will be more profitable to take action closest to peak and trough prices.

A user-specified parameter b3 was therefore created to target trend peak and trough

A sell action is taken when price is equal to Ppeak × b3 and a buy action was taken

when price is equal to Ptrough × (1− b3).

tu0 = (tdc1 − tdc0 )× ru × b1

tu1 = (tdc1 − tdc0 )× ru × b2

td0 = (tdc1 − tdc0 )× rd × b1

td1 = (tdc1 − tdc0 )× rd × b2

(4.5)

To further improve trading profitablity an optimised multi-threshold GA-based

trading strategy (Factor-M+GA) was proposed (Kampouridis and Otero 2017). The

GA was used to optimise peak and trough recommendations from multiple thresholds

and quantity traded per transaction . Algorithm 4.2 presents their GA for evolving

real values for the user specified parameters (i.e., b1, b2 and b3), quantity Q to trade,

and weights W1,W2, ...,WNθ , associated to the thresholds, whose recommendation

are being optimised. The evolved real values were embedded in a trading strategy

presented in Algorithm 4.3 and at the end of trading, the fitness of the GA population

was determined using the objective function presented in Equation 4.6

fitnessfunction = Return− α×MDD

MDD = Ptrough − Ppeak
Ptrough

(4.6)
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Algorithm 4.2 Pseudocode for optimising threshold weights, quantity and user-
specified parameters.
Require: Initialise variables (PopulationSize= 1000; GenerationSize= 35; Tournamente-

Size = 7; CrossoverRate = 0.90; MutationRate = 0.10; numberOfThresholds = 5;
ElitismCount = 1 , Budget= 500000)

1: Initialise population: P ← Generate PopulationSize individuals W1 = W2= W3=
W4 =W5 = 1

5 , b1= rand(0.0,1.0), b2= rand(0.0,1.0), b3= rand(0.0,1.0), Q = rand(0,
budget)

2: Trade: for each p in P , trade with strategy described in Algorithm 4.3
3: Evaluate: for each p in P , calculate Fitness with Equation 4.6
4: while termination condition is not satisfied do
5: Pg ← Initialise new population for generation g

(a) Elitism: copy elite individuals r from P to Pg
(b) Select: probabilistically select (p− r) individuals of P to add to Pg and

– Perform crossover between a pair of selected individuals according to
CrossoverRate

– Perform mutation between a pair of selected individuals according to Muta-
tionRate

6: Update: P ← Pg
7: Trade: for each p in P , trade with strategy described in Algorithm 4.3
8: Evaluate:for each p in P , calculate Fitness with Equation 4.6
9: end while

10: Return the individual (i.e., equation) with the highest fitness from P

4.4.2 Factor-2+GA

This is a modified version of Factor-M+GA. In this trading strategy, Factor-M is

replaced with Factor-2 proposed by Glattfelder, Dupuis and Olsen (2011) and pre-

sented in Section 4.1.

4.4.3 Reg-GP+GA (proposed algorithm)

This is also a modified version of Factor-M+GA. In this trading strategy, Factor-M is

replaced with Reg-GP, an equation evolved by our symbolic regression and presented

in Section 4.1.
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Algorithm 4.3 Pseudocode for calculating the return of a trading strategy.
Source:(Kampouridis and Otero 2017)
Require: Initialise variables (Cash= budget, Qtrade= 0, current = 0, Nθ = 5)
Require: Initialise PFL i.e. The amount/quantity of currency pair held
Require: W1, W2 , W3, W4 , W5 , b1, b2 , b3 , Q // user-specified parameters
1: for i =0; i < datasetlength; i++ do
2: Initialise weights for buy and sell: WB = WS = 0, number of upturn and downturn

: N↑ = N↓ = 0
3: current ← current + 1
4: if PC > Ppeak then // PC is the current price and Ppeak is the highest so-far price
5: Ppeak ← PC
6: else if PC < Ptrough then
7: Ptrough ← PC
8: end if
9: for j = 0; j < Nθ ; j++ do

10: Calculate tu0 , tu1 , td0, td1, as explained in Equation 4.5
11: if event is Downturn Event then
12: WB ← WB + Wj

13: if current with range of [ td0, td1 ] then
14: N↓ ← N↓ +1
15: else
16: N↓ ← N↓ -1
17: end if
18: elseWS ← WS + Wj

19: if current with range of [ tu0 , tu1 ] then
20: N↑ ← N↑ +1
21: else
22: N↑ ← N↑ -1
23: end if
24: end if
25: end for
26: if WS > WB then
27: if N↑ > 0 and PC ≥ (b3 × Ppeak) then
28: Qtrade ← (1 + N↑

Nθ
) × Q

29: if Qtrade > 0 then
30: Cash ← Cash + ( Qtrade × PC)
31: PFL ← PFL - Qtrade
32: else
33: Hold
34: end if
35: else
36: Hold
37: end if
38: else if WS < WB then
39: if N↓ > 0 and PC ≤ (Ptrough + (1− b3 × Ptrough)) then
40: Qtrade ← (1 + N↓

Nθ
) × Q

41: if Cash > (Qtrade × PC) then
42: Cash ← Cash - ( Qtrade × PC)
43: PFL ← PFL - Qtrade
44: else
45: Q

′
trade a new traded quantity, up to the amount that is affordable

46: Cash ← Cash - ( Q′
trade × PC)

47: PFL ← PFL - Q′
trade

48: end if
49: elseHold
50: end if
51: end if
52: end for
53: Wealth ← cash + Qtrade × PC
54: Return ← 100 * wealth

budget
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Evolutionary algorithms tuned parameters

Except for buy-and-hold trading strategy, the rest of the trading strategies we tested

are evolutionary based and required parameter tuning. These tuned parameters are

population size, number of generations, tournament size, crossover probability, mu-

tation probability, and number of thresholds (for the multi-threshold DC strategies).

Table 4.6 presents the value for each parameter. We used the same parameter config-

uration for all DC based trading strategies to avoid bias. Finally, for all evolutionary

algorithms, the experiments are run 50 times on each dataset and the results pre-

sented correspond to the average value over the 50 executions. The buy-and-hold

strategy is run just once per dataset since it represents a deterministic strategy.

Table 4.6: Trading strategy experimental parameters determined using I/F-Race.

Parameter EDDIE Factor-M+GA Factor-2+GA Reg-GP+GA
Population 500 1000 1000 1000
Generation 30 35 35 35
Tournament size 2 7 7 7
Crossover probability 0.9 0.9 0.9 0.9
Mutation probability 0.1 0.1 0.1 0.1

4.4.4 Technical analysis

Several technical indicators exist for algorithmic trading. To combine different in-

dicators to formulate trading strategies, we use a GP algorithm called EDDIE. The

technical indicators EDDIE combines in our experiments are moving average, trade

break out, filter, volatility, momentum and momentum moving average (Tsang et al.

2000).
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4.4.5 Buy-and-hold

Buy-and-hold is a common benchmark for trading algorithms. A trading strategy

that buys a financial product at the start of a period with the expectation that price

will appreciate over time, then sells at the end of the period.

4.4.6 Comparison among trading algorithms

Table 4.7: Average return (%) results for all trading strategies. DC strategies using 5
thresholds. 10-minute interval out-of-sample data. 5 different currency pairs and 10 differ-
ent datasets (August 2013 to May 2014)..

Algorithm Reg-GP+GA Factor-M+GA Factor-2+GA EDDIE

EUR/GBP 0.00703 0.00058 0.00341 0.00001
EUR/JPY 0.11600 0.06327 -0.07723 -0.00378
EUR/USD 0.00733 0.00055 0.02455 -0.00002
GBP/CHF -0.0198 -0.00357 0.00903 0.00004
GBP/USD -0.00629 -0.00045 -0.00580 0.00001

Mean 0.01896 0.01125 -0.0093 -0.00076

Table 4.7 presents the average monthly returns after trading five currency pairs

from August 2013 to May 2014. Reg-GP+GA was the best in 2 currency pairs,

second best in 1 currency pair and performed worst in two currency pairs. However,

Reg-GP+GA had higher mean return than Factor-M+GA and Factor-2+GA i.e.,

0.01896%, 0.01125% and -0.0093% respectively. Forex market is open 24 hours a

day in different parts of the globe, therefore, the annualised return9 of Reg-GP+GA

is 0.22776%. The annualised return is relatively small in comparison to alternative

investments opportunities around the same period of our sample datasets. For in-

stance, individual savings account (ISA), a type of investment in the UK that is

exempted from tax, yielded between 0.5% and 1.0% around the same period and to
9formula for calculating annualised return is [(1 + return)12 − 1]× 100
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address the low profit recorded, we propose a new strategy as part of our second

contribution (mortgage strategy 2019).

We also compared profitability between Reg-GP+GA and physical time-based

trading strategies. Results showed that returns obtained by Reg-GP+GA signifi-

cantly exceeded that of EDDIE and buy and hold. In fact, EDDIE experienced neg-

ative returns in 4 out of the 5 currency pairs (EUR/JPY, EUR/USD, GBP/CHF,

GBP/USD), which also resulted in a negative mean return of -0.00076%. On aver-

age, over all currency pairs analysed, buy-and-hold strategy made a mean return of

0.01274% which was 32.81% less than the mean return by Reg-GP+GA.

Table 4.8: Total number of positive months per currency pair in 10 months in % values

Algorithm Reg-GP+GA Factor-M+GA Factor-2+GA EDDIE

EUR/GBP 60% 50% 50% 60%
EUR/JPY 60% 40% 50% 20%
EUR/USD 50% 30% 80% 40%
GBP/CHF 30% 20% 70% 70%
GBP/USD 50% 40% 40% 60%

Total 50% 36% 58% 50%

Furthermore, we performed Friedman’s non-parametric statistical test to evalu-

ate the statistical significance of the returns by the evolutionary algorithm based

trading strategies. The null hypothesis is that the trading strategies come from

the same continuous distribution. From the result presented in Table 4.9, we ob-

served that returns from Reg-GP+GA is ranked the highest and they statistically

outperformed Factor-M+GA and EDDIE at α = 0.05 level. There was no statisti-

cal significance between Reg-GP+GA and Factor-2+GA; nevertheless, Reg-GP+GA

was ranked higher than Factor-2+GA. From the statistical and mean return result

of the DC based strategies, we can infer that it is more profitable to use equations

that express richer relationships as estimators of OS event length in trend reversal



CHAPTER 4. SYMBOLIC REGRESSION FORECASTING MODEL 85

forecasting algorithms.

Table 4.9: Statistical test of trading returns according to the non-parametric Friedman
test with Homel post-hoc test (using the best strategy (Reg-GP+GA) as the control (c) .
10-minute interval out-of-sample data. Significant differences at the α = 0.05 level

Algorithm Average ranking AdjustpHomm

Reg-GP+GA (c) 1.64 -
Factor-2+GA 1.76 0.64
Factor-M+GA 2.78 2.01E-17
EDDIE 3.82 9.27E-17

Table 4.8 details the number of positive trading days over which the excess return

in Table 4.7 was made. This information further shows the consistency of the trading

strategies over the trading period. Reg-GP+GA is ranked second, achieving 50%

positive trading days across all currencies. Factor-2+GA had the highest number

of positive trading days (58%) across all currency pairs analysed, notwithstanding,

result indicates that of the 5 currency pairs, Reg-GP+GA had more profitable days

than Factor-2+GA in 3 (EUR/GBP, EUR/JPY, GBP/USD). Factor-2+GA incurred

higher loss during the non-profitable days, and this was evident in the negative

return of -0.0093%. Similarly, EDDIE had the same number of profitable days as

Reg-GP+GA but loss incurred during the non-profitable days was high which led to

a negative return. Finally, Factor-M+GA had the least number of profitable days

(36%), the excess return was large enough to remain profitable after trading across

all currency pairs, nevertheless it was not enough to surpass Reg-GP+GA due to the

difference in the number of profitable days.
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4.5 Summary

Based on our experimentations and results, we achieved our main goal to improve

estimation of trend reversal. Greater insight into trend reversal prediction in DC

can be achieved if we can correctly estimate OS event length. Our out-of-sample

experimentation results show that our algorithm was able to estimate OS length

better than the other two algorithms currently in use. To evaluate the performance

of our algorithm at trading, we embedded it in an existing trading strategy. Overall,

test results showed that our version of the trading strategy called Reg-GP+GA was

the most profitable trading strategy statistically outperform on of the DC based

strategies and the physical time-based trading strategies.

In summary, anticipating trend reversal correctly is crucial for record profitable

trading results. Once a directional change is confirmed, we can estimate OS length,

thus forecast trend reversal in DC. We used SRGP to create equations that im-

proved prediction of OS event length. We showed that our SRGP can estimate OS

length with improved accuracy in comparison to other known OS length estimation

techniques experimented. We showed that profitability of an existing trading strat-

egy was improved after replacing the OS event length estimation equation with the

SRGP created one, thereby, outperforming two intrinsic-time and two physical-time

trading strategies (technical analysis, buy-and-hold). The limitations of this contri-

bution includes; (1) assumption that all DC trends are composed of both DC event

and OS event which makes the our trend reversal forecasting algorithms prone to

incorrect predictions when DC trend is composed of only DC event,(2) use of gener-

alised threshold size to summarise DC events which may not be efficient in capturing

the most significant events in physical time dataset, (3) limited number of currency

pairs compared which limits the ability to generalise the findings, (4) limited analysis
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without consideration for the risk level of the trading strategies to achieve profitable

returns and (5) example equations evolved by SRGP were not presented. These are

all going to be addressed in the next chapter.



Chapter 5

Combining Classification and

Symbolic Regression for Trend

Reversal Prediction

In the previous chapter, we presented a symbolic regression GP-based algorithm

that explores the types of relationship discoverable between DC event and OS event

lengths. To the best of our knowledge, an assuption in the existing approaches for

discovering a relationship between DC event and OS event lengths is that all DC

events have a corresponding OS event. After testing with thresholds from 0.005%

to 1.0% with step size of 0.0025, we observe that, in certain cases, it was possible

to have as little as 14.77% of DC event having a corresponding OS event. For

example, generating DC event series with a threshold of 0.0125% from a 10-minutes,

EUR/CSK, 01/06/2016 - 30/06/2016 times series, resulted in DC event series where

48% of DC events had a corresponding overshoot and the maximum observed in our

preliminary experimentation was 52.46%. Thus, one should not assume that all DC

88
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events are followed by an OS event or in other words an OS event of length greater

than zero, since it can lead to incorrect trend reversal prediction, consequentially

causing traders to misjudge the trend reversal point, consequently making incorrect

trading decisions.

Another observation, which we made in the previous chapter is the technique

used in selecting threshold to sample DC event series. Although it was reported by

Kampouridis and Otero (2017) that thresholds are chosen by first performing tuning

to select best performing threshold, tuning was done across their five currency pair

datasets. According to Tsang et al. (2017), different thresholds observe distinct DC

events and trends from the same physical time-series. We can thus hypothesise that

the same threshold can observe different DC events and trends from different physical

time-series. These observations have motivated us to propose two improvements to

our current DC trend reversal approach.

We propose, (1) a dynamic threshold selection step that finds a threshold that

best captures significant events in physical time dataset, and (2) a classification

step to separate DC trends into two categories. In the first category are DC trends

composed of DC event and OS event which we called αDC. In the second category

are those DC trends composed of only DC events (also can be considered as DC

trends with OS event of zero length) and we called them βDC. In βDCs, DC events

are followed by another DC event of the opposite direction (e.g., a downwards DC

trend is directly followed by an upwards DC trend). This knowledge will enable us

use the OS event length estimation equation more efficiently, thus improving trend

reversal point forecast accuracy.

