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Abstract: Research in the medical imaging field using deep learning approaches has become progres-
sively contingent. Scientific findings reveal that supervised deep learning methods’ performance
heavily depends on training set size, which expert radiologists must manually annotate. The latter is
quite a tiring and time-consuming task. Therefore, most of the freely accessible biomedical image
datasets are small-sized. Furthermore, it is challenging to have big-sized medical image datasets due
to privacy and legal issues. Consequently, not a small number of supervised deep learning models
are prone to overfitting and cannot produce generalized output. One of the most popular methods to
mitigate the issue above goes under the name of data augmentation. This technique helps increase
training set size by utilizing various transformations and has been publicized to improve the model
performance when tested on new data. This article surveyed different data augmentation techniques
employed on mammogram images. The study aims to provide insights into augmentation and deep
learning-based augmentation techniques.

Keywords: Data Augmentation, Deep Learning, Medical Imaging, Mammograms

1. Introduction

Amongst various artificial intelligence fields, Deep Learning (DL) is widely adopted
for the processing and analysis of radiological images. DL has been successfully applied to
various Computer Vision tasks such as Object Segmentation, Detection, and Classification
especially thanks to accuracy rates achieved by convolutional neural networks (CNNs).
CNNs have the capabilities to automatically learn features through several network layers
from a large set of labeled dataset [1]. Concerning the biomedical image analysis topic,
CNNs have been successfully utilized for various tasks such as lesion or tumor classification,
suspicious region detection, and abnormality detection [2–4]. DL-based solutions serve
as a second opinion tool for expert radiologist and assist them in decision making and
proper treatment planning [5]. To build a DL model that is able to generalise information
from data, there needs a large amount of ground-truth data to avoid the model being very
accurate only on the training dataset images. The latter goes under the name of overfitting
[6,7] and represents a critical issue to overcome to have a model capable of delivering
appropriate knowledge inference capabilities on a given application domain. Having
high-quality and manually annotated data is a time-consuming and expert dependant
task. That is quite common in the context of mammogram analysis [8–10]. One of the
most challenging tasks for DL models is the generalisation, with generalisation being
the capability of models to recognise those categories they were trained for on new data
[11,12], The model with poor generalisation generally does not perform well due to high
overfitting on the training set. Overfitting can be observed somehow in the plot showing
validation accuracy at every epoch of the training phase [1]. Figure 1 shows the pictorial
representation of models with and without overfitting. The training and validation loss
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Figure 1. The left side plot shows the ideal trend of the model with training and validation error functions decreasing almost
simultaneously. The plot on the right side shows the undesired effect of overfitting, having the training error decrease and, conversely,
validation error increase suddenly.

curve is progressively and simultaneously reducing, which is a perfect circumstance, as
shown in the figure 1 (left). The right side of the figure shows overfitting, in which the
validation loss begins to grow after a certain number of epochs. In contrast, the training loss
keeps decreasing. That is due to the model’s inability to work effectively with unknown
or new data. One of the reasons for this phenomenon might be a lack of enough training
samples. The validation error of suitable DL models should continue to decrease along
with the training error. Data augmentation methods can help achieve this task. Augmented
data can characterise the inclusive set of input data points and minimise the distance
between validation and training data. Data augmentation techniques apply alterations
to training datasets to produce more samples. Moreover, this technique helps the model
avoid learning features too specific to the original data, resulting in a more generalised
model with improved performance on the test dataset. Class distribution imbalance in
datasets is another common challenge. For instance, binary classification problems occur
when one class (the minority class) holds considerably fewer samples than the other class
(the majority class). Due to this, the model may get biased towards the majority class,
possibly resulting in misclassification. Augmenting the minority class images may be used
to mitigate the imbalance problem. Data augmentation is not the only approach to reduce
the effect of overfitting and class imbalance. Other options for avoiding overfitting in Deep
Learning models are also explored in the literature (see figure 2).

