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Abstract This paper describes the development of

novel/state-of-art computational framework to accu-

rately predict the degree of binder activity of a

reclaimed asphalt pavement sample as a percentage of

the indirect tensile strength (ITS) using a reduced

number of input variables that are relatively easy to

obtain, namely compaction temperature, air voids and

ITS. Different machine learning (ML) techniques

were applied to obtain the most accurate data repre-

sentation model. Specifically, three ML techniques

were applied: 6th-degree multivariate polynomial

regression with regularization, artificial neural net-

work and random forest regression. The three tech-

niques produced models with very similar precision,

reporting a mean absolute error ranging from 12.2 to

12.8% of maximum ITS on the test data set. The work
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presented in this paper is an evolution in terms of data

analysis of the results obtained within the interlabo-

ratory tests conducted by Task Group 5 of the RILEM

Technical Committee 264 on Reclaimed Asphalt

Pavement. Hence, despite it has strong bonds with

this framework, this work was developed indepen-

dently and can be considered as a natural follow-up.

Keywords Hot mix asphalt � Recycling � Reclaimed

asphalt pavement �Degree of binder activity �Machine

learning � Artificial neural networks � Random forest �
Indirect tensile strength

1 Introduction

1.1 Degree of activation

During the manufacture of a bituminous mix, the

mixing operation aims to reduce segregation of the

component materials to achieve homogeneity. In the

case of a recycled mix, the mixing process must break

the pre-existing bonds between the RAP particles and

relocate these particles within the mix to avoid

segregation and consequent poor quality of the final

mix.

It is difficult to know to what extent an amount of

RAP can contribute with its binder to the mix in such a

way that it combines with the virgin bitumen to

increase cohesion and adhesion. Thus, studies have

been carried out to assess the performance of recycled

mixes with different RAP contents [1–5]. When

manufacturing a recycled mix, it cannot be guaranteed

that the degree of mixing of both binders (i.e., virgin

and recycled) will be 100%. In order to analyze this

phenomenon, two possible scenarios are usually

defined that represent the extreme mixing situations

that could occur and that are accepted as ideal and far

from what happens in reality: ‘‘full blending’’ and

‘‘black rock’’. This issue is of particular relevance

when analyzing the response of recycled mixtures

with high amounts of RAP [2].

Full blending represents what happens during the

design process when it is assumed that both virgin and

RAP binder are fully blended. At the other extreme is

the so-called ‘‘black rock’’ scenario, which symbolizes

that the RAP binder is unable to combine with the new

binder, and in this case, it is the virgin binder that does

all the wrapping and adhesive work. Finally, what is

often accepted is what is called ‘‘partial blending’’,

which, in the opinion of many researchers, could

summarize what happens in reality, accepting that a

certain percent of the aged RAP binder is blended with
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the virgin binder, while another part remains adhered

to the RAP aggregates and behaves in a similar way to

them [6].

It is important to note that the behavior of recycled

mixes is not only affected by the type and effective-

ness of the mixing system, but also by the interaction

between RAP and virgin binders. Mechanical mixing

only attempts to get the virgin binder to coat the RAP

particles, but the objective pursued when manufactur-

ing a recycled mix is that the virgin binder (or the

recycling agent) penetrates or diffuses through the

RAP, reducing the viscosity of the RAP binder and

recovering, to some extent, its original properties.

At the end of the last century, several researchers

began to study the diffusion of virgin binder (or

recycling agent) into recycled binder from RAP [7, 8].

These investigations confirmed that there was a

relationship between the properties of the recycled

mixes and the degree of mixing of the binders in the

mix. Despite numerous studies, the lack of under-

standing of some of the mechanisms involved in

mixing continues to be recognized today. Lo Presti

et al. presented a methodology in 2020 (adapted from

what was initially proposed by Menegusso et al. [9])

together with a nomenclature to differentiate certain

properties that are key to this process [10].

They introduced a promising parameter called

‘‘degree of activity’’ (DoA), which is the minimum

amount of active RAP binder that can be considered at

the design stage of the recycled mix. Other blending

parameters have been developed and analyzed such as:

effective RA binder [11], transferred binder [12],

mobilized binder [13–16], reactivated binder [17],

etc., which were collected and described by Orešković

et al. [18].

1.2 Machine learning

Machine learning (ML) employs different algorithms

to fit data to a mathematical function. Linear regres-

sion would be the simplest example of an ML

technique. A programming code that performs a linear

regression systematically in any kind of data set (xi,yi)

makes the machine learn by itself to predict y as a

function of x. However, modelling physical systems

and their outputs often requires more complex tech-

niques, allowing to incorporate multiple input vari-

ables/features and allowing for non-linear, multi-

dimensional fitting. In this study, three different

techniques were applied, sorted from simpler to the

more complex, i.e. multivariate polynomial regression

(MPR), artificial neural network (ANN) and random

forest regression (RFR). The first two were imple-

mented using MATLAB 2021a, while the third was

implemented using Python 3.9.5. From now on, the

input variables xi may be referred to as features while

the output variables yi as labels.

