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Abstract

Advances in computing capacities have given rise to a “digital world” in which infor-
mation can be accessed and shared at a faster pace, larger scale, and lower cost than
what was previously possible. While this new digital world has promised a more informed
public, research over the past decade has raised major concerns about the accuracy of
people’s beliefs, pointing to increasing polarisation, anti-intellectualism, and conspirato-
rial thinking. Efforts to understand why the promise of the digital world has not been
realised often follow one of two perspectives. On one hand, psychological studies argue
that humans process information irrationally to believe what they want to believe. On
the other hand, studies of new digital media argue that structural features of the digital
world present distorted information to users. In this thesis, I challenge these literatures
by highlighting the limitations of widely-accepted research methods, and provide initial
evidence that the same technologies denounced for undermining the integrity of our beliefs
can be re-designed to promote accurate decision making. Using Herbert Simon’s theory
of bounded rationality as an organising framework, I present three studies examining (1)
optimistic belief updating as a psychological account of belief inaccuracy “in the mind,”
(2) moral contagion as a structural account of belief inaccuracy “in the world,” and (3)
rewiring algorithms as a novel digital tool to support belief accuracy online. Theoretical,

methodological, and practical implications are discussed.
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Chapter 1

Introduction

How do you know what you know to be true? Some things, like that fire is hot and
lemons are sour, can be easily observed directly. But for many things, we depend on the
testimony of others. Be it a belief about anthropogenic climate change, the existence of
a god, or the hygiene standards of your favourite restaurant, much of what we “know”
about the world is derived from evidence communicated to us by peers and media. In
such scenarios the accuracy of your beliefs is determined not only by your ability — as an
individual — to evaluate evidence communicated to you and update your priors, but also
by the information environment you find yourself in. That is, our beliefs are shaped by
both cognitive capacities “in the mind” and access to information “in the world.”

Over the past two decades, our information environments have undergone fundamen-
tal changes at the hands of digitalisation. Backed by advances in computing capacities
(Figure 1.1), the advent of social media and internet-based communications has allowed
for information to be disseminated online at a faster pace, larger scale, and lower price
than what is possible in the analog world (see, e.g., Hilbert & Lépez, 2011; Holst, 2021;
Rosa, 2013). On one hand, the new “digital world”! we find ourselves in promises a
more engaged, more informed public. For instance, a primary concern of the past was
information-scarcity, and the fact that information was monopolised by only a few me-
dia institutions that would “serve, and propagandise on behalf of, the powerful societal
interests that control and finance them” (Herman & Chomsky, 2010, p. xi). In such a
centralised information environment the beliefs of many are influenced by the testimony
of few, which can lead, and has led, to pervasive and persistent inaccurate beliefs about

empirical facts among the public (e.g., beliefs in phantom weapons of mass destruction

!The term “digital world” hereinafter refers to the societal setting in which the internet, social media,
and other communication technologies are readily available. Loosely, from the year 2000 to the present-day.
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Figure 1.1: The increase of computing capacities from 1986 to 2007. Figure taken from
Salganik (2017, p. 4); adapted from Hilbert and Lépez (2011).

and the US invasion of Iraq; Lewandowsky et al., 2009). However, worries about a mono-
lithic, gatekept information environment seem to be dissolved by new digital media and
citizen journalism. People are no longer constrained to the information and viewpoints
that media institutions deem newsworthy; the disadvantaged and the marginalised now
have the ability to make their voices heard across the globe, instantaneously, so long as
they have an internet connection. As of 2021, across all ages globally, just 25% say that
the main way they access news online is directly via a news website, while 73%? say they
do so via a “side door” — namely, social media (26%), a search engine (25%), mobile
alerts (9%), a news aggregator (8%), or email (5%) (N. Newman et al., 2021, p. 25).
By decentralising the information environment in this way, it would seem that the digital
world grants people access to a higher quantity and wider diversity of viewpoints to be
integrated into their beliefs — an observation that is supported by survey data showing
that 87% of American internet users feel the web helps them to learn new things (Pew
Research Center, 2014a).

On the other hand, the digital world introduces new epistemic challenges. For one, the

information-richness online has been shown to have a darkside, because

“...the wealth of information means a dearth of something else — a scarcity
of whatever it is that information consumes. What information consumes is
rather obvious: it consumes the attention of its recipients. Hence a wealth of

information creates a poverty of attention” (H. A. Simon, 1971, p. 41).

2This figure rises to 81% for under-35s, with 34% reporting social media to be their main access point
for news online (N. Newman et al., 2021).
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Indeed, it has long been demonstrated in psychology that we are limited in how much
information we can attend to and process (Hills, 2019; Lanham, 2006; Lorenz-Spreen et
al., 2020). For instance, limits on working memory capacity lead individuals to selec-
tively attend to auditory stimuli in noisy environments in the so-called “cocktail party
phenomenon” (Conway et al., 2001; Moray, 1959; N. Wood & Cowan, 1995), and limits
on visual perception lead individuals to display an obliviousness towards salient but unex-
pected stimuli in “inattentional blindness” (Mack & Rock, 1998; Neisser & Becklen, 1975;
Simons & Chabris, 1999; Simons & Levin, 1998). This psychological reality suggests that
more information will not necessarily translate into a more informed public, as is further
evidenced by a 2019 global survey finding that 32% of people actively avoid the news (a
3-point increase from 2017) with 28% of respondents in agreement “that there is too much
news these days” (N. Newman et al., 2019, p. 26). Moreover, it has been pointed out
that today’s information-overload means that the experience of information has changed,
vis-a-vis the intentionality of our information search and the salience of source character-
istics (Seifert, 2017). That is to say, in the analog world “we did not have to be warned
to ‘consider the source’ — the sources were distinct, intentionally accessed, and literally
in our (face to) faces” (Seifert, 2017, p. 398); but in the digital world, information is
experienced passively as it scrolls by and often looks the same regardless of the source’s
credibility. As a result, accurately evaluating the reliability of information encountered
online may be particularly difficult.

Only a generation ago, it may have been considered common sense that increasing
people’s access to information would lead them to become more informed. Yet, in the
contemporary context of digitalisation, this claim seems far more contentious. Is it cogni-
tively realistic to expect people to effectively navigate and accurately evaluate information
online? What characteristics of the digital world might affect people’s ability to form accu-
rate beliefs? How can people’s belief accuracy be supported online? For the early promises
of the digital world to be realised, it is necessary to develop a base of empirical evidence

on such questions — and proper methods for doing so.

1.1 The emergence of the “post-truth” society

The impetus for understanding and supporting belief accuracy in the digital world is driven
by recent socio-political trends that have spread across the globe. Events like the 2011

Tahrir Square protests, the 2017 #metoo movement, and the 2020 Black Lives Matter
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marches for George Floyd demonstrate how decentralised information environments pro-
vide new means for social awareness and speaking truth to power (Tufekei, 2017). But at
the same time, it has been argued that aspects of the digital world have brought about the
“end of good faith” (Seifert, 2017, p. 398) and contributed to the emergence of a “post-
truth” society “in which a large share of the populace is living in an epistemic space that
has abandoned conventional criteria of evidence, internal consistency, and fact-seeking”
(Lewandowsky et al., 2017, p. 360). Consider, for example, three conspicuous trends in the
present-day that implicate the accuracy of our beliefs: polarisation, anti-intellectualism,
and conspiratorial thinking.

