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Abstract 
 

The aim of this research is to investigate how large-scale climate variability affects flooding in 

the Amazon basin, using this assessment to demonstrate the potential predictability that these 

modes can provide to enable earlier warning of impactful floods. To address this a multi-stage 

approach is adopted; first to understand the gaps and confidence in the state of current 

knowledge on how climate variability affects both rainfall and river discharge in the Amazon 

basin, secondly, to understand the skill of global hydrological models for undertaking further 

assessment, and thirdly to undertake a robust assessment of the impact of climate variability 

on different flood characteristics while considering different methodological approaches in 

more detail.  

An assessment of the robustness in the results of previous studies suggests the need to 

explore in detail the physical mechanisms leading to flood events on an individual basis. While 

composite analysis of several floods identified a particular response associated with La Niña 

conditions, investigation into individual events show it is unknown if the same response would 

be identified for all events individually. The performance of eight large-scale hydrological 

models are evaluated for their ability to capture previous peak river flows. The choice of 

precipitation input is found to be the dominant component of the hydrometeorological 

modelling chain, with improvement found when ERA5 is the chosen meteorological forcing. 

Calibration of the Lisflood routing model is identified to have no impact on the ability to 

capture flood peaks, stressing the need to use an objective function that fits the purpose of 

the model. Examination of how climate variability impacts flood characteristics in the Amazon 

basin identified significant changes for both flood magnitude and duration during the negative 

ENSO phase, particularly in the north-eastern Amazon. This response was not identified for 

eastern Pacific ENSO events, highlighting how results can differ between ENSO types, while no 

notable impact or pattern is observed for flood timing.  

This thesis has provided important information on how climate variability impacts less studied 

flood characteristics (flood timing and duration) which are associated with important flood 

types (e.g. early or long floods). Future work should focus on the improvement of climate 

reanalysis to produce a longer-term dataset consistent with observations to extend climate 

analysis. This would allow the examination on the impact of climate phases at a more granular 

scale (e.g. analysing the strength or combination of climate phases). 
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Chapter 1 

Introduction  

1.1 Motivation  

Flooding is a fundamental part of life for those living within the Amazon basin, where 

communities have long adapted to live with the annual rise and fall of the Amazon River. 

However, recent population growth combined with inadequate urban planning has resulted in 

increased risk to vulnerable communities living within the main Amazon floodplain (Davidson 

et al., 2012; Filizola et al., 2014). Flood risk can be considered as a combination of the 

probability of a flood occurring and the consequences (i.e. impacts) of its occurrence to areas 

exposed. Since 1990, there has been a hypothesised intensification of the hydrological cycle, in 

which the Amazon has become substantially wetter, with an increase in the frequency and 

severity of flood events (Gloor et al., 2013). This has been supported in recent years with 

severe high-water levels observed in 2009, 2012, 2014 and 2015 in several regions across the 

basin (Marengo and Espinoza, 2016). These events have had devastating impacts on local 

communities, consistently resulting in the displacement of populations, but also affecting the 

health and wellbeing of individuals more broadly through a deficit of safe drinking water and 

sanitation (Costa and Brondizio, 2011; Mansur et al., 2018).  

Flood preparedness and monitoring is one effective way to mitigate risk (Alfieri et al., 2018), 

with the implementation of Early Warning Systems (EWS), based on hydrometeorological 

forecasts becoming increasing popular for various sectors (e.g. humanitarian, agriculture, 

transportation) on the global scale (Emerton et al., 2016). An EWS is a procedure which utilises 

climate forecasts and observations to predict and provide early warning information of natural 

hazards before they materialise, allowing the implementation of humanitarian actions (e.g. 

distribution of water purification tablets and medical supplies) before rather than after an 

event having occurred (Coughlan de Perez et al., 2015). Early warnings are often disseminated 

from disaster managers and teams from organisations such as the Red Cross Climate Centre 

based on scientific advice and information on the ground and can characterise risk throughout 

several timescales from hours to years ahead of hazards occurring (Coughlan de Perez et al., 

2014). This means the actions can vary from the very short term (e.g. evacuation) to the very 

long term (e.g. building drainage channels to prevent long term flooding).  
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Suitable forecasts of flood hazard have only been made possible in recent years due to the 

progressive development of Numerical Weather Predictions (NWP), which has benefited from 

the expansion of satellite data and assimilation techniques (English et al., 2013), increased 

computing power (~increases of one order of magnitude every 5 years since 1980; Bauer et al., 

2015), advancements in numerical modelling techniques (Yamazaki et al., 2011), incorporation 

of ensemble modelling (Cloke and Pappenberger, 2009), improvements in precipitation 

datasets (Novak et al., 2013), and further efforts for collaborative flood risk research through 

the Global Flood Partnership (GFP; see De Groeve et al., 2015).  

A common problem for many EWS however is that the length and accuracy of lead-times that 

these models can provide may not be sufficient in certain locations. The timescales needed for 

some humanitarian actions can be long (e.g. weeks to months ahead to reinforce houses) and 

are currently beyond the capabilities of many flood forecasting systems. However, it is 

assumed that accurate seasonal forecasts (i.e. months ahead) of hydrometeorology may be 

feasible in many locations of the world, with slowly varying components of the climate system 

(e.g. SSTs, soil moisture and sea ice) influencing hydrological forecast skill and possibly 

impacting peak river flow characteristics (e.g. the timing, duration and magnitude of flows) 

(Palmer, 1993; Barnston, 1994; Schöngart and Junk, 2007).  

Slowly varying climate variables such as SSTs can be described as climatic drivers or modes of 

climate variability whereby a climatic variable deviates around a long-term mean resulting in 

changes to hydrometeorological variables (e.g. rainfall and streamflow) and the likelihood of 

natural hazards occurring. In the Amazon for instance, extreme flooding (droughts) has been 

associated with colder (warmer) than usual SSTs in the tropical Pacific region (Espinoza et al., 

2013; Ronchail et al., 2005b; Marengo and Espinoza, 2016). This is owing to variations of SSTs 

changing the location and magnitude of convective activity which in turn modifies the 

atmospheric circulation (e.g. Walker circulation; Barichivich et al., 2018) and thus patterns of 

rainfall.    

Whilst the magnitude of river flows/water levels in the Amazon basin are often linked with 

climate anomalies (Ronchail et al., 2005b; Espinoza et al., 2009a), studies examining the 

relationship with the timing and duration of river discharge are less common. This is despite 

the length of the wet season and timing of peak river flows in coinciding tributaries playing a 

major role in the dampening or super positioning of the travelling Amazon flood wave 
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(Tomasella et al., 2010), and having been previously associated with extreme flood events (e.g. 

2009 in the Brazilian Amazon; Marengo et al., 2012).  

Additionally, although previous extreme flood events have been attributed to particular 

climate modes of variability, the usefulness of this information within a flood prediction 

capacity is still limited and the mechanisms in the build up to these events are not fully 

understood. For instance, cooler than usual SSTs in the equatorial Pacific Ocean have been 

identified to provide the atmospheric conditions that maintains a strong humidity flux over the 

basin and consequently produces increased rainfall and flooding (Espinoza et al., 2013). 

However, it is not understood, if a particular magnitude of SST anomaly is required or how the 

spatial extent of SST anomalies would impact the atmospheric response.  

Throughout the scientific literature an array of terminology is used interchangeably when 

describing flooding from a particular magnitude of river discharge to overbank flow and levels 

of inundation. Though all are suitable terminologies, it is important that they are used within 

the correct context. For instance, when evaluating floods in terms of risk to an area, flood 

inundation maps related to particular return periods of river discharge would provide more 

valuable information and would be a better description of flooding to disaster response teams 

and communities. A similar case would be for those interested in urban development where 

project managers and engineers would be interested in understanding what exact areas would 

be exposed to a particular magnitude of flooding. While in this thesis, more indirect indicators 

of flood hazard, such as river discharge and water levels are used to evaluate the relationship 

of these variables to climate variability. Though, maps of flood inundation are available to be 

used in climate-related analysis, river discharge is more widely available across the Amazon 

Basin with records going back longer in time.   

1.2 Aim and Objectives  
 

The aim of this research is to investigate how different modes of large-scale climate variability 

(e.g. the El Niño Southern Oscillation; ENSO) affects flooding in the Amazon basin and to 

demonstrate the potential predictability that these modes can provide to enable earlier 

warning of impactful floods. The work undertaken is in close collaboration with the Red Cross 

Red Crescent Climate Centre, SENAMHI, and Cruz Roja Purana to ensure the relevance and 

usefulness of the results.   

To achieve the aforementioned aim, this thesis will address the following research objectives: 
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1. To provide an up-to-date depiction on what we currently know and do not know 

about how large-scale variability influences precipitation and river discharge regimes 

in the Amazon basin, and thus flooding. 

2. To determine whether river flow simulations from global or large-scale hydrological 

models are sufficient for linking large-scale climate patterns and teleconnections to 

anomalously high river flows.   

3. To investigate whether warm or cold phases of different hydroclimatic drivers 

significantly alter the characteristics of river flows throughout the Amazon basin (e.g. 

the magnitude, timing, and duration of river flows) relative to neutral conditions.  

4. To discuss whether statistical methods provide sufficient information to support 

extended-range forecasting in the Amazon Basin, and what could potentially be 

offered by methods that address the physical mechanisms. 

The results of this thesis will provide evidence on the usefulness of large-scale hydroclimatic 

drivers (e.g. ENSO) for extended flood predictability (i.e. seasonal) in the Amazon basin. This 

information has the potential to help inform stakeholders within a range of sectors from 

humanitarian aid workers to agricultural businesses. 

1.3 Structure of thesis  
 

The thesis is structured around a review article, two research papers, and a reflections 

chapter.  

Chapter 2 is the first paper presented in this thesis and provides an in-depth review of several 

hydroclimatic drivers and their influence on rainfall and river discharge regimes 

independently. The links between variations in climate patterns and flooding in the Amazon is 

assessed for 34 previous flood events since 1953, based on previous studies. Conclusions 

provide five key areas in which to focus research efforts to better understand how climate 

variability impacts flood risk in the Amazon basin. These areas form the motivation for the rest 

of this thesis.  

Chapter 3 is the second paper and addresses the second objective of this thesis. Chapter 3 

assesses the performance of eight Global Hydrological Models (GHMs) in their ability to 

capture annual maximum river flows in the Amazon basin. Results provide an indication of the 

usefulness of data provided by global or large-scale hydrological models for hydrological and 

climate research purposes. 
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Chapter 4 sets out to answer the third objective of this thesis and presents the third paper. 

Chapter 4 investigates how SST anomalies for several well-established climate indices (e.g. El 

Niño 3.4) impact flood characteristics in the Amazon basin. Positive and negative phases for 

each index are compared against neutral conditions to provide an evaluation of how SST 

anomalies can alter the timing, magnitude, and duration of peak river flows and thus their 

potential usefulness for extended flood predictability (e.g. by knowing whether or not La Niña 

conditions can result in earlier flood peaks and/or longer higher water periods).  

Chapter 5 compares the value of statistical, physically based mechanisms and machine 

learning approaches for accurate flood prediction. This chapter arises based on discussions 

between the reviewers and authors of chapter 4.  

Chapter 6 summarises the key findings, scientific advancements, and the wider scope of this 

thesis, in addition to exploring avenues for future work.  

The three papers presented in this thesis have been reformatted as chapters and have not 

been modified in any way. The published versions of Chapters 2, and 3 are provided in the 

Appendix. At the time of submission, Chapter 4 was still in the reviewing stages of publication, 

but the online discussion paper and reviewer comments can be found in the Appendix. 

Statements of author contributions are given at the start of each of the relevant chapters. 
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Chapter 2 

The attribution of Amazon floods to modes of climate 
variability: A review 

 

Shortly after beginning the PhD program it quickly became apparent the breadth of knowledge 

needed to understand how climate variability affects flooding across the world’s largest 

hydrological basin. From the climate patterns and atmospheric circulation to the hydrological 

mechanisms controlling the connecting flood waves. Thus, the first question raised was simply, 

what do we currently know and do not know about how large-scale climate variability affects 

flooding in the Amazon basin.  

This paper has been published as a review paper in Wiley, the journal of Meteorological 

Applications, with the following reference: 

Towner, J., Cloke, H. L., Lavado, W., Santini, W., Bazo, J., Coughlan de Perez, E., and Stephens, 

E. M.: Attribution of Amazon floods to modes of climate variability: A review. Meteorol. 

Appl., 27, e1949, https://doi.org/10.1002/met.1949, 2020.  

© 2020 The Authors. Meteorological Applications published by John Wiley & Sons Ltd on 

behalf of the Royal Meteorological Society. This is an open access article under the terms of 

the Creative Commons Attribution License, which permits use, distribution, and reproduction 

in any medium, provided that the original work is properly cited. 

The contributions of the authors of this paper are as follows: J.T conducted the literature 

review, undertook the small analysis, and wrote the paper, with guidance from E.M.S, H.L.C, 

W.L, W.S, J.B, and E.C.P. W.S also provided river discharge data for the analysis. All authors 

commented on the manuscript. Overall, 80% of the writing was undertaken by J.T. 

Abstract. Anomalous conditions in the oceans and atmosphere have the potential to be used 

to enhance the predictability of flood events, enabling earlier warnings to reduce risk. In the 

Amazon basin, extreme flooding is consistently attributed to warmer or cooler conditions in 

the tropical Pacific and Atlantic oceans, with some evidence linking floods to other 

hydroclimatic drivers such as the Madden–Julian Oscillation (MJO). This review evaluates the 

impact of several hydroclimatic drivers on rainfall and river discharge regimes independently, 

aggregating all the information of previous studies to provide an up-to-date depiction of what 

we currently know and do not know about how variations in climate impact flooding in the 
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Amazon. Additionally, 34 major flood events that have occurred since 1950 in the Amazon and 

their attribution to climate anomalies are documented and evaluated. This review finds that 

despite common agreement within the literature describing the relationship between phases 

of climate indices and hydrometeorological variables, results linking climate anomalies and 

flood hazard are often limited to correlation rather than to causation, while the understanding 

of their usefulness for flood forecasting is weak. There is a need to understand better the 

ocean–atmosphere response mechanisms that led to previous flood events. In particular, 

examining the oceanic and atmospheric conditions preceding individual hydrological extremes, 

as opposed to composite analysis, could provide insightful information into the magnitude and 

spatial distribution of anomalous sea surface temperatures required to produce extreme 

floods. Importantly, such an analysis could provide meaningful thresholds on which to base 

seasonal flood forecasts. 

2.1 Introduction 
 

River records highlight that, on average, the Amazon typically experiences an extreme 

hydrological event (i.e. flood or drought) once per decade (Marengo et al., 2011). Yet, since 

approximately 1990, the flood risk to communities living within the Amazon floodplain is 

thought to have increased due to a combination of population growth, rapid urban expansion, 

hydrometeorological change and a possible strengthening of the hydrological cycle (Davidson 

et al., 2012; Gloor et al., 2013; Filizola et al., 2014; Nobre et al., 2016). Record-breaking floods 

(e.g. in 2009, 2012, 2014 and 2015) and two “once in a century” droughts recorded in 2005 

and 2010 (Marengo and Espinoza, 2016) have demonstrated the significant impact that these 

events can have on both human and natural systems (Espinoza et al., 2013; Marengo et al., 

2013b). The 2012 floods alone affected a reported 202,676 people in Loreto, Peru, with large 

losses of cropland (about 2,000 ha), an example of the damage inflicted upon livelihoods 

(IRFC, 2012). 

2.1.1 Limits and sources of predictability  
 

To provide early flood warnings and consequently reduce risk, the probability of exceeding 

flood warning thresholds, based on estimates of river discharge produced from global 

hydrological models (GHMs), can be used (Alfieri et al., 2018). For example, in the Peruvian 

Amazon, Forecast-based-Financing (FbF), an initiative of the German Red Cross, is being 

implemented by disaster managers in order to take early action (FbF, 2019). The FbF is a 
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protocol that uses automatic trigger actions (e.g. the delivery of mosquito nets and first-aid 

kits when a particular magnitude of river discharge is reached) based on probabilistic 

hydrometeorological forecasts, whereby actions are taken before a flood in order to reduce 

flood risk (Coughlan de Perez et al., 2015). Currently, the available lead time for skilful 

forecasts (both weather and hydrological) leaves little time in which to act, particularly when 

many humanitarian actions require long timescales, such as several weeks ahead to reinforce 

and modify houses to make them more flood resilient. The ability to predict floods weeks in 

advance is mainly determined by how the uncertainties in the initial state of the atmosphere 

and oceans evolve over time (Palmer, 1996). Due to the chaotic nature of the atmosphere, 

precipitation forecasts that many hydrological models rely upon are typically restricted to lead 

times up to 15 days ahead (Cloke and Pappenberger, 2009). To overcome this many 

operational flood forecasting systems (e.g. the Global Flood Awareness System; Alfieri et al., 

2013), which provide hydrological forecasts within the Amazon basin, now use ensemble 

numerical weather predictions (NWPs), commonly referred to as an ensemble prediction 

system (EPS). Here, the uncertainties in the initial conditions of the deterministic 

meteorological forecast are represented by perturbing them to produce a range of initial 

states (commonly between 10 and 51; Emerton et al., 2016). The EPS is then used as an input 

into a hydrological model to produce a range of river discharge predictions, which are equally 

probable. Such models typically produce sub-seasonal forecasts (usually up to 30 days ahead). 

Monthly and seasonal hydrological forecasts can be achieved in some regions, with several 

factors influencing the likelihood of a particular atmospheric behaviour occurring (e.g. 

increased or decreased zonal trade wind speeds). Such factors include anomalous sea surface 

temperatures (SSTs) (Palmer, 1993; Barnston et al., 1994), vegetation effects (e.g. biotic pump 

hypothesis; Makarieva and Gorshkov, 2007), land surface anomalies such as soil moisture, 

surface and groundwater states (Paiva et al., 2012), stratospheric variability (Sigmond et al., 

2013), sea-ice and major volcanic events (Robock, 2000). 

2.1.2 Intensification of the hydrological cycle  
 

When analysing floods, it is important to consider that their frequency and attribution could 

be related to both the long-term climate signal (e.g. decadal to multi-decadal patterns) and to 

short-term climate variability (e.g. interannual and intra-seasonal patterns). The reported 

intensification of the hydrological cycle in the Amazon basin with a tendency towards extreme 

flooding has been associated with a coinciding increasing decadal trend in SSTs in the tropical 

Atlantic Ocean (+0.7°C between 1990 and 2010; Gloor et al., 2013). Precipitation and 
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consequently river discharge have been found to increase, particularly during the wet season, 

driving greater difference between peak and minimum flows. Although trends are more 

dominant in certain regions (e.g. north-western Amazonia), this intensification is considered 

for the average trend throughout the entire Amazon, with a greater diversity found in trends 

of discharge across sub-basins and a large variability is acknowledged in spatial extremes. For 

example, drying trends are acknowledged in the southern Amazon basin (Espinoza et al., 

2009a), with a significant increase in dry day frequency (days with < 1 mm of rainfall; Espinoza 

et al., 2019). This recent shift in discharge extremes since approximately 1990 is expected to 

continue in the long term under further atmospheric warming, based on the latest climate 

projections (Hirabayashi et al., 2013; Langerwisch et al., 2013; Sorribas et al., 2016; Zulkafli et 

al., 2016; Alfieri et al., 2017). It is important to consider that any trends and shifts in extremes 

could be associated with multidecadal natural variability and that projections of future 

extremes can vary enormously based on different greenhouse gas scenarios, levels of 

deforestation and other land-use changes, insufficient knowledge on initial and boundary 

conditions, and model deficiencies in relevant physical processes (Gloor et al., 2013; Torres 

and Marengo, 2013; Marengo et al., 2018). 

2.1.3 Hydroclimatic drivers 
 

Climatic or hydroclimatic drivers can be defined as modes of large-scale climate variability 

around a long-term trend that has the potential to drive spatial and temporal changes in 

hydrometeorological variables (i.e. precipitation and river discharge; Nobre et al., 2017). To 

explore such drivers, we first identify using the scientific literature those responsible for 

impacting atmospheric circulation, moisture transport and thus hydrometeorological variables 

in and around South America (Table 1). For the Amazon, increased rainfall and river discharge 

are consistently attributed to lower and upper atmospheric circulation anomalies as a 

consequence of anomalous SST conditions in the tropical Atlantic and Pacific oceans (Richey et 

al., 1989; Yoon and Zeng, 2010; Davidson et al., 2012; Marengo and Espinoza, 2016). Other, 

less studied, climate drivers have also been related to flooding in the Amazon (e.g. the 

Madden–Julian Oscillation—MJO; Shimizu et al., 2017), with climate variations operating at 

lower frequencies (e.g. Pacific Decadal Oscillation—PDO; and Atlantic Multidecadal 

Oscillation—AMO; Barichivich et al., 2018) also linked to wetter and drier conditions. An 

overview of each driver and their mechanisms are provided in Table 1. Here, general 

definitions are provided, with their influence on the spatial pattern of Amazon rainfall and 

river discharge discussed in Section 2.4. 
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Table 1. Hydroclimatic drivers of Amazon flooding, their description, mechanisms, and key authors.  

Hydroclimatic 
Driver 

Abbreviation Description Timescale Mechanism Author(s) 

El Niño 
Southern 
Oscillation  

ENSO Set of indices 
measuring the 
interannual 
variability of SSTs in 
the equatorial Pacific 
Ocean (5N-5S, 
170W-120W), with 
oscillating phases of 
warmer or cooler 
than usual 
conditions generated 
by coupled 
atmosphere and 
oceanic interactions. 
Anonymously warm 
or cold SSTs are 
termed El Niño and 
La Niña events 
respectively.  

Interannual During El Niño the lower equatorial easterly trade winds and 
surface zonal currents become weaker owing to surface air 
pressure over the tropical western Pacific becoming higher than 
in the tropical eastern Pacific relative to mean conditions. 
Consequently, the upwelling of cold water in the eastern Pacific 
is reduced, leading to a deeper thermocline and a shift of 
warmer SSTs into the eastern and central tropical Pacific. As a 
result, the Pacific Walker circulation, and hence convective 
rainfall also shifts eastwards, impacting rainfall and discharge 
patterns in the surrounding continents (Yeh et al., 2018). 

During La Niña, the easterly trade winds are enhanced, leading 
to increased upwelling of cold Pacific waters off the coast of 
Peru and colder than usual SSTs in the eastern and central 
tropical Pacific. Rainfall patterns are consequently displaced 
further west compared to neutral conditions. 

Bjerknes 
(1969); 
Trenberth 
(1997); 
Trenberth et 
al. (2001) 

Tropical North 
Atlantic 

TNA Patterns of average 
SST variability in the 
TNA (5.50 N to 23.50 
N and 150 W to 57.50 
W). Couples with the 
variability in the TSA, 
influencing the 

Interannual When the TNA is abnormally warmer (cooler) than usual, the 
Inter Tropical Convergence Zone (ITCZ) is found to migrate 
anomalously north (south), bringing changes to low-level 
atmospheric circulation and spatial rainfall patterns. These 
patterns are associated with a weakening (intensification) of 
the north-eastern trade winds and moisture flux from the 

Enfield 
(1996); 
Enfield et al. 
(1999) 
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migration pattern of 
the ITCZ. 

Atlantic basin (Enfield 1996; Nobre and Shukla, 1996; Panisset 
et al., 2018).  

Tropical South 
Atlantic 

TSA Patterns of averaged 
SST variability in the 
TSA (Eq to 200 S and 
100 E to 300 W). 
Couples with the 
variability in the 
TNA, influencing the 
migration pattern of 
the ITCZ. 

Interannual When the TSA is warmer (cooler) than usual, the ITCZ shifts 
further south (north), weakening (strengthening) the south-east 
trade winds (Utida et al., 2019). Consequently, this changes the 
location of maximum tropical convection and precipitation, 
influencing upper and lower flows. The ITCZ commonly reaches 
its most southernmost position during austral autumn (MAM), 
when TSA SSTs are at their highest. In contrast, coolest 
temperatures and a northern migration of the ITCZ are common 
during austral winter (JJA).  

Enfield 
(1996); 
Enfield et al. 
(1999)  

Madden-
Julian 
Oscillation 

MJO The dominant 
component of the 
intraseasonal (30–60 
days) variability in 
the tropical 
atmosphere. The 
MJO is a moving 
pattern, propagating 
eastward through 
the atmosphere 
above warm 
portions of the 
Indian and Pacific 
oceans. 

Intraseasonal 
(~30-60 
days) 

The MJO consists of simultaneous convective and supressed 
rainfall phases which operate in a dipole structure. The 
locations of convection are often grouped into eight stages, 
based on the geographical location (see Figure 1 in Pohl & 
Matthews, 2007). Events of MJO force a thermodynamic 
response in the upper layers of the ocean. When active the MJO 
modifies extratropical circulation via a Rossby wave response to 
latent heat release, related to tropical convection (Matthews et 
al., 2004). An enhanced (supressed) convective phase leads to a 
reduction (increase) in latent heat fluxes and thus cooling 
(warming) of SSTs, prompting an eastward propagation (see 
Webber et al., 2010). In regions of anomalously warm SSTs, 
there is increased large-scale ascent and upper tropospheric 
divergence. In contrast, in locations which lack convective 
activity, increased descent and upper-tropospheric convergent 
inflow is witnessed (Matthews et al., 2004). 

Madden and 
Julian (1971, 
1972); 
Madden and 
Julian (1994); 
Zhang (2005) 
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Pacific 
Decadal 
Oscillation 

PDO Empirical Orthogonal 
Function (EOF) of 
monthly anomalies 
of SST in the north 
Pacific Ocean, 
poleward of 200 N.  

Decadal 
(~16-20 & 
50-70 years) 

The physical mechanisms driving the PDO and its variability 
remain unclear (Mantua and Hare, 2002; Geng et al., 2019). 
Possible explanations argue that oceanic Rossby waves driven 
by atmospheric forcing are pivotal in maintaining and setting 
the timescale of PDO variability (Geng et al., 2019). While 
Newman et al. (2016) describe the mechanisms of PDO as a set 
of atmospheric-oceanic processes rather than a single mode of 
climate variability, meaning PDO impacts stated in the literature 
may instead represent correlation to processes driving 
variations in both the PDO and impact variables. The impact of 
PDO variability on hydrometeorological variables, is locally 
specific, generally producing similar responses to ENSO (e.g. 
warm PDO impacts are similar to the response to El Niño 
conditions). 

Mantua et al. 
(1997); Zhang 
(1997) 

Atlantic 
Multidecadal 
Oscillation 

AMO Oscillation of SSTs in 
the North Atlantic 
Ocean, typically 
within a 0.40 C range.  

Multidecadal 
(~50-70 
years)  

Similarly, to the PDO, owing to the relatively short 
observational record and timescale at which the driver 
operates, the mechanisms and variability of the AMO are still 
debated (Wills et al., 2019). Previous studies have shown the 
AMO to be related to heat transport by the Atlantic Meridional 
Overturning Circulation (AMOC; Zhang and Wang, 2013), to the 
variability of aerosol forcing on surface shortwave radiation 
(Booth et al., 2012) and due to low frequency forcing of SSTs, 
driven by ocean circulation variability (O’Reilly et al., 2016). In 
the positive (negative) phase, SSTs are warmer (cooler) in the 
North Atlantic, whilst being cooler (warmer) in the equatorial 
Atlantic (Martin-Rey et al., 2018). Consequently, the mean 
oceanic and atmospheric state has been found to be 
significantly different between positive and negative periods 
(Jones and Carvalho, 2018).  

Kerr (2000) 



 

14 
 

2.1.4 Attribution  
 

Attribution studies attempt to understand to what extent can certain factors (e.g. land cover 

change, SST anomalies) explain changes in certain variables (e.g. streamflow) or the likelihood 

or indeed the strength of hydrometeorological events taking place. Attribution encompasses a 

range of different kinds of studies (e.g. the influence of land-cover changes on streamflow, 

Slater and Villarini, 2017; urbanisation influence on flooding intensity, Zhang et al., 2018), 

though two types are particularly common for extreme event attribution. The first type 

attempts to establish an association between an event and climatological patterns (e.g. floods 

caused by El Niño). The second type assesses the role of human-induced activities and climate 

change (e.g. through increased greenhouse gas emissions) on a particular event (Trenberth et 

al., 2015). In this review we focus on the former. To relate an event to a specific climate 

pattern, common methods vary from basic correlation analysis, partially linking events and 

climatic drivers, to the use of climate models and ensemble forecasts to predict the response 

of the climate to different atmospheric and oceanic forcings (Coumou and Rahmstorf, 2012). 

2.1.5 From sources of predictability to early warning  
 

Many studies have identified the impacts that different sources of predictability (e.g. SST 

anomalies) can have on hydrometeorological variables in the Amazon (e.g. Richey et al., 1989; 

Ronchail et al., 2002; Yoon, 2016; Sulca et al., 2018). Fewer studies, however, demonstrate 

how knowledge about these relationships can translate into improved flood prediction and 

risk reduction using early warning systems (EWS). An EWS is a protocol that uses information 

of potential upcoming natural hazards (e.g. floods), from climate models forced by seasonal 

forecasts of the SST and other sources of predictability. Such information is then used to help 

inform decision-making (e.g. whether to distribute water purification tablets or evacuate a 

particular community) in an attempt to reduce risk before an event taking place (Coughlan de 

Perez et al., 2015). The EWS combine several disciplines and can generally be described as a 

chain consisting of four main categories: (1) risk knowledge, (2) monitoring, forecasting and 

warning, (3) communication of early warning and (4) response capability (Cools et al., 2016). 

Though many challenges remain to achieve the full benefits of an EWS, particularly with 

regards to categories 3 and 4 and understanding the feedbacks and interactions between the 

physical and social systems (Lopez et al., 2017), the evidence required for the forecasting 
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component of the chain remains essential for effective alerts and the communication of early 

risk information. 

Currently, the available evidence demonstrating the potential usefulness of the SST anomalies 

as predictors for forecasting flood variables in the Amazon comes mainly from statistical 

modelling, with simulations forced using SST data. For instance, Schöngart and Junk (2007) 

developed a retrospective forecast model that showed that water levels in central Amazonia 

were an integrator of Pacific SSTs, with forecasts of water levels achievable up to four months 

in advance when modelled results were compared with observations for the period 1903–

2004. Other studies include the use of a series of statistical models forced by lagged spatial 

averages of central and tropical North Atlantic SSTs to explain variability in terrestrial water 

storage anomalies (De Linage, Famiglietti, & Randerson, 2014) and a statistical model that 

showed that northern (southern) sub-basins in the Amazon basin are better forecasted when 

using Pacific (Atlantic) SSTs (Uvo and Graham, 1998). 

2.1.6 Objective and framework  
 

Having first identified the main hydroclimatic drivers that influence the atmospheric 

circulation and moisture transport in and around South America (Table 1), the objective of this 

review is to draw together knowledge of the current understanding of how each driver 

impacts the characteristics of rainfall and river discharge regimes and their links to extreme 

flooding in the Amazon basin. Due to the non-linearity between rainfall and river discharge 

(Stephens et al., 2015), and significant differences previously identified between the mean 

states of the two variables in response to phases of climatic indices (Dettinger and Diaz, 2000), 

it is important to consider the effect of large-scale climate variability for each independently. 

Therefore, the framework of this review is structured based on the discussion of how 

hydroclimatic drivers influence rainfall variability, river discharge variability and the 

relationship between previous extreme flood occurrences and different climate phases; 

thereby scoping out the potential for earlier flood warning in the Amazon basin. 

2.2 Methods and data 
 

Using the published literature, the impact of the SST anomalies from different ocean basins on 

rainfall and river discharge regimes are evaluated across different regions of the Amazon 

basin. The evaluation is broken down for rainfall and discharge independently and consists of 
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combining the results from previous studies to provide an up-to-date depiction of the current 

knowledge in the form of composite maps (in Section 2.4). 

To evaluate the relationship between climate phases and extreme flood events, we have 

constructed a table of major floods as sourced from the scientific literature, humanitarian 

reports and flood databases (i.e. the Dartmouth Flood Observatory) throughout the Brazilian, 

Bolivian and Peruvian Amazon since 1950 (Table 2) (see Section 2.5). While reports of flooding 

in the Amazon basin date to the mid-19th century (e.g. 1859; Le Cointe, 1935), earlier records 

are often assembled from qualitative data such as newspapers, humanitarian records and 

verbal information from communities (Sutcliffe, 1987). In addition, the reliability and quantity 

of pressure and SST observations are considered questionable before 1950 (Bunge and Clarke, 

2009), and thus we only consider events that have occurred after this period. 

Table 2 extends the work of Marengo and Espinoza (2016) to include areas of the Bolivian 

Amazon, further flooding in the Peruvian and Brazilian Amazon, and an indication of how 

strong are the links between floods and climate anomalies. The strength of evidence is 

evaluated as either very low, low, medium or high and considers the magnitude of the SST 

anomalies, peak river flows, the timing and duration of flood events, how each flood is 

classified by the authors (e.g. events could be determined by a specific streamflow 

exceedance), and by the type of analysis performed (e.g. correlation or composite analysis). 

A very low rating may be given when observed SST anomalies disagree with the phase of 

climate variability attributed (e.g. observed positive SST anomalies in the Pacific with a La Niña 

attribution). A low to medium rating is when SST anomalies are in agreement, but where no 

atmospheric analysis (e.g. atmospheric response to abnormal SST anomalies) has been 

performed. Finally, a high rating is when SSTs are highly abnormal, the level of flooding is 

highly anomalous and the atmospheric response during the event has been inspected for that 

given year. We consider all major flood events as determined by the reference(s). The stated 

climate driver for each event and type of analysis performed is obtained from the authors 

highlighted in bold in Table 2. 

2.2.1 River discharge data 
 

Peak river flows for floods are obtained from the time series of seven hydrological gauges 

provided by the national meteorological and hydrological services of the respective countries 

situated in the Amazon basin and from the Institute of Research for Development (IRD). These 

include: the Agência Nacional de Águas (Water National Office—ANA, Brazil) and the Servicio 
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Figure 1. River network and hydrographs at key gauging stations within the Amazon basin. Hydrographs show observed mean monthly river flows. The 

hydrological years for each hydrograph start from the lowest monthly discharge and thus differ depending on the specific station. Letters correspond to 

the gauging stations used for the classifications of flood events in Table 2 (Section 2.5) and are referred to throughout the main text. City population 

data are sourced from Esri (https://hub.arcgis.com/). 
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Nacional de Meteorología e Hidrología (National Meteorology and Hydrology Service—

SENAMHI, Peru and Bolivia). Data are sourced through the SO-HYBAM observational service 

(see https://hybam.obs-mip.fr/). The locations of stations are displayed in Figure 1, with 

letters corresponding to each station highlighted throughout the main text to allow for easier 

interpretation and navigation. The Puerto Varador (f) and Puerto Almacen gauging stations (i) 

are no longer operational with previous data suffering from uncertainty due to the backwater 

effect (Meade et al., 1991). Therefore, we have excluded discharge information for these 

stations in Table 2.  

2.2.2 SST data 
 

Equatorial Pacific SST data are provided by the National Oceanic and Atmospheric 

Administration's (NOAA) Climate Prediction Centre (CPC), using the monthly ERSSTv5 (centred 

base periods) Niño 3.4 (5° N–5° S, 170–120° W) data set, which is used as input to the Oceanic 

Niño Index (ONI). Atlantic SSTs are provided by the Tropical North (5.5–23.5° N and 15–57.5° 

W) and South (Equator–20° S and 10° E–30° W) Atlantic indices (climatology is 1971–2000; 

Enfield et al., 1999). 

The latest version of the Multivariate El Niño Southern Oscillation index (MEI v2), based on 

five variables (sea level pressure (SLP), SST, surface zonal winds (U), surface meridional winds 

(V) and outgoing long wave radiation (OLR)) is used to provide an index based on both oceanic 

and atmospheric conditions from 1979 onwards. It builds on the original MEI index (Wolter 

and Timlin, 1993) using the JRA-55 global reanalysis (Kobayashi et al., 2015). Here, monthly 

values are based on bimonthly means; for example, August 2018 is calculated from July–

August 2018 SST data. In Table 2, MEI values are averaged for three consecutive bimonthly 

readings. For example, for October–December considering a flood event in 2012, the average 

is taken from bimonthly values in September–October, October–November and November–

December 2011. 

The monthly PDO time series, defined as the leading principal component (PC) of monthly 

anomalies in the North Pacific Ocean, poleward of 20° N (1854–present) is provided by the 

National Centre for Environmental Information (NCEI). The NCEI PDO index is based on NOAA's 

extended reconstruction of the SSTs (ERSSTv4). Finally, monthly detrended AMO data are 

provided by NOAA's ESRL based on the unsmoothed Kaplan SST V2 data set (Enfield et al., 

2001). The PDO and AMO data in Table 2 are averaged for the calendar year. 
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2.3 The Amazon basin 
 

The Amazon (Figure 1) is the world's largest river basin, draining an area of approximately 6 

million km2. Its river network consists of over 1,000 tributaries with the main stem discharging 

an average of about 209,000 m3s-1 of freshwater into the Atlantic Ocean per annum (Molinier 

et al., 1996; Callède et al., 2010). The basin extends between 5° N and 20° S, covering seven 

countries: Brazil (63%), Peru (16%), Bolivia (12%), Colombia (6%), Ecuador (2%), and Venezuela 

and Guyana (1%) (Espinoza et al., 2009b). In terms of climate, the Amazon basin witnesses a 

large interannual variability of rainfall with distinct spatial variations (see Laraque et al., 2007 

for Ecuador; Ronchail and Gallaire, 2006 for Bolivia; Lavado et al., 2012, 2013, for Peru; 

Figueroa and Nobre, 1990; Ronchail et al., 2002, and Espinoza et al., 2009b, for the entire 

Amazon). On average, locations within the Amazon receive around 2,000–2,200 mm of rainfall 

annually (Marengo and Nobre, 2001), sourced from local evapotranspiration and via water 

transport provided by the easterly trade winds from the Northern Hemisphere (Salati et al., 

1979; Salati and Vose, 1984). A climatic gradient can be identified from the wet northwest to 

the dry southern and eastern borders, which experiences a long dry season, and where 

deforestation from tropical forest to pasture and cropland is at its greatest (Davidson et al., 

2012). 

Owing to the size and location of the basin, both precipitation and discharge regimes differ 

depending on location. In general, the wet season in the Amazon is from December to April, 

while its dry period is between June and October (Yoon and Zeng, 2010). More specifically, in 

the north of the basin, around the Branco catchment (Figure 1), peak rainfall is noted during 

June–August and is predominately controlled by large-scale convection, modulated by the 

migration pattern of the intertropical convergence zone (ITCZ) (Ronchail et al., 2002). Rainfall 

totals are greatest near the mouth of the Amazon River within regions of the Amazon Delta 

and in the northwest towards the Colombian Amazon (Espinoza et al., 2009b). In these 

regions, wetter conditions are prevalent between December and May, though less seasonal 

variability exists in western catchments (Figueroa and Nobre, 1990; Ronchail et al., 2002). 

Rainfall in the south is heavily influenced by organised convection from the South Atlantic 

convergence zone (SACZ) and precedes northern regions by approximately six months, 

peaking in December–February (Ronchail et al., 2002; Tomasella et al., 2011). Consequently, 

river discharge in northern, southern, and central tributaries also adheres to an asynchronous 

pattern in peak river flows, providing a dampening effect on the main flood wave travelling 

down the central Amazon River (Ronchail et al., 2006; Espinoza et al., 2009a). The rainfall–
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runoff relationship displays a large lag between peaks in rainfall and peaks in river discharge in 

large parts of the basin, with river flows showing a stronger response to seasonal rainfall 

patterns as opposed to single rainfall events (Trigg, 2010). This lag can be related to (1) the 

size and length of many Amazonian rivers; (2) floodplain storage and interactions; and (3) 

rivers generally having a shallow bed and topographical slopes, with relatively slow moving 

waters (Trigg et al., 2009; Yamazaki et al., 2012), though rivers located in upstream 

catchments, particularly those of Andean origin, are prone to flash flooding and are highly 

sensitive to extreme rainfall (Laraque et al., 2009). On average, the highest water levels are 

found two to three months earlier in the largest southern tributary (Madeira River) than its 

northern counterpart (Rio Negro) and larger tributaries follow a monomodal pattern (i.e. one 

annual flood wave) (Ronchail et al., 2006; Espinoza et al., 2009a). 

2.4 Influence of hydroclimatic drivers 

2.4.1 Rainfall variability 

2.4.1.1 Pacific influence  
 

The SST variability in the Equatorial tropical Pacific (i.e. the El Niño Southern Oscillation—

ENSO) is arguably the most well-known mechanism responsible for the interannual and spatial 

variability of Amazon rainfall (Marengo, 1992; Nobre and Shukla, 1996; Foley et al., 2002; 

Espinoza et al., 2009b) and indeed worldwide (Cai et al., 2015). Figure 2 summarises the 

relationship between the two phases of the ENSO and Amazon rainfall based on results 

identified in previous studies. In general, when El Niño (i.e. the warm phase of the ENSO) 

conditions are prevalent, a deficit in rainfall is common throughout much of the Amazon Basin, 

whilst the opposite is true for La Niña events (Ronchail et al., 2002; Yoon and Zeng, 2010) 

(Figure 2a,d). This is also evident when examining extreme precipitation frequency, whereby 

Grimm and Tedeschi (2009) note decreased (increased) activity associated with El Niño (La 

Niña) conditions over the entire Amazon basin relative to neutral conditions in the austral 

autumn (March–May). By categorising the wet and dry seasons into dry, very dry, wet and 

very wet years, based on monthly observed rainfall data (1931–1996), Andreoli et al. (2012) 

showed that dry and very dry rainy seasons are associated with weak and intense El Niño 

events, respectively. In contrast, very wet rainy and very wet dry seasons are associated with 

intense La Niña and La Niña conditions. 
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Rainfall anomalies associated with the ENSO are strongest during the austral summer 

(December–February) and autumn (March–May), aligning with the peak rainy season in South 

America (Sulca et al., 2018). This is highlighted in Figure 2b,e, where Pacific SST anomalies are 

Figure 2. Influence of the El Niño Southern Oscillation (ENSO) on rainfall throughout the 

Amazon basin, based on results identified within the literature: (a, d) the entire year; (b, e) the 

Amazon wet season (December–April); and (c, f) the Amazon dry season (June–October). Blue 

circles and shading indicate wetter than usual conditions; red represents drier conditions; black 

circles or shading are used where conflicting results are found between different authors; 

darker shading depicts locations where the correlation is considered stronger; regions in white 

indicate that no correlation exists or that there is currently no information available. Hatched 

markings highlight when correlations are widespread throughout the majority of the basin. It 

is important to highlight where widespread correlation is shown, the correlation is not uniform 

and can be higher or lower for different regions. For full details of the reference(s), type of 

analysis used and strength of the relationships, see Tables S1–S6 in the additional supporting 

information.  
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found to have a similar influence on annual and wet season (December–April) rainfall patterns. 

The influence on the dry season (June–October) is more limited, with impacts mainly observed 

in northern and eastern areas (Figure 2c,f) when using gauge-based rainfall estimation 

products (Yoon and Zeng, 2010). Investigations performed solely using precipitation 

observations show contrasting rainfall anomalies between the northern Branco basin and in 

the southern Amazon during June–August (Ronchail et al., 2002) (Figure 2f). During La Niña 

years, drier-than-usual conditions are more common in the southern Amazon, with wetter 

conditions in the far north. Here, it is worth reiterating that rainfall in the northern Branco 

basin generally peaks later (June–August) relative to the rest of the Amazon. 