Batch Normalization: Batch Normalization can overcome the side-effect of overfitting
by diminishing the internal covariate shift and instability in the distributions of Deeper
networks’ layer activations. For each mini-batch, batch normalisation standardises the
inputs to a layer. This has the effect of bringing the learning process into balance. Dropout:
Dropout applies during the training phase to get randomly selected neurons ignored.
That avoids the so-called layer’s "over-reliance" on a few inputs. As a consequence, It
prevents neurons from co-adapting to training data. Transfer Learning (TL): Transfer learning
improves models’ performances on new and unknown data. The main point with TL is the
employment of pre-trained models to be fine-tuned on a specific application domain using
a small-sized dataset. Pre-training: Model pre-training is similar to that of TL, the only
difference is here model architectures can be defined and weights are transferred. Early-
stopping: It allows providing an arbitrarily large number of training epochs to suddenly
stop training if the model does not perform well on the validation set.
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Figure 2. Methods to tackle overfitting

1.1. Research Contribution

Image augmentation techniques have been applied to mammogram datasets to in-
crease the training set size, allowing data-hungry learners to benefit from more representa-
tive data. A review is conducted to summarise image augmentation techniques used in
medical imaging applications such as deep learning-based breast cancer diagnosis. The two
following main categories of image augmentation techniques are reviewed here: 1. Basic
image augmentation techniques like geometric, colour space, intensity-based transforma-
tions, etc. 2. Deep learning-based augmentation as generative adversarial networks (GANs)
and neural style transfer. The search terms used in the study are combinations of keywords
such as “data augmentation”, “image augmentation”, “deep learning”, “breast cancer”,
and “mammograms”. Articles that do not utilize or discuss data/image augmentation
were not considered in this study. The research mainly focuses on image augmentation for
mammogram images. Therefore, articles whose subject is on other image modalities such
as CT scan, Breast MRI, Breast ultrasounds, Histopathology, etc. are excluded. Articles
on image augmentation used in the literature for breast image analysis applications are
also summarised according to aspects such as dataset, model, technique, tasks performed,
etc. This paper aims to give quick access to the research field and form an appropriate
groundwork on the domain. This work examines several articles from various conferences,
books and indexed journals out of scientific databases such as Scopus, IEEE, Web of science
and PubMed. In the scientific literature, comprehensive and insightful surveys on image
augmentation methods are present; some are specific to medical images. For example, the
authors in [1] suggested several Data Augmentation solutions as ways to tackle models
overfitting due to low-sized datasets. Another article [5] presents a thorough evaluation of
the data augmentation methods employed in the broad topic of medical image analysis
topic. In further detail, the authors focused on CT and MRI. Yet another article reports
recent advancements in data-augmentation techniques for brain MRI [13] by examing the
papers submitted to the Multimodal Brain Tumor Segmentation Challenge (BraTS 2018
edition [14]).

1.2. Paper Topology

The paper is structured as follows: Section 1 provides background and context for
image augmentation within the broad topic of deep learning-based CAD system for medical
imaging in . Section 2 delves into various image augmentation techniques used in practice.
Deep learning-based image augmentation methods are showcased in section 3. Insights
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into test-time augmentation are provided in section 4. Discussions and conclusions sections
5 and 6 respectively end the paper.

2. Basic Image Augmentation Techniques

Data augmentation encompasses a wide range techniques by inserting random varia-
tions into the existing training samples while preserving class labels. The purpose of data
augmentation is to improve the model knowledge inference capability.

One of the most meaningful principles adopted in data augmentation relates to the
physical phenomenon of vibrations and perturbations of a state. Perturbations take the
form of slightly changed versions of images. Consequently, it increases the dataset size,
allowing the network to infer knowledge from a more significant number of images. The
network can learn more robust characteristics since it is constantly exposed to new, slightly
modified copies of the input data. Therefore, when using deep learning in computer vision
tasks, three types of data augmentation are the most likely; 1. Dataset generation and
expansion. 2. On-the-fly data augmentation. 3. Amalgamation of Dataset generation and
on-the-fly data augmentation. As widely covered in the scientific literature, supervised
DL models [15] need a large amount of training data to unleash their knowledge inference
capabilities fully. Therefore, exploring other paths in scenarios lacking data is necessary. In
the worst-case scenario, only one image is available, and data augmentation comes into
play to produce a complete image collection. The task is carried out by applying random
transformations (rotation, flipping etc.) and other effects to the original image. Then, the
newly generated images feed the DL model during the training phase. Methods like gener-
ation and expansion can generate N number of images. However, these approaches are
not exempt from flaws: Using images produced by these methods, model’s generalization
ability is not improved rather only training set is increased by creating more examples and
every newly created sample is based on minimal dataset.