Therefore, our goal in this chapter is twofold: (1) to improve our trend reversal

estimation model by tailoring threshold selection, distinguishing DC trends composed

of DC event and OS event from others without OS event and estimate OS event
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length only when a DC trend is classified to compose of OS event and DC event,

(2) to embed our trend reversal estimation approach in a novel trading strategy, to

show that improved trend reversal estimation leads to increase in excess return at

reduced risk. The improvement proposed in our trend reversal estimation model is

carried out using only training data to avoid bias when we apply our algorithm to the

unseen data. The rest of the chapter is organized as follows: Section 5.1 presents our

dynamic DC threshold selection and OS event length estimation approaches. Section

5.2 presents our novel DC trend classification approach. Section 5.3 presents our DC

trend estimating framework that combines DC trend classification and OS event

length estimation. Section 5.4 presents our novel trading algorithm. 5.5 presents

our experimental setup. Section 5.6 presents our benchmark trading strategies, and

Section 5.7 presents and discusses our findings. Finally, Section 5.8 concludes the

chapter.

5.1 DC threshold and Symbolic Regression GP

Selection

Selection of an appropriate threshold to snapshot significant events from a physical

time series is vital. This is because each threshold provides a distinct perspective

of the data. Figure 5.1 presents a physical time-series that is transformed into a

DC event series using thresholds 0.01% and 0.018%. As we can see, each threshold

produced a different event series. Each event series has a distinct number of trends

which conditions the maximum possible profit of the event series it captures (Tsang

et al. 2017). Therefore, the choice of an appropriate threshold size is crucial. In our

first contribution in Chapter 4, we used five fixed size thresholds to create DC event
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Figure 5.1: Directional changes for GBP JPY currency pair. The red lines denote a set
of events defined by a threshold θ = 0.01% , while the blue lines refer to events defined
by a threshold θ = 0.018% . The solid lines indicate the DC events, and the dashed lines
indicate the OS events. Under θ = 0.01%, the data is summarised as follows: Point A 7→ B
(downturn directional change event), Point B 7→ C (downward overshoot event), Point
C 7→ D (Upturn directional change event), Point D 7→ E (Upward overshoot event), Point
E 7→ F (Downturn directional change event). Under θ = 0.018% , the data is summarised
as follows: Point A 7→ B

′ (Downturn directional change event), Point B′ 7→ C (Downward
overshoot event), Point C 7→ E (Upturn directional change event), Point E 7→ E

′ (Upward
overshoot event). Points A, C, E, and E′ are DCE points (DC Extreme). Points B, B′ , D,
E, and F are called DCC points (DC Confirmation).

series of the five currency pairs that we experimented, an approach which may not

be optimal. In this contribution, we selected the threshold that was associated with

the highest ranked symbolic regression model.

Figure 5.2 presents how we simultaneously chose a threshold, DC event series and

SRGP model (i.e., symbolic regression GP). First, we created a pool of candidate

DC thresholds from 0.005% to 0.1% and a step size of 0.0025. We then used each

threshold to generate an event series from the same physical time series. From each
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Figure 5.2: Our proposed framework for evolving symbolic regression model and selecting
threshold and DC event of best fitting regression model.

event series (i.e. the DC dataset), we selected trends that have OS event length

greater than 0 to create a new event series i.e., αDCs,. We then evolved symbolic

regression GP model for each new event series that estimated the average OS event

length. We ranked the models according to their estimation accuracy and selected

one that had the least root mean squared error (RMSE) together with the threshold

and original DC event series associated with it for the rest of experimentation.

OSl = f(DCl) (5.1)
where :

OSl = the length of an OS event

DCl = the length of a DC event
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Figure 5.3: Our proposed framework for creating a classification model. The classification
model classifies DC trends into αDC and βDC

5.2 Classification Step

Figure 5.3 presents how we used Auto-WEKA, an AutoML framework we already

described in Chapter 3.4.1 to find a suitable classifier for classifying DC trends as

either αDC or βDC. As can be seen in the figure, we extracted relevant DC at-

tributes from ‘Best DC event series’, that is, the DC events series that was selected

in the previous step we described in Section 5.1. We then fed the attributes dataset

into Auto-WEKA which outputs the recommended classification model.
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Table 5.1: Classification dataset attributes - A brief description of independent variables
used for classifying whether a DC trend has OS event or not.

Attributes Name Formula Description

X1 DC˙eventPrice
∣∣∣∣Pext − PdccPext

÷ θ
∣∣∣∣ This is the price difference between

the upturn/downturn extreme point
and the confirmation point (Tsang
et al. 2017).

X2 DC˙eventTime
∣∣∣∣Text − TdccText

÷ θ
∣∣∣∣ This is the time difference be-

tween the upturn/downturn point
and the directional change confirma-
tion point (Tsang et al. 2017).

X3 Sigma
′

∣∣∣∣DCeventPrice× θDCeventTime

∣∣∣∣ This is the speed at which price
change from upturn/downturn ex-
treme point to the directional
changes confirmation point.

X4 DCevent−1
price

Pdcc−1 This is the market price at previous
confirmation points.

X5 DCevent−1
OS

This is a Boolean variable (Yes/No).
Indicates whether the immediate
previous DC trend has an OS
event.

X6 Flash event This is a Boolean variable (Yes/No).
Indicates whether DC event start
time and end time are equal

The attributes used for creating our classification model are all DC-related and

presented in Table 5.1. We use six different attributes, which are related to DC and

OS events’ price and time, as well as the speed of price changing. Attributes X1

and X2, were first derived and presented in (Glattfelder, Dupuis and Olsen 2011).

Attributes X3, X4, X5 and X6 are new attributes derived from experiments with

a set of different attributes and identifying the ones with the best classification

performance on the validation dataset. To illustrate how the attributes are derived

from a DC event series of EUR USD, we use the second DC trend presented in Figure

5.4. The price and time at the extreme point are 1.37 USD and around 4.5 × 104

respectively and the price and time at DCC point are 1.33 USD and 7.2 × 104. The
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value of attribute X1, X2 and X3 are 1.33, 20 and 0.002 respectively. The value of

attribute X4, X5 and X6 are extracted directly from the dataset and are 1.34, Yes

and No respectively.

Figure 5.4: A set of directional changes trends (three DC events and two OS events) for
EUR USD currency pair captured from a minute physical time series using a 3% threshold.
The red lines denote DC events and the green lines marks OS events. Source Tsang et al.
(2017)
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Figure 5.5: Our proposed framework to build a trend reversal point forecasting model. A
DC trend classified to compose of only DC event is expected to reverse at DCC point, while
DC trend classified to compose of DC and OS events is expected to reverse at estimated
DCE point, which is the sum of DC event length at DCC point, and the OS event length
predicted using SRGP derived Equation 5.1.

5.3 Trend Reversal Estimation Model

Figure 5.6 presents our framework for forecasting trend reversal point. Having chosen

the best threshold, evolved a symbolic regression GP model and selected a classi-

fication model, we are now able to combine them to form our trend reversal point

forecasting model. The model uses the classifier to determine whether a DC trend is

an αDC or βDC. If the DC trend is classified as αDC, we conclude that, at the end
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of the DC event an OS event in the same direction follows. We use our symbolic re-

gression GP model formulated according to Equation (5.1) to estimate the OS event

length. The estimated trend reversal point is then calculated as the sum of the DC

event length and the estimated OS event length. On the other hand, if the DC trend

is classified as βDC, we conclude that the trend reverses at the directional change

confirmation point.

5.4 Trading Strategy

To evaluate the effectiveness of our trend reversal forecasting model, we embed it in

a novel trading strategy and Figure 5.4 presents the framework of the strategy. In

the rest of the section, we present the trading strategy and how it is evaluated.

5.4.1 Rules Overview

A Forex market is a quotation of two currency pair, with the value of one currency

being quoted against another. The first currency in the pair is called the base

currency, and the second currency is called the quote currency. The market price

indicates how much of the quoted currency is needed to purchase the base currency.

For example, assuming the most recent quotation of EUR/USD market 1.2500. This

means 1.2500 Dollars is required to purchase 1 Euro. Algorithms 5.1 and 5.2 present

the rules used by our trading algorithm for selling and buying the base currency.

We sell the base currency at the estimated trend reversal point in upward trends,

provided there is not an existing open position and return is positive after deducting

transaction costs. We buy the base currency at the estimated trend reversal point in

downward trends if there is an existing open position and the return is positive after
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Figure 5.6: Our proposed framework to build an single threshold-based trading strategy.
It combines a DC trend reversal point forecasting model and trading rules. The forecasting
model and trading rules are applied at every directional change confirmation point in the
DC event series.

deducting transaction costs. It is worth noting that the trend reversal point can be

either of a αDC or βDC trend. In all other cases, we adopt a hold trading strategy.

For example, if a new DC trend is confirmed before the estimation trend reversal

point is reached. All transactions are done using our entire capital. The transaction

cost is 0.025% per transaction.
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Algorithm 5.1 Trading rules used for selling the base currency
Require: Sell rule

if DC trend is upward then
if There is no open position then

if Is βDC && Return is not negative then Open a position at DCC point
else if Is αDC && DC trend does not reverse before estimated DCE point

&& Return is not negative then Open a position at forecasted DCE point
else Hold
end if

end if
end if

Algorithm 5.2 Trading rules used for buying the base currency
Require: Buy rule

if DC trend is downward then
if There is an open position then

if Is βDC && Return is not negative then Close position at DCC point
else if Is αDC && DC trend does not reverse before estimated DCE point

&& Return is not negative then Close position at forecasted DCE point
else Hold
end if

end if
end if
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5.4.2 Trading strategy evaluation

To evaluate our trading strategy, we measure profitability and risk. We report aver-

age return, Sharpe ratio and Maximum Drawdown (MDD). Return, shown in Equa-

tion 5.2, measures the amount earned or the loss incurred from a Forex buy or sell

transaction after considering transaction cost. Transaction cost, shown in Equation

5.3, is the expense incurred for completing a trade transaction and it is calculated per

transaction as 0.025% of the Forex amount traded. We also measure return relative

to the degree of risk involved in achieving it using Sharpe ratio, shown in Equation

5.5. Sharpe ratio is used by investors to determine whether the expected return out-

weighs the risk involved with the transaction. It is calculated by deducting risk-free

rate from the mean return and dividing the result by the standard deviation.

Risk-free return is a theoretical return ascribed to an investment that provides a

guaranteed return with zero risk which is factored into the pricing of an asset and

excluded when evaluating the risk-adjusted return. To the best of our knowledge,

there aren’t such risk free investments in Forex trading and for that reason risk-free

rate is assign a zero value. To evaluate the potential loss in value of the currency that

we buy due to changes in market conditions, we measure MDD, shown in Equation

5.4. It is measured by calculating the maximum observed loss from a peak price to

a trough before a new peak is reached.

R = (Q− TC) ∗ FXrate (5.2)

TC = Q ∗ 0.025
100 (5.3)
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MDD = Ptrough − Ppeak
Ppeak

(5.4)

SharpeRatio = R−RFR
σR

(5.5)

In Equation 5.2, R is the return, Q is the quantity, TC the transaction cost,

FXrate the FX rate of the relevant currency pair, MDD is the mean Maximum

Drawdown, Ptrough the trough of the price, Ppeak the peak of the price, RFR the risk

free rate, and σR is the standard deviation of the return.

5.5 Experimental setup

We use 10-minute interval high frequency data from March 2016 to February 2017

of the following currency pairs: AUD JPY (Australian Dollar and Japanese Yen),

AUD NZD (Australian Dollar and New Zealand Dollar), AUD USD (Australian Dol-

lar and US Dollar), CAD JPY (CAD Dollar and Japanese Yen), EUR AUD (Euro

and Australian Dollar), EUR CAD (Euro and Canadian Dollar), EUR CSK (Euro

and Czechoslovak koruna), EUR NOK (Euro and NOK), GBP AUD (British Pound

and Australian Dollar), NZD USD (New Zealand Dollar and US Dollar), USD CAD

(US Dollar and Canadian Dollar), USD NOK (US Dollar and Norwegian Krona),

USD JPY (US Dollar and Japanese Yen), USD SGD (US Dollar and Singaporean

Dollar), USD ZAR (US Dollar and South African Rand), EUR GBP (Euro and

British Pound).

We also use 10-minute interval data from June 2013 to May 2014 of the following

currency pairs: EUR USD (Euro and US dollar), EUR JPY (Euro and Japanese

Yen), GBP CHF (British Pound and Swiss Franc), and GBP USD (British Pound
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and US Dollar). We consider each month in the period as a separate physical-time

dataset. In our tuning phase, we use 200 DC datasets for tuning (i.e., five DC

thresholds × 20 currency pairs × first two months of our physical-time data). For

the rest of the experiment, we use 1000 DC datasets (i.e. five DC thresholds × 20

currency pairs × remaining 10 months of our physical time datasets). Each tuning

and non-tuning DC dataset is split in 70:30 ratio as training and testing sets.

As different DC thresholds produce different DC event series, we chose to evaluate

five different thresholds for all tuning and non-tuning DC datasets. These thresholds

are the best five thresholds that are dynamically selected based on the RMSE of their

associated OS event length estimation algorithm that we already presented in Section

5.1. In the results section, we report the average performance of each algorithm over

these five DC thresholds.

5.5.1 Parameter tuning

With regards to the classification task, the only parameter of Auto-WEKA requiring

tuning was the execution time. This is because Auto-WEKA requires time to search

its algorithms and hyperparameter space for a classification model that best predict

our two class labels (αDC, βDC). To avoid any bias and ensure that all data

points are considered, Auto-WEKA trains the best fit classifier is determined using

only training dataset and 10-fold cross-validation. We experimented with different

runtime configurations, namely 15, 30, 45, 60 and 75 minutes. We chose a runtime

of 60 minutes based on the mean F-measure, which we observed to diminish at a

runtime of 75 minutes. Depending on the number of CPU cores available, it is

possible to execute Auto-WEKA in serial or parallel mode. For our experiments we

executed Auto-WEKA in serial mode, using a single CPU core..
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With regards to the OS length estimation task, the only necessary tuning was

for the GP algorithm (Equation 5.1). We tuned the GP population size, number

of generations, tournament size, crossover probability and maximum depth parame-

ters using the I/F-Race package (López-Ibánez et al. 2011). It implements a racing

method for the selection of the best configuration for an optimisation algorithm

by empirically selecting the most appropriate settings for the parameters of an op-

timisation problem (Birattari et al. 2010). Table 5.2 presents our GP parameter

configuration determined by using I/F-Race run with a budget of 2000 iterations, a

survivor rate of 4 and selecting the configuration with the largest population size.

Table 5.2: Regression GP experimental parameters for detecting DC-OS relationship, de-
termined using I/F-Race.

