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Abstract 

Overfitting is a common and critical challenge for neural networks trained with limited dataset. 

The conventional solution is software-based regularization algorithms such as Gaussian noise 

injection. Semiconductor noise, such as 1/f noise, in artificial neuron/synapse devices, which is 

often regarded as undesirable disturbance to the hardware neural networks (HNNs), could also 

play a useful role in suppressing overfitting, but that is as yet unexplored. In this work, we 

proposed the idea of using 1/f noise injection to suppress overfitting in different neural networks, 

and demonstrated that: (i) 1/f noise could suppress the overfitting in Multilayer Perceptron (MLP) 

and long short-term memory (LSTM); (ii) 1/f noise and Gaussian noise performs similarly for the 

MLP but differently for the LSTM; (iii) The superior performance of 1/f noise on LSTM can be 

attributed to its intrinsic long range dependence. This work reveals that 1/f noise, which is common 

in semiconductor devices, can be a useful solution to suppress the overfitting in HNNs, and more 

importantly, further evidents that the imperfectness of semiconductor devices is a rich mine of 

solutions to boost the development of brain-inspired hardware technologies in the AI era. 

 

1. Introduction 

In the artificial intelligence (AI) era, brain-inspired deep 

neural networks have demonstrated substantial potential in 

various neuromorphic tasks such as visual recognition, natural 

language processing, and autonomous driving [1]-[7]. Despite 

the remarkable progress, those neural networks often 

encounter the underfitting and overfitting problems, both 

resulting in unsatisfactory accuracy: underfit leads to high 

prediction errors for both training and test data, while overfit 

leads to a very low prediction error on the training data but a 

very high prediction error on the test data [8]-[11], as 

schematized in figure 1.  

 

Optimal OverfittingUnderfitting(a) (b) (c)
 

Figure 1. (a-c) Schematics of (a) underfitting, (b) optimal training and (c) 

overfitting of neural networks. 
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Underfitting happens because the neural network is too 

simple to capture all the features in the training data. The 

practical solutions can be simply training the network for a 

longer duration or just use a network with higher complexity. 

Overfitting happens because the neural network is too 

complex for a limited training data size, forcing the network 

to overly memorize the irrelevant detail and noise in the 

training data. Of course, increasing the size of training data 

could be the most straightforward solution. However, in real-

world situations, the training data size is often limited by time, 

budget or technical constrains [12], making overfitting 

practically more difficult to deal with than underfitting [13]. 

Recently, a group of techniques, collectively referred to as 

“regularization”, which is the process of shrinking the 

coefficients in neural networks, have been used to select the 

networks’ complexity by automatically penalizing features 

that make the network too complex. Using regularization, the 

learning algorithms of neural networks are modified to reduce 

its generalization error but not its training error [14]. The most 

common regularization methods include [15]:   

(1) Early stopping: stop training automatically when a 

specific performance measure stops improving; 

(2) Weight decay: incentivize the network to use smaller 

weights by adding a penalty to the loss function; 

(3) Dropout: randomly ignore certain nodes in a layer during 

training; 

(4) Model combination: average the outputs of separately 

trained neural networks; 

(5) Noise injection: allow some random fluctuations in the 

data through augmentation. 

Among them, noise injection is a very popular method 

against overfitting [16]. The addition of noise during training 

has a regularization effect and improves the robustness of the 

neural network [17]. In practice, noise can be added in 

between training iterations and onto different parts of the 

neural networks, such as input signal, weights and activation 

functions, to make it difficult for the network to find a solution 

that fits precisely to the original training data, and thereby 

reduces overfitting. In software-based DNNs, noise injection 

is normally realized with the addition of a separate zero-mean 

Gaussian noise layer, such as the 

“tf.keras.layers.GaussianNoise” in TensorFlow [18]. 

The software-based neural networks, which are still based 

on the traditional von Neumann architecture initially designed 

for sequential computing [19], are challenged by the 

proliferation of massive data in terms of computing ability and 

power consumption, driving people to look for alternative 

solutions. Again, inspiration comes from the brain: the power 

budget of the human brain is around 20 W, and its computation 

capabilities range in the 1017 FLOPS, equivalent to the best 

supercomputers [20]: the world’s fastest supercomputer in 

2021, Fugaku, has a computation capability is 4.42 x1017 

FLOPS, but with a power of 29,899.23 kW [21]. 