In northern and north-eastern catchments of the Brazilian Amazon, the ENSO–rainfall 

relationship is strong, particularly around the Amazon River towards its mouth on the Atlantic 

on both annual and seasonal timescales (Liebmann and Marengo, 2001; Ronchail et al., 2002; 

Zeng et al., 2008; Yoon and Zeng, 2010). A deficit (increase) in rainfall is recorded at the 

majority of meteorological stations during El Niño (La Niña) events with a reduction in signal 

towards southern areas (Ronchail et al., 2002; Espinoza et al., 2009b). This signal is also 

identifiable on the western side of the Colombian Andes and Amazon basin, albeit weaker, 

where abundant rainfall is associated with La Niña conditions (Poveda and Mesa, 1993; 

Poveda et al., 2011; Espinoza et al., 2009b) (Figure 2d,e). 

For the Peruvian Amazon, particularly areas around Iquitos (a), lower (greater) than usual 

rainfall is generally associated with El Niño (La Niña) events (Lavado et al., 2013; Sulca et al., 

2018). However, correlations at this station are often weak, with certain analysis having 

identified both a wet and a dry signal during the warm phase of the ENSO (Ronchail et al., 

2002; Lagos et al., 2008) (Figure 2b). The association between rainfall and the ENSO in the 

Ecuadorian Amazon is much less well understood owing to its remoteness. Previous studies 

have mainly focused on the ENSO connection in coastal and Andean locations of Ecuador 

(Rossel, 1997), with research most likely limited for the Ecuadorian Amazon owing to its 

remote location and sparse population (Laraque et al., 2007). Evidence is conflicting between 

studies with above-normal rainfall identified during phases of El Niño in the Ecuadorian 

lowlands and on the eastern slope of the Andes for Ronchail et al. (2002), while a deficit in 

rainfall is acknowledged by Vuille et al. (2000), and no significant effect was identified by 

Tobar and Wyseure (2018) (Figure 2a). The wet signal identified by Ronchail et al. (2002) is 

deemed more significant during the wet season (March–May) (Figure 2b). 
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The relationship can be complex, particularly when investigating the influence of the ENSO at 

smaller scales in which distinct spatial differences can be identified. For instance, in Bolivia, 

correlations are often dependent on altitude and topography (Ronchail and Gallaire, 2006). 

Less rainfall is reported during the peak of the wet season (February) in the lowlands of the 

central Bolivian Amazon when La Niña conditions prevail (Trinidad station) (Figure 2e). In 

contrast, on the slopes of the Zongo Valley, in which the Zongo River empties into the Beni 

River, an Amazon tributary, drier conditions are reported during El Niño events on an annual 

time scale, with a La Niña/wet signal evident for February (Ronchail and Gallaire, 2006). This is 

supported by increased sedimentation within the Beni River during La Niña events (Aalto et al., 

2003). These findings demonstrate the need to consider the hydrological response to climate 

anomalies not only at the location of interest but also at locations further upstream owing to 

increases in river flow in upstream tributaries having the potential to cause flooding further 

downstream. 

Several studies have highlighted the importance of considering the diversity of the ENSO 

events, with the location and intensity of the SST anomalies in the tropical Pacific found to 

cause significant differences in rainfall anomalies over South America (Hill et al., 2009; Sulca et 

al., 2018; Cai et al., 2020). This is a consequence of modifications to the Walker Circulation 

owing to whether the centre of warming or cooling of the SST anomalies was located in the 

central or eastern Pacific Ocean (Cai et al., 2020). For instance, Sulca et al. (2018) identified 

that a warm eastern Pacific ENSO index results in significant dry anomalies over the Peruvian 

Amazon, along the Peru–Brazil boundary. These signals were deemed insignificant when the 

extreme 1983 and 1998 El Niño years were removed, while the dry anomalies were still 

significant after the removal of these years for the central Pacific index. Such results highlight 

the need to consider both the SST magnitude and location when attempting to understand the 

relationship between the ENSO phases and the response of rainfall in different regions of the 

Amazon basin. 

2.4.1.2 Atlantic influence 
 

In the early 1990s, Marengo (1992) identified that an increase in rainfall over the Amazon 

basin was associated with an increase in water vapour fluxes from the Atlantic Ocean. At the 

time, little attention had been paid to the relationship between the tropical SSTs in the 

Atlantic and Amazon rainfall. Previous studies mainly focused on the role of Atlantic SSTs in 

determining rainfall variability over South America, particularly in north-eastern Brazil (Moura 
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and Shukla, 1981; Nobre and Shukla, 1996). At the turn of the millennium, Liebmann and 

Marengo (2001) and Ronchail et al. (2002) began to assess the importance of the tropical 

Atlantic SSTs for the Amazon. However, it was not until after the record-breaking drought 

event witnessed in 2005 that the tropical Atlantic was considered as a climatic driver, with 

numerous studies then highlighting the importance of the SST abnormalities in determining 

the Amazon's water budget (Marengo et al., 2008; Zeng et al., 2008; Yoon and Zeng, 2010). 

Generally, more (less) rainfall in the Amazon basin is correlated to anomalously cold (warm) 

SST conditions in the Tropical North Atlantic (TNA), coupled with warm (cold) SST anomalies in 

the Tropical South Atlantic (TSA) (Yoon, 2016), associated with the north–south migration 

pattern of the ITCZ (Enfield, 1996). This is supported by Andreoli et al. (2012) who identified 

that years that are considered to have a drier rainy season are associated with positive 

(negative) TNA (TSA) SST anomalies. In contrast, a very wet rainy season and wet dry season 

were associated with the opposite dipole pattern (i.e. a cold TNA and a warm TSA). 

Figure 3 provides a summary of how anomalous SSTs in the TNA and TSA affect precipitation 

variability over the Amazon basin. For the TNA, significant correlations exist over much of the 

Amazon with a stronger relationship found in the southern Amazon (Zeng et al., 2008; Yoon 

and Zeng, 2010) (Figure 3a–c). Here, lower than usual precipitation is a persistent response to 

the warm TNA SST anomalies throughout most of the Amazon basin and is related to a 

weakening of the northeast trade winds and moisture fluxes towards the basin. This 

weakening is a result of a northward displacement of the ITCZ, which consequently produces 

atmospheric subsidence over the Amazon basin (Cox et al., 2008; Marengo et al., 2016). These 

findings were replicated by Yoon (2016) in an idealised analysis using five atmospheric global 

climate models (AGCMs). All models were found to simulate drier (wetter) conditions during 

the dry season in the southern Amazon when SSTs in the north Atlantic were warmer (cooler) 

than usual. Yoon (2016) highlighted the importance of models accurately representing 

climatological seasonal rainfall totals in order better simulate the response to anomalous SSTs. 

Models that simulated too little rainfall during the Amazon dry season tended to 

underestimate the response to changes to the Atlantic SSTs. When focusing on two of the 

strongest warm TNA events (2005 and 2010), a contrast in rainfall anomalies is found during 

March–May, with wetter conditions in the north and drier conditions over the southern 

Amazon (Jimenez et al., 2019). In the case of 2010, an El Niño event occurred previous to the 

warm TNA event in March–May, and widespread precipitation deficits were observed over 

northern Amazonia during December–February, highlighting the need to consider the effects 

of a combination of climatic phases occurring within a small timeframe. 
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The TSA, on the other hand, is considered less influential (Figure 3g–l), with its effect more 

pronounced on the southern edge of the Amazon between June and October (Figure 3l) and 

during the transitional phase in between the wet and dry seasons (Yoon and Zeng, 2010). 

Significant correlations do exist between rainfall anomalies and the SSTs in the TSA when 

analysing correlations against observed rainfall data (Ronchail et al., 2002). For example, when 

the TSA is warmer than usual, there is a corresponding increase in rainfall at stations located in 

the north-eastern Amazon (Figure 3g). 

2.4.1.3 The Madden-Julian oscillation (MJO) 
 

Unlike the ENSO and tropical Atlantic indices, which typically occur on an interannual 

timescale, the MJO is an intra-seasonal oscillation, meaning it can occur between seasons in a 

single year, and it has the potential to provide predictability of rainfall and river discharge for 

the upcoming season. On a global scale, the MJO is considered the greatest modulator of 

regional rainfall on an intra-seasonal timescale, and is particularly influential in parts of the 

eastern Amazon (De Souza and Ambrizzi, 2006). Jones et al. (2004) identified that when 

convective activity was enhanced over the western Indian Ocean, there was an increase in the 

frequency of precipitation extremes in the eastern part of South America. The reasoning 

behind this increase has been associated with increased activity and rainfall within the SACZ, 

whereby intense SACZ events are modulated by the MJO (Carvalho et al., 2004). Composite 

analysis performed by Liebmann et al. (2004) supports these findings, revealing statistically 

significant variations in precipitation both downstream of the South American low-level jet 

(SALLJ) and within the SACZ depending on the phase of the oscillation. The MJO activity was 

found to be influential in enhancing upper level cyclonic and low-level anti-cyclonic anomalies, 

which are both features of a strengthened SALLJ. 

Shimizu et al. (2017) explored the relationship between extreme precipitation events in the 

Amazon basin and phases of the MJO and ENSO activity. Extreme wet events in the Amazon 

were found to be more frequent when the MJO was active, particularly when tropical 

convection was strongest over the Indian Ocean (phases 1 and 2) and during phases 7 and 8 

Figure 3. Influence of tropical Atlantic sea surface temperatures (SSTs) on rainfall throughout 

the Amazon basin based on results identified within the literature: (a–c) a warm Tropical North 

Atlantic (TNA), (d–f) a cold TNA, (g–i) a warm Tropical South Atlantic (TSA) and (j–l) a cold TSA. 

The legend is the same as for Figure 2. For full details of the reference(s), type of analysis used 

and strength of the relationships, see Tables S7–S18 in the additional supporting information.  
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when convective activity is reduced over Australia. Shimizu et al. (2017) also note that despite 

the frequency of wet events being at its highest during phase 7 of the MJO cycle, considering 

cases for only the MJO events (i.e. not accounting for the ENSO), precipitation and convective 

motion were strongest in phase 2, indicating that events may become more extreme when the 

MJO is positioned over the Indian Ocean. 

2.4.1.4 Pacific decadal and Atlantic multidecadal oscillations 
 

Studies analysing the impact of the PDO and AMO on rainfall variability tend to explore the 

relationship indirectly, focusing on how the PDO/AMO phases modulate the ENSO 

characteristics (e.g. Wang et al., 2014; García-García and Ummenhofer, 2015). For instance, 

the frequency and intensity of the ENSO anomalies have been found to be controlled by the 

phase of the PDO, with an intensification of wet/dry anomalies identified when the ENSO and 

PDO are in phase (e.g. a warm PDO and El Niño; Wang et al., 2014). Moreover, when the ENSO 

and PDO are out of phase, typical the ENSO and climate relationships were found to weaken 

or even disappear. For instance, during the cold phase of the PDO, precipitation anomalies 

associated with El Niño conditions are weakened over northern South America, including 

within parts of the Brazilian Amazon basin (Wang et al., 2014). These results were previously 

identified by Kayano and Andreoli (2007) who concluded that the strength of the ENSO 

teleconnections is potentially related to the phase of the PDO, with composites of rainfall for 

El Niño and La Niña years over South America substantially different between the PDO phases. 

For the AMO, an opposing relationship emerges, with cold (warm) AMO regimes associated 

with stronger (weaker) ENSO variability (Timmermann et al., 2007; García-García and 

Ummenhofer, 2015). In other words, the ENSO events, in general, tend to be stronger when 

the two indices of the SSTs are out of phase (e.g. El Niño and a cold AMO regime), with the 

positive AMO regime characterised by anomalous easterly winds over the central and western 

Pacific that deepen the thermocline in the west Pacific (García-García and Ummenhofer, 

2015). Over South America, anomalous precipitation composites showed more (less) 

organised patterns of rainfall, with significant anomalies occupying more (less) land area when 

the ENSO and AMO are in the opposite (same) phase (Kayano and Capistrano, 2013). Direct 

studies between the AMO and Amazon rainfall have shown positive phases of the AMO are 

linked to increased drought frequency (Barichivich et al., 2018) and the shortage of rainfall 

during the 2005 and 2010 mega-droughts (Aragão et al., 2018). A recent study by Kayano et al. 

(2019) explored the concomitant influence of the AMO and PDO phases on La Niña 
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teleconnections over South America. The highest (lowest) number of La Niña events occurred 

during periods in which warm AMO/cold PDO (cold AMO/warm PDO) persisted, consistent 

with what is expected based on the previous literature (e.g. Kayano and Capistrano, 2013; 

Wang et al., 2014; García-García and Ummenhofer, 2015). Considering other backgrounds, a 

combination of a cold AMO/cold PDO represented a larger percentage of La Niña events 

relative to a warm AMO/warm PDO, suggesting the importance of the cold PDO phase in 

favouring La Niña SST anomalies in the Equatorial Pacific. 

2.4.2 River discharge variability  

2.4.2.1 Pacific influence  
 

Marengo et al. (1993) identified using observations and simulations that the variability of river 

flows in the Amazon can differ on the order of two standard deviations between El Niño and 

non-El Niño years. More recently, Emerton et al. (2017) produced historical probabilities of the 

chances of observing abnormally high or low streamflow for the entire globe in response to El 

Niño and La Niña events for both the year in which an event peaks and for when it decays. For 

the Amazon, regions south of the Amazon River, particularly towards the western side of the 

basin are likely to observe higher than usual river flows during August and September for El 

Niño years during the initial stages of an ENSO event (40–60% probability) (Figure 4c). The 

signal reverses in the Brazilian Amazon for months closer to boreal winter, when El Niño 

typically reaches its peak. From November, lower than usual flows dominate the Brazilian 

Amazon with the signal strongest during December and between May and July during the 

decaying phase (Figure 4b,c). Drier conditions are dominant in the north-eastern Amazon 

throughout both the wet and dry seasons, which occur slightly later than those noted for 

rainfall due to the large lag between rainfall and discharge peaks (Figure 4b,c). 
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Figure 4. Influence of El Niño Southern Oscillation (ENSO) conditions on river discharge in the 

Amazon basin based on results identified within the literature: (a, d) the entire year; (b, e) the 

Amazon wet season (February–June); and (c, f) the Amazon dry season (August–December). 

The legend is the same as for Figure 2. For full details of the reference(s), type of analysis used 

and strength of the relationships, see Tables S19–S24 in the additional supporting information.  

For La Niña years (i.e. the cold phase of the ENSO), the signal is generally weaker across the 

basin. Towards the northwest, around the confluence point of the Solimões River, where the 

headwaters of the Marañón and Ucayali rivers meet and in the western Brazilian Amazon, 

drier-than-usual flows are more likely in September and December (Figure 4f). In contrast, 

increased river flows are more likely in the north-eastern Amazon above the Amazon River 

from as early as July and lasting until around the following July. This signal is strongest during 
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February and March as La Niña begins to decay and extends into the southern Amazon during 

December (Figure 4e,f). 

Analysis using observed river discharge data have identified similar signals for mean annual 

river flows, with lower (higher) levels of discharge during El Niño (La Niña) years found in all 

river basins with the exception of the southern Madeira basin (Espinoza et al., 2009a), 

consistent with results of Ronchail et al. (2005b) (Figure 4a,d). Major negative anomalies 

during El Niño are observed in tributaries in the north-eastern Amazon, similar to the response 

for rainfall (Figure 2a) and at Altamira station, located downstream of the southern Xingu 

River (Figure 4a) (Ronchail et al., 2005b). The signal in the north is replicated in several further 

studies (e.g. Uvo and Graham, 1998; Foley et al., 2002; Schöngart and Junk, 2007) with 

improved skill at forecasting discharge in northern sub-basins when using the Pacific SSTs (Uvo 

and Graham, 1998; Uvo et al., 2000). River flows in the Negro River were found to be 

significantly lower during El Niño years relative neutral conditions, whilst the opposite is true 

for La Niña (Figure 4b,e) (Schöngart and Junk, 2007). 

Other notable regions include tributaries positioned to the east of the Madeira River (Ji-

Parana, Aripuana, and Sucunduri), which witness up to a 25% decrease in discharge during El 

Niño phases (Ronchail et al., 2005b). An opposing signal (i.e. higher than normal river flow) 

was evident in the Japura River towards the Colombian Amazon and in the upper Negro basin 

(Figure 4a). Positive anomalies during La Niña events are predominately observed towards the 

north-eastern Amazon and along the Branco River, with lower than usual river flows more 

common in southern tributaries, particularly in the Mamoré and Madeira rivers (Figure 4d). 

These studies support the global analysis of Ward et al. (2010), who investigate the sensitivity 

of annual mean, one and seven day maximum river discharge to the ENSO. They observed a 

positive relationship (i.e. drier conditions during El Niño) at all stations within the tropics, 

associated with the anomalous displacement of the Walker circulation. No statistical 

differences were found in the sensitivity to the Southern Oscillation Index (SOI) between mean 

and maximum discharges. This means the impacts of the ENSO were not found to be stronger 

for high flows compared with mean conditions, as is observed in many areas of the world. 

2.4.2.2 Atlantic influence 
 

Espinoza et al. (2009a) find that for the TNA discharge variability in Amazonian rivers responds 

similarly to the ENSO. A negative correlation is identified between the TNA SSTs and mean and 

annual maximum river flows, indicating that when the TNA is warmer than usual, river 
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discharge decreases (Figure 5a), highlighting the same response to rainfall (i.e. a decrease in 

rainfall). This similar response to both the ENSO and TNA SSTs can be explained by positive 

correlations between the two indices. Several studies have highlighted the impact of the ENSO 

on the tropical Atlantic SSTs (Enfield and Mayer, 1997; García-Serrano et al., 2017) and its 

reversal through the induction of low-level cyclonic atmospheric flow due to the warming of 

TNA SSTs in boreal spring (Ham et al., 2013). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. Influence of tropical Atlantic sea surface temperatures (SSTs) on river discharge in the 

Amazon basin based on results identified within the literature: (a) a warm Tropical North 

Atlantic (TNA), (b) a cold TNA, (c) a warm Tropical South Atlantic (TSA) and (d) a cold TSA. 

Results are only shown for the entire year owing to the limited number of studies that have 

seasonal results. The legend is the same as for Figure 2. For full details of the reference(s), type 

of analysis used and strength of the relationships, see Tables S25–S28 in the additional 

supporting information. 
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This relationship for lower than usual river flows was observed in most sub-basins except for 

the southern Madeira and northern Branco rivers, with the colder than usual TNA SSTs found 

to produce the opposite effect (Espinoza et al., 2009a) (Figure 5b). Marengo (1992) identified 

when the anomalously cold SSTs in the TNA occur concurrently with a warmer than usual TSA, 

water levels in the Negro River are generally higher (Figure 5b,c). These results are consistent 

with those produced by Ronchail et al. (2005b) for most regions of the Amazon. Stations 

situated between the Amazon River and 10° S showed higher than usual low and mean flows 

when the TNA is colder than usual, though an inverse relationship was observed in the Branco 

River basin in the far north (Figure 5b). 

Considering the TSA, identified as being less important for Amazon rainfall (Yoon and Zeng, 

2010), the relationship with discharge is more complex and is considered time dependent 

(Ronchail et al., 2005b). For instance, between 1974 and 1994, a warm TSA was linked with 

higher river flow in the Beni River basin (Figure 5c). In contrast, the Mamoré-Madeira basin, 

located just east of the Beni and Madeira rivers, increased discharges that corresponded to 

anomalously cold conditions (1988–2001) (Figure 5d). This relationship in the southern 

Amazon highlights the problems that could arise when using SST anomalies for potential flood 

prediction, with wetter conditions found in neighbouring sub-basins for opposing SST 

anomalies. 

2.4.2.3 Other drivers  
 

There is an absence of literature focusing on the influence of the MJO, PDO and AMO on river 

flows in the Amazon basin relative to indices on shorter timescales (e.g. the ENSO). For several 

indices of longer term Atlantic and Pacific variability, only the AMO and the cross-equatorial 

Atlantic SST (Deser et al., 2010) indices were significantly and negatively correlated with 

variations in minimum dry season water levels at Manaus gauging site (Barichivich et al., 

2018). Lee et al. (2018) observe the same negative correlation with seasonal peak flows in 

central South America providing “fair” predictions of seasonal flows based on a global scale 

prediction model evaluated using the categorical Gerrity skill score (GSS). These results are 

consistent with the typical relationship found between rainfall, river discharge and warmer 

conditions in the north Atlantic, with drier conditions dominating throughout much of the 

Amazon owing to the northward displacement of the ITCZ. This highlights the dominant role of 

the tropical Atlantic in modulating drought frequency in the Amazon and thus the ability to 

predict periods of dry spells. 
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The modulation of flooding or periods of abnormally high flows at longer timescales is much 

less understood (Barichivich et al., 2018). Recent studies have shown some predictability with 

regards to the strengthening of the Walker Circulation and associated enhancement of the 

Equatorial trade winds in the Pacific Ocean, which may offer multiyear predictability in some 

parts of the world (McGregor et al., 2014; Espinoza et al., 2016). In the Amazon, variations in 

maximum water levels at Manaus gauging station are consistently correlated with the strength 

of the Pacific trade winds (averaged 10 m zonal winds; Barichivich et al., 2018) and the SST 

gradients between the Atlantic and Pacific oceans basins (Chikamoto et al., 2015). The 

mechanisms behind this strengthening can be related to the dynamics of trans-basin variability 

(TBV), which is defined as the difference between the area-averaged Atlantic and Pacific SSTs. 

McGregor et al. (2014) implemented a basin-scale TBV index, defined as the monthly mean 

difference of the Atlantic–Pacific SST anomalies. They show how the TBV index is heavily 

influenced by the strength of the trade winds and operates on a frequency of roughly five 

years. Around 1991, cool Atlantic conditions featured alongside a relatively warm eastern 

Pacific, resulting in a negative TBV phase where Pacific trade winds were anomalously weaker. 

Since the late 1990s, rapid warming in the Atlantic Ocean (Gloor et al., 2013) combined with 

subsequent cooling in the eastern Pacific led to a reversal in the TBV index, whereby the 

Equatorial trade winds were enhanced due to anomalous low (high) pressure over the Atlantic 

(Pacific) oceans. This enhancement is found to coincide with a 55% increase in wet-day 

frequency (> 10 mm·day–1) in the western Amazon (Espinoza et al., 2016). 

Indices that operate at lower frequencies (e.g. the TBV, PDO and AMO) could translate into 

useful information for the risk assessment for various sectors operating in the Amazon (e.g. 

agriculture). However, unlike for the relationship between droughts and warmer than usual 

North Atlantic SSTs, the mechanisms behind flooding at longer timescales still require further 

research. 

2.4.3 Rainfall vs river discharge 
 

Overall a similar relationship is clear between the phases of the ENSO and the trends seen in 

both rainfall and river discharge, particularly on annual timescales (Figures 2 and 4). During El 

Niño events, drier conditions are prevalent, while increased rainfall and river discharge are 

generally found throughout the basin during La Niña. Changes in association to the ENSO are 

strongest in the north-eastern Amazon for both variables. Some discrepancies appear during 
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the dry season for La Niña years, with less rainfall noted in the southern Amazon (Figure 2f), 

while a reduction of discharge is only observed in parts of the north-western Amazon (Figure 

4f). It should be noted that the dry season typically overlaps when ENSO is in its initial building 

or decaying phase, with a stronger association generally acknowledged during December–

February when the ENSO reaches its peak. For the Atlantic, rainfall and discharge respond 

similarly, with a reduction in rainfall and discharge when the TNA is anomalously warm and an 

increase when the TNA is colder than usual. The TSA is found to be less influential for both 

variables (Figures 3 and 5). 

In addition to magnitude, the SST variability has been shown to affect the onset and 

withdrawal timings of the wet season. In the central Amazon, the average onset date was 

determined to be around September 25 when constructing five-day rainfall averages 

(pentads), and is associated with anomalous anticyclone activity and enhanced trade winds in 

the Atlantic (Marengo et al., 2001). The combination of the cold Atlantic and warm Pacific SST 

anomalies is linked with a delayed onset and early withdrawal of wet season rainfall. For this 

particular configuration of the SSTs, there is an observed delay in the seasonal migration of 

peak convection from the Northern to the Southern hemisphere, owing to the delay of 

planetary boundary layer (PBL) moisture. This build up of the PBL moisture is responsible for 

the onset of convection, with regions closer to the Equator more sensitive to small changes in 

the thermodynamic and dynamical structure of the atmosphere relative to the southern 

Amazon (Fu et al., 1999). Thus, central and northern catchments are likely to be more sensitive 

to changes in the SSTs in the adjacent oceans. 

So far, the aforementioned studies have described the role of the tropical Atlantic and Pacific 

oceans in determining precipitation variability in the Amazon basin. However, Builes-Jaramillo 

et al. (2018) hypothesise that the interaction between the SSTs in the Atlantic and the 

hydrology of the Amazon are more complex, proposing a two-way feedback system. They 

identify that shifts in the hydrology of the Amazon can influence future states of the TNA SSTs 

up to two months in advance. When the Amazon is particularly dry (wet), atmospheric surface 

pressure over the Amazon increases (decreases). Consequently, the atmospheric surface 

pressure between the TNA and the Amazon is reduced (increased), which in turn reduces 

(enhances) the zonal trade winds. As the zonal trade winds weaken (strengthen) over the TNA, 

there is reduced (increased) evaporative cooling leading to an increase (decrease) in the TNA 

SSTs. 
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It is important to highlight the fact that the majority of correlations described in Section 2.4 

are often considered for larger catchment areas and/or for a small number of 

meteorological/hydrological stations. This is particularly true for precipitation in smaller sub-

basins, which suffers from poor spatial coverage (Paccini et al., 2018). Consequently, the 

relationship between rainfall and climate drivers can be difficult to assess. 

2.5 Hydroclimatic drivers and extreme floods  
 

Figure 6 shows all the flood events outlined in Table 2 plotted onto the times series of the SST 

anomalies for the El Niño 3.4, TSA and TNA regions. It should be noted that these floods were 

based on what was identified within the literature and flood databases, and so it is biased 

towards regions where more research and flood recordings take place. The southwestern 

Amazon, for example, shows more floods through time, but this could be due to flood events 

being recorded and analysed more frequently in these locations. In addition, southwestern 

regions have several gauging stations where floods tend to be analysed (d–i), whereas floods 

in the Peruvian Amazon are generally based on water levels at Tamshiyacu gauging station (a). 

Figure 6 also highlights that flood events can occur in several regions of the basin regardless of 

whether the SST anomalies are in their positive, neutral or negative phases. This implies that 

although flooding in a certain location may be linked to a particular phase of climate (e.g. La 

Niña), floods are not restricted to this particular phase and demonstrates the complexities that 

exist when making any association with a particular hydroclimatic driver. 
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Table 2. Characteristics of flood events in the Amazon basin and their links to hydroclimatic drivers. The attributed flood driver and method of analysis for 

each event are taken from the author(s) highlighted in bold. Superscripted letters correspond to the gauging stations at which the flood was recorded. SSTs 

provided are anomalies. 

Year and 
Location 
Affected 

Peak 
Discharge 

Timing 

Peak 
Discharge  

(m3s-1) 

Days over 
90th 

Percentile 
of Flow 

Attributed 
Flood 
Driver 

EN 3.4 0 C 
(OND/DJF) 

MEI .v2 EN 
0 C 

(OND/DJF) 

TNA 0 C 
(MAM) 

TSA 0 C 
(MAM) 

Phase of 
PDO/AMO 0 C 

Method of Analysis Strength of 
Evidence 

Author(s) 

1953 
Eastern 

Amazonb 

/b /b /b Warm TSA 0.05/0.40 / 0.08 -0.14 Cold (-0.57)/ 
Warm (0.26) 

- None Very low Marengo et al. (2013a) 
Satyamurty et al. 
(2013) 
Rodier & Roche (1984) 
O’Connor & Costa 
(2004) 
Callède et al. (2004) 

1956 
South-
westf 

/f /f /f LN -1.67/-1.11 / -0.11 -0.58 Cold (-1.82)/ 
Warm (-0.03) 

- Correlation 
analysis between 
rainfall, inundation 
and SST 

Low Ronchail et al. (2005a) 
 

1958 
South-
westf 

/f /f /f EN 1.53/1.80 / 0.85 -0.76 Cold (0.92)/ 
Warm (0.20) 

- See 1956  Low Ronchail et al. (2005a) 
 

1963 
Eastern 

Amazonb 

/b 250000*b /b Not defined -0.30/-0.40 / 0.30 0.30 Cold (-0.28)/ 
Warm (-0.01) 

- No link to 
hydroclimate drivers 

/ Rodier & Roche (1984) 
O’Connor & Costa 
(2004) 

1966 
South-
westf 

/f /f /f EN 1.97/1.37 / 0.44 -0.06 Cold (-0.50)/ 
Cold (0.00) 

- See 1956 Low Ronchail et al. (2005a) 
 

1968 
South-
westd,h 

25/02/1968d 

25/02/1968h 
17490d 

17490h 
22d 

22h 
Non-ENSO -0.34/-0.63 / -0.09 -0.09 Cold (-0.19)/ 

Cold (-0.18) 
- Discharge > 6000 
m3s-1 at 
Rurrenbaque 
gauging station 
compared to ONI 
ENSO classification 

/ Vauchel et al. (2017) 
Gautier et al. (2006) 
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Year and 
Location 
Affected 

Peak 
Discharge 

Timing 

Peak 
Discharge  

(m3s-1) 

Days over 
95th 

Percentile 
of Flow 

Attributed 
Flood 
Driver 

EN 3.4 0 C 
(OND/DJF) 

MEI .v2 EN 
0 C 

(OND/DJF) 

TNA 0 C 
(MAM) 

TSA 0 C 
(MAM) 

Phase of 
PDO/AMO 0 C 

Method of Analysis Strength of 
Evidence 

Author(s) 

1971 
South-
westd,h 

26/02/1971d 

26/02/1971h 
17340d 

17340h 
57d 

56h 
LN -0.86/-1.36 / -0.33 0.09 Cold (-1.34)/ 

Cold (-0.32) 
- Discharge > 15000 
m3s-1 at 
Rurrenbaque 
gauging station 
compared to ONI 
ENSO classification 

Low Espinoza et al. (2014) 
Vauchel et al. (2017) 
Gautier et al. (2006) 

1972 
South-
westh 

22/01/1972h 14850h 16h Not defined -0.96/-0.70 / -0.42 -0.06 Cold (-1.17)/ 
Cold (-0.37) 

- No link to 
hydroclimate drivers 

/ Gautier et al. (2006) 

1973 
Eastern 

Amazonc 

South-
westd,f 

21/06/1973c 

29/01/1973d 

/f 

146800c 

12560d 

/f 

0c 

41d 

/f 

EN 2.09/1.85 / -0.16 0.76 Cold (-1.18)/ 
Cold (-0.23) 

- See 1956 Low Ronchail et al. (2005a) 
Vauchel et al. (2017) 
Richey et al. (1989) 

1974 
South-
westd,f,h 

16/01/1974d 

/f 

16/01/1974h 

13290d 

/f 

13290h 

42d 

/f 

42h 

LN -1.95/-1.84 / -0.90 0.33 Cold (-0.38)/ 
Cold (-0.43) 

- See 1956 Low Ronchail et al. (2005a) 
Vauchel et al. (2017) 
Gautier et al. (2006) 

1975 
South-
westf 

/f /f /f LN -0.75/-0.54 / -0.55 -0.07 Cold (-1.46)/ 
Cold (-0.31) 

- See 1956 Low Ronchail et al. (2005a) 
 

1976 
Eastern 

Amazonb,c 

20/05/1976b 

26/06/1976c 
269400b 

145600c 
81b 

0c 
LN -1.55/-1.55 / -0.75 -0.62 Cold (-0.18)/ 

Cold (-0.39) 
- Composite analysis 
of SST anomalies 
and moisture flux 
(Oct-Apr), for five 
highest flood years 
prior to 2012 
(1953,1976,1989,19
99 and 2009) 

Medium Satyamurty et al. 
(2013) 
Rodier & Roche (1984) 
Richey et al. (1989) 
O’Connor & Costa 
(2004) 
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Year and 
Location 
Affected 

Peak 
Discharge 

Timing 

Peak 
Discharge  

(m3s-1) 

Days over 
95th 

Percentile 
of Flow 

Attributed 
Flood 
Driver 

EN 3.4 0 C 
(OND/DJF) 

MEI .v2 EN 
0 C 

(OND/DJF) 

TNA 0 C 
(MAM) 

TSA 0 C 
(MAM) 

Phase of 
PDO/AMO 0 C 

Method of Analysis Strength of 
Evidence 

Author(s) 

1977 
South-
westf 

/f /f /f EN 0.86/0.71 / -0.09 -0.03 Warm (0.02)/ 
Cold (-0.20) 

- See 1956 Low Ronchail et al. (2005a) 
 

1978 
South-
westd,f,h 

05/02/1978d 

/f 

05/02/1978h 

19730d 

/f 

19730h 

21d 

/f 

19h 

Warm SSA 
Negative 
TSA-SSA  
gradient 

EN 

0.81/0.69 / 0.20 -0.58 Warm (0.01)/ 
Cold (-0.19) 

- Composite analysis 
of SST, 850-hPa 
geopotential height 
and humidity flux 
anomalies for non-
La Niña floods 
(1978, 1982, 2001 
and 2014) 
  
- See 1956 

Medium Espinoza et al. (2014) 
Ronchail et al. (2005a) 
Gautier et al. (2006) 
 

1982 
South-
westd,f,h 

06/03/1982d 

/f 

06/03/1982h 

16720d 

/f 

16720h 

23d 

/f 

22h 

Warm SSA 
Negative 
TSA-SSA 
gradient 

 

-0.15/-0.05 -0.17/-0.34 -0.09 -0.31 Warm (-
0.25)/ 

Cold (-0.23) 

- See 1978  Medium Espinoza et al. (2014) 
Gautier et al. (2006) 

1983 
South-
westf,h 

/f 

18/02/1983h 
/f 

12700h 
/f 

8h 
EN 2.18/2.18 2.23/2.60 0.35 0.18 Warm (1.19)/ 

Cold (-0.09) 
- See 1956  Low Ronchail et al. (2005a) 

Gautier et al. (2006) 

1984 
South-
westd,h 

02/03/1984d 

02/03/1984h 
13100d 

13100h 
64d 

54h 
Non-ENSO -1.00/-0.60 -0.43/-0.49 -0.15 0.52 Warm (0.59)/ 

Cold (-0.22) 
- See 1968 Low Vauchel et al. (2017) 

Gautier et al. (2006) 

1986 
Peruvian 
Amazona 

08/05/1986a 53920a 54a LN -0.27/-0.49 -0.14/-0.34 -0.60 0.31 Warm (0.96)/ 
Cold (-0.30) 

- Composite analysis 
of SST, 850-hPa 
geopotential height 
and humidity flux 
anomalies for OND 
1985, 1992, 1998 
and 2011 

Low Espinoza et al. (2013) 
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Year and 
Location 
Affected 

Peak 
Discharge 

Timing 

Peak 
Discharge  

(m3s-1) 

Days over 
95th 

Percentile 
of Flow 

Attributed 
Flood 
Driver 

EN 3.4 0 C 
(OND/DJF) 

MEI .v2 EN 
0 C 

(OND/DJF) 

TNA 0 C 
(MAM) 

TSA 0 C 
(MAM) 

Phase of 
PDO/AMO 0 C 

Method of Analysis Strength of 
Evidence 

Author(s) 

1989 
Peruvian 
Amazona 
Eastern 

Amazonb 
 

09/05/1989a 

06/06/1989b 
48220a 

274400b 

 

3a 
96b 

 

LN -1.80/-1.69 -1.55/-1.21 -0.74 0.32 Warm (-
0.55)/ 

Cold (-0.10) 

- Comparison of 
1989, 1999 and 
2009 floods 
comparing 
atmospheric and 
SST anomalies and 
further hydrological 
analysis (e.g. mean 
and max Q/timing of 
Q) 

Medium Marengo et al. (2012) 
Satyamurty et al. 
(2013) 

1992 
South-
westf 

/f /f /f MEI EN 1.21/1.71 1.18/1.53 -0.22 -0.54 Warm (0.70)/ 
Cold (-0.23) 

- See 1956 Low Ronchail et al. (2005a) 
Bourrel et al. (2009) 

1993 
Peruvian 
Amazona 

Eastern 
Amazonb 

South-
westf 

11/05/1993a 

23/05/1993b 

/f 

51740a 

246000b 

/f 

64a 

61b 

/f 

LN 
MEI EN 

-0.28/0.09 0.75/0.83 -0.11 0.05 Warm (0.97)/ 
Cold (-0.23) 

- See 1986 
- See 1956  

Low Espinoza et al. (2013) 
Ronchail et al. (2005a) 
Bourrel et al. (2009) 

1994 
South-
westi 

/i /i /i Not defined 0.04/0.06 0.63/0.04 
 
 

-0.52 0.18 Warm (-
0.53)/ 

Cold (-0.19) 

- Hydrological and 
remote sensing 
analysis (discharge 
and flood imagery) 
No connection to 
hydroclimate drivers 
stated or analysed 

/ Bourrel et al. (2009) 

1995 
South-
westi 

/i /i /i Not defined 1.00/0.96 
 

1.10/0.70 0.12 0.65 Warm (0.32)/ 
Warm (0.12) 

- See 1994 / Bourrel et al. (2009) 

1997 
South-
westf,i 

/f 

/i 
/f 

/i 
/f 

/i 
Not defined -0.45/-0.50 -0.37/-0.61 0.28 -0.50 Warm (1.22)/ 

Warm (0.03) 
- See 1994 / Bourrel et al. (2009) 
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Year and 
Location 
Affected 

Peak 
Discharge 

Timing 

Peak 
Discharge  

(m3s-1) 

Days over 
95th 

Percentile 
of Flow 

Attributed 
Flood 
Driver 

EN 3.4 0 C 
(OND/DJF) 

MEI .v2 EN 
0 C 

(OND/DJF) 

TNA 0 C 
(MAM) 

TSA 0 C 
(MAM) 

Phase of 
PDO/AMO 0 C 

Method of Analysis Strength of 
Evidence 

Author(s) 

1998 
South-
westi 

/i /i /i Not defined 2.40/2.24 2.06/2.24 0.64 0.59 Cold (-0.45)/ 
Warm (0.36) 

- See 1994 / Bourrel et al. (2009) 

1999 
Peruvian 
Amazona 
Eastern 

Amazonb 
South-
westd,h 

 

21/05/1999a 

02/06/1999b 

20/03/1999d 

20/03/1999h 

53020a 

268200b 

22330d 

/h 

54a 

57b 

36d 

/h 

LN -1.48/-1.55 -1.24/-1.22 -0.08 0.44 Cold (-1.78)/ 
Warm (0.10) 

- See 1986 
 
- See 1989  

Medium Espinoza et al. (2013) 
Marengo et al. (2012) 
Marengo & Espinoza 
(2016) 
Gautier et al. (2006) 
Dartmouth Flood 
Observatory (2018) 
Vauchel et al. (2017) 

2001 
South-
westd,h 

13/01/2001d 

13/01/2001h 
16950d 

/h 
40d 

/h 
Warm SSA -0.75/-0.68 -0.76/-0.83 0.09 0.38 Cold (-1.13)/ 

Warm (0.10) 
- See 1978  Medium Espinoza et al. (2014) 

Gautier et al. (2006) 
Vauchel et al. (2017) 

2007 
South-
westg 

28/04/2007g 18950g 40g EN 0.90/0.71 0.73/0.53 0.31 
 
 
 
 
 
 
 
 
 
 

0.19 
 
 
 
 
 
 
 
 
 

Cold (-0.78)/ 
Warm (0.13) 

-Hydrological 
comparison of the 
2007, 2008 and 
2014 floods (e.g. 
monthly rainfall and 
discharge, flood 
timing, total flooded 
area based on 
remote sensing 
imagery 
 
No atmospheric 
analysis performed 

Low Ovando et al. (2016) 
CEPAL (2008) 
Dartmouth Flood 
Observatory (2018)  
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Year and 
Location 
Affected 

Peak 
Discharge 

Timing 

Peak 
Discharge  

(m3s-1) 

Days over 
95th 

Percentile 
of Flow 

Attributed 
Flood 
Driver 

EN 3.4 0 C 
(OND/DJF) 

MEI .v2 EN 
0 C 

(OND/DJF) 

TNA 0 C 
(MAM) 

TSA 0 C 
(MAM) 

Phase of 
PDO/AMO 0 C 

Method of Analysis Strength of 
Evidence 

Author(s) 

2008 
South-
westg 

18/04/2008g 22620g 59g LN -1.55/-1.59 -1.16/-1.19 0.21 0.69 Cold (-1.75)/ 
Warm (0.12) 

- See 2007 Low Ovando et al. (2016) 
CEPAL (2008) 
Dartmouth Flood 
Observatory (2018) 

2009 
Eastern 

Amazonb 

05/08/2009b 262400b 50b Warm TSA -0.60/-0.80 -1.06/-0.97 -0.29 0.62 Cold (-1.09)/ 
Warm (0.02) 

- See 1989  Medium Marengo et al. (2012) 
Sena et al. (2012) 
Filizola et al. (2014) 
 

2011 
South-
westd 

23/02/2011d 20250d 38d LN -1.69/-1.36 -2.03/-1.78 0.38 0.50 Cold (-1.91)/ 
Warm (0.09) 

- See 1971 Medium Espinoza et al. (2014) 
Vauchel et al. (2017) 
 

2012 
Peruvian 
Amazona 
Eastern 

Amazonb 

20/04/2012a 

18/07/2012b 
55400a 

260100b 
70a 

50b 
LN + warm 

TSA 
-1.14/-0.82 -1.26/-0.99 -0.11 -0.15 Cold (-1.66)/ 

Warm (0.20) 
- See 1986 
 
Anomalies also 
calculated solely for 
the 2012 event 

High 
 

Espinoza et al. (2013) 
Marengo & Espinoza 
(2016) 
Satyamurty et al. 
(2013) 

2014 
South-

westd,e,g 

12/02/2014d 
30/03/2014e 

05/04/2014g 

25060d 

59080e 

29090g 

53d 

111e 

85g 

Warm IP & 
SSA 

Negative 
TSA-SSA 
gradient 

-0.22/-0.37 -0.23/-0.43 -0.21 0.31 Warm (0.48)/ 
Warm (0.09) 

- See 1978  
 
Anomalies also 
calculated solely for 
the 2014 event 

High Espinoza et al. (2014) 
Espinoza et al. (2012) 
Ovando et al. (2016) 

2015 
Peruvian 
Amazona 

25/04/2015a 53880a 91a Not defined 0.59/0.60 0.25/0.2 -0.09 0.35 Warm (0.92)/ 
Warm (0.10) 

- None / SO-HYBAM (2015) 

Extended table from Marengo and Espinoza (2016). LN = La Niña; TSA = Tropical South Atlantic; IP = Indo-Pacific Ocean; and SSA = Subtropical South 

Atlantic. Peak discharge values marked with an asterisk (*) are based on those provided by Rodier & Roche (1984). 
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a Tamshiyacu, Solimões River (1986-2017)    

b Óbidos, Amazon River (1968-2018) 

c Manacapurú, Solimões river (1968-2017) 

d Rurrenbaque, Beni river (1968-2016) 

e Porto Velho, Madeira river (1968-2017) 

f Puerto Varador, Mamoré river (Data not available) 

g Guajara-Mirim, Mamoré river (1971-2014) 

h Angosto del Bala, Beni river (1968-1994) 

i Puerto Almacen, Ibaré river (Data not available) 

 

 

Figure 6. Amazon flood events from Table 2 plotted onto the time series of the sea surface 

temperature (SST) anomalies in the tropical Pacific and Atlantic oceans: (a) El Niño 3.4 region, 
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(b) Tropical South Atlantic (TSA) and (c) Tropical North Atlantic (TNA). Floods are based on the 

gauging stations that match those shown in Table 2, with colours representing the region in 

which the flood occurred. Circles are positioned during the month of occurrence (i.e. x-axis) 

with the height (i.e. y-axis) determined by the preceding October–December (March–May) 

mean SST anomaly for the El Niño 3.4 (TNA and TSA) regions. Dashed blue and red lines depict 

the threshold for the respected warm and cold phases of each index (e.g. – 0.50°C for a weak 

La Niña event and 2.0°C for a very strong El Niño, as classified for the Oceanic Niño Index (ONI).  