Parameters Configuration

Population 500
Generation 37
Tournament size 3
Crossover probability 0.98
Mutation probability 0.02
Maximum depth 3
Elitism 0.10

5.6 Trading

To evaluate the efficiency of our proposed trading framework, we compare it with

several other benchmarks. These benchmarks are grouped into two categories: DC-

related algorithms, and non-DC-related algorithms. In the rest of the section, we

present in detail the different algorithms that we use as benchmarks.
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5.6.1 DC-related algorithm

(C+) Factor-2 : This is an algorithm that is based on the DC approach originally

presented in Glattfelder, Dupuis and Olsen (2011) where Factor-2, already described

in Chapter 4, is used to estimate OS event length at directional change confirmation

point. In this algorithm, we dynamically select the best threshold for sampling DC

event series and replace the classification, and regression steps of our trend reversal

estimation approach with Equation 5.6. Thus, Factor-2 is the approach without

classification, and we estimate trend reversal for all DC trends in the dataset. DC

trend reversal is calculated as the sum of DC and OS event length. OS event length

is calculated as DC event length multiplied by 2 and calculated . C+Factor-2 is the

same approach with an additional classification step. In C+Factor-2, we estimate

OS event length with Equation 5.6 only if a classifier predicts a trend to be αDC.

If the DC trend is classified as βDC, the DCC point is treated as the trend reversal

point.

OSl ≈ 2×DCl (5.6)

(C+) Factor-M : This is an algorithm that is based on the DC approach originally

presented in (Kampouridis and Otero 2017) where Factor-M, already described in

Chapter 4, is used to estimate OS event length at directional change confirmation

point. In this algorithm, we dynamically select the best threshold for sampling DC

event series and replace the classification, and regression steps of our trend reversal

estimation approach with Equation 5.7. Thus, Factor-M is the approach without

classification, and we estimate trend reversal for all DC trends in the dataset. DC

trend reversal is calculated as the sum of DC and OS event length. OS event length

is calculated as DC event length × M . C+Factor-M is the same approach with an
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additional classification step. In C+Factor-M, we estimate OS event length with

Equation 5.7 only if the classifier predicts a trend to be αDC.

OSl = M ×DCl (5.7)

where :

OSl = the length of an OS event

DCl = the length of a DC event.

C = a time-varying constant, which can take any positive real value, M > 0 .

(C+) Reg-GP : This is an algorithm that is based on the DC approach presented

in our first contribution presented in Chapter 4 where Reg-GP is used to estimate

OS event length at directional change confirmation point. In this approach, we

dynamically select the best threshold for sampling DC event series and use Equation

5.1 for estimating OS event length. DC trend reversal point is calculated as the sum

of DC and estimated OS event length. Reg-GP is the approach without classification,

and we estimate OS event length at every DCC point encounter in the event series.

C+Reg-GP is the same approach with an additional classification step which we

already describe in Section 5.3. we estimate OS event length with Equation 5.1 only

if the classifier predicts a trend to be αDC.

p-trading : These are variations of the three afore mentioned approaches at esti-

mating trend reversal (i.e., Factor-2, Factor-M and Reg-GP). A probability ratio p

of DC event being followed by an OS event is calculated from the training DC event

series associated with Factor-2, Factor-M, Reg-GP respectively and used to predict

whether DC event will be followed by OS event in testing. For example, if there are
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100 DC trends in an event series and 90 of them are composed of DC and OS events,

p is calculated to be 0.9. At the directional change confirmation (DCC) point , we

stochastically generating a real value between 0.0 and 1.0. If the value is less than

or equal 0.9, we estimate OS event length of the DC trend. If the value is greater

than 0.9, the DC trend is considered to reverse at the DCC point because there isn’t

an OS event (i.e. OS event length is 0). The motivation behind this scenario is to

highlight the importance of the classification step before estimating OS event length.

As there are three different event series, there are as a result three variations of the

tailored trading benchmark namely, p+Factor-2, p+Factor-M and p+Reg-GP.

Trade at DCC point : Again, there are three different event series created and

associated with Factor-2, Factor-M and Reg-GP. There are as a result three variation

of this scenario namely DCC+Factor-2, DCC+Factor-M and DCC+Reg-GP. In this

scenario, trade actions are taken as soon as a directional change is confirmed, i.e., at

the DC confirmation point (DCC). The motivation behind this scenario is to inves-

tigate the trading profitability if the OS events length is ignored and instead, focus

trading only on the DC events. Provided that our proposed classification algorithms

outperform this scenario, it would again demonstrate that the introduction of the

classification step is advantageous and better than not having classification and the

knowledge of the OS length.

Non-DC benchmarks

Technical analysis trading strategy : Technical analysis based trading strat-

egy is a well-known approach used in trading. It uses technical indicators for in-

sight when to make trading decisions. We experimented with seven trading strate-

gies that utilised the following technical indicators; Exponential Movement Average
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(EMA), Bollinger Bands (BOLLIN), Simple Moving Average (SMA), AROON Oscil-

lator (AROON), Rate of Change (ROC), Relative Strength Index (RSI) and Moving

Average Convergence Divergence (MACD).

Buy-and-hold : Buy and hold is a well-known benchmark for trading algorithms.

Under this trading strategy we buy the quoted currency in the first month of our

non-tuning data and then sell it in exchange for the base currency after the 10 month

period.

5.7 Results

Our experiment aims: (1) to demonstrate that the introduction of the classification

step led to improvement in trend reversal estimation, and (2) to demonstrate that the

dynamic selection of thresholds and the introduction of the classification step signif-

icantly improve the profitability of DC-based strategies in general, and specifically,

our proposed trading strategy that embed our trend reversal estimation algorithm

yielded more profit, outperforming other DC and non-DC based trading strategies

such as technical analysis and buy-and-hold.

5.7.1 Regression result

Table 5.3 presents the average RMSE result of the OS length estimation step from

the top five DC thresholds over 10 months for GP-Reg, Factor-M, and Factor-2. For

each of these three algorithms, we present the RMSE for two variations: (1) with

the classification step and (2) without the classification step. For the variations that

included the classification step (denoted with prefix C+), trends in the event series

are first classified as either αDC or βDC. Then, OS event length is estimated in the
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cases that trends are classified as αDC. Whereas in βDC, the trend is considered

to reverse at DCC point and OS event length is not estimated.

Table 5.3 shows that C+Reg-GP has the lowest average RMSE (18.8175) across all

six algorithms. C+Reg-GP has 11 cases (out of the 20 currency pairs) that returned

the lowest RMSE per currency pair, Reg-GP has four such cases, C+Factor-M three

cases, and C+Factor-2 two cases. More importantly, we observe that the average

RMSE for each algorithm with the classification step has returned a lower average

RMSE when compared to its respective variation without classification: C+Reg-GP

(18.6550) vs Reg-GP (20.3216), C+Factor-M (20.5592) vs Factor-M (34.4474), and

C+Factor-2 (21.3247) vs Factor-2 (25.7951). It is worth noting that the classification

accuracy (presented in brackets) is high, ranging between 70% and 85%. As we

have hypothesised, the introduction of classification step played an important role in

reducing the average RMSE for all three algorithms (Reg-GP, Factor-M, and Factor-

2).

An interesting observation is that while the EUR/CSK pair has relatively low

classification accuracy across all variants (55-58%), howbeit, based on the average

RMSE result recorded, the variants with the classification step is closer to the line of

best fit. We investigated further and found that the EUR/CSK currency pair has the

lowest average number of DC events (55 in the training set, 18 in the test set), while

the average number of DC events for all other currency pairs is 194 in training and

60 in test. In addition, the length of DC events (i.e., number of physical time data

points making up a single event) is the longest for EUR/CSK (46 in training, 32 in

test), compared to an average of 12 in both training and test for all other currency

pairs. This meant that there were fewer and long significant DC trends captured

from the EUR/CSK physical time datasets. When the algorithms are run without

the classification step, every DC event is assumed to be followed by an OS event and
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because the DC event lengths are long, the estimated OS event lengths are also long.

Therefore, every time the trend reversal forecasting model that does not include the

classification step (Reg-GP, Factor-M, Factor-2) estimated OS event where in reality

the OS event length is zero, the RMSE recorded became larger. The classification

step, despite the low accuracy (55-58%), reduces significantly the RMSE by reducing

the number of times that the OS length estimation algorithm is used which in turn

avoid larger trend reversal estimation errors.

Table 5.3: Mean RMSE values for each OS length estimator algorithm. 1000 datasets
consisting of five different dynamically generated thresholds tailored to each DC dataset,
20 currency pairs, and 10 months of 10-minute interval data for each currency pair. In
brackets is reported the classification accuracy, for reference (for C+Reg-GP, C+Factor-M,
C+Factor-2). The best mean RMSE per currency pair is in bold text

Algorithms C+Reg-GP Reg-GP C+Factor-M Factor-M C+Factor-2 Factor-2
AUD/JPY 15.5670 (0.851) 15.6270 17.1570 (0.778) 25.5270 18.4720 (0.782) 22.2690
AUD/NZD 27.368 (0.805) 24.3320 27.4110 (0.806) 51.2420 31.9260 (0.761) 41.5920
AUD/USD 11.5800 (0.829) 12.8140 12.7200 (0.768) 16.0950 11.8270 (0.745) 14.0600
CAD/JPY 11.8430 (0.820) 18.7850 14.6860 (0.779) 39.9700 16.8800 (0.764) 27.2510
EUR/AUD 21.1710 (0.821) 20.5690 20.2010 (0.799) 25.7280 14.7520 (0.751) 19.7490
EUR/CAD 16.2050 (0.839) 17.7190 21.0950 (0.784) 23.1830 22.6420 (0.750) 24.8670
EUR/CSK 41.9900 (0.557) 52.9490 46.0270 (0.581) 188.6080 63.0420 (0.565) 83.8450
EUR/GBP 24.1730 (0.825) 22.6350 25.5870 (0.766) 31.4300 17.2120 (0.752) 18.7900
EUR/JPY 19.9650 (0.821) 21.1170 23.4540 (0.758) 28.1620 23.1640 (0.748) 25.2040
EUR/NOK 13.7170 (0.818) 13.7620 20.4120 (0.727) 27.2010 19.5710 (0.728) 22.4990
EUR/USD 28.2600 (0.806) 31.0610 26.8990 (0.786) 38.5320 27.6690 (0.762) 30.0380
GBP/AUD 15.1380 (0.837) 14.7190 19.2820 (0.832) 21.6700 14.8810 (0.780) 17.9100
GBP/CHF 15.9610 (0.831) 17.2040 17.5260 (0.784) 19.3580 21.4210 (0.769) 23.6690
GBP/USD 19.2040 (0.851) 24.8890 17.8250 (0.790) 21.2230 25.3210 (0.746) 27.7780
NZD/USD 10.2300 (0.848) 10.5880 11.0920 (0.772) 14.7310 13.1350 (0.773) 15.8960
USD/CAD 26.9340 (0.797) 26.8180 27.1330 (0.766) 34.6540 27.5190 (0.739) 29.3150
USD/JPY 13.7040 (0.850) 14.5430 15.9860 (0.774) 17.9980 16.0310 (0.777) 18.3260
USD/NOK 07.7180 (0.887) 7.3570 9.96900 (0.813) 14.1280 8.1830 (0.792) 10.7640
USD/SGD 26.9320 (0.780) 34.1480 31.9440 (0.799) 41.7120 27.4980 (0.720) 34.3600
USD/ZAR 5.4400 (0.877) 4.7960 4.7770 (0.807) 7.7960 5.3470 (0.813) 7.7200
Average 18.8175(0.818) 20.5687 20.7382(0.773) 34.9169 21.4748 (0.749) 25.9807
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Table 5.4: Statistical test results of OS length estimation according to the non-parametric
Friedman test with the Hommel post-hoc test. Significant differences at the α = 0.05 level
are shown in boldface.

Algorithm Average Rank AdjustpHomm

C+Reg-GP (c) 1.9000
Reg-GP 2.5 0.3105
C+Factor-M 2.9499 0.1518
C+Factor-2 3.1500 0.1038
Factor-2 4.8999 1.5835E-6
Factor-M 5.5999 1.9985E-9

Table 5.4 presents the result of Friedman’s non-parametric statistical test. The

null hypothesis is that all algorithms come from the same continuous distribution.

The table shows the average rank according to the Friedman test (first column),

and the adjusted p-value of the statistical test when that algorithm’s average rank is

compared to the average rank of the algorithm with the best rank (control algorithm)

according to the Hommel post-hoc test (second column). As we can observe, C+Reg-

GP ranks first and statistically outperforms at the α = 0.05 level all other algorithms.

More importantly, C+Reg-GP outranks Reg-GP, C+Factor-2 outranks Factor-2, and

C+Factor-M outranks Factor-M.

Summarising our findings so far, the addition of the classification step (C+Reg-

GP, C+Factor-M, C+Factor-2) to existing DC-based algorithms (Reg-GP, Factor-

M, Factor-2) that use Equations 4.1, 5.7 and 5.1 has reduced the average predictive

error. Additionally, the DC algorithms that use the classification step outrank their

variation that estimate OS event length at every DC event.
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5.7.2 Trading result

Our interest now shifts to the trading step in order to investigate whether the intro-

duction of classification step also leads to an increase in trading profit margins (in

addition to reduced OS length estimation error, as we have just seen in the previous

section).

We compare the average returns, maximum drawdown and Sharpe ratio results

of our approach to other strategies. We group the results according to data sampling

technique namely, directional changes, technical analysis and buy-and-hold. We

further breakdown the presentation of directional changes based result according

to their trend reversal prediction algorithm. We would like to draw the attention

to cases where 0.00 is reported as return. This indicates that a hold action was

taken by the trading strategy in the 10 months period we experimented. Best value

for each row (currency pair) is shown in boldface. In all tables, the best value

among the different variants (Reg-GP, Factor-M, Factor-2, technical indicator) is

underlined. We also present their Friedman non-parametric statistical test result.

The null hypothesis in all cases is that the algorithms come from the same continuous

distribution. The first column on the table for the Friedman test result presents the

average rank of each algorithm and the second column presents the adjusted p-value

of other algorithm’s average rank compared to that of the control algorithm (i.e.,

algorithm with the best rank). The adjusted p-value is calculated by the Hommel

post-hoc test.

Comparison to DC based trading strategies

Table 5.5 presents comparison monthly mean return result of C+Reg-GP and other

strategies that estimated OS event length using symbolic regression GP, namely
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Reg-GP, p+Reg-GP and DCC+Reg-GP. The results shows that C+Reg-GP has the

highest return and outperformed them in 14 of the 20 currency pairs compared.

Table 5.5: Average monthly return (%) result. Comparison between C+Reg-GP and other
GP based trading strategies. 10-minute interval out-of-sample data. 20 different currency
pairs and 10 calendar months each representing the physical dataset. five DC dataset were
generated using five dynamically generated thresholds tailored to each DC dataset. Best
value for each row (currency pair) is shown in boldface. Result shown in % values.