In recent years, there has been a large push toward a 

hardware implementation of artificial neural networks, i.e. 

hardware neural networks (HNNs), aiming to overcome the 

calculation complexity of software-based implementations by 

using semiconductor technology to directly emulate the 

behaviour of neurons and synapses [22]-[25]. Unlike the 

conventional von-Neumann architecture that is inherently 

sequential in nature [19], HNNs profit from massively parallel 

processing, and various architectures, such as Multilayer 

Perceptron (MLP), Convolutionary Neural Network (CNN), 

Recurrent Neural Network (RNN) and long short-term 

memory (LSTM) have been proposed using semiconductor 

devices (transistors, memristors, etc.) and circuits. 

Since HNNs are implemented with real-world devices, the 

natural-existing imperfectness of devices inevitably affects 

the performance of HNNs. Previously, such imperfectness 

was considered as detrimental factors that bring undesirable 

disturbance to HNN’s parameters, causing variation and drift 

to the performance [22]-[24]. However, as the brain is of high 

error tolerance and so should be HNN, what is more attracting 

is that such intrinsic imperfectness of semiconductor devices 

might be utilized to, instead, improve the performance of 

HNNs. For example, the stochastic memristive switching 

behaviour has been used to realize the dropout function of 

HNN [25]. The intrinsic read noise of memristive devices has 

been used to prevent HNN from getting trapped into local 

minima and thus converge to sub-optimal solutions [26] [27]. 

Motivated by the previous explorations, it is natural to link 

semiconductors noise to overfitting suppression in HNNs. An 

obvious benefit is that the intrinsic noise in devices waives the 

necessity to design complex circuitry specialized for Gaussian 

noise generation using Zener diodes  or other devices [28]. 

Various types of noise exist in semiconductor devices, such as 

thermal noise [29], random telegraph noise [30], 1/f noise [31], 

etc. [32] [33], but a comprehensive study on the overfitting 

suppression effect of noise, at least for one or two types of 

noise, is still missing.  

Among those noises, 1/f noise is the low frequency noise 

for which the noise power spectral density is inversely 

proportional to the frequency [34] [35]. It can be observed in 

a wide range of semiconductor devices, such as transistors [36] 

memristors [37]-[40], diodes [41], and photoelectric devices 

[42]. 1/f noise is also the “background noise” of the brain [43]. 

For example, the channel noise in neurons, which is thought 

to arise from the random opening and closing of ion channels 

in the cell membrane, is seen to be 1/f [44]. Similarly, it has 

been shown that both Magnetoencephalography (MEG) and 

Electroencephalogram (EEG) recordings of spontaneous 
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neural activity in humans displayed 1/f-like power spectra in 

the α, μ, and β frequency ranges [45]. 1/f noise is also an 

optimal communication channel for complex networks as in 

art or language and may therefore be the channel through 

which the brain influences complex process and is influenced 

by them [46]. This inspires people to wonder if the 1/f noise 

in real semiconductor devices could be used to mimic some 

natural neural behavior in human brains, and play a role in the 

HNN. 

From the mathematical perspective, 1/f noise is well-known 

for its “memory”, or long-range dependence, which basically 

refers to the level of statistical dependence between two points 

in the time series [47]. More specifically, it relates to the rate 

of decay of statistical dependence between the two points if 

the distance between them increases. For example, if a time 

series has a short memory, it is predictable from only its 

immediate past. The memory of a time series can be expressed 

using the autocorrelation. Autocorrelation refers to the 

correlation of a given signal with itself at various points in 

time [48]. For a time series with short memory, its 

autocorrelations decay quickly as the number of intervening 

observations increases. 1/f noise is an intermediate between 

white noise (a process without memory) and brown noise (a 

process with an infinite memory) [49]. The long-term memory 

of 1/f noise can be quantified using the autocorrelation 

function (ACF).  