On-the-fly data augmentation (sometimes also called in-place) is the second type of
data augmentation [16]. On-the-fly data augmentation helps DL model training see new
variations of images at each epoch. It takes image batches as input then applies a series of
random transformations and other effects on each image in the batch. It finally returns a
randomly altered image batch.

2.1. Geometric Transformations

In geometric transformation, an original image undergoes various transformations
such as translation, rotation, scaling, flipping, or resizing to increase the training dataset
size [5]. These conventional data augmentation techniques produce somewhat correlated
images [17] and hence offer significantly less improvement to the model training and
generalization over test data. However, these transformations lead to a significant increase
in the training dataset; therefore, they are widely used in the domain [13]. This section
presents the most commonly used geometric transformations for computer-aided breast
cancer diagnosis.

Flipping: Flipping generates a mirror image of an image with both horizontal or
vertical axes. The horizontal axis is more preferred over vertical flipping because the
top and bottom parts of an image may not be interchangeable always [13]. However,
flipping cannot always be a label-preserving transformation (e.g. MNIST dataset) [1]. In
datasets such as DDSM and CBIS-DDSM, most of the breast profiles are on the left side
of the mammograms. Making uniform direction of the breast in mammograms makes
padding easier to perform during preprocessing steps. This section discusses some common
methods of geometric transformations. The section also briefly discusses articles where
these methods have been imparted to increase the training size to weaken the effect of
overfitting in deep learning models for breast cancer diagnosis.

Rotation: Images are rotated leftward or rightward across an axis within the range
[1°,359°]. The rotation angle determines the safety of this augmentation technique. The
possibility of keeping the label post-transformation is known as a Data Augmentation
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method’s safety. The label of an image may no longer be preserved with an increase
in rotation degree. For eg. rotation transformation is possibly safe on medical image
datasets (X-ray, mammograms, Breast MRI etc..) as well as on images of other datasets like
ImageNet [18], but not on images of 9 and 6 for digit identification task.

Translation: Translation applies to image augmentation to prevent positional bias
[1]. This transformation translates the whole image by a given translation vector along a
specific direction. It helps the network learn geographically invariant properties rather
than focusing on features present in a single spatial location [13]. In the case of breast
mammograms, translation of images can generate suitable augmented images. After the
translation, padding, or pixel replication usually comes into play to fill out the leftover
space. The process keeps the image dimensions [1].

Scaling: Scaled versions of images are added to the training set; the deep neural
network can learn valuable deep features regardless of their original scale. Furthermore,
scaling can be applied using scaling factors over different directions. For example, breast
lesions may vary in size; this transformation can bring practical augmented images into
the training dataset.

Figure 3 shows examples of geometric transformation applied to MIAS images.
Limited dataset size is one of the most common barriers in the medical research

domain, and therefore the scientific literature provides a wide range of techniques to
handle this issue. Costa et al. in [19] employed data augmentation to create new images
based on their original clinical mammography dataset, and they compared the results
using various CNN architectures. Authors have used geometric transformations such as
rotation by varying degrees, flipping and adding Poisson noise. The model performs better
when more regions of interest are added to the training step using data augmentation
techniques. A new convolution neural network (CNN) model for identifying architectural
distortion is proposed by Oyelade et al. in [8]„ which uses data augmentation to improve
its performance. Methods such as rotation, flipping, shearing and scaling are implemented
and used to increase the training size. "Deep learning algorithms can improve performance
by expanding their training set with synthetic examples." cha et al. practically proved
that in [20]. Horizontal and Vertical Flipping methods were used by Omonigho et al. in
the work [21] to augment the training set. By augmenting the training set with scaling,
horizontal flip, rotation by degree 90°, 180°, 270°), authors could achieve 95.70% overall
accuracy on the modified Alexnet model. In another study [22], Rahman et al. showed
how specific pre-processing, transfer learning, and data augmentation approaches may
help overcome the dataset size bottleneck in medical imaging applications.