Dataset C+Reg-GP Reg-GP p+Reg-GP DCC+Reg-GP
AUD JPY 0.0000 0.0000 0.0000 0.0000
AUD NZD 0.2600 -0.0890 0.0709 0.0110
AUD USD 0.2727 -0.4636 -0.2061 -0.2223
CAD JPY 0.0000 0.0000 0.0000 0.0000
EUR AUD 0.1861 -0.0391 -0.0868 -0.1626
EUR CAD 0.1922 -0.2428 -0.2218 -0.1332
EUR CSK 0.0336 0.0102 0.0191 0.0455
EUR GBP 0.1040 -0.0865 -0.0350 0.0218
EUR JPY 0.0202 -0.0623 -0.0036 -0.0486
EUR NOK 0.3509 -0.0428 -0.1281 0.0048
EUR USD -0.0006 0.0202 -0.0688 -0.2548
GBP AUD 0.3542 0.2956 -0.1312 -0.0526
GBP CHF 0.2022 -0.1160 -0.0536 -0.1384
GBP USD -0.0590 -0.0478 -0.1415 -0.4172
NZD USD 0.2803 -0.4779 -0.0115 0.0738
USD CAD 0.0443 0.0109 -0.3405 -0.3064
USD JPY 0.0000 0.0000 0.0000 0.0000
USD NOK 0.4612 -0.0208 -0.2210 -0.0662
USD SGD 0.0303 0.0272 -0.0516 -0.1478
USD ZAR 1.7625 0.8403 -0.0913 0.6432
Average 0.2247 -0.0242 -0.0851 -0.0575

Table 5.6 presents comparison result of return between C+Reg-GP and C+Factor-

M, Factor-M, p+Factor-M and DCC+Factor-M. Result shows that C+Reg-GP out-

performed all Factor-M variants in 14 currency pairs. C+Factor-M outperformed

other Factor-M variants in 13 currency pairs.
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Table 5.6: Average monthly return (%) result. Comparison between C+Reg-GP and trad-
ing strategies based on Factor-M. 10-minute interval out-of-sample data. 20 different cur-
rency pairs and 10 calendar months each representing the physical dataset. five DC dataset
were generated using five dynamically generated thresholds tailored to each DC dataset.
Best value for each row (currency pair) is shown in boldface. Result shown in % values

Dataset C+Reg-GP C+Factor-M Factor-M p+Factor-M DCC+Factor-M
AUD JPY 0.0000 0.0000 0.0000 0.0000 0.0000
AUD NZD 0.2600 0.0747 -0.0626 0.1084 0.0223
AUD USD 0.2727 -0.0037 -0.3270 -0.1749 -0.2933
CAD JPY 0.0000 0.0000 0.0000 0.0000 0.0000
EUR AUD 0.1861 0.0139 -0.1244 -0.0974 -0.0197
EUR CAD 0.1922 0.0784 -0.0194 0.0621 -0.2208
EUR CSK 0.0336 0.0381 0.0355 0.0264 0.0643
EUR GBP 0.1040 0.0682 -0.0609 0.0625 -0.1136
EUR JPY 0.0202 0.0112 -0.0197 0.0218 0.0007
EUR NOK 0.3509 0.1703 -0.1475 -0.0895 0.0955
EUR USD -0.0006 -0.0894 -0.1049 -0.1939 -0.1396
GBP AUD 0.3542 0.1012 -0.2473 0.0719 0.0035
GBP CHF 0.2022 -0.0209 -0.0866 -0.1372 -0.1590
GBP USD -0.0590 -0.1226 -0.2035 -0.2336 -0.3485
NZD USD 0.2803 -0.1234 -0.1586 -0.0155 -0.0886
USD CAD 0.0443 -0.0293 -0.2238 -0.2230 -0.2475
USD JPY 0.0000 0.0000 0.0000 0.0000 0.0000
USD NOK 0.4612 0.1419 -0.4332 -0.1482 0.0011
USD SGD 0.0303 0.1108 -0.0233 0.0229 -0.0028
USD ZAR 1.7625 0.9516 0.6954 0.3467 0.6417
Average 0.2247 0.0686 -0.0756 -0.0295 -0.0402

Table 5.7 presents comparison result between C+Reg-GP and C+Factor-2, Factor-

2, p+Factor-2 and DCC+Factor-2. Return shows that C+Reg-GP outperformed all

Factor-2 variants in 12 currency pairs. C+Factor-2 outperformed other Factor-2

variants in 10 currency pairs.

C+Reg-GP has the highest mean return (0.2247%) across all algorithms and

an annualised return of 2.73% . Furthermore, all versions that have introduced

the classification step recorded the highest average return in their respective group
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Table 5.7: Average monthly return (%) result. Comparison between C+Reg-GP and trad-
ing strategies based on Factor-2 . 10-minute interval out-of-sample data. 20 different cur-
rency pairs and 10 calendar months each representing the physical dataset. five DC dataset
were generated using f dynamically generated thresholds tailored to each DC dataset. Best
value for each row (currency pair) is shown in boldface. Result shown in % values.

Dataset C+Reg-GP C+Factor-2 Factor-2 p+Factor-2 DCC+Factor-2
AUD JPY 0.0000 0.0000 0.0000 0.0000 0.0000
AUD NZD 0.2600 0.0328 -0.0122 0.0616 0.0248
AUD USD 0.2727 -0.0223 -0.1321 -0.2752 -0.4222
CAD JPY 0.0000 0.0000 0.0000 0.0000 0.0000
EUR AUD 0.1861 0.1434 0.0547 0.0926 -0.1400
EUR CAD 0.1922 0.0810 -0.1512 -0.1225 -0.0871
EUR CSK 0.0336 0.0139 0.0046 0.0146 0.0548
EUR GBP 0.1040 0.1105 0.0317 0.0792 -0.0595
EUR JPY 0.0202 -0.0287 -0.0156 0.0161 -0.0145
EUR NOK 0.3509 -0.0300 -0.0691 0.1651 0.0693
EUR USD -0.0006 -0.0779 0.0318 -0.0416 -0.1367
GBP AUD 0.3542 0.0990 0.4061 -0.2356 0.0387
GBP CHF 0.2022 0.0514 -0.0283 -0.1698 -0.2131
GBP USD -0.0590 -0.0050 -0.0466 -0.1524 -0.3188
NZD USD 0.2803 0.1294 -0.1738 -0.1421 -0.2045
USD CAD 0.0443 -0.0465 0.0224 -0.3631 -0.1372
USD JPY 0.0000 0.0000 0.0000 0.0000 0.0000
USD NOK 0.4612 0.3929 -0.0188 -0.1846 0.0995
USD SGD 0.0303 0.0712 0.1299 -0.0222 0.0348
USD ZAR 1.7625 1.4571 0.4870 0.7265 0.8492
Average 0.2247 0.1186 0.0260 -0.0277 -0.0281

(C+Reg-GP, : 0.2247, C+Factor-M: 0.0684, C+Factor-2: 0.1186), whereas all other

DC based strategies had negative mean returns, with the exception of Factor-2, which

shows marginally positive average returns of 0.0260.

To support our findings, we applied Friedman’s non-parametric statistical test.

The result of the statistical test presented in Table 5.8 shows that all three DC

versions with the classification step (i.e., C+Reg-GP, C+Factor-M, C+Factor-2) rank

the highest, and outperform all other variants without the classification step. In
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addition, C+Reg-GP ranks first and statistically outperforms all algorithms, apart

from C+Factor-M and C+Factor-2, at the 5% significance level.

Table 5.8: Statistical test results of average montly returns according to the non-parametric
Friedman test with the Hommel post-hoc test of C+Reg-GP (c) vs DC based trading
strategies. 10-minute interval out-of-sample date. Significant differences between the con-
trol algorithm (denoted with (c) and the algorithms represented by a row at the α = 5%
level are shown in boldface indicating that the adjusted p value is lower than 0.05.

Trading strategies Average Rank AdjustpHomm

C+Reg-GP (c) 2.6750 -
C+Factor-M 4.2250 0.1740
C+Factor-2 4.4250 0.1740
Factor-2 5.9250 0.0131
p+Factor-M 6.7750 0.0013
p+Factor-2 6.9250 8.0806E-4
DCC+Factor-2 7.2250 3.9541E-4
DCC+Factor-M 7.5250 1.4717E-4
Reg-GP 7.6250 9.9088E-5
p+Reg-GP 7.8250 5.6490E-5
DCC+Reg-GP 8.2750 9.0371E-6
Factor-M 8.5750 2.5118E-6

Even though C+Reg-GP recorded higher return than other DC based trading

strategies, it is important to measure the risk taken to achieve it. For this reason,

we also present results of our risk measures, namely MDD (maximum draw down)

and Sharpe ratio. We did not record risk measures for currency pair AUD JPY,

CAD JPY and USD JPY, as no trading took place in these markets. Table 5.9 shows

that C+Reg-GP had the lowest average MDD amongst Reg-GP based strategies

recording a total of 0.1259 and outperform them in 13 currency pairs.

Table 5.10 presents comparison between the mean MDD result of C+Reg-GP

and Factor-M based strategies. C+Reg-GP recorded the lowest average MDD and

outperform these strategies in 9 currency pairs.
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Table 5.9: Average maximum drawdown (%) result for Reg-GP based trading strategies.
10-minute interval out-of-sample data. 20 different currency pairs and 10 calendar months
each representing the physical dataset. five DC dataset were generated using five dynam-
ically generated thresholds tailored to each DC dataset. Best (lowest) value for each row
(currency pair) is shown in boldface. Result shown in % values.

Dataset C+Reg-GP Reg-GP p+Reg-GP DCC+Reg-GP
AUD NZD 0.1230 0.1506 0.1713 0.3185
AUD USD 0.1595 0.3123 0.5710 0.6917
EUR AUD 0.1058 0.1545 0.4086 0.6214
EUR CAD 0.1353 0.2577 0.4772 0.4494
EUR CSK 0.0057 0.0080 0.0218 0.0253
EUR GBP 0.1005 0.0778 0.1460 0.2789
EUR JPY 0.0106 0.0383 0.0112 0.0255
EUR NOK 0.1331 0.1476 0.2844 0.3871
EUR USD 0.1555 0.0688 0.2059 0.4034
GBP AUD 0.1912 0.2391 0.6403 0.6260
GBP CHF 0.0956 0.1064 0.1897 0.3278
GBP USD 0.1323 0.1797 0.2095 0.3867
NZD USD 0.2892 0.3242 0.4777 0.6830
USD CAD 0.1678 0.1615 0.5727 0.5389
USD NOK 0.1406 0.1747 0.7049 0.7367
USD SGD 0.0770 0.0741 0.1891 0.3058
USD ZAR 0.1168 0.1453 1.2417 1.2160
Average 0.1259 0.1542 0.3837 0.4719

Table 5.11 presents comparison between the mean MDD result C+Reg-GP and

Factor-2 strategies and it shows that C+Reg-GP has the lowest MDD, outperforming

them in 12 currency pairs. Surprisingly, our result shows Factor-M and Factor-2 are

the best strategies in their categories, they outperform the version with the additional

classification step in 15 currency pairs each.

Comparison between the MDD results of Factor-M and Factor-2 and their respec-

tive returns results that is presented in Tables 5.6 and 5.7, appear to indicate that

there’s a trade-off between higher return and risk. The MDD result of classification

variants ranked second in both categories.
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Table 5.10: Average maximum drawdown (%) result for Factor-M based trading strategies.
10-minute interval out-of-sample data. 20 different currency pairs and 10 calendar months
each representing the physical dataset. five DC dataset were generated using five dynam-
ically generated thresholds tailored to each DC dataset. Best (lowest) value for each row
(currency pair) is shown in bold face. Result shown in % values

Dataset C+Reg-GP C+Factor-M Factor-M p+Factor-M DCC+Factor-M
AUD NZD 0.1230 0.2699 0.1588 0.2896 0.6500
AUD USD 0.1595 0.5750 0.1484 0.6657 0.7631
EUR AUD 0.1058 0.3006 0.0768 0.4332 0.9292
EUR CAD 0.1353 0.2334 0.2033 0.3325 0.7941
EUR CSK 0.0057 0.0133 0.0128 0.0189 0.1117
EUR GBP 0.1005 0.1891 0.1375 0.2513 0.4845
EUR JPY 0.0106 0.0091 0.0084 0.0157 0.0509
EUR NOK 0.1331 0.2699 0.2560 0.4492 0.4974
EUR USD 0.1555 0.2383 0.1262 0.3368 0.8276
GBP AUD 0.1912 0.4910 0.2009 0.6226 0.8899
GBP CHF 0.0956 0.3558 0.0493 0.4552 0.6282
GBP USD 0.1323 0.3054 0.1222 0.3887 0.9857
NZD USD 0.2892 0.5831 0.2664 0.6115 0.9989
USD CAD 0.1678 0.2835 0.3403 0.6001 0.6407
USD NOK 0.1406 0.4890 0.5694 0.6361 0.5926
USD SGD 0.0770 0.1128 0.0689 0.1463 0.7689
USD ZAR 0.1168 0.8950 0.2811 1.1893 0.8155
Average MDD 0.1259 0.3302 0.1780 0.4378 0.6723

To evaluate statistical significance of our MDD finding, we perform the Friedman

statistical test, presented in presented in Table 5.12. As we can observe, the best

ranking algorithm is C+reg-GP and it statistically outranked 8 of the strategies

compared at the 5% significance level.

Figure 5.7 presents the total number of positive 5-month average Sharpe ratio.

Excluding 6 periods where no trading took place, there are 34 risk-adjusted return

summaries in total. Out of the 34, C+Reg-GP had positive Sharpe ratio in 28 which

was the highest recorded amongst trading strategies compared. Of the 28 positive

Sharpe ratio results, 6 where above 0.5, 18 were above 0.2 and less than 0.5. The

rest were below 0.2.1 Friedman test presented in Table 5.13, confirms our findings.
1A ratio of 0.2-0.3 is in line with the general market. A value of 0.5 is considered a market-

beating performance if achieved over a long period, a ratio of 1 or better considered superb and
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Table 5.11: Average maximum drawdown (%) result for Factor-2 based trading strategies
compared. 10-minute interval out-of-sample data. 20 different currency pairs and 10
calendar months each representing the physical dataset. five DC dataset were generated
using five dynamically generated thresholds tailored to each DC dataset. Best (lowest)
value for each row (currency pair) is shown in bold face. Result shown in % values.

Dataset C+Reg-GP C+Factor-2 Factor-2 p+Factor-2 DCC+Factor-2
AUD NZD 0.1230 0.3270 0.2059 0.3368 0.4763
AUD USD 0.1595 0.4846 0.2754 0.7167 0.8327
EUR AUD 0.1058 0.2599 0.2062 0.3246 0.5396
EUR CAD 0.1353 0.2191 0.3079 0.3928 0.3773
EUR CSK 0.0057 0.0171 0.0024 0.0254 0.0224
EUR GBP 0.1005 0.2120 0.0864 0.2000 0.3884
EUR JPY 0.0106 0.0372 0.0519 0.0100 0.0210
EUR NOK 0.1331 0.4232 0.1516 0.2737 0.4209
EUR USD 0.1555 0.2400 0.0828 0.2137 0.3925
GBP AUD 0.1912 0.5337 0.1773 0.7777 0.9015
GBP CHF 0.0956 0.2836 0.1908 0.3821 0.5696
GBP USD 0.1323 0.2815 0.1617 0.3774 0.5990
NZD USD 0.2892 0.4226 0.4036 0.7056 0.7510
USD CAD 0.1678 0.3781 0.2393 0.5912 0.5521
USD NOK 0.1406 0.3772 0.1716 0.7149 0.6544
USD SGD 0.0770 0.1332 0.0358 0.2067 0.2644
USD ZAR 0.1168 0.6761 0.3312 0.9046 1.0415
Average MDD 0.1259 0.3121 0.1813 0.4208 0.5179

C+Reg-GP ranks first and statistically outperforms all other trading strategies at

the 5% level. In addition, C+Factor-M and C+Factor-2 rank second and third,

respectively, which again demonstrates that the introduction of the classification

step is beneficial to the DC algorithms.

Our final assessment measure of DC based strategies is Sharpe ratio presented in

Figure 5.8. Results in cases where a hold strategy is used by the trading algorithms

throughout the 10 months test periods are excluded. The x-axis presents the time

period covered for the relevant currency pair, and the y-axis presents the average risk-

adjusted return in percentages. C+Reg-GP consistently records positive adjusted

returns, whereas the other strategies have a mix of both positive and negative returns

difficult to achieve over long periods and a negative Sharpe ratio indicates negative returns.
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Table 5.12: Statistical test results of average maximum drawdown according to the non-
parametric Friedman test with the Hommel post-hoc test of C+Reg-GP (c) vs DC based
trading strategies. 10-minute interval out-of-sample date. Significant differences between
the control algorithm (denoted with (c) and the algorithms represented by a row at the α
= 5% level are shown in boldface indicating that the adjusted p value is lower than 0.05.