 In this work, we proposed the idea of noise injection on 

HNNs by using the intrinsic 1/f noise in semiconductor 

devices. We demonstrated the overfitting suppression ability 

of 1/f noise in MLP and LSTM for handwriting data 

recognition and weather prediction tasks, and attribute the 

superior performance of 1/f noise on LSTM, which is used to 

process time series data, to the long range dependence of 1/f 

noise. This work reveals that 1/f noise in semiconductor 

devices can be a useful solution to suppress overfitting in 

HNNs, and inspires that the imperfectness of semiconductor 

devices is a rich mine of solutions to boost the development of 

brain-inspired hardware technologies. 

 

2. Noise measurement and simulation 

For the purpose of demonstration, experimental 1/f noise is 

measured from the drain current in a back-gated MoS2 field 

effect transistor (FET) (figure 2(a)), in both time domain and 

frequency domain. The channel length is 5µm, width is 

19.4µm and the MoS2 has nine layers. 1/f noise can be easily 

tuned with Vgs (figure 2(b)) or Vds (figure 2(c)).  

It should be emphasized that, due to the huge number of 

neurons and synapses in a neural network, in this work, noise 

simulated with software was used instead of experimental data 

measured from practical devices, to study the impact of noise 

injection on overfitting suppression. The “pinknoise.m” 

function in Matlab [50], which includes a random stream 

generator, a series of randomly initiated second-order section 

(SOS) filters and a gain, was used to generate a time-domain 

1/f noise, as schematized in figure 2(d). The Gaussian noise 

was simulated using the “randn.m” function in Matlab [51]. 

3. Multi-layer perceptron (MLP) Simulation 

Multi-layer perceptron (MLP) is a popular and practical 

neural network model consisting of three types of layers—the 

input layer, output layer and hidden layer [52]. In a MLP the 

data flows in the forward direction from input to output layer, 
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Figure 2. (a) Frequency domain and (upper inset) corresponding time domain 

1/f noise measured via electrical characterization. Lower inset: Schematic of 

the back-gated MoS2 FET device, from which the demonstrative 1/f noise is 

measured. (b-c) Experimental frequency domain 1/f noise measured from this 

MoS2 device, under (b) various Vgs and (c) various Vds. 1/f noise can be easily 

tuned with Vgs or Vds. (d)  Schematic of time-domain 1/f noise generation in 

Matlab, using the pinknoise.m function. 
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while the synapses in the MLP are trained with the back 

propagation learning algorithm. The major use cases of MLP 

are pattern classification, recognition, prediction and 

approximation. The MLP is sometimes called a “memoryless” 

classifier because if one presents a pattern on its input units, 

the output units respond with an activation pattern, and those 

outputs depend only on the inputs at that moment, regardless 

of the previous input history. 

In this work, an MLP with 2 hidden layers was simulated 

using Python, with 784, 50, 50 and 10 neurons in the input 

layer, 1st hidden layer (tanh), 2nd hidden layer (tanh) and 

output layer (relu), respectively. The MLP was trained and 

validated using the Modified National Institute of Standards 

and Technology (MNIST) handwritten digit database [53], in 

which 60,000 images were used for training and the other 

10,000 were used for validation. During training and 

validation, the batch size is 100 and the learning rate is 0.0005. 

The loss function is cross entropy loss and the optimizer is 

Adam. 

 

Overfitting is clearly realized in this MLP: after training 

starts, both the training loss and validation loss decreases 

(underfit), until at around 10th epoch when the training loss 

keeps decreasing but the validation loss reaches its lowest 

point (optimal) and started to increase. After that, the training 

loss keeps decreasing while the validation loss keeps 

increasing, which is a typical feature of overfitting, as shown 

in figure 3(b). To evaluate the impact of 1/f noise on 

overfitting suppression, a simulated time-domain 1/f noise, 

whose amplitude is calculated according to 

𝐒𝐍𝐑 = 𝟏𝟎𝐥𝐨𝐠(𝐏𝒔𝒊𝒈𝒏𝒂𝒍/𝐏𝒏𝒐𝒊𝒔𝒆)         (Equation 1) 

where the SNR refers to a fixed signal-to-noise ratio (SNR) 

and the signal is the weight value updated after back 

propagation in each epoch, is added to the weight before 

validation, as schematized in figure 4(a). For comparison, 

Gaussian noise with the same SNR is injected in the same way. 