2.5.1 Attribution of drivers  

2.5.1.1 Lower confidence attribution case: The 1993 Peruvian Amazon event  
 

Indices of hydroclimate drivers are of interest for flood forecasters and humanitarian 

organisations alike due to the potential for their use in increasing the predictability of 

upcoming floods. However, in some cases, the links between floods and hydroclimate drivers 

are not clear. Figure 6 plots each flood event identified in Table 2 over the time series of the 

SST anomalies in the tropical Pacific and Atlantic oceans. Some floods, such as those observed 

at Tamshiyacu (a), in 1993, have previously been associated with La Niña conditions during the 

preceding austral spring and summer (Espinoza et al., 2013). Considering the region (5° N–5° S, 

120–170° W), the SST anomalies in the central Pacific in the build up to this event did not in 

fact reach the typical ONI −0.5°C threshold (weak La Niña) for any three-month period 

(preceding October–December mean = −0.28°C) (Figure 6a), with the positive SST anomalies 

observed from January 1993 onwards. Similarly, the 1986 event, also attributed to La Niña 

conditions (Espinoza et al., 2013), never broke the −0.5°C threshold during austral spring and 

summer, though the negative SST anomalies were persistent throughout the period. This 

means it is unlikely that these floods were due to La Niña conditions and that a different 

response mechanism could be responsible. 

Analysis for these events was centred around a composite of the SSTs, geopotential height and 

vertical integrated humidity flux anomalies for the four strongest flood years at Tamshiyacu 

gauging site (a) (1993, 1986, 1999 and 2012) for the preceding October–December season 

(Espinoza et al., 2013). Atmospheric anomalies were identified and found to be responsible for 

increased moisture convergence over the north-western Amazon. This analysis was performed 

for the mean of the four years, which included the stronger La Niña conditions observed in 

austral summer during 1998 and 2011, with the atmospheric response to individual events 

only mentioned for 2012. It is therefore currently unknown if the oceanic conditions in the 
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Pacific in the build up to the 1993, 1986 and 1999 floods were capable of reproducing the 

same or a similar atmospheric response that could be determined as the cause for those 

events. Further investigation of the SST anomalies and atmospheric response to each 

individual event (as performed for the 2012 flood) rather than as a composite could form a 

useful task in identifying the relationship between the magnitude and location of cooling in 

the central equatorial Pacific and the level of humidity flux convergence over the Amazon 

basin. Such an analysis could allow more confidence in the understanding of the magnitude of 

the SSTs required to favour an atmospheric response that commonly produces severe 

flooding. 

Other cases also exist, for instance, for the 1953 floods at Óbidos (b), Brazil (Table 2). Here, the 

link to climate is often not directly stated (e.g. Marengo and Espinoza, 2016) (Table 1), 

whereas in other works (Marengo et al., 2013a), it has been connected to a warmer than usual 

TSA in the absence of La Niña. Though, as shown in Table 2 and Figure 6b, the SST anomalies in 

the TSA are mostly negative throughout the entire preceding year to the event with a 

minimum temperature anomaly of −0.29 in April 1953. 

2.5.1.2 Higher confidence attribution case: The 2014 Brazilian Amazon event  
 

The 2014 extreme floods affected many locations within the southwestern Amazon, 

particularly in the Madeira basin with river discharge reaching a record breaking 58,000 m3s−1 

at Porto Velho gauging station (e) (Table 2). Espinoza et al. (2014) first identified anomalies in 

hydrological conditions, with higher than normal rainfall observed as early as September 2013, 

peaking towards the end of January 2014. Examining large-climatological features in the build 

up to the event (i.e. the wet season from December to March), a negative TSA–SSA gradient 

was attributed to the event with the exceptionally warm SSTs in the SSA present from January 

2014. 

These conditions were associated with a change in atmospheric circulation from January to 

March 2014. Positive 850 hPa geopotential height anomalies were found to produce 

anomalous anticyclonic circulation, which extended from the SSA into South America and was 

responsible for a weakening of the SACZ activity and an enhancement of the SALLJ bringing 

anomalous rainfall. Moreover, vertically integrated vapour transport anomaly fields from 

December 2013 to March 2014 showed an intense incursion from the TNA to the southern 

Amazon (Espinoza et al., 2014).  
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Further analysis involved using a composite analysis to investigate floods in the region which 

were not associated with La Niña. As in Espinoza et al. (2013), the climatological conditions 

were averaged for four flood years (1978, 1982, 2001 and 2014), producing an TSA–SSA SST 

gradient and a positive 850 hPa in the SSA region. However, humidity composites were then 

compared with those solely for the 2014 event and revealed that the incursion of the humidity 

flux from the tropical Atlantic was more intense for this specific event. 

As climatological conditions (i.e. the SST anomalies, geopotential height anomalies and 

humidity fluxes) were analysed solely for conditions witnessed in the build up to the 2014 

event (i.e. December 2013—March 2014), greater confidence can be obtained in the 

attribution of the flood compared with years in which conditions were only presented for 

averaged conditions (i.e. 1978, 1982 and 2001). This is the same case for the 2012 Peruvian 

Amazon flood (Espinoza et al., 2013), whereby a single flood year is analysed in addition to a 

composite of years. It is important to recognise that this does not imply that the other flood 

events within the composite are not associated with atmospheric circulation patterns sourced 

from a strengthened TSA–SSA gradient, but rather the specific climatological response for 

each individual event is less known. Further numerical modelling analysis investigating the 

ocean–atmosphere mechanisms behind flooding is still required. Comparisons between 

conditions of similar events may help explain differences in intensity and persistence (Espinoza 

et al., 2014), and provide useful information to provide early warnings for future floods. 

2.5.2 Classification of a flood  
 

Most of the large Amazonian rivers experience a single flood period with overbank flow in a 

“normal” year. This is why, when reviewing the literature, discrepancies appear in the 

classification of a flood event. Should a flood be classified based on a threshold of streamflow 

exceedance, the number of days above threshold, the extent of inundation, by riverbank 

exceedance or by socioeconomic impact? In the introduction to Vauchel et al. (2017), a 

discharge > 6,000 m3s−1 at Rurrenbaque gauging station (d) (Beni River) is determined as a 

flood event based on the average high flood level when evaluating floods against the ENSO 

frequency. However, this level is exceeded almost every year, making any association with the 

ENSO phases difficult. 

Another example includes the 250,000 m3s−1 discharge threshold used by some authors (e.g. 

Callède et al., 2004; Ronchail et al., 2006) at Óbidos (b). Though this value represents the 

water level at which the town begins to inundate (Callède et al., 2004), streamflow 
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observations for this station show this level is regularly exceeded, despite no significant 

impacts or reports of extreme flooding being registered every time (e.g. between May and July 

2010). Thus, thresholds used for decision-making, flood warnings and forecasting research 

could be better chosen to reflect the risk to communities in a particular reach of a river as 

opposed to a magnitude of river flow that causes a river to exceed its banks. 

2.5.3 “Normal” vs “extreme” floods 
 

It is also important to understand how a “normal” flood is distinguished from an “extreme” 

flood. A case is presented in the upper Madeira basin, where in 2007 and 2008 rainfall was 

higher than the climatological average producing flooding along the Mamoré (g) and Guaporé 

rivers (Table 2). Ovando et al. (2016) state that in terms of river discharge, the floods would be 

better classified as “above normal”, but argue they should be considered “extreme” due to 

their socioeconomic impact. The two floods combined reportedly affected > 250,000 people, 

resulting in 49 fatalities (CEPAL, 2008). 

For better classification, both flood hazard and flood risk should be considered. For instance, 

when assessing how climate variability affects flood hazard, it is important to use measures of 

flooding that are hazard related (e.g. streamflow, water level and flood extent). Whereas for 

the EWS and humanitarian protocols (e.g. FbF; Coughlan de Perez et al., 2015) it is the flood 

risk that becomes more important; thus, statistics and information including economic cost, 

the number of people exposed or implications for local populations (e.g. food provisions) are a 

more suited measure of flood severity. It is therefore necessary to recognise both, as in Langill 

and Abizaid (2019), as a flood-type analysis for a village located along the Ucayali River in Peru. 

In their analysis, the authors used a combination of hydrograph (i.e. water level, high-water 

period and onset dates) and field data (i.e. interviews with community members) to help 

distinguish what makes a “bad” or “extreme” flood. Four flood types (high, long, early and 

late) are classified, the authors concluding that while high floods are the most common, long 

and early floods occur on a similar frequency and tend to have more severe implications for 

people. 

2.5.4 Flood mechanisms during La Niña 
 

Figure 7 displays a schematic of the step-by-step processes in which the abnormal SST 

conditions can drive atmospheric behaviour and consequently cause excessive rainfall and 

flooding in the north-western Amazon. It is important to highlight that the mechanisms behind 
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flood events often differ depending on the exact location within the basin (e.g. upstream in 

the northwest versus downstream in the Brazilian Amazon; Espinoza et al., 2013). These 

processes have been determined by the occurrences of events in the build up to previous 

floods from studies in the literature: 

• During typical conditions, the equatorial trade winds blow east to west (i.e. easterly 

trade winds). Consequently, warmer surface waters in the central Pacific are pushed 

west towards Indonesia, raising the water levels in the region relative to those found 

off the coast of Peru. To compensate, deep colder waters rise off the coast of Peru (i.e. 

cold-water upwelling) in order to replace the warmer waters that have been 

transported by the surface winds. During La Niña, the easterly trade winds that carry 

large quantities of moisture are enhanced (Figure 7a) owing to decreases in pressure 

in the Indonesian continent relative to the central and eastern Pacific. 

• This results in warmer surface waters in the central Pacific being pushed further west, 

increasing the upwelling of cold water and causing cooler than usual SSTs in the 

central to eastern Pacific. The ENSO events typically reach their peak during the boreal 

winter (Emerton et al., 2017), with previous Amazon floods associated with colder 

than usual SSTs from October–December onwards (Espinoza et al., 2013). During La 

Niña, the negative SST anomalies dominate the central equatorial Pacific, usually on 

the order of −1 and −2°C during strong events. The positive SST anomalies are often 

observed over the northern and southern Pacific and Atlantic oceans (either side of 

the negative anomalies), whilst cooler than usual waters are found off the coast of 

Brazil in the Atlantic Ocean (about 20° S) (Satyamurty et al., 2013). 

• This pattern of the SSTs favours positive 850 hPa geopotential height anomalies over 

both the northern and southern Pacific and Atlantic oceans, with the stronger positive 

SSTs in the northern and southern Pacific resulting in stronger positive 850 hPa 

geopotential height anomalies (Espinoza et al., 2013) (Figure 7b). Negative 850 hPa 

anomalies are also observed between the positive anomalies (about 125° W). 

• The succession of positive and negative 850 hPa geopotential height anomalies, 

features a Rossby wave response from October to December, in which warm air is 

transported from the Equator towards the Poles in an attempt to restore the 

atmospheric energy balance. These geopotential height patterns are shown to favour 

the enhancement of moisture convergence towards the Amazon basin via two 

mechanisms (Espinoza et al., 2013): 
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1. The easterly humidity flux is intensified over the North Atlantic and is directed towards 

the Caribbean Sea by the positive geopotential height anomaly situated in the North 

Atlantic before moving southwards towards the north-western Amazon (Figure 7b). 

2. The southward positive geopotential height anomaly in the Atlantic is responsible for 

generating humidity fluxes that progress northwards near the Andes, reducing the 

monsoon flux towards the La Plata basin and the strength of the SLLJ which is 

responsible for transporting large amounts of moisture from the Amazon basin to the 

subtropics (Montini et al., 2019), and thus helping to maintain higher levels of 

humidity over the Amazon basin. 

Figure 7. Step-by-step climatic features associated with floods attributed to La Niña: (a) 

enhanced trade winds, cold water upwelling and sea surface temperature (SST) anomalies; and 

(b) 850 hPa geopotential height anomalies and humidity transport fluxes. Red (blue) colours 

represent positive (negative) anomalies of the SST and 850 hPa geopotential height; circles 

represent geopotential heights anomalies; squares/rectangles denote SST anomalies; and 

numbers refer to the specific processes explained in Section 2.5.4.  



 

49 
 

• In addition to these two humidity fluxes, the SST pattern associated with La Niña 

results in the Walker Circulation shifting farther west, whereby the ascending limbs of 

moist air are situated over both the maritime continent and South America resulting in 

positive rainfall anomalies (Yeh et al., 2018) 

Owing to the mechanisms described by Espinoza et al. (2013) for moisture convergence, it 

seems the intensity and locations of the 850 hPa geopotential height anomalies are pivotal to 

create the required atmospheric circulation for maintaining the convergence of humidity 

fluxes over the Amazon basin. As mentioned, these geopotential height anomalies are 

positioned where warmer than usual SSTs are situated in the northern and southern Pacific 

and Atlantic oceans and are stronger as the SSTs increase. Therefore, though the typical ENSO 

3.4 region in the central Pacific is often used as the index to predict flooding through its role in 

shifting the Walker Circulation, these other zones of the SST variability could be influential in 

the prediction of upcoming events and deserve further investigation. 

2.6 Conclusions  
 

This review discusses out what is currently known about how climate variability influences 

rainfall, river discharge and flooding in the Amazon basin. This information is a key component 

in aiding flood prediction, providing potential sources of predictability at interannual to 

decadal timescales to enable the possible implementation of early warning systems (EWS). 

Based on evidence from studies in the published literature, it is clear that dry spells in the 

Amazon are driven by the warm phase of the El Niño Southern Oscillation (ENSO) and warmer 

than usual sea surface temperatures (SSTs) in the Tropical North Atlantic (TNA), particularly 

affecting the southern Amazon. While wetter conditions and flooding are often associated 

with the cold phase of the ENSO and to a combination of warm (cold) SST anomalies in the 

Tropical South Atlantic (TSA) (TNA). However, the meteorological and hydrological response in 

association with climate patterns such as La Niña are still not fully understood, and evidence 

for their usefulness for flood forecasting remains weak. Though there is a clear link between 

hydrometeorological variables and certain phases of climate, more research is required in 

calculating the probabilities of flood risk during certain climate patterns, particularly for years 

in which multiple climate variations feature simultaneously (e.g. a warm TSA and La Niña), and 

then communicating this information in an informative way to aid decision-making. Here, we 

identify five areas in which to focus research efforts to better understand how climate 

variability impacts flood risk in the Amazon basin. 
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2.6.1 Uncertainties and lack of evidence  
 

The relationship between climate indices and hydrometeorological variables (i.e. rainfall and 

river discharge) can be highly uncertain owing to a range of factors. First, though strong 

correlations do exist between the ENSO and hydrometeorological variables, no two ENSO 

events are exactly alike (e.g. different temporal evolutions, spatial and magnitude differences 

of the SST anomalies), with asymmetrical differences found between the cold and warm 

phases (Cai et al., 2020). This is highlighted by several authors (Hill et al., 2009, 2011; 

Rodrigues and McPhaden, 2014) who have identified different or even opposing rainfall 

anomalies in different regions of the world depending on whether the centre of cooling or 

warming in the equatorial Pacific Ocean was central or eastern specific. Such differences are 

associated with the location of the SST anomalies modifying the Walker Circulation and, 

hence, upward convection and rainfall locations (Hill et al., 2009). Further evidence is required 

to understand the hydrological response in basins to the diversity of possible climatic events. 

The back-water effect (Meade et al., 1991) and autocorrelation could also have an impact on 

correlations between climate phases and river flow as some commonly used statistical tests 

(e.g. Mann–Kendall and linear regression) may not be suitable for certain regions and rivers 

that have a large-basin memory (Marengo et al., 1998). Where autocorrelation exists, 

correlations may be overestimated and identify significant relationships where they do not 

exist, consequently leading to misleading significance. It is therefore an important reminder to 

consider running suitability checks on data before any climate analysis is undertaken. Such 

checks include plotting river flow using a correlogram (i.e. correlation of series data with 

itself), running a Durbin–Watson test and checking for trends and correlations for both rainfall 

and river discharge where possible owing to autocorrelation issues being less likely in rainfall 

data (Marengo et al., 1998). 

The robustness in changes to hydrological variables are also debatable due to the 

observational records in both hydroclimatic drivers (e.g. the ENSO) and individual hydrological 

time series being limited in time (Wittenberg, 2009; Marengo and Espinoza, 2016; Marengo et 

al., 2018; Yeh et al., 2018). For instance, in the southern Amazon, the effect of the anomalous 

SSTs in the Atlantic Ocean on river discharge is dependent on the time period investigated, 

with an opposing response to the SST anomalies identified in neighbouring basins (Ronchail et 

al., 2005b). In this and similar works, the period of investigation is often limited to between 10 

and 20 years, where few climate events (e.g. El Niño) feature, preventing strong conclusions to 

be made. This is particularly problematic when considering the relationship for lower 
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frequency climatic drivers (e.g. the PDO and AMO) that operate on decadal to multi-decadal 

timescales, as many station time series may only exist during one particular phase. Newly 

developed climate reanalysis and hydrological models can produce data sets that can extend 

the analysis back to 1950 (e.g. ERA-5; Zsoter et al., 2019), though the accuracy of simulated 

streamflow data requires robust evaluation. A model run incorporating ERA-5 as the 

meteorological input into a hydrological model was found to improve the ability to simulate 

annual peak river flows in the Amazon basin, particularly at stations situated within the 

Peruvian Amazon (Towner et al., 2019). The ERA-5 is now fully accessible back to 1950, and 

with the release of ERA-5 land, which incorporates the evolution of land surface variables (e.g. 

soil temperature) over several decades at an enhanced resolution compared with ERA-5 

(ECMWF, 2020), and thus further investigation is required. 

2.6.2 Understanding flood mechanisms 
 

To enhance the predictability of flooding in the Amazon basin, more focus is needed to 

understand the mechanisms behind individual events and their potential to provide 

predictability. Two of the most extreme flood events (2012 in Iquitos and 2014 in the Madeira 

basin) were assessed individually (Espinoza et al., 2013, 2014), highlighting the mechanisms 

and atmospheric response associated behind each flood event in response to climate 

anomalies present in the atmosphere and surrounding oceans. However, other devastating, 

but less extreme, floods such as those observed in 1989, 1993 and 1999 are currently 

restricted to composite analysis in which the climatic conditions are smoothed across multiple 

events. Although the average conditions have been shown to produce atmospheric conditions 

responsible for flooding (e.g. Espinoza et al., 2013), it is unknown if the climate anomalies, 

which are weaker for certain events, would result in the same atmospheric response. 

Numerical analysis and modelling of the ocean–atmospheric response to each event 

individually could allow further evidence to be obtained in understanding the characteristics of 

the SST anomalies required to produce flooding across the basin (e.g. the spatial distribution 

and magnitude of the SSTs). Although complicated by the non-linearity in the response to 

climate phases such as the ENSO (Frauen et al., 2014) and by the limited number of observed 

events, such an analysis could provide useful information to flood forecasters and decision-

makers within humanitarian sectors. 
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2.6.3 Flood timing and additional indices  
 

In March 2018, the Red Cross led an inter-agency assessment mission to assess how 

communities in the Peruvian Amazon were affected during particularly strong flood events, 

such as those observed in 2012 and 2015 to aid decision-making. Problems associated with the 

duration of the wet season rather than solely the magnitude of extreme flooding was 

highlighted by residents living within the floodplain (Bazo, 2018). Several authors (Ronchail et 

al., 2006; Tomasella et al., 2011; Marengo et al., 2012; Espinoza et al., 2013; Langill and 

Abizaid, 2019) highlight the importance of flood timing in major Amazonian tributaries in the 

dampening or superposition of the travelling Amazon flood wave along the main stem. 

Therefore, we encourage more authors to consider both flood timing and duration in addition 

to flood magnitude when investigating the influence of different phases of large-scale climate 

variability. In addition, many studies focus on the conventional SST and sea-surface pressure 

definitions of the ENSO events, disregarding atmospheric variables such as outgoing long wave 

radiation (OLR) and zonal wind speeds, which have been proven to show to improved 

predictability in certain regions of the world (Chiodi and Harrison, 2013, 2015; Barichivich et 

al., 2018). Future analysis would be useful in understanding the response of 

hydrometeorological parameters to the different ENSO types in the Amazon basin through an 

intercomparison analysis. Ideally this would incorporate both spatially defined (e.g. East Pacific 

and central Pacific El Niños) and variable specific indices such as the OLR defined events. Such 

work has already begun for extreme precipitation events in South America (Tedeschi et al., 

2016), summer rainfall over Peru (Sulca et al., 2018) and recent droughts in the Amazon basin 

(Jimenez et al., 2019). 

2.6.4 Impact of indices on forecast skill  
 

Understanding how different modes of climate variability affect rainfall and river discharge in 

the Amazon basin could indicate that a realistic representation of these modes is an important 

component for a climate model that aims to simulate flooding in the Amazon. Hence, it is 

important to know how well models can capture particular climate features, in addition to 

knowing by how much does the inclusion of capturing climate features (e.g. phases of MJO) in 

the initial conditions of forecasts improve performance. Previous research at the European 

Centre for Medium-Range Weather Forecasts (ECMWF) has focused on how the incorporation 

of observations during active phases of the Madden–Julian Oscillation (MJO) in the initial 

conditions of forecasts influences the ability to predict meteorological variables in the 
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Northern Hemisphere (Vitart and Molteni, 2016). A similar analysis would be useful for the 

Amazon to explore whether or not hydrological forecasts of river flow have increased skill 

during particular phases of the ENSO, the tropical Atlantic or the MJO. If model performance 

were found to increase for particular climate conditions, humanitarian managers using 

information from climate models could have more confidence in the forecasts when using 

such information for decision-making. Moreover, knowing how different models capture large-

scale climate features and if, or not, they increase forecast performance can provide a useful 

input when trying to eliminate unrealistic models and focus on more realistic models for 

certain variables. 

2.6.5 Calculating flood probabilities  
 

The ultimate question, particularly with regards to decision-making, would be how much 

higher are the chances of flooding if a climate mode is in a particular phase. For example, by 

how much does the likelihood of flooding increase in the Amazon during the cold phase of the 

ENSO? Similar to the global scale analysis performed by Emerton et al. (2017) for the ENSO, it 

would be a worthwhile task to undertake a similar analysis specifically for the Amazon Basin 

and to extend it to include a range of indices such as the TNA, TSA and MJO. Within such a 

study, it would be worth considering the probabilities of both single and combined phases of 

different indices (e.g. just La Niña and warm TSA and La Niña combined), in addition to 

calculating the probabilities for different types of the ENSO events (e.g. east Pacific versus 

central Pacific). Doing so could provide added predictability over the use of a single index as a 

predictor (Emerton et al., 2019), and would provide a more complete picture of a range of 

different climate scenarios. Finally, the analysis could be further broken down to consider the 

probabilities of exceeding a particular percentile or threshold of river flows for different 

intensities of climate phases (e.g. for weak, medium or strong La Niña events). Again, although 

complicated by the limited number of events, this analysis could help one to understand some 

of the uncertainties surrounding the impacts of climate indices. For instance, Nobre et al. 

(2019) provide the example of several countries taking preparedness measures during the 

strong 2015–2016 El Niño event for expected flooding associated with the elevated probability 

of flooding during the warm phase of the ENSO. In this instance, Peru (northern regions 

outside of the Amazon) experienced severe floods, while no flooding occurred in Japan, 

despite the elevated probability during this particular ENSO phase. Extending the analysis to 

consider the intensity, spatial complexities and combinations of various climate indices could 

allow further insights into the uncertainties surrounding the influence of climate phases on the 
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likelihood of floods in certain locations. This work would ideally be supplemented to consider 

the socioeconomic impacts to different phases of climate (Di Baldassarre et al., 2015), as the 

recording of floods also depends on a region's ability to mitigate, cope, and recover. 
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2.7 Supplementary material  
 

Supplementary tables associated with Figures 2 to 5 can be found below.  
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Table S1. Details of results (e.g. analysis type, location, period) from previous studies exploring 

the relationship between rainfall and the warm phase of ENSO, on an annual timescale.   

 

Fig/ 
Driver 

Annual/
season 

Author Location Analysis/strength of 
signal  

Period Wet/
dry 

Colour 
on 
map 

Fig. 2a 
– El 
Niño  

Annual 
(Aug-
Jul) 

Ronchail 
and 
Gallaire 
(2006) 

Trinidad 
station 
(Bolivian 
lowlands) 

Correlation and 
composite analysis 
between annual rainfall 
and DJF ENSO indices -  
El Niño/dry signal  

1971-
2001 

Wet Blue 

Fig. 2a 
– El 
Niño 

Annual 
(Sep-
Aug) 

Ronchail 
et al. 
(2002) 

NEA 
stations (~ 
north of 70 
S; east of 
600 W) 
 

Composite analysis of 
annual rainfall anomalies 
during El Niño years 
 
Mean annual rainfall 
anomaly = -1.1 S.D 
(mostly significant; 72% 
in NEA region) 

1977-
1999 

Dry Red 
 

Fig. 2a 
– El 
Niño 

Annual 
(Sep-
Aug) 

Ronchail 
et al. 
(2002) 

Branco 
basin 
stations 
(far north) 

Composite analysis of 
annual rainfall anomalies 
during El Niño years 
 
Mean annual rainfall 
anomaly = -0.5 to -1.1 
S.D (mostly insignificant) 

1977-
1999 

Dry Red 

Fig. 2a 
– El 
Niño 

Annual 
(Sep-
Aug) 

Ronchail 
et al. 
(2002) 
Tobar & 
Wyseur
e (2018) 

Ecuadorian 
Amazon 
stations 

Composite analysis of 
annual rainfall anomalies 
during El Niño years 
 
Mean annual rainfall 
anomaly = ~0.5 S.D (all  
insignificant 

1977-
1999 

Wet/ 
No 
differ
ence 

Black 

Fig. 2a 
– El 
Niño 

Annual 
(Sep-
Aug) 

Ronchail 
et al. 
(2002) 
 
 

Peruvian 
Amazon – 
Tamshiyacu 
station 

Composite analysis of 
rainfall anomalies during 
El Niño years 
 
Rainfall anomaly = ~0.3 
S.D (insignificant) 
 
 
 

1977-
1999 
 
 

Wet 
 

Blue 

Fig. 2a 
– El 
Niño 

Annual 
(Jan-
Dec) 

Yoon 
and 
Zeng 
(2010) 

Throughout 
the basin  

Correlation analysis -  
strong and widespread, 
with highest correlations 
towards the mouth of 
the Amazon River (-0.2 
to -0.9)  

1979-
2006 

Dry Red 
hatchi
ng and 
dark 
red 
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Table S2. Details of results (e.g. analysis type, location, period) from previous studies exploring 

the relationship between rainfall and the warm phase of ENSO, for the Amazon wet season. 

 

 

 

 

Fig/ 
Driver 

Annual/
season 

Author Location Analysis/strength of 
signal  

Period Wet/
dry 

Colour 
on 
map 

Fig. 2b 
– El 
Niño 

Wet 
(DJF) 

Ronchail 
et al. 
(2002) 

NEA 
stations 
(north of 70 
S; east of 
600 W) 
 

Composite analysis of DJF 
rainfall anomalies during 
El Niño years 
 
Mean annual rainfall 
anomaly = -0.7 (mostly 
significant) 

1977-
1999 

Dry Red 

Fig. 2b 
– El 
Niño 

Wet 
(DJF) 

Ronchail 
et al. 
(2002) 

Branco 
basin 
stations – 
far north 

Composite analysis of DJF 
rainfall anomalies during 
El Niño years 
 
Mean annual rainfall 
anomaly = -0.5 to -0.8 S.D 
(mostly significant) 

1977-
1999 

Dry Red 

Fig. 2b 
– El 
Niño 

Wet 
(MAM) 

Ronchail 
et al. 
(2002) 

Ecuadorian 
Amazon 
stations 

Composite analysis of DJF 
rainfall anomalies during 
El Niño years 
 
Mean annual rainfall 
anomaly = 0.5 to 1 S.D 
(many stations are 
deemed significant) 

1977-
1999 

Wet  Blue 

Fig. 2b 
– El 
Niño 

Wet 
(DJF) 

Liebman
n and 
Mareng
o (2001) 

Eastern 
equatorial 
Amazon 
(East of 600 

W to 500 W 
and south 
of the 
equator to 
50 S) 

Correlation analysis 
between area averaged 
station  DJF rainfall and 3-
monthly DJF Niño 3.4 SSTs 
 
Large negative correlation 
up to -0.9  

1976-
1997 

Dry Dark 
red 
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Table S3. Details of results (e.g. analysis type, location, period) from previous studies exploring 

the relationship between rainfall and the warm phase of ENSO, for the Amazon dry season.  

 

 

 

 

 

Fig. 2b 
– El 
Niño 

Wet 
(DJF) 

Liebman
n and 
Mareng
o (2001) 

North-
north-
western 
Amazon 
(west of 600 
W to 
around 650 
W and 
centered 
north of the 
equator 
(Branco) 

Correlation analysis 
between area averaged 
station DJF rainfall and 3-
monthly DJF Niño 3.4 SSTs 
 
Large negative correlation 
up to -0.7 

1976-
1997 

Dry Red 

Fig. 2b 
– El 
Niño 

Annual 
(Dec-
Apr) 

Yoon 
and 
Zeng 
(2010) 

Throughout 
the basin  

Correlation analysis -  
strong and widespread, 
with highest correlations 
towards the mouth of the 
Amazon River (-0.2 to -0.9)  

1979-
2006 

Dry Red 
hatchi
ng and 
dark 
red 

Fig. 2b 
– El 
Niño 

Wet 
(Oct-
Mar) 

Lagos et 
al. 
(2008) 

Peruvian 
Amazon – 
Tamshiyacu 
station 

Correlation coefficient 
(Lagos et al., 2008) varies 
between -0.29 and 0.29 
when comparing monthly 
rainfall  
 

1950-
2002 

Wet 
and 
dry  

Black 

Fig/ 
Driver 

Annual/
season 

Author Location Analysis/strength of 
signal  

Period Wet/
dry 

Colour 
on 
map 

Fig. 2c 
– El 
Niño 

Dry 
(Jun-
Oct) 

Yoon 
and 
Zeng 
(2010) 

Towards 
the north 
and east of 
the basin 
(~east of 
650 W and 
north of 
~50 S) 

Correlation analysis -  
Correlation limited to far 
north and east of the 
basin (-0.2 to -0.8)  

1979-
2006 

Dry Red  
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Table S4. Details of results (e.g. analysis type, location, period) from previous studies exploring 

the relationship between rainfall and the cold phase of ENSO, on an annual timescale. 

Fig/ 
Driver 

Annual/
season 

Author Location Analysis/strength of 
signal  

Period Wet/
dry 

Colour 
on 
map 

Fig. 2d 
– La 
Niña 

Annual 
(Aug-Jul) 

Ronchail 
and 
Gallaire 
(2006) 

Trinidad 
station 
(Bolivian 
lowlands) 

Correlation and composite 
analysis between annual 
rainfall and DJF ENSO 
indices -  
La Niña/dry signal (r = 
0.51 for Niño 3.4 region) 

1971-
2001 

Dry 
  

Red  

Fig. 2d 
– La 
Niña 

Annual 
(Sep-
Aug) 

Ronchail 
et al. 
(2002) 

North 
eastern 
Amazon 
stations (~ 
north of 70 
S; east of 
600 W) 

Composite analysis of 
annual rainfall anomalies 
during La Niña years  
 
Mean annual rainfall 
anomaly = 1 S.D (mostly 
significant) 

1977-
1999 

Wet Blue 

Fig. 2d 
– La 
Niña 

Annual 
(Sep-
Aug) 

Ronchail 
et al. 
(2002) 

Branco 
basin 
stations – 
far north 

Composite analysis of 
annual rainfall anomalies 
during La Niña years 
 
Mean annual rainfall 
anomaly = 1 S.D (mostly 
significant) 

1977-
1999 

Wet Blue 

Fig. 2d 
– La 
Niña 

Annual 
(Sep-
Aug) 

Ronchail 
et al. 
(2002) 

Peruvian 
Amazon – 
Tamshiyacu 
station 
(Iquitos) 

Composite analysis of 
annual rainfall anomalies 
during La Niña years 
 
Rainfall anomaly = ~-0.3 
S.D (insignificant) 

1977-
1999 

Dry Red 

Fig. 2d 
– La 
Niña 

Annual 
(Jan-
Dec) 

Yoon 
and 
Zeng 
(2010) 

Throughout 
the basin  

Correlation analysis -  
strong and widespread, 
with highest correlations 
towards the mouth of the 
Amazon River (-0.2 to -
0.9)  

1979-
2006 

Wet Blue 
hatchi
ng and 
dark 
blue 

Fig. 2d 
– La 
Niña 

Annual  Poveda 
and 
Mesa, 
1993; 
Espinoza 
et al., 
2009b) 

Colombian 
Amazon 

Correlation analysis – 
weak correlation 

NA Wet Light 
blue 
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Table S5. Details of results (e.g. analysis type, location, period) from previous studies exploring 

the relationship between rainfall and the cold phase of ENSO, for the Amazon wet season.  

Fig/ 
Driver 

Annual/
season 

Author Location Analysis/strength of 
signal  

Period Wet/
dry 

Colour 
on 
map 

Fig. 2e 
– La 
Niña 

Wet 
(Feb) 

Ronchail 
and 
Gallaire 
(2006) 

Trinidad 
station 
(Bolivian 
lowlands) 

Correlation and 
composite analysis 
between DJF rainfall and 
monthly ENSO anomalies 
-  
La Niña/dry signal 
identified 

1971-
2001 

Dry Red 

Fig. 2e 
– La 
Niña 

Wet 
(DJF) 

Ronchail 
et al. 
(2002) 

NEA 
stations 
(north of 70 
S up to the 
equator; 
east of 600 
W) 

Composite analysis of 
MAM rainfall anomalies 
during La Niña years 
 
Mean annual rainfall 
anomaly = ~0.8 S.D 
(mostly significant) 

1977-
1999 

Wet Blue 

Fig. 2e 
– La 
Niña 

Wet 
(DJF) 

Ronchail 
et al. 
(2002) 

Branco 
basin 
stations – 
far north 

Composite analysis of 
MAM rainfall anomalies 
during La Niña years 
 
Mean annual rainfall 
anomaly = ~0.8 S.D 
(mostly significant) 

1977-
1999 

Wet Blue 

Fig. 2e 
– La 
Niña 

Wet Poveda 
and 
Mesa, 
1993; 
Espinoz
a et al., 
2009b) 

Colombian 
Amazon 

Correlation analysis – 
weak correlation 

NA Wet Light 
blue 

Fig. 2e 
– La 
Niña 

Wet 
(Dec-
Apr) 

Yoon 
and 
Zeng 
(2010) 

Throughout 
the basin  

Correlation analysis -  
strong and widespread, 
with highest correlations 
towards the mouth of the 
Amazon River (-0.2 to -
0.9)  

1979-
2006 

Wet Blue 
hatchi
ng and 
dark 
blue 

Fig. 2e 
– La 
Niña 

Wet 
(DJF) 

Liebman
n and 
Mareng
o (2001) 

Eastern 
equatorial 
Amazon 
(East of 600 

W to 500 W 
and south 
of the 
equator to 
50 S) 

Correlation analysis 
between area averaged 
station  DJF rainfall and 3-
monthly DJF Niño 3.4 SSTs 
 
Large negative correlation 
up to -0.9  

1976-
1997 

Wet Dark 
blue 
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Fig. 2e 
– La 
Niña 

Amazon 
wet 
(DJF) 

Liebman
n and 
Mareng
o (2001) 

North-
north-
western 
Amazon 
(west of 
600 W to 
around 650 
W and 
centered 
north of 
the equator 
(Branco) 

Correlation analysis 
between area averaged 
station DJF rainfall and 3-
monthly DJF Niño 3.4 SSTs 
 
Large negative correlation 
up to -0.7 

1976-
1997 

Wet Blue 

 

Table S6. Details of results (e.g. analysis type, location, period) from previous studies exploring 

the relationship between rainfall and the cold phase of ENSO, for the Amazon dry season.  

Fig/ 
Driver 

Annual/
season 

Author Location Analysis/strength of 
signal  

Period Wet/
dry 

Colour 
on 
map 

Fig. 2f 
– La 
Niña 

Amazon 
dry 
(May 
and 
Septem
ber) 

Ronchail 
and 
Gallaire 
(2006) 

Trinidad 
station 
(Bolivian 
lowlands) 

Correlation analysis -  
La Niña/dry signal 
 

1971-
2001 

Dry Red 

Fig. 2f 
– La 
Niña 

Amazon 
dry (JJA) 

Ronchail 
et al. 
(2002) 

NEA 
stations (~ 
north of 70 
S; east of 
600 W) 

Composite analysis of JJA 
rainfall anomalies during 
La Niña years 
 
Mean annual rainfall 
anomaly = ~0.1 to 1 S.D 
(mostly insignificant) 

1977-
1999 

Wet Light 
blue 

Fig. 2f 
– La 
Niña 

Amazon 
dry (JJA) 

Ronchail 
et al. 
(2002) 

Branco 
basin 
stations – 
far north 

Composite analysis of JJA 
rainfall anomalies during 
La Niña years 
 
Mean annual rainfall 
anomaly =~1 S.D (mostly 
significant) 

1977-
1999 

Wet Blue 

Fig. 2f 
– La 
Niña 

Amazon 
dry (JJA) 

Ronchail 
et al. 
(2002) 

Stations in 
the 
southern 
Amazon, 
particularly 
in the 
Bolivian 
Amazon 
(East of 
~700 W and 
below -100 
S)  

Composite analysis of JJA 
rainfall anomalies during 
La Niña years 
 
Mean annual rainfall 
anomaly = -0.5 to -0.75 
S.D (mostly significant but 
stations are widespread) 

1977-
1999 

Dry Red 
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Fig. 2f 
– La 
Niña 

Amazon 
dry (JJA) 

Ronchail 
et al. 
(2002) 

Peruvian 
Amazon – 
Tamshiyacu 
station 
(Iquitos) 

Composite analysis of JJA 
rainfall anomalies during 
La Niña years 
 
Rainfall anomaly = ~-0.7 
S.D (significant) 

1977-
1999 

Dry Red 

 

Table S7. Details of results (e.g. analysis type, location, period) from previous studies exploring 

the relationship between rainfall and warm SSTs in the TNA, on an annual timescale. 

 

 

 

 

 

 

 

 

 

Fig/ 
Driver 

Annual/
season 

Author Location Analysis/strength of 
signal  

Period Wet
/dry 

Colour 
on 
map 

Fig. 3a 
Warm 
TNA 

Annual 
(Jan-
Dec) 

Yoon and 
Zeng 
(2010) 

Whole 
basin 

Correlation analysis -  
strong and 
widespread, with 
highest correlations 
towards the southern 
Amazon (-0.2 to -0.7) 

1979-
2006 

Dry  Red 
hatchi
ng 
(dark 
red for 
southe
rn 
Amazo
n) 

Fig. 3a 
Warm 
TNA 

Annual 
(Jan-
Dec) 

Zeng 
(2008) 

Whole 
basin 

Correlation analysis 
between SST in the 
TNA and averaged 
outgoing longwave 
radiation precipitation 
index (OPI) satellite 
rainfall – strong and 
widespread with 
highest correlations 
towards the southern 
Amazon (-0.4 to -0.8) 

1979-
2006 

Dry Red 
hatchi
ng 
(dark 
red for 
southe
rn 
Amazo
n) 
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Table S8. Details of results (e.g. analysis type, location, period) from previous studies exploring 

the relationship between rainfall and warm SSTs in the TNA, for the Amazon wet season.  

Fig/ 
Driver 

Annual
/seaso
n 

Author Locatio
n 

Analysis/strength of 
signal  

Period Wet
/dry 

Colou
r on 
map 

Fig. 3b 
Warm 
TNA 

Wet 
(Dec-
Apr) 

Yoon and 
Zeng 
(2010) 

Predom
inately 
souther
n 
Amazon 

Correlation analysis -  
strong and 
widespread, with 
highest correlations 
towards the 
southern Amazon (-
0.2 to -0.7) 

1979-
2006 

Dry  Red 

Fig. 3b 
Warm 
TNA 

Wet 
(MAM) 

Ronchail 
et al. 
(2002) 

NEA 
stations 
(~ north 
of 70 S; 
east of 
600 W) 
 

Composite analysis 
of MAM rainfall 
anomalies during 
phases of warm TNA 
SST anomalies 
 
MAM rainfall 
anomalies = ~-0.5 to 
-0.8 S.D (mostly 
significant) 

1977-
1999 

Dry Red 

Fig. 3b 
Warm 
TNA 

Wet 
(MAM) 

Ronchail 
et al. 
(2002) 

Iquitos 
station, 
Peruvia
n 
Amazon 

Composite analysis 
of annual rainfall 
anomalies during 
cold TSA years 
(excludes years with 
ENSO) 
 
Annual rainfall 
anomaly = ~0.8 S.D  

1977-
1999 

Wet Blue 
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Table S9. Details of results (e.g. analysis type, location, period) from previous studies exploring 

the relationship between rainfall and warm SSTs in the TNA, for the Amazon dry season.  

Fig/ 
Driver 

Annual/
season 

Author Location Analysis/strength of 
signal  

Period Wet
/dry 

Colour 
on 
map 

Fig. 3c 
Warm 
TNA 

Dry 
(June-
October
) 

Yoon and 
Zeng 
(2010) 

Majority 
of the 
eastern 
basin  

Correlation analysis -  
strong and 
widespread, with 
highest correlations 
towards the south-
eastern Amazon (-0.2 
to -0.8)  

1979-
2006 

Dry  Red 

Fig. 3c 
Warm 
TNA 

Dry (JJA) Ronchail et 
al. (2002) 

Ecuadori
an 
Amazon 

Composite analysis of 
JJA rainfall anomalies 
during phases of warm 
TNA SST anomalies 
 
JJA rainfall anomalies 
= 0.5 to 1 S.D (mostly 
significant) 

1977-
1999 

Dry Red 

Fig. 3c 
Warm 
TNA 

Dry 
(May-
Sep) 

Yoon 
(2016) 

Souther
n 
Amazon 
Basin 
(650 W 
to 500 W 
and -200 
S to -50 
S) 

Idealised experiments 
using 5 atmospheric 
global climate models 
(AGCMs) to test the 
response of rainfall to 
warm/cold TNA SST 
compared to neutral 
conditions 
 
Daily rainfall 
anomalies ranged 
between -0.1 and -
0.35 mm/day 
depending on the 
model 

 Dry Red 
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Table S10. Details of results (e.g. analysis type, location, period) from previous studies 

exploring the relationship between rainfall and cold SSTs in the TNA, on an annual timescale. 

Fig/ 
Driver 

Annual/
season 

Author Location Analysis/strength of 
signal  

Period Wet
/dry 

Colour 
on 
map 

Fig. 3d 
Cold 
TNA 

Annual 
(Jan-
Dec) 

Yoon and 
Zeng 
(2010) 

Whole 
basin 

Correlation analysis -  
strong and 
widespread, with 
highest correlations 
towards the southern 
Amazon (-0.2 to -0.7) 

1979-
2006 

Wet  Blue 

Fig. 3d 
Cold 
TNA 

Annual 
(Jan-
Dec) 

Zeng 
(2008) 

Whole 
basin 

Correlation analysis – 
strong and 
widespread with 
highest correlations 
towards the southern 
Amazon (-0.4 to -0.8) 

1979-
2006 

Wet Blue 

 

Table S11. Details of results (e.g. analysis type, location, period) from previous studies 

exploring the relationship between rainfall and cold SSTs in the TNA, for the Amazon wet 

season.  