1.2.1 Multivariate polynomial regression background

In a multivariate linear regression, the main objective

is to fit hðhÞ such as Eq. 1:

hh ¼ h0 þ h1x1 þ � � � þ hnxn; ð1Þ

to a data set of (x
ðiÞ
1 ; . . .; x

ðiÞ
n ; yðiÞ) with the objective of

making hðhÞ ffi y. Performing a linear regression

means finding the parameters hi that minimize

hðhÞ � y. To that end a JðhÞ function is defined as

Eq. 2:

Jðh0; h1; . . .; hnÞ ¼
1

2m

Xm

i¼1

hh
�
xðiÞ

�
�
�
yðiÞ

�2
; ð2Þ

where m is the number of data samples and x0 � 1, is

an independent term added to simplify vectorization,

called the ‘‘bias’’ term. The Jðh0; h1; . . .; hnÞ is called
the cost function and is representing the squared error

of the fitting on predicting the actual outputs (or labels)

yðiÞ. Given a set of initial parameters ðh0; h1; . . .; hnÞ, if
the partial derivatives

oJðh0;h1;...;hnÞ
ohi

are computed and

subtracted from the initial hj, a new hj that reduces
hðhÞ � y is obtained. This step-wise process is known

as Gradient Descent and can be represented as Eq. 3:

hj :¼ hj � a
oJðh0; h1; . . .; hnÞ

ohi
; ð3Þ

oJðh0; h1; . . .; hnÞ
ohi

¼ 1

m

Xm

i¼1

ðhhðxðiÞ � yðiÞÞxðiÞj ; ð4Þ

where :¼ means simultaneously update for every

j ¼ 1; . . .; n. In other words, that every hj has to be

updated only after the last one has been updated. This

optimization process is called Gradient Descent and its

convergence depends mostly on the shape of

Jðh0; h1; . . .; hnÞ and the step parameter chosen a.
Sometimes a linear regression function hhðxÞ is not the
best fit to represent data complexity. In those cases, a
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higher degree polynomial expression can help. One

way of introducing higher exponential terms on h�
hðxÞ is by generating a new set of features x0j by

developing higher degree polynomial terms between

the initial features xj, as in Eq. 5:

1; x1; x2 ¼ [ 1; x1; x2; x
2
1; x1x2; x

2
2 ð5Þ

where the superscripts represent exponents, subscripts

the different features and x0 � 1 by definition. In Eq. 5

the number of features was increased in 3 terms which

are quadratic terms of x1 and x2. If Gradient Descent is

applied using these six new features a quadratic

multivariate regression would be obtained. The main

concern when introducing higher degree polynomials

on the features is the fact that given enough exponen-

tial terms and features, gradient descent would usually

be able to find a complex enough function that fits the

training data points. However, this hypothetical func-

tion would fail to predict new samples, because the

relation found is tailored exclusively to the training set

and not based on real correlation. This problem is

known asOverfitting. To compensate for that, a weight

can be added to the higher degree terms in features to

ensure that the main fitting is done by the lower degree

terms and the higher degree terms only add small

corrections to the model. This is called Regularization,

Eq. 6.

Jðh0; h1; . . .; hnÞ ¼
1

2m

Xm

i¼1

hhðxðiÞ � yðiÞ
� �2

þk
Xn

j¼1

h2j ;

ð6Þ

By adding a regularization parameter k multiplied by

the sum of squares of h1; . . .; hn (note that h0 is

deliberately excluded from that summation since its

feature is x0 � 1), overfitting can be prevented. The

square of the higher degree terms is going to be a high

magnitude, by choosing a high valued k, gradient

descent is going to select a hj that keeps the cost

function Jðh0; h1; . . .; hnÞ low, thus giving more

weight to lower degree terms over those of a higher

degree.

1.2.2 Artificial neural networks background

ANN are an ML technique that replicate, in a very

simplified manner, the way neurons in a human brain

interconnect to each other to produce solutions to

given problems [19–23]. Although they can be used

for a wide spectrum of problems, normally they are

used to produce a logistic output, i.e., the labels are a

set of discrete numbers (binary, integers from 1 to 10,

etc.). For that reason, the output function to fit hðhÞ
normally takes the form of a sigmoid that returns

values between 0 and 1 (gðzÞ 2 ½0; 1�). In ANN the

goal is to interconnect the features as much as possible

to produce an output function hðhÞ with strong non-

linearities capable of describing and predicting com-

plex behaviors. Specifically, features are combined

using parameters hðjÞi to produce several intermediate

functions, called activation functions. Each time this

process is performed a new layer is created. This

process is repeated iteratively as much as desired until

one final function is obtained. This final function is the

output function hhðxÞ that provides the predictions on
the labels. Therefore, an ANN is defined by the:

• Number of features or input variables

• Number of layers

• Number of units in each layer

• Propagation function (typically, a sigmoid func-

tion g(z)).