Polarisation is defined as “a state in which the opinions, beliefs, or interests of a
group or society no longer range along a continuum but become concentrated at opposing
extremes” (Merriam-Webster, n.d.). For democratic societies, polarisation and the lack of
common ground among social groups threatens the ability to collectively reason with and
act on pressing issues (e.g., climate change, Dunlap et al., 2016; and COVID-19, Allcott
et al., 2020). While the universality of the trend is subject to much debate (e.g., across
countries, Boxell et al., 2021; or across sub-populations, Boxell et al., 2017), several studies
have provided evidence suggesting that polarisation has been increasing in parts of the
developed world, particularly in the United States (e.g., Abramowitz & Saunders, 2008;
Abramowitz & Webster, 2016; Bishop, 2009; Iyengar & Westwood, 2015). For instance,
in 2004, 70% of Republicans were more conservative on policy issues than the median
Democrat and 68% of Democrats were more liberal than the median Republican, but
by 2014, those figures were 92% and 94%, respectively (Pew Research Center, 2014b).
And in an affective sense, the proportion of Democrats and Republicans holding “very
unfavourable” opinions of the opposing party has more than doubled since 1994 (Pew
Research Center, 2014b). Insofar as polarisation is increasing, a conventional narrative
both in and outside of academia is that new digital media is to blame. This, it is argued,
is because the decentralised nature of the digital world has led to fragmentation, such
that the online information environment is divided into a variety of niches with very little
interaction between them (Bright, 2018; Gentzkow, 2016; Lewandowsky et al., 2017).
In turn, this fragmentation means individuals often find themselves in “echo chambers”
where they encounter only information that reinforces their pre-existing beliefs, biases, and
prejudices, both as the result of self-selection (homophily) and algorithmic personalisation

(Pariser, 2017; Sunstein, 2018). This narrative has grown popular to the point that
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United States President Barack Obama addressed it as a key threat to democracy in his

2017 farewell address, when he stated that

“For too many of us, it’s become safer to retreat into our own bubbles, whether
in our neighborhoods or on college campuses, or places of worship, or especially
our social media feeds, surrounded by people who look like us and share the
same political outlook and never challenge our assumptions... the splintering
of our media into a channel for every taste — all this makes this great sorting
seem natural, even inevitable. And increasingly, we become so secure in our
bubbles that we start accepting only information, whether it’s true or not, that
fits our opinions, instead of basing our opinions on the evidence that is out

there” (Obama, 2017).

Yet despite the intuitive allure of the echo chamber hypothesis, its empirical merits are
contested (see, e.g., Boxell et al., 2017; Dubois & Blank, 2018; R. K. Garrett, 2017;
Gentzkow & Shapiro, 2011; A. Guess et al., 2018; Moller et al., 2018), and analyses of
United States Congressional voting patterns suggest that increasing polarisation can be
traced back the 1970s and 1980s (DeSilver, 2020), before the digital world as we know it
had established itself.

Coinciding with increasing polarisation, there are also concerns about growing anti-
intellectualism and anti-science attitudes (Hotez, 2020; Rutjens et al., 2018). Evidence of
this trend can be noted in recent political messaging by elected officials in several coun-
tries: the United Kingdom’s Justice Secretary, Michael Gove, infamously claimed in the
run up to the 2016 EU Referendum that “the people of this country have had enough
of experts” (Mance, 2016); Brazilian President Jair Bolsonaro responded to reports of
environmental harm due to deforestation by suggesting people should “poop every other
day” (BBC, 2019); Deputy Prime Minister of Italy, Mateo Salvini, publicly dismissed a
mandatory vaccine policy for school children as “useless, and in many cases dangerous”
(Politi, 2018); United States President Donald Trump explained that “One day — it’s like
a miracle — [COVID-19] will disappear... Nobody really knows” (Wolfe & Dale, 2020),
only for his administration to later manipulate data to justify the relaxation of emergency
restrictions (House Select Subcommittee on the Coronavirus Crisis, 2021). Public support
for such figures has led researchers to search for correlates of anti-science attitudes (Hu
et al., 2021; Lewandowsky et al., 2013; Rutjens et al., 2021) and for academic publications

to uncharacteristically voice endorsements for a “pro-science” political candidate (Nature,
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2020; Scientific American, 2020). Why has it come to this, and why now? As with trends
in polarisation, blame has been directed at new digital media’s effect on the information
environment, and in particular, its distortion of expertise. In the digital world, publishing
costs are eliminated and long-held journalistic reputations are discounted as any given
individual can now “publish” their work alongside the likes of BBC, Reuters, or The As-
sociated Press online. While this feature of the digital world is not without value (e.g., as
a safeguard to information access and for dissenting voices to be heard), both the journal-
istic reputation and cost of a publication have long served as indicators of source quality
(Seifert, 2017). Put simply, the decentralised nature of online information environments
has allowed for anyone to become an “expert,” and people’s tendency to interpret vague,
meaningless statements as profound suggests discourse online can be hijacked by influ-
encers without any actual authoritative knowledge (Llewellyn, 2020; Pennycook et al.,
2015; cf. networked microcelebrity, Tufekci, 2013). Nevertheless, evidence establishing a
causal relationship between the digital world and anti-intellectualism has proven elusive,
and the presence of such attitudes has long pre-dated the internet. As Woodrow Wilson
stated in 1912: “What I fear is a government of experts. God forbid that, in a democratic
country, we should resign the task and give the government over to experts” (as quoted
in Fisher & Shapiro, 2020).

Amidst the trends of polarisation and anti-intellectualism, it is perhaps not surprising
to note that beliefs in conspiracy theories have also become a concern. Notable examples
of this are unfortunately in abundance, ranging from the seemingly innocuous (e.g., Fin-
land doesn’t exist; UFOs) to the bigoted and dangerous (e.g., QAnon; Holocaust denial).
Although it is difficult to assess the absolute prevalence of conspiratorial beliefs given
the variety, dynamism, and occasionally blurred boundaries of conspiracy theories, survey
data from YouGov (2020) suggests that significant proportions of the global population
hold such beliefs. For example, among more than 1,000 respondents per country, 30% of
the Japanese believe it is either probably or definitely true that the truth about harm-
ful effects of vaccines is deliberately hidden from the public, 46% of Spaniards believe it
is either probably or definitely true that there is a single group of people who secretly
control the world, 33% of Egyptians believe it is either probably or definitely true that
the AIDS virus was created and deliberately spread by a secret group or organisation,
and 20% of Americans believe it is either probably or definitely true that their own gov-

ernment assisted the 9/11 terrorist attacks (YouGov, 2020). Such beliefs, which have no
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basis in fact, can have insidious effects on society when they are allowed to spread. As
psychological studies have shown, exposure to conspiratorial discourse can reduce people’s
trust in authorities and willingness to participate in civic engagement (Einstein & Glick,
2015; Jolley & Douglas, 2014), even when people perceive the claims as implausible (Raab
et al., 2013). This is particularly concerning given that beliefs in conspiracy theories have
historically been stimulated in times of crisis (Van Prooijen & Douglas, 2017), when trust
in authorities and civic engagement is most needed. A recent example of this occurred
in the United Kingdom, where the announcement of the first national lockdown to curb
COVID-19 in 2020 coincided with not only a steep increase in Google searches for the
term “lockdown,” but also for the term “5G” — the mobile network technology that was
at the centre of a conspiracy theory that claimed it was linked to the spread of the virus

(Figure 1.2). As there has been a flurry of disturbing conspiracy-related events in recent

i
1
First lockdown announced
(23 March 2020)

100

~
(9]

50

(9]
o

=== |ockdown

Relative Interest (%)

25

2020-01 2020-07 2021-01 2021-07
Date

Figure 1.2: Google search trends for the terms “5G” and “lockdown” in the United King-
dom between December 2019 and June 2021, when the COVID-19 pandemic unfolded.
Relative interest represents search interest relative to its highest point within the time
range (i.e., a value of 100 is the peak popularity for the term between December 2019 and
June 2021).

times (e.g., the storming of the United States Capitol in the name of QAnon and un-
substantiated claims of voter fraud in the 2020 Presidential Election), some have argued
that the spread of conspiratorial thinking is being driven by new digital media. Here, it
is said that the unbridled access to (fragmented) information and communication in the
digital world allows individuals, who would otherwise be restricted to the fringes in the

analog world, to coalesce in online forums and harden one another’s inaccurate beliefs
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(Klein et al., 2019; Lewandowsky et al., 2017). For instance, the growth of the QAnon
conspiracy theory — a theory built on claims that a cabal of blood-drinking, pedophilic
politicians and media personalities are working to take over the world — originated on the
anonymous 4chan forum in the “politically incorrect” (/pol/) imageboard where racist,
misogynistic, and anti-Semitic tropes have been normalised through repeated sharing (Col-
ley & Moore, 2020). Yet, despite the prevalence of conspiratorial beliefs today, empirical
evidence suggests that conspiracy theories are not unique to the digital world and may
not actually be on the rise (Van Prooijen & Douglas, 2017). In an analysis of more that
100,000 letters from United States citizens to the New York Times and Chicago Tribune
between 1890 and 2010, for example, Uscinski and Parent (2014) found that conspiratorial
content has varied over time but has not substantially increased. Thinking about the role

of the internet in conspiratorial thinking, they explain that

“there are plenty of sites for people to find information supporting conspiracy
theories, but people not predisposed to believing in conspiracy theories will
likely not seek them out. Technology could just as easily decrease conspiracy
theorizing because it increases access to anti-conspiratorial information... The
data show that technology is unrelated to the level of conspiracy theorizing”

(Uscinski & Parent, 2014, p. 122).