Trading strategies Average Rank AdjustpHomm

C+Reg-GP (c) 2.1176 -
Factor-M 2.6471 0.6686
Reg-GP 3.1765 0.6686
Factor-2 3.5882 0.5879
C+Factor-M 5.6471 0.0173
C+Factor-2 6.2941 0.0037
p+Reg-GP 7.1765 2.5815E-4
p+Factor-2 8.4706 1.9537E-6
p+Factor-M 8.4706 1.9537E-6
DCC+Reg-GP 9.3529 4.4105E-8
DCC+Factor-2 9.8834 3.4164E-9
DCC+Factor-M 11.1765 2.6272E-12

over time.
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Table 5.13: Statistical test results of average Sharpe ratio according to the non-parametric
Friedman test with the Hommel post-hoc test of C+Reg-GP (c) vs DC based trading
strategies. 10-minute interval out-of-sample date. Significant differences between the con-
trol algorithm (denoted with (c) and the algorithms represented by a row at the α = 5%
level are shown in boldface indicating that the adjusted p value is lower than 0.05.

Trading strategies Average Rank AdjustpHomm

C+Reg-GP (c) 2.6714 -
C+Factor-2 4.7571 0.0155
C+Factor-M 4.8714 0.0155
p+Factor-M 5.8714 6.1502E-4
Factor-2 6.0714 3.1945E-4
p+Reg-GP 6.5286 3.8169E-5
p+Factor-2 6.6143 2.3850E-5
Reg-GP 7.5857 8.3011E-8
DCC+Factor-M 7.7000 4.3202E-8
DCC+Factor-2 7.9000 1.1773E-8
DCC+Reg-GP 8.4143 2.6814E-10
Factor-M 9.0143 2.0347E-12
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Figure 5.7: A comparison of total number of positive Sharpe Ratio between C+Reg-GP and
other DC based trading approaches. 10-minute interval out-of-sample data. 20 currency
pairs and 10 calendar months. Total of 40 Sharpe ratio results from five month average
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Figure 5.8: Average Sharpe ratio for all currency pairs. C+Reg-GP versus other directional
changes based trading strategies
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Comparison to technical indicator based trading strategies

Our attention now shifts to comparison between C+Reg-GP and technical indicator

based strategies namely, EMA, BOLLIN, SMA, AROON, ROC, RSI, MACD. Table

5.14 presents their average returns. We observe that C+reg-GP records higher return

in 16 of the currency pairs and achieves the highest return amongst the strategies.

All technical indicator based strategy recorded negative mean return. From this

result, there isn’t a clear second best strategy due to the fact that SMA record the

second best average return overall and is second best in 4 currency pairs meanwhile

AROON and RSI are second best in five currency pairs respectively.

Table 5.14: Average Technical Indicator return result for trading strategies compared. 10-
minute interval out-of-sample data. 20 different currency pairs and 10 calendar months each
representing the physical dataset. five DC dataset were generated using five dynamically
generated thresholds tailored to each DC dataset. Best result per currency pair presented
in boldface. BOLLIN is Bollinger bandwidth indicator

Dataset C+Reg-GP EMA BOLLIN SMA AROON ROC RSI MACD

AUD/JPY 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
AUD/NZD 0.260 0.002 -0.007 -0.026 -0.002 -0.447 0.056 0.005
AUD/USD 0.273 -0.145 -0.393 -0.069 -0.025 -0.321 0.046 -0.147
CAD/JPY 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
EUR/AUD 0.186 0.057 -0.365 -0.127 0.002 -0.166 -0.06 -0.092
EUR/CAD 0.192 -0.226 -0.759 -0.032 -0.068 -0.486 -0.013 -0.346
EUR/CSK 0.034 -0.233 -0.067 -0.164 0.000 -0.781 -0.138 -0.281
EUR/GBP 0.104 -0.135 -0.067 -0.048 -0.061 -0.367 -0.028 -0.240
EUR/JPY 0.020 0.015 0 -0.027 0 0 -0.022 0.013
EUR/NOK 0.351 -0.118 -0.232 0.149 0.003 -0.261 -0.043 -0.233
EUR/USD -0.001 -0.492 -0.366 -0.25 -0.064 -0.262 -0.106 -0.409
GBP/AUD 0.354 -0.302 -0.201 -0.022 -0.061 -0.531 -0.159 -0.061
GBP/CHF 0.202 -0.268 -0.356 0.009 -0.087 -0.653 0.035 -0.331
GBP/USD -0.059 -0.076 -0.61 -0.111 -0.045 -0.337 0.008 -0.361
NZD/USD 0.280 -0.234 -0.445 -0.151 -0.025 -0.333 0.124 -0.366
USD/CAD 0.044 -0.306 -0.64 -0.458 -0.016 -0.708 -0.299 -0.571
USD/JPY 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
USD/NOK 0.461 -0.075 -0.592 0.069 -0.048 -0.7 -0.144 -0.154
USD/SGD 0.03 -0.044 -0.122 -0.178 -0.015 -0.513 -0.057 -0.295
USD/ZAR 1.762 0.344 -0.573 -0.356 0.004 -0.057 0.044 0.110
Average Return 0.225 -0.112 -0.29 -0.09 -0.025 -0.346 -0.038 -0.188
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Friedman statistical test presented in Table 5.15 shows that the average return

by C+Reg-GP is statistically significant in comparison to technical indicator based

strategies and AROON, the best technical indicator based strategy in our experiment

ranked second.

Table 5.15: Statistical test results of average returns according to the non-parametric
Friedman test with the Hommel post-hoc test of C+Reg-GP (c) vs Technical Analysis
based trading strategies. 10-minute interval out-of-sample date. Significant differences
between the control algorithm (denoted with (c) and the algorithms represented by a row
at the α = 5% level are shown in boldface indicating that the adjusted p value is lower
than 0.05.

Trading strategies Average Rank AdjustpHomm

C+Reg-GP (c) 1.6250 -
AROON 3.4500 0.0185
RSI 3.4750 0.0185
SMA 4.4750 7.0153E-4
EMA 4.5250 7.0153E-4
MACD 5.9999 2.8281E-6
BOLLIN 6.2250 1.7251E-8
ROC 6.7250 3.2042E-10

Average MDD result presented in Table 5.16 shows AROON the most risk aversive

strategy followed by C+reg-GP. AROON recording the least MDD in 14 currency

pairs. Table 5.17 presents Friedman statistical test of mean MDD results. Tt shows

AROON statistically outperforms other strategy and C+reg-GP is ranked second.

To measure the risk-reward trade-off, we perform Sharp ratio comparison. Figure

5.9 presents comparison result between Sharpe ratio result of C+Reg-GP and the

technical indicator based strategies.

Figure 5.10 presents the total number of positive Sharpe ratio recorded by each

algorithm. The result shows that C+Reg-GP recorded 28 positive Sharpe ratios and

had the best Sharpe ratio measure in 18 of the 34 risk-adjusted return summaries.
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Figure 5.9: Average Sharpe ratio for all currency pairs. C+Reg-GP versus technical analysis
based trading strategies
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Table 5.16: Average maximum drawdown (%) results for Technical Indicator based strate-
gies. 10-minute interval out-of-sample data. 20 different currency pairs and 10 calendar
months each representing the physical dataset. five DC dataset were generated using five
dynamically generated thresholds tailored to each DC dataset. Best result per currency
pair shown in boldface.

Dataset C+Reg-GP EMA BOLLIN SMA AROON ROC RSI MACD
AUD NZD 0.1230 0.1700 0.3680 0.2860 0.0180 0.6810 0.0710 0.1590
AUD USD 0.1600 0.1180 0.6340 0.2280 0.0250 0.6220 0.1620 0.1700
EUR AUD 0.1060 0.1200 0.4960 0.3800 0.0410 0.5080 0.1040 0.1730
EUR CAD 0.1350 0.1230 0.8230 0.1720 0.0890 0.7480 0.0800 0.1480
EUR CSK 0.0060 0.0360 0.0740 0.1660 0.0030 0.7830 0.1860 0.0390
EUR GBP 0.1000 0.2420 0.3720 0.2040 0.0640 0.5320 0.0720 0.1960
EUR JPY 0.0110 0.0040 0.0000 0.0400 0.0000 0.0000 0.0220 0.0010
EUR NOK 0.1330 0.1140 0.4690 0.1860 0.0040 0.6880 0.0900 0.1010
EUR USD 0.1550 0.2240 0.4950 0.2990 0.0950 0.4160 0.1910 0.2230
GBP AUD 0.1910 0.2080 0.7310 0.2730 0.0810 1.0300 0.2830 0.2160
GBP CHF 0.0960 0.1630 0.5250 0.2810 0.0870 0.7800 0.0160 0.2000
GBP USD 0.1320 0.1220 0.8420 0.3400 0.0770 0.5080 0.1120 0.2700
NZD USD 0.2890 0.2700 0.8610 0.3850 0.0260 0.6980 0.0000 0.2630
USD CAD 0.1680 0.3230 0.8980 0.6090 0.0240 0.9060 0.3330 0.1670
USD NOK 0.1410 0.2350 1.0510 0.2450 0.0540 0.9280 0.1730 0.0990
USD SGD 0.0770 0.1270 0.3160 0.2670 0.0150 0.5900 0.1520 0.0790
USD ZAR 0.1170 0.3570 1.4760 0.6280 0.0000 1.0690 0.1490 0.7090
Average MDD 0.126 0.1739 0.6136 0.2935 0.0414 0.6757 0.1292 0.1890

Table 5.17: Statistical test results of maximum drawdown of non-DC based trading strate-
gies according to the non-parametric Friedman test with the Hommel post-hoc test. 10-
minute interval out-of-sample data. Significant differences between the control algorithm
(denoted with (c) and the algorithms represented by a row at the α = 5% level are shown
in boldface indicating that the adjusted p value is lower than 0.05.

Trading strategies Average Rank AdjustpHomm

AROON (c) 1.2353 -
C+Reg-GP 3.2353 0.0173
RSI 3.3529 0.0173
MACD 4.0000 0.0030
EMA 4.0000 0.0030
SMA 5.9412 1.0649E-7
BOLLIN 7.0001 4.0921E-11
ROC 7.2353 6.4656E-12
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Figure 5.10: A comparison of total number of positive Sharpe Ratio between C+Reg-GP
and technical indicator based trading approaches. 10-minute interval out-of-sample data.
20 currency pairs and 10 calendar months. Total of 40 Sharp ratio results from five month
average

Finally, we perform Friedman statistical test of Sharpe ratio result presented in

Table 5.18 which confirms our findings that C+Reg-GP outperformed all technical

indicator based strategies and the performance is statistically significant at the 5%

level.
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Table 5.18: Statistical test results of Sharpe ratio of C+Reg-GP Vs non-DC based trading
strategies according to the non-parametric Friedman test with the Hommel post-hoc test.
10-minute interval out-of-sample data. Significant differences between the control algorithm
(denoted with (c) and the algorithms represented by a row at the α = 5% level are shown
in boldface indicating that the adjusted p value is lower than 0.05.

Trading strategies Average Rank AdjustpHomm

C+Reg-GP (c) 1.8286 -
RSI 3.7429 0.0011
EMA 4.3571 3.1439E-5
AROON 4.4000 2.3579E-5
SMA 4.4857 2.0959E-5
MACD 5.1857 4.9215E-8
BOLLIN 5.5143 1.8497E-9
ROC 6.4857 1.2683E-14
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Comparison with Buy-and-hold

In terms of returns and risk, since C+Reg-GP was found to be the best algorithm

in comparison with DC and technical analysis algorithms, we now turn our focus to

comparing it against the well-known buy-and-hold (BandH) benchmark. We compare

BandH separately because it is a fundamental analysis based strategy, a strategy that

is not based on short-term price movements. We thus buy on the first day of the

first month, and sell on the last day of the tenth month

Table 5.19 presents comparison trading result between C+Reg-GP and BandH.

C+Reg-GP recorded positive mean returns in 15 of 20 currency pairs outperform-

ing BandH in 12 currency pairs. C+Reg-GP’s average return across all currency

pairs was 0.225% and BandH was -0.128%; C+Reg-GP reported a variance of 0.153

and BandH’s reported a variance of 0.515. Finally, we performed the Kolmogorov-

Smirnoff statistical test to investigate whether there is a statistical significance in

the results between C+Reg-GP and BandH. The p-value of the test was 7.2529e-04,

which confirms that this difference is statistically significant. Therefore, the results

show that C+Reg-GP can outperform BandH in more markets which makes it a

more attractive investment strategy according to our data sample.

5.7.3 Sample of best GP models

We present four samples equations that C+Reg-GP created and their plots. They

are four of the best equations in terms of profitability across datasets experimented.

In the equations, OSl is the estimated OS event length and DCl is DC event length.
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Figure 5.11: Equation 5.8 and the plot of OS event length and the corresponding DC event
length over a range of 1 to 50.
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Figure 5.12: Equation 5.9 and the plot of OS event length and the corresponding DC event
length over a range of 1 to 50.
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Figure 5.13: Equation 5.10 and the plot of OS event length and the corresponding DC
event length over a range of 1 to 50.
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Figure 5.14: Equation 5.11 and the plot of OS event length and the corresponding DC
event length over a range of 1 to 50.

As we can see, the equations have different structures; the first two are logarithmic
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equations, whereas the third has both cosine and exponential functions, and the

fourth equation has exponential, sine and logarithmic functions. This is important

because they confirm that the relationship between the DC and OS lengths can

also be non-linear. Thus, our work of using C+Reg-GP to create equations for DC

trends that are classified to have both DC and OS events has allowed uncover richer

relationships and led to increase in profitability of the trading strategy.

5.7.4 Computational time

Table 6.11 presents the average computational times for all algorithms. We can ob-

serve that different algorithms can have significantly different computational times,

which is not surprising. An algorithm such as C+Reg-GP includes the classifica-

tion step, which consisted of Auto-WEKA running for 60 minutes to find the best

classification model per dataset, and optimise its hyperparameters.2 Additionally,

it includes a GP, which requires some time to evolve an acceptable solution, since

multiple individuals and generations are involved.

To elucidate, we present the computational times for each training task in our

framework i.e., classification and (OS length) estimation. Not all algorithms used

the classification step, but the ones that use it need approximately 65 minutes to

complete model training task. The estimation task takes approximately 5-6 minutes

for algorithms that use a GP to complete, and 20-30 seconds for the other algorithms.

With regards to the trading step, all algorithms need around 3 seconds.

It is important to note here that, for trading, we would normally do the learning
2The time taken in the classification phase of C+Reg-GP, C+Factor-M, and C+Factor-2, went

above the allotted time of 60 minutes due to CPU time slice as other processes were running on
the hardware simultaneously. With the availability of a dedicated hardware with sufficient CPU
cores, a large speed up might be obtained by switching the classification phase from serial mode to
parallel mode.
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processes on the training data off-line, and then simply apply the best model to the

test data. Thus, the fact that classification and estimation last above 70 minutes

is not a problem since they happen off-line. In contrast, applying the best model

for trading takes only 3 seconds. Therefore, we believe that given the significant

improvements we observed in returns and risk, this slower execution time is justified.