Fig/ 
Driver 

Annual/
season 

Author Location Analysis/strength of 
signal  

Period Wet
/dry 

Colour 
on 
map 

Fig. 3e 
Cold 
TNA 

Wet 
(MAM) 

Ronchail et 
al. (2002) 

NEA 
stations 
(~ north 
of 70 S; 
east of 
600 W) 
 

Composite analysis of 
MAM rainfall 
anomalies during 
phases of cold TNA 
SST anomalies 
 
Mean MAM rainfall 
anomaly = 0.5 S.D 
(mostly significant) 

1977-
1999 

Wet Blue 

Fig. 3e 
Cold 
TNA 

Wet 
(Dec-
Apr) 

Yoon and 
Zeng 
(2010) 

Predomi
nately 
souther
n 
Amazon 

Correlation analysis -  
strong and 
widespread, with 
highest correlations 
towards the southern 
Amazon (-0.2 to -0.7) 

1979-
2006 

Wet  Blue 
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Fig. 3e 
Cold 
TNA 

Wet 
(MAM) 

Ronchail 
et al. 
(2002) 

Iquitos 
station, 
Peruvia
n 
Amazon 

Composite analysis of 
annual rainfall 
anomalies during cold 
TSA years (excludes 
years with ENSO) 
 
annual rainfall 
anomaly = ~-0.7 S.D  

1977-
1999 

Red Dry 

 

Table S12. Details of results (e.g. analysis type, location, period) from previous studies 

exploring the relationship between rainfall and cold SSTs in the TNA, for the Amazon dry 

season.  

Fig/ 
Driver 

Annual
/season 

Author Locatio
n 

Analysis/strength of 
signal  

Period Wet
/dry 

Colou
r on 
map 

Fig. 3f 
Cold 
TNA 

Dry 
(Jun-
Oct) 

Yoon and 
Zeng 
(2010) 

Majority 
of the 
eastern 
basin 

Correlation analysis -  
strong and 
widespread, with 
highest correlations 
towards the south-
eastern Amazon (-0.2 
to -0.8)  

1979-
2006 

Wet  Blue 

Fig. 3f 
Cold 
TNA 

Dry 
(May-
Sep) 

Yoon 
(2016) 

Souther
n 
Amazon 
Basin 
(650 W 
to 500 
W and -
200 S to 
-50 S) 

Idealised experiments 
using 5 atmospheric 
global climate models 
(AGCMs) to test the 
response of rainfall to 
warm/cold TNA SST 
compared to neutral 
conditions 
 
Daily rainfall 
anomalies ranged 
between -0.1 and 0.4 
mm/day depending 
on the model 

 Wet Blue 
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Table S13. Details of results (e.g. analysis type, location, period) from previous studies 

exploring the relationship between rainfall and warm SSTs in the TSA, on an annual timescale. 

Fig/ 
Driver 

Annual/
season 

Author Location Analysis/strength of 
signal  

Period Wet
/dry 

Colour 
on 
map 

Fig. 3g 
Warm 
TSA 

Annual 
(Sep-
Aug) 

Ronchail et 
al. (2002) 

Stations 
situated 
near to 
the 
mouth 
of the 
Amazon 
River  

Composite analysis of 
MAM rainfall 
anomalies during 
phases of cold TSA SST 
anomalies 
Rainfall anomalies 
deemed positively 
significant  

1977-
1999 

Wet Blue 

 

Table S14. Details of results (e.g. analysis type, location, period) from previous studies 

exploring the relationship between rainfall and warm SSTs in the TSA, for the Amazon wet 

season.  

Fig/ 
Driver 

Annual/
season 

Author Location Analysis/strength of 
signal  

Period Wet
/dry 

Colour 
on 
map 

Fig. 3h 
Warm 
TSA 

Wet 
(Dec-
Apr) 

Yoon and 
Zeng 
(2010) 

Branco 
catchme
nt 

Correlation analysis –
correlations between 
TSA and wet season 
rainfall constricted to 
far north (r = ~-0.2 to -
0.6) 

1979-
2006 

Wet Blue 

Fig. 3h 
Warm 
TSA 

Wet 
(MAM) 

Ronchail et 
al. (2002) 

NEA 
stations 
(~ north 
of 70 S; 
east of 
600 W) 
 

Composite analysis of 
MAM rainfall 
anomalies during 
phases of cold TSA SST 
anomalies 
 
MAM rainfall 
anomalies = 0.5 to 0.1 
S.D (mostly significant) 

1977-
1999 

Wet Blue 
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Table S15. Details of results (e.g. analysis type, location, period) from previous studies 

exploring the relationship between rainfall and warm SSTs in the TSA, for the Amazon dry 

season.  

Fig/ 
Driver 

Annual
/seaso
n 

Author Locatio
n 

Analysis/strength of 
signal  

Period Wet
/dry 

Colou
r on 
map 

Fig. 3i 
Warm 
TSA 

Dry 
(June-
Oct) 

Yoon and 
Zeng 
(2010) 

Souther
n 
Amazon 
(below 
120 S 
and 
east of 
650 W) 

Correlation analysis – 
significant 
correlation between 
TSA and wet season 
rainfall constricted to 
southern Amazon (r = 
~-0.3 to -0.5) 

1979-
2006 

Wet Blue 

 

Table S16. Details of results (e.g. analysis type, location, period) from previous studies 

exploring the relationship between rainfall and cold SSTs in the TSA, on an annual timescale. 

Fig/ 
Driver 

Annual/
season 

Author Location Analysis/strength of 
signal  

Period Wet/
dry 

Colour 
on 
map 

Fig. 3j 
Cold 
TSA 

Annual 
(Sep-
Aug)  

Ronchail et 
al. (2002) 

NEA 
stations 
(~ north 
of 70 S; 
east of 
600 W) 
 

Composite analysis of 
annual rainfall 
anomalies during cold 
TSA years (includes 
years with ENSO) 
 
Annual rainfall 
anomalies = mostly -
0.9 S.D (mostly 
significant) 

1977-
1999 

Dry Red 

Fig. 3j 
Cold 
TSA 

Annual 
(Sep-
Aug)  

Ronchail et 
al. (2002) 

Branco 
catchme
nt 
stations 
– far 
north 

Composite analysis of 
annual rainfall 
anomalies during cold 
TSA years (includes 
years with ENSO) 
 
annual rainfall 
anomalies = ~0.8 S.D 
(mostly significant) 

1977-
1999 

Dry Red 

Fig. 3j 
Cold 
TSA 

Annual 
(Sep-
Aug)  

Ronchail et 
al. (2002) 

Ecuadori
an 
Amazon 

Composite analysis of 
annual rainfall 
anomalies during cold 
TSA years (excludes 
years with ENSO) 
 
annual rainfall 
anomalies = ~-0.5 to -1 
S.D (mostly significant) 

1977-
1999 

Dry Red 
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Fig. 3j 
Cold 
TSA 

Annual 
(Sep-
Aug) 

Ronchail 
et al. 
(2002) 

Selectio
n of 
stations 
in the 
Bolivian 
Amazon 

Composite analysis of 
annual rainfall 
anomalies during cold 
TSA years (excludes 
years with ENSO) 
 
annual rainfall 
anomalies = ~0.5 to 
0.75 S.D  

1977-
1999 

Wet Blue 

Fig. 3j 
Cold 
TSA 

Annual 
(Sep-
Aug) 

Ronchail 
et al. 
(2002) 

Iquitos 
station, 
Peruvia
n 
Amazon 

Composite analysis of 
annual rainfall 
anomalies during cold 
TSA years (includes 
years with ENSO) 
Annual rainfall 
anomaly = ~0.4 S.D  

1977-
1999 

Wet Blue 

 

Table S17. Details of results (e.g. analysis type, location, period) from previous studies 

exploring the relationship between rainfall and cold SSTs in the TSA, for the Amazon wet 

season.  

Fig/ 
Driver 

Annual
/season 

Author Locatio
n 

Analysis/strength of 
signal  

Period Wet
/dry 

Colou
r on 
map 

Fig. 3k 
Cold 
TSA 

Wet 
(Dec-
Apr) 

Yoon and 
Zeng 
(2010) 

Branco 
catchme
nt 

Correlation analysis – 
significant correlation 
between TSA and wet 
season rainfall 
constricted to far 
north (r = ~-0.2 to -
0.6) 

1979-
2006 

Dry Red 

 

Table S18. Details of results (e.g. analysis type, location, period) from previous studies 

exploring the relationship between rainfall and cold SSTs in the TSA, for the Amazon dry 

season.  

Fig/ 
Driver 

Annual
/season 

Author Locatio
n 

Analysis/strength of 
signal  

Period Wet
/dry 

Colou
r on 
map 

Fig. 3l 
Cold 
TSA 

Dry 
(June-
Oct) 

Yoon and 
Zeng 
(2010) 

Souther
n 
Amazon 
(below 
120 S 
and east 
of 650 
W) 

Correlation analysis – 
significant correlation 
between TSA and wet 
season rainfall 
constricted to 
southern Amazon (r = 
~-0.3 to -0.5) 

1979-
2006 

Dry Red 
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Table S19. Details of results (e.g. analysis type, location, period) from previous studies 

exploring the relationship between river discharge and the warm phase of ENSO, on an annual 

timescale. 

Fig/ 
Driver 

Annual/
season 

Author Location Analysis/strength 
of signal  

Period Wet/
dry 

Colour on 
map 

Fig. 4a 
El 
Niño 

Annual  Espinoza 
et al. 
(2009a) 

Most of the 
Amazon 
with the 
exception 
of the 
Madeira 
basin 

Principal 
Components 
Analysis (PCA).  
Bravais–Pearson 
correlation 
between the PC1-
Qmean time 
series and SOI 
 
r = 0.52  

1974-
2004 

Dry Red 
hatched 
markings 

Fig. 4a 
El 
Niño 

Annual Ronchail 
et al. 
(2005b) 

Majority of 
the basin, 
particularly 
NEA rivers 
and 
downstrea
m in the 
Xingu river 
(Altamira 
station) 

Composites and 
correlation 
analysis between 
observed 
discharge (annual 
mean, max and 
min) and SSTs 
 
Major negative 
discharge 
anomalies. Up to 
50% reduction in 
river flow 

1981-
2002 

Dry Red 

Fig. 4a 
El 
Niño 

Annual Ronchail 
et al. 
(2005b) 

Along the 
Purus River 
and some 
right-hand 
tributaries 
of the 
Madeira 
River (Ji-
Parana, 
Aripuana, 
and 
Sucunduri) 

Composites and 
correlation 
analysis between 
observed 
discharge (annual 
mean, max and 
min) and SSTs 
 
Significant 
negative 
discharge 
anomalies. 
Discharge 
reduced by 25% 

1981-
2002 

Dry Red 

Fig. 4a 
El 
Niño 

Annual Ronchail 
et al. 
(2005b) 

In the 
upper 
Negro River 
(Tiquie, 
Uaupes) 
and in the 
Japura 
River, in 
the north-
western 
most 
regions 

Composites and 
correlation 
analysis between 
observed 
discharge (annual 
mean, max and 
min) and SSTs 
 
Tendency for 
higher flows, 
though 
insignificant 

1981-
2002 

Wet Light blue 
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Fig. 4a 
El 
Niño 

Annual Ward et 
al. (2010) 

Stations 
located in 
tropical 
regions 
(23.4°N 
and 23.4°S) 

Correlation 
between river 
discharge and the 
atmospheric SOI 
index  
 

1921-
1950 
and 
1951-
1980 

Dry Red 
hatched 
markings 

Fig. 4a 
El 
Niño 

Annual Foley et 
al. (2002) 

Óbidos 
gauging 
station 

Comparison of 
average annual 
river discharge 
for composites of 
El Niño and La 
Niña years 
 
Changes in 
discharge for El 
Niño years are 
close to zero 

1970-
1995 

No 
chan
ge 

Black 

Fig. 4a 
El 
Niño 

Annual Richey et 
al. (1989) 

Manacapur
ú gauging 
station 

Cross spectrum 
analysis of flow 
anomalies with 
ENSO indicators  
 
Low levels of 
discharge are 
strongly 
correlated to 
warm events  

1903-
1985 

Dry Red 

 

Table S20. Details of results (e.g. analysis type, location, period) from previous studies 

exploring the relationship between river discharge and the warm phase of ENSO, for the 

Amazon wet season.  

Fig/ 
Driver 

Annual/
season 

Author Location Analysis/strength 
of signal  

Period Wet/
dry 

Colour on 
map 

Fig. 4b 
El 
Niño 

Wet 
(Apr-
Jun) 

Emerton 
et al. 
(2017) 

Much of 
the 
Brazilian 
Amazon, 
south of 
the 
Amazon 
River, 
particularly 
towards 
eastern 
catchments  

Estimates of 
historical 
probabilities of 
river flows during 
El Niño and La 
Niña years  
 
Probability of 40-
60%, during the 
decaying phase  

1901-
2010 

Dry Red 
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Fig. 4b  
El 
Niño 

Wet 
(Feb-
Jun) 

Emerton 
et al. 
(2017) 

North of 
the Amazon 
River 
towards the 
north-
eastern 
Amazon 

Estimates of 
historical 
probabilities of 
river flows during 
El Niño and La 
Niña years 
 
Probability of 40-
80%, during the 
decaying phase 

1901-
2010 

Dry Red 

Fig. 4b  
El 
Niño 

Wet 
(Feb-
Apr) 

Emerton 
et al. 
(2017) 

Edge of the 
Peruvian 
Amazon, 
around the 
Ucayali 
catchment 
and 
Bolivian 
Amazon 

Estimates of 
historical 
probabilities of 
river flows during 
El Niño and La 
Niña years 
 
Probability of 40-
60%, during the 
decaying phase 

1901-
2010 

Dry Red 

Fig. 4b  
El 
Niño 

Wet 
(Feb) 

Schöngart 
and Junk, 
2007 

Negro River Correlations 
between 
maximum water 
levels and SOI and 
Niño 3.4 SST 
anomalies  
T value = -3.97, p 
< 0.001 
r = -0.49  (Niño 3.4 
SST) 
During El Niño 
events water 
levels are 
significantly lower 

1950-
2000 

Dry Red 

Fig. 4b  
El 
Niño 

Wet 
(Apr-
Jun) 

Foley et 
al. (2002)  

Whole 
basin – 
majority of 
rivers 

Analysis of land 
surface model 
coupled with a 
hydrological 
routing algorithm 
(HYDRA) to 
examine how 
phases of ENSO 
affect land surface 
parameters 
including 
discharge  
 
A decrease in river 
discharge in found 
in many rivers 
which leads to a 
decrease in 
flooded area 
along the main-
stem 

1950-
1995 

Dry Red 



 

72 
 

Table S21. Details of results (e.g. analysis type, location, period) from previous studies 

exploring the relationship between river discharge and the warm phase of ENSO, for the 

Amazon dry season.  

 

 

 

 

 

 

 

 

 

Fig/ 
Driver 

Annual/
season 

Author Location Analysis/strength 
of signal  

Period Wet/
dry 

Colour on 
map 

Fig. 4c  
El 
Niño 

Dry (Jul-
Sep) 

Emerton 
et al. 
(2017) 

South of 
the 
Amazon 
River 
towards 
the west of 
the basin 

Estimates of 
historical 
probabilities of 
river flows during 
El Niño and La 
Niña years 
 
Probability of 40-
60%, during the 
evolution phase 

1901-
2010 

Wet Blue 

Fig. 4c  
El 
Niño 

Dry 
(Aug-
Dec) 

Emerton 
et al. 
(2017) 

North of 
the 
Amazon 
River 
towards 
the north-
eastern 
Amazon 

Estimates of 
historical 
probabilities of 
river flows during 
El Niño and La 
Niña years 
 
Probability of 40-
70%, during the 
evolution phase 

1901-
2010 

Dry Red 

Fig. 4c  
El 
Niño 

Dry 
(Dec) 

Emerton 
et al. 
(2017) 

Brazilian 
Amazon, 
south of 
the 
Amazon 
River 
towards 
the east 

Estimates of 
historical 
probabilities of 
river flows during 
El Niño and La 
Niña years 
 
Probability of 40-
50%, during the 
evolution phase 

1901-
2010 

Dry Red 
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Table S22. Details of results (e.g. analysis type, location, period) from previous studies 

exploring the relationship between river discharge and the cold phase of ENSO, on an annual 

timescale. 

 

 

Fig/ 
Driver 

Annual/
season 

Author Location Analysis/strength 
of signal  

Period Wet/
dry 

Colour on 
map 

Fig. 4d  
La 
Niña 

Annual  Espinoza 
et al. 
(2009a) 

Most of the 
Amazon 
with the 
exception 
of the 
Madeira 
basin 

Principal 
Components 
Analysis (PCA).  
Bravais–Pearson 
correlation 
between the PC1-
Qmean time 
series and SOI 
 
r = 0.52 

1974-
2004 

Wet Blue 
hatched 
markings 

Fig. 4d  
La 
Niña 

Annual Ronchail 
et al. 
(2005b) 

Mainly 
observed in 
the north-
eastern 
rivers and 
along the 
Branco 
River 

Composites and 
correlation 
analysis between 
observed 
discharge (annual 
mean, max and 
min) and SSTs 
 
La Niña high 
discharge signal. 
No specific values 
given.  

1981-
2002 

Wet Blue 

Fig. 4d  
La 
Niña 

Annual Ronchail 
et al. 
(2005b) 

In the 
majority of 
the 
southern 
Amazon 
Basins and 
especially 
along the 
Mamoré 
and 
Madeira 
rivers 

Composites and 
correlation 
analysis between 
observed 
discharge (annual 
mean, max and 
min) and SSTs 
 
Inverse signal 
with low 
discharge during 
La Niña 

1981-
2002 

Dry Red 

Fig. 4d  
La 
Niña 

Annual Foley et 
al. (2002) 

Óbidos 
gauging 
station 

Comparison of 
average annual 
river discharge for 
composites of El 
Niño and La Niña 
years 
 
Average increase 
of 7% in discharge 
during La Niña 
events  

1970-
1995 

Wet Blue 
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Table S23. Details of results (e.g. analysis type, location, period) from previous studies 

exploring the relationship between river discharge and the cold phase of ENSO, for the Amazon 

wet season.  

Fig/ 
Driver 

Annual/
season 

Author Location Analysis/strength 
of signal  

Period Wet/
dry 

Colour on 
map 

Fig. 4e  
La 
Niña 

Wet 
(Feb-
Apr) 

Emerton 
et al. 
(2017) 

North of the 
Amazon 
River 
towards the 
north-
eastern 
Amazon 

Estimates of 
historical 
probabilities of 
river flows during 
El Niño and La 
Niña years 
 
Probabilities of 
40-70%, during 
the decaying 
phase 

1901-
2010 

Wet Blue 

Fig. 4e  
La 
Niña 

Wet 
(Feb) 

Schönga
rt and 
Junk, 
2007 

Negro River Correlations 
between 
maximum water 
levels and SOI and 
Niño 3.4 SST 
anomalies  
 
T value = 3.02 p < 
0.01 
r = -0.49 (Niño 3.4 
SST) 

1950-
2000 

Wet Blue 

Fig. 4e  
La 
Niña 

Wet 
(Apr-
Jun) 

Foley et 
al. 
(2002)  

Whole basin 
– majority of 
rivers 

Analysis of land 
surface model 
coupled with a 
hydrological 
routing algorithm 
(HYDRA) to 
examine how 
phases of ENSO 
affect land 
surface 
parameters 
including 
discharge  
 
An increase in 
river discharge in 
found in many 
rivers (mainly 
from northern 
and western 
tributaries which 
leads to an 
increase in 
flooded area 
along the main-
stem 

1950-
1995 

Wet Blue 
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Table S24. Details of results (e.g. analysis type, location, period) from previous studies 

exploring the relationship between river discharge and the cold phase of ENSO, for the Amazon 

dry season.  

 

 

 

 

 

 

 

 

Fig/ 
Driver 

Annual/
season 

Author Location Analysis/strength 
of signal  

Period Wet/
dry 

Colour on 
map 

Fig. 4f  
La 
Niña 

Dry (Sep 
& Dec) 

Emerto
n et al. 
(2017) 

Towards the 
north-
western 
Amazon 
around the 
confluence 
of the 
Amazon 
River 

Estimates of 
historical 
probabilities of 
river flows during 
El Niño and La 
Niña years 
 
Probabilities of 
40-60%, during 
the evolution 
phase 

1901-
2010 

Dry Red 

Fig. 4f  
La 
Niña 

Dry 
(Aug-
Dec) 

Emerto
n et al. 
(2017) 

North of the 
Amazon 
River 
towards the 
north-
eastern 
Amazon 

Estimates of 
historical 
probabilities of 
river flows during 
El Niño and La 
Niña years 
 
Probabilities of 
40-70%,  during 
the evolution 
phase 

1901-
2010 

Wet Blue 

Fig. 4f  
La 
Niña 

Dry 
(Dec) 

Emerto
n et al. 
(2017) 

Edge of the 
southern 
Amazon  

Estimates of 
historical 
probabilities of 
river flows during 
El Niño and La 
Niña years 
 
Probabilities of 
40-50%, during 
the evolution 
phase 

1901-
2010 

Wet Light blue 
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Table S25. Details of results (e.g. analysis type, location, period) from previous studies 

exploring the relationship between river discharge and warm SSTs in the TNA, on an annual 

timescale. 

 

 

 

 

 

 

 

 

 

 

Fig/ 
Driver 

Annual/
season 

Author Location Analysis/strength 
of signal  

Period Wet
/dry 

Colour on 
map 

Fig. 5a 
Warm 
TNA 

Annual Espinoza 
et al. 
(2009a) 

Whole 
basin 
except the 
Madeira 
and Branco 
Rivers 

Principal 
Components 
Analysis (PCA).  
Bravais–Pearson 
correlation 
between the PC1-
Q mean time 
series and TNA 
SSTs 
 
r = -0.63 
 
Q max is also 
lower when the 
TNA is warm 

1974-
2004 

Dry Red 
hatched 
markings 

Fig. 5a 
Warm 
TNA 

Annual Ronchail 
et al. 
(2005a) 

Large 
portion of 
the 
Amazon 
Basin from 
the 
Amazon 
River to 100 
S 

Composites and 
correlation 
analysis between 
observed 
discharge (annual 
min and mean) 
and SSTs 
 
Warm events are 
characterised by 
weaker than 
usual discharges 
 

1981-
2002 

Dry Red 
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Table S26. Details of results (e.g. analysis type, location, period) from previous studies 

exploring the relationship between river discharge and cold SSTs in the TNA, on an annual 

timescale. 

Fig/ 
Driver 

Annual/
season 

Author Location Analysis/strength 
of signal  

Period Wet/
dry 

Colour on 
map 

Fig. 5b 
Cold 
TNA 

Annual  Espinoza 
et al. 
(2009a) 

Whole 
basin 
except the 
Madeira 
and Branco 
Rivers 

Principal 
Components 
Analysis (PCA).  
Bravais–Pearson 
correlation 
between Q max 
time series and 
TNA SSTs 
 
r = 0.52 
 
Higher Q max 
associated with 
colder SSTs in the 
TNA 

1974-
2004 

Wet Blue 
hatched 
markings 

Fig. 5b 
Cold 
TNA 

Annual Ronchail 
et al. 
(2005a) 

Large 
portion of 
the 
Amazon 
Basin from 
the 
Amazon 
River to 100 
S 

Composites and 
correlation 
analysis between 
observed 
discharge (annual 
min and mean) 
and SSTs 
 
Low flow 
discharge 
increases by 20-
40% during cold 
events. Higher 
than normal 
mean flows also 
noted 

1981-
2002 

Wet Blue 

Fig. 5b 
Cold 
TNA 

Annual Ronchail 
et al. 
(2005a) 

Branco 
River 

Composites and 
correlation 
analysis between 
observed 
discharge (annual 
min and mean) 
and SSTs 
 
Inverse 
relationship (i.e. 
decrease in low 
and mean flows) 
identified in the 
Branco River 

1981-
2002 

Dry Red 

 



 

78 
 

Fig. 5b 
Cold 
TNA 

Wet 
(Mar-
Apr) 

Marengo 
et al. 
(1992) 

Negro 
River 

Correlation maps 
between SSTs in 
the Atlantic 
Ocean and water 
levels along the 
Negro River 
 
High water levels 
associated with 
anonymously 
cold TNA 
conditions in 
contrast to 
relatively warm 
TSA SSTs 

1951-
1983 

Wet Blue 

 

Table S27. Details of results (e.g. analysis type, location, period) from previous studies 

exploring the relationship between river discharge and warm SSTs in the TSA, on an annual 

timescale. 
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TSA SSTs 

1951-
1983 

Wet Blue 
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Chapter 3 

Assessing the performance of global hydrological models 
for capturing peak river flows in the Amazon Basin  

 

In Chapter 2, one of the main conclusions raised issues in the data length and completeness of 

daily records at many gauging stations within the Amazon Basin, therefore limiting the 

strength of any results. One way around this is to use climate reanalysis data (i.e. a 

combination of observations and model predictions to construct climate variables in the past), 

produced from large-scale hydrometeorological models (i.e. an integrated meteorological 

model that is used as input into a hydrological and routing model) which can now extend 

analysis back to 1950 with a complete record. However, first, such datasets must be 

thoroughly examined against observed data to assess their suitability for further research, 

particularly at their ability to capture high-water periods. This analysis provides the 

steppingstone in which to choose the appropriate datasets for analyses linking flooding in the 

Amazon to large-scale climate variability.   

This paper has been published as a research article in the journal of Hydrology and Earth 

System Sciences (HESS), with the following reference: 

Towner, J., Cloke, H. L., Zsoter, E., Flamig, Z., Hoch, J. M., Bazo, J., Coughlan de Perez, E., and 

Stephens, E. M.: Assessing the performance of global hydrological models for capturing peak 

river flows in the Amazon Basin, Hydrol. Earth Syst. Sci., 23, 3057-3080, 

https://doi.org/10.5194/hess-23-3057-2019,  2019.  

© Author(s) 2019. This work is distributed under the Creative Commons Attribution 4.0 

License. This is an open access article under the terms of the Creative Commons Attribution 

License, which permits use, distribution, and reproduction in any medium, provided that the 

original work is properly cited. 
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important advice. All authors were involved in discussions throughout the development and 

commented on the paper. Overall, 90% of the research and 85% of the writing was conducted 

by J.T. 

Abstract. Extreme flooding impacts millions of people that live within the Amazon floodplain. 

Global hydrological models (GHMs) are frequently used to assess and inform the management 

of flood risk, but knowledge on the skill of available models is required to inform their use and 

development. This paper presents an intercomparison of eight different GHMs freely available 

from collaborators of the Global Flood Partnership (GFP) for simulating floods in the Amazon 

Basin. To gain insight into the strengths and shortcomings of each model, we assess their 

ability to reproduce daily and annual peak river flows against gauged observations at 75 

hydrological stations over a 19-year period (1997–2015). As well as highlighting regional 

variability in the accuracy of simulated streamflow, these results indicate that (a) the 

meteorological input is the dominant control on the accuracy of both daily and annual 

maximum river flows, and (b) groundwater and routing calibration of Lisflood based on daily 

river flows has no impact on the ability to simulate flood peaks for the chosen river basin. 

These findings have important relevance for applications of large-scale hydrological models, 

including analysis of the impact of climate variability, assessment of the influence of long-term 

changes such as land-use and anthropogenic climate change, the assessment of flood 

likelihood, and for flood forecasting systems. 

3.1 Introduction  
 

Flooding is notably the most common and damaging natural hazard affecting millions of 

people worldwide every year, producing economic losses exceeding billions of dollars 

(Hirabayashi et al., 2013). Flood risk associated with a particular location can be highly variable 

depending on levels of exposure, resilience, and preparedness (Alfieri et al., 2018), in addition 

to the increased uncertainty surrounding trends of hydrological extremes in a warming climate 

(Arnell and Gosling, 2016). For the Amazon Basin, flood risk is considered to have increased, 

with a greater frequency of extreme flood events (e.g. in 2009, 2012, and 2014; Marengo and 

Espinoza, 2016) coinciding with a hypothesized intensification of the hydrological cycle since 

the 1980s (Gloor et al., 2013). Floods in Amazonian communities are known to have large 

socioeconomic consequences impacting ecosystems, health, and transport links, and are 

particularly damaging to agricultural and fishery practices (Schöngart and Junk, 2007; Marengo 

et al., 2012, 2013; Correa et al., 2017). Single flood events (e.g. 2012 in the Amazonian city of 
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Iquitos, Peru) have impacted the lives of over 73 000 people (IFRC, 2013), with average annual 

damages estimated at USD 1.4 billion over a 4-year period (2008–2011) in the Brazilian Rio 

Branco basin alone (Mundial Grupo Banco, 2014). 

3.1.1 Global hydrological models and applications  
 

In its simplest form, a hydrological model can be considered a representation of a real-world 

hydrological system used to better understand various water and environmental processes, 

predict system behaviour, and provide consistent impact assessment (Devia et al., 2015). They 

work by simulating the hydrological response to meteorological variations incorporating run-

off generation and river routing processes (Sutanudjaja et al., 2018). As such, global 

hydrological models (GHMs) have been used in a wide range of applications, including short- 

to extended-range flood forecasting (Alfieri et al., 2013; Emerton et al., 2018), climate 

assessment (Hattermann et al., 2017), hazard and risk-mapping (Ward et al., 2015), drought 

prediction (van Huijevoort et al., 2014), and water resource assessment (e.g. water availability 

models; Meigh et al., 1999; Sood and Smakhtin, 2015). Depending on the application and the 

needs of decision makers, different properties of the hydrograph simulated by hydrological 

models are important. For example, an accurate representation of peak river flows and their 

likelihood is key for decision-makers who wish to understand the area at risk of flooding. In 

contrast, estimates of daily streamflow may be more beneficial for the assessment of water 

resources such as irrigation requirements. 

3.1.2 GHM development  
 

The availability of GHMs has grown in recent years thanks to increased efforts in addressing 

water-related issues in developing countries (De Groeve et al., 2015; Ward et al., 2015; Trigg 

et al., 2016), the development of flood forecasting systems (Aliferi et al., 2013; Werner et al., 

2013; Emerton et al., 2018), improvements within precipitation datasets (Mittermaier et al., 

2013; Novak et al., 2014; Forbes et al., 2015), the emergence of new global satellite and 

remote sensing datasets, and advancements in numerical modelling techniques (Yamazaki et 

al., 2014a; Sampson et al., 2015; Andreadis et al., 2017; Balsamo et al., 2018). For an overview 

of available GHMs, see Bierkens et al. (2015), who have provided the details of 22 large-scale 

hydrological models, with those used for operational flood forecasting being summarized in 

Emerton et al. (2016). 
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3.1.3 Land surface vs. hydrological models  
 

GHMs have differing spatial and temporal resolutions, parameter estimation approaches, 

number of parameters, calibration methods, input–output variables, and overall structures 

(Sood and Smakhtin, 2015). Their set-ups can generally be divided into two categories: land 

surface models (LSMs) and hydrological models (Gudmundsson et al., 2012). The majority of 

LSMs and hydrological models share the same conceptualization of the water balance 

(Haddeland et al., 2011) but differ in their objective. LSMs evolve from coupled land–

atmosphere models with the purpose of solving the surface energy balance equations to 

provide the necessary lower boundary conditions to the atmosphere (Wood et al., 2011). In 

contrast, hydrological models tend to focus less on the partitioning of radiation and more on 

hydrological resources and understanding the lateral movement and transport of water along 

the land surface. 

In terms of differences in model performance, the Gudmundsson et al. (2012) intercomparison 

study of six LSMs and five GHMs (i.e. hydrological models) concluded that the main differences 

were due to the snow scheme implemented with snow water equivalent values and mean 

runoff fractions lower in LSMs. No significant differences between LSMs and hydrological 

models were found for runoff and evapotranspiration globally, but rather the differences 

between the models themselves created large sources of uncertainty, highlighting the 

importance of analysing a range of different GHMs rather than a group consisting of a specific 

model type. For the purposes of this study, we categorize both LSM and hydrological models 

as GHMs. 

3.1.4 Motivation  
 

For GHMs to be considered effective, end users need to know their accuracy and reliability 

(Ward et al., 2015). Thus, the evaluation of these models against observed data is an 

important procedure in efforts to reduce flood risk. Currently, no intercomparison analysis of 

GHMs has been conducted specifically for the Amazon Basin, with previous studies focusing 

solely on the performance of individual models for the Amazon (e.g. Yamazaki et al., 2012; 

Paiva et al., 2013; Hoch et al., 2017a, b) or as part of a global study (e.g. Gudmundsson et al., 

2012; Alfieri et al., 2013; Hirpa et al., 2018), which lack an in-depth focus on skill within the 

Amazon Basin.  
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Finally, many of the GHMs (or their components) analysed in this study are used for specific 

applications, for instance, in water resources management (PCRaster Global Water Balance; 

PCR-GLOBWB), flash flood forecasting (Ensemble Framework for Flash Flood Forecasting; EF5), 

and extended-range flood forecasting (Global Flood Awareness System; GloFAS). Investigating 

the performance of hydrological simulations therefore can provide valuable information to 

researchers and model developers with which to better understand some of the strengths and 

weaknesses which exist within the model set-ups and help to distinguish how different parts 

of the hydrological chain can cause particularly “good” or “bad” model performance, thus 

having implications for their different applications. 

3.1.5 Objectives  
 

In this study, the main objective is to assess the ability of different GHMs freely available from 

collaborators within the Global Flood Partnership (GFP), identifying which approaches are 

most suitable in different areas of the Amazon Basin for simulating flood peaks. To pursue this 

objective, the analysis is designed to answer the following research questions. 

1. How well do GHMs represent the annual hydrological regime in terms of the 

Kling–Gupta efficiency (KGE) and its individual components?  

2. Which model set-up best represents annual maximum river flows?  

3. Which hydrological routing model allows the best representation of daily and 

peak river flows?  

4. Which precipitation dataset allows the best representation of daily and peak 

river flows?  

5. How do results differ when using a LSM as opposed to a hydrological model?  

6. By how much does calibration of groundwater and routing model parameters 

improve performance? 

3.2 Data and methodology  
 

The experimental design involves comparing the output of daily and annual maximum 

discharge estimates produced by different GHMs forced using atmospheric reanalysis or 

satellite precipitation datasets against observations of streamflow. The common validation 

period is 1997–2015, with results also analysed for the shorter period of 2004–2015 to 

account for the shorter record length of one simulation. 
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3.2.1 Observations  
 

Observed daily discharge data are used to evaluate each of the model runs. The network of 

hydrometric gauges is controlled and maintained by the national institutions responsible for 

hydrological monitoring in countries situated within the Amazon Basin. These include the 

Agência Nacional de Águas (Water National Office – ANA, Brazil), Servicio Nacional de 

Meteorología e Hidrología (National Meteorology and Hydrology Service – SENAMHI, Peru and 

Bolivia), Instituto Nacional Meteorologia e Hidrologia (Institute to Meteorology and Hydrology, 

INAMHI, Ecuador), and the Instituto de Hidrología, Meteorología y Estudios Ambientales 

(Institute of Hydrology, Meteorology and Environmental Studies – IDEAM, Colombia).  

Daily water level values are collected by the respective institutions and are sourced through 

the ORE-HYBAM observational service (http://www.ore-hybam.org/, last access: 1 December 

2018), in collaboration with the Institute of Research for Development (IRD) or directly from 

the national services. A time series of daily river flow for each station is obtained using stage 

and rating curve measurements which were determined using an acoustic Doppler current 

profiler (ADCP) conducted by the ORE-HYBAM observatory and SENAMHI (Espinoza et al., 

2014). In total 75 hydrological stations throughout the Amazon Basin are selected, with an 

average record length of 17 years within the main validation period (1997–2015). The 

locations of stations and their characteristics are displayed in Fig. 1a and Table S1 in the 

Supplement respectively. Stations selected have a minimum of 5 consecutive years’ worth of 

data during the main validation period. The threshold was set to 5 to prevent the elimination 

of stations in data-scarce areas such as Peru, Bolivia, and Colombia. 

3.2.2 Routing models and meteorological datasets  
 

Eight GHMs composed of different meteorological datasets, hydrological models/LSMs, and 

river routing models are used to each simulate river discharge across the Amazon Basin. Four 

meteorological products (ERA-Interim Land reanalysis, ERA-5 reanalysis, European Centre for 

Medium-range Weather Forecasts (ECMWF) 20-year control reforecasts (hereafter defined as 

reforecasts), and the real-time TRMM TMPA 3B42 v.7), three hydrological models/LSMs (PCR-

GLOBWB, the Hydrology-Tiled ECMWF Scheme for Surface Exchanges over Land; H-TESSEL, 

EF5), and three river routing models (Catchment-based Macro-scale Floodplain model, CaMa-

Flood; Lisflood; and the Coupled Routing and Excess Storage, CREST) are employed. While the 

focus of this study is on GHMs made available by the GFP community, other models are 

available within the Amazon Basin. Some examples include MGB-IPH (Paiva et al., 2013), 
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LPJmL (Lund–Potsdam–Jena managed Land; Bondeau et al., 2007), WaterGAP (water – global 

analysis and prognosis; Döll et al., 2003), and MAC-PDM.09 (the Macro-scaleProbability-

Distributed Moisture model.09; Gosling and Arnell, 2011). 

As a result of using freely available datasets from collaborators within the GFP, simulations are 

composed of a combination of routing models and meteorological datasets and do not all use 

the same precipitation input or hydrological set-up. However, the available combinations 

allow enough insight into the model components to draw conclusions for the objectives 

stated. For example, to analyse the performance of precipitation inputs, ERA-Interim Land, 

ERA-5, and the reforecasts are forced through the calibrated version of Lisflood, whereby the 

routing and LSM remain consistent. To evaluate the differences between using the Lisflood 

and CaMa-Flood routing models, two simulations which use ERA-Interim Land precipitation 

and the H-TESSEL LSM are compared. To identify the differences between employing a 

hydrological model (PCR-GLOBWB) or LSM (HTESSEL), two set-ups which use the ERA-Interim 

Land precipitation reanalysis and the CaMa-Flood river routing model are directly compared. 

Finally, to see how much benefit model calibration within Lisflood provides, ERA-Interim Land 

and ERA-5 are forced through the calibrated and uncalibrated Lisflood model versions. The 

CREST EF5 run is the sole simulation to have a unique hydrological model and meteorological 

input, and although it is more challenging to analyse the performance of specific components 

of the model set-up against other simulations, it was included in the analysis for 

completeness.  

An alternative approach would be to implement a full intercomparison experiment and run a 

new set of simulations which included all combinations of precipitation input, GHM, and 

routing scheme. However, this is a very large undertaking, and the time and computational 

expense to achieve this are prohibitive. Instead, by using freely available datasets with 

different hydrological set-ups, our method allows a first analysis providing enough evidence of 

dataset reliability and accuracy in order to determine the utility of the differing approaches for 

climate studies and to forecast applications. Moreover, by using iterative runs of similar model 

set-ups (i.e. changing a specific part of the hydrological model chain), it allows us to make 

conclusive statements regarding the differences in skill. Finally, short descriptions of each 

model and atmospheric product are outlined below, with a summary of each simulation 

provided in Table 1. 
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Table 1. Characteristics of the eight GHMs used to produce estimates of daily river discharge.  
 

Model Run Meteorological 
forcing1 

GHM2 GHM 
Spatial  

Resolution 

Routing 
Model3 

Routing 
Spatial 

Resolution 

Temporal 
Resolution 

Start End Calibration Authors 

ERA-I Land H-
TESSEL Lisflood_uc 

ERA-I Land H-TESSEL ~0.750 (~80 
km) 

Lisflood 0.100 (~10 
km) 

Daily 01 Jan 
1997 

31 Dec 
2015 

None Balsamo et al. (2015)1 

Balsamo et al. (2009)2 

van der Knijff et al. (2010)3 

ERA-I Land H-
TESSEL Lisflood_c  

ERA-I Land H-TESSEL ~0.750 (~80 
km) 

Lisflood 0.100 (~10 
km) 

Daily 01 Jan 
1997 

31 Dec 
2015 

See Hirpa et 
al. (2018) 

Balsamo et al. (2015)1 

Balsamo et al. (2009)2 

van der Knijff et al. (2010)3 

 

ERA-5 H-TESSEL 
Lisflood_uc  

ERA-5 H-TESSEL ~0.280 (~31 
km) 

Lisflood 0.100 (~10 
km) 

Daily 01 Jan 
1997 

31 Dec 
2015 

None See ECMWF (2018)1 

Balsamo et al. (2009)2 

van der Knijff et al. (2010)3 

 
ERA-5 Lisflood H-

TESSEL_c 
 

ERA-5 H-TESSEL ~0.280 (~31 
km) 

Lisflood 0.100 (~10 
km) 

Daily 01 Jan 
1997 

31 Dec 
2015 

See Hirpa et 
al. (2018) 

See ECMWF (2018)1 

Balsamo et al. (2009)2 

van der Knijff et al. (2010)3 

 
Reforecasts H-

TESSEL Lisflood_c 
 

ECMWF 20-year 
control 

Reforecasts 

H-TESSEL ~0.280 (~31 
km) 

Lisflood 0.100 (~10 
km) 

Daily 01 Jan 
1997 

31 Dec 
2015 

See Hirpa et 
al. (2018) 

See ECMWF (2017)1 

Balsamo et al. (2009)2 

van der Knijff et al. (2010)3 

ERA-I Land H-
TESSEL CaMa-

Flood  

ERA-I Land H-TESSEL ~0.750 (~80 
km) 

CaMa-Flood 0.250 (~25 
km) 

Daily 01 Jan 
1997 

31 Dec 
2015 

None Balsamo et al. (2015)1 

Balsamo et al. (2009)2 

Yamazaki et al. (2011)3 

 

ERA-I Land PCR-
GLOBWB CaMa-

Flood  

ERA-I Land PCR-GLOBWB ~0.500 (~50 
km) 

CaMa-Flood 0.250 (~25 
km) 

Daily 01 Jan 
1997 

31 Dec 
2015 

None Balsamo et al. (2015)1 

Sutanudjaja et al. (2018)2 

Yamazaki et al. (2011)3 

TRMM CRESTEF5 TMPA 3B42 v7. 
Real-time 

EF5/CREST ~0.250 (~25 
km) 

EF5/CREST 0.050 (~5 
km) 

Daily 01 Jan 
2003 

31 Dec 
2015 

None Huffman et al. (2007)1 
Wang et al. (2011)2 

Clark et al. (2016)3 
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Figure 1. a) Locations of the 75 hydrological gauges and the river network of the Amazon 

Basin. Numbers represent stations which are referred to throughout the main text in italics. For 

station information, see Table S1. (b) Locations of existing and under-construction dams as of 

2017 (see Latrubesse et al., 2017). (c) Geological map of the Amazon (Schenk et al., 1999). (d) 

Elevation map of the basin from the digital elevation model (DEM), GTOPO30, at a horizontal 

resolution of approximately 1 km (US Geological Survey, 1996). 
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3.2.3 Precipitation datasets  

 

ERA-Interim Land is a global reanalysis of land surface parameters produced by the ECMWF 

with a T255 spectral resolution (∼80 km or ∼0.75∘; Balsamo et al., 2015). ERA-Interim Land 

was produced using the latest version of the land surface H-TESSEL model using atmospheric 

forcing from ERA-Interim (Dee et al., 2011), with precipitation adjustments based on the 

Global Precipitation Climate Project (GPCP) v2.1. Precipitation improvements were achieved 

by Balsamo et al. (2010) using a scale-selective rescaling procedure in which ERA-Interim 3-

hourly precipitation was corrected to match the monthly accumulation provided by the GPCP 

at grid point scale (Huffman et al., 2009). All simulations which use ERA-Interim Land are run 

offline to force the associated rainfall–runoff models (see Table 1). For a detailed description 

of the ERA-Interim Land and ERA-Interim datasets, see Balsamo et al. (2015) and Dee et al. 

(2011) respectively. Dataset available at http://apps.ecmwf.int/datasets/data/interim-full-

daily/levtype=sfc/ (last access: 1 July 2018). 