Indeed, further support for this conclusion is the observation that conspiracy theories have
punctuated much of human history, from speculation that Emperor Nero deliberately had
Rome burnt down whilst singing in AD 64, to the Salem Witch Trials in 1692-1693, to the
“Red Scare” of the 1940s and 1950s (Van Prooijen & Douglas, 2017).

As terms like echo chamber, disinformation, and post-truth have seeped into our ev-
eryday vocabulary, it is difficult not to associate the evolution of the digital world with
polarisation, anti-intellectualism, conspiratorial thinking, and threats to belief accuracy
at large. But, in the absence of a counterfactual world in which the introduction of new
digital media does not coincide with the emergence of the so-called post-truth society, the

empirical evidence of causal connections between the two remains tenuous.

1.2 Bounded rationality as an organising framework

Scholarly efforts to reconcile the emergence of the post-truth society with the evolution

of the digital world have largely followed one of two streams. Along the first stream are
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studies that point to psychological problems “in the mind” (reviewed further in Chapter
2). The basic premise here is that people are irrational, motivated reasoners whose self-
enhancing biases and motivational deficiencies lead them to “believe what they want to
believe” (Kunda, 1990, p. 480). Thus, in the context of the digital world, it is presumed
that users of new digital media will naturally navigate and examine information online in
a biased manner: they will search for information that confirms their prior beliefs (e.g.,
Wason, 1960, 1968), interpret information in a way that affirms their worldview (e.g., Ka-
han, 2013; Lord et al., 1979; Van Bavel & Pereira, 2018), and update their beliefs more in
response to desirable information than undesirable information (e.g., Sharot et al., 2011;
Sunstein et al., 2016). Altogether, this suggests that the potential benefits of the digital
world’s accessible, decentralised information are seemingly undermined by human cogni-
tion, resulting in people forming inaccurate beliefs despite accurate information available
to them.

Alternatively, a second stream of research focuses on structural problems “in the (dig-
ital) world” (reviewed further in Chapter 3). Here, it is argued that proprietary design
features of online information environments make it so that users are unable to reasonably
navigate information and form accurate beliefs. For instance, studies have shown that the
decentralised topology of online social networks provides individuals with inaccurate cues
of consensus on important issues (e.g., Lerman et al., 2016; A. J. Stewart et al., 2019),
the allowance of anonymous, automated accounts (bots) enables bad actors to amplify
misinformation (e.g., Ferrara et al., 2016; Shao et al., 2018), opaque content-curating al-
gorithms manipulate what information users encounter (e.g., Lazer, 2015), and perverse
incentives reward the sharing of low-quality content (e.g., Brady et al., 2017; Vosoughi
et al., 2018). From this perspective, the potential benefits afforded by the digital world
are seemingly undermined not by the users, but by new digital media itself, which results
in rational people forming inaccurate beliefs because of distorted information exposed to
them.

A reader of these literatures seeking to understand why inaccurate beliefs might arise
in the digital world often finds themself caught in a false dichotomy of is it the technology
or is it the user. But taking one perspective or the other means missing crucial parts of the
substantive picture. Relatedly, narrowing oneself to either perspective alone also means
missing crucial methodological opportunities. Where studies of psychological shortcomings

in the mind have typically valued explanation but lacked ecological validity and statistical
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power, computational studies of online information environments have typically valued
prediction but lacked the types of experimental controls needed for causal inference and
generalisability (Hofman et al., 2017). In order to better understand threats to belief
accuracy in the digital world, and how to overcome them, an appropriate conceptual
framework is needed to organise and integrate research findings. Here, H. A. Simon’s
theory of bounded rationality provides a helpful lens.

Posited as an alternative to the neoclassical model of the utility maximising “economic
man” upheld by rational choice theory, bounded rationality refers to a model of human
behaviour and decision making that takes into account limitations imposed by both cog-
nitive capacities and access to information in the environment (H. A. Simon, 1955, 1957).
At its crux, bounded rationality dispels with the idea that we follow some general-purpose
axioms of logic or optimisation. Rather, as boundedly rational agents, we are adaptive
— constantly managing trade-offs and changing our utility functions depending on the
environment in which we find ourselves (H. A. Simon, 1957, 2000; also referred to as
“ecological rationality,” Gigerenzer & Selten, 2002; Todd & Gigerenzer, 2007; Wheeler,
2018). Through this conceptual framework, the false dichotomisation of the user versus
the technology is substituted for a more integrated perspective where one account does not
explain away the other. Put simply, seeking to understand and support belief accuracy in
the digital world through the lens of bounded rationality means taking into account the
“bounds” imposed by both psychological limitations “in the mind” of the user and the
structural characteristics of information environments “in the (digital) world,” and most

importantly, identifying interactions between the two.

1.3 Thesis structure

In this thesis, I adopt the framework of bounded rationality and take aim at the substantive
issue of belief accuracy in the context of a digital world. Specifically, I consider (1)
a psychological mechanism that may jeopardise our ability to accurately utilise online
information access, (2) a structural feature of online environments that may distort the
information to which we are exposed, and (3) how such environments might be (re)designed
to actively support belief accuracy. In doing so, I take stock of methodological approaches
that presently shape the discourse on this topic, making special note of various pitfalls
that may undercut our knowledge.

In Chapter 2, I present an experimental study probing a prevailing account of belief
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inaccuracy “in the mind.” Namely, this entails examining the widely cited mechanism of
optimistic belief updating, whereby people are said to revise their beliefs more in response
to desirable information than undesirable information as the result of motivational bias
(Sharot et al., 2011). By empirically demonstrating flaws in the conventional method
used to support the optimistic belief updating account, I argue that there is insufficient
evidence to conclude a motivational bias in belief updating exists. More broadly, I leverage
the findings to speak to the difficulties of identifying bias — as a systematic deviation from
accuracy — with artificial laboratory-style experimentation; thereby de-emphasising the
narrative that the post-truth society has been brought about by individuals’ motivated
reasoning alone.

In Chapter 3, I present an observational study probing a high-profile account of belief
inaccuracy “in the (digital) world.” Specifically, I narrow in on the recent finding of “moral
contagion” — an effect whereby the use of moral-emotional words (e.g., kill, shame, com-
passion) in messages increases their diffusion in online social networks, suggesting that
social media platforms favour outrageous content over informational content (Brady et
al., 2017). Through out-of-sample prediction tests, model comparisons, and specification
curve analyses, | find the moral contagion effect to be inconsistent, hinge on arbitrary
analytical decisions, and perform no better than an implausible XYZ contagion model
(where it is hypothesised that the presence of the letters X, Y, and Z increases messages’
diffusion). Based on these findings, I argue that the evidence of moral contagion may be
little more than a spurious correlation, and further, that conventional analytic techniques
for studying information diffusion online can support patently absurd claims, despite util-
ising large, naturalistic datasets. As such, this chapter de-emphasises the narrative that
the post-truth society has been brought about by maliciously designed digital platforms
alone.

In Chapter 4, I shift focus to explore how belief accuracy can be supported by en-
gineering digital tools that dynamically manipulate online environments for mind-world
interaction. Drawing from the literature on “wisdom of the crowd” effects and collective
intelligence design, I show, through agent-based modelling and an online multiplayer ex-
periment, that algorithms can be used to mediate communication between users so that
they arrive at more accurate collective beliefs. Although exploratory, results presented
in this chapter provide a proof of concept, showing that the same features of the digital

world that have been decried as epistemically dangerous (in this case, content-curating
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algorithms) can be used to support belief accuracy online, pointing towards new paths for
a digital, democratic future.