The simulated 1/f noise is applied onto the 3 layers of 

weights, i.e. the weights between the input layer and the 1st 

hidden layer (Wih1), between the 1st and 2nd hidden layer 

(Wh1h2) and between the 2nd hidden layer and the output layer 

(Wh2o), respectively (figure 4(b)). Obviously, the location of 

noise injection makes major differences: noise injection on 

Wih1 lead to converged training and validation curves but 

with higher final loss for both. For noise injection on Wh1h2 

the overfitting is even worse. For noise injection on Wh2o, the 

training and validation curve are closer and the final validation 

loss is ~50% lower than the initial level, indicating that the 

overfitting has been suppressed with the injection of 1/f noise. 

The training and validation loss after 100 epochs are 

summarized in figure 4(c). As shown in figure 4(d), Gaussian 

noise with the same SNR, shows similar effect as the 1/f noise, 

probably due to the fact that since MLP is static and has a 

memoryless network architecture [54], it does not respond 

differently to 1/f noise or Gaussian noise, as shown in figure 

5(b). 
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Figure 3. (a) An MLP neural network with 784, 50, 50 and 10 neurons in the 

input layer, 1st hidden layer (tanh), 2nd hidden layer (tanh) and output layer 

(relu). (b) Overfitting of the MLP showing increasing validation loss after the 

optimal point. 
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Figure 4.(a)The flowchart of noise injection in the MLP. (b)1/f noise is added 

onto the weights between input layer and 1st hidden layer, between 1st and 2nd 

hidden layer, and between 2nd hidden layer and output layer, respectively. 

(c)The training  loss、validation loss and accuracy of different weights after 

100 epochs. (d) The training loss, validation loss and accuracy of 1/f noise 

and Gaussian noise injection after 100 epochs. NJ is short for noise injection. 
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Figure 5.(a) Demonstration of noise sampling, with interval of 100. (b) Loss 

after using 1/f noise and Gaussian noise injection in an MLP. Noise is injected 

on to the weights between the 2nd hidden layer and the output layer. 
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4. Long-short term memory (LSTM) Simulation 

Artificial neural networks are expected to mimic the 

architecture and performance of human thoughts which have 

persistence. For example, the reader of this paper understands 

each word based on the understanding of previous words, 

instead of throwing everything away and start thinking from 

scratch again. However, traditional neural networks, such as 

MLP, can’t do this, which is a major shortcoming. Recurrent 

neural networks (RNN), which has loops inside and allows 

information to persist, addresses this issue. In practice, it is 

found that RNN can learn to use the past information well if 

the gap between the relevant information and the place that 

it’s needed is small. If such gap becomes large, which is 

entirely possible, RNNs become less capable of learning to 

connect the information, due to some fundamental reasons, 

such as vanishing or exploding gradient. 

Long Short Term Memory (LSTM) networks are a special 

kind of RNN explicitly designed to avoid the long range 

dependency problem. In standard RNNs, the repeating module 

has a very simple structure, such as a single tanh layer. For 

LSTMs, the repeating module has a different structure, 

consisting of a cell, an input gate, an output gate and a forget 

gate. The forget gate allows unneeded information to be erased 

and forgotten. The cell remembers values over arbitrary time 

intervals and the three gates regulate the flow of information 

associated with the cell, thus solving the long range 

dependence problem, as shown in figure 6(a). Since one of 

the key features of 1/f noise is its long range dependence, 1/f 

noise might play a special role in suppressing the overfitting 

in an LSTM for time serial data tasks such as weather 

prediction. 

In this work, the climate time-series dataset recorded by the 

Max Planck Institute for Biogeochemistry is used to train the 

LSTM. The entire dataset consists of 14 features, which were 

recorded once per 10 minutes at the Weather Station of Max 

Planck Institute for Biogeochemistry in Jena, Germany. Three 

features out of the 14 in the dataset, i.e. temperature, pressure 

and air density, are selected for a quick demonstration, as 

visualized in figure 6(b). The data of those three features are 

recorded once per 10 minutes, and is collectively defined as 

the data of “one moment”. In other words, each moment 

contains three data points: temperature, pressure and air 

density. 10 consecutive moments are used for training and 500 

consecutive moments for validation. Specifically, the first 10 

moments for training and moments from the 20,000th to the 

20500th for validation, to avoid overlap.  Since every feature 

has values with varying ranges, normalization is carried out to 

confine feature values to a range of [0, 1] before training the 

LSTM, by subtracting the minimum and dividing by the 

difference between the maximum and minimum of each 

feature. During training and validation, the batch size is 7 and 

497 respectively. Therefore, the 8th, 9th, and 10th moments of 

training will be used as training labels while the 498th, 499th 

and 500th moments of validation will be used as validation 

labels. The optimizer is Adam and the learning rate is 0.0001. 