The optimization of the parameters of an ANN follows

the same principles explained in the previous section,

with the following key variants:

• The set of parameters hi that convert features into
activation functions and the activation functions

a
ðjÞ
i in the final output function hðhÞ form matrixes

HðjÞ, instead of vectors as in the previous example

for MPR.

• The cost function JðHÞ and its partial derivatives

are different due to the application of the sigmoid

function g(z).

• Due to the increased complexity of the computa-

tion of the partial derivatives of the cost function

and the number of computations needed, advanced

optimization methods are required. Those methods

are normally implemented in built-in functions in

most common math coding languages, like

MATLAB 2021 and Python 3.9.5.
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1.2.3 Random forest regression background

Random forests are an ensemble learning method for

classification and regression that operates by con-

structing many decision trees. For the problem at hand,

the regression capabilities that consist of making a

prediction based on the average of the prediction of the

individual trees was employed [24, 25]. Each tree gets

a random sample of the data with replacement, a

process known as bagging, and splits it using the pre-

established features until all the data is separated by

classes. At each node the tree will ask: What feature

will allow me to split the observations at hand in a way

that the resulting groups are as different from each

other as possible (and the members of each resulting

subgroup are as similar to each other as possible)?

The idea behind the concept of random forest is that a

large number of relatively uncorrelated models (trees)

operating as a committee will outperform any of the

individual constituent models. The built-in functions

that perform RFR are quite easy to apply to a different

set of problems and often provide predictions with

good accuracy when the training sample is not big

enough to apply other ML techniques.

1.3 Objective

The objective of this project was to develop a ML

model to predict the DoA, as defined in Eq. 7, of 100%

RAP samples using the input variables compaction

temperature, air voids and Indirect Tensile Strength

(ITS) at 25�C.

DoA ð% max ITSÞ ¼ 100 � ITSðRAPi; T
�CÞ

ITSðRAPi;maxÞ ð7Þ

where ITSðRAPi; T �CÞwas the average ITS value for

five specimens of RAP sample RAPi compacted at

temperature T and ITSðRAPi;maxÞwas the maximum

average ITS of all compaction temperatures tested for

the RAP sample RAPi.

Such a model would increase the information to

extract from a simple InDirect Tensile test (IDT)

regarding the binder activity of a RAP sample. In order

to obtain the DoA, Eq. 7, of a RAP sample, several

IDT tests have to be performed at several different

temperatures. A model that predicts DoA with just one

value of ITS at one temperature would reduce the

amount of testing required to that end.

2 Materials and methods

2.1 Testing

A total of 17 laboratories collaborated in this project,

following a protocol designed by the leaders of Task

Group 5 of the RILEM Technical Committee 264 on

Reclaimed Asphalt Pavement. The procedure carried

out by each laboratory is briefly summarized as

follows. Each laboratory collected one or more

samples of RAP that were used to manufacture

100% RAP cylindrical specimens by heating the

source material to at least three of the five tempera-

tures proposed (70 �C, 100 �C, 140 �C, 170 �C and 190
�C). The manufacturing and testing procedures are

detailed in the following steps:

1. The RAP was dried in an oven at 40 �C for 48 h.

2. The material was properly selected using a riffle

box to obtain a sample.

3. The RAP sample was pre-conditioned in the oven

for 4 h (prior to mixing), at the desired temper-

atures (70, 100, 140, 170 and 190 �C).
4. The samples were mechanically or hand mixed,

while controlling the temperature.

5. The specimens were compacted using a Marshall

compactor, 50 blows each side of the sample.

6. The specimens obtained were tested for air void

content and ITS.

Each laboratory had the possibility of using their

common standard for those two tests. As a result, 5

different standards were used to determine air voids

content [26–30] and 3 for ITS [31–33]. The sizes of

these specimens were around 100 mm in diameter and

63.5 mm in height. Finally, for each RAP sample at

different compaction temperatures, the DoA parame-

ter was obtained as a function of the ITS.

The data analysis presented in this paper comprised

a total of 32 RAP samples tested by 17 laboratories.

Each data sample consisted of a four-dimensional

vector, where the first three components were the

features compaction temperature, air voids and ITS

and the fourth component was the label DoA(% max.

ITS). A total of 144 data points were analyzed.
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2.2 Feature selection

This section describes the motivation behind the

selection of compaction temperature, air voids and

ITS as the features employed to predict DoA. As a first

exploratory data analysis, a correlation heatmap,

Fig. 1, was composed using features that were

available from laboratory testing and that were

considered easy to obtain for future researchers that

may consider using the model.