Finally, Chapter 5 serves to integrate the findings presented in Chapters 2-4 and high-
light their implications for the study and support of belief accuracy in the digital world,

incorporating theoretical, methodological, and applied points of view.
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Chapter 2

A psychological problem “in the

mind”

Because of the psychological limits of
the organism, actual human
rationality-striving can at best be an
extremely crude and simplified
approximation to the kind of global

rationality that is implied

H. A. Simon, 1955, p. 101

For people’s belief accuracy to benefit from the increased information access afforded by
the digital world it is assumed that they can effectively navigate, reason with, and respond
to the information they encounter. However, several longstanding studies in psychology
have pointed out that people’s information processing may be systematically biased, such
that their ability to form accurate beliefs is jeopardised by psychological mechanisms
“in the mind” (e.g., Adams, 1961; Festinger, 1957; Lord et al., 1979; Macdougall, 1906;
Wason, 1960; Weinstein, 1980). Underlying these works and their contemporary advocates
(e.g., Kahan, 2013, 2016; Sharot et al., 2011; Van Bavel & Pereira, 2018) is the basic
premise that people’s motivation to mitigate cognitive dissonance can overpower their
motivation for accuracy (Festinger, 1957; Kunda, 1990). As a result, people navigating
information tend to display a confirmation bias (Nickerson, 1998; cf. motivated reasoning,
Kunda, 1990; my-side bias, Baron, 1995; congeniality bias, Hart et al., 2009; belief bias,
Klauer et al., 2000), whereby information that is concordant with pre-existing beliefs is

favoured over information that is discordant. While evidence for such self-enhancing bias
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appears under various guises and terminologies throughout the literature, understanding
how inaccurate beliefs can arise due to psychological mechanisms requires disentangling
three distinct processes involved: (1) information sampling, (2) evaluating or reasoning
with information, and (3) belief updating.

The first process, information sampling, refers the the cognitive-behavioural task of
choosing which information to attend to and process in the environment. For an individ-
ual seeking to form an accurate belief on a given hypothesis, the normative expectation
is that their information sampling is guided by the intention to maximise the usefulness
of each query they make according to an information-theoretic utility function, such as
Kullback-Leibler divergence (Kullback & Leibler, 1951), information gain (Lindley, 1956),
or Bayesian diagnosticity (Good, 1950). Descriptively, however, people’s information sam-
pling strategies have been shown to deviate from such ideals. In a classic study commonly
cited as original evidence for confirmation bias (despite the terminology not appearing in
the actual text), Wason (1960) challenged participants to infer the rule used to generate a
sequence of three numbers, 2-4-6 (the correct answer being “increasing in magnitude”), by
submitting their own three numbers for the experimenter to identify as conforming to the
rule or not. What he found was that a proportion of participants only or primarily sought
out positive evidence to confirm whatever rule they believed to be the answer, rather than
efficiently seeking to falsify their hypotheses (Wason, 1960; but see Oaksford & Chater,
1994). Reflecting on the 1960 study, Wason (1968) explained that the experiment demon-
strates, “on a miniature scale, how dogmatic thinking and the refusal to entertain the
possibility of alternatives can easily result in error” (p. 174). Indeed, the confirmatory
approach to information sampling identified by Wason (1960, 1968) (cf. positive test strat-
egy, Klayman & Ha, 1987) has important implications for belief accuracy, and perhaps
particularly so in the context of an information-rich, digital world. Since the massive vol-
umes of information online make it infeasible for any individual to process all information
relevant to seemingly any given topic at hand, the ability to efficiently sample information
becomes highly consequential. Yet, as is evidenced by recent studies of selective exposure
and news consumption, people often follow strategies similar to that identified by Wason
(1960, 1968) and sample information that conforms to their prior beliefs (e.g., Bolin &
Hamilton, 2018; Hart et al., 2009; T. P. Newman et al., 2018; Pariser, 2017; Schmidt et al.,
2017; Seargeant & Tagg, 2019; Stroud, 2008).

The second process involved in belief formation is reasoning, or, how one evaluates
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information encountered. Whereas biased sampling of information can lead individuals
to develop discrepant beliefs based on the skewed bodies of evidence to which they each
attend, individuals who engage in biased, motivated reasoning may develop discrepant be-
liefs even when they share the same evidence. A famous example of this comes in a seminal
study of so-called biased assimilation, where Lord et al. (1979) presented proponents and
opponents of capital punishment with an array of mixed evidence on the topic and found
that participants tended to accept evidence supporting their initial belief at face value,
whilst scrutinising counter evidence hypercritically. Consequently, Lord et al. (1979) ob-
served participants’ beliefs become more polarised after being provided with information,
despite the information being neutral on the whole and posing as what would intuitively
be understood as “common ground” (also see Corner et al., 2012; Dandekar et al., 2013).
Along these same lines, developments in the subfield of political psychology have seen
the production of several studies showing that people’s reasoning may be distorted by
motivation to protect their social identities in the face of policy-relevant facts — referred
to as cultural cognition and the politically motivated reasoning paradigm by Kahan and
colleagues. These include, for example, experiments where participants are seen to arrive
at identity-consistent interpretations of statistical data on crime (Kahan et al., 2017),
video footage of protesters (Kahan, Hoffman, et al., 2012), climate change evidence (Cor-
ner et al., 2012; Kahan, Peters, Wittlin, et al., 2012), arguments on the risks/benefits of
nanotechnology (Kahan et al., 2009), and economic time series data (Caddick & Rottman,
2019), arguably because the utility of maintaining one’s identity as favourable to their in-
group outweighs the utility of being accurate (Kahan, 2016; Van Bavel & Pereira, 2018).
With respect to the promises of a digital world, the implication of biased reasoning is
self-evident: if people rationalise their way around inconvenient facts then increasing their
access to information will not necessarily lead them towards the truth.

The third process is belief updating, which refers to people’s ability to effectively revise
their beliefs upon the receipt of new information. Here, there are two well-documented
phenomena that figure into the discussion of general confirmation bias and motivated
reasoning: conservatism and optimistic belief updating. With regard to conservatism,
the basic result in the large, longstanding literature is that when people encounter new
information they tend to revise their initial belief less than is prescribed by the normative
standard of Bayes’ theorem (e.g., Edwards, 1968; Peterson & Miller, 1965; Phillips et

al., 1966; Phillips & Edwards, 1966). The paradigmatic example proceeds by challenging
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participants to guess the probability that there is one of two compositions of coloured chips
in a bag (e.g., does your bag contain 70% red and 30% blue chips, or 30% red and 70% blue
chips?) after seeing a number of chips drawn. Although participants update their guess in
the correct direction from the starting point of complete uncertainty, 50% either way, the
magnitude of their updating tends to be insufficient given the evidence provided (Edwards,
1968). While conservatism undoubtedly inhibits effective belief updating, it alone seems
an inadequate explanation for how inaccurate beliefs arise in the context of a digital world,
where it could be presumed that the abundance of information online would, eventually,
lead people towards the truth. On top of conservatism, however, more recent studies
have identified the phenomenon of optimistic belief updating, which is of special interest
to this thesis. Building on early demonstrations of unrealistic comparative optimism by
Weinstein (1980) — showing that people rate their own chances of experiencing positive
life events to be greater than average and their chances of experiencing negative life events
to be lower than average — a substantial body of multidisciplinary research has observed
that people tend to revise their beliefs more (i.e., less conservative, but still conservative)
in response to desirable information than undesirable information (e.g., Chowdhury et al.,
2014; Eil & Rao, 2011; Marks & Baines, 2017; Mobius et al., 2014; Moutsiana et al., 2013;
Sharot et al., 2011). This asymmetry, where “good news” is more readily integrated into
individuals’ beliefs than “bad news,” has rightly been pointed out as cause for concern
in high-stakes domains such as lay people’s views on anthropogenic climate change, for
which the discounting of information that is discordant with one’s beliefs may have dire
consequences (Sunstein et al., 2016). With respect to the broader context of a digital
world, the implication of optimistic belief updating is that people faced with swathes of
information online may find themselves with increasingly skewed beliefs, because they are
more influenced by encounters with desirable information than undesirable information.
As outlined above, the beliefs people form may be determined by psychological biases
when sampling information, evaluating information, and updating their beliefs. However,
the central issue at hand for this thesis is belief accuracy. That is to say, the only “bias”
that is of interest is bias that incurs systematic accuracy costs (for a historical overview
of how bias has been defined in research, see U. Hahn & Harris, 2014). Defining bias in
this way quickly reframes much of the foundational evidence for a general confirmation
bias and motivated reasoning. For example, despite Wason’s (1960) participants predom-

inantly sampling information with confirmatory tests instead of falsifying hypotheses, 21
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of the total 29 were able to correctly identify the rule governing his number sequence.
Yet unfortunately, it is not always possible to straightforwardly assess bias as systematic
deviation from accuracy (i.e., are descriptive processes incurring accuracy costs on aver-
age?). While this is obvious for certain topics, such as matters of subjective preference,
it also maligns many seminal paradigms in psychology. In the classic evidence of biased

assimilation, for instance, Lord et al. (1979) themselves point out that

“there can be no real quarrel with a willingness to infer that studies supporting
one’s theory-based expectations are more probative than, or methodologically
superior to, studies that contradict one’s expectations... The same bias leads
most of us to be skeptical about reports of miraculous virgin births or herbal
cures for cancer, and despite the risk that such theory-based and experience-
based skepticism may render us unable to recognize a miraculous event when

it occurs, overall we are surely well served by our bias” (p. 2106).
Similarly, the original proponent of unrealistic optimism has clarified how,

“a woman who says that her risk of heart disease is only 20%... may be perfectly
correct when her family history, diet, exercise, and cholesterol level are taken
into consideration, despite the fact that the risk for women in general is much

higher” (Weinstein & Klein, 1996, p. 2).