The loss function is the mean square error loss. During 

training, a simulated time-domain 1/f noise is applied onto the 

hidden state (ht) for overfitting suppression. The amplitude of 

noise is calculated according to (Equation 1) where the SNR 

refers to a fixed signal-to-noise ratio (SNR) and the signal is 

the hidden state value updated in each epoch. Gaussian noise 

is injected in the same way and of the same SNR for 

comparison. 

 

Without using noise injection, overfitting can be clearly 

observed in figure 6(c). After training starts, both the training 

loss and validation loss decreases (underfit), until at ~180th 

epoch when the training loss keeps decreasing but the 

validation loss reaches its lowest point (optimal) and started to 

sharply increase. After that, the training loss keeps decreasing 

while the validation loss keeps increasing. After ~250th epoch, 

the training and validation loss finally saturate at around zero 

and 0.5, respectively. 

1/f noise and Gaussian noise with SNR = 0dB is injected 

onto this LSTM for an initial demonstration (figure 7(b)&(c)). 

It can be clearly observed that the loss is controlled at the 

optimal point between the 280th and 470th epoch, while for the 

Gaussian noise injection, the loss function reaches the lowest 

point at the 270th epoch, sharply increases to a peak around 

0.38 at the 380th epoch, and then gradually decrease afterwards. 

This supports that for the LSTM, 1/f noise and Gaussian noise 

could both suppress overfitting, but with different 

performance. Compared with the Gaussian noise case where 

although the loss is lower than the “without noise injection” 

case, the loss fluctuates and could be as high as ~0.38, the 1/f 
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Figure 6. (a) Schematic of LSTM structure. A cell contains an input gate, an 

output gate and a forget gate. (b) Visualization of the selected dataset 

(temperature, pressure and air density) used to train the LSTM. (c) 

Demonstration of overfitting, in a LSTM. 
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noise could effectively fix the loss at around the optimal point 

for around 200 epochs. The impact of SNR on loss is further 

demonstrated in figure 7(d), showing that the optimal SNR 

for overfitting suppression is -1dB. 

 

The 1/f noise shows ~100% stronger overfitting 

suppression effect compared with the Gaussian noise: 1/f 

noise lowers the loss by 0.4 (from ~0.5 to ~0.1, which is the 

optimal level in figure 7(b)), while Gaussian noise only 

lowers the loss by 0.2 (from ~0.5 to ~0.3), as shown in figure 

7(c). This is very different from the MLP and showing strong 

indication that there might be some “coupling effect” that 

enhance the overfitting suppression effect of the long-term 

memory of 1/f noise on the LSTM. At lower SNR below 

10dB, 1/f noise shows stronger capability to suppress 

overfitting compared with Gaussian noise. (figure 7(d)). For 

SNR below -5dB, the noise will be far larger than the signal, 

and the network will be practically learning the noise instead 

of the signal.  

To evaluate if the memory ability of LSTM really makes a 

difference, the 1/f noise is sampled at a fixed interval length 

to mimic the training time per epoch (default interval = 1). For 

comparison, a zero-mean Gaussian noise is also simulated and 

added. 

 
This assumption is further confirmed in figure 8(a) when 

the noises are sampled at different intervals, i.e. using different 

sampling frequencies. For the 1/f noise, the loss is dependent 

in logscale on the sampling frequency, while the loss is almost 

not dependent on the sampling frequency of the Gaussian 

noise. If the interval is larger than 50, the loss of 1/f noise and 

Gaussian noise becomes similar. This is strong evidence, that 

the autocorrelation of 1/f noise plays an important role in the 

overfitting suppression of LSTM. Considering that LSTM’s 

sequential structure. We can predict that the autocorrelation of 

1/f noise could make it a special solution for the overfitting 

suppression in LSTM. However, for the Gaussian noise, 

which is memory-less, does not have such benefit. 