As derived from Fig. 1, binder content showed low

correlation with all other features. This might be

caused by the extraction process in laboratory or due to

the fact that many RAP samples lacked this data. For

that reason, binder content was excluded from the

model training.

Regarding density, it showed reasonable good

correlation with DoA, but its high correlation with

air voids and the fact that air voids showed higher

correlation with DoA led to discard this variable from

the model training as well.

2.3 Multivariate polinomial regression

implementation

Following the theory introduced previously, an MPR

with regularization was implemented in MATLAB

2021a. A 6th degree polynomial, which expanded the

three initial features (compaction temperature, air

voids and ITS) to a total of 82 polynomial features was

employed. For that reason, it was necessary to

implement regularization to avoid overfitting. The

data set used to implement the model consisted of a

coma-separated-values (.csv) file with four columns,

where the first three corresponded to the features

compaction temperature in �C, air voids in % in

mixture volume and ITS in MPa, in that order. The

fourth column contained the DoA in % of the

maximum ITS (DoA (% max. ITS)) for that RAP

sample computed using Eq. 7. The main objective was

to train a model to predict the DoA (%max. ITS) using

compaction temperature, air voids and ITS. The first

step of the code was to randomize the rows of the data

file to separate blocks of data coming from the same

RAP sample. The next step was to split the data into

three sets, namely training, validation and test. The

training set was established as 60% first data points of

Fig. 1 Correlation heatmap between available features
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the randomized data file and the test and validation set

40% (20% each). The training set was used to train the

model of the validation set to find the optimum value

for the regularization parameter, and the test set to

measure the precision of the model. Precisely, the

randomized data file contained 144 samples, the first

86 composed the train set, the next 29 the validation

set and the final 29 the test set. The next step consisted

of expanding the three features into a 6th degree

polynomial. A tailored function was written in

MATLAB 2021 code to perform this operation. The

three original features resulted in 82 new features

containing terms up to the 6th power. The main

objective of this operation was to build an output

function hhðxiÞ complex large enough to fit complex

data relations. In order to apply Gradient Descent, it is

helpful to have features of similar magnitude, having

expanded the original features to high degree polyno-

mials that was not the case. Therefore, the 82 features

were normalized using a tailored function to that end.

Precisely, the normalization was done using the

average xi and the standard deviation ri for each of

the 82 features, using only the training set.

x
ðmÞ
i ¼ x

ðmÞ
i � xi
ri

ð8Þ

where x
ðmÞ
i is the normalized value on the data sample

m for feature i, and x
ðmÞ
i is the unnormalized value on

the data sample m for feature i. The following step was

to write an iterative loop to compute the cost JðhÞwith
regularization (Eq. 6), the gradient of the cost for each

hi (Eq. 4) and update accordingly the hi parameters

using Eq. 3. Regularization was mandatory since using

a high degree polynomial function implies a high risk

of overfitting for the reasons explained in Sect. 1.2.1.

The step parameter for Gradient Descent a was set to

1.0 and the number of iterations was limited to

500,000. However, the amount of regularization

depends on the value of the regularization parameter

k, which is completely arbitrary. If lambda is too low,

or 0, the optimized hhðxiÞ overfits the training set and

fails to predict accurately the test set (high variance). If

lambda is too high, all terms on hð1::iÞ are minimized by

the gradient descent algorithm. As a consequence, the

only non-zero term remaining is h0, which multiplies

the bias term xð0Þ � 1, producing a constant output

function hhðxiÞ ¼ h0 and, therefore, underfitting the

data (high bias). The model’s performance was

measured on the test set using Eq. 9:

hhðXtestÞ ¼ hTXtest ð9Þ

where hT is the transpose vector of 82 fitting param-

eters and Xtest is a matrix of 29 rows (data points) and

82 columns (features). Since the data was split

randomly into three sets, different distributions of

data points on training, validation and test sets may

yield different models with different precision. For

that reason, a last cross-validation exercise was

necessary, which consisted of training 50 different

models using 50 different random data splits. The

average precision score of those 50 different models

was the final expected precision of the model. The

definitive model was obtained by training the MPR

with the whole data set.

2.4 Artificial neural network implementation

The architecture of the ANN designed to predict the

DoA (% max. ITS) is shown in Fig. 2.