ERA-5 is the latest reanalysis product of the ECMWF producing consistent estimates of 

atmospheric, land, and ocean variables at a horizontal resolution of ∼31 km, while the vertical 

atmosphere is discretized into 137 levels to 0.01 hPa (ECMWF, 2018). ERA-5 is based on the 

Integrated Forecasting System (IFS) Cycle 41r2 which was used operationally at the ECMWF in 

2016. Early analysis has shown that ERA-5 has an improved representation of precipitation 

(particularly over land in the deep tropics), evaporation, and soil moisture compared to its 

predecessor ERA-Interim Land (ECMWF, 2017). ERA-5 is currently being produced in three 

“streams” and will eventually cover the period 1950 to near real time (∼3 d) with its 

completion due in 2019 (Emerton et al., 2018). Dataset available at 

https://software.ecmwf.int/wiki/display/CKB/How+to+download+ERA5+data+via+the+ECMW

F+Web+API (last access: 1 July 2018). 

ECMWF reforecasts are a collection of historical forecasts from start dates at the same day of 

the year going back for a specific number of years to provide a consistent model climatology 

from which to compare forecasts (ECMWF, 2016). In this study we use the control member of 

the reforecasts which are created based on a retrospective run of the most recent version of 

the ECMWF's IFS to provide surface and subsurface runoff as input to the Lisflood routing 

model at a resolution of 0.1∘. The reforecast run is computed using a lighter configuration (11 

ensemble members, run twice a week on Mondays and Thursdays) to reduce computational 

time. The purpose of running the ECMWF forecasts through the Lisflood routing model is to 

generate a long-term (20-year) dataset which is consistent with operational GloFAS forecasts 



 

89 
 

enabling the suitability of the dataset for use in the calibration of the Lisflood model 

parameters (Hirpa et al., 2018). These data cover the period June 1995 to June 2015 and due 

to frequent model updates of the IFS are based on multiple model cycles: Cycle 41r1 (July 

through to March) and Cycle 41r2 (March through to June). The control reforecasts from 

Mondays and Thursdays are used subsequently to fill the whole weeks by taking the first 3- 

and 4-d forecast periods respectively throughout the 20 years. 

TRMM TMPA 3B42 RT v7 is a global merged multi-satellite precipitation product generated at 

the National Aeronautics and Space Administration (NASA). TMPA is computed for two 

products: a near-real-time version (TMPA 3B42RT v7) and a post-real-time gauged adjusted 

research version (TMPA 3B42 v7), both of which run at resolution of 3-hourly × 0.25∘ × 0.25∘ 
(Huffman et al., 2007). The TMPA 3B42 RT gridded dataset used in this study covers the global 

latitude belt from 60∘ N to 60∘ S. For further information, see Huffman et al. (2007). Dataset 

available at https://pmm.nasa.gov/data-access/downloads/trmm (last access: 4 March 2018). 

3.2.4 Hydrological and land surface models 

 

H-TESSEL provides the land surface component of the ECMWF IFS (van den Hurk et al., 2000; 

van den Hurk and Viterbo, 2003; Balsamo et al., 2009). H-TESSEL simulates the land surface 

response to atmospheric conditions estimating water and energy fluxes (heat, moisture, and 

momentum) on the land surface (Zsoter et al., 2019). H-TESSEL is predominately used within 

the operational set-up of short- to seasonal-range weather forecasts coupled with the 

atmosphere, but it can also be used in an “offline mode” to calculate the land surface 

response to atmospheric forcing, whereby input data (e.g. near-surface meteorological 

conditions) are provided on a 3-hourly time step (Pappenberger et al., 2012). In this study, H-

TESSEL receives boundary conditions from the atmospheric input provided by either the ERA-5 

reanalysis, ERA-Interim Land reanalysis, or the reforecasts providing total runoff for the CaMa-

Flood routing model, and the surface and sub-surface water fluxes for Lisflood. Runs forced 

using the ERA-Interim Land reanalysis are run in the offline mode. For a detailed description of 

H-TESSEL, see Balsamo et al. (2009). 

PCR-GLOBWB is a global hydrological and water resource model developed at the Department 

of Physical Geography, Utrecht University, Netherlands (Sutanudjaja et al., 2018). For each grid 

cell and time step, PCR-GLOBWB simulates moisture storage in two vertically stacked upper 

soil layers, as well as the water exchange among the soil, the atmosphere, and the underlying 

groundwater reservoir. Besides, water demands for irrigation, livestock, industry, and 
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households can be integrated within the model. Run-off is routed along a local drainage 

direction (LDD) network using the kinematic routing wave equation. PCR-GLOBWB was applied 

at a resolution of 30 arcmin (∼55 km  × 55 km at the Equator) with meteorological forcing 

provided from the ERA-Interim Land reanalysis dataset between 1997 and 2015. For further 

information on PCR-GLOBWB, see van Beek and Bierkens (2008), van Beek et al. (2011), and 

Sutanudjaja et al. (2018). 

EF5 is an open-source software package developed at the University of Oklahoma (OU) that 

consists of multiple hydrological model cores producing outputs of streamflow, water depth, 

and soil moisture (Clark et al., 2016). Since 2016, EF5 has been used operationally for local 

forecasts across the US National Weather Service (NWS) for flash flooding purposes (Gourely 

et al., 2017). EF5 incorporates CREST, which is a distributed hydrological model created by OU 

and NASA (Wang et al., 2011). Within CREST, runoff generation, evapotranspiration, 

infiltration, and surface and subsurface routing are computed at each grid cell within the 

model domain, with surface and subsurface water routed using a kinematic wave assumption. 

Four excess storage reservoirs characterize the vertical profile within a cell representing 

interception by the vegetation canopy and subsurface water storage in the three soil layers 

(Meng et al., 2013). In addition, the representation of sub-grid cell routing and soil moisture 

variability is made through the use of two linear reservoirs for overland and subsurface runoff 

individually (Wang et al., 2011). Locations of major streams, flow direction maps, and flow 

accumulation are all derived from the HydroSHEDS (Hydrological Data and Maps Based on 

Shuttle Elevation Derivatives at Multiple Scales) dataset (Lenhner et al., 2008). 

In this study, an un-calibrated version of EF5 was run using CREST version 2.0 (Xue et al., 2013; 

Zhang et al., 2015) for 13 years (2003–2015), with a 1-year spin-up at a spatial resolution of 

0.05∘ × 0.05∘. Parameters are estimated a priori from soil and geomorphological variables, 

with meteorological forcing provided by the TMPA 3B42 RT product for precipitation and 

monthly averaged potential evapotranspiration (PET) from the Food and Agriculture 

Organisation (FAO). For full details on the system set-up, see Clark et al. (2016). 

3.2.5 Routing models 

 

Lisflood is a global spatially distributed, grid-based hydrological and channel routing model 

commonly used for the simulation of large-scale river basins (van Der Knijff et al., 2010). It is 

currently used as an operational rainfall–runoff model within the European Flood Awareness 

System (EFAS) for streamflow forecasts over Europe (Smith et al., 2016). Unlike EFAS, which 
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uses the full Lisflood set-up, GloFAS and the simulations included in this study use only the 

routing component of the Lisflood set-up, with surface and sub-surface input fluxes (e.g. 

vertical water, water/snow storage) provided by the H-TESSEL module of the IFS at a 

resolution of 0.1∘. Surface runoff is routed through Lisflood using a four-point implicit finite-

difference solution of the kinematic equations. Sub-surface storage and transport are routed 

to the nearest downstream channel pixel within one time step through two linear reservoirs 

(Alfieri et al., 2013). The water in each channel pixel is finally routed through the river network 

taken from the HydroSHEDS project (Lenhner et al., 2008) using the same kinematic wave 

equations as for the overland flow. Subsurface flow from the upper and lower groundwater 

zones is routed into the nearest downstream channel as a scaled sum of the total outflow 

from both the upper and lower groundwater zones. 

Lisflood also represents lakes and reservoirs as simulated points on the river network (Zajac et 

al., 2017). The outflows of lakes and reservoirs are based on (a) upstream inflow, (b) 

precipitation over the lake or reservoir, (c) evaporation from the lake or reservoir, (d) the 

lakes' initial level, (e) lake outlet characteristics, and (f) reservoir-specific characteristics. For 

further details on the parameterization of lakes and reservoirs within Lisflood, see Appendix A 

within Zajac et al. (2017). In the Amazon, represented lakes are predominately located along 

the main stem, with very few reservoirs throughout the basin. For exact lake and reservoir 

locations within the global Lisflood model, see Zajac et al. (2017). 

In this study, two set-ups of Lisflood are used (Lisflood_uc and Lisflood_c). Lisflood_c 

represents the calibrated set-up of the Lisflood routing and groundwater parameters (see 

Hirpa et al., 2018), while Lisflood_uc represents the uncalibrated model run. Parameters were 

calibrated with the reforecasts initialized with the ERA-Interim land reanalysis from 1995 to 

2015 as forcing against observed discharge data at 1278 gauging stations worldwide. All but 

one station (40; see Fig. 1a and Table S1) used in this study were included within the 

calibration. An evolutionary optimization algorithm was used to perform the calibration, with 

the KGE used as the objective function. The calibration was carried out for parameters 

controlling the time constants in the upper and lower zones, percolation rate, groundwater 

loss, channel Manning's coefficient, the lake outflow width, the balance between normal and 

flood storage of a reservoir, and the multiplier used to adjust the magnitude of the normal 

outflow from a reservoir. The results were validated by Hirpa et al. (2018) using the KGE 

(Gupta et al., 2009) over the period 1995–2015. In calibration (validation) KGE skill scores were 

greater than 0.08 compared to the default Lisflood simulation for 67 % (60 %) of stations 

globally. For a detailed description of the calibration of the Lisflood parameters and the range 
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of values used for each parameter, see Hirpa et al. (2018). Further details of the Lisflood 

model are described in van Der Knijff et al. (2010). 

CaMa-Flood is a global distributed river routing model which is forced by runoff input from a 

LSM or hydrological model to simulate water storage where further hydrological variables (i.e. 

river flow, water level, and inundated area) can be derived along a prescribed river network. 

Horizontal water transport along the river network is calculated using the local inertia 

equations (Yamazaki et al., 2011). The backwater effect (i.e. upstream water levels which 

affect flow velocity downstream; see Meade et al., 1991) is represented by estimating flow 

velocity based on water slope (Yamazaki et al., 2011). Moreover, floodplain inundation is 

represented within CaMa-Flood as a subgrid-scale process by discretizing the river basin into 

unit catchments which consist of subgrid river and floodplain topography parameters 

(Yamazaki et al., 2014b). These parameters describe the relationship between the total water 

storage in each grid point and water stage and are automatically generated using the Flexible 

Location of Waterways (FLOW) method with the generation of the river map created by 

upscaling the HydroSHEDS flow direction map (Lehner et al., 2008). For further information 

about the CaMa-Flood model, see the aforementioned references. In this study, daily river 

discharge was obtained using CaMa-Flood version 3.6.1 at a spatial resolution of 0.25∘ 
(∼25 km grid size) for both runs. Manning's river and floodplain roughness coefficients were 

set at 0.03 and 0.10 s m−1/3 uniformly for both CaMa-Flood simulations. 

3.2.6 Verification metrics 

3.2.6.1 Spearman’s ranked correlation  

 

The non-parametric Spearman ρ is used to measure the strength and direction of the 

monotonic relationship between the ranks of the observed and simulated annual maximum 

values. The non-parametric Spearman ρ was preferred to Pearson's statistic as non-parametric 

measures are less sensitive to outliers in the data and are widely considered a more robust 

measure of the correlation between observed and predicted values (Legates and McCabe, 

1999). Correlation scores for ρ range from − to 1, with 1 being a perfect correlation. We 

consider scores which have a value of 0.6 or more to be skilful. Similar scores (between 0.5 

and 0.7) are considered to represent a good level of agreement between observed and 

simulated values in similar studies (see Yamazaki et al., 2012; Alfieri et al., 2013). 
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3.2.6.2 KGE 

 

The KGE (Gupta et al., 2009) measures the goodness-of-fit between estimates of simulated 

discharge and gauged observations and is a modified version of the dimensionless Nash–

Sutcliffe efficiency (NSE; Nash and Sutcliffe, 1970). The metric decomposes the NSE into three 

independent hydrograph components – linear correlation (r), bias ratio (β), and relative 

variability between the observed and simulated streamflow (α) – by re-weighting the relative 

importance of each (Revilla-Romero et al., 2015). KGE values range from −∞ to 1, with values 

closer to 1 indicating better model performance. To provide further context to the computed 

KGE scores, we use the breakdown of KGE values into four benchmark categories as according 

to (Kling et al., 2012). These are classified as follows: 

• “Good” (KGE ⩾ 0.75), 

• “Intermediate” (0.75 > KGE ⩾ 0.5), 

• “Poor” (0.5 > KGE > 0), 

• “Very poor” (KGE ⩽ 0). 

Although originally for the modified version of the KGE, these categories provide an 

informative benchmark by which to evaluate results. A similar study (Thiemig et al., 2013) 

assessing the performance of satellite-based precipitation products for hydrological evaluation 

also adopted the same approach. 

When analysing the results, each component of the KGE is also considered independently, 

enabling model errors to be directly related to either the variability (KGE_α), bias ratio 

(KGE_β), or correlation (KGE_r; Guse et al., 2017). KGE_α values greater than 1 indicate that 

variability in the simulated time series is higher than that observed. Values less than 1 show 

the opposite effect. KGE_β values greater than 1 indicate a positive bias whereby predictions 

overestimate flows relative to the observed data, while values less than 1 represent an 

underestimation. 

To evaluate the relative improvement of using one model set-up relative to another (e.g. using 

the calibrated Lisflood routing model as opposed to the uncalibrated model version), metrics 

are calculated as skill scores: 

%&'!! =	
"#$!%	"#$"#$
'%	"#$"#$

,         (1) 

where KGESS signifies the KGE skill score, KGEa is the KGE score for the improved run or 

simulation of interest (e.g. Lisflood_c), and KGEdef is the KGE score for the “default” or 



 

94 
 

comparative run (e.g. Lisflood_uc). Positive KGESS indicates improved skill, whilst a negative 

score represents a decrease in skill. For each case, KGE scores are calculated against observed 

river flow data. The correlation skill score is calculated similarly. All metrics are computed in 

the R environment using the “verification” (Gilleland, 2015) and “hydroGOF” (Zambrano-

Bigiarini, 2017) R packages. 

3.3 Results and discussion  

 

To allow for easier interpretation, the results and discussion are separated into six sections 

which match the research questions presented in Sect. 3.1.5, in addition to an outline of 

potential future work. Due to similar results between the two validation periods (1997–2015 

and 2004–2015), only results for 1997–2015 are shown. For 2004–2015 results, see Figs. S1 

and S2 in the Supplement. Results and discussions for individual stations are commonly 

referred to by the station numbers in italics and are presented in Fig. 1a and Table S1. 

3.3.1 How well is the hydrological regime represented? 

 

The annual hydrological regime on average is well represented by all models (Fig. 2), with the 

rationale for poorer performance at specific gauges dependent on either the temporal 

correlation, bias ratio, or variability ratio components of the KGE (Figs. 3–5). An average of 

50 % of stations note scores above 0.5 for the KGE metric across all eight simulated runs, with 

a maximum value of 0.92 observed at the Santa Rosa gauging site (48, Fig. 1a) for the ERA-5 

Lisflood_c simulation (Fig. 2f). The two CaMa-Flood set-ups using the PCR-GLOBWB 

hydrological model and the H-TESSEL LSM show the lowest skill, with 19 and 18 stations noting 

scores greater than 0.5 respectively. By contrast, the best performance is from the calibrated 

Lisflood set-ups, with median scores across stations of 0.56, 0.63, and 0.64 for runs forced 

with ERA-Interim Land, the reforecasts, and ERA-5 respectively. Such results are unsurprising 

given that the KGE was used as the objective function in the calibration algorithm of the 

Lisflood routing model. 

In terms of spatial distribution, the poorest performance is consistent for the majority of 

simulations at the Arapari (55), Boca Do Inferno (56), and Base Alalau (61) gauging stations 

located north of Manaus, at the Fazenda Cajupiranga gauge (64) in the northernmost Branco 

catchment, and at the Fontanilhas (35) and Indeco (49) stations in the south-eastern Brazilian 

Amazon (Fig. 2). In the south-eastern Amazon, particularly in the Madeira and Tapajos sub-
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basins, the number of existing or under-construction dams is at its highest (Fig. 1b). Damming 

of rivers is known to have impacts on different aspects of the flow regime, with possible 

alterations in the timing, magnitude, and frequency of low and high flows (Magilligan and 

Nislow, 2005). Indeed, the frequency and duration of low- and high-flow pulses at stations 

downstream of dams have been shown to be particularly affected by the construction of 

cumulative dams (Timpe and Kaplan, 2017). Thus, discrepancies between observed and 

modelled data shown in Fig. 2 could be due to alterations to key features of the flow regime. 

The highest scoring stations (KGE score > 0.75) are predominately found in the south-western 

Brazilian Amazon where the network of tributaries remains relatively unaffected by damming 

and where slopes are gentle (Fig. 1b and d). However, high skills at stations (32, 33, and 43) 

Figure 2. Full Kling–Gupta efficiency (KGE) scores at the 75 hydrological gauging stations for all 

simulations. For the periods 1997–2015 and 2004–2015 for the Coupled Routing and Excess 

Storage, Ensemble Framework for Flash Flood Forecasting (CREST EF5) run (g). Values greater 

than 0.75 are considered to indicate good performance (i.e. dark blue circles). To allow for 

easier model comparisons, plots are arranged by the different precipitation datasets (rows) 

and routing models (columns), with the exception of CREST EF5 (g). For example, the final 

column consists of model runs using the calibrated Lisflood routing model. 
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along the Madeira River for most simulations (Fig. 2) highlight that the impacts of 

hydroelectric dams need to be considered on an individual basis, with two of the largest dams 

(>3000 MW) situated along the river (see Fig. 1b). 

Figures 3–5 show the breakdown of the KGE scores for each hydrological component to 

evaluate differences in performance with respect to the correlation (i.e. timing), flow 

variability (α), and bias ratio (β). An average of 79 % of stations note correlation coefficients 

exceeding 0.6 across all runs, with those using the Lisflood routing model performing similarly 

in both spatial distribution and magnitude (Fig. 3).  

 

Figure 3.  Correlation component (Pearson's) of the KGE at the 75 hydrological gauging 

stations for all simulations. For the periods 1997–2015 and 2004–2015 for the Coupled Routing 

and Excess Storage, Ensemble Framework for Flash Flood Forecasting (CREST EF5) run (g). 

Values greater than 0.6 are considered skilful (i.e. blue circles). 

In contrast, 51 % and 47 % of stations achieve values exceeding 0.6 for CaMa-Flood H-TESSEL 

and CaMa-Flood PCR-GLOBWB respectively, with the hydrological model, PCR-GLOBWB, 

noting better performance at stations along the main stem. The increased performances of 

Lisflood relative to simulations incorporating CaMa-Flood are likely due to the increased 
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spatial resolution of the routing component (see Table 1). This is supported by results for 

CREST EF5, with 76 % of stations noting values above 0.6 and the model occupying a finer 

spatial resolution than that of CaMa-Flood (Fig. 3g). 

The variance of modelled river flow is on average higher than the observed time series in all of 

the simulations, with the exception of the ERA-Interim Land PCR-GLOBWB CaMa-Flood 

simulation. For this run, 85 % of stations observe values of less than one, with stations situated 

in the Peruvian Amazon (2–5) the notable exception (Fig. 4b). In contrast, 79 % of stations for 

the CaMa-Flood set-up using the H-TESSEL LSM note values greater than one (Fig. 4a).  

 

Figure 4. Alpha (i.e. variability ratio) component of the KGE at the 75 hydrological gauging 

stations for all the simulations. For the periods 1997–2015 and 2004–2015 for the Coupled 

Routing and Excess Storage, Ensemble Framework for Flash Flood Forecasting (CREST EF5) run 

(g). Blue circles indicate that the variability in the simulated time series is higher than that of 

the observed one, while red circles show the opposite effect. Values closer to one indicate 

better model performance (i.e. grey circles). 

All runs tend to underestimate river flows relative to the observed time series, with the 

majority of stations observing a beta value of less than one (Fig. 5). In the calibrated Lisflood 
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simulation forced with the reforecasts, almost half of all the stations observe scores between 

0.9 and 1.1 (i.e. grey circles), with a median of 0.99 (Table 2). These results are not replicated 

in the other two calibrated runs when using either ERA-Interim Land or ERA-5 as the 

precipitation input (Fig. 5d and f). For both of these runs a decrease is found in the number of 

stations achieving scores between 0.9 and 1.1 relative to the associated uncalibrated Lisflood 

set-ups (Fig. 5c and e). This is also highlighted by a decrease in the median scores of the two 

respective runs (Table 2), meaning that a greater water deficit exists in the calibrated set-ups. 

 

Figure 5. Beta (i.e. bias ratio) component of the KGE at the 75 hydrological gauging stations for 

all the simulations. For the periods 1997–2015 and 2004–2015 for the Coupled Routing and 

Excess Storage, Ensemble Framework for Flash Flood Forecasting (CREST EF5) run (g). Blue 

circles indicate that the bias in the simulated time series is higher than that of the observed 

one, while red circles show the opposite effect. Values closer to one indicate better model 

performance (i.e. grey circles). 

The variance of modelled river flow is on average higher than the observed time series in all of 

the simulations, with the exception of the ERA-Interim Land PCR-GLOBWB CaMa-Flood 

simulation. For this run, 85 % of stations observe values of less than one, with stations situated 



 

99 
 

in the Peruvian Amazon (2–5) the notable exception (Fig. 4b). In contrast, 79 % of stations for 

the CaMa-Flood set-up using the H-TESSEL LSM note values greater than one (Fig. 4a). All runs 

tend to underestimate river flows relative to the observed time series, with the majority of 

stations observing a beta value of less than one (Fig. 5). In the calibrated Lisflood simulation 

forced with the reforecasts, almost half of all the stations observe scores between 0.9 and 1.1 

(i.e. grey circles), with a median of 0.99 (Table 2). These results are not replicated in the other 

two calibrated runs when using either ERA-Interim Land or ERA-5 as the precipitation input 

(Fig. 5d and f). For both of these runs a decrease is found in the number of stations achieving 

scores between 0.9 and 1.1 relative to the associated uncalibrated Lisflood set-ups (Fig. 5c 

and e). This is also highlighted by a decrease in the median scores of the two respective runs 

(Table 2), meaning that a greater water deficit exists in the calibrated set-ups. 

Table 2. Median scores for the 75 hydrological gauging stations for all metrics. 

Model Runs Spearman 

Annual Max 

Correlations 

KGE r 

(Pearson’s) 

Beta Alpha 

ERA-Interim Land H-

TESSEL CaMa-Flood 

0.24  0.30  0.61 0.92  1.33  

ERA-Interim Land PCR-

GLOBWB CaMa-Flood 

0.23  0.18  0.59  0.98 0.64  

ERA-Interim Land H-

TESSEL Lisflood_uc 

0.40  0.51  0.80  0.99  1.25  

ERA-Interim Land H-

TESSEL Lisflood_c 

0.42  0.56  0.80  0.86  1.15  

ERA-5 H-TESSEL 

Lisflood_uc 

0.53  0.63  0.85  0.97  1.26 

ERA-5 H-TESSEL 

Lisflood_c 

0.54 0.64  0.86 0.87  1.06  

TRMM CREST EF5 0.24  0.46  0.71  0.80  1.08  

Reforecasts H-TESSEL 

Lisflood_c 

0.32  0.63 0.83 0.96  1.06  

Median across models 0.35 0.50 0.78  0.91  1.11  
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Stations in the south-eastern Amazon, particularly in the upper reaches of the Teles Pires River 

(37, 38, and 49), tend to underestimate river flow for most simulations (Fig. 5). In this region of 

the basin precipitation is controlled by frontal systems in the South Atlantic Convergence 

Zone (SACZ), which is prevalent during austral summer (Ronchail et al., 2002; Espinoza et al., 

2009b). In addition, rainfall variability in the Amazon is strongest in the south-east, with a 

distinct dry season (Paiva et al., 2012; Espinoza et al., 2009b). Further analysis could be useful 

in evaluating seasonal patterns of model performance to establish whether climatological 

features such as the SACZ are accurately represented within the precipitation datasets. Other 

factors impacting performance in the south-east could be associated with the geology and 

topography (Fig. 1c and d). Stations in this area of the basin are located within the Brazilian 

Shields, composed predominately of Precambrian rock, and are characterized by gentle slopes 

and low erosion rates (Filizola and Guyot, 2009). Paiva et al. (2012) demonstrated the 

importance of accurate initial conditions of groundwater state variables in the Tapajos and 

Xingu river basins, particularly for low flows. In comparison, the majority of the central parts of 

the basin are characterized by tertiary rocks, flat terrain, large floodplains, and high sediment 

yields. In these regions (e.g. in the south-western Brazilian Amazon), KGE scores are generally 

higher (Fig. 2), with surface water variables (e.g. water levels, surface runoff, and floodplain 

storage) considered more important in hydrological prediction uncertainties (Paiva et al., 

2012). 

The KGE allows us to make explicit interpretations of the hydrological performance of each 

model owing to decomposition into correlation, bias, and variability terms (Kling et al., 2012). 

The results indicate that the required developments to improve the representation of daily 

river flows are specific to each individual model and to the area of interest. For instance, for 

the ERA-Interim Land PCR-GLOBWB run, daily correlation scores (Fig. 3b) showed the model 

suffers in reproducing the temporal dynamics of flow (as measured by r) in northern 

catchments. Calibration of parameters which control the timing of the flood wave (e.g. river 

flow velocity) may improve performance, whereas model set-ups incorporating the 

uncalibrated Lisflood routing model generally had lower KGE values in the east of the basin 

corresponding to an overestimation of river flow variability (Fig. 4c and e). For these runs, 

performance slightly improved upon the calibration of the groundwater and routing 

parameters relating to timing, flow variability, and groundwater loss (Fig. 4d and f). 
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3.3.2 Which model set-up best represents annual maximum river flows? 

 

Both the calibrated and uncalibrated versions of Lisflood simulations forced with the ERA-5 

reanalysis are the best-performing runs, with median scores of 0.53 and 0.54 for the 

uncalibrated and calibrated simulations respectively (Fig. 7 and Table 2). However, a large 

deterioration in skill is evident for all simulations for Spearman's ranked coefficients between 

observed and predicted annual maximum river flows (Fig. 6), with only 21 % of stations on 

average observing scores exceeding 0.6 across all simulations. Here, it is important to note 

that due to the length of some station time series the number of overlapping data points can 

be small, and therefore the spatial distribution of model performance should be interpreted 

with caution. To provide a certain level of confidence between results, stations whose time 

series equals or exceeds 15 years are denoted using a circle, whereas those between 10–14 

and 5–9 are represented using a square and triangle respectively. 

 

Figure 6. Spearman's ranked correlation coefficients for observed against simulated annual 

maximum discharge values at the 75 hydrological gauging stations for all simulations. For the 

periods 1997–2015 and 2004–2015 for the Coupled Routing and Excess Storage, Ensemble 
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Framework for Flash Flood Forecasting (CREST EF5) run (g). Values exceeding 0.6 are 

considered skilful (i.e. blue shapes). The number of overlapping years of data between 

observations and simulations are denoted by different shapes. A triangle represents 5–9 years, 

a square 10–14 years, and a circle 15–19 years of overlapping data. 

The highest scores are generally located towards the eastern side of the basin and along the 

main Amazon River where the terrain is predominately flat, and rivers drain extensive 

floodplains. These are constrained to runs using the Lisflood routing model with either ERA-

Interim Land or ERA-5 as forcing (Fig. 6c–f). Interestingly, the calibrated Lisflood set-up forced 

using the reforecasts does not replicate good performance in these regions (Fig. 6h), indicating 

that the error between simulated and observed peak river flows could be associated with the 

precipitation input. When observing daily mean precipitation totals over the validation period 

(1997–2015), the reforecasts observe lower precipitation totals over central to northern areas 

of the basin relative to both of the climate reanalysis datasets (Fig. 8). However, when 

comparing the results of the ERA-Interim Land H-TESSEL CaMa-Flood and ERA-Interim Land H-

TESSEL Lisflood_uc set-ups, correlations are much lower in the CaMa-Flood simulation, 

suggesting that both precipitation and routing processes are equally important (Fig. 6a and c). 
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Figure 7. Boxplots showing the distribution of scores for the (a) Spearman annual maximum 

correlation, (b) KGE, (c) KGE Pearson's coefficient, (d) KGE beta, and (e) KGE alpha, for all 

simulations. For the period 1997–2015. 

Low agreement between peaks is consistent in the south-east and north-west of the basin 

across all simulations (Fig. 6). In the south-east, a lack of skill could again be associated with 

the abundance of hydroelectric dams in the region or with the poor representation of the 

SACZ rainfall regime. Evaluating the ability to represent the timing and magnitude of the 

annual flood wave has important implications for models predicting flood hazard and for 

practices providing early warning information. These results identify that while the 

representation of daily river flows improves upon model calibration of the Lisflood routing 

model (Sect. 3.3.1), the influence of routing calibration for simulating flood peaks has no 

impact. 
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Figure 8. Mean daily precipitation totals throughout the Amazon Basin. For (a) ERA-Interim 

Land, (b) ERA-5, and (c) the European Centre for Medium-Range Weather Forecasts (ECMWF) 

20-year reforecasts. For the period 1997–2015. 

3.3.3 Which is the best performing hydrological model? 

 

We assessed the performance of the CaMa-Flood and Lisflood_uc routing models by 

comparing the two runs which are forced using the ERA-Interim Land reanalysis dataset. On 

average the uncalibrated Lisflood run outperforms CaMa-Flood for all metrics analysed (Fig. 7 

and Table 2). Results from the CREST EF5 model are also discussed but are not directly 

comparable due to using differing meteorological inputs. 

The median score of the correlation component of the KGE (i.e. Pearson's correlation 

coefficient) is found to increase by 0.19 when using the un-calibrated Lisflood model relative 

to CaMa-Flood, with 28 more stations achieving a correlation score of 0.6 or higher (Fig. 3a 

and c). This number increases when considering correlation scores greater than 0.8, with 38 

and 7 stations reaching this value for Lisflood and CaMa-Flood respectively. The most notable 

increase in skill is found in Peru along the Marañón and Napo rivers (2 and 5), which note 

increases of 0.85 and 0.71 respectively when using the Lisflood model. In comparison, the 

CREST EF5 simulation fits between the CaMa-Flood and Lisflood runs with a median daily 

correlation score of 0.71 and notes 12 stations which have scores greater than 0.8 (Fig. 3g). 

For the overall KGE metric, 24 % and 3 % of stations have values exceeding 0.5 and 0.75 for 

CaMa-Flood. These figures rise to 52 % and 11 % respectively in the uncalibrated Lisflood run. 

Large differences are particularly notable at stations situated in the upper reaches of the 

Solimões River (2–6) and within a cluster of stations situated towards the Colombian Amazon 

in the north-west (Fig. 2c). Significant differences are identified for peak flow correlations, 

with only three stations (27, 17, and 22) achieving scores exceeding 0.6 for the CaMa-Flood 

simulation compared to 22 using the uncalibrated Lisflood routing scheme (Fig. 6a and c). In 
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comparison, the CREST EF5 simulation has 11 stations exceeding this threshold, with no 

distinguishable spatial pattern (Fig. 6g). For this run, the time series of modelled data is 

shorter (2004–2015), and so peak flow correlations should be interpreted with caution. 

Stations located in and around the main Amazon River observe better performance for 

representing flood peaks in the Lisflood simulation (Fig. 6c), aligning with the locations of lakes 

included within the Lisflood set-up (see Zajac et al., 2017). This level of skill was not replicated 

in the CaMa-Flood simulation, where the representation of lakes is not included (Fig. 6a), 

suggesting the potential importance of lake parameterization for accurate peak flow 

estimations. However, Zajac et al. (2017) demonstrated that although the inclusion of lakes in 

Lisflood was found to generally improve the representation of extreme discharge for the 5- 

and 20-year return periods on the global domain, the change in skill upon the inclusion of 

lakes and reservoirs in the Amazon was minimal for several metrics. Very few reservoirs are 

included within Lisflood in the Amazon, and therefore the estimated effects on simulated 

streamflow are restricted. 

Zhao et al. (2017) concluded the importance in the choice of different river routing schemes 

for simulating peak discharge across the globe, while the Hoch et al. (2017b) comparison of 

two routing models found results to differ despite having identical boundary conditions. It is 

therefore of interest to evaluate not only the entire GHM set-up, but also to assess the 

suitability of each model component of the hydrological chain in order to determine which 

routing model is most suitable for certain applications within the Amazon Basin. Results 

suggest that adjustments of certain parameters such as Manning's channel coefficient could 

potentially improve the performance of the CaMa-Flood model, with the default coefficient 

higher in the uncalibrated Lisflood set-up (0.10 as opposed to 0.03; see Hirpa et al., 2018, for 

all default parameter values). 

3.3.4 Which is the best performing precipitation dataset? 

 

Three precipitation products (ERA-Interim Land, ERA-5, and the reforecasts) are used to force 

the calibrated Lisflood routing model, with the most recent ERA-5 reanalysis product the best-

performing dataset. Figure 8 displays mean daily precipitation totals for each dataset over the 

main validation period (1997–2015). The main differences can be seen in the far west of the 

basin towards the Andes mountains, where precipitation is higher in ERA-5 compared to ERA-

Interim Land, and in the north-west, where average daily precipitation totals are smaller in the 

reforecasts. On the other hand, values in the south-eastern corner of the basin are very similar 
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between the three datasets. When comparing observed and simulated annual peak flows, 

median correlation scores improve by 0.12 and 0.22 when using ERA-5 compared to when 

using ERA-Interim Land and the reforecasts respectively (Table 2); 28 stations reach the 0.6 

threshold relative to 22 and 9 stations for ERA-Interim Land and the reforecasts respectively, 

with the range of coefficients smaller for ERA-5 (Fig. 7a). 

 

Figure 9. Relative improvement in skill at each gauging station for Spearman annual maximum 

correlations and KGE values (i.e. skill scores). (a–d) show relative gain or loss in skill when using 

the calibrated Lisflood run (Lisflood_c) relative to the uncalibrated model run (Lisflood_uc), 

using precipitation forcing from both ERA-Interim Land and ERA-5. (e) and (f) show the relative 

gain or loss in skill when using ERA-5 as opposed to ERA-Interim Land. (g) and (h) show the 

relative gain or loss in skill when using the land surface model (LSM), the Hydrology-Tiled 

ECMWF Scheme for Surface Exchanges over Land (H-TESSEL), compared to the hydrological 

model, PCRaster Global Water Balance (PCR-GLOBWB). All scores are calculated using the skill 

scores in Eq. (1). Red circles indicate a decrease in skill, whereas blue circles represent an 

increase. 
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In the other main tributary to the Solimões River, the Ucayali River, simulated annual peak 

flows show little agreement with observed data, with a decrease in skill identified when using 

ERA-5 as opposed to ERA-Interim Land (Fig. 9e). Despite the lack of agreement between 

observed and modelled data in the Ucayali River, the higher correlation scores identified 

downstream at Tamshiyacu suggest that better representation of high-water periods at the 

start of the Solimões River is likely modulated by the larger Marañón River. Therefore, the 

ability to represent flood hazard in communities near to the city of Iquitos is more dependent 

on how well we can predict river flow in the Marañón River. 

All three runs perform well for the KGE metric, with little difference in results spatially (Fig. 2d, 

f, h). The reforecast simulation used within the Lisflood calibration is found to be superior, 

with 75 % of stations achieving scores which exceed 0.5 relative to 71 % and 59 % for ERA-5 

and ERA-Interim Land respectively. Increased skill in the Peruvian Amazon is again the most 

noteworthy (Fig. 9f), with KGE skill scores of 0.67 for the Requena (3) (Ucayali River) and San 

Regis (2) (Marañón River) stations and 0.71 for Tamshiyacu (4) (Solimões River) when using 

ERA-5 relative to ERA-Interim Land. This increase in KGE skill can be attributed to an 

improvement in the variability and bias ratios found between the simulated and observed 

time series. Daily correlation scores for the three stations (2–4) are near identical to the 

variance and bias ratios underestimated for ERA-Interim Land while being much closer to the 

observed data for ERA-5 (Figs. 4d, f and 5d, f). 

The Tamshiyacu gauging station (4) is used to measure flood hazard in the city of Iquitos at the 

start of the Solimões River (Espinoza et al., 2013) and is therefore of particular interest. At this 

important location, scatterplots of observed against simulated river discharge (Fig. 10) show 

that the negative bias observed when using ERA-Interim Land is corrected for when using ERA-

5, with the magnitude of the 90th percentile of river flows almost identical to that of the 

observed dataset. Improvement is likely associated with the increased resolution of the ERA-5 

reanalysis, which observes higher daily mean precipitation totals in regions towards the Andes 

in the far north-west of the basin (Fig. 8b). Waters found at Tamshiyacu are of Andean origin, 

meaning that the representation of rainfall in the Andes Mountains is fundamental to 

accurately predicting streamflow. ERA-5 runs at a horizontal resolution of ∼31 km and includes 

an additional 73 vertical levels to 0.01 hPa compared to ERA-Interim Land, meaning the 

representation of the troposphere is enhanced (ECMWF, 2017). 
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Figure 10. Scatterplots of observed against simulated river flow at the Tamshiyacu gauging 

site, Peru (4). For (a) ERA-Interim Land, (b) ERA-5, and (c) the European Centre for Medium-

Range Weather Forecasts (ECMWF), 20-year reforecasts forced through the calibrated Lisflood 

routing model. Dashed black lines indicate the observed and simulated 90th percentile of river 

flow. For the period 1997–2015. 

The success of GHMs in producing adequate estimates of river flow is underpinned by 

uncertainties within the meteorological input (Butts et al., 2004; Beven, 2012; Sood and 

Smakhtin, 2015). These results have particular importance for flood forecasting applications 

and research concerning extreme floods, with the higher-resolution ERA-5 dataset providing 

closer agreement between observed and simulated annual maximum river flows, particularly 

for the Peruvian Amazon. With the time series of observed data often beginning in the 1980s 

in the Amazon, ERA-5 could provide a useful tool for analysing historical flows and establishing 

links to climate variability. Upon completion, ERA-5 will date back to 1950 (Zsoter et al., 2019), 

meaning locations in which model skill is considered high could benefit from up to 30 years' 

worth of additional data for use in climate studies, thus allowing for more robust analysis. In 

future work, it could be of interest to compare the performance of ERA-5 against a wider 

range of precipitation datasets, such as the Multi-Source Weighted-Ensemble Precipitation 

(MSWEP) product that carefully integrates gauge, satellite, and reanalysis-based estimates. 

The Beck et al. (2017b) evaluation of 22 precipitation datasets previously demonstrated the 

advantages of using merged products for hydrological modelling purposes. 

3.3.5 How do results differ between using a LSM and a hydrological model? 

 

The H-TESSEL LSM and the PCR-GLOBWB hydrological model are directly compared whereby 

the precipitation forcing (ERA-Interim Land) and river routing scheme (CaMa-Flood) are 

consistent. Overall, it appears that the choice between using a LSM or a hydrological model in 

the Amazon Basin is dependent not only on the specific region of interest, but also on the 
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application and needs of the user. Previous studies (Zhang et al., 2016; Beck et al., 2017a) have 

found that LSMs, on average, perform better in rainfall-dominant regions, whereas 

hydrological models tend to achieve better results in snow-dominated regions owing to the 

use of complex energy balance equations introducing additional uncertainties. For the Amazon 

Basin, Spearman's rank correlation coefficients between simulated and observed peak river 

flow are closely matched, with medians of 0.24 and 0.23 for H-TESSEL and PCR-GLOBWB 

respectively (Table 2). However, the number of stations with Spearman's maximum correlation 

scores exceeding 0.6 is slightly higher in PCR-GLOBWB at seven compared to three with H-

TESSEL (Fig. 6a and b). 

To illustrate the gain or loss in skill when using H-TESSEL relative to PCR-GLOBWB, Spearman's 

annual maximum correlation and KGE skill scores were calculated for each station (Fig. 9g and 

h). Overall, 68 % of the stations show improved skill for peak river flow correlations when 

using the LSM, though the gain in skill is minimal (median correlation skill score = 0.06). This 

percentage drops to 37 % and 22 % for improvements in skill which exceed 0.1 and 0.2 

respectively (Fig. 9g). By contrast, over half of the stations see improvements in the KGE skill 

score for the hydrological model, PCR-GLOBWB, and 23 % of the stations observe KGE skill 

score increases which exceed 0.25 (Fig. 9h). 

A large loss in performance for the KGE is observed when using H-TESSEL for stations in the 

Peruvian Amazon at the confluence point to the Solimões River (Fig. 9h). Model performance 

in this region can largely be attributed to the failure of the H-TESSEL CaMa-Flood run to 

accurately represent the variance of flow and the temporal correlation component of the KGE, 

with the variability of modelled flow far higher than in the observed data (Fig. 4a). Northern 

regions in the Branco basin and stations situated towards the Colombian Amazon show the 

opposite effect with higher KGE coefficients found for the H-TESSEL CaMa-Flood run (Fig. 2a), 

indicating that model suitability is regionally specific. 

3.3.6 By how much does calibration of groundwater and routing parameters 

improve performance? 

 

Calibration of hydrological models is known to be a useful tool in providing more accurate 

estimates of river flow (Beck et al., 2017a). However, due to a lack of data and the 

computational expense required in the calibration of GHMs, many remain uncalibrated 

(Bierkens, 2015; Sood and Smakhtin, 2015). Both Gupta et al. (2009) and Mizukami et al. 

(2019) demonstrate that square error-type metrics are unsuitable for model calibration when 
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the model in question requires robust performance for high river flows. Improvement of flow 

variability estimates was documented in both studies when switching the calibration metric 

from the NSE to the KGE for both a simple rainfall–runoff model (similar to the HBV model; 

Bergström, 1995) and for two more complex hydrological models (Variable Infiltration 

Capacity and mesoscale Hydrologic Model), suggesting similar results are likely to be achieved 

for other hydrological models. To investigate the potential benefits of routing model 

calibration, whereby the KGE was used as the objective function, the time series of river 

discharge for the calibrated Lisflood runs forced using the ERA-Interim Land and ERA-5 

reanalysis datasets were compared against the associated default set-ups without routing 

calibration. 

Overall, hydrological performance improves upon model parameter calibration, with positive 

KGE skill scores (i.e. an increase in skill) at 61 % (59 %) of gauging stations for simulations 

forced with ERA-Interim Land (ERA-5) (Fig. 9c and d). The influence of calibration is stronger 

for the simulation forced with ERA-5, with the number of stations achieving “intermediate” 

KGE scores (i.e. 0.75 > KGE ⩾ 0.5) totalling 53 compared to 43 for ERA-Interim Land, an 

increase of 9 and 12 stations relative to the associated uncalibrated runs. When observing the 

spatial distribution of relative improvements, an east–west divide can be seen (Fig. 9c and d). 

Generally, decreases in skill are concentrated to stations on the western side of the basin, 

whereas stations located to the east display improved hydrological representation. 

Three stations (2–4) in the Peruvian Amazon show increased KGE skill scores when using the 

calibrated ERA-5 run relative to the similar uncalibrated set-up (Fig. 9d). Conversely, a loss in 

skill is observed at each station for the calibrated run forced using ERA-Interim Land (Fig. 9c). 