Geometric transformations such as reflection, translation, random scaling and random
rotations were applied to DDSM mammogram datasets. Shi et al. [23] implemented a
customised CNN to classify BI-RADS [24] density of mammogram images. MIAS dataset
was augmented using various transformations such as zooming, flipping, rotation and
shifting. The authors carried out five-fold cross-validation of the model, which yielded an
average test accuracy of 83.6%. Image augmentation can expand the size of training sets.
Still, it is paramount to keep a certain level of variety between the images. Therefore, Khan
et al. [25] developed a mammogram classification system and adopted random horizontal
and vertical shifts, random shear and zoom as data augmentation techniques. Zhang et al.
[26] performed data augmentation through reflection and rotation. Initially, each original
image underwent horizontal flipping, then original and reflected images were rotated by
90°, 180°, and 270° degrees, respectively. As a result, the dataset increased eight times in
size. The authors evaluated seven different architectures and concluded that models built
and optimised using data augmentation and transfer learning had a lot of potential for
automatic breast cancer detection. Bruno et al. [12] extracted patches from mammogram
datasets such as MiniMIAS [27] and their own freely accessible dataset called SuREMaPP.
Image transformations such as translations, horizontal reflections, and crop were employed
in the study to generated augmented patches. Figure 4 shows an example of patch and
augmented patches generated through various geometric transformations.
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Figure 3. Example of images after applying geometric transformation

Figure 4. (a) An example of patch of Mammogram (b) A sample of patches generated with geometric transformation [12]
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2.2. Pixel level Augmentation:

Position augmentation alters geometric shape of original images. However, some
augmentation methods do not modify geometric properties of pictures but only pixel
intensity values. This type of transformation is quite helpful for research in medical
imaging fields, as medical images are obtained with several technologies and imaging
modalities; hence they can be essentially assorted in pixel intensities [13]. In pixel-level
augmentation, intensities of pixels are perturbed with random noise and a given probability,
also called random intensity variation. In addition, a pixel-level augmentation modifies
the brightness of an image. Among others, gamma correction (and all its variants), image
blurring, image sharpening represent forms of pixel-level augmentation [28–30]. Another
method that proved reliable applies to colour channels spaces. Isolating a single colour
channel, such as R, G, or B, is the first step for colour augmentation consisting of deriving a
colour histogram that describes the image allows further advanced colour augmentations.
Mammograms are grayscale images. Grayscale mammograms are turned into pseudo-
colour pictures to assess the effectiveness of Mask R-CNN. The latter is carried out using
multi-scale morphological sifting, which boosts mass-like patterns. Mask R-CNN is then
used with transfer learning to detect and segment masses on pseudo-colour images at the
same time [31].

2.3. Other

Random erasing is another data augmentation technique [32]complementary to the
previously described ones. The main goal of this technique is to make a model robust
against occlusions in images. One of the most meaningful features is the learning phase
being parameter-free.

Kernel filters rely on spatial filtering techniques to sharpen or smooth pixel values.
It uses MxM size filtering masks. Along with transformation such as padding, flipping,
and cropping Kang et al. [33] used a kernel filter swapping pixel values with a n × n
sliding window. The experiments were carried out on four different datasets such as
SVHN [34], MNIST [35], CIFAR-10 [36] ,and STL-10 [37]. A different Data Augmentation
method involves combining images by averaging their pixel values. The visual results
generated by this method are not easy to perceive to human eyes. Still, the main point
is to generate further samples to have the model be able to generalise information from
datawill[1]. However, various kernel filters such as gaussian blur, mean filter, median filter,
Laplacian filter etc., can be employed for data augmentation purposes. Figure 5 shows
some images generated with various kernel filters.

The enhanced dataset was utilised to train five state-of-the-art models using an aug-
mentation strategy that increased both the size and variance of the dataset by Adedigba et
al. in [38]. Along with geometric transformations, authors also have used Various other
methods such as gaussian blurring and additions of white noise to augment the training
set. It was shown that DensNet has achieved highest training and validation accuracy
(99.01% and 99.99%, respectively). To increase and balance the available database at train
time, artificially produced mammograms and data augmentation techniques are applied
by Yemini et al. in [39]. The receiver operating characteristics (ROC) curve is used to assess
the proposed scheme’s performance. Along with flipping transformation, authors of this
work used gaussian noise and also Changed image brightness to generate new images
from the original samples.