The selection of this architecture was based on

previous trials that consisted of training ANNs with

few iterations (short computing time) using different

quantities of hidden layers and hidden units on all the

data available. The architecture that obtained the least

mean absolute error (MAE) on the predictions was

composed of 4 layers: the input layer had 3 features

(compaction temperature, air voids and ITS), the 2

hidden layers had 5 hidden units each and the final

layer produced 1 final output function. The activation

function employed to propagate the features into the

output function was a sigmoid, Eq. 10:

gðzÞ ¼ 1

1þ e�z
ð10Þ

The output of g(z) is a value between 0 and 1, which

fitted perfectly the behavior of the DoA (% max. ITS)

which comprised values between 0 and 100, therefore

a simple escalation of the final output function gave

the predictions on the labels directly. The procedure to

train, tune and validate the results of the model was the

same followed for the MPR model calibration. The

data set was split into three sets, namely training, test

and validation set. In this case, it was not necessary to

normalize the features, since the sigmoidal activation

function performed that process implicitly. The
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optimization of the parameters was performed using

the ‘‘fmincg’’ built-in function from the MATLAB

2021a library. This built-in function only requires the

cost function and its gradients with respect to hi to
perform the optimization. The expression for the cost

function of the ANN architecture chosen for this

problem is shown in Eq. 11.

JðHÞ ¼ 1

m

Xm

i¼1

�yðiÞ log hh xðiÞ
� �� �h

�ð1� yðiÞÞ log 1� hh xðiÞ
� �� �i

� � �

þ k
2m

X5

j¼1

X3

k¼1

Hð1Þ
jk

� �2

þ
X5

j¼1

X5

k¼1

Hð2Þ
jk

� �2

"

þ
X1

j¼1

X5

k¼1

Hð3Þ
jk

� �2

#
;

ð11Þ

where m is the number of training examples and H lð Þ
jk

are matrixes of the parameters that propagate the

features into the output function hh xð Þ. Given one

training example, the forward propagation is done by

following Eqs. 12–18:

að1Þ ¼ x ð12Þ

zð2Þ ¼ Hð1Það1Þ ð13Þ

að2Þ ¼ g zð2Þ
� �

add a
ð2Þ
0 ¼ 1

� �
ð14Þ

zð3Þ ¼ Hð2Það2Þ ð15Þ

að3Þ ¼ g zð3Þ
� �

add a
ð3Þ
0 ¼ 1

� �
ð16Þ

zð4Þ ¼ Hð3Það3Þ ð17Þ

að4Þ ¼ hHðxÞ ¼ g zð4Þ
� �

; ð18Þ

where the superscripts in parentheses refer to the

layers of the ANN and Hl are matrixes of the slþ1 �
ðsl þ 1Þ dimension where slis the number of hidden

units in layer l.

This process provides the expression for hH xð Þ,
Eq. 18, that has to be inserted in Eq. 11 to compute the

cost J Hð Þ. The next thing required to apply built-in

optimization methods are the gradients o

oHl
ij

J Hð Þ. It
can be proven mathematically that, if regularization is

ignored, the gradients satisfy Eq. 19:

o

oHl
ij

J Hð Þ ¼ a
ðlÞ
j dðlþ1Þ

i for k ¼ 0; ð19Þ

where dðlþ1Þ
i is the error of node i in layer lþ 1. These

errors are obtained by applying what is called a back

Fig. 2 ANN architecture chosen for the current problem
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propagation algorithm, described in the next set of

Eqs. (20–23).

d 4ð Þ ¼ a 4ð Þ � y ð20Þ

dð3Þ ¼ Hð3Þ
� �T

dð4Þ � 	g0 zð3Þ
� �

ð21Þ

dð2Þ ¼ Hð2Þ
� �T

dð3Þ � 	g0 zð2Þ
� �

ð22Þ

g0 zðlÞ
� �

¼ aðlÞ � 	ð1� aðlÞÞ; ð23Þ

where .*means element-wise multiplication of the two

vectors. Then, in machine code, DðlÞ
ij matrixes are

defined initially as DðlÞ
ij ¼ 0 for all l, i, j, and the next

quantities are computed to finally obtain the gradients

(24–27).

D lð Þ :¼ D lð Þþ d lþ1ð Þ a lð Þ
� �T

ð24Þ

D
ðlÞ
ij :¼ 1

m
DðlÞ
ij þ kHðlÞ

ij if j 6¼ 0 ð25Þ

D
ðlÞ
ij :¼ 1

m
DðlÞ
ij if j ¼ 0 ð26Þ

o

oHðlÞ
ij

J Hð Þ ¼ D
ðlÞ
ij ; ð27Þ

where :¼ means update the variable with the previous

value of the variable plus a new computation. It turns

out that adding regularization to the gradients is as

simple as adding the matrixes HðlÞ
ij multiplied by the

regularization parameter lambda k in all terms but the

ones corresponding to the bias terms (j ¼ 0Þ.
As in the case of the MPR model, regularization is

needed to avoid overfitting of the model to the train

set. The second term in Eq. 11 is responsible for

regularizing the model and prevents overfitting.