These results are likely associated with a larger negative runoff bias within the ERA-Interim 

Land Lisflood_uc run relative to the ERA-5 Lisflood_uc simulation for the three stations (Fig. 5c 

and e). This is supported by Hirpa et al. (2018), who concluded that stations which have a 

negative streamflow bias in the default run (i.e. Lisflood_uc) also have a negative KGE skill 

score in the calibrated simulation owing to the challenge of correcting for a water deficit 

within the routing component. Thus, for GHMs which tend to underestimate runoff, 

adjustments of parameters within the LSM or hydrological model (e.g. those responsible for 

the portioning of precipitation into runoff) or through bias-correction measures within the 

precipitation dataset may be advantageous in efforts to accurately represent floods. 

No significant differences between calibrated and uncalibrated Lisflood annual maximum 

correlation scores are identified (Fig. 7a and Table 2). In total, the number of stations 
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exceeding the 0.6 threshold for peak flow correlations remains the same for runs involving 

ERA-5 and decreases by one for ERA-Interim Land, meaning that the routing model calibration 

has very little impact on the ability to capture annual peaks. This suggests that calibrated 

parameters controlling flow timing (e.g. Manning's channel coefficient) are not as important 

for simulating the magnitude of higher flows in the Amazon Basin and that bias correction of 

the precipitation or calibration of parameters associated with runoff and evapotranspiration 

might be more useful. As previously highlighted by Hirpa et al. (2018), the inclusion of an 

objective function that is explicitly based on flood peaks could improve the ability of Lisflood 

to simulate floods. This is supported by previous studies (Greuell et al., 2015; Beck et al., 

2017a; Mizukami et al., 2019) which have also identified that improved performance in 

calibrated models is predominately specific to metrics which are incorporated into the 

objective function used within the calibration. For instance, in Mizukami et al. (2019), they find 

that when using an application-specific metric (annual peak flow bias; APFB) for the calibration 

of two hydrological models, it produced the best peak flow annual estimates compared to 

using the NSE, KGE, and its components. However, despite this improvement, flood 

magnitudes were still underestimated for all metrics used in calibration, and the use of the 

APFB as the calibration metric resulted in poorer performance across the individual KGE 

components upon evaluation. 

3.3.7 Limitations and future work  

 

While estimating the magnitude of peak river flows is fundamental, more evaluation is 

required in assessing the ability to represent the timing of flood peaks. Modelled flood peaks 

have been known to occur too early in large Amazonian rivers (Alfieri et al., 2013; Hoch et al., 

2017b), with accurate flow timing of significant importance in the Amazon Basin. For example, 

the time displacements between peak flows in coinciding tributaries are known to play a 

major role in the dampening of the Amazon flood wave (Tomasella et al., 2010) and in the 

synchronization of flood peaks, commonly associated with exceptional flood events (e.g. 

Marengo et al., 2012; Espinoza et al., 2013; Ovando et al., 2016). Additional evaluation using 

metrics which focus specifically on the timing aspect, such as the delay index (Paiva et al., 

2013), would enable a more complete assessment of the hydrological modelling regime. 

A limitation of this type of study is due to the intercomparison being restricted to the 

macroscale (i.e. only a subset of potential modelling configurations is considered). In future 

work it would be useful to increase the granularity of the modelling decision matrix to allow 

conclusions to be more generalized across the modelling community. For instance, when 
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comparing the performance of the Lisflood and CaMa-Flood routing models, the results are 

specific to the simulations forced using the ERA-Interim Land reanalysis dataset. Although 

useful in providing a general indication of routing performance for each model when using a 

climate reanalysis dataset, the conclusions are specific to that particular comparison, with 

differing results possible when using another precipitation input. Future work could 

investigate one of the research questions stated in the objectives (Sect. 3.1.5) at a finer 

resolution, for example by comparing several different runs which use the Lisflood and CaMa-

Flood routing models, whereby a greater variety of precipitation inputs are considered (e.g. 

MSWEP, CHIRP V2.0, ERA-5, TRMM v.7). Such analysis would allow more general conclusions 

and recommendations to be made to the modelling community, who are interested in those 

particular routing schemes. A similar approach could be adopted for the assessment of other 

components of the hydrological modelling chain. 

3.4 Conclusions  

 

In this paper, eight different GHMs were employed in an intercomparison analysis using two 

verification metrics to assess model performance against gauged river discharge observations. 

The motivation for this work stemmed from the need to evaluate the ability of GHMs to 

reproduce historical floods in the Amazon Basin for use in climate analysis and to identify the 

strengths and weaknesses which exist along the hydrological modelling chain in order to 

provide insight to model developers. The implications of these results suggest that the choice 

of precipitation dataset is the most influential component of the GHM set-up in terms of our 

ability to recreate annual maximum river flows in the Amazon Basin. This is evident with 

average station correlations between observed and simulated annual maximum river flows 

increasing when using the new ERA-5 reanalysis dataset, with significant improvements in 

locations of the Peruvian Amazon. In this region, waters are sourced from Andean origins 

where rainfall can often be poorly represented due to topographically complex terrains (Paiva 

et al., 2013). Thus, those wishing to simulate higher flows in the upper reaches of the Amazon 

may benefit from choosing a precipitation dataset which has a high spatial resolution, 

whereby the upper atmosphere is discretized at finer scales. Although an exact recommended 

spatial resolution cannot be provided based on the results of this study alone, previous works 

(e.g. Beck et al., 2017b) support the need for a comparatively high-resolution dataset in 

addition to other advantageous factors such as a long temporal record and the inclusion of 

daily gauge corrections. 
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Although parameter calibration of the Lisflood routing model improved the representation of 

the whole hydrological regime across the basin, the agreement between observed and 

simulated peak discharge values saw no change upon calibration. This indicates that the 

benefit of calibration is confined to the objective function used, in this case the KGE, and 

highlights that further model calibration using an objective function that fits the purpose of 

the application (e.g. RMSE of flood peaks or APFB for flood forecasting systems) could be 

worth considering. It is important to reiterate however that thoughtful consideration is 

required if choosing application-specific metrics, with the potential to degrade performance in 

other aspects of the hydrological regime (e.g. bias and flow variability ratios) a concern 

(Mizukami et al., 2019). The relative importance of good performance in the specific target 

metric compared to better performance for a range of metrics should be assessed on a model-

by-model and circumstantial basis, taking into account the needs of potential users. 

Data availability. All of the data and models used in this study were obtained from 

collaborators of the Global Flood Partnership (GFP) and are freely available. Access to these 

sources is mentioned in Sect. 3.2. 
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3.5 Supplementary material  

 

Gauging station information can be found in Table S1 below, with results of the analysis 

between 2004 and 2015 displayed in Figs. S1 and S2. 
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Table S1. Characteristics of the 75 hydrological gauging stations used in the analysis. Station numbers correspond to those in Fig. 1a. Mean observed 
discharge is taken from observed values.  

Station name (number) Country River Drainage 
area 

(Km2) 

Lat Lon Start End Mean Q 
(m3s-1) 

Borja (1) Peru Marañón 114232 
 

-4.45 -77.55 01/01/1997 10/01/2015 5122.614 

San Regis (2) Peru Marañón 356274 
 

-4.45 
 

-73.95 
 

01/01/1997 29/09/2015 
 

17418.04 

Requena (3) Peru Ucayali 346049 
 

-4.75 -73.65 01/07/1996 29/09/2015 11895.5 

Tamshiyacu (4) Peru Solimões  721521 
 

-4.05 -73.15 01/01/1997 31/12/2015 30205.58 
 

Bellavista (5) 
 

Peru Napo 100136 -3.45 -73.05 01/01/1997 29/09/2015 6734.2 

Palmeiras Do Javari (6) Brazil Javari 
 

16256 
 

-5.15 -72.85 01/01/1997 31/12/2015 611.3425 

Foz Do Breu (7) Brazil Jurua 
 

10446 
 

-9.45 -72.75 01/01/1997 31/12/2015 178.0443 

Santa Maria (8) Brazil Curuca 
 

24351 
 

-4.65 -71.45 02/04/1999 22/12/2015 1009.045 

Estirao Do Repouso (9) Brazil Javari 
 

62105 
 

-4.35 -70.95 02/11/1980 31/12/2015 2563.211 

Tabatinga (10) Brazil Peru 874000 
 

-4.25 -69.95 01/01/1997 31/12/2015 36514.11 

Colocacao Caxias (11) Brazil Jutai 
 

10257 
 

-5.55 -69.15 01/01/1997 14/07/2011 476.0549 

Envira (12) Brazil  Tarauaca 
 

48317 
 

-7.45 -70.05 01/01/1997 16/09/2015 1261.317 

Manouel Urbano (13) Brazil Purus 
 

33693 
 

-8.75 -69.15 01/01/1997 30/12/2009 788.6026 

Seringal Sao Jose (14) 
 

Brazil Iaco 10471 
 

-9.75 -68.85 01/01/1997 06/12/2012 232.0125 

Rurrenabaque (15) Bolivia Beni 70000 -14.55 -67.55 01/01/1997 31/12/2015 2189.476 
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Station name (number) Country River Drainage 
area 

(Km2) 

Lat Lon Start End Mean Q 
(m3s-1) 

Pedras Negras (16) Bolivia Guapore 
 

110000 
 

-12.85 -62.95 01/01/1997 31/07/2014 852.545 

Guajara-Mirim (17) Brazil Mamore 609000 -10.75 -65.35 01/01/1997 29/06/2014 7810.131 

Abuna (18) Brazil Madeira 921000 
 

-9.75 -65.35 01/01/1997 29/06/2014 18152.22 

Floriano Peixoto (19) Brazil Acre 
 

33469 
 

-9.05 -67.35 01/01/1997 31/12/2015 692.1766 

Valparaiso (20) Brazil Purus 103285 
 

-8.65 -67.35 01/01/1997 31/12/2015 13832.18 

Seringal Fortaleza (21) Brazil Purus 153016 
 

-7.75 -66.95 01/01/1997 31/12/2015 4003.07 

Fazenda Borangaba (22) 
 

Brazil Pauini 
 

23365 
 

-7.55 -67.55 04/01/1997 31/12/2015 799.6944 

Santos Dumont (23) Brazil Jurua 
 

142646 
 

-6.55 -68.35 01/01/1997 31/12/2015 4304.748 

Barreira Alta (24) Brazil Jutai 
 

35880 
 

-4.25 -67.95 01/01/1997 14/04/2009 1641.192 

Sao Paulo De Olivenca (25) Brazil Amazon 990781 
 

-3.45 -68.75 01/01/1997 30/12/2011 47554.85 

Santo Antonio Do Ica (26) Brazil Amazon 1134540 
 

-3.15 -67.95 01/01/1997 26/02/2014 56355.19 

Porto Seguro (27) Brazil Jutai 
 

64400 
 

-3.35 -67.55 01/01/2008 31/12/2015 2548.144 

Estirao Da Santa Cruz (28) 
 

Brazil Tefe 
 

13708 
 

-4.35 -65.25 01/01/1997 31/12/2015 571.2913 

Bacaba (29) Brazil Tapaua 
 

38270 
 

-6.35 -64.95 01/01/1997 31/12/2015 1668.033 

Canutama (30) Brazil Purus 
 

230012 
 

-6.55 -64.45 01/01/1997 31/12/2015 6478.216 

Labrea (31) Brazil Purus 226351 
 

-7.25 -64.75 01/01/1997 31/12/2015 5639.943 

Porto Velho (32) Brazil Madeira 976000 -8.75 -63.95 01/01/1997 31/12/2015 18485.47 
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Station name (number) Country River Drainage 
area 

(Km2) 

Lat Lon Start End Mean Q 
(m3s-1) 

Santa Isabel (33) Brazil Candeias 
 

12600 
 

-8.75 -63.75 01/01/1997 29/06/2014 330.8341 

Sitio Bela Vista (34) Brazil Ji-Parana 16100 
 

-11.65 -61.15 01/01/1997 30/07/2014 381.4905 

Fontanilhas (35) Brazil Juruena 
 

55900 
 

-11.45 -58.35 01/01/1997 29/06/2014 1359.172 

Porto Dos Gauchos (36) Brazil Arinos 37100 -11.55 -57.45 01/01/1997 30/05/2014 688.1856 

Porto Roncador (37) Brazil Teles Pires 10800 
 

-13.55 -55.35 01/01/1997 30/05/2014 249.8181 

Cachoeirao (38) Brazil Teles Pires/Sao 
Manuel 

34600 
 

-11.55 -55.65 01/01/1997 30/07/2014 858.4991 

Humboldt (39) Brazil Aripuana 15200 
 

-10.25 -59.45 01/01/1997 29/06/2014 319.7378 

Leontino (40) Brazil Guariba 
 

16300 
 

-7.85 -60.55 01/01/1997 30/12/2011 375.8513 

Boca Do Guariba (41) Brazil Aripuana 
 

70100 -7.75 -60.55 01/01/1997 30/12/2011 1403.749 

Fazenda Boa Lembranca (42) Brazil Roosevelt 
 

59400 
 

-7.65 -60.75 01/01/1997 30/08/2011 1527.78 

Nova Esperanca (43) Brazil Marmelos 
 

26200 
 

-6.55 -61.75 01/01/2009 27/02/2014 973.4268 

Manacapuru (44) 
 

Brazil Amazon 2147736 
 

-3.35 -60.65 01/01/1997 31/12/2015 105720 

Jatuarana (45) Brazil  Amazon 2854286 
 

-3.05 -59.65 01/01/1997 30/01/2015 126994.8 

Barra Do Sao Manuel (46) Brazil Tapajos 333000 
 

-7.35 -58.15 01/01/1997 30/03/2014 7736.416 

Tres Marias (47) Brazil Teles Pires 138000 
 

-7.65 -57.95 01/01/1997 30/03/2014 3663.747 

Santa Rosa (48) Brazil Teles Pires 131000 
 

-8.85 -57.45 03/06/2005 30/03/2013 3646.457 

Indeco (49) Brazil Teles Pires 52200 -10.15 -55.55 01/01/1997 09/12/2013 1193.669 
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Station name (number) Country River Drainage 
area 

(Km2) 

Lat Lon Start End Mean Q 
(m3s-1) 

Cajueiro (50) Brazil Curua 
 

35213 
 

-5.85 -54.55 01/01/1997 08/05/2011 784.37 

Itaituba (51) Brazil Tapajos 
 

458000 
 

-4.25 -55.95 01/01/1997 31/12/2015 11376.96 

Pedra Do O (52) Brazil Iriri 
 

123827 
 

-4.45 -53.95 01/01/1997 30/07/2012 2413.806 

Altamira (53) Brazil Xingu 446203 
 

-3.35 -52.15 01/01/1997 29/04/2014 7736.717 

Sao Francisco (54) Brazil Jari 51343 
 

-0.55 -52.55 01/01/1997 21/03/2014 1218.271 

Arapari (55) Brazil Maicuru 17072 
 

-1.85 -54.45 01/01/1997 27/02/2014 127.2518 

Boca Do Inferno (56) Brazil Curua 
 

20803 
 

-1.45 -54.95 01/01/1997 29/09/2013 192.2409 

Óbidos (57) Brazil Amazon 4680000 
 

-1.95 -55.55 01/01/1997 31/12/2015 178193.9 

Garganta (58) Brazil Trombetas 
 

37910 
 

-0.75 -56.85 01/01/1997 29/04/2014 1493.961 

Aldeia Wai-Wai (59) Brazil Mapuera/Urucurina 21400 
 

-0.65 -58.05 01/01/1997 27/02/2013 664.3051 

Cachoeira Morena (60) Brazil Uatuma 
 

20394 
 

-2.15 -59.35 02/01/2005 30/05/2014 673.3568 

Base Alalau (61) Brazil Alalau 
 

7080 
 

-0.65 -61.35 01/01/1997 30/05/2014 245.8977 

Caracarai (62) Brazil Branco 
 

124980 
 

1.85 -61.05 01/01/1997 31/12/2015 3170.343 

Fe E Esperanca (63) Brazil Mucajai 
 

13658 
 

2.85 -61.45 01/01/1997 29/04/2014 348.695 

Fazenda Cajupiranga (64) 
 

Brazil Uraricoera 
 

35727 
 

3.45 -61.15 01/01/1997 30/03/2014 635.5902 

Uaicas (65) Brazil Uraricoera 16065 
 

3.45 -63.15 01/01/1997 27/02/2014 602.7468 
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Station name (number) Country River Drainage area 
(Km2) 

Lat Lon Start End Mean Q 
(m3s-1) 

Posto Ajuricaba (66) Brazil Demeni 
 

14756 
 

0.95 -62.65 01/01/1997 29/04/2014 550.2058 

Serrinha (67) Brazil Negro 279945 
 

-0.45 -64.95 01/01/1997 31/12/2015 16845.52 

Acanaui (68) Brazil Caqueta/Japura 242259 
 

-1.85 -66.65 01/01/1997 31/12/2015 14399.93 

Jusante Da Cachoeira Do Caju (69) 
 

Brazil Curicuriari 
 

10228 
 

-0.25 -67.05 01/01/1997 30/03/2014 937.4047 

Sao Felipe (70) Brazil Negro 110862 
 

0.45 -67.35 01/01/1997 29/04/2014 8314.548 

Cucui (71) Brazil Negro 
 

61781 
 

1.35 -66.85 01/01/1997 29/04/2014 5113.101 

Missao Icana (72) Brazil Icana 22282 
 

1.15 -67.65 01/01/1997 30/03/2014 1902.729 

Taraqua (73) Brazil Vaupes 44732 
 

0.15 -68.55 01/01/1997 29/04/2014 2665.905 

Uaracu (74) Brazil Vaupes 40506 
 

0.45 -69.15 01/01/1997 29/11/2011 2415.104 

Vila Bittencourt (75) Colombia Caqueta/Japura 197136 
 

-1.35 -69.45 01/01/1997 31/12/2015 2188.119 
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Figure S1. Full KGE scores at 75 hydrological gauging stations for all simulations (2004-2015). 

Values greater than 0.75 are considered to indicate good performance (i.e. dark blue circles). 
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Figure S2. Spearman ranked correlation coefficients for observed against simulated annual 

maximum discharge at 75 hydrological gauging stations for all simulations (2004-2015). 

Values exceeding 0.6 are considered skilful (i.e. blue shapes). Number of overlapping years of 

data between observations and simulations are denoted by different shapes. A triangle 

represents 5-9 years, a square 10-14 years, and a circle 15-19 years of overlapping data. 
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Chapter 4 

Influence of ENSO and tropical Atlantic climate variability 
on flood characteristics in the Amazon Basin 

 
In Chapter 2, one of the main conclusions called for an extended climate variability analysis of 

flood characteristics which included, a) a basin wide approach, b) the use of several climate 

indices, including the ability to distinguish between central and eastern Pacific ENSO events, 

and c) a study that focuses on the timing, and duration of high flows in addition to flood 

magnitude. While results from Chapter 3 highlighted the improved performance of GloFAS at 

detecting peak river flows when ERA5 was used as the precipitation input. Thus, to assess how 

phases of large-scale climate variability impacts flood characteristics (i.e. magnitude, timing, 

and duration of flows) in the Amazon, a basin wide analysis is undertaken for both observed 

and simulated data.  

This paper has been published as a research article in the journal of Hydrology and Earth 

System Sciences (HESS), with the following reference: 

Towner, J., Ficchí, A., Cloke, H. L., Bazo, J., Coughlan de Perez, E., and Stephens, E. M.: 

Influence of ENSO and tropical Atlantic climate variability on flood characteristics in the 

Amazon basin, Hydrol. Earth Syst. Sci., 25, 3875–3895, https://doi.org/10.5194/hess-25-3875-

2021, 2021. 

© Author(s) 2021. This work is distributed under the Creative Commons Attribution 4.0 

License. This is an open access article under the terms of the Creative Commons Attribution 

License, which permits use, distribution, and reproduction in any medium, provided that the 

original work is properly cited. 

The contributions of the authors of this paper are as follows: J.T, A.F, E.M.S, and H.L.C 

designed the analysis, with A.F providing the original methodology and R scripts for the flood 

timing section of the analysis. J.T undertook all of the analysis, produced all figures, in addition 

to writing the research paper. A.F, E.M.S, H.L.C, J.B, and E.C supervised the research, provided 

important advice, and commented on the manuscript. Overall, 90% of the research and 85% of 

the writing of the manuscript was undertaken by J.T.  

Abstract. Flooding in the Amazon Basin is frequently attributed to modes of large-scale 

climate variability, but little attention is paid to how these modes influence the timing and 
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duration of floods despite their importance to early warning systems and the significant 

impacts that these flood characteristics can have on communities. In this study, river discharge 

data from the Global Flood Awareness System (GloFAS 2.1) and observed data at 58 gauging 

stations are used to examine whether positive/negative phases of several Pacific and Atlantic 

indices significantly alter the characteristics of river flows throughout the Amazon Basin 

(1979–2015). Results show significant changes in both flood magnitude and duration, 

particularly in the north-eastern Amazon for negative ENSO years when the SST anomaly is 

positioned in the central tropical Pacific. This response is not identified for the eastern Pacific 

index, highlighting how the response can differ between ENSO types. Although flood 

magnitude and duration were found to be highly correlated, the impacts of large-scale climate 

variability on these characteristics are non-linear; some increases in annual flood maxima 

coincide with decreases in flood duration. The impact of flood timing however does not follow 

any notable pattern for all indices analysed. Finally, observed and simulated changes are found 

to be much more highly correlated for negative ENSO years compared to the positive phase, 

meaning that GloFAS struggles to accurately simulate the differences in flood characteristics 

between El Niño and neutral years. These results have important implications for both the 

social and physical sectors working towards the improvement of early warning action systems 

for floods. 

4.1 Introduction 
 

Flooding in the Amazon basin is frequently attributed to positive and negative phases of large-

scale climate variability, such as the El Niño–Southern Oscillation (ENSO), and to anomalous 

sea surface temperatures (SSTs) in the tropical Atlantic Ocean (Richey et al., 1989; Ronchail et 

al., 2005a; Marengo et al., 2012, 2013; Satyamurty et al., 2013; Espinoza et al., 2013, 2014, 

2019; Marengo and Espinoza, 2016; Barichivich et al., 2018). Such phases are considered to 

promote atmospheric anomalies (e.g. zonal winds, 850 hPa geopotential height and moisture 

transport flux), which enhance or weaken moisture and humidity fluxes over the Amazon 

basin affecting rainfall and river discharge regimes and, therefore, influencing flood likelihood 

(Espinoza et al., 2013, 2014). For instance, flooding is consistently linked to La Niña conditions 

and to a configuration of cold (warm) SST anomalies in the tropical north (south) Atlantic 

Ocean (Marengo and Espinoza, 2016). Conversely, droughts are commonly attributed to 

El Niño events and to warm SST anomalies in the tropical North Atlantic (TNA) and associated 

with a sustained northward position of the inter-tropical convergence zone (ITCZ; Zeng et al., 

2008; Tomasella et al., 2011). 
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The impact of different climatic phases tends to cause a similar response for both rainfall and 

river discharge (Towner et al., 2020), though the relationship between flooding and rainfall 

can be non-linear (Stephens et al., 2015; Coughlan de Perez et al., 2017) with significant 

differences identified between the mean state of the two variables in response to the same 

climate phase (Dettinger and Diaz, 2000). An example of this for the Amazon is detailed by 

Marengo et al. (2012) in a comparison study of the 1989, 1999 and 2009 floods, whereby the 

worst flood event did not correspond with the largest rainfall anomaly (mm−1 d−1). It is 

therefore important to consider the effect of climate phases for river discharge specifically. 

To date, the scientific community has mainly focused on how anomalous SST conditions affect 

the magnitude of rainfall or river discharge (Ronchail et al., 2002, 2005b; Espinoza et al., 2009; 

Yoon and Zeng, 2010; Yoon, 2016), despite the importance of other characteristics such as 

flood timing and duration. In early 2018, the Red Cross Climate Centre (RCCC) led an inter-

agency assessment mission to establish how communities living within the Peruvian Amazon 

floodplain are affected by exceptional flood events. Impacts of flooding (e.g. lack of food, fresh 

water and medical supplies) have been associated with the duration of inundation as opposed 

to simply the magnitude of flood extent by community members. For example, a study by 

Langill and Abizaid (2019) provided direct feedback from community members within the 

Peruvian Amazon when classifying types of flood events and presented both positive and 

negative feedback for high, long, early and late flood events. These interviews provided real-

life examples of the significance of each flood type. For instance, long floods were found to 

have a significant toll on agricultural and food security (e.g. manioc and plantains can only 

survive short flood periods), while also providing more food and income due to a longer fishing 

season. These works follow from previous studies demonstrating that the interannual 

variability of the Amazon wet season (e.g. precipitation onset date and timing of peak river 

flows) has important consequences for fisheries, hydroelectricity production and transport, 

with irregular inundation periods known to influence the length and productivity of the 

growing season (Marengo et al., 2001; Schöngart and Junk, 2007; Coomes et al., 2016; 

Ronchail et al., 2017; Langill and Abizaid, 2019). Finally, the timing of peak river flows in 

coinciding tributaries is known to control the magnitude of the travelling flood wave 

(Tomasella et al., 2010; Ronchail et al., 2006) and is commonly associated with exceptional 

flood events (e.g. 2012 in Peru; Tomasella et al., 2011; Marengo et al., 2012; Espinoza et al., 

2013). Therefore, understanding how variations in large-scale climate features impact flood 

timing and duration is also of significant importance in the Amazon basin and for early warning 

system (EWS) protocols, such as forecast-based financing (FbF; Coughlan de Perez et al., 2017). 
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An EWS is a procedure that utilises climate forecasts and observations to predict and provide 

early warning information of natural hazards before they materialise, allowing the 

implementation of humanitarian actions (e.g. earlier evacuation of people likely to be flooded) 

before rather than after an event has occurred (Coughlan de Perez et al., 2017). 

Previous studies examining the seasonality of the Amazon wet season have found a link 

between the onset and end dates of rainfall and SST anomalies (e.g. Fu et al., 2001; Liebmann 

and Marengo, 2001; Marengo et al., 2001; Yin et al., 2014), though the period of analysis is 

often restricted to before the millennium, focuses only on rainfall and is predominately for the 

Brazilian Amazon. Using rainfall pentads, Marengo et al. (2001) found that when SSTs in the 

Pacific (south tropical Atlantic) are anomalously warm (cold) there is a delayed onset and early 

withdrawal of the Amazon wet season. This configuration of SSTs acts to delay the seasonal 

migration of convection from the Northern to the Southern hemisphere (i.e. the ITCZ 

migration). The relationship was found to be the strongest in the northern Amazon and 

towards the mouth of the Amazon River, with little association in the southern Amazon. This is 

supported by Fu et al. (1999) who found that land surface heating has a stronger influence on 

wet season length in southern catchments relative to SSTs. Finally, Liebmann and 

Marengo (2001) find that the association with SSTs is stronger during the transitional period 

between the wet and dry seasons and that for areas that exhibit strong correlations, SSTs 

influence the timing of rainfall in a similar fashion to the correlation with seasonal rainfall 

totals. Thus, the prediction of seasonal rainfall totals could potentially be used where SSTs are 

known to influence the onset of the wet season in global climate models (GCMs). 

4.1.1 Objective and research questions  
 

The objective of this work is two-fold. The first and main objective is to establish whether 

positive or negative phases of several climate indices significantly alters the magnitude, 

timing, and duration of floods throughout the Amazon Basin. To achieve this objective, we 

consider the following research questions.  

Do positive/negative phases of different climate indices significantly alter:  

a) the magnitude of annual maximum river flows, 

b) the timing of annual maximum river flows, 

c) flood duration (i.e. days spent above the 95th percentile of the climatology),  
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relative to years in which the SSTs are considered neutral? The second objective is to examine 

and discuss in greater detail the results for particular areas of the basin to better understand 

the response of flood characteristics to climate variability and how the results from the two 

datasets compare (i.e. observations and GloFAS 2.1). 

4.2 Data and methods  
 

We first define the climatological baseline for the Amazon basin flow regime, calculating the 

average magnitude and timing of peak river flows in addition to the mean flood duration 

(i.e. the number of days that river flows exceed the 95th percentile of the climatology) over 

the entire 36-year period (Fig. 1). For the calculation of the average flood timing, circular 

statistics are used. We use both a hydrological reanalysis and observed gauged dataset to 

enable the comparison and evaluation of the ERA5 reanalysis dataset, which allows for 

complete coverage over the full period of analysis without gaps and focuses on the natural 

variability of river flow whereby human interventions (e.g. rapid land changes such as 

deforestation from forest to cropland and damming) that impact the observations are not 

modelled. 

4.2.1 Observed streamflow 
 

Fifty-eight station time series of observed river discharge throughout the Amazon basin are 

obtained from the national institutions responsible for the hydrological monitoring in 

countries situated within the Amazon basin. These data are sourced through the ORE-HYBAM 

observation service (see https://hybam.obs-mip.fr/; last access: 27 July 2020) in association 

with the Institute of Research and Development (IRD) or directly from the national services. 

Daily water levels are converted to river discharge using stage and rating curve measurements, 

determined using an acoustic Doppler current profiler (ADCP). The locations and details of 

each gauging station can be found in Fig. S1 and Table S1 in the Supplement, respectively. 

Stations are selected based on the following criteria: 

• At least 18 years’ worth of data over the 36-year analysis period (1979-2015), 

• No more than 5 % of missing data in each hydrological year (i.e. Oct-Sep), 

• Have at least five hydrological years per climate phase of ENSO and tropical Atlantic 

variability. 
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4.2.2 GloFAS 2.1 streamflow 
 

A global daily reanalysis of river discharge is provided at a resolution of 0.1∘ (∼32 km) for the 

36-year analysis period (1979–2015). The data are derived from the operational Global Flood 

Awareness System, version 2.1 (GloFAS; Alfieri et al., 2013; Harrigan et al., 2020), where runoff 

output from the H-TESSEL module of the European Centre for Medium-Range Weather 

Forecasts (ECMWF), integrated forecast system (IFS; cycle 41r2), is coupled to the calibrated 

LISFLOOD routing model (van Der Knijff et al. (2010); see Hirpa et al. (2018) for details on 

calibration) to produce deterministic estimates of historic river flows. All of the 58 stations 

were used within the calibration of Lisflood. Calibration was carried out on parameters 

controlling the time constants in the upper and lower zones, percolation rate, groundwater 

loss, channel Manning's coefficient, the lake outflow width, the balance between normal and 

flood storage of a reservoir, and the multiplier used to adjust the magnitude of the normal 

outflow from a reservoir (Towner et al., 2019). Meteorological input is provided by ERA5, the 

fifth generation of climate reanalysis at the ECMWF, succeeding ERA-Interim. ERA5 runs at a 

high spatial resolution (∼31 km) and covers the period from 1950 to present, providing a long 

and consistent record of discharge and meteorological variables at each grid cell (Hersbach et 

al., 2018; Zsoter et al., 2019). Towner et al. (2019) showed the potential benefits of using ERA5 

to force global hydrological models (GHMs) to produce river discharge time series that 

accurately represent annual maximum river flows in the Amazon basin. Reanalysis data are 

extracted at the locations of the observed gauging stations for direct comparisons. For access 

to GloFAS datasets, see http://www.globalfloods.eu/ (last access: 17 July 2019). 

4.2.3 Land and atmospheric data 
 

Oceanic and atmospheric features are analysed using the ERA5 climate reanalysis product of 

the ECMWF, produced on latitude–longitude grids at 0.25∘×0.25∘ resolution and is available 

from 1950 to present for the entire globe (Hersbach et al., 2020). To describe the average 

conditions during particular climate phases (e.g. negative ENSO), averaged monthly data on 

single levels are obtained for SST anomalies and total rainfall from 1979 to 2015 for the 

October–November–December (OND) season. These data were obtained from the Copernicus 

climate data store (see https://cds.climate.copernicus.eu/; last access: 12 October 2020). 
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4.2.4 Hydroclimatic drivers and modes of climate variability 
 

Numerous hydroclimatic drivers have been identified to cause anomalous rainfall and river 

discharge conditions in the Amazon basin (Towner et al., 2020), with ENSO and tropical 

Atlantic SST variability considered to be the most influential (Marengo, 1992; Ronchail et al., 

2005b; Yoon and Zeng, 2010; Espinoza et al., 2019; Jimenez et al., 2019). Several indices of 

ENSO are available, differing in spatial location, variable type and on the number of variables 

used. Wolter and Timlin (1998, 2011) express favour towards the use of indices that 

incorporate a range of atmospheric and oceanic variables over the tropical Pacific, such as the 

multi-variate ENSO index (MEI), which is described to provide a more complete and flexible 

description of ENSO. More recently, Takahashi et al. (2011) provided two new tropical Pacific 

SST indices, the central and eastern Pacific indices (hereafter CP and EP), estimated as the first 

two empirical orthogonal functions (EOFs) of monthly SST anomalies of the tropical Pacific. 

The CP and EP indices have the advantage of having a poor linear relationship amongst 

themselves and have been found to have different impacts on South American rainfall (Sulca 

et al., 2018). In this study, we investigate the influence of four different ENSO indices in 

addition to two tropical Atlantic SST modes (i.e. TNA and TSA; Enfield et al., 1999) on the 

magnitude, timing and duration of high river flows in the Amazon basin. The ENSO indices 

used include: the conventional ENSO index in the Niño 3.4 region (hereafter EN3.4), the 

CP and EP indices (Takahashi et al., 2011) and the MEI v.2 (Wolter and Timlin, 2011), which is 

based on the original MEI index (Wolter and Timlin, 1993). Correlations between most ENSO 

indices are strong, particularly for boreal winter (Wolter and Timlin, 2011), with the exception 

of the CP and EP indices (Sulca et al., 2018), but multiple options have been included to 

provide a more comprehensive evaluation. Other indices such as the Madden–Julian 

Oscillation (MJO), Pacific decadal oscillation (PDO), and Atlantic multidecadal oscillation (AMO) 

have been linked to wetter or drier conditions across South America (Shimizu et al., 2017; 

Towner et al., 2020), but have not been included in this study owing to the frequencies at 

which these indices operate (i.e. intraseasonal, decadal or multi-decadal for the MJO, PDO and 

AMO, respectively). The Pacific meridional mode (PMM), which has been linked to increased 

rainfall in June–July–August, has not been included due to its impact being significant only 

during the dry season (Zhang et al., 2017). 

 
We use a quantile-based (tercile) approach as adopted by Ficchí and Stephens (2019) for Africa 

to categorise negative, neutral and positive modes of each climate index. Tercile categories 

are divided into positive (upper 33 %), neutral (middle 33 %) and negative (bottom 33 %) 
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values and thus each tercile is represented by 12 years' worth of data. Conventional ENSO 

events (i.e. El Niño or La Niña) are classified using the Oceanic Niño Index (ONI) from the 

NOAA Climate Prediction Center (CPC). The dataset consists of monthly mean SST anomalies 

obtained from the NOAA ERSST.v5 dataset for the EN3.4 region (170 to 120∘ W, 5∘ N to 5∘ S; 

Huang et al., 2017). In this study an El Niño (La Niña) event is defined when the average August 

to February monthly SST anomaly is in the top (bottom) 12-year averages of the entire 36-year 

dataset. The classification of years for each phase for each index can be found in Tables S2–S7 

in the Supplement. The period from August to February was chosen as ENSO events tend to 

span across 2 years, developing around boreal spring and typically peak in boreal winter 

(Emerton et al., 2017), thus aligning with the Amazon wet season and preceding peak river 

flows (Fig. 1b). Events for the CP and EP indices are categorised using monthly anomalies from 

the ERSST v3b dataset (see http://www.met.igp.gob.pe/datos/ EC.txt; last access: 

6 August 2020) using the same methodology. The MEI index is classified using a bi-monthly 

time series of the leading combined empirical orthogonal function (EOF) of five variables (sea 

level pressure, SST, zonal and meridional components of the surface wind and outgoing 

longwave radiation (OLR)) over the tropical equatorial Pacific basin (30∘ S–30∘ N and 100∘ E–

70∘ W), with events defined similarly to the EN3.4, CP and EP indices but using bi-monthly 

values (i.e. August/September to January/February). 

Tropical Atlantic positive and negative phases are classified using the TNA and TSA indices 

(Enfield et al., 1999), which are based on monthly SST data from the HadISST and 

NOAA 1×1 datasets. SST data are averaged for the region from 5.5 to 23.5∘ N and 15 to 57.5∘ W 

(0∘ to 20∘ S and 10∘ E to 30∘ W) for the TNA (TSA). Positive and negative phases are defined as 

in the ENSO indices (i.e. top and bottom 12 August–February averages for the upper and lower 

terciles). TNA SST variability is known to be modulated by conditions in the tropical Pacific and 

lags by 4 to 6 months, usually peaking in boreal spring (Enfield, 1996; García-Serrano et al., 

2017). Amazon rainfall and discharge peaks can appear to “lead” North Atlantic SSTs but were 

found to be “in phase” with the Amazon wet season when removing the influence of ENSO 

(Yoon and Zeng, 2010). Builes-Jaramillo et al. (2018) postulate that the relationship between 

streamflow and SSTs in TNA may be a two-way feedback system whereby hydrological 

conditions in the Amazon can influence future states of SSTs in the Atlantic Ocean, and thus 

the TNA-streamflow teleconnection is still of interest despite flood peaks preceding the 

development phase of a positive or negative event. 
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4.2.5 Flood peak magnitude 
 

Owing to the Amazon spanning across both the Northern and Southern hemispheres, the 

seasonality of rainfall varies across the basin (Espinoza et al., 2009). Throughout the majority 

of the Amazon, the wet season typically spans between December and April (Yoon and Zeng, 

2010), with flood peak occurrences generally taking place between February and July (Fig. 1b). 

Thus, for each gauging station or grid point we extract annual maximum river flows over a 

hydrological year starting from October to the following September. The difference between 

the mean of positive and negative phases (e.g. positive years of ENSO) relative to neutral 

conditions are calculated and expressed as a percentage to allow comparisons to be drawn 

between gauging stations. 

4.2.6 Flood peak timing 
 

From the set of extracted values of annual maximum river flows from each river point, we 

calculate the average seasonality of peak flows (i.e. the timing of peak river flow occurrence) 

and their variability using the Burn's vector (Burn, 1997), which is an index based on circular 

statistics (Mardia, 1972). The vector components represent the average timing of peak river 

flows (i.e. date of occurrence) and its variability (r) as polar coordinates on a unit circle (Burn, 

1997). The date of occurrence is defined by converting the Julian date (where 1 January is 

day 1 and 31 December is day 365) of each flood peak i to an angular value in radians to then 

calculate the circular mean of all annual peaks. The variability of flood timing (r) ranges from 0 

to 1, where r=0 represents a highly variable regime, with flood peaks occurring evenly 

throughout the year, while r=1 indicates a regime where flood peaks occur consistently at the 

same time of the year. Therefore, higher values of r represent lower variability, which is 

expected in larger rivers in the Amazon, as the delay between peaks in rainfall and river 

discharge is large. By contrast, lower values of r represent higher variability, which could be 

associated with rivers where climate phases are found to influence the timing between 

individual years (Ficchí and Stephens, 2019). We calculate the difference between the average 

timing of flood peaks for positive and negative phases against neutral conditions using circular 

statistics. 
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4.2.7 Flood duration  
 

For each gauging station or grid point, we consider the duration of flooding as the number of 

days (not consecutive) spent above the 95th percentile of the climatology. Although the 

95th percentile does not necessarily represent flooding, this threshold has been chosen to 

better understand how anomalous oceanic conditions can influence the length of high-water 

periods throughout the basin, which have been found to have both positive and adverse 

effects on community member livelihoods (Langill and Abizaid, 2019). Like for flood magnitude 

and timing, the average number of days spent above the 95th percentile each year for positive 

and negative phases are compared against neutral conditions. 

4.2.8 Significance testing  
 

To test for significance, we apply a non-parametric bootstrapping technique 

(10 000 replicates) to provide a distribution for the average magnitude, timing and duration of 

flood peaks in each climate phase. Here, each 12-year time series for each climate phase is 

resampled 10 000 times with replacement to provide a bootstrap distribution in which the 

mean is taken. The difference in the means of the distributions of each climate phase is then 

calculated, with significance determined using the 95 % confidence interval (i.e. if the 

confidence interval includes 0, then we can conclude that there is no significant change 

between the climate phases and we fail to reject the null hypothesis). 

4.3 Results and discussion  
 

There is widespread agreement between the gauged and reanalysis climatology (i.e. 36 years) 

of annual maximum river flows, flood peak timings and its variability (Fig. 1). Annual means of 

peak river flows are similar between the two datasets (ρ=0.9), with the largest flows 

constrained to the main Amazon River and towards the junctions of its major tributaries, such 

as the Madeira River stemming from the south (Fig. 1a and d). A strong regional pattern in the 

timing of annual flood peaks is evident between the northern and southern halves of the basin 

owing to the differing precipitation regimes in association with the alternative warming 

between the Northern and Southern hemispheres (Espinoza et al., 2009). Stations situated in 

the southern Amazon typically experience peak river flows between February and April, while 

stations in the northern half generally peak between May and July (Fig. 1b and e). 
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Yearly annual maximums from the GloFAS 2.1 dataset tend to peak slightly earlier (9 d on 

circular average), particularly in southern tributaries where a large quantity of dams exist 

(Towner et al., 2019) and along parts of the main Amazon River (Fig. 1e). Not all dams and 

reservoirs across the globe have been included within GloFAS (see Fig. 2 in Zajac et al., 2017), 

meaning that the flood timing may differ from the observations in the simulated dataset 

(Ficchí and Stephens, 2019). In addition, GloFAS does not model floodplain–river interactions 

and instead mimics them by using a simple loss function. As such, floodplain storage and 

interactions are known to be one of the main sources of uncertainty in the model and is 

particularly prominent in large river basins like the Amazon causing flood peaks to occur too 

early (Alfieri et al., 2013). The timing of peak river flows is highly predictable at most stations, 

with a median Burn's vector variability component (r) of 0.92 and 0.93 across all stations for 

the observed and reanalysis dataset, respectively (Fig. 1c and f). However, flood timing 

variability is greater at two gauging stations (45 and 51) situated towards the north of the 

basin, with r values as low as 0.62 within the observed dataset. 

Figure 1. 36-year climatology of observed (top row) and GloFAS 2.1 streamflow reanalysis 

(bottom row) datasets (1979- 2015). For (a, d) mean annual maximum river flows, (b, e), 

average timing of peak flow occurrences, (c, f) interannual variability of peak flow timing. 



 

132 

 

 

Hereafter, the results are broken down to match the research questions outlined in 

Sect. 4.1.1, with reference to individual gauging stations denoted by the station numbers in 

italics as indicated in Fig. S1 and Table S1 in the Supplement. 

4.3.1 Flood magnitude  

4.3.1.1 ENSO 
 

Out of the 58 gauging stations, 48 (51) observe a decrease in annual maximum river flows 

during El Niño years relative to neutral conditions, with a median deficit of 7 % (13 %) across 

stations that acknowledged a reduction in peak river flows for the observed (GloFAS 2.1) 

dataset (Fig. 2a and e). Of these, 11 (17) are statistically significant for the 

observed (GloFAS 2.1) dataset, with GloFAS 2.1 observing more significant results in the north-

west of the basin. Decreases in peak river flows are consistent with what has been previously 

identified in the literature, with drier conditions and droughts more common when SSTs in the 

equatorial Pacific are anomalously warm (Marengo, 1992; Foley et al., 2002; Ronchail et al., 

2005b; Espinoza et al., 2009; Marengo et al., 2018; Jimenez et al., 2019). SST anomalies are 

created via the slowdown of the trade winds inducing anomalies in the east–west Walker 

circulation, whereby convection is more prominent over the central equatorial Pacific and 

subsidence that inhibits rainfall is found over most of central and eastern locations of the 

Amazon basin (Panisset et al., 2018). The largest decreases are acknowledged in central to 

south-western regions (Fig. 2a and e), particularly along the Purus River (13–15), where 

Ronchail et al. (2005b) previously noted decreases of river discharge up to 25 % during El Niño 

phases (based on the period 1981–2002). A similar pattern is observed for the MEI index 

(Fig. 2c and g), with the exception of several stations (2, 4, 5, 9, 11, 32 and 34) situated along 

and near to the main stem of the Solimões-Amazon River. Here, the percentage change is 

relatively small for MEI-based positive years (mainly between −5 % and 5 %; grey circles), with 

no significant findings despite the EN3.4 and MEI indices differing by just 2 years for their 

positive phases (see Tables S2 and S3 in the Supplement). The reasoning for this is due to peak 

river flows being higher for the neutral years of the EN3.4 index in comparison to neutral years 

of the MEI index. When taking the difference between MEI positive and EN3.4 neutral years, 
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the median across the aforementioned stations goes from −1 % to −5 %, with slightly higher 

peak river flows found for the MEI positive index relative to the EN3.4 positive index. 