In experimental set-ups like these, the true value against which accuracy could be mea-
sured is unknown to both the participants and the experimenters. For Lord et al. (1979)
this would require knowledge of the precise net societal effect of capital punishment; for
Weinstein (1980) this would require knowing each individual participant’s precise personal
risk of experiencing life events. Where such controlled experimentation, which is indeed a
cornerstone of modern psychology, can enable causal inferences about the biasing role of
prior beliefs or social identity in information processing, it lacks ecological validity vis-a-
vis real-world consequences on belief accuracy (e.g., Jarvstad et al., 2013). How then can
bias, as systematic deviation from accuracy, be operationalised? Here, normative mod-
els that define “optimal” reasoning and decision-making provide a valuable tool. Aside
from the referenced studies pertaining to conservatism in belief updating, which typically
root their analyses to comparisons between participants’ actual behaviour and Bayesian
prescriptions, neglect of normative models renders many experimental results inapplicable

or uninterpretable with respect to real-world accuracy costs. Of course, a reader familiar

27



with the work of Herbert Simon might point out that this emphasis on optimal, normative
models is at odds with the theoretical framework of bounded rationality adopted by this
thesis. However, while it may be that deviations from normative models indicate adap-
tive cognition (H. A. Simon, 1956, 2000), it is first necessary to establish whether or not
individuals deviate from such models to begin with.

In the remainder of this chapter I present an empirical investigation of the optimistic
belief updating phenomenon so as to demonstrate the challenges of identifying true bias,
as a systematic deviation from accuracy. Following this, I conclude the chapter by linking

it back to our overarching objective of understanding belief accuracy in a digital world.!

2.1 Asymmetric belief updating in response to neutral stim-

uli

Over the past decade, research has argued that people are optimistically biased when
updating their beliefs in light of new information, such that desirable information elic-
its greater updates than undesirable information. Given the grim implications of such
motivational distortion for the accuracy of our beliefs, the phenomenon has attracted
considerable cognitive and neuroscientific interest (Chowdhury et al., 2014; N. Garrett
et al., 2018; N. Garrett et al., 2014; Kappes et al., 2018; Kuzmanovic et al., 2016; Kuz-
manovic & Rigoux, 2017; Kuzmanovic et al., 2018; Marks & Baines, 2017; Moutsiana
et al., 2013; Moutsiana et al., 2015; Sharot, 2011; Sharot, Guitart-Masip, et al., 2012;
Sharot, Kanai, et al., 2012; Sharot et al., 2011; Sharot et al., 2007). However, recent
research has highlighted limitations of existing results and demonstrated that what ap-
pears to be optimistically asymmetric belief updating may in fact be attributable to a
statistical artefact arising from the experimental design, rather than a self-enhancing mo-
tivational bias (Harris et al., 2013; Shah et al., 2016; but see N. Garrett & Sharot, 2017,
for rebuttal). In this research, we further investigate this “statistical artefact hypothesis”
with three preregistered experiments. All three demonstrate asymmetric belief updating
in response to neutral information in our main analysis, and we further observe uninter-
pretable variability across samples and across various analytic techniques. Given there is

no desirability in these trials, this asymmetry cannot be attributed to optimism.

!The following studies are based on a collaboration between myself, Adam J. L. Harris, Punit Shah,
and Ulrike Hahn, which is now published in Cognition (Burton et al., 2022). The relevant preregistration
and all data and code has been made available on an OSF project page.
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The update method

Evidence for optimistic belief updating has primarily been obtained from “the update
method” (Sharot et al., 2011). The simplest instantiation of the method proceeds as
follows: Participants first estimate their chance of experiencing a negative life event (E1),
then they are provided with the base rate statistic for experiencing that event (BR), and
finally, they are asked to re-estimate their chance of experiencing said event (E2). For
example, a participant, Sam, might be asked to estimate their chance of experiencing a
negative life event, like getting divorced, to which they reply 5%. Sam is then presented
with the BR of divorce (the actual proportion of the general population that gets divorced
in their lifetime), which is 45%. Since the BR in this instance is greater than Sam’s E1
for this negative event, this belief updating trial would be classed as one with undesirable
information. Trials on which participants receive desirable information typically elicit
greater updates than trials with undesirable information, which is interpreted as evidence

of optimism in belief updating (e.g., Sharot et al., 2011).

The statistical artefact hypothesis

While the update method has been accepted as the basis for a range of high-profile cogni-
tive and neuroscientific work (e.g., N. Garrett et al., 2018; Moutsiana et al., 2015; Sharot,
Guitart-Masip, et al., 2012; Sharot et al., 2011; Sharot et al., 2007), it has also been sub-
jected to critique. As the update method requires people to update a probabilistic belief,
the appropriate normative standard against which to evaluate behaviour so as to identify
bias is Bayes’ theorem (Hardman, 2009; Kahneman & Tversky, 1973; Phillips et al., 1966;
Phillips & Edwards, 1966). Continuing our example, Sam is asked to report their risk
of divorce. Normatively, this risk is comprised of two types of information: knowledge
about the base rate of divorce and any individuating information Sam has to differentiate
their risk from the average person’s. For instance, Sam might intend never to marry in
the first place, which suggests that they should differentiate themself from the average
person about marriage-related base rates (and this has long been understood to be the
central challenge in assessing the accuracy of people’s personal risk estimates for future
life events, e.g., Weinstein, 1980). These two types of information — the base rate and
individuating information — combine multiplicatively in Bayes’ theorem, yet the update
method neglects the influence of individuating information on normatively rational belief

updating (Shah et al., 2016).
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One way in which individuating information poses a difficulty for the update method is
in the classification of trials with desirable versus undesirable information. For example,
the primary component of Sam’s belief may be their intention to never marry (whilst
recognising this may change later in life, and, as such, is greater than zero), but they
estimate the base rate of divorce in the general population is 50%, combining to a personal
risk estimate of 5%. Upon learning the BR (45%) they should, in fact, slightly decrease
their estimate of their own risk, not increase it as the classification of the desirability of
BR (based on its comparison with E1) would suggest.

Even more worryingly, basic aspects of the probability scale — namely, that it is
multiplicative and bounded — mean that over- and under-estimates relative to a given
BR should not give rise to equal amounts of belief change once individuating knowledge
comes into play. As Shah et al. (2016) demonstrate, it is mathematically impossible to
equate the amount of BR error (the difference between one’s estimate of the BR and
the actual BR), the amount of individuating knowledge, and the normatively necessary
degree of belief change across desirable and undesirable trials on the bounded, zero to 100
probability scale. Matching any two of these three will necessarily give rise to a divergence
on the third (displayed later via a numerical simulation; Figure 2.8).

As a result of both the issues above, entirely rational Bayesian agents will display
seemingly optimistic belief updating (Shah et al., 2016). While Kuzmanovic and Rigoux
(2017) have recently sought to remedy these issues (see “further analyses” for critique),
the Shah et al. (2016) critique suggests that the vast majority of evidence for optimistic

belief updating may be nothing more than a statistical artefact.

Why (neutral) valence matters

Valence — whether information is good, bad, or neutral — is essential to the claims
supporting the existence of optimistic belief updating. As Sharot and Garrett (2016)
explain, optimistic belief updating is “a valence-dependent asymmetry in how people use
favourable and unfavourable information” (p. 31). That is, optimistic belief updating is
motivated by the perceived valence of encountered information. Therefore, establishing a
causal relationship between asymmetries in belief updating (such as those recorded with
the update method) and information valence is necessary to distinguish true, unrealistically
optimistic belief updating from non-motivational, confounding effects.