Again, the value of the regularization parameter k
determines the bias or variance of the model. If k is too
high the model outputs a very simple (or even

constant) function that fails to fit the data. Conversely,

if k too low the model overfits the training set but fails

to predict successfully test data. For that reason, it was

necessary to split the data into three sets: the training

set was used to find the optimum HðlÞ
ij parameters that

fit the model, the validation set was used to measure

the precision of the model with different k values on a
data set different from the training set, and finally the

test set was used to measure the precision of the model

with the definitive k on a third different data set.

However, the optimum k value, i.e. the one that led
to the lowest MAE on the validation set, also depended

on how the data was split. For that reason, the whole

process was written in one script that nested an

iterative loop that ran through the 12 selected k values
inside another iterative loop that ran through 30

different random data splits. Therefore, a total of 30�
12 ¼ 360 ANN’s were trained. The workflow of the

script is shown the following scheme:

1. Do the following steps:

a. Split data into three sets randomly

b. Take the following steps: @@@

c. Find optimum lambda that provides the lowest

error on the validation set

d. Compute error of ANNwith optimum k on the
test set

2. Return to step 1 until 30 iterations are completed

This script returned 30 different optimum values of k
as well as 30 MAE values for training, validation and

test sets. The definitive model was trained using the

whole data set and the optimum value of k.

2.5 Random forest regression implementation

The RFR was implemented using the built-in Ran-

domForestRegressor function from the scikit-learn

Python package. The function automatically fitted the

regression to the supplied data. However, the Ran-

domForestRegressor function allows the modification

of several parameters that control the fitting. These

model fit parameters are known as hyperparameters, to

distinguish them from the parameters that describe the

model itself. The hyperparameters of the Ran-

domForestRegressor function that were considered

in the optimization were the following:

• bootstrap: whether bootstrap samples are used

when building trees. If False, the whole dataset is

used to build each tree.

• max_depth: the maximum depth of the tree.

• max_features: the number of features to consider

when looking for the best split.
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• min_samples_leaf: the minimum number of sam-

ples required to be at a leaf node.

• min_samples_split: the minimum number of sam-

ples required to split an internal node.

• n_estimators: the number of trees in the forest.

Each of these hyperparameters must be optimized,

which implies the generation of multiple models, each

with a different partition of the data and a different

combination of hyperparameters. The standard proce-

dure to validate the model was as follows:

1. Split data into three sets, namely training, valida-

tion and test sets.

2. Train several models using the training set and a

different set of values of the hyperparameters

considered.

3. Evaluate the precision of each model on the

validation set.

4. Find the values of the hyperparameters that

maximize precision on the validation set.

5. Evaluate the precision of the model with the best

hyperparameters on the test set.

The RandomizedSearchCV function from the scikit-

learn package was used to adjust hyperparameters

automatically. Given a data set and ranges for all

parameters, multiple fits were made by modifying the

training and validation data sets, as shown in Fig. 3, as

well as the hyperparameter combinations in a random

manner. Since RandomizedSearchCV automatically

performed the cross-validation data split on train-

ing/validation sets, the data fed to the function was

80% of all data, saving 20% (test set) for final

evaluation of the definitive model. Hence, the set of

hyperparameters that produced the model with the best

precision on the validation sets were determined.

In this case, K ¼ 3 was used, that is, the Random-

izedSearchCV function fitted models with different

hyperparameters using 3 different splits in training and

validation data sets. In total, 729 models were fitted.

This function narrowed down the values of the

hyperparameters that obtained the best precision in

the prediction of the labels of the different validation

sets. However, this function does not analyze all

possible hyperparameter combinations, but rather

randomly combines the hyperparameters. To fine-tune

the final hyperparameters, the GridSearchCV function

of the scikit-learn package was used which, given a set

of hyperparameter ranges, trains models with all

possible combinations of these. The values of the

hyperparameters in this second search were limited to

those close to the optimal hyperparameters obtained in

the previous search carried out with

RandomizedSearchCV.

Once the optimum hyperparameters were defined,

the precision of the model was evaluated on the test

set. Then 50 different models were trained with 50

different random data splits and their precision score

was averaged to obtain an estimate of the final

precision of the definitive model. The definitive model

was obtained by training the RFR with all the data set

and the optimum hyperparameters.

3 Results

This section is divided into three subsections, each one

describing and discussing the results of each of the

three ML techniques employed to analyze the data.

Fig. 3 Graphic example of cross-validation using K ¼ 3 data splits
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3.1 Multivariate polynomial regression results

Figure 4 shows the evolution of the cost function on

training and validation sets with the change in the

regularization parameter k.
The regularization analysis shown in Fig. 4, led to

an optimum regularization parameter value of

k ¼ 0:08. Since this value was chosen by minimizing

error on the validation labels prediction, the perfor-

mance of the model could not be measured on this

same set.

Therefore, the model’s performance was measured

on the test set using Eq. 9. For this concrete random

data split, the model predicted the DoA with a 9.7% of

max ITS MAE.

However, the model was not yet validated, since

another issue regarding data split should be addressed.