The impact of La Niña on flood peaks is not symmetric, nor as strong as El Niño at most 

gauging stations for all of the ENSO indices, including the CP and EP, particularly in central 

locations of the basin (Figs. 2b, d and 3b, d). Typically, above normal river flows and flooding in 

parts of the north-western Amazon are associated with cooler than usual SSTs in the 

equatorial Pacific Ocean (Marengo et al., 2012; Espinoza et al., 2013; Espinoza et al., 2014). 

These conditions favour a configuration of positive 850-hPa geopotential heights anomalies 

which maintain a strong humidity flux convergence over the Amazon (see Espinoza et al., 

2013), and a westward displacement of the Walker Circulation, whereby its ascending limb is 

situated over the Amazon Basin, as opposed to the Pacific Ocean, increasing rainfall totals 

(Satyamurty et al., 2013). However, a median deficit of  2 % (8 %) are observed for peak river 

flows during the cold phase of ENSO for observed  (GloFAS 2.1), with the majority of the basin 

witnessing a decrease relative to neutral years for GloFAS 2.1 (Figs. 2b, f). Tributaries in the 
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Figure 2. Percentage change of observed and simulated mean annual peak river flows between 

different phases of the EN3.4 and MEI indices, for (a, c, e, g) positive with respect to neutral 

years and (b, d, f, h) negative with respect to neutral years. Top row represents changes for 

observations, bottom row shows changes for GloFAS 2.1 streamflow reanalysis data. Pink 

(green) points represent where the average annual peak flow decreases (increases). Significant 

results at the 95 % confidence level are denoted using a square (i.e. p<0.05). 
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north-eastern Amazon stand out for negative ENSO years, with significant increases in annual 

flood peaks for three out of four of the ENSO indices (EN3.4, MEI, and CP), for both datasets 

(Figs. 2 and 3). The most notable increases are observed at the Arapari (39) and Boca Do 

Inferno (40) gauging stations, with an average increase of  > 60 % at both stations for EN3.4 

(Fig. 2b). These findings in the northeast have been previously identified for both rainfall 

(Ronchail et al., 2002) and river discharge (Ronchail et al., 2005b), who also found lower 

discharge levels during La Niña throughout the southern Amazon.  

 No wet signal is found in the north-eastern Amazon basin for observed negative EP phases 

(Fig. 3d), in contrast to what was identified for the negative phases of the other ENSO indices 

(i.e. EN3.4, MEI and CP). This response was also identified for rainfall (Fig. 12), indicating that 

the wet response in the north-east is restricted to years when the cooling of tropical Pacific 

SSTs is constrained to the central equatorial Pacific. Observing Fig. 3c (i.e. positive EP), the 

typical drying trend associated with warm SST anomalies in the tropical Pacific is shifted 
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Figure 3. Percentage change of observed and simulated mean annual peak river flows between 

different phases of the CP and EP indices, for (a, c, e, g) positive with respect to neutral years 

and (b, d, f, h) negative with respect to neutral years. Top row represents changes for 

observations, bottom row shows changes for GloFAS 2.1 streamflow reanalysis data. Pink 

(green) points represent where the average annual peak flow decreases (increases). Significant 

results at the 95 % confidence level are denoted using a square (i.e. p <0.05). 
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further towards the north-eastern Amazon showing the opposite pattern to the negative 

EN3.4 phase in this region. This could potentially be associated with the descending limb of 

the Walker circulation being displaced further east in response to the eastward shift of 

anomalously warm SSTs in EP El Niño years (Alizadeh-Choobari, 2017). The positive CP phase 

(Fig. 3a) shows a similar pattern to EN3.4 (Fig. 2a), as expected owing to them occupying 

similar spatial locations across the equatorial Pacific and differing by just one year for their 

warm phases (see Tables S2 and S4 in the Supplement). However, the number of significant 

values is notably less (3 compared to 11), with largest differences found along and near the 

Amazon River in Brazil. The negative CP phase (Fig. 3b) is almost identical to the negative 

EN3.4 index (Fig. 2b) with a handful of stations showing increased (decreased) peak flows in 

the north-eastern (south-eastern) basin, which is also shown for GloFAS 2.1 (Figs. 2f and 3f). 

4.3.1.2 Tropical Atlantic  
 

For positive TNA years, 57 % of the stations experience a decrease relative to neutral 

conditions, with a minimal percentage change (median = −4 % for stations that observe a 

decrease and +5 % for stations observing an increase) (Fig. 4a). Of these decreases, both 

datasets have seven statistically significant results concentrated to the western and south-

western Amazon. The decrease is stronger for GloFAS 2.1 (Fig. 4e) relative to the observed 

data, which is found to be true for several other climate indices (e.g. negative EP and TSA 

phases; Figs. 3h and 4h). The reasoning for these results could be associated with the lack of 

accurate representation of floodplain interactions and smaller-scale processes that occur in 

the observed data that could dampen or increase the magnitude of change in river flow (e.g. a 

lack of floodplain storage could result in increased river flow in the model). Therefore, the 

magnitude of the response to climate phases in GloFAS is more likely a direct reflection of the 

increase or decrease in rainfall witnessed during that particular climate phase. The contrast 

between positive and negative phases for both tropical Atlantic indices is far less apparent 

than for the Pacific indices, with a prevalence of grey circles for the observed dataset results 

(Fig. 4a–d), highlighting that the signal is weak for all phases (i.e. positive, neutral and 

negative). Decreases in river flow were to be expected for positive TNA years based on 

previous results for both rainfall and river discharge. For instance, Yoon and Zeng (2010) 

identified that warmer TNA SSTs were found to induce subsidence (i.e. downward motion) 

over the Amazon basin, resulting in reduced moisture convergence over the basin and thus 

less rainfall. The same was identified for abnormally low river discharge in the upper Solimões 

River, the headwaters to the Amazon River, where low-discharge years (i.e. 1995, 2005 
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and 2010) were associated with higher than usual SSTs in the North Atlantic Ocean (Espinoza 

et al., 2011). 

 

The decrease observed in peak river flows from our results is not as strong as those found 

previously for rainfall and river discharge (e.g. Yoon and Zeng, 2010; Espinoza et al., 2011) due 

to the signal being stronger for the Amazon dry season (July–October), particularly for the 

southern Amazon when the influence of ENSO is more limited. A similar case was identified in 

the study by Ronchail et al. (2005b) where negative TNA years were found to cause higher 

than usual low flows in a large portion of the Amazon basin along the main stem during the 

dry season but not for the wet season. As we focus on floods, the period of analysis precedes 

and aligns with the Amazon wet season (i.e. August–February), where the influence is found to 

be less substantial, concluding that tropical Atlantic SSTs are less important at most locations 

with regards to peak river flow variability. Focusing on Fig. 4, notable results are prevalent in 

the western Amazon for positive TNA years (Fig. 4a) and along the Madeira River, the largest 
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Figure 4. Percentage change of observed and simulated mean annual peak river flows between 

different phases of tropical Atlantic indices. For (a, c, e, g) positive with respect to neutral 

years. (b, d, f, h) Negative with respect to neutral years. Top row represents changes for 

observations, bottom row shows changes for GloFAS 2.1 streamflow reanalysis data. Pink 

(green) points represent where the average annual peak flow decreases (increases). Significant 

results at the 95 % confidence level are denoted using a square (i.e. p <0.05). 
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southern tributary, during positive TSA years (Fig. 4c). These results are replicated for 

modelled data (Fig. 4d and g). 

 

4.3.2 Flood timing  

4.3.2.1 ENSO 
 

Results in changes to peak flow timing are less obvious with no clear spatial coherence 

(Figs. 5–7) and fewer stations reaching statistical significance relative to flood magnitude and 

duration. For instance, only four stations for the observed dataset reach statistical significance 

during the positive EN3.4 phase, compared to 11 and 15 stations for flood magnitude and 

duration, respectively. Of the total stations, 52 % and 48 % observe earlier (later) flood peaks 

for the positive EN3.4 phase for observed data, with a median change of −6 (8) d for stations 

that observe earlier (later) peaks.  
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Figure 5. Average change in the timing of observed and simulated annual peak river flows 

between different phases of the EN3.4 and MEI indices. For (a, c, e, g) positive with respect to 

neutral years. (b, d, f, h) Negative with respect to neutral years. Top row represents changes 

for observations, bottom row shows changes for GloFAS 2.1 streamflow reanalysis data. Pink 

(green) points represent where flood peaks occur earlier (later) compared to neutral 

conditions. Significant results at the 95 % confidence level are denoted using a square (i.e. 

p<0.05). 



 

138 

 

Only Estirao Do Repouso gauging station (3) shows changes in peak flow timing between 

positive and neutral phases (EN3.4) greater than 1 month (48 d earlier), while three 

stations (4, 31, 48) show changes greater than 1 month between the negative and neutral 

phase (EN3.4 and MEI). Sucunduri station (48), in the central north of the Amazon (Negro 

River) is of interest as the flood timing becomes significantly later relative to neutral years 

(between 21 and 42 days) for both positive and negative phases for all ENSO indices with the 

exception of negative EP years (Figs. 5a-d and 6a-d), and both tropical Atlantic indices (Fig. 7a-

d). As was the case for changes to peak river flows (Figs. 2a, b and 3a, b), peak flow timing 

results are comparable between the two central equatorial Pacific indices (i.e. EN3.4 and CP) 

(Figs. 5a, b and 6a, b).  
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Figure 6. Average change in the timing of observed and simulated annual peak river flows 

between different phases of the CP and EP indices. For (a, c, e, g) positive with respect to 

neutral years. (b, d, f, h) Negative with respect to neutral years. Top row represents changes 

for observations, bottom row shows changes for GloFAS 2.1 streamflow reanalysis data. Pink 

(green) points represent where flood peaks occur earlier (later) compared to neutral 

conditions. Significant results at the 95 % confidence level are denoted using a square (i.e. 

p<0.05) 
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4.3.2.2 Tropical Atlantic  
 

The largest and most consistent differences in flood timing are found for negative TSA years 

relative to neutral conditions (Fig. 7d and h), where 70 % of observed stations witness earlier 

flood peaks (median = 9 d early across stations observing earlier peaks). For GloFAS 2.1 

modelled data, a consistent earlier peak is observed in northern sub-basins (Fig. 7h), while the 

observed data shows earlier flood peaks are more common along the main Amazon River and 

towards south-western tributaries in the Acre state (Fig. 7d). Here, flood peak timings are 

observed much earlier in the upper headwater of the Marañón River (34 d; 1), the main 

western Amazon River tributary, with significant results found along the Brazilian stretch of 

the Amazon River (11, 32 and 34). These significant results are likely due to earlier peaks found 

in and around the Negro, Madeira, Purus and Juruá rivers (6, 7, 8 and 10), where annual peaks 

are 20 d earlier on average. 
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Figure 7. Average change in the timing of observed and simulated annual peak river flows 

between different phases of tropical Atlantic indices. For (a, c, e, g) positive with respect to 

neutral years. (b, d, f, h) Negative with respect to neutral years. Top row represents changes 

for observations, bottom row shows changes for GloFAS 2.1 streamflow reanalysis data. Pink 

(green) points represent where flood peaks occur earlier (later) compared to neutral 

conditions. Significant results at the 95 % confidence level are denoted using a square (i.e. p 

<0.05). 
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4.3.3 Flood duration 

4.3.3.1 ENSO 
 

Decreases in flood duration (i.e. the number of days spent above the 95th percentile) are 

common throughout the basin during the EN3.4 phase relative to neutral conditions (Fig. 8a 

and e), consistent with reduced peak river flows during this phase (Fig. 2a and e) though with a 

higher number of significant stations (15 compared to 11). Out of 58 gauging stations, 

47 (46) observe decreases in days over threshold (DOT), with a median decrease of 12 (8) d 

across stations that observed a decrease for EN3.4 (MEI). The largest and most significant 

decreases are concentrated within the central Amazon, where a decrease of 31 d is identified 

at the Fazenda Vista Alegre gauging station (35), situated near to the mouth of the southern 

Madeira River for EN3.4.  

O
bs

 
G

lo
FA

S 
2.

1 

Figure 8. Changes in flood duration (i.e. mean number of days river flows exceed the 95th 

percentile of each stations/grid point climatology) for different phases of the EN3.4 and MEI 

indices. For (a, c, e, g) positive with respect to neutral years. (b, d, f, h) Negative with respect to 

neutral years. Top row represents changes for observations, bottom row shows changes for 

GloFAS 2.1 streamflow reanalysis data. Pink (green) points represent decreases (increases) in 

the number of days spent above the 95th percentile compared to neutral conditions. Significant 

results at the 95 % confidence level are denoted using a square (i.e. p <0.05). 
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The increase in peak river flows observed in the north-eastern Amazon for the negative ENSO 

phase (Fig. 2b, d, f and h) is replicated for flood duration for both EN3.4 and MEI indices 

(Fig. 8b, d, f and h). 

The influence of La Niña is stronger in downstream tributaries of the Amazon River compared 

to tributaries upstream (Fig. 8b). At Óbidos (38), an average of 19 extra days are spent above 

the 95th percentile of the climatology relative to neutral years, while a decrease in DOT is 

observed at the start of the Solimões River in the Peruvian Amazon at Tamshiyacu (2). The 

additional flood days at Óbidos (38) could be explained by increased flood duration in 

northern rivers of the basin (i.e. Negro and Branco; Fig. 8b) and highlights how the 

hydrological regime between the upper and lower Amazon can respond differently to 

particular climate phases (e.g. La Niña). This has been previously highlighted for the extreme 

flooding in 2009, which affected central and eastern parts of the basin but not the upstream 

Peruvian Amazon (Espinoza et al., 2013). Similar results have previously been found in the 

southern Amazon basin for rainfall and river discharge (Ronchail et al., 2005b; Ronchail and 

Gallaire, 2006), where the effect of climate variability was found to be regionally specific and 

time dependent. Land use changes could also be a factor in the differences identified between 

different parts of the basin as regions of deforestation have previously been found to reduce 

latent heat and evapotranspiration, leading to a reduction in rainfall in the south-eastern 

Amazon (Silvério et al., 2015; Gutierrez-Cori et al., 2021). 

 

A reduction in flood duration is common for both the positive and negative phases for the 

CP index, with a median reduction of seven days for each (Fig. 9a and b). Significant results are 

common at stations situated within or around the Amazon River for the CP index, similar to 

the positive EN3.4 phase, with 13 stations reaching the statistical threshold. The increase in 

peak river flow for the negative CP phase (Fig. 3b) in the north-east is not associated with 

flood duration (Fig. 9b) as it was for the EN3.4 and MEI indices, meaning that although the 

magnitude is more likely to increase when SSTs in the CP are colder than usual, the duration of 

higher flows does not increase. This could suggest that the increase in peak flow may be short-

lived (i.e. higher peak flow but lower high flows over the wet season). For the EP, the most 

notable finding can be observed along the Madeira and Purus rivers, where several stations 

show a significant increase in flood duration for GloFAS 2.1 (Fig. 9h). This increase is also 

identified at a number of the stations for the observed dataset, although the results are not 

significant (Fig. 9d). 
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4.3.3.2 Tropical Atlantic 
 

The most significant finding can be observed at stations situated along the Madeira River for 

positive TSA years for both datasets (Fig. 10c and g), where statistically significant decreases in 

flood duration are found, matching the results of significant decreases in annual flood peaks 

(Fig. 4c). Four out of the five gauging stations (23, 24, 25 and 35) along the Madeira River 

reach statistical significance and note at least a 21 d reduction in days over threshold, with the 

Humaita gauging station (25) seeing a reduction of over 1 month. Overall, decreases in flood 

duration are more common for both Atlantic indices regardless of whether the climate phase 

is positive or negative for the observed dataset (Fig. 10a–d). 
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Figure 9. Changes in flood duration (i.e. mean number of days river flows exceed the 95th 

percentile of each stations/grid point climatology) for different phases of the CP and EP 

indices. For (a, c, e, g) positive with respect to neutral years. (b, d,  f, h) Negative with respect 

to neutral years. Top row represents changes for observations, bottom row shows changes for 

GloFAS 2.1 streamflow reanalysis data. Pink (green) points represent decreases (increases) in 

the number of days spent above the 95th percentile compared to neutral conditions. 

Significant results at the 95 % confidence level are denoted using a square (i.e. p<0.05). 
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4.3.4 Notable results  
 

A few regions show distinctive changes to flood characteristics or discrepancies to what is 

expected relative to previous studies during certain climate phases. Three particular findings 

stand out; (a) the absence of significant change at the Tamshiyacu gauging station (2) in the 

Peruvian Amazon, where previous floods have been attributed to La Niña events (Espinoza et 

al., 2013), (b) the response to negative ENSO years in the north-eastern Amazon, where 

increases in peak flow magnitude and high flow duration are identified for EN3.4, MEI and CP 

but not for the EP index, and (c) the regional similarities and differences found between 

simulated GloFAS 2.1 flows and the observed data. To better understand these results, each 

are explored in further detail.  
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Figure 10. Changes in flood duration (i.e. mean number of days river flows exceed the 95th 

percentile of each stations/grid point climatology) for different phases of tropical Atlantic 

indices. For (a, c, e, g) positive with respect to neutral years. (b, d, f, h) Negative with respect to 

neutral years. Top row represents changes for observations, bottom row shows changes for 

GloFAS 2.1 streamflow reanalysis data. Pink (green) points represent decreases (increases) in 

the number of days spent above the 95th percentile compared to neutral conditions. Significant 

results at the 95 % confidence levels are denoted using a square (i.e. p<0.05).  
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4.3.4.1 Response to SST anomalies in the Peruvian Amazon 
 

Tamshiyacu (2) is one of the key gauging stations for monitoring flooding in the Peruvian 

Amazon due to its location upstream from the city of Iquitos. Extreme floods in this region 

have been previously associated with La Niña SSTs in the equatorial Pacific (e.g. in 1999 

and 2012, Espinoza et al., 2013). However, when using a tercile approach for the period 1979–

2015, this station observes a small decrease (2–5 d) in the number of days above the 

95th percentile of river flow for all ENSO indices during the cold phase (Fig. 8b and d), whilst 

the increase in peak river flow is minimal (+1 %; Fig. 2b and d). All 12 EN3.4 negative years in 

this study are classified as La Niña years when comparing the years identified to the classic 

NOAA ONI index classification of positive and negative ENSO phases (see Table S2 in the 

Supplement). These results suggest that although La Niña conditions have been shown to 

produce atmospheric anomalies responsible for extreme flooding (e.g. as in Espinoza et al., 

2013), weak cold events (e.g. five consecutive 3-month running mean SSTs just below or at 

about −0.5 ∘C based on the ONI classification) may not be enough to produce high flood 

characteristics (e.g. increased high flow durations) in the Peruvian Amazon. It is therefore of 

interest to understand if a particular threshold of anomalous cooling in the central Pacific is 

needed to reproduce the atmospheric response witnessed in the buildup to the 2012 event. 

 
In an attempt to better understand the response to tropical Pacific SSTs, we compare annual 

peak flow magnitude, timing and the duration of high flows for all years at Tamshiyacu (2) 

against the preceding OND averaged SSTs in the tropical Pacific EN3.4 region before the 

Peruvian Amazon flood season takes place (Fig. 11). Results show a modest but significant 

increase (Pearson's p<0.05) in annual peak river flows as SSTs become more negative, 

although high river flows exceeding 50 000 m3 s−1 are recorded regardless of whether SSTs are 

in a positive, neutral or negative phase (Fig. 11a). Regression analysis shows that only 17 % of 

the variance in peak flow magnitude can be explained by OND EN3.4 SSTs. Moreover, though a 

negative SST anomaly of −1.08 ∘C in OND 2011 (sixth largest SST anomaly) relates to the largest 

peak in 2012, a further five cases with larger negative SST anomalies note lower magnitude 

river flows indicating that the relationship is non-linear and multi-variate. Three years (1998, 

1999 and 2007) with similar SST anomalies (∼−1.5 ∘C) are found to have differences in peak 

river flows of up to 7750 m3 s−1, meaning that other factors (e.g. SST temporal evolution, 

spatial complexities, local factors including topography, land cover changes, other land surface 

anomalies, response upstream and SSTs in the Atlantic) beyond the Pacific SSTs magnitude are 

likely responsible for the variability seen in annual flood maximums. 
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The regression line for flood timing (Fig. 11b) is flat, with no significant differences in peak flow 

timing with SST variability. In 2004 the peak river flow occurred significantly earlier than usual, 

taking place in January as opposed to late April (Fig. 1b), with neutral SST conditions present in 

the preceding months in the EN3.4 region. The reasoning behind this deserves further 

attention by investigating the antecedent and upstream conditions prior to the flood peak and 

considering variables including soil moisture, total rainfall and river levels. Finally, no notable 

relationship is acknowledged at the Tamshiyacu gauging (2) between DOT and SST anomalies, 

with the longest flood duration occurring during a weak El Niño event in 2014–2015 (Fig. 11c). 

Comparing the flood magnitude and duration, it shows that although they are closely linked 

Figure 11. Scatterplot of the mean OND SST anomaly in the EN3.4 region vs. 

(a) the annual river flow magnitude, (b) peak flow timing and (c) flood 

duration (i.e. days over the 95th percentile of flow) for the Tamshiyacu (2) 

gauging station for the period 1986–2015. Straight black lines represent the 

regression line, with the R2 value provided for each. Major flood events are 

highlighted by the respective year. 
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(i.e. as the magnitude increases, the flood duration generally goes up), they do not have a 

linear relationship. For instance, in 2012, Tamshiyacu (2) recorded a flow of 55 400 m3 s−1, 

whilst in 2015 the value was slightly under at 53 880 m3 s−1. Despite the higher river flow, 

Tamshiyacu (2) records show that river flows were above the 95th percentile of the station's 

climatology for 70 d in 2012, with the 2015 event totalling 91 d. Examining results further 

downstream in Brazil at Óbidos (38), no DOT are observed in 2015. This suggests that the 

flooding was specific to upstream locations and that major tributaries joining the Amazon 

River after Peru could have been experiencing decreases in river flow. This agrees with the 

suggestion by Espinoza et al. (2013) that the mechanisms responsible for flooding can differ 

between upstream and downstream sub-basins of the Amazon River, with a previous flood 

in 2009 found to only affect central and eastern regions of the Amazon Basin. 

 
Owing to extreme flooding at Tamshiyacu (2) in the Peruvian Amazon commonly coinciding 

with negative SSTs in the tropical Pacific (Espinoza et al., 2013) and due to El Niño events on 

average producing a slight decrease in flood duration relative to neutral years at this station 

(Fig. 8a), an analysis that determines all possible drivers of the 2015 event where a weak 

El Niño features would be of interest. Such an analysis could help us understand the 

atmospheric response for this specific event and how it differs from previous floods already 

analysed in the literature (e.g. 2012; Espinoza et al., 2013). Ideally, such an analysis would 

incorporate stations both upstream and downstream to identify any regional differences and 

consider SSTs in all adjacent Oceans. Finally, though the results of this study do not replicate 

the wet signal associated with La Niña found previously (e.g. Espinoza et al., 2013), it could be 

worth investigating how the timing of La Niña events (i.e. timing of onset and peak) impacts 

river flows. This arises from the results of Espinoza et al. (2013) who identified that the 

intensity of the 2012 floods were likely related to an early La Niña event that caused earlier 

than usual rainfall resulting in simultaneous peak flows in combining tributaries of the Amazon 

River. Therefore, it raises the question as to whether the magnitude, timing, or location of 

ENSO events are more important for predicting flood events in the Amazon basin. 
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4.3.4.2 Response to SST anomalies in the North-eastern Amazon 
 

Wetter conditions (i.e. increased annual peak magnitude and flood duration) was a common 

response in the north-eastern Amazon to negative SST years in the tropical Pacific for multiple 

ENSO indices and for both datasets. This response is likely owed to cooler than usual SSTs 

favouring an intensification of northern humidity fluxes in the Caribbean Sea, which are 

directed towards the north-western Amazon and then across to the northern-eastern Amazon 

(see Fig. 3c in Espinoza et al., 2013). The exception to this response, however, was identified 

for the negative EP phase where slight decreases in peak river flows and flood duration were 

identified (Figs. 3d and 9d).  

Figure 12. Composite analysis of the difference between the preceding OND average SST (°C) 

(left) and total rainfall (mm) (right) for the average of the 12 negative years and the average of 

the 12 neutral years. For the (a, b) EN3.4, (c, d) CP, and (e, f) EP indices. A list of the negative 

and neutral years for each index can be found in Tables S2, S4, and S5. 
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To better understand the similarities and differences between ENSO indices, Fig. 12 plots the 

average preceding OND SST anomalies and total precipitation over the Amazon basin for the 

negative years of the EN3.4, CP and EP indices relative to their associated neutral years 

(e.g. EN3.4 negative minus EN3.4 neutral). SST anomalies for negative EN3.4 and CP phases are 

found to be similar, with a concentration of negative SSTs (∼−1.5 ∘C) situated in a long stretch 

of the central equatorial Pacific and warmer SSTs common in coastal areas of Indonesia to the 

west of the Pacific (Fig. 12a and c). In contrast, preceding OND SST anomalies for the negative 

EP phase are in general weaker, with slightly negative (∼−0.5 ∘C) SSTs located off the coast of 

Peru in the eastern Pacific with warmer waters spreading further east into the central Pacific 

Ocean (Fig. 12e). Other notable differences between the two centrally focused indices (EN3.4 

and CP) and the EP can be found in the sub-tropical to south Atlantic Ocean (20–50∘ S), where 

cooler (warmer) SSTs are situated for the central ENSO indices (EP index). For EN3.4 and 

CP negative years, rainfall totals from the ERA5 reanalysis (inputs to GloFAS 2.1) are greater 

relative to neutral conditions in the north-eastern Amazon (Fig. 12b and d), whereas a deficit 

in rainfall is acknowledged for the negative EP phase (Fig. 12f), explaining why flood 

magnitude and duration did not increase for this climate index. 

 

4.3.4.3 Observed vs GloFAS 2.1 
 

Significant changes to flood characteristics are present in both datasets for the results 

presented in Sect. 4.3. For instance, the increased flood magnitude and duration witnessed 

during the negative ENSO phase are identified at locations in the north-eastern Amazon for 

both the observed and reanalysis data, as is the case for the decrease in flood duration 

witnessed during positive TSA years (Figs. 2b, f and 10c, g). River flow data produced from 

global hydrological models form an important role in the ability to forecast and mitigate floods 

(Alfieri et al., 2019). This is because observed data are often limited in time, with a downward 

trend in global data availability since the 1980s, and has a restricted coverage in many parts of 

the world (including sparse areas of the Ecuadorian and Colombian Amazon) (Lavers et al., 

2020). Though simulated data can extend the period of analysis back in time and have a wide 

spatial coverage, the data needs to be sufficient and validated against observations regularly. 

Table 1 shows Pearson's correlation coefficients between the results for observation and 

GloFAS 2.1 in Sect. 4.3. It is important to note that both datasets will incur errors that need to 

be considered. For instance, many gauges in the Amazon Basin are produced based on water 

levels that are converted to river flow based on the use of the stage–discharge relation, which 
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has large uncertainties due to systematic errors such as sensor drift and calibration errors and 

does not take into account non-stationarities (Horner et al., 2018). Non-stationarities can 

include anthropogenic change, land use change (e.g. inclusion of a reservoir) and low 

frequency climate variability (e.g. PDO and AMO) and can therefore can cause gradual or 

sudden changes in river flow influencing the accuracy of the stage-to-discharge relation and 

produce uncertainties within the discharge time series. Extreme flows or flooding can result in 

changes to the morphology, which in turn could affect the accuracy of these measurements 

and thus conversion and affect both the archived observed time series and the forecasted 

product (Lavers et al., 2020). 

 

Table 1. Pearson's correlation coefficients between observed and GloFAS 2.1 results of the 

differences between climate phases for all indices (e.g. EN3.4 positive minus EN3.4 neutral) for 

flood magnitude, timing and duration. Values in bold are significant at the 95 % confidence 

level. 

Index and 
Phase 

Magnitude Timing Duration 

EN3.4 Pos  0.14 -0.10 0.50 
EN3.4 Neg  0.72 -0.27 0.79 

MEI Pos 0.13 0.19 0.30 
MEI Neg 0.72 0.16 0.64 
CP Pos  -0.03 0.09 0.32 
CP Neg  0.59 -0.25 0.21 

EP Pos  -0.05 0.21 0.03 

EP Neg  0.47 0.11 0.59 
TNA Pos 0.56 -0.02 0.56 
TNA Neg 0.04 0.28 -0.37 
TSA Pos 0.39 0.04 0.67 
TSA Neg 0.65 0.10  -0.08 

Median 0.43 0.10 0.41 

 

Flood magnitude and duration have the highest correlation between observed and simulated 

results, where median values of 0.43 and 0.41 (across all climate indices) are noted, 

respectively. In contrast, correlation for changes in flood timing are particularly weak 

(median = 0.10), with correlations for only two climate indices found to be significant (Table 1). 

As GloFAS struggles to capture changes to flood timing for most climate indices and phases, it 

indicates that the model suffers at capturing peak flow timing in general rather than in one 

specific climate phase. Though restricted to just 12 years for each climate phase, the 

correlation for flood magnitude and duration are much higher for the negative phases of the 
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ENSO indices, particularly when compared to the positive phases of these indices. For 

instance, comparing the correlation values for the percentage changes of flood magnitude, a 

significant correlation value of 0.72 is identified for the EN3.4 negative, dropping to 0.14 for 

the warm phase. The reasoning for the poorer performance during the warm ENSO phase is 

not yet known but deserves further investigation. It is unlikely due to the number of missing 

years for the observed data, with a median of 2 missing years and 1 missing year across all 

stations for the positive and negative EN3.4 phases, respectively. When removing the stations 

in the north-east (39, 40, 41 and 43) that produce strong changes for both datasets during 

negative ENSO phases, the correlation is much lower but still remains higher than during the 

positive phase (r=0.41, p<0.05), indicating that GloFAS 2.1 can overall better simulate the 

response to negative ENSO phases relative to neutral conditions. 

4.4 Physical Mechanisms  
 

In this study the question of whether particular climatic drivers (e.g. ENSO) impact flood 

characteristics in the Amazon Basin was addressed. The next step required would be to 

investigate how the climatic drivers found in this study increase the likelihood of flooding in 

particular areas and understanding the physical mechanisms behind a flood event. This is 

because floods are generated through a combination of climatic, meteorological, hydrological, 

and anthropogenic processes (Wyżga et al., 2016), which represent a cascading chain of 

events. For instance, flooding that is related to La Niña conditions stem from changes in 

temperature, altering pressure gradients and thus large-scale atmospheric circulation 

(e.g. zonal winds). In turn, this can move the location of moisture convection and divergence, 

and consequently rainfall patterns. Though a simplistic example, understanding these 

processes and how they link can allow us to determine how and why floods occur in certain 

areas and can provide a better understanding of past, present and future flood risk (Berghuijs 

et al., 2019). 

A first step could follow studies such as Zhang et al. (2017) where they use moisture flux 

convergence and divergence to diagnose precipitation changes during phases of the PMM 

before describing the impact on other dynamical variables (e.g. 850 hPa velocity potential and 

divergent wind) for different phases of PMM. By analysing intermediate variables between the 

overall climatic driver (i.e. PMM) and the dependent variable (i.e. rainfall), a more robust 

picture of the relationship between a climatic driver and rainfall or river discharge can be built. 

Moreover, by investigating the underlying connections between the SST anomalies and floods 
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for specific events, it allows a picture to be built of what the dominant processes 

(e.g. evaporation or convection) are and how the circulation may differ from neutral 

conditions or other types of events (e.g. how an EP event differs from a CP event). Knowing 

these dominant processes would give model developers insight on where to focus efforts to 

improve seasonal forecasting systems. For example, if evaporation is found to be particularly 

important, calibration of the land surface or hydrological component of a flood model could 

be a more important aspect to focus on. 

4.5 Conclusions  
 

This paper has investigated whether the differences between positive, negative and neutral 

phases of various climate indices in the tropical Pacific and Atlantic Oceans significantly impact 

flood characteristics (i.e. flood magnitude, timing and duration) in the Amazon Basin for the 

period 1979–2015. Previous research and fieldwork had highlighted the need to consider flood 

timing and duration as opposed to simply the magnitude of river flows, with longer floods 

known to cause significant impacts to communities situated along rivers within the basin 

(Langill and Abizaid, 2019), and that the flood timing in coinciding tributaries is known to 

impact the magnitude of flow in the main travelling flood wave along the Amazon River 

(Tomasella et al., 2011; Marengo et al., 2012). While the results presented show regional 

differences and varying levels of significance among climate indices, we can draw the following 

conclusions to answer the research objectives outlined in Sect. 4.1.1. 

 
1. Flood magnitude increases at stations situated in the north-eastern Amazon for 

climate indices where the cooling of SST anomalies is stronger in the central equatorial 

Pacific (i.e. EN3.4, CP, and MEI) as identified for both the observed and reanalysis 

dataset. This response is not reproduced for years in which the SST cooling is more 

concentrated to the eastern Pacific. 

2. Positive ENSO years (EN3.4, MEI) result in a reduction of peak river flows and flood 

duration throughout the majority of the basin, while the influence of negative ENSO 

years (i.e. La Niña conditions) is found to be weak across much of the Amazon Basin, 

with the exception of areas in north-east.  

3. No significant increases are found in peak river flows in the Peruvian Amazon when 

comparing negative ENSO years to neutral conditions, with decreases observed in DOT 

despite previous extreme floods being attributed to La Niña events.  
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4. Flood timing is the least impacted flood characteristic, with limited significant and 

notable changes across the basin for most climate indices. 

5. Despite strong links between flood characteristics (e.g. flood magnitude and duration), 

the same climate phase can impact these characteristics differently. This is evident 

from the CP index, where flood magnitude increased in the north-eastern Amazon, 

with flood duration decreasing during negative years.  

6. There is greater agreement between the observed and simulated GloFAS 2.1 changes 

to flood magnitude and duration in negative than positive ENSO years; suggesting the 

reanalysis is better at representing La Niña teleconnections.  

 

Insights into the understanding of how large-scale climate variability influences flood 

characteristics has the potential to help predict and prepare for different flood types 

(e.g. high, long, early and late; Langill and Abizaid, 2019). These findings are important for 

highlighting locations such as the north-eastern Amazon that are sensitive to particular 

oceanic anomalies and has the potential to help community members and local businesses 

(e.g. fisheries and agriculture) with decision making within the Amazon Basin. For example, the 

results found for the Sao Francisco gauging station (41), located along the Jari River, showed 

that flood magnitude and duration significantly increase during negative ENSO phases. This 

gives humanitarian organisations and local authorities acting within areas such as Laranjal do 

Jari, located just downstream of this gauging station, the potential to use these results to 

better prepare and make decisions based on an increased probability of a longer high-water 

period. The next steps should consider specific case studies in locations such as the north-

eastern Amazon that evaluate how certain sectors or livelihoods could be affected by certain 

climate phases and suggest adaptation measures such as examining the possible shifts in 

cropping patterns (i.e. sowing, growing and harvesting) during particular climate phases as in 

Ficchí and Stephens (2019) for rivers in Africa. Further exploratory analysis could consider 

breaking this study down further to consider the intensity of climate anomalies, for example, 

by comparing differences between weak, medium and strong El Niño events to neutral years. 

Such work could be extended to investigate the impact of co-occurring climatic phases 

(e.g. La Niña and a warm TSA) to understand if the probability of wetter or drier conditions 

changes. This is owed to previous flood events having been linked to more than one index. For 

instance, in 2014, floods in the Madeira basin were related to both warm conditions in the 

West Pacific–Indian Ocean and exceptionally warm SST conditions in the sub-tropical South 

Atlantic (Espinoza et al., 2014). Yoon and Zeng (2010) demonstrate a method to separate 
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indices via linear regression, which can remove the issue of one climate index influencing 

another to determine if each index has a direct influence on the hydrology. Finally, a similar 

analysis would ideally be performed for observed precipitation, which could help confirm or 

further explain the results found in this work. 

 
Data availability. All of the datasets, with the exception of certain gauged data used in this 

study are freely available and their sources can be found in Sect. 4.2. For gauges whose data is 

restricted please contact the Institute of Research and Development (IRD) for further 

information on potential access.  

Author contributions. AF, ES, HC, and JT designed the analysis, with AF and ES providing the 

original methodology and R scripts for the flood timing section of the analysis. JT produced all 

figures and undertook the research, in addition to writing the research paper. AF, ES, HC, JB 

and EC supervised the research and provided important advice. All of the authors were 

involved in discussions throughout the development and commented on the manuscript. 
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4.6 Supplementary material 
 

Figure S1. Map of the gauging stations and their locations used within this study. Number are 

referred to within the main text in italics to help direct the reader to the locations highlighted. 

The basin shapefile and river network are provided by HydroSHEDS 

(https://www.hydrosheds.org/; last access: 07 December 2020).   
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Table S1. Characteristics of the hydrological gauging stations throughout the Amazon Basin 

Station Name (number) River Drainage Basin Area 
(Km2) 

Lat Lon Start End Mean Q 
(m3s-1) 

Abuna (23) Madeira 921000 -9.75 -65.35 01/10/1979 30/09/2015 6430.839 
Acanaui (52) Caqueta/Japura 242259 -1.85 -66.65 01/10/1979 30/09/2015 14304.51 
Altamira (37) Xingu 446203 -3.35 -52.15 01/10/1979 29/09/2014 7856.263 
Apalai (42) Paru De Este NA  1.22 -54.66 01/10/1980 29/09/2012 142.8763 
Arapari (39) Maicuru 17072 -1.85 -54.45 01/10/1979 30/09/2013 123.8534 
Boca Do Guariba (27) Aripuana 70100 -7.75 -60.55 01/10/1979 30/09/2010 1428.181 
Boca Do Inferno (40) Curua 20803 -1.45 -54.95 01/10/1979 29/09/2009 154.9359 
Bom Fim (44) Tacutu NA  3.38 -59.82 01/10/1984 30/09/2013 214.241 
Borja (1) Maranon 114232 -4.45 -77.55 01/10/1986 30/09/2015 4993.966 
Cachimbo (31) Branco Sul NA -9.82 -54.89 01/10/1979 30/09/2013 39.08 
Canutama (12) Purus 230012 -6.55 -64.45 01/10/1979 30/09/2015 6430.839 
Caracarai (46) Branco 124980  1.85 -61.05 01/10/1979 30/09/2015 2947.296 
Careiro (33) Parana Do Careiro 2583079 -3.15 -59.85 01/10/1979 30/09/2014 12507.61 
Cruzeiro Do Sul (7) Jurua 38537 -7.65 -72.65 01/10/1979 30/09/2010 925.4951 
Cucui (58) Negro 61781  1.35 -66.85 01/10/1980 30/09/2013 4984.06 
Curicuriari (50) Negro 194462 -0.15 -66.85 01/10/1979 30/09/2013 12067.93 
Envira (8) Tarauaca 48317 -7.45 -70.05 01/10/1979 30/09/2011 1234.752 
Estirao Do Repouso (3) Javari 62105 -4.35 -70.95 01/10/1981 30/09/2012 2486.017 
Fazenda Vista Alegre (35) Madeira 1310000 -3.55 -58.95 01/10/1979 30/09/2015 28015.34 
Fe E Esperanca (45) Mucajai 13658  2.85 -61.45 01/10/1979 30/09/2012 306.2561 

Fontanilhas (28) Juruena 55900 -11.45 -58.35 01/10/1980 30/09/2013 1433.657 
Gaviao (10) Jurua 162000 -4.95 -66.85 01/10/1979 30/09/2010 4619.165 
Gujara-Mirim (22) Mamore 609000 -10.75 -65.35 01/10/1979 30/09/2013 8062.95 
Humaita (25) Madeira 1090000 -7.45 -63.05 01/10/1979 30/09/2013 20334.79 
Indeco (30) Teles Pires 52200 -10.15 -55.55 01/10/1980 30/09/2013 1166.612 
Itaituba (36) Tapajos 458000 -4.25 -55.95 01/10/1979 30/09/2014 11745.5 
Itapeua (11) Solimoes 1769000 -4.05 -63.05 01/10/1979 30/09/2014 82396.76 
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Station Name (number) River Drainage Basin Area 
(Km2) 

Lat Lon Start End Mean Q 
(m3s-1) 

Jatuarana (34) Amazonas 2854286 -3.05 -59.65 01/10/1979 30/09/2012 124924.5 
Ji-Parana (21) Jiparana 32800 -10.85 -61.95 01/10/1979 30/09/2012 692.7674 
Jusante Da Cachoeira Do Caju (51) Jusante 10228 -0.25 -67.05 01/10/1982 30/09/2013 942.8736 
Manacapuru (32) Solimoes 2147736 -3.35 -60.65 01/10/1979 30/09/2015 103025.6 
Manicore (26) Madeira 1150000 -5.85 -61.35 01/10/1979 30/09/2013 27077.35 
Missao Icana (56) Icana 22282  1.15 -67.65 01/10/1980 30/09/2013 1877.793 
Obidos (38) Amazon 4680000 -1.95 -55.55 01/10/1979 30/09/2015 174057.4 
Pimenta Bueno (20) Apedia NA -11.63 -61.19 01/10/1980 29/09/2013 203.5903 
Pontes E Lacerda (19) Guapore NA -15.22 -59.35 01/10/1979 30/09/2013 54.46617 
Porto Dos Gauchos (29) Arinos 37100 -11.55 -57.45 01/10/1979 30/09/2011 712.8329 
Porto Velho (24) Madeira 976000 -8.75 -63.95 01/10/1979 30/09/2015 19137.55 
Posto Ajuricaba (47) Demeni 14756  0.95 -62.65 01/10/1982 30/09/2013 508.2344 
Puerto Siles (18) Mamore 227000 -13.05 -65.05 01/10/1983 30/09/2012 4710.79 
Rio Branco (16) Acre NA -9.98 -67.80 01/10/1979 30/09/2015 316.8874 
Rurrenabaque (17) Beni 70000 -14.55 -67.55 01/10/1979 30/09/2015 2066.844 
Santo Antonio Do Ica (5) Solimoes 1134540 -3.15 -67.95 01/10/1979 30/09/2013 54591.62 
Santos Dumont (9) Solimoes 142234 -6.55 -68.35 01/10/1981 30/09/2015 4301.033 
Sao Felipe (57) Jurua 110862  0.45 -67.35 01/10/1979 30/09/2013 8065.875 
Sao Francisco (41) Jari 51343 -0.55 -52.55 01/10/1979 30/09/2013 1057.156 
Seringal Da Caridade (15) Purus 63166 -9.05 -68.55 01/10/1979 30/09/2012 1320.563 
Seringal Fortaleza (13) Purus 153016 -7.75 -66.95 01/10/1979 30/09/2015 3829.863 

Serrinha  (49) Negro 279945 -0.45 -64.95 01/10/1979 30/09/2015 16541.23 
Sucunduri (48) Negro NA -0.48 -64.83 01/10/1979 29/09/2013 376.7507 
Tabatinga (4) Solimoes 874000 -4.25 -69.95 01/10/1982 21/09/2015 36225.36 
Tamshiyacu (2) Solimoes 721521 -4.05 -73.15 02/10/1985 30/09/2015 30419.4 
Taraqua (55) Vaupes _ Uaupes 44732  0.15 -68.55 01/10/1979 30/09/2012 2718.3 
Thaumaturgo (6) Jurua 16581 -8.93 -72.79 01/10/1981 30/09/2011 393.6696 
Tirios (43) Cumina NA  2.22 -55.96 01/10/1979 30/09/2012 19.51056 
Uaracu (54) Uaupes 40506  0.45 -69.15 01/10/1979 30/09/2011 2409.46 
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Station Name (number) River Drainage Basin Area 
(Km2) 

Lat Lon Start End Mean Q 
(m3s-1) 

Valparaiso – Montante (14) Purus 103285 -8.65 -67.35 01/10/1981 30/09/2015 2158.127 
Vila Bittencourt (53) Caqueta/Japura 197136 -1.35 -69.45 01/10/1980 30/09/2015 13749.5 
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Table S2. EN3.4 positive, neutral, and negative years. Calculated based on the average SST 

anomaly between August to February preceding flood peaks in the Amazon Basin.  