Figure 8(b) compares the loss during 1000 epochs using 

the optimal SNR of -1 dB. For the 1/f noise injection, the loss 

function remains at the lowest point during the 280th and 470th 

epoch, and starts to gradually increase afterwards. For the 

Gaussian noise injection, the loss function reaches the lowest 

point at the 270th epoch, sharply increases to a peak at 380th 

epoch, and then gradually decrease afterwards. Although the 

1/f noise injection does not eliminate totally the overfitting 

phenomenon, it still shows significant effect in suppressing 

overfitting and keeping the LSTM at the optimal condition for 

190 epochs (from the 280th to the 470th), much better than the 

Gaussian noise. 

The different performance between 1/f noise and Gaussian 

noise can be explained by using the “xcorr” function in Matlab 

to calculate the ACF of 1/f noise and Gaussian noise [55], as 

shown in figure 9. The 1/f noise and Gaussian noise are 

sampled in the way as figure 5(a), with various intervals.  

Obviously, as the lag increases, the ACF of 1/f noise decays 

gradually, supporting that 1/f has long memory with 

autocorrelation. However, for Gaussian noise, the ACF is 

almost independent from the lag, indicating that it does not 

have memory, or long range dependence. It should also be 

noted that if 1/f noise is sampled using very large interval, say 

50, its ACF seems also independent from the lag, which is a 

strong indication that the long range dependence has decayed 

and now the sampled 1/f noise is very similar to the Gaussian 

noise, which also lead to similar effect in figure 8(a). 
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Figure 7.  (a) Schematic of noise injection in the LSTM structure. Noise is 

applied onto the hidden state (ht) in each epoch.  (b-c) Comparison of 

overfitting suppression, using (b) 1/f noise and (c) Gaussian noise, with SNR 

fixed at 0dB.(d) Dependence of loss on the noise SNR.  
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Figure 8. (a) Overfitting suppression effect using 1/f noise injected with 

different interval, or sampling frequency. (b-c) Comparison of overfitting 

suppression during 1000 epochs, using (b) 1/f noise and (c) Gaussian noise, 

with SNR fixed at -1dB. 
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The aim of this paper is to give a preliminary demonstration 

that physics properties of materials, such as 1/f noise, shows 

some advantage over the software based approach, in the 

development of HNNs based on semiconductor devices such 

as transistors and memristors where implementing the 

software-based noise injection could be difficult: Complex 

peripheral circuitry need to be designed to generate and 

modulate the Gaussian noise. For example, a conventional 

Additive White Gaussian Noise (AWGN) is to use a Zener 

diode in a reversed-biased circuit to produce Gaussian noise. 

This will bring additional area and power consumption to the 

HNN. 

On the other hand, the semiconductor devices that form the 

HNN are naturally great sources of different noises, such as 

the thermal noise originated from the thermal agitation of the 

charge carriers, shot noise originated from the discrete nature 

of electric charge, random telegraph noise from the trapping 

of carriers, and 1/f noise originated from the carrier number 

fluctuation, in addition to the Gaussian noise. This is a 

significant advantage, as noise can be conveniently obtained 

from the semiconductor devices that form the HNN, without 

using the Zener diode or other devices/circuits for noise 

generation. Furthermore, another advantage is that those 

noises have different varies characteristics, such as the long-

term memory/dependence of 1/f noise, which provides even 

better overfitting results, if they are properly selected and 

modulated, for some special architectures such as the LSTM. 

4. Conclusions     

In this work, we proposed the idea of using 1/f noise 

injection to suppress overfitting in different neural networks, 

and demonstrated that: (i) 1/f noise could suppress the 

overfitting in Multilayer Perceptron (MLP) and long short-

term memory (LSTM); (ii) 1/f noise and Gaussian noise 

performs similarly for the MLP but differently for the LSTM; 

(iii) The superior performance of 1/f noise on LSTM can be 

attributed to its intrinsic long range dependence. This work 

reveals that 1/f noise, which is common in semiconductor 

devices, can be a useful solution to suppress the overfitting in 

HNNs. This work could also provide strong support that the 

imperfectness of semiconductor devices can be exploited to 

provide solutions for the development of hardware AI 

technologies, mimicking the human brains which are not 

always precise but have been used efficiently and accurately 

for millions of years. 
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