Since the data was split randomly into three sets,

different distributions of data points on training,

validation and test sets may yield different models

with different precisions. For that reason, it was

necessary to perform a cross-validation exercise which

consisted of training 50 different models using 50

different random data splits.

The average value of the MAE on the predictions of

the test set labels was 12.2% max. ITS, taking all 50

different models, with a standard deviation of 1.1%

max. ITS. The standard deviation of all DoA (% max.

ITS) values on the original data set was 31%.

To obtain the definitive model parameters (namely

hi, xi and ri) that should be used for future predictions
using new data, a new MPR was trained using the

whole data set available (144 data points). The

resulting model fitted the whole data set with a MAE

of 9% max. ITS.

3.2 Artificial neural network results

Table 1 shows the MAE on train, validation and test

sets for 8 different values of the regularization

parameter k and 30 different data splits. Figure 5

shows the evolution of the average value of the MAE

for each lambda tested in each of the 30 random data

split iterations.

Values of k over 0.64 did not get optimum precision

in any of the 30 iterations, meaning that over this value

regularization is too high for the function hHðxÞ to fit

the data. The most occurring optimum kwas 0.01 with
7 occurrences, but the value with the lowest average

MAE on the test set among the 30 random data split

iterations occurred for 0.08. For that reason, the

chosen k value for the definitive fitting was 0.08.

The average MAE on the 30 random train sets with

k ¼ 0:08was 9.4% max.ITS with a standard deviation

of 0.9% max.ITS, while the average MAE on the test

set was 12.8% max. ITS with a standard deviation of

2.6% max.ITS. Therefore, the precision obtained for

this model was sligthy worse than the one obtained on

Fig. 4 Cost function for training and validation sets as a function of the regularization parameter k
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the MPR model, although the difference was not

statistically significant. Finally, the definitive param-

eters for this model to be applied in the future to new

data sets were obtained by training the ANN with the

whole data set available.

The ANN required a total of 56 parameters to

perform similarly to the MPR which needed 82

parameters plus 164 values of average and standard

deviation on each of the features to perform normal-

ization. The computational time needed to train the

ANN was much higher than the one needed to fit the

MPR, but once the ANN was trained its application to

a data set was immediate. The parameters of the

definitive ANN are shown below.

Hð1Þ ¼

�14:6903 0:0862 0:0455 �2:2005

�3:9353 0:1243 �0:4212 0:4260

�3:2587 �0:0279 0:2689 �0:8007

13:1888 �0:1614 0:0601 0:8350

�10:1158 0:0703 0:1225 �0:2690

0

BBBBBB@

1

CCCCCCA

Hð2Þ ¼

�0:29972 �1:44842 0:461003 �0:57908 �0:65696 0:599678

�0:29956 �1:44815 0:460914 �0:57903 �0:65684 0:599496

�0:29810 �1:44564 0:460096 �0:57859 �0:65574 0:597836

�0:28162 �1:4154 0:450492 �0:57301 �0:6426 0:578534

�0:29944 �1:44794 0:460847 �0:57899 �0:65675 0:599361

0

BBBBBB@

1

CCCCCCA

Hð3Þ ¼ �3:75572 1:944483 1:944088 1:940485 1:897315 1:943793ð Þ

3.3 Random forest regression results

The hyperparameters that obtained the best precision

were those shown in Table 2.

Table 1 MAE in DoA for

the different random data

splits and k values

	Times the value was

optimum (out of 30)

k Times optimum* Average MAE in DoA (% max. ITS)

Train set SD Validation set SD Test set SD

0 3 6.8 1 14.9 3.2 13.4 3.5

0.01 7 7.5 1 13.7 2.4 12.3 2.4

0.02 5 8.4 0.9 13.5 2.4 12.3 2.7

0.04 6 8.8 0.9 13.6 2 12 2.3

0.08 5 9.4 0.9 13.5 1.9 12.8 2.6

0.16 0 10.4 0.8 14.1 2 12.4 2.2

0.32 3 11.7 0.8 14.7 1.8 13.2 1.9

0.64 1 13.4 1 15.7 1.8 14.3 1.8

Fig. 5 Evolution of the MAE on the training and test set with the value of the regularization parameter k
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Once the optimal hyperparameters were obtained, a

model was trained using these optimized values and

80% of total data set previously fed to Random-

izedSearchCV and GridSearchCV functions. The

precision of the model was assessed using the test

data set, which until now had not come into contact

with model optimization, to ensure the validity of the

predictions.

Figure 6 compares graphically the real DoA values

with the DoA predictions on the test set, for the first

model trained using the optimum hyperparameters

from Table 2. The DoA MAE, precision and the

correlation coefficient on the test were 11.7% max.-

ITS, 81% and 0.77, respectively.