Lastly, the overhead of including a classification step can be reduced by parallelis-

ing the Auto-WEKA process. It has been shown in the literature (e.g., (Ong and

Schroder 2020)) that parallelisation can reduce computational times significantly.

5.8 Summary

Based on our experimental results, we can reach the following conclusions.

Introducing a classification step to a DC algorithm is an effective way of predicting

the trend reversal in DC summaries. As we observed in Table 5.4, the positive

classification results have led to significantly reduced RMSE, ranking each algorithm

that uses a classifier higher than its respective variant without classification. In

addition, C+GP ranked first and statistically outperformed all other DC-based trend

reversal algorithms.

Introducing a classification step to a DC algorithm leads to higher returns during

trading. As we observed in Tables 5.5, 5.6, 5.7 and 5.8, all algorithms that used a

classifier (C+Reg-GP, C+Factor-M, C+Factor-2) outperformed other variants with-

out a classifier. Furthermore, C+Reg-GP ranked first among 13 trading algorithms

and statistically outperformed 12 algorithms, with the only exception the two other

algorithms that were using a classifier.

Introducing a classification step to a DC algorithm leads to higher risk-adjusted

return strategies. As we observed in the Sharpe ratio results, all the variants with
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the classifier ranked in the first 3 places (Table 5.13). This could potentially be

attributed to the fact that the Sharpe ratio is a metric that includes both returns

and risk. The MDD results presented a mixed picture, with C+Reg-GP ranking first

across all algorithms, but Factor-M and Factor-2 ranking being higher than their

variants with a classifier.

C+Reg-GP is an effective trading algorithm. It not only outperformed other DC-

based algorithms, it also performed better than seven different technical indicator

based strategies, as well as buy-and-hold in all metrics compared namely average

returns, MDD and Sharpe ratio.

In our next contribution, we focus our attention on combining the best tailored

thresholds under a single trading strategy. Our goal is to investigate whether using

input from multiple DC thresholds to make trading decisions can lead to an increase

in profitability while keeping risk at a minimum.
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Table 5.19: Average trading (%) result of C+Reg-GP vs Buy-and-hold trading strategies
per currency pair. 10-minute interval out-of-sample data. Results show RMSE value.
They are averaged over five different dynamically generated thresholds tailored to each DC
dataset and 20 currency pairs.

Trading strategies C+Reg-GP Buy-and-hold
AUD JPY 0.000 -6.278
AUD NZD 0.260 -0.516
AUD USD 0.273 -5.728
CAD JPY 0.000 -4.109
EUR AUD 0.186 -2.672
EUR CAD 0.192 18.555
EUR CSK 0.034 7.770
EUR GBP 0.104 -0.292
EUR JPY 0.020 -6.211
EUR NOK 0.351 2.046
EUR USD -0.001 8.801
GBP AUD 0.354 3.936
GBP CHF 0.202 -2.395
GBP USD -0.059 8.464
NZD USD 0.280 -6.443
USD CAD 0.044 2.345
USD JPY 0.000 -9.430
USD NOK 0.461 -6.102
USD SGD 0.030 0.207
USD ZAR 1.762 -4.505
Mean 0.225 -0.128
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Table 5.20: Average computational times per run for C+Reg-GP, Reg-GP , p+Reg-
GP, DCC+Reg-GP, C+Factor-M, Factor-M, p+Factor-M, DCC+Factor-M, C+Factor-2,
Factor-2, p+Factor-2, DCC+Factor-2, RSI, EMA, MACD. BH takes less than 1 second
to execute because we buy quoted currency at the start of trading period and sell quoted
currency at the end of trading period.

Trading strategies C+Reg-GP Reg-GP p+Reg-GP DCC+Reg-GP
Classification (training) ∼ 65 mins – – –
regression (training) ∼ 5.45 mins ∼ 6.20 mins ∼ 5.25 mins –
Trading ∼ 3 sec ∼ 3 sec ∼ 3 sec ∼ 3 sec

Trading strategies C+Factor-M Factor-M p+Factor-M DCC+Factor-M
Classification (training) ∼ 65 mins – – –
Regression (training) ∼ 30 secs ∼ 30 secs ∼ 30 secs –
Trading ∼ 3 sec ∼ 3 sec ∼ 3 sec ∼ 3 sec

Trading strategies C+Factor-2 Factor-2 p+Factor-2 DCC+Factor-2
Classification (training) ∼ 65 mins – – –
Regression (training) ∼ 20 secs ∼ 20 secs ∼ 20 secs –
Trading ∼ 3 sec ∼ 3 sec ∼ 3 sec ∼ 3 sec
Trading strategies EMA BOLLIN SMA AROON
Classification (training) – – – –
Regression (training) – – – –
Trading ∼ 3 sec ∼ 3 sec ∼ 3 sec ∼ 3 sec
Trading strategies ROC RSI MACD –
Classification (training) – – – –
Regression (training) – – – –
Trading ∼ 3 sec ∼ 3 sec ∼ 3 sec ∼ 3 sec



Chapter 6

A Novel Multiple Threshold based

Trading Strategy

In the previous chapter, we presented Figure 5.4 a trading strategy framework em-

bedded with our proposed trend reversal forecasting model. The model consisted of

a tailored classifier, which determines whether a DC trend is composed of either a

DC and OS events (αDC) or just a DC event (βDC). If a DC trend is classified as

αDC, we then used our tailored symbolic regression GP to estimate the expected

length of the associated OS event. In this case, the forecasted trend reversal point

occurs at the sum of the last known DC event length and the estimated OS event

length measured from the start of the last known DC event. Conversely, if a trend

is classified as βDC, we forecast trend reversal point to be the DCC point. The

rationale behind forecasting trend reversal is to be able to anticipate reversal points

whilst still in the trend, since directional changes are confirmed in hindsight and

the ability to anticipate the points give traders opportunity to develop profitable

strategies.

136
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Despite the improvements we have made so far at both forecasting trend reversal

points and trading profitably, the trading strategy framework in the previous chapter

comes with a certain limitation. It views the market from a single trader’s perspective

thereby limiting insight into other market activities that influences price moment

(Deng and Sakurai 2013) - i.e., once a threshold for sampling event summary is

decided, we are locked-in at viewing the market activities from only the threshold’s

perspective. There are chances that potentially profitable price variations different

from those captured by the threshold are ignored, leading to inaction or opportunity

loss.

To address this issue and increase profit at reduced risk, we propose a novel multi-

threshold trading strategy framework. This innovative approach allows a trader to

view market activities from multiple perspectives before taking trading decisions.

Thus, instead of selecting the best threshold from the threshold pool as was done

for single threshold strategies in the previous chapter (see Figure 5.2), we instead

select the best set of thresholds and optimise their trading recommendations. In

this new approach (illustrated in Figure 6.1), trading actions and forecasted trend

reversal points by individual thresholds become recommendations only. Same recom-

mendations are combined, and trading action is decided through a majority voting

system. However, there are some associated challenges that combining recommen-

dations pose: (1) how to select the best set of threshold adequately; (2) how to

determine whether a DC event is either αDC or βDC; (3) how to decide on a trad-

ing action when recommendations from multiple thresholds are conflicting; and (4)

how to decide on the trend reversal point to trade when forecasted trend reversal

points of multiple thresholds are different? For the first two challenges, we address

them using similar approach as the one from Chapter 5. For the last two challenges,
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we address them with the new framework presented in this chapter. Our contribu-

tion in this chapter can thus be summarised as the creation of a DC trading strategy

using recommendations from multiple DC thresholds that are optimised by a tailored

GA algorithm.

We organize the rest of the chapter as follows: Section 6.1 describes the new trad-

ing strategy and the methodology employed. Section 6.2 presents the experimental

and evaluation setup. Section 6.3 presents the test results. Section 6.4 concludes the

chapter

6.1 Methodology

To address the two outstanding challenges, highlighted in the introduction to this

chapter, we associate initial weights to the contributing trend reversal prediction

models and apply GA to optimise their weight value. We now present our approach

in detail.

6.1.1 Optimised multi-threshold strategies using a Genetic

Algorithm

Our multi-threshold trading strategy framework is composed of 4 modules: (1) a

pre-step for threshold selection; (2) symbolic regression model evolution; (3) clas-

sification model selection; and (4) trading strategy evolution. The first 3 modules

of our framework follow the same approach described in Chapter 5. After creating

forecasting model (i.e., classification and symbolic regression GP models combined)

per threshold, we embedded them in our trading strategy and assigned weights to

represent each threshold. Each chromosome consisted of Nθ genes, where Nθ is the
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Figure 6.1: Our proposed framework for a multi-threshold based trading strategy. It
embeds multiple thresholds and combines their recommendations using a majority vote
system. It uses weighted average of contributing thresholds’ forecast of trend reversal
point in deciding when to trade.

number of thresholds used in the multi-threshold strategy. As a first step, we de-

cided on the number of thresholds to use in the multi-threshold strategy. Then we

assigned an initial weight to each gene. The weight is a measure of the importance

of a forecasting model’s recommendation in trading decisions. The weights are real

values where the maximum weight value is one and the minimum value is zero.

To ensure that in the worst case scenario the GA performs as well as the highest

ranked trend reversal forecasting model in the set we aimed to optimise, we seeded
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1.0 0.0 0.0 0.0 0.0
Chromosome 1

0.0 1.0 0.0 0.0 0.0
Chromosome 2

0.0 0.0 1.0 0.0 0.0
Chromosome 3

0.0 0.0 0.0 1.0 0.0
Chromosome 4

0.0 0.0 0.0 0.0 1.0
Chromosome 5

0.1 5.0 8.0 0.3 0.5
Chromosome 6

0.2 0.5 0.6 0.9 0.3
Chromosome 7

• • • 0.8 0.7 0.3 0.9 0.0
Chromosome N

Figure 6.2: Illustration of GA population initialisation. Chromosomes 1-5 represents ini-
tialisation where only a single threshold is active

the first N chromosomes corresponding to the number of models being optimised. In

each of these chromosomes, we activated one gene, setting the value to the maximum

weight (i.e., 1) and associated it to a single threshold forecasting model while we set

the value of the remaining genes to the minimum weight value (i.e., 0) to deacti-

vate them. The remaining chromosomes in the population were randomly initialised

by assigning real values between the minimum and maximum weights (inclusive).

Figure 6.2 exemplifies the initialisation process. In the example, five trend reversal

forecasting models were optimised, genes one, two, three, four, five were activated in

chromosomes one, two, three, four and five respectively. The pseudocode presented

in Algorithm 6.1 summarises the initialisation step after which the GA evolved real

value weights for each threshold over a number of generations using training dataset.

At the end of the evolution process our optimised model is created.

During trading, thresholds traverse their own event series. At each DCC point

of the current trend in individual event series, trend reversal points are forecasted.

First, each thresholds classifies DC trend as either αDC or βDC. Then, the trend

reversal forecasting models use their symbolic regression GP to forecast trend reversal
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Algorithm 6.1 Pseudocode for initialising chromosome weight in GA population
for i = 0; i < numberOfThresholds; i++ do

for j = 0; j < chromosomeInPopulation[i]; j++ do
if index i is threshold position in chromosome then

wi ← 1.0
else

wi ← 0.0
end if

end for
end for
for i = numberOfThresholds; i < chromosomeInPopulation; i++ do

for j = 0; j < chromosomeInPopulation[i]; j++ do
wi ← RandomNumberFunction(0.0, 1.0)

end for
end for

points of trends classified as αDCs. Otherwise, trend reversal points are forecasted

to occur at a DCC point. The recommended action and forecasted trend reversal

point of all thresholds are passed to the multi-threshold trading strategy. The trading

strategy uses the recommendations optimise decisions: (1) the action to follow; and

(2) when in the future to act.

Recommended trading actions can be different because each threshold’s event se-

ries is unique. Therefore, it is possible for one threshold to recommend a buy action

while another simultaneously recommend a sell action. The strategy evaluates rec-

ommended actions according to the weights associated with each threshold. Weights

of actions that are the same are summed up and the action with the highest sum of

weight is followed, which we call “optimal trade action” (TAOpt). Also, because of the

distinct nature of individual event series, the multiple thresholds from which TAOpt

is based can forecast trend reversal points differently. The strategy uses Equation

6.1 to optimise individually forecasted trend reversal point of a subset of thresholds
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that recommended TAOpt. It considers the weights of the thresholds, so the opti-

mised forecasted trend reversal points tend towards the threshold with the largest

weight. Algorithm 6.2 summarises the procedure of optimising trading actions and

trend reversal points. Algorithms 6.3 and 6.4 summarise the trading rules applied

at optimised trend reversal point at optimal trade action buy and sell respectively.

W =
∑n
i=1 wiXi∑n
i=1 wi

(6.1)

The types of action the strategy takes are buy, sell and hold. We consider the first

two actions to be active actions and hold to be a passive action. Thus, if the winner

action is a sell, we sell all available base currency in exchange for the quoted currency

at the calculated trend reversal point. On the other hand, if the winner action is

a buy, we buy all available base currency in exchange for the quoted currency at

the calculated trend reversal point. Therefore, we do not have a situation where we

have both base currency and quoted currency in our portfolio. Our action is passive

(1) if the action is sell and there isn’t enough base currency available to sell or (2)

the action is buy and there isn’t enough base currency to buy or (3) if the return is

negative after deducting transaction cost.

We now clarify our proposed strategy with an example. Let’s assume it is decided

to use 5 thresholds for sampling significant events in the market. Due to aforemen-

tioned reasons, the recommendations of each threshold can be different. Thus, we

use 5 gene GA algorithm to optimise the recommendations. Each gene in the GA

is a weight to be associated with the recommendation of each threshold. Suppose

at the end of the GA evolutions step, weights [0.3, 0.35, 0.1, 0.1, 0.15] are assign to

each threshold respectively, coincidentally, all 5 thresholds consider a certain point
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in the dataset to be a DCC point. The first two thresholds [0.3 and 0.35] recom-

mend a buy action with a weight sum of 0.65 and the last three thresholds [0.1,

0.1 and 0.15] recommend a sell action with a weight sum of 0.35. To resolve the

divergence in the recommended action, we apply a majority voting system, and, in

this case, the strategy will follow the buy action because of the larger weight sum.

To determine the optimal trend reversal point, we calculate the weighted average of

forecasted trend reversal points by the first two thresholds that recommended the

optimal trading action (i.e., ‘buy’ in this particular case). Assume that the current

DCC point in this example coincides with data point 290 and the forecasted trend

reversal points by thresholds [0.3, 0.35] are 312 and 300, respectively. We thus make

a decision to perform a buy action at data point 305, which is the weight sum of

their forecasted trend reversal points derived by applying Equation 6.1 calculated as
(0.3×312)+(0.35×300)

(0.3+0.35) .

6.1.2 Genetic Operators

We use three operators namely elitism, uniform crossover and uniform mutation. For

elitism, we copy the chromosome with the best fitness value into the next generation.