3. Advanced Augmentation Techniques

Several methods to generate new data have been developed to overcome the issues
associated with basic data augmentation procedures. Deep learning based advanced aug-
mentation methods can generate synthetic images by learning representations of images.
emphGenerative adversarial network (GAN) and its successive proposed variations repre-
sent the most widely described DL networks for data augmentation. GAN belongs to the
family of unsupervised deep learning algorithms capable of extracting hidden underlying
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Figure 5. Example of data augmentation based on various filters and noise

properties from data and employing them in decision-making. To develop a more gener-
alised model, these approaches are sometimes integrated with supervised algorithms. GAN
is a widely used data augmentation approach to detect patterns and variances in image
samples from the training dataset [40,41]. The fundamental goal of a GAN is to develop
new image samples (by a generator) that the discriminator will not be able to tell apart from
the original ones (Both these network branches compete against each other and gradually
learn to produce better results.)[42]. In regards to mammogram augmentation, Shen et al.
[43] provide a unique strategy based on GANs for generating varied mass images and then
performing contextual infilling by inserting synthetic masses into normal mammograms.
Furthermore, their system automatically annotates created mass from patches. Shen et al.
[43] employed augmentation methods, which improved the performances of the detection
technique. Some mammography pictures are transformed into mammogram images with
mass findings, as shown in figure 6. Annotations with bounding-box label is also shown.

GANs have also been used in the literature of the domain for breast mass detection
[41], mass classification [44] as well as mass segmentation [45].

Deep Learning proved effective even in mixing styles out of different images. Neural
Style Transfer is meaningfully representative of the quality levels achieved on this [46]. The
overall goal is to alter visual representations formed in CNNs [47]. Neural Style Transfer
is well known for its uses in creative application domains, but it can also be used to
augment data. The technique manipulates the sequential representations across a CNN
to transfer the style of one image to another while keeping the original content [1]. Gatys
et al. [48] first proposed NST, which typically takes two input images: a content image C
to be transferred and a style reference image S, and then executes feature learning of the
feature representations of Fl(C) and Fl(S) in layer l of a neural style transfer network [49].
However, if the image styles from different datasets are are way too far, it may cause a wide
domain gap undermining deep learning models’ capacities to target a specific scenario
of interest. Wang et al. [49] proposed multi-resolution and multi-reference neural style
transfer network to address the problem of style diversity in mammograms. With very
high resolution, the network can normalize styles from several vendors (eg. GE healthcare
(GE) and United Imaging Healthcare (UIH) to the same style baseline.
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Figure 6. Given Mask Image (A) Normal mammogram image (B) Generated mammogram image with synthetic mask (C) [43]

Generative Adversarial Networska are reliant on two main components, namely, gen-
erator and discriminator. Scientific literature shows they are also used to learn noise
augmentations. In adversarial training, one model classifies examples while another adds
noise to them to deceive the classifier. The adversarial model is then given a loss function
by the classification model, allowing it to improve itself to create better noise. Including
images from adversarial training might help models acquire more robust features that are
less sensitive with noise distortions. Although it has been proven that using adversarial
search to inject noise improves performance on adversarial cases, it is unclear if this is
effective for decreasing overfitting. That is still currently an open challenge, and has re-
searchers investigate the link between adversarial attack resistance and actual performance
on test datasets [1]. Adversarial training (including GAN-based and other adversarial
learning networks) is employed by several DL-based augmentation systems [50,51]. In
simple words, GANs help out generate new images from a given dataset. Nevertheless,
the realistic level of artificially generated images for medical scenarios is still under inves-
tigation. It is still unclear if the resulting synthetic images can accurately depict realistic
radiological characteristics in medical imaging [5].

A deep neural system to support mammogram tumor recognition was proposed
in [52]. The authors used GANs to augment input images and having the model able
to reconstruct test images correctly. The research was carried out utilising a large-sized
database containing around 10000 mammographic images from the DDSM dataset. Wu et
al. A class-conditional GAN (ciGAN) is trained to conduct contextual in-filling, which is
subsequently used to synthesise lesions onto healthy screening mammograms in . Figure
7 shows samples generated using ciGAN for both cancerous to non-cancerous and non-
cancerous to cancerous transformation. Examples of GAN synthesising a non-cancerous
patch from a cancerous lesion can be seen in the first row. Conversely, the second row
shows GAN synthesising a cancerous lesion on a non-cancerous patch using randomly
selected segmentations from previous cancerous patches.