Typically, belief updating studies use negative life events when asking participants for
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probability estimates with the update method (e.g., how likely is it that you will contract
liver disease?). Negative life events are convenient because their perceived valence is
considered to be universal, and one can readily gather accurate base rates from sources
like the Office for National Statistics to use in experimental materials (e.g., Sharot et al.,
2011). Given the statistical confounds associated with the update method, however, Shah
et al. (2016) argued for the need to include both positive and negative life events in studies
using the update method to evaluate directional, valence-driven effects (as in N. Garrett
& Sharot, 2017; Marks & Baines, 2017). The present work goes further by including
neutral events as our focal stimuli. With negative events, evidence for optimistic updating
is claimed where participants update their beliefs more in trials where BR is less than E1
than where BR is greater than E1. If such an asymmetry can be observed with neutral
events, this cannot be attributed to optimism, since there is no valence from which to
ascribe (un)desirability. Thus, by parsimony, one should not appeal to a motivational
explanation to explain such a pattern in situations where desirability is present.

In this research, we present evidence for a non-motivational account of asymmetric be-
lief updating by eliciting the statistical artefact with neutral life events and replicating it
in three variations of the update method, and displaying its variability across samples and
alternative analytic techniques. As inherently non-valenced, an asymmetry in belief up-
dating with neutral events suggests that what has been previously interpreted as evidence
of optimistic belief updating is the result of statistical patterns rooted in methodological
constraints, rather than a motivational bias. That this artefactual asymmetry varies so
unpredictably further undercuts the interpretability of past and future results returned by

the update method.

2.1.1 Method

Since studies utilising the update method typically involve more than one stimulus (life
event), there are variations in the way this experiment can be and has been run: Partic-
ipants can provide E2s immediately after receiving the BR for each event (Kuzmanovic
et al., 2016; Marks & Baines, 2017), or they can provide all these at the end, after having
provided Els and received BRs for all events in the study (N. Garrett & Sharot, 2014,
2017). Such procedural changes have been made in the past without justification and it is
unknown how they affect the results of the update task. We subsequently replicated our

experiment in three ways for robustness (Figure 2.1). While no predictions of different
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results between these studies were made, this project represents a direct replication of
the same methodology using these three slightly different procedures. All data otherwise

followed the same scoring plan.

Participants

One hundred participants were recruited for each study (N = 300). This sample size
was deemed sufficient by a power analysis conducted with a tool for calculating statistical
power for mixed effects models provided by Judd et al. (2017). However, due to the quasi-
experimental nature of this study, and in fact any study using the update method, the
validity of such a power analysis is limited. Since we do not know how many life events
participants will rate as neutral, we cannot know how many stimuli will be included in the
main analysis, which focuses specifically on neutral life events. While we made a conscious
effort to compile seemingly neutral life events, it is also plausible that some participant(s)
will not rate any life events as neutral, and thereby be excluded from the main analysis.
With these unknowns in mind, we arrived at the sample size of 100 because a hypothetical
power analysis with 51 stimuli (the number of events used), an effect d of 0.5, and 100
participants returns a high power of 0.84. This is also roughly double the sample size used
in Marks and Baines (2017), which is the only other optimistic belief updating study that
uses the same main analysis (a linear mixed effects model).

The Prolific Academic online research platform was used for recruitment, and the
participant pool location was restricted to the United Kingdom because the stimuli (the
life events and base rate statistics) were compiled to suit this specific population, and
certain events and base rates may not be relevant to participants living elsewhere. The
sample for each study were independent of one another. In Study 1, participants’ ages
ranged from 18 to 81 (M = 32.82, SD = 11.52) with 73 females; in Study 2, ages ranged
from 18 to 67 (M = 33.29, SD = 10.31) with 78 females; and in Study 3, ages ranged
from 19 to 73 (M = 36.09, SD = 12.06) with 80 females.

Design

A 3 (event valence: negative, neutral, positive) x 2 (direction of error: upwards, down-
wards), quasi-experimental within-subjects design was implemented with the Qualtrics
web-based survey software. Event valence (negative, neutral, or positive) signifies the self-

reported desirability of experiencing a given life event. While the set of life events used
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(Table A.1) was intended to be comprised of neutrally-valenced events, event valence was
coded trial-by-trial with participants’ self-reports, meaning that an event had to have been
rated as “neither positive nor negative” (three on a five-point Likert scale) to be classed as
a neutral trial for a given participant. Direction of estimation error (henceforth referred
to as “direction of error”) indicates whether a participant’s initial self-estimate was less
than or greater than the presented base rate on a given trial (whilst previous studies would
refer to these trials as desirable vs. undesirable, such a categorisation cannot be made
for neutral events). Our dependent variable — the magnitude of belief updating — is the
absolute difference between E1 and E2, signed as positive if the update is in the predicted
direction (according to the direction of error), or negative if it is in the opposite direction.

See the subsection on “measures” below for further definition of these variables.

Stimuli

A total of 51 life events, each with an accompanying base rate statistic (Mpr = 38.39,
SDpr = 21.58), was presented to each participant (Table A.1). This set of life events is
comprised of both previously used and novel material. Two life events were taken from
Shah et al.’s (2016) materials that were deemed to be neutral at face value (“Be exactly the
same weight in 10 years’ time” and “Last the whole of winter without catching a minor
cold”). Twenty-one life events were taken from the materials used by N. Garrett and
Sharot (2017), which were found to be rated as neutral by pilot participants [3.00 4+ 0.99
on a 1 (extremely negative) to 5 (extremely positive) scale]. Finally, 28 novel life events
were compiled by gathering or calculating base rate estimates based on external sources
(e.g., Ofcom, BBC) that were associated with seemingly regular, mundane life events [e.g.,
“How likely is it that the next store you visit is air conditioned?” (BR = 30%); “...that

you use more than 3.7GB of mobile data over the next four weeks?” (BR = 17%)].

Procedures

Study 1. Study 1 involved two parts (Figure 2.1). In Part 1, each participant was
presented with a life event and asked to estimate the likelihood of this event happening
to them in the future (E1); participants were also asked to give a second estimate of the
likelihood of the event happening to an average person (e BR; an estimate of the base rate).
These two estimates were made on a 0% to 100% scale and there were no restrictions on

participants’ response time. The order of these two estimates was counterbalanced between
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subjects by randomly assigning each participant to one of two conditions: E1 followed by
eBR, or eBR followed by E1. After these two initial estimates were recorded, participants
were presented with the actual base rate statistic (BR). On the next page they were
required to write down the BR correctly (BR Recall). If they incorrectly recalled the
statistic, they were provided with the correct statistic on screen and required to enter that
value. This ensured that the correct BR was attended to by all participants. Participants
were then asked to re-estimate the likelihood of the event happening to them personally
(E2). Once this sequence was completed for all 51 life events, in a randomised order,
participants moved on to Part 2.

In Part 2, they were presented with each of the 51 life events again in a randomised
order and asked to indicate the valence of each event, “How would you feel about expe-
riencing this event?” on a five-point Likert scale (1 = extremely negative, 2 = somewhat
negative, 3 = neither positive nor negative, 4 = somewhat positive, 5 = extremely positive)
(Valence Rating). This rating would later be used to classify the trials as negatively, neu-
trally, or positively valenced according to each individual participant’s subjective rating.

Trials rated as 3 were considered neutral.

Study 2. Study 2 involved three parts (Figure 2.1). The procedure followed that of
Study 1, except the E2s for all events were recorded in Part 2, which was followed by the

recording of all valence ratings in Part 3.

Study 3. Study 3 involved two parts (Figure 2.1) and mirrored the procedure of Study
1, except the ordering of E2 and Valence Rating were swapped such that the updating
occurred across the two parts (i.e., E1 in part one, E2 in Part 2). This procedure follows

that used in Experiments 3A and 3B in Shah et al. (2016).