As mentioned in previous sections, different splits

of the data produce different models with different

accuracies. Therefore, as the last validation step, 50

models were trained with 50 different training / test

data splits.

After cross-validation with 50 different data splits,

the scoring metrics shown in Table 3 were obtained.

3.4 Models’ score comparison summary

This section sumarizes and compares the precision of

the three types of models trained, in terms of the

average MAE, precission and correlation coeficient on

DoA predicton, Table 4.

The average precision of the three models were

very similar, almost indistinguishable. This may

indicate the consistency of the models and also set a

minimum value for the error on the predictions. That

limit appears to be just over 12% max. ITS on DoA

predicted values. In terms of accuracy, the models

produced predictions of DoA with around 72%

precision.

In addition of the accuracy, these models provided

also metrics on the importance of each of the features

on the labels computation. Regarding the RFR model,

the feature importance was extracted using a built-in

method of the function RandomForestRegressor,

while for the ANN and the MPR feature importance

was measured as the relative increase in MAE on the

train set when the given feature was shuffled randomly

along the data set (Table 5).

The compaction temperature was the variable that

most influenced the predictions. A higher compaction

temperature favors the mobility and activity of the

RAP binder by reducing its viscosity. Also, the

method to obtain DoA, Eq. 7, might have influenced

this result. The second most influential variable was

the ITS value, this may be due to the fact that the

calculation of the DoA (% max. ITS) depends directly

on this variable. Finally, the importance of the air void

content was estimated around 10%, according to the

models, however this feature was the one with the

highest correlation with ITS, Fig. 1.

4 Conclusion

Three different machine learning (ML) techniques

were applied to predict the degree of binder activity

(DoA) in terms of the maximum value of indirect

tensile strength (ITS) for a given sample of Reclaimed

Asphalt Pavement (RAP), using the compaction

temperature, the air voids and the ITS of specimens

manufactured with 100% RAP.

The three ML methodologies evaluated were

multivariate polynomial regression (MPR), artificial

neural networks (ANN) and random forest regression

(RFR). Out of the three techniques, the simplest and

easiest to understand was the MPR, followed by the

ANN. However, the easiest to implement and the one

requiring less computational time was the RFR.

Precision-wise, the three methodologies provided

models with similar accuracies.

The definitive models, based on an MPR, an ANN

and an RFR, produced predictions on the DoA with


12:2% max. ITS, 
12:8% max. ITS and 
12:3%

max. ITS, respectively. Using any of these models,

anyone who needs to evaluate a RAP sample can

perform a fairly good prediction of the quantity of

binder that is going to activate in the RAP when

compacted at a certain temperature, just by measuring

air voids and ITS at 25 �C on 100% RAP specimens at

only one compaction temperature. Since the source

data used to train the model came from different

Table 2 Optimal values for

the hyperparameters of the

random forest model

Hyperparameter Value

bootstrap TRUE

max_depth 40

max_features sqrt

min_samples_leaf 2

min_samples_split 7

n_estimators 1000
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laboratory equipment, different air void determination

standards and different ITS test standards, these

models should be able to generalize. These models

can also be used to reduce the amount of testing

required to find the optimum compaction temperature

for a RAP sample. Running these models on the

compaction temperature, air voids and ITS can help in

narrowing down the compaction temperature that

provides the maximum ITS for the material.

Feature importance analysis showed that com-

paction temperature was the feature that most influ-

enced the predictions of the models. However, air

voids it is known to influence strongly on ITS, hence

this result might be caused by the way DoA was

defined in Eq. 7.

Finally, these models were trained using exclu-

sively RAP samples and their validity is limited to that

Fig. 6 Predictions and real values for the 27 test points

Table 3 Average

evaluation metrics for 50

models with different data

splits in training and test

sets

Metric Mean SD

Avg. MAE on DoA 12.3% max. ITS 2.6% max. ITS

Avg. precision 73.8% 11.8%

Avg. correlation coefficient 0.71 0.08

Table 4 Scores for each

kind of model
Metric RFR ANN MPR

Avg. MAE on DoA 12.3% max. ITS 12.8% max. ITS 12.2% max. ITS

Avg. precision 73.8% 71.0% 72.2%

Avg. correlation coef. 0.71 0.71 0.71

Table 5 Importance of each feature on each of the definitive

models

Feature Importance (%)

RFR ANN MPR

Compaction temperature (�C) 66 72 68

ITS at 25 �C (MPa) 23 19 22

Air voids (%) 10 9 10
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material. However, the concept of finding the com-

paction temperature that provides the maximum ITS,

or the expected percentage of maximum ITS for a

given compaction temperature, can be useful for any

kind of asphalt mixture.

5 Supplementary materials

The following files are available online at https://

github.com/ramonbotella/RAP-data-RILEM-

TCRAP-TG5: MPR and ANN Matlab live scripts,

RFR Python scripts and the RAP data set.
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