Swiderski et al. [52] remarked that a ResNet-50 classifier trained on GAN-augmented
data could produce better AUROC than a model trained solely on traditionally augmented
data. Another work in [20] investigated two main aspects: overfitting mitigation effec-
tiveness of data augmentation with synthetic mammograms breast mass identification
accuracy rate improvement. "In silico" procedural analytic breast and breast mass mod-
elling algorithms were used to create synthetic mammograms. They were then projected
into mammographic pictures using simulated X-ray projections. A novel approach for
detecting abnormal and normal mammograms has been presented by Ramadan et al. [53].
They combined a cheat sheet containing standard features retrieved from the ROI with
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Figure 7. Samples generated by ciGAN:Each row comprises the original image, the ciGAN input, and the sample generated for the
opposite class (from left to right). First row shows a transformation of cancerous patch to non-cancerous patch and second row shows
transformation of non-cancerous patch to cancerous patch [9]

Data Augmentation to boost CNN performances in breast cancer detection. As a result, the
accuracy rate improved by at least 12.2% and precision by at least 2.2%. Authors of [54]
investigated conducted research on the capability of GANs to generate medical images
as close to real ones as possible. Specialist doctors were involved in checking out GANs
effectiveness on this task. Some promising results showed that current developments in
GAN-based image synthesis might successfully apply to high-resolution medical imaging.
Figure 8 provides examples of original and synthetic mammograms from [54].

Users may change or enrich existing datasets by effortlessly putting a genuine breast
mass or micro-calcification cluster retrieved from a source digital mammography into a
different place on another mammogram. This approach was used in [55] with the authors
presenting findings of a reader experiment that compared the realism of inserted lesions to
clinical lesions. Using the receiver operating characteristic (ROC) technique, radiologist
ratings showed that injected lesions cannot be consistently discriminated from clinical
lesions. Based on the identification of masses in the projections, Authors of [56] assessed
the usage of data augmentation and the selection of non-overlapping areas of interest (ROI).
Zhang et al. [26] combined data augmentation and transfer learning techniques with CNN
models to improve the performance of the classifiers for mammogram images.

Table 1 summarizes basic and advanced augmentation techniques with their strength
and limitations.

Table 2 presents a summary of methods that adopted image augmentation strategies
to improve the model performance and counter overfitting.

4. Test-time Augmentation (TTA):

Over the last few years, a new image augmentation technique has increasingly caught
researchers’ interest. It goes under the name of TTA, standing for Test time Augmentation.
Wang et al. [71] provided the scientific community with a mathematic formulation of TTA.
They present TTA as an inference problem with hidden parameters and prior distribu-
tions. Therefore, images are considered as results of an elaboration process with hidden
parameters. The final goal is to evaluate structure-wise uncertainty associated with image
transformations and noise. Other than the previously mentioned techniques, TTA creates
various augmented images of the test set, feeds these augmented images to the trained
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Figure 8. Randomly sampled examples of original and synthetic mammograms [54]

Table 1: Summary of Basic and Advanced Image Augmentation Techniques

Sr No DA Technique Sub Category Label Preserving Strength Limitation

1 Geometric
Transformation Flipping No Good solutions for positional bias present

in training data. Easy implementation

Additional memory, Transformation
compute cost, Additional training
time, Manual observation

Cropping Not always
Rotation Not always
Translation Yes

2 Noise Injection - Yes Allows model to learn more robust Difficult to decide amount of noise
to be added

3 Kernel Filters - Yes Good to generate sharpen and
blurred images Similar to CNN mechanism

4 Mixing Images - No -
Makes not much sense from human
perspective. Not suitable for medical
images

5 Random Erasing - Not always

Analogous to dropout regularization.
Designed to combat image recognition
challenges due to occlusion, A promising
technique to guarantee a network pays
attention to the entire image, not a subset
of it

Some manual intervention may be
necessary depending on the dataset
and application

6 Adversarial Training - Yes Help to illustrate weak decision boundaries
better than standard classification metrics Less explored

7 Generative Adversarial Training - Yes GANs generate data that looks similar to
original data

Harder to train, Generating results
from text or speech is very complex.