Exclusion criteria

Following on from Shah et al. (2016), a preregistered exclusion criterion was employed
prior to analysing the data from each study. Mean updates in each of the six conditions
(i.e., negative/neutral /positive by upwards/downwards) were calculated and outliers were

removed (43 x the interquartile range)?. However, all of our results hold regardless of this

2We note that on page 7 of the preregistration this exclusion criterion is written as “+3 the interquartile
range.” This discrepancy is due to a clerical error whereby the multiplication sign was inadvertently
removed when pasting the text into the OSF registration form and converting the Word file to PDF
format. In addition, the mention of removing trials “in which a derived probability cannot be applied”
is also erroneous as it is not applicable to the methodology presently used because we provided static,

non-derived base rates.
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Figure 2.1: Schematics of the procedure used in each study. Images depict the task
sequence for a single trial, differing slightly across studies: participants make an initial
self-estimate (F'1) and an estimate of the base rate (e BR), view the base rate (BR), write
down the base rate correctly (BR Recall), rate the event’s valence on a five-point Likert
scale where a rating of 3 indicates the event is perceived as neutral (Valence Rating), and
make a revised self-estimate (E2). The same stimuli were used in each study. We have
followed the abbreviations of Kuzmanovic and Rigoux (2017). To aid cross-referencing, in
Shah et al. (2016) E1 and E2 are SE1 and SE2, eBR is BR1, BR is actualBR.
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criterion, except for a single supplementary result (noted below in the “further analyses”
subsection). In addition, trials where E1 equalled the BR were necessarily excluded in
our analyses, as they are in all analyses of the data from the update method, because the
central, quasi-experimental classification of trials as desirable or undesirable — or in our
case, upwards or downwards — cannot be applied. From the 5,100 trials recorded in each
study, these criteria resulted in 339 (6.65%), 414 (8.12%), and 431 (8.45%) trials being

excluded from studies 1, 2, and 3, respectively.

Measures

There are three measures that are central to interpreting results from the update method:
direction of error, update value, and event valence. First, each trial’s direction of error is
determined by calculating the difference between BR and E1. If the difference is positive
(i.e., BR > FE1) then the direction of error is classed as upwards, and vice versa for a
downwards direction of error.

The update value in each trial, which indicates the magnitude of belief updating, is
then determined by calculating the absolute difference between participants’ re-estimates
and initial estimates (|E2— E1]|). This is then labelled as positive if updating goes towards
the BR (i.e., in accordance with the direction of error) or negative if updating goes away
from the BR (i.e., not in accordance with the direction of error). For example, if E1 is 40,
BR is 50, and E2 is 30, the update would be coded as -10; whereas if the BR was 10 then
the update would be coded as +10. Additional preregistered analyses in which direction
of error is calculated in the normatively appropriate manner on the basis of participants’
estimates of the BR (e BR) are presented in the “further analyses” subsection, whereby
BR > eBR indicates an upwards direction of error and vice versa.

Finally, event valence is determined trial-by-trial with the self-report question, “How
would you feel about experiencing this event?”, measured on a five-point Likert scale from
“extremely negative” (1) to “neither positive nor negative” (3) to “extremely positive”
(5). Following N. Garrett and Sharot (2017), we code ratings of 1 and 2 as negative, 3 as
neutral, and 4 and 5 as positive. While our set of life events was compiled with neutral
valence in mind, this procedure grants each participant the opportunity to provide updates

for negative, positive, and neutral events, depending on their personal preferences.
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2.1.2 Results
Main analysis

To test our central hypothesis that participants will update asymmetrically in response
to neutral information, we conducted three studies with independent samples in which
100 participants proceeded through the update method with 51 life events. Following our
preregistered analysis plan, we applied a linear mixed effects model (LMM) — as in Marks
and Baines (2017) — to trials in which the stimulus (life event) was rated as neutral by
the participant. Update value was entered as the dependent variable, direction of error
(upwards/downwards) as a fixed factor, and participant as a random factor.

To select a model specification, we first fit the specification with the maximally complex
random effects structure and then iteratively reduced model complexity until all degenerate
random effects parameters were removed and the model was not singular (Bates et al.,
2018). This procedure led us to a specification with only random intercepts by participant;
however, the results hold across model specifications and we report the statistics of the
maximally complex model specification in the supplementary information (Table A.2).
Finally, we used Type III tests and Satterthwaite’s approximation for degrees of freedom
to calculate the statistical significance of the fixed effects. In all three studies, asymmetric
belief updating was observed with neutral life events (Figure 2.2).

In Study 1, there were 1,521 trials in which participants updated in response to a rated-
as-neutral life event, with 801 trials with an upwards direction of error (M = 2.11, SD =
4.56) and 720 with a downwards direction of error (M = 11.33, SD = 15.91). An LMM
determined that direction of error significantly affected the magnitude of participants’
updating (F(1,1515) = 244.47, p < 0.001), such that an upwards direction of error (i.e.,
BR > E1) decreased update scores by approximately 9.13 percentage points (fixed effect
estimate) + 0.58 (standard error), as compared to downwards direction of error.

In Study 2, there were 1,699 trials in which participants updated in response to a rated-
as-neutral life event, with 831 trials with an upwards direction of error (M = 4.16, SD =
10.01) and 868 with a downwards direction of error (M = 10.08, SD = 18.06). An LMM
determined that direction of error significantly affected the magnitude of participants’
updating (F'(1,1694) = 77.09, p < 0.001), such that an upwards direction of error (i.e.,
BR > E1) decreased update scores by about 6.24 percentage points (fixed effect estimate)
+ 0.71 (standard error), as compared to downwards direction of error.

In Study 3, there were 1,667 trials in which participants updated in response to a rated-
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as-neutral life event, with 828 trials with an upwards direction of error (M = 4.13, SD =
8.82) and 839 with a downwards direction of error (M = 10.56, SD = 20.80). An LMM
determined that direction of error significantly affected the magnitude of participants’
updating (F'(1,1662) = 68.48, p < 0.001), such that an upwards direction of error (i.e.,
BR > E1) decreased update scores by about 6.51 percentage points (fixed effect estimate)

+ 0.79 (standard error) as compared to downwards direction of error.
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Figure 2.2: Asymmetries in belief updating with neutral life events in each of the three
studies. Points indicate the magnitude of belief updating predicted by the linear mixed
effects model with bars representing 95% confidence intervals. Numbering of plots corre-
sponds to the study.

Secondary analysis

In addition to our central hypothesis testing, we also conducted a preregistered analysis
of each study’s data with LMMs that included event valence as a second fixed factor in
interaction with direction of error. This analysis parallels that of previous related work
(N. Garrett & Sharot, 2017) and allows us to assess whether the supposed desirability
of information influenced belief updating, as well as view that effect in comparison with
the asymmetry in neutral trials described above (Figure 2.3). However, because we used
generally neutral events, so we are not well-powered to speak about positive and negative
valence categories, given that there are relatively fewer events in these categories for each
participant. To select a model specification, we followed the same procedure as in the
main analysis, which led us to select a specification that includes only random slopes and
intercepts by participant for direction of error and no correlation parameters. The results
once again hold across model specifications, and we report the statistics of the maximally
complex model in the supplementary information (Table A.3).

In Study 1, there were significant main effects of both direction of error (F(1,98) =
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233.80, p < 0.001) and event valence (F'(2,4713) = 47.98, p < 0.001), plus a significant
interaction term (F'(2,4706) = 61.80, p < 0.001), whereby the updating asymmetry was
smallest for the positive events. Despite this, participants updated more in response to a
downwards direction of error across both negative and positive events. In 1,662 trials with
negative life events, participants updated more in response to a downwards direction of
error (n = 683, M = 10.73, SD = 14.23) than upwards (n = 979, M = 2.86, SD = 6.31).
Equally, in the 1,578 trials with positive life events, participants updated more in response
to a downwards direction of error (n = 882, M = 4.97, SD = 9.41) than upwards (n = 696,
M =3.10, SD = 6.65).

In Study 2, there were again significant main effects of direction of error (F(1,98) =
112.85, p < 0.001) and event valence (F'(2,4656) = 35.49, p < 0.001), as well as a sig-
nificant interaction term (F'(2,4610) = 43.86, p < 0.001). Among the 1,582 trials with
negative events, participants updated more in response to a downwards direction of error
(n =692, M = 13.08, SD = 21.33) than upwards (n = 890, M = 3.76, SD = 10.18),
in a similar fashion as Study 1. However, update values in the 1,405 trials with positive
events displayed no asymmetry between downwards (n = 835, M = 4.05, SD = 10.98)
and upwards direction of error (n = 570, M = 4.48, SD = 10.62).