For uniform crossover and uniform mutation, individuals from the population are se-

lected into a mating pool. From the pool, through tournament selection, individuals

that best favour the optimisation goal are selected as parents of individuals for the

next generation. In this work we select as parent, individual in the pool with highest

fitness. In uniform crossover both parents contribute their genes where each gene

has a fixed probability of 0.5 of being swapped. In uniform mutation operation, the

selected parent’s gene have a fixed probability of 0.5 of being swapped as well. Fig-

ures 6.3 and 6.4 illustrate our uniform crossover and uniform mutation respectively.
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Algorithm 6.2 Pseudocode for Multi-threshold Optimisation
Require: Initialise base quantity = budget, quote quantity = 0.0
Require: current price = 0.0, LastUpPrice = 0.0
Require: Initialise weight values W1, W2, W3 ... WNθ according to Algorithm 6.1
Require: Get forecast model F1, F2, F3 ... FNθ for each threshold

for i = 0; i < dataset length ; i++ do
Initialise forecast and action dictionary: Dict = empty
Initialise weights for buy and sell: WB = Ws = 0
Initialise buy and sell trend reversal list: ListB = ListS = empty
for j = 0; j < Nθ; j++ do

Initialise trend reversal point: TRP = 0.0
if event is upturn && DCC point then

TRP ← Fj
Insert TRP into ListS
WS ← WS +Wj

else if event is downward trend && DCC point then
TRP ← Fj
Insert TRP into ListB
WB ← WB +Wj

end if
end for
if WS > WB then

TRPoptimali ← optimise ListS according to Equation 6.1
Insert TRPoptimali and Sell into Dict at position i

else
TRPoptimali ← optimise ListB according to Equation 6.1
Insert TRPoptimali and Buy into Dict at position i

end if
if Dict[i] is not empty then

if Dict[i] == Sell then
current price← dataset lengthi[ask]
Trade with Sell Rule [See Algorithm 6.3]

else if Dict[i] == Buy then
current price← dataset lengthi[bid]
Trade with Buy Rule [See Algorithm 6.4]

end if
end if

end for
Wealth← base quantity − budget
Return← 100× Wealth

budget
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Algorithm 6.3 Trading rules used for selling the base currency
Require: Sell rule

if base quantity > 0 then
base quantity ← base quantity - transaction Cost
quote quantity ← base quantity × current price
base quantity ← 0.0
LastUpPrice← current price

else Hold
end if

Algorithm 6.4 Trading rules used for buying the base currency
Require: Buy rule

if quote quantity > 0 && current price < LastUpPrice then
quote quantity ← quote quantity - transaction Cost
base quantity ← quote quantity

current price

quote quantity ← 0.0
else Hold
end if

We measure the quality of our GA individual using Sharpe ratio presented in

Section 5.5. We choose Sharpe ratio because it is an aggregate metric of risk-adjusted

return, as it takes into account both the return and the risk of a given trading

strategy.

0.1 0.1 0.2 0.3 0.4

0.5 0.8 0.9 0.4 0.2
parent

0.1 0.8 0.2 0.4 0.4

0.5 0.1 0.9 0.3 0.2
child

Figure 6.3: A sample uniform crossover operation by our GA. Either of the children is
randomly selected for the next generation
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0.2 0.1 0.8 0.3 0.4
parent

0.2 0.5 0.8 0.7 0.4
child

Figure 6.4: A sample uniform mutation operation by our GA .

6.2 Experimental Setup

Data

The same 10-minute interval high frequency data already described in Chapter 5 are

used for experimenting our proposed multi-threshold strategy. We considered each

month in the period as a separate physical-time dataset. In our tuning phase, we

used 200 DC datasets for tuning (i.e., 5 DC thresholds × 20 currency pairs × first 2

months of our physical-time data). For the rest of the experiment, we use 1000 DC

datasets (i.e. 5 DC thresholds × 20 currency pairs × remaining 10 months of our

physical time datasets). The tuning and non-tuning DC datasets were split in 70:30

ratio as training and testing sets.

Parameter tuning

Since we are building on our previous contribution in Chapter 5 and the trend reversal

forecasting model should remain unchanged, we use the same parameter setup for

our classifier and symbolic regression GP models. Auto-WEKA execution time to

select and configure tailored classification model is set to 60 minutes and Table 6.1

presents the GP configuration to evolve the symbolic regression model for estimating

the OS event length.

To determine the values for the parameters in our GA algorithm, we performed

parameter tuning using I/F-Race package (López-Ibánez et al. 2011), already de-

scribed in Chapter 4. The tuned parameters are population size, generation size,
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Table 6.1: Regression GP experimental parameters for detecting DC-OS relationship, de-
termined using I/F-Race.

Parameter

Population 500
Generation 37
Tournament size 3
Crossover probability 0.98
Mutation probability 0.02
Maximum depth 3
Elitism 0.10

tournament size, crossover probability, mutation probability and elitism. Table 6.2

present the value of our tuned parameters. We did not tune the number of thresholds

instead we choose the same number of thresholds as our previous contributions in

Chapter 4 (5 threshold) to facilitate comparison.

Table 6.2: GA experimental parameters for multi-threshold trading strategy determined
using I/F-Race.

Parameter

Population size 500
Generation size 50
Tournament size 7
Crossover probability 0.90
Mutation probability 0.10
Elitism 1

Trading Experimental Setup

We embedded the 5 trend reversal forecasting models in the trading strategy already

described in Section 6.1.1. The strategy combines these models to make trading

decisions. Our goal in this contribution is to investigate whether our multi-threshold

trading strategy can outperform the best performing single threshold strategy. Thus,
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we compare the performance of our multi-threshold strategy against the 5 best per-

forming single threshold strategies. The single thresholds are the same thresholds

that make up the genes of the GA chromosome.

6.3 Trading Results

In this section, we present the summary of our experimental result. As a reminder,

the goal of this contribution is to demonstrate that by optimising recommendations

from multiple thresholds using machine learning techniques we can further improve

profitability and risk, statistically outperforming single threshold strategies.

Table 6.3 presents returns of single threshold and multi-threshold trading strate-

gies calculated monthly. In this table, cases where 0.00 is reported as return indicates

that the strategy is passive (i.e., hold action). Trading return results show that the

multi-threshold strategy has the highest return (1.15%), which is over 100% better

than the best single threshold strategy that recorded return of 0.53%. The 1.15% re-

turn is earned over a month period, annualising the return results in 14.707% return

in a year. The result of the multi-threshold strategy is also the best per currency pair

(highlighted in bold in Table 6.3. Table 6.4 present the non-parametric Friedman

test with the Hommel post-hoc test to determine if the differences in performance are

statistically significance. The null hypothesis is again that the strategies come from

the same continuous distribution. As we could observe, the best ranking strategy

was the multi-threshold strategy, and it statistically outranked the 5 single threshold

strategies at the 5% significance level in all pairs.

We evaluated our risk adjusted return over the transactions that occurred in the

10-minutes monthly dataset. Table 6.5 presents the result, and it shows that multi-

threshold strategy outperformed single threshold strategy in all 20 currency pairs.
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The Sharpe ratio of 0.78 is over 200% better than the Sharpe ratio of the best single

threshold strategy. We also tested the statistical significance of the Sharpe ratio

result using Friedman nonparametric test. The null hypothesis is that the strategies

come from the same continuous distribution. We reject the null hypothesis because

the statistical test results presented in Table 6.6 shows that multi-threshold strategy

outperformed the 5 single threshold strategies.

We also performed risk analysis, measuring maximum drawdown and standard

deviation of our daily return. Table 6.7 presents the maximum drawdown results,

where the lower the drawdown the better the result. Our multi-threshold strategy

recorded the lowest overall average maximum drawdown (0.02). On average, the

risk was 10 times lower than trading using single threshold strategies. We also

perform Friedman test and Table 6.8 presents the result that shows that multi-

threshold strategy statistically outperformed all single threshold strategies at the

5% significance level.

Finally, Table 6.9 presents our standard deviation results. The results are not as

homogenous as in the previous tables, where the multi-threshold strategy is ranking

first across all datasets. Nevertheless, the multi-threshold strategy remained ranking

the highest for the number of currency pairs(7), it has the lowest average standard

deviation (0.1638). We also performed Friedman statistically test, presented in Table

6.10. The results show that multi-threshold strategy ranks first overall, although

the performance was not statistically significant against any of the single threshold

strategies. It appears that the Sharpe ratio, which is the fitness function of our GA

and thus drives the search, is heavily affected by the non-homogeneity of the standard

deviation result, where we are unable to record statistically significant result against

the single threshold strategies. In terms of standard deviation, it appears that the

profit volatility is relatively similar across the different strategies even though we see
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slight improvements using multi-threshold strategy. It is also important to remember

that in terms of a different risk metric (MDD), we have observed that the multi-

threshold strategy is outperforming the individual thresholds across all currency

pairs.

Table 6.3: Average return result (% ) for trading strategies of individual single threshold
strategies and multi-threshold strategy. 10-minute interval out-of-sample data. 20 different
currency pairs and 10 calendar months each representing the physical dataset. 5 DC dataset
were generated using 5 dynamically generated thresholds tailored to each DC dataset. Best
value for each row (currency pair) is shown in boldface.

Dataset Threshold1 Threshold2 Threshold3 Threshold4 Threshold5 Multi-threshold
AUD JPY 0.9032 1.1177 1.0361 1.0132 1.2644 1.4018
AUD NZD 0.4716 0.4831 0.3926 0.3365 0.2377 1.1877
AUD USD 0.3970 0.5281 0.5813 0.7310 0.7253 0.8701
CAD JPY 0.8736 0.8969 0.8264 0.7082 0.7935 1.3208
EUR AUD 0.6808 0.5261 0.3586 0.3850 0.3508 1.0787
EUR CAD 0.4677 0.3900 0.3471 0.4886 0.4250 0.9773
EUR CSK 0.0232 0.0372 0.0025 0.0474 0.0432 0.3955
EUR GBP 0.2132 0.2712 0.0583 0.2139 0.2121 0.8233
EUR JPY 0.5475 0.5171 0.4380 0.5985 0.5385 0.8509
EUR NOK 0.2632 0.4388 0.3222 0.6373 0.2553 0.8889
EUR USD 0.2139 0.2427 0.1494 0.1022 0.0777 1.0474
GBP AUD 0.5770 0.3854 0.5816 0.7964 0.6471 1.4298
GBP CHF 0.2575 0.0779 0.6074 0.1904 0.3013 0.5371
GBP USD 0.1141 0.1997 0.0648 0.2228 0.1140 0.8567
NZD USD 0.5130 0.5937 0.7069 0.7858 0.5984 0.9422
USD CAD 0.2078 0.1658 0.4274 0.3773 0.4194 0.8522
USD JPY 0.4411 0.6448 0.3829 0.3914 0.3428 1.2062
USD NOK 0.3836 0.4253 1.0093 0.4595 0.4502 1.5360
USD SGD 0.1525 0.1325 0.2305 0.2991 0.3777 0.7704
USD ZAR 1.5811 1.4437 1.8097 1.7583 1.4155 4.1808
Average 0.4641 0.4759 0.5167 0.5271 0.4795 1.1577

6.3.1 Computational time

Table 6.11 presents the average computational time for multi-threshold strategy in

comparison to single threshold strategy. The results show an increase in computation

time taken by multi-threshold strategy. This is expected since it includes the time

required to train multiple classification models. Additional time is also used in
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Table 6.4: Statistical test results for average returns according to the non-parametric Fried-
man test with the Hommel post-hoc test of multi-threshold (c) vs other single threshold
based trading strategies. 10-minute interval out-of-sample date. Significant differences be-
tween the control algorithm (denoted with (c) and the algorithms represented by a row at
the α = 5% level are shown in boldface indicating that the adjusted p value is lower than
0.05.

Trading strategies Average Rank AdjustpHomm

Multi-threshold (c) 1.0500 -
Threshold4 3.3000 1.4284E-4
Threshold2 3.9999 1.2302E-6
Threshold3 4.1000 7.5910E-7
Threshold1 4.2500 2.5353E-7
Threshold5 4.3000 1.5846E-7

Table 6.5: Average Sharpe ratio result for trading strategies of individual single threshold
strategies and multi-threshold strategy. 10-minute interval out-of-sample data. 20 different
currency pairs and 10 calendar months each representing the physical dataset. 5 DC dataset
were generated using 5 dynamically generated thresholds tailored to each DC dataset. Best
value for each row (currency pair) is shown in boldface.

Dataset Threshold1 Threshold2 Threshold3 Threshold4 Threshold5 Multi-threshold
AUD JPY 0.3469 0.2082 0.2335 0.2245 0.2451 0.7026
AUD NZD 0.2565 0.2129 0.2289 0.1246 0.3348 0.7912
AUD USD 0.2749 0.2183 0.3149 0.3396 0.3702 0.8014
CAD JPY 0.2614 0.1879 0.3268 0.1664 0.2708 0.6804
EUR AUD 0.2812 0.2310 0.2358 0.2855 0.2961 0.9101
EUR CAD 0.3972 0.1807 0.2865 0.3229 0.2964 0.7496
EUR CSK 0.0970 0.1190 0.0370 0.1893 -0.0555 1.2658
EUR GBP 0.0845 0.0035 0.1589 0.1077 0.2287 0.7330
EUR JPY 0.3539 0.3183 0.3371 0.4049 0.2846 1.0389
EUR NOK 0.1292 0.2177 0.2578 0.2430 0.2778 0.5835
EUR USD 0.2370 0.1381 0.1073 0.1328 0.1258 0.5673
GBP AUD 0.2579 0.2179 0.2326 0.2619 0.3402 0.9387
GBP CHF 0.2793 0.0216 0.3019 0.2840 0.2367 0.7413
GBP USD 0.0779 0.2178 0.1344 0.2539 0.1855 0.6961
NZD USD 0.1753 0.2463 0.2388 0.3418 0.2365 0.6223
USD CAD 0.1780 0.3044 0.3232 0.3508 0.2181 0.6328
USD JPY 0.2140 0.2205 0.0582 0.2940 0.2303 0.6499
USD NOK 0.2614 0.2526 0.3395 0.1712 0.2156 0.7604
USD SGD 0.0434 0.1260 0.1219 0.1236 0.1910 0.7305
USD ZAR 0.2555 0.2741 0.2420 0.2576 0.2401 0.9430
Average 0.2231 0.1958 0.2259 0.2440 0.2384 0.7769
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Table 6.6: Statistical test results for average Sharpe ratio according to the non-parametric
Friedman test with the Hommel post-hoc test of multi-threshold (c) vs other single thresh-
old based trading strategies. 10-minute interval out-of-sample date. Significant differences
between the control algorithm (denoted with (c) and the algorithms represented by a row
at the α = 5% level are shown in boldface indicating that the adjusted p value is lower
than 0.05.

Trading strategies Average Rank AdjustpHomm

Multi-threshold (c) 1.0000 -
Threshold4 3.4500 3.4541E-5
Threshold5 3.7000 1.0046E-5
Threshold3 4.1000 4.8184E-7
Threshold1 4.2000 2.5353E-7
Threshold2 4.5500 9.8300E-9

Table 6.7: Average Maximum drawdown (% ) result for trading strategies of individual
single threshold strategies and multi-threshold strategy. 10-minute interval out-of-sample
data. 20 different currency pairs and 10 calendar months each representing the physical
dataset. 5 DC dataset were generated using 5 dynamically generated thresholds tailored
to each DC dataset. Best value for each row (currency pair) is shown in boldface.