8 Neural Style Transfer - - Improves the generalization ability of
simulated datasets

Efforts needed to select style,
Additional memory,
transformation cost
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Table 2: Summary of articles using Image augmentation

Ref Task performed Model Dataset Model Performance Data Aumentation Approach

[8] AD detection Deep CNN and Deep CNN
(Augmented CNN-SW+) Private AUC: 0.83 ± 0.14 Rotation by 90, 180 and 270 degrees,

mirroring and adding Poisson noise
[8] AD detection Deep CNN MIAS, DDSM, INBreast Accuracy: 93.75 % Rotation, flipping, shear, scaling etc.
[20] Mass detection Faster R-CNN CBIS-DDSM Sensitivity: 0.833 ± 0.038 Horizontal and Verticle Flipping

[49] Mass detection mr2NST mammograms from
GE and UIH - Neural Style Transfer

[57] BI-RADS Classification AlexNet INBreast Accuracy: 83.4 Image co-registration

[21] Tumor detection Modified AlexNet MIAS 95.70% Scaling, horizontal flip,
rotation (90, 180, 270)

[22] Mass Classification InceptionV3 and ResNet50 DDSM
Accuracy:
InceptionV3-79.6
ResNet50-85.71

Geometric Transformation

[58] Mammogram classification Pre-trained CNN Architectures Private - Reflection and Rotation
[23] BI-RADS classification CNN MIAS Accuracy: 83.6% Flip, rotation, shift and zoom

[38] Mammogram
Classification Pre-trained CNN Architectures MIAS Accuracy:99.01%

Gaussian blurring, horizontal flipping,
internal refection and mild addition of
white noise

[39] Mass detection Google Inception-V3 INBreast ROC: 0.86 Gaussian noise, Flipping,
Changing image brightness

[59] Mass Classification VGG based DCNN INBreast, CBIS, BCRP - elastic deformations

10 Mass Classification DCNN MIAS, INBreast, DDSM Conventional DA techniques - 88%
GAN- 94% GAN

[60] Mass Classification AlexNet, InceptionV3 INBreast, CBIS-DDSM

Accuracy:
INBreast:
Alexnet-0.9892,
InceptionV3-0.9919
CBIS-DDSM:
Alexnet -0.6138,
InceptionV3 0.8142

rotation, flipping,shearing

[10] Tumor Classification DCNN MIAS, DDSM, INBreast Accuracy-94% GAN

[61] Lesion
Classification ResNet50, VGG16, VGG19 CBIS-DDSM Accuracy-90.4% Geometric transformation,

Contrast and brightness adjustment

[62] Abnormality
Classification Meta Learning , REsnet101 CBIS-DDSM

Accuracy:
Meta Learning-76%,
Resnet101-71%

Geometric transformations

[25] Mammogram
Classification VGGNet, GoogleNet, Resnet CBIS-DDSM, MIAS AUC-0.932 Geometric transformations

[63] Mammogram
Classification Residual Networks INBreast Specificity-0.89 Rotation , Translation

[64] Mass detection InceptionV3 INBreast ROC-0.91 Geometric transformations,
Contrast and brightness adjustment,

[26] Mammogram Classification Alexnet, Resnet Private - Geometric transformations
[65] AD detection Alexnet, SVM CBIS-DDSM, DDSM, MIAS Accuracy–92 Geometric transformations, TTA

[66] Mammogram detection and
classification YOLO INBreast Accuracy-89.6 Rotation, Flipping

[67] * Build datasets of breast
mammography

Alexnet, Densenet,
Shufflenet INBreast - Rotation, Flipping

[68] Mass Detection Faster R-CNN OMI-DB
TPR:
0.99 ± 0.03 at 1.17 FPI - malignant
0.85 ± 0.08 at 1.0 FPI - benign

Horizontal Flipping

[69] Breast cancer diagnosis Pre-trained CNN
Architectures

CBIS- DDSM, BCDR,
INBreast,MIAS F1 Score for MIAS 0.907 ± 0.150

[70] Breast cancer classification DCNN MIAS Accuracy-90.50 Feature wise data augmentation
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Figure 9. Train and test-time data augmentation.