Positive Neutral Negative 
1979-1980 1980-1981 1983-1984 
1982-1983 1981-1982 1984-1985 
1986-1987 1985-1986 1988-1989 
1987-1988 1989-1990 1995-1996 
1991-1992 1990-1991 1998-1999 
1994-1995 1992-1993 1999-2000 
1997-1998 1993-1994 2000-2001 
2002-2003 1996-1997 2005-2006 
2004-2005 2001-2002 2007-2008 
2006-2007 2003-2004 2008-2009 
2009-2010 2012-2013 2010-2011 
2014-2015 2013-2014 2011-2012 

 

Table S3. MEI positive, neutral, and negative years. Calculated based on the average SST 

anomaly between August to February preceding flood peaks in the Amazon Basin. 

Positive Neutral Negative 
1982-1983 1979-1980 1983-1984 
1986-1987 1980-1981 1988-1989 
1987-1988 1981-1982 1995-1996 
1991-1992 1984-1985 1996-1997 
1992-1993 1985-1986 1998-1999 
1993-1994 1989-1990 1999-2000 
1994-1995 1990-1991 2000-2001 
1997-1998 2001-2002 2005-2006 
2002-2003 2003-2004 2007-2008 
2004-2005 2012-2013 2008-2009 
2006-2007 2013-2014 2010-2011 
2009-2010 2014-2015 2011-2012 

 

Table S4. CP positive, neutral, and negative years. Calculated based on the average SST 

anomaly between August to February preceding flood peaks in the Amazon Basin. 

Positive Neutral Negative 
1982-1983 1979-1980 1983-1984 
1986-1987 1980-1981 1984-1985 
1987-1988 1981-1982 1985-1986 
1990-1991 1989-1990 1988-1989 
1991-1992 1992-1993 1995-1996 
1994-1995 1993-1994 1998-1999 
1997-1998 1996-1997 1999-2000 
2002-2003 2001-2002 2000-2001 
2004-2005 2003-2004 2007-2008 
2006-2007 2005-2006 2008-2009 
2009-2010 2012-2013 2010-2011 
2014-2015 2013-2014 2011-2012 
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Table S5. EP positive, neutral, and negative years. Calculated based on the average SST 

anomaly between August to February preceding flood peaks in the Amazon Basin. 

Positive Neutral Negative 
1982-1983 1979-1980 1980-1981 
1983-1984 1981-1982 1985-1986 
1986-1987 1984-1985 1989-1990 
1987-1988 1988-1989 1990-1991 
1991-1992 1992-1993 1995-1996 
1997-1998 1993-1994 1996-1997 
1998-1999 1994-1995 2001-2002 
2002-2003 1999-2000 2004-2005 
2003-2004 2000-2001 2005-2006 
2006-2007 2009-2010 2007-2008 
2008-2009 2010-2011 2012-2013 
2014-2015 2011-2012 2013-2014 

 

Table S6. TNA positive, neutral, and negative years. Calculated based on the average SST 

anomaly between August to February preceding flood peaks in the Amazon Basin. 

Positive Neutral Negative 
1987-1988 1979-1980 1982-1983 
1995-1996 1980-1981 1983-1984 
1997-1998 1981-1982 1984-1985 
2001-2002 1990-1991 1985-1986 
2003-2004 1996-1997 1986-1987 
2004-2005 1998-1999 1988-1989 
2005-2006 1999-2000 1989-1990 
2006-2007 2002-2003 1991-1992 
2009-2010 2007-2008 1992-1993 
2010-2011 2008-2009 1993-1994 
2012-2013 2011-2012 1994-1995 
2013-2014 2014-2015 2000-2001 

 

Table S7. TSA positive, neutral, and negative years. Calculated based on the average SST 

anomaly between August to February preceding flood peaks in the Amazon Basin. 

Positive Neutral Negative 
1984-1985 1981-1982 1979-1980 
1987-1988 1983-1984 1980-1981 
1988-1989 1985-1986 1982-1983 
1993-1994 1994-1995 1986-1987 
1997-1998 2000-2001 1989-1990 
1998-1999 2001-2002 1990-1991 
1999-2000 2002-2003 1991-1992 
2003-2004 2006-2007 1992-1993 
2004-2005 2007-2008 1995-1996 
2008-2009 2012-2013 1996-1997 
2009-2010 2013-2014 2005-2006 
2010-2011 2014-2015 2011-2012 
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Chapter 5 

Comparison of flood prediction methodologies  

5.1     Motivation  
 

Originally, this chapter was going to form a further analysis linking heavy rain events in the 

Amazon Basin to large-scale climate variability extending upon the analysis on the magnitude, 

timing, and duration of river flows. However, after the submission of Chapter 4 to HESS, the 

dialogue between reviewer 2 and the authors provoked the idea of a discussion article 

between the use of statistical methods versus those that investigate the physical mechanisms 

that lead to teleconnections.  

Below are snippets of the exchanges between anonymous reviewer 2 and the authors from 

our paper titled “Influence of ENSO and tropical Atlantic climate variability on flood 

characteristics in the Amazon Basin” (i.e. Chapter 4). For the full set of reviewer and author 

comments, see the Appendices.  

Reviewer comments are in bold font, with our responses shown in normal font.  

“The study examines the influence of ENSO on the flood characteristics in the Amazon Basin. 

While the article is packed with the statistical analyses, it fails to explore the large-scale 

physical mechanism associated with ENSO and flood characteristics, which plays a important 

role in the prediction and projections. Therefore, the article in the present form is not in the 

publication level of HESS and requires major modifications”.  

“We disagree with the reviewer that this article in present form is not in the publication level 

of HESS due to the following reasons:  

• The major criticism does not reflect on the research objective of this paper.  

• Statistical analyses play a huge role in meteorological and hydrological research and 

are consistently published in many established journals including HESS.  

• A multitude of highly cited papers use statistical analysis to identify relationships 

between hydrometeorological variables and climatic drivers without exploring the 

physical mechanisms directly. Examples include Ward et al. (2014) global analysis of 

discharge sensitivities to ENSO, Emerton et al. (2017) description on the complexities 
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of ENSO driving flood hazard, and Nobre et al. (2017) analysis into how climate 

variability affects flood damage in Europe.  

• The findings of this research can inform further studies that wish to characterise the 

largescale physical mechanisms behind the conclusions”. 

“My comments/suggestion are: 1. Authors should explore more towards explaining the 

physical mechanism associated with the relation they found in the present article”. 

“While we understand the importance of research that tackles the physical mechanisms that 

lead to teleconnections, there is a wide body of literature that addresses the statistical link 

between climate variability and natural hazards that underpins both operational forecasting 

products (e.g., IRI forecasts; see https://iri.columbia.edu/our-

expertise/climate/forecasts/irireal-time-seasonal-climate-forecasts-and-models/) and 

decision-making on the ground (e.g. IASC, 2018). We believe that our research article falls 

within this bracket and provides important information on how climate variability impacts 

poorly researched flood characteristics (i.e. flood timing, and duration) in the Amazon Basin”. 

Whilst we disagree with the reviewer’s comments for our paper as we believe that it extends 

beyond the scope of the objective and research questions (i.e. we examined if rather than how 

particular climate indices altered flood characteristics), we do believe it provides a valuable 

topic of discussion that could provide useful insights for future work. The objective of this 

chapter is to compare the value of different approaches for hydrometeorological research and 

flood prediction. 

5.2 A statistical methods approach  
 

Examples on the use and importance of statistical methods spans across all scientific 

disciplines, with its value showcased during some of the most important events in modern 

history (e.g. Bayes’ theorem during World War Two and regression statistics for epidemics 

such as COVID19). When thinking about statistical methods we should first consider what they 

are. On a basic level, statistical tests can be described as a way to examine data to understand 

whether apparent relationships are meaningful and that they do not happen simply by chance. 

The second point to consider is what is the purpose of the statistics? Is it to establish a 

relationship which can form the building blocks for further work or is it to provide information 

to inform decision making?  
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For hydrometeorology, statistical methods have widely been used to identify the links 

between particular climate indices (e.g. ENSO) and the magnitude of river levels/discharge 

across the world (e.g. Ward et al., 2010; 2014; 2016), while others have gone onto use 

information from statistical tests to produce forecasts based on probabilities for upcoming 

natural hazards (e.g. droughts and floods; Schöngart and Junk, 2007; Emerton et al., 2017; 

2019). 

In Chapter 4 we used a tercile based framework in which we compared the influence of 

positive/negative phases of several climate indices against neutral conditions. This method to 

our knowledge has not been widely used in field of hydrology and had not been applied 

specifically to the Amazon Basin. This approach was already applied by Ficchí and Stephens 

(2019) for Africa, observing the differences in peak flow timings across Africa between the 

warm and cold phases of different climatic indices. The authors demonstrated the potential 

usefulness of the results in identifying the most suitable times for farming practices based on 

how the flood seasonality changes during the positive or negative phases of ENSO.  

Information from statistical methods can also be used to provide information on the need to 

consider further research or advice on the uncertainties that may be involved in flood 

prediction. For instance, Emerton et al. (2017) calculated historical probabilities of increased 

or decrease flood hazard in any given month during El Niño/La Niña events. This was based on 

the thought that historical evidence of the typical impacts of ENSO could be used to provide 

useful information on what we can expect at different locations in the future (i.e. wetter or 

drier conditions). The results showed that though large areas of the globe could be circled as 

being wetter or drier during a particular climate phase, when compared to the observations 

during specific ENSO events, some countries observed the expected flooding while others did 

not. These results could be used as a reason not to use forecasts based on climate variability, 

with the authors stressing the need for further works such as to consider how specific regions 

may respond to different types of climate events (e.g. central vs eastern ENSO events).  

Other common statistical methods used in the literature include examining the impact of 

climate indices on the frequency of flooding (e.g. Villarini et al., 2013; Mallakpour and Villarini, 

2016; Mallakpour et al., 2017). This methodology uses regression models to evaluate whether 

large-scale climate features such as ENSO significantly influences the frequency of events over 

a particular period of time (e.g. per rainy season or year). For example, Mallakpour et al. 

(2017) uses the Cox regression model to compare seasonal count data (i.e. the 

occurrence/non-occurrence of events) against the daily time series of SSTs. Both rainfall and 
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discharge data were used over the central United States, with events determined as daily 

rainfall that exceeded the 95th percentile of the distribution and a peaks over threshold 

approach for river flow, where the threshold was set to have an average of two flood events 

per year at each gauging station. The application of this methodology allows the user to 

identify if extreme hydrometeorological events tend to occur independently of each other or 

in clusters. The answer to this question can have profound implications. For instance, if we 

imagine a scenario in which the number of heavy rainfall events is the same between two 

seasons, but in the first season events are independent and are evenly spaced in time and in 

the other events are clustered in time, the resulting socioeconomic implications could be 

totally different. The clustering of flooding for instance, can impact flood estimates, design, 

and risk management, whilst causing issues with the pricing of insurance contracts (Merz et 

al., 2016), as the cost to an insurance company after re-insurance from a cluster of floods can 

be higher than from a single event (Mallakpour et al., 2017).   

The above studies do not all mention how the links between climate indices and flood events 

manifest or explain the underlying mechanisms that cause floods. Rather they produce a 

statistical framework that serves a purpose. The purpose of a study is the key factor in 

understanding the value of using a particular method. For instance, the way you want to 

assess the frequency of flooding can change how appropriate a particular modelling 

framework is (Mallakpour et al., 2017). If the goal is to examine the frequency of flood events 

in a season against climate indices, then the Poisson regression model would be the 

appropriate choice. However, if the objective were to model whether the frequency of events 

within a season are clustered then the Cox regression model would be a better candidate.  

The region of interest and the behaviour of variables (e.g. precipitation vs river discharge) can 

also influence the suitability and value of using a particular statistical approach. For example, 

for larger rivers in the Amazon Basin, the hydrographs tend to have one defined peak of river 

discharge. This can be problematic if trying to apply the Cox regression model to these rivers 

as the number of events will be small and where a river discharge series is volatile (i.e. goes 

under and back over a set threshold), it would violate the requirement of events being 

independent of one another. However, if we changed the variable of interest to rainfall and 

we were to examine the temporal frequency of heavy rain events against climate indices, the 

study can be become much more valuable. For instance, this type of analysis could provide 

insights into the clustering of rain events over a certain tributary during a particular climate 

phase which in turn could have impacts on the timing of flood peaks in coinciding tributaries.  
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5.3 A physical mechanism approach 
 

Floods can be described as a destructive abundance of water, that is generated through a 

combination of climatic, meteorological, hydrological, and anthropogenic processes (Wyżga et 

al., 2016). For example, factors can include abnormal SSTs that stem from changes in 

temperature (natural or anthropogenic), altering pressure gradients and thus the atmospheric 

circulation (i.e. zonal winds). In turn this can move the location of the convection of moisture 

into the atmosphere and the locations of moisture convergence and divergence (i.e. large-

scale atmospheric circulation), and consequently rainfall patterns. Though a simplistic 

example, understanding these processes and how they link can allow us to determine how and 

why floods occur in certain areas and can provide understanding of past, present, and future 

flood risk (Berghuijs et al., 2019). 

Most studies that investigate the mechanisms between climatic drivers (e.g. TNA, ENSO) and 

flooding typically examine several variables such as moisture fluxes, the divergence and 

convergence of moisture, precipitation, geo-potential height, and vorticity during the growth, 

peak, and decay of a climatic event (e.g. El Niño). This can either be performed for a single 

climate event or for a composite of the same type of event (i.e. the mean of moisture fluxes 

during several El Niño events). Plots are then typically analysed to identify certain patterns 

that can explain the links between anomalous SST conditions and flooding and how it occurs. 

This is performed either by studying the absolute values for a specific period or observing how 

different each variable of choice is compared to the climatology or another climate phase (e.g. 

positive against neutral years). 

A detailed example of this type of analysis can be found in Zhang et al. (2017) study where 

they investigate the influence of the Pacific Meridional Mode (PMM), a coupled mode of SSTs 

and surface winds that are linked to increased rainfall during June-July-August in the Amazon 

Basin. Here, they use moisture flux convergence/divergence to diagnose precipitation changes 

using both observed and simulated data. First, they carry out a correlation and regression 

analysis between PMM and moisture flux convergence over the Amazon basin, finding a 

positive relationship that suggests increased moisture convergence over most of the Amazon 

Basin (excluding the north-west) is associated with the positive phase of PMM. Next, they 

examined the 850 hPa velocity potential and divergent wind which resembled the pattern 

found for the moisture flux highlighting the key role of low-level convergence/divergence. 

Further diagnosis explored the moisture stream function and low- and high-level stream 

function and rotational winds related to PMM. Moisture stream function was found to have a 
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clear spatial pattern, with negative (positive) stream function anomalies over South America 

(North Atlantic), respectively. From this the authors identified cyclonic (anticyclonic) moisture 

flux centres west (east) of the PMM related forcing resembling a baroclinic Gill response (Gill 

1980). They hypothesise that this baroclinic Gill response may contribute to anomalous 

moisture convergence (divergence) over the Amazon region, related to increase (decreased) 

precipitation during the positive (negative) PMM phase. Similar style analyses for floods in the 

Amazon can be found in Espinoza et al. (2013; 2014) and Satyamurty et al. (2013) whereby 

they examine a variety of variables to build up a picture of how each responds to anomalous 

SSTs.   

The clear benefit of using this type of approach is that many more variables are assessed 

which can then be linked to the prediction of wetter or drier conditions. For instance, most 

statistical analyses simply investigate the relationship between the climatic index (e.g. SST 

anomalies) and rainfall/river discharge. However, when analysing the physical mechanisms, as 

in the example above, a positive phase of PMM is associated with increased rainfall as is 

moisture flux convergence and the baroclinic Gill responses. When the PMM begins a positive 

phase, these additional variables and the patterns of cyclonic/anti-cyclonic activity can be 

used to monitor the situation and build up a more confident picture on the likelihood of 

wetter conditions.   

Returning to the results produced by Emerton et al. (2017) which called for further work 

investigating how different types of ENSO may affect specific locations. This type of analysis 

may benefit from a physical mechanisms perspective as opposed to a statistical framework 

owing to the limited number of specific types of events (e.g. eastern Pacific El Niño events) 

preventing strong conclusions to be made from typical correlation or regression based 

statistics. However, by investigating the underlying connections between the SST anomaly and 

flooding for specific climate events, it allows a picture to be built of what the dominant 

processes (e.g. evaporation, convection) are and how the circulation may differ to neutral 

conditions or other types of events (e.g. how does an EP event differ from a CP event). 

Knowing these dominant processes would allow model developers information on where to 

focus efforts to improve seasonal forecasting systems.  

An often-overlooked element and indeed a limitation of this thesis is a lack of focus to the land 

surface component of the modelling chain and the physical processes within. Though the focus 

of this thesis is on whether climatic drivers such as ENSO impact flood variables in the Amazon 

Basin, better understanding the physical processes at the land surface could help to explain 



 

166 

 

how ENSO is driving wetter or drier conditions throughout the basin. Indeed, this is true for 

both understanding the results from a statistical model or through the development of a 

physical based flood model such as GloFAS. For instance, in the results of Chapter 4, it was 

found that GloFAS is able to better predict the changes to flood magnitude and duration 

during the cold ENSO phase relative to neutral conditions compared to the warm ENSO phase 

relative to neutral conditions. Though an interesting result, it is still unclear why GloFAS 

performs better during the negative phase. By incorporating experiments into the land surface 

processes further evidence may be able to provide an explanation for these results. For 

instance, it is well known that large-scale climate variability such as ENSO has implications for 

temperature and rainfall across the globe. However, digging deeper, questions could be asked 

about how the changes in temperature and rainfall impacts additional variables such as soil 

moisture, snowpack conditions, vegetation cover amongst many more. For instance, during El 

Niño, changes in temperature could lead to a change in the mass of frozen water in the snow 

layer and/or the timing of snowpack melting and thus a change in the albedo and vegetation 

cover. In models such as GloFAS 2.1 where the soil and snowpack are parameterised (Bousetta 

et al., 2021), the model may not provide an accurate reflection of these processes during 

these particular climatic periods which may cause a deterioration in the skill of the model.  

By understanding how climate variability impacts not just the model output, but additional 

variables throughout the modelling chain, it can help explain why a particular climate feature 

increases the likelihood of flooding, but also helps to pinpoint why a particular model is or is 

not able to accurately simulate the hydrological response to climate variability. This is true 

when evaluating model performance in general as previous works have shown that errors in 

river flow were not reflected by precipitation biases and that other errors within the modelling 

chain (e.g. errors in soil moisture storage/timing, missing processes such as dams or within the 

river routing model parameters; Follen et al., 2011). Indeed, this was found to be the case at 

Sao Paulo di Olivenca in the Amazon, where the HadGEM1 model was found to underpredict 

(boreal) summer rainfall in contrast to the overprediction in river flow, meaning that the error 

in flow must have been due to another physical variable.  

5.4   Machine learning 
 

More traditional methods of flood forecasting involve a chain of hydrologic and hydraulic 

models that describes the physical processes (e.g. evaporation, infiltration, water routing etc.). 

Although such models provide an understanding of the hydrological system, they often have 
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high computational and data requirements, particularly at the global scale which can become 

particularly problematic in data scarce parts of the world and often rely on in-depth 

knowledge and expertise on model parameters. In addition, physically based models need to 

be calibrated to a particular geographical area to optimise performance but consequently their 

outputs are not always generalisable across most river basins owing to the individual 

characteristics to each basin (Sidrane et al., 2019). Such issues have encouraged the use of 

data driven models to mimic the complex mathematical expressions of physical processes 

(Mosavi et al., 2018) and provide the flexibility and power to map flood prone areas even with 

limited data (Pham et al., 2021). This is achieved by linking GIS and remote sensing techniques 

to better interpret and visualise the terrain which is being modelled.  

Numerous types of machine learning algorithms exist (e.g. artificial neural networks (ANNs), 

neuro-fuzzy, support vector machine (SVM), and support vector regression (SVR)) and work by 

learning the relationship between flooding occurrence and explanatory factors from historical 

flood records. Such models have been found to be effective for both short- and long-term 

flood predictions (Mosavi et al., 2018). Indeed, Abbot and Marohasy (2014) comparison of 

physical and machine learning models for rainfall forecasting in Queensland, Australia showed 

the potential of data driven models with a higher accuracy found for machine learning models.  

Like many physical based models, the output of machine learning techniques can also provide 

estimates of additional hydrological variables such as flood depth. Hosseiny et al. (2020) 

developed two different machine learning models using a random forest and ANN approach to 

simulate flood depth in the Green River, Utah. The random forest model identifies wet and dry 

nodes to represent areas of flooding, whilst the ANN model incorporates coordinates so the 

user can identify the flood depth anywhere in the model domain. The results showed that the 

machine learning models could accurately simulate flood extent and flood depth, whilst 

reducing the computational time 60-fold. As this was for case study for a catchment in Utah, 

the computational time saved is expected to be much larger for large-scale modelling.  

Despite the success of machine learning to date, it is important to consider that the models 

can only be considered as good as their training, whereby the system learns the model 

objective based on past data and patterns. Despite being in the ‘earlier’ stages of discovery 

when it comes to its application to hydrology and flood prediction, there is a sense of fear and 

apprehension when it comes to machine learning and artificial intelligence from some 

members of the hydrological community. This is because, these models take away the sense of 
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understanding the physical processes and requirements for hydrological expertise due to their 

automated approach. However, Nearing et al. (2020) caution that if hydrologists do not take 

investment into these new technologies then someone else will. This has already been seen 

with the likes of Google investing heavily in creating a global flood prediction system using a 

machine learning and big data approach.  

5.5 Combining the if and the how 
 

It can sometimes be useful to consider both if there is a relationship between climate and 

flood events and if so, how it causes it. An example of this is provided by Mallakpour and 

Villarini (2017) where they first identify if climatic drivers are responsible for observed changes 

in flood frequency over central United States using a regression analysis. They find that the 

Arctic Oscillation and Pacific-North American pattern (PNA) are important predictors in 78% of 

774 stream gauges. After establishing these relationships, the authors relate their results from 

statistical analysis to the physical processes by calculating the integrated vapor transport (IVT) 

over the study area, which describes the total amount of transported water vapor to a region. 

To do this they observe IVT anomalies on days where heavy rain events occurred and seven 

days beforehand. At locations where the PNA was identified to be the dominant mode of 

climate variability, the IVT was found to be anomalously high, showing a higher-than-average 

transport of moisture to that area (Fig. 1d). This matched with previous studies that found an 

association between the negative phase of the PNA and increased water vapour transport 

over the central United State (Harding and Snyder, 2015).   

In terms of forecasting floods, the idea of combining models which use different 

methodologies has become increasingly popular. Commonly termed hybrid models, the idea 

behind this is to take the advantages of individual model types in order to improve forecast 

performance. For instance, Phan and Hguyen (2020) concluded that a hybrid model can yield 

superior and more reliable results when combining a traditional linear statistical model with a 

machine learning model relative to individual model performance. The authors explain that a 

hydrological time series often consists of both linear and non-linear correlation types, meaning 

that a combination of models could be better suited for the problem at hand. The same could 

be argued for combing machine learning methods with traditional physically based models. 

This approach could be well suited for those who wish to allow the conceptual components to 

capture the hydrologic modelling while the machine learning could be utilised for calibration, 

bias corrections and modelled processes in which data is lacking (Nevo et al., 2019).  
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Yang et al. (2019) experimented with improving five GHMs flood simulations by using a hybrid 

physics-guided machine learning approach (LSTM). This hybrid approach was found to 

drastically improve the performance of simulated flood peak amplitude on the global scale. 

Despite this improvement, the LSTM was not able to significantly improve the timing of peak 

flow discharge, likely associated with the model’s sensitivity to extreme precipitation, 

snowmelt and soil moisture. This implies that further development may be required within the 

GHM, river routing model or input data itself as opposed to the LSTM and emphasises the 

need to continue the development of models that use a physically based approach.  
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Chapter 6  

Conclusions  

The aim of this thesis was to provide evidence for the potential use of variations in large-scale 

climate features (i.e. atmospheric and oceanic anomalies) to extend the lead time of skilful 

flood forecasts in the Amazon for early warning and early action. While the magnitude of river 

flows/water levels are often linked with climate anomalies (Ronchail et al., 2005b; Espinoza et 

al., 2009a), studies examining the relationship with the timing and duration of river discharge 

are less common. This is despite the length of the wet season and timing of peak river flows in 

coinciding tributaries playing a major role in the dampening or super positioning of the 

travelling Amazon flood wave (Tomasella et al., 2010), and having been previously associated 

with extreme flood events (e.g. 2009 in the Brazilian Amazon; Marengo et al., 2012).  

Additionally, although previous extreme flood events have been attributed to particular 

climate patterns, the usefulness of this information within a flood prediction capacity is still 

limited and the mechanisms in the build up to these events are not fully understood. For 

instance, cooler than usual SSTs in the equatorial Pacific Ocean have been identified to provide 

the atmospheric conditions that maintains a strong humidity flux over the basin and 

consequently produces increased rainfall and flooding (Espinoza et al., 2013). However, it is 

not understood, if a particular magnitude of SST anomaly is required or how the spatial extent 

of SST anomalies would impact the atmospheric response.  

To tackle the aforementioned aim, this thesis has made progress in the understanding of how 

variations in large-scale climate variability affect flood characteristics in the Amazon Basin 

through the following three research objectives: 

1. To provide an up-to-date depiction on what we currently know and do not know 

about how large-scale variability influences precipitation and river discharge regimes 

in the Amazon Basin, and thus flooding. 

2. To determine whether river flow data produced from global or large-scale hydrological 

models are sufficient for use in climate analysis, linking large-scale climate patterns 

and teleconnections to anonymously high river flows.   

3. A statistical investigation of whether warm or cold phases of different hydroclimatic 

drivers significantly alter the characteristics of river flows throughout the Amazon 

Basin (e.g. the magnitude, timing and duration of river flows) relative to neutral 

conditions.  
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4. To discuss whether statistical methods provide sufficient information to support 

extended-range forecasting in the Amazon Basin, and what could potentially be 

offered by methods that address the physical mechanisms. 

This thesis has been structured around three research papers. These include a comprehensive 

review of how climate variability influences flooding in the Amazon Basin (Chapter 2; Towner 

et al., 2020a), and two research articles (Chapters 3-4; Towner et al., 2019, 2020b) addressing 

objectives two and three. The following sections summarise the key lessons learnt from each 

objective stated above, addresses the scientific advancements made and proposes avenues for 

future research.   

6.1 Key conclusions  

6.1.1 Objective 1: What do we know and not know  
 

The first objective of this thesis was addressed in Chapter 2 (paper 1) and was to provide a 

comprehensive picture on the state of knowledge on the influence of large-scale climate 

variability in the Amazon Basin. To achieve this, maps were created showing the influence of 

several climate indices over the entire basin for both rainfall and river discharge 

independently, aggregating results from previous studies. Results predominately identified 

consistent patterns for both rainfall and river discharge (e.g. widespread drier conditions 

during El Niño or a warm TNA and wetter conditions in the north-eastern Amazon during La 

Niña), though the understanding of these results for a flood forecasting capacity was weak.  

The review was extended to document and evaluate flood events attributed to particular 

climate indices since 1950 based on previous work. Here, an assessment of each study was 

undertaken to assess the confidence in the results linking certain floods to certain phase of 

climate variability. Most disagreements took place in the Peruvian Amazon, with 

discrepancies identified for certain flood events (e.g. 1986 and 1993; Espinoza et al., 2013). 

These floods had been found to be associated with La Niña conditions despite not reaching the 

typical ONI SST threshold. Though certain extreme floods are examined in detail (e.g. 2014 in 

the Madeira basin; Espinoza et al., 2014), certain events are only evaluated as part of a 

composite analysis where results are smoothed. Moving forwards, it could be useful to analyse 

individual events linked to the same climate phase (e.g. La Niña) to better understand the 

mechanisms behind each event.  
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A key message from this paper was the need to divert attention to how climate variability 

influences flood timing and duration. Most studies have identified the relationship for how 

the magnitude of streamflow is affected, but few were able to provide relevant information on 

whether climate indices such as ENSO increased/decreased the period of flooding or altered 

the timing of the flood peak. These characteristics play a huge role in determining the type of 

flood event, with early or long flood periods know to have a range of effects to those living 

within the floodplain (Langill and Abizaid, 2019).  

6.1.2 Objective 2: Assessing the capabilities of GHMs for capturing annual peak 
river flows 

 

Consistent links have previously been identified between SST anomalies in the Atlantic and 

Pacific Oceans and observed streamflow in the Amazon. However, Chapter 2 identified that 

the time series of individual gauging stations commonly have large gaps without data and are 

limited in time, with the period of investigation in many studies restricted to between 10-20 

years, meaning that it is only able to capture a few strong climate events (e.g. strong El Niño). 

Datasets produced from GHMs can extend the period of analysis, but the suitability of such 

data requires robust evaluation, exploring the strengths and shortcomings of individual 

components across the modelling chain. The objective of this paper was to assess the 

performance of several different GHMs for capturing both daily and annual peak river flows in 

the Amazon Basin. This was achieved by comparing the output of river discharge from eight 

large-scale hydrometeorological models, with varying model components (e.g. precipitation 

input, hydrological model, and routing model) to discharge observations (1997-2015). The 

results of this paper provided a first indication of the suitability of river flow reanalysis data 

for the Amazon Basin which are produced through a GHM, with ERA5 as the meteorological 

input, compared to its predecessor ERA-Interim Land and satellite data. As expected, the 

results suggests that the meteorological input was deemed the most important component 

within the hydrometeorological modelling chain. Model runs which incorporated the latest 

climate reanalysis dataset, ERA5, showed the most accurate reflection of previously observed 

annual maximum river flows, particularly at gauging stations situated within the Peruvian 

Amazon.  

In addition to providing an evaluation of a range of GHMs for capturing peak river flows, this 

paper explored the potential benefits of routing scheme calibration through two specific 

model run comparisons. When comparing the calibrated ERA5 Lisflood simulation to the 

associated uncalibrated model run (i.e. ERA5 Lisflood_uc) no improvement was found in the 
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ability to predict annual maximum river flows. Improvement was found however for the 

calibrated simulation for metrics related to the evaluation of the whole hydrological regime 

(e.g. timing, variability and, bias of the hydrograph), meaning that the improvement may be 

restricted to the objective function used, in this case the KGE. This suggests, models that seek 

to capture flooding, may be better off using an objective function that fits the model’s purpose 

and users interests (e.g. APFB for flood forecasting).  

The implications of these results suggest that when using river flow data produced through 

GHMs, the meteorological input is the dominant factor and causes the largest measure of 

uncertainty. Therefore, future work should focus on the improvement of precipitation 

products.   

6.1.3 Objective 3: Do SST anomalies alter flood characteristics?  
 

In Chapter 2 it was identified that whilst many studies concluded the relationship between 

various climate indices and the magnitude of streamflow, very few had examined the links to 

flood timing, and duration in the Amazon Basin. While the results of Chapter 3 provided 

evidence of the usefulness of using data from GloFAS forced from ERA5 reanalysis 

precipitation data to help bridge data gaps in the respective time series. The third objective of 

this thesis was to examine whether positive or negative phases of several climate indices in 

the tropical Pacific and Atlantic altered flood characteristics (i.e. flood magnitude, timing, and 

duration), in the Amazon Basin. This objective was addressed in paper 3 (Chapter 4) and 

assessed seven climate indices, with streamflow data provided from GloFAS reanalysis and 

observed data at 58 gauging station throughout the analysis period (i.e. 1979 to 2015).   

The results of this paper identified significant changes in both flood magnitude and duration, 

particularly for rivers located in the north-east of the basin for both datasets when ENSO is 

in its cold phase. The result identified in the north-east differs when the centre of the SST 

anomaly moves from the central to the eastern Pacific (i.e. CP vs EP). When the centre of 

cooling is further east towards South America, the increase in flood magnitude and duration 

dissipates. This is due to a shift in the rainfall patterns over the Amazon during the cold EP 

phase, whereby a deficit in rainfall is observed over the north-eastern Amazon. These results 

highlight how the type of ENSO event in terms of their spatial complexities can alter the 

response in hydro meteorological conditions.  

No evidence is found to suggest that climate phases significantly impact flood timing across 

the Amazon, with no notable pattern identified for all indices examined. Correlations 
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between the results of the observed and simulated datasets showed that GloFAS can more 

accurately simulate the negative phase of ENSO relative to neutral conditions for multiple 

indices. In contrast, the correlation reduces significantly for the positive phase, meaning that 

GloFAS struggles to accurately simulate the differences in flood characteristics for El Niño and 

neutral phases. 

The conclusions from this work suggest the need to consider other intricacies within 

typically analysed climate indices such as EN3.4. For instance, there is a need to consider how 

the intensity and/or timing of an event impacts the hydrological response in the Amazon. 

Espinoza et al. (2013) highlighted how an early La Niña event led to the 2012 floods in the 

Peruvian Amazon, suggesting the possibility that the timing could be an essential component 

in understanding the response to specific climate events. In addition, the combination of 

climate events (e.g. La Niña and a warm TSA) deserves further attention based on evidence of 

previous flood events (e.g. 2014 in the Madeira basin; Espinoza et al., 2014).  

6.1.4 Objective 4: Understanding the value of statistical vs physical based 
methods 

 

The methods from Chapter 4 led to an interesting discussion between a reviewer and the 

authors leading to the idea of a discussion paper. The fourth objective of this thesis was to 

discuss the value statistical methods for supporting extended-flood forecasting in the Amazon 

Basin, while determining the potential value of methods addressing the physical mechanisms 

of climate events.  

Though both types of methods have been found to provide value in terms of supporting 

extended-flood forecasting, statistical methods alone can be sufficient providing that it can 

provide the answers to the question at hand. For instance, if the objective is to determine if 

La Niña increases the likelihood of flooding, or by how much does La Niña increase the 

likelihood of flooding, then statistical approaches are a better suited approach. This is because 

statistical methods can provide quantitative information on the significance of the relationship 

whilst providing statistical uncertainty (e.g. use of ensembles to provide probabilities). Though 

statistical uncertainty has been criticised in its usefulness for decision making as many 

decisions are binary by nature, this is not a criticism of statistics directly but more of a case of 

how it is communicated and understood (Pappenberger and Beven, 2006).  

If the question however is more related to how La Niña results in flooding and the 

teleconnections involved, then the physical mechanisms would need to be analysed. From this 
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a greater picture can be built of the key processes linking climate anomalies and flooding and 

provide the information on the most important physical processes that need to be simulated 

more accurately to improve flood predictions. The key conclusion therefore is the need to 

focus on the purpose of a study when applying and reviewing the methods.  

6.2 Scientific advances  
 

This thesis has determined what we currently know and do not know about the influence of 

large-scale climate features on Amazon floods, enabling the enhancement in the 

understanding of different hydroclimatic anomalies for early flood warning. The specific 

scientific advances of this work are summarised below: 

1. This thesis builds upon previous work (e.g. Ronchail et al., 2002; 2005a; Espinoza et al., 

2009a) providing a comprehensive up to date review of how large-scale hydroclimatic 

drivers (e.g. ENSO and tropical Atlantic SSTs) impact both rainfall and river discharge 

which can be visualised in the form of composite maps.  

2. Several recommendations are given to better understand the usefulness of climate 

research linking SST anomalies to river flow for early flood warnings. 

3. Evaluation and usability of simulated river flow data produced from several state-of-

the-art GHMs and their components (e.g. river routing model) in the Amazon Basin, 

providing the strengths and shortcomings for various model components and 

highlighting regions in the Amazon Basin where simulated data is skilful (not skilful).  

4. Recommendations are given for the objective function choice for routing model 

calibration where the purpose of the model is to capture flooding. Comparisons 

between uncalibrated and calibrated models runs of Lisflood forced with both ERA-

Interim and ERA5 reanalysis showed that the ability to simulate flood peaks in the 

Amazon does not increase upon routing calibration, whereby the objective function is 

the KGE. 

5. The importance of considering peak flow timing and flood duration in addition to flood 

magnitude within climate analysis is consistently highlighted throughout this thesis. 

Differences between positive/negative and neutral phases of several climate indices 

were assessed for both flood characteristics; the impact on flood timing was found to 

be limited with no clear signal. 
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6.3 Recommendations for further study  
 

The work in this thesis has raised several questions and motivation for future research. Though 

avenues of future work have been touched upon in each chapter, this section provides specific 

examples of ways in which this research could be extended. 

• Full hydrometeorological model comparison study. One of the next steps raised in 

Chapter 3 was to carry out the analysis at a more granular scale. For example, due to 

time restraints associated with this thesis, data was used that was already freely 

accessible through the GFP. However, ideally a similar analysis would be undertaken 

whereby the number of models used is larger and incorporates all possible 

combinations of meteorological input, hydrological/LSM, and river routing 

component. This would allow a better evaluation of what is the best data input and 

model selection for the metric and region of choice (e.g. peak river flows for the 

Amazon).   

• Impact of hydrological data and processes. One of the main limitations of this thesis 

was a lack of attention to hydrological and land surface processes that modulate the 

hydrological cycle and form a key part of the hydrometeorological modelling chain. 

When undertaking model comparisons, it would be important to consider the impact 

of soil hydraulics (e.g. infiltration, rate of retention, rate of water flow) and 

vegetation properties (e.g. leaf area index; LAI, canopy height) on model 

performance. For instance, many land surface/hydrological models represent LAI, a 

measure of vegetation thickness, using look up tables based on vegetation type and 

seasonality. However, when using global LAI datasets derived from remote sensing 

observations to provide monthly values of LAI, forecasts of near surface variables 

such as air temperature and relative humidity were improved (Boussetta et al., 

2013). An analysis investigating the impact of different soil and vegetation maps 

would provide a good first indication on the importance of soil type relative to 

meteorological forcing. This analysis would use the same hydrometeorological model 

set-up (i.e. same meteorological input, hydrological and routing model) changing 

only the soil fields. 

• Performance of GloFAS during particular climate phases. Results of Chapter 4 

identified that GloFAS better simulated the differences between the negative and 

neutral phases of ENSO compared to the differences between the positive and 

neutral phases. It would be useful to understand why these results emerge. It could 
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be due one or two El Niño events not being simulated correctly, or it could be that 

the model fails to represent conditions during the positive phase. It would be useful 

to carry out further evaluation of GloFAS similar to analyses performed by Alfieri et 

al. (2013) and Bischiniotis et al. (2019) for the globe and Peru, respectively, but 

evaluating the performance of GloFAS for different phases of climate variability.  

• Analysis of ENSO variations. Several times within this thesis the conclusions have 

called for further analysis into how variations of ENSO events can result in different 

responses to hydrometeorological variables in the Amazon. Results from Chapter 4 

have already shown differences in the magnitude and duration of river flows 

between the cold phase of central or eastern Pacific events, where the wet signal 

dissipates when the centre of cooling is shifted east towards South America. Further 

work should consider the magnitude (i.e. weak vs medium vs strong ENSO events), 

timing (i.e. when an event begins and decays), and spatial location (e.g. central vs 

eastern) of events. The timing is an interesting component for the Amazon as work 

by Espinoza et al. (2013) suggests an earlier La Niña signal could be related to 

flooding in the Peruvian Amazon. This work could be applied to other locations or 

even globally.  

• Frequency of heavy rainfall events. Chapter 4 investigated how large-scale climate 

variability impacts the flood magnitude, timing, and duration of river flow in the 

Amazon Basin. The next step should examine how these indices impact the 

frequency of flooding. Similar works have already been performed in the central 

United States (e.g. Villairni et al., 2013; Mallakpour and Villiarini, 2016) examining  

how climate indices have affected the frequency of flooding using both river flow 

and precipitation data using a peak over threshold approach for event 

determination. Due to the type of flood regimes of large rivers in the Amazon Basin 

(i.e. one singular flood peak), it would be more useful to analyse heavy precipitation 

events in the form of a set of Cox regression models to identify whether or not there 

is a clustering of events at the sub-seasonal level (e.g. Villarini et al., 2013; 

Mallakpour and Villarini, 2017). Different event determination approaches could also 

be used for floods, for instance, from the exceedance of return periods (Coughlan de 

Perez et al., 2017), or from floodiness (Stephens et al., 2015).  

• Calibration of H-TESSEL. Hirpa et al. (2018) performed a calibration of the Lisflood 

routing component of GloFAS altering parameters related to flood timing, variability, 

and groundwater loss (e.g. channel Manning’s coefficient, outflow for reservoirs). 
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Though skill improved in many basins compared to the non-calibrated model run, 

some basins observed a decrease in performance. The authors acknowledge that this 

may be due to basins where the forcing bias is the main source of streamflow 

uncertainty and thus model performance could be improved by calibrating 

parameters related to evaporation and infiltration. The potential of such work is 

already highlighted by Baugh et al. (2020) where performance at capturing the peak 

flow at stations in the United States increased after the assimilation of SMOS soil 

moisture. It is thought where soil moisture values are larger from the data 

assimilation of SMOS it could lead to increased surface runoff and thus increased 

streamflow. Calibrating parameters relating to the soil moisture balance could 

therefore have the same impact.  

• Incorporation of Amazon dams in GloFAS. Damming is becoming increasingly more 

common in the Amazon Basin, particularly in the south-eastern Amazon Basin 

(Latrubesse et al., 2017). When comparing the average timing of flood peaks from 

GloFAS to observed data, the flood peaks tend to occur too early along rivers in this 

region. While GloFAS does contain major dams and reservoirs within the modelled 

river network, simplified reservoirs operating parameters are used based on Zajac et 

al. (2017) resulting in expecting differences between river discharge reanalysis and 

observations (Harrigan et al., 2020). Currently, most of the dams/reservoirs in the 

Amazon are not represented in GloFAS (see Fig. 2 in Zajac et al., 2017). However, 

reservoirs were found to affect model performance substantially in other areas of 

the world when reservoirs were incorporated into GloFAS. This gives hope that the 

inclusion of existing dams in the Amazon could help increase the skill of flood 

forecasts in the basin.  

6.4 Closing remarks  
 

Overall, the work in this thesis has enhanced the understanding of the relationship between 

large-scale climate variability and flooding in the Amazon Basin. The results have provided a 

clearer overall picture of how climate variability affects both rainfall and river discharge over 

the entire basin and has importantly provided evidence of how different climate indices 

impact flood timing and duration of which evidence has been previously lacking. More work 

needs to be done in understanding the influence in the diversity of climate indices, in addition 

to the combination of simultaneous climate phases (e.g. El Niño and warm phase of the TNA). 

One of the biggest obstacles is the need to have a long and consistent dataset of streamflow 
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that accurately reflects flood peaks in the observed datasets. This is due to the limiting 

number of specific climate events (e.g. the number of strong La Niña episodes) that take place. 

Thus, the next steps heavily rely on the improvement of reanalysis data to extend the period 

of analysis and provide stronger conclusions. With the precipitation input found to be the 

most dominant component of the hydrometeorological modelling chain, it is logical to focus 

efforts on improving the precipitation products.  
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