Dataset Threshold1 Threshold2 Threshold3 Threshold4 Threshold5 Multi-threshold
AUD JPY 0.7447 0.2441 0.2796 0.2773 0.5053 0.0262
AUD NZD 0.3235 0.2914 0.2642 0.2910 0.1143 0.0177
AUD USD 0.2810 0.1617 0.2001 0.3173 0.2748 0.0261
CAD JPY 0.1864 0.2537 0.2720 0.1687 0.3897 0.0124
EUR AUD 0.5627 0.4365 0.0977 0.2828 0.2400 0.0087
EUR CAD 0.2956 0.3051 0.0928 0.0964 0.1094 0.0293
EUR CSK 0.0007 0.0302 0.0076 0.0383 0.0706 0.0000
EUR GBP 0.1635 0.2833 0.0445 0.1823 0.1492 0.0077
EUR JPY 0.2932 0.3777 0.2856 0.3772 0.3927 0.0391
EUR NOK 0.1774 0.2326 0.1978 0.4144 0.0894 0.0112
EUR USD 0.1499 0.2006 0.0973 0.0832 0.0487 0.0303
GBP AUD 0.3190 0.2690 0.4058 0.4627 0.3772 0.0074
GBP CHF 0.1020 0.1239 0.4167 0.1069 0.0923 0.0035
GBP USD 0.1311 0.1223 0.0753 0.1477 0.0598 0.0057
NZD USD 0.1884 0.1971 0.2058 0.2131 0.1720 0.0342
USD CAD 0.1451 0.0469 0.2685 0.1434 0.3030 0.0353
USD JPY 0.2563 0.3516 0.2688 0.3132 0.1097 0.0160
USD NOK 0.2655 0.3375 0.6848 0.3467 0.3476 0.0243
USD SGD 0.0383 0.0354 0.1351 0.1351 0.1890 0.0071
USD ZAR 1.1300 1.0217 1.3708 1.3680 1.0740 0.0196
Average 0.2877 0.2661 0.2835 0.2883 0.2554 0.0181
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Table 6.8: Statistical test results for average maximum drawdown according to the non-
parametric Friedman test with the Hommel post-hoc test of multi-threshold (c) vs other
single threshold based trading strategies. 10-minute interval out-of-sample date. Significant
differences between the control algorithm (denoted with (c) and the algorithms represented
by a row at the α = 5% level are shown in boldface indicating that the adjusted p value is
lower than 0.05.

Trading strategies Average Rank AdjustpHomm

Multi-threshold (c) 1.0000 -
Threshold5 3.7500 3.3460E-6
Threshold3 3.9000 1.8983E-6
Threshold1 3.9000 1.8983E-6
Threshold2 4.0000 1.2655E-6
Threshold4 4.4500 2.7455E-8

Table 6.9: % Average Standard Deviation (SD) result for trading strategies of individual
single threshold strategies and multi-threshold strategy. 10-minute interval out-of-sample
data. 20 different currency pairs and 10 calendar months each representing the physical
dataset. 5 DC dataset were generated using 5 dynamically generated thresholds tailored
to each DC dataset. Best value for each row (currency pair) is shown in boldface.

Dataset Threshold1 Threshold2 Threshold3 Threshold4 Threshold5 Multi-threshold
AUD JPY 0.4511 0.5528 0.5686 0.5502 0.4419 0.5334
AUD NZD 0.2481 0.1745 0.1339 0.0882 0.0939 0.1048
AUD USD 0.2142 0.2355 0.2512 0.2939 0.3751 0.1945
CAD JPY 0.3759 0.3256 0.3656 0.2963 0.2130 0.3167
EUR AUD 0.2798 0.2698 0.1849 0.1667 0.1491 0.1571
EUR CAD 0.2184 0.1827 0.1910 0.2509 0.1993 0.2714
EUR CSK 0.0144 0.0247 0.0087 0.0301 0.0380 0.0418
EUR GBP 0.0898 0.1465 0.0250 0.0846 0.0802 0.0812
EUR JPY 0.2309 0.2323 0.2104 0.2762 0.2718 0.1408
EUR NOK 0.1155 0.1676 0.0993 0.1956 0.1349 0.0863
EUR USD 0.0898 0.1326 0.0859 0.0577 0.0311 0.0884
GBP AUD 0.2618 0.1671 0.2520 0.3044 0.2601 0.1867
GBP CHF 0.1021 0.1575 0.2216 0.1277 0.1421 0.1647
GBP USD 0.1104 0.1164 0.0841 0.1188 0.0993 0.1073
NZD USD 0.2209 0.2201 0.2944 0.3090 0.2113 0.1483
USD CAD 0.1218 0.0676 0.2414 0.1647 0.2023 0.1356
USD JPY 0.2053 0.2749 0.2051 0.1725 0.1658 0.1186
USD NOK 0.1543 0.1999 0.4327 0.1649 0.2033 0.1299
USD SGD 0.0651 0.0721 0.0868 0.1636 0.1629 0.0925
USD ZAR 0.4146 0.4244 0.5034 0.6268 0.3746 0.1764
Average SD 0.1992 0.2072 0.2223 0.2221 0.1925 0.1638
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Table 6.10: Statistical test results for average Standard deviation according to the non-
parametric Friedman test with the Hommel post-hoc test of multi-threshold (c) vs other
single threshold based trading strategies. 10-minute interval out-of-sample date. Significant
differences between the control algorithm (denoted with (c) and the algorithms represented
by a row at the α = 5% level are shown in boldface indicating that the adjusted p value is
lower than 0.05.

Trading strategies Average Rank AdjustpHomm

Multi-threshold (c) 2.6999 -
Threshold5 3.0500 0.5541
Threshold1 3.5500 0.3016
Threshold3 3.6500 0.2262
Threshold2 3.8500 0.2010
Threshold4 4.2000 0.0561

Table 6.11: Average computational times per trend for single threshold strategy and multi-
threshold strategy

Trading strategies Single threshold Multi-threshold

Classification ∼ 65 mins ∼ 330 mins
Estimation ∼ 5.45 mins ∼ 5.45 mins
GA optimisation —- ∼ 7 mins
Trading ∼ 3 secs ∼ 9 secs

training our GA based strategy. The computation time was measured on a non-

dedicated1 Red Hat Enterprise Linux (Maipo) with a 24 core, 2.53 GHz processor

and 24 Gigabit memory. Although auto-WEKA, the tool for our classification step

can be executed using multiple threads of concurrent execution, we chose to run serial

mode using a single CPU core due to limitation on hardware resources. Beside the

classification step, we acknowledge that improvements can be made in computation

time through parallelisation of the different steps that make up the trading strategy

framework (Brookhouse, Otero and Kampouridis 2014; Ong and Schroder 2020). We

do not consider the additional time to be a significant drawback as the framework
1There were other processes unrelated to the experiment running on the server at the time the

experiments were performed
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is used off-line, therefore the significant improvement observed in trading results,

outweigh any extra computational time needed.

6.4 Summary

Based on our experimental results, we are able to reach the following conclusion.

Viewing data from multiple perspectives augments insight into price movement.

As we observed in Tables 6.3 and 6.5, profit obtained trading using a multi-threshold

strategy outperformed single threshold 2 and 4 folds respectively. The statistical test

performed showed that that the increase in profit is statistically significant. In addi-

tion, having better insight into price movement enables traders make better decisions

without increasing risk. We were able to achieve afore mentioned profit without in-

creasing risk. As we observed in Table 6.10, although multi-threshold strategy was

unable to statistically outperform single thresholds in standard deviation risk mea-

sure, it was ranked first, and we consider this to be a positive result.

Optimisation of individual threshold recommendation is beneficial. Optimising

both the trading actions and the forecasted trend reversal point from multiple thresh-

olds using machine learning techniques is an effective way of developing profitable

strategies without increasing risk. We also observed that Genetic algorithm, an opti-

misation technique is a tool that can be used in performing multiple recommendation

optimisation successfully.



Chapter 7

Conclusion

In this thesis, we focused our research on: (1) extending the types of discoverable

relationships between DC and OS event length; (2) Identifying two kinds of DC

trends; DC trend that compose of DC and OS event and DC trend of only DC event;

and (3) developing a novel trading strategy that optimises recommendation from

individual DC thresholds.

The aim in (1) was to discover equations that express richer relationships between

DC event length and OS event length using symbolic regression GP approach. Pre-

vious approaches discovered linear relationships. With our approach, we were able

to discover more complex relationships that could be linear or non-linear tailored to

a specific dataset. This resulted in an improvement in OS event length estimation

accuracy and, consequently, led to improvements in DC trend reversal forecasting

accuracy1. In addition, the improved forecasting model was embedded in a trading

strategy and resulted in increased trading returns at reduced risk.

To further improve our DC trend reversal forecasting accuracy, in (2) we made the
1By adding estimated OS event length to the DC event length known at DCC point we can

forecast trend reversal point

156



CHAPTER 7. CONCLUSION 157

distinction between DC trends that end at the direction change confirmation point

and others that continue beyond the said point. We extended the trend reversal

forecasting algorithm by introducing a classification step that categorises DC trends

into two kinds, 1) composed of DC and OS event, and 2) composed of only DC

event. This knowledge significantly improved trend reversal estimation accuracy as

OS event length estimation was calculated only when a trend is categorised to have

one. Additionally, we dynamically selected threshold for sampling event series from a

pool of thresholds by choosing the threshold with the best trend reversal forecasting

accuracy in training.

In (3), we developed a GA based trading strategy that optimised trading actions

and trend reversal point recommendations from multiple thresholds. Our approach

was compared with results from a single threshold trading strategy. Results showed

that further increase in profitability and reduction in risk is achieved by the multi-

threshold trading.

7.1 Contributions

To tackle the problem of forecasting trend reversal in directional changes, we started

by proposing a novel symbolic regression GP (SRGP) that estimated the length

of an OS event based on the relationships between DC and OS event lengths. Our

approach led to the improvement in OS event length estimation accuracy (Adegboye,

Kampouridis and Johnson 2017). The estimation error of our SRGP was compared

to those of other OS event length estimation algorithms in the literature (Glattfelder,

Dupuis and Olsen 2011; Kampouridis and Otero 2017). The results showed that our

SRGP statistically significantly outperformed them. Given the enhanced OS event

length estimation to DC event length, we were also able to improve the accuracy
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at forecasting DC trend reversal. The algorithm was introduced as the forecasting

engine in an existing multi-threshold trading strategy. The trading strategy recorded

statistically significant profit in comparison to technical indicator based strategies,

buy-and-hold and the original version of the strategy that used a different DC-based

forecasting engine.

Despite the significant improvements by our approach for forecasting trend re-

versal, we identified two limitations which we addressed in our second contribution

(Adegboye and Kampouridis 2021; Adegboye, Kampouridis and Otero 2021). The

first limitation was the assumption that all DC trends are composed of DC and OS

events. Empirical observation showed DC event series could have as little as 14.77%

OS events even though this is threshold dependent. Therefore, OS event estimation

should be done only when a DC trend is expected to have an OS event. The second

limitation was the use of the same fixed-sized thresholds across the dataset which

will not necessarily capture the most significant price events. We tackled these lim-

itations by introducing a classification step before estimating OS event length. We

estimated OS event length only when DC trends are classified to consist of DC and

OS events. Otherwise, trends are considered to have only DC events. We then sam-

pled events-series using tailored thresholds. We generated a pool of thresholds and

evolved SRGPs for each threshold under perfect foresight. From the pool, we selected

the threshold associated with an SRGP that had the least root mean squared error

(RMSE) as the trading threshold.

Our results showed that this approach led to further statistically significant im-

provement to trend reversal forecasting accuracy after comparing with other known

DC-based trend reversal forecasting algorithms. The results showed that improve-

ment to trend reversal forecasting accuracy was achieved and confirmed the impor-

tance of carefully selecting thresholds and estimating OS event length only when it
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is known that an OS event exists.

To show that our improved trend reversal forecasting algorithm led to improved

trading returns and reduced risk, we developed a new trading strategy. We tested

12 versions of the strategy embedded with different DC trend reversal forecasting

algorithms. The first three forecasting algorithms assumed that all DC trends have

corresponding OS event and estimated OS event length according to the approaches

proposed by Glattfelder, Dupuis and Olsen (2011); Kampouridis and Otero (2017);

Adegboye, Kampouridis and Johnson (2017). The second three set of forecasting

algorithms introduced our classification step to the three aforementioned forecasting

approaches and estimated OS event length only when a DC trend is classified to

have an OS event. The third three set of forecasting algorithms probabilistically

categorised DC trends and estimated OS event length according to the approaches

proposed by Glattfelder, Dupuis and Olsen (2011); Kampouridis and Otero (2017);

Adegboye, Kampouridis and Johnson (2017), respectively. The last three set of fore-

casting algorithms sampled event series using approaches proposed by Glattfelder,

Dupuis and Olsen (2011); Kampouridis and Otero (2017); Adegboye, Kampouridis

and Johnson (2017), then ignored the OS events, trading at the DCC point. We mea-

sured average return, Sharpe ratio and Maximum Drawdown (MDD). In general, the

return of the variants that combined a classification model with an OS event length

estimation model outperformed the others. Specifically, the Sharpe ratio result of our

strategy (i.e., combined classification and SRGP models) statistically significantly

outranked all the other strategies. Similarly, the Sharpe ratio result statistically

outperformed seven technical analysis based strategies including buy-and-hold. The

risk measure comparison (i.e., MDD) showed that our strategy approach outranked

other strategies, but the performance was not statistically significant in comparison

to other versions of the strategy that introduced classification. The results showed
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that finding richer relationships between DC and OS event lengths is beneficial for

maximising returns and reducing risk.

Finally, as our third contribution in Chapter 6, we proposed a multi-threshold

trading strategy that optimised trading recommendations from individual thresholds.

The proposed trading strategy addresses the limitation of our single threshold based

trading strategy, which could act on only a single type of event. The ability of a

strategy to perceive and act on different types of events has the added advantage

of making robust trading decision as the information from multiple thresholds is

used to make decision. This was evident in the trading result reported where the

multi-threshold trading strategy statistically significantly outperformed individual

thresholds in both profit and risk measures.

7.2 Future Research

Although we were able to significantly improve trend reversal forecasting, future in-

vestigation is required in two areas for the approach to realise its full forecasting

potential. The classification step consumes around 96% of the computational time

that is required to create a forecasting model. It would be relevant to investigate

alternative classification techniques that can generate classification models of com-

parable accuracy at reduced computational time. By doing this, the forecasting

algorithm will be able to transition from an offline process to an online one. We also

leave for future work the experimentation with Auto-WEKA in the multi-threaded

mode for improvement in computational time spent on the classification step.

We successfully forecasted DC trend reversal using 10-minutes physical time Forex

data. It is yet to be seen whether similar performance can be achieved in other

markets (i.e., commodities, bond, indices and stocks, cryptocurrency) or not. It
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will therefore be interesting to investigate DC trend reversal forecasting in other

markets using our approach. The data used for this work might be relatively old

(i.e., between 5 and 7 years), it will be interesting to experiment with more recent

data. Additionally, our work focused on trend reversal forecasting improvement, it

will be worthwhile to evaluate the robustness of our approach at forecasting trending

reversal in higher frequency data such as 1-minute physical time data and tick-data.

The final area of research that can be investigated further is the enhancement

of our GA-based trading strategy framework. A potential limitation of our current

framework is the selection of the best 5 thresholds as genes of our GA individuals.

It could be the case that few or more genes are required. Therefore, further studies

investigating variable-sized individuals in the GA population are warranted. This can

be realised in such a way that chromosome size is one of the optimisation objectives.

Additionally, in our current implementation, the total budget was used for every

transaction. Future studies should address it by optimising minimum and maximum

quantity to trade per transaction and dynamically adjust the value during trading

using a reward/penalty system. Finally, future studies could focus on combining

intrinsic and physical time scale approaches in a trading strategy to elucidate whether

the combination could lead to improvement in trading returns and reduction in risk or

not. It could be done by optimising recommendations from both technical indicators

and multiple thresholds in the GA based trading strategy.
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