model, and finally returns an ensemble of those predictions to get a more assertive response
[72]. Figure 9 shows the process of both train and test time augmentation, while in figure
10 test-time data augmentation framework is depicted. TTA has conveyed new possibil-
ities to the medical imaging field by measuring the strength, and network consistency
as practical issues [73]. TTA can be used for those methods which modify an incoming
example with affine, pixel-level, or elastic transformations in the case of lesion classification
from mammograms. The research community has focused on training data augmentations,
while data transformation before inference has yet to be fully explored. TTA combines
numerous inference findings utilising various data augmentations to categorise one image
(see figure 10). Kim et al. [72] presented a TTA method that is instance-aware and based
on loss predictor. They improved image classification performance with the dynamic
use of TTA transformations. The authors of [74] employed Test Time Augmentation for
U-Net [75] to tackle medical image segmentation. Another study [76] employed TTA with
the model making predictions on five, 224 × 224 image patches, as well as horizontally
reflected patches (for a total of ten patches), and then averaging the outputs on over the
ten patches with the softmax layer. An inference approach called Mixup Inference (MI),
reliant on simple geometric intuitions, was proposed by Pang et al.[77]. The method mixes
inputs with additional random samples. Vedalankar et al. [65] addressed the analysis of
architectural distortion in mammograms with an integrated solution based on AlexNet
and SVM. However, the solution heavily relies on TTA as the data augmentation technique
on mammogram images.

5. Discussion

This section considers data augmentation and its employment in mammogram analy-
sis and related tasks. The paper spans the main data augmentation approaches as listed in
table 1. Most of them build on geometric transformations, noise injection, kernel filters,
mixing images, random erasing, generative adversarial training, neural style transfer. In
figures 3, 4 and 5 examples of basic geometric transformations and image filtering are
given to show how simple operations allow increasing datasets’ volumes. Conversely,
when advanced image augmentation methods are tackled, things gradually start becoming
more complex from theoretical and computational perspectives. In figures 6, 7 and 8,
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Figure 10. Test-time data augmentation framework

pictures respectively taken from Shen et al.’s[43], Wu et al.’s[9] and Korkinot et al.’s [54]
demonstrate the level of refinement achieved by more recently introduced deep learning
techniques such as GANs. It is easy to comment on how hard discriminating synthetic
images from real images can be, especially to non-experts. Apart from the considerations
mentioned above, it is necessary to span the performances of those models that heavily
rely on data augmentation as shown in table 2. Around thirty methods tackling tasks
such as mammogram classification, suspicious region segmentation and micro-calcification
identification are compared according to several parameters. Although several methods
achieve decent accuracy rates over several datasets, three main points are to be highlighted:
1. Oyelade and Ezugwu [8] achieved a 93.75% accuracy rate on anomaly detection from
mammograms using a CNN-based technique and basic data augmentation techniques
(rotation by 90, 180 and 270 degrees, mirroring and additive Poisson noise). 2. Conditional
infilling GANs for data augmentation in mammogram classification by Dhivya et al. [10]
averagely scored 94% accuracy over MIAS, INBreast and DDSM, which include images
having different spatial resolution and acquiring device properties. The same method gets
to an 88% accuracy rate when only basic data augmentation techniques are adopted. 3.
Razali et al. [60] reached an excellent 99% accuracy rate on InBreast and DDSM with basic
augmentation techniques on two datasets. However, it would be worth investigating any
further improvement with advanced data augmentation techniques.

However, after spanning all methods in table 2, it is pretty noticeable how advanced
mammogram augmentation impacts the not negligible accuracy rate improvement by 6%
over three different datasets. Investigating all elements causing an increase in accuracy on a
specific task is not trivial. Therefore, further experimental campaigns are needed to ensure
fair comparisons having different tools trained with basic or advanced data augmentation.

6. Conclusions

This paper aims to provide insights into the broader area of the mammogram image
analysis from a data augmentation perspective. The first sections introduce the main
theoretical concepts in a more general sense. Then, around thirty methods tackling mam-
mogram analysis tasks are compared in table 2 according to several parameters. Many
approaches have been proposed on the topic over the last few years. Although some
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performances are excellent, some further investigations are necessary to draw a line on the
impact of data augmentation on the information generalisation capabilities of supervised
deep learning paradigms. Some evidence shows a decisive increase in accuracy rates from
basic to advanced augmentation techniques, especially the GANs-based ones. Current
trends in computer vision see more new methods building on self-supervised and semi-self
supervised paradigms. Purely supervised learning approaches combined with advanced
data augmentation should run against self-supervised and semi self-supervised learning
methods to balance computational costs, accuracy rates, and information generalisation
capabilities.
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