In Study 3, there were once again significant main effects of direction of error (F'(1,98) =
42.35, p < 0.001) and event valence (F'(2,4636) = 18.51, p < 0.001), as well as a significant
interaction term (F'(2,4586) = 60.09, p < 0.001). Interestingly, a flip in belief updating
asymmetry was observed, which has previously been considered to be characteristic of
optimistic belief updating. In 1,616 trials with negative life events, participants updated
more in response to a downwards direction of error (n = 639, M = 12.41, SD = 22.17)
than upwards (n = 977, M = 3.62, SD = 9.51); whereas participants updated less in re-
sponse to a downwards direction of error (n = 723, M = 3.45, SD = 10.42) than upwards
(n =663, M =6.57, SD = 14.16) in the 1,386 trials with positive life events.

In addition to this analysis with study-by-study LMMs, we can apply this same model
specification to an aggregation of the data from Studies 1-3 so as to get a general overview
of asymmetries across all trial categories among our 300 total participants. Here we find
that the same significant main effects and interaction term remain: direction of error,
F(1,459) = 482.39, p < 0.001, event valence, F'(2,14042) = 85.62, p < 0.001); interaction
term, F(2,13814) = 149.48.09, p < 0.001. By applying Tukey’s post-hoc test to examine

pairwise differences among trial types, there is a significant asymmetry in downwards vs.
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Figure 2.3: Asymmetries in belief updating with event valence and direction of error as
fixed factors. Points indicate the magnitude of belief updating predicted by the linear
mixed effects model with bars representing 95% confidence intervals. Numbering of plots
corresponds to the study.

upwards updating with neutral events (M = 10.78 vs. M = 3.70, My;py = 7.12,p < 0.001)
of nearly the same magnitude as that in updating with negative events (M = 11.96 vs.
M = 3.53, Mg;rs = 8.47, p < 0.001), and no significant asymmetry in updating with
positive events (M = 4.15 vs. M = 4.61, Mg;r = —1.09, p < 0.887).

Further analyses

Beyond the reported LMMs, there are a number of other analyses that have been applied
to data produced by the update method. Relating to the previously outlined problems of
misclassification and the bounded probability scale, Shah et al. (2016) analyse the data
with an alternative classification scheme, and compare participants’ updating with rational
Bayesian predictions. Kuzmanovic and Rigoux (2017) seek to account for the influence of
individuating information with a computational modelling technique based on reinforce-
ment learning. And, finally, one might argue that we should consider the analysis used in
the original work of Sharot et al. (2011), which uses regressions to assess correlations be-
tween “estimation error” (i.e., |E1-BR)|) and belief updating. In the following paragraphs,
we apply each of these techniques to the data from our three studies. Despite different
attempts to remedy the limitations of the update method, the results of these techniques
display unexplained variability in updating asymmetries with neutral events, which cannot
be explained by a motivational optimism account. Each of these further analyses was pre-
registered, except for the regression analysis of updating behaviour, which was conducted

in response to a peer review.
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Accounting for direction of error misclassification. A central limitation of the
standard update method is its neglect of individuating information. As pointed out by
Shah et al. (2016), participants may hold one estimate of their personal likelihood of ex-
periencing each event (E1), which is influenced by individuating information, and another
estimate of the likelihood of an average person experiencing each event (an estimate of
the base rate; eBR), which is not influenced by individuating information. This means
that by classifying direction of error (or, in the case of previous studies of optimistic belief
updating, the desirability) in each trial on the basis of E1 instead of eBR, trials can be
misclassified and subsequently muddle the results. To assess the empirical consequence of
misclassification, we re-analysed the data with an alternative direction of error assigned by
comparing eBR to BR in each trial (i.e., eBR > BR is downwards, and vice versa). Across
all of the data collected, 25.30% (n = 3,571) of trials were misclassified. In this section
we report the reduction in the fixed effect estimates produced by LMMs that exclusively
analysed neutral trials (as in the main analysis), as well as the altered effects produced by
LMMs that included event valence as a second fixed factor. In each instance we followed
the procedure for the LMMs reported in the main analysis, whereby we first fit the model
specification with the maximally complex random effects structure and then iteratively
reduce the random effects structure until all degenerate random effects parameters are
removed and the model is not singular. For the LMMs with only neutral trials, this left
us with only random intercepts by participant; and for the LMMs with event valence as a
second fixed factor this left us with random slopes and intercepts for direction of error by
participant, and no correlation parameters. While the maximally complex random effects
specifications were singular, we also report the results of these specification in Tables A.4
and A.5 for comparison.?

In Study 1, accounting for the misclassification of direction of error reduced the fixed
effect estimate by 78%, from 9.13 (SE = 0.58, p < 0.001) to 1.98 (SE = 0.44, p < 0.001),
but still, an LMM exclusively testing trials with neutral events displayed a significant

asymmetry (F(1,1436) = 20.73, p < 0.001). An LMM including event valence as a

3This analysis differs slightly from the preregistered analysis plan in which we stated that we would
test for an interaction between these classification schemes. Since the reclassification of direction of error
also means that update values can change (i.e., an update of -10 would change to +10 if the direction
of error is reclassified), different observations were identified as outliers by our exclusion criteria (i.e., +3
X the interquartile range for a given condition). This in turn results in two distinct datasets: one where
the standard classification scheme is applied and one where misclassification is accounted for. For this
reason, it was not possible to test for an interaction by adding the classification scheme as a fixed factor in
our LMMs that tests for effects within a dataset, and we instead provide qualitative comparisons between
analyses.
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second fixed factor produced significant but reduced main effects of direction of error
(F(1,96) = 71.52, p < 0.001) and event valence (F'(2,4541) = 26.95, p < 0.001), and a
weakened interaction term (F'(2,4509) = 3.29, p = 0.037). While the same asymmetries
are displayed (i.e., downwards direction of error elicited significantly greater updates than
upwards for neutral, negative, and positive trials), there is a prominent reduction in the
magnitude of these asymmetries (Figure 2.4).

Accounting for misclassification in Study 2 reduced the fixed effect estimate by 63%,
from 6.24 (SE = 0.71, p < 0.001) to 2.32 (SE = 0.71, p = 0.001), but an LMM exclusively
testing trials with neutral events again displayed an asymmetry (F'(1,1639) = 10.63,
p = 0.001). Reduced effects were also observed once event valence was included as a
second fixed factor in the LMM, but nevertheless, there were still significant main effects
of direction of error (F(1,93) = 31.81, p < 0.001) and event valence (F(2,4534) = 9.55,
p < 0.001), and an interaction (F'(2,4410) = 8.33, p < 0.001). Once again, the same
significant asymmetries persisted but their magnitudes were heavily reduced (Figure 2.4).
In Study 3, misclassification accounted for 67% of the fixed effect estimate produced by an
LMM exclusively testing trials with neutral events, reducing 6.51 (SE = 0.79, p < 0.001)
to 2.15 (SE = 0.71, p = 0.002). But, again, the asymmetry in trials with neutral events
remained (F'(1,1565) = 9.23, p = 0.002). However, once event valence is included in
the LMM as a second fixed factor, the “flip” in asymmetries commonly interpreted as a
result of valence-dependent updating disappears. While the effect of direction of error
(F(1,101) = 5.28, p = 0.024), event valence (F'(2,4400) = 21.10, p < 0.001), and the
interaction remained significant (F'(1,4149) = 5.91, p = 0.003), there is another notable
reduction in the magnitude (Figure 2.4).

These results suggest that a non-negligible amount of trials in the update method may
be missclassified based on E1 (rather than eBR) as having an upwards vs. downwards
direction of error; or, in the conventional use of the update method with valenced life
events, missclassified as involving desirable vs. undesirable information. Upon correcting
for this issue and using the normatively appropriate classification scheme on the basis
of eBR, the asymmetries in belief updating were greatly attenuated. Still, statistically
significant asymmetries with neutral events were observed, thereby suggesting that this
correction alone is not enough to remedy the update method. This is because, while
this analysis alleviates the issue of misclassification, it does not address the issue of the

bounded probability scale. As prescribed by Bayes’ theorem, updates of the same absolute
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Figure 2.4: Plots of the observed asymmetries in belief updating once the misclassifica-
tion of direction of error is accounted for in each study. Points indicate the estimated
marginal means of belief updating as predicted by the linear mixed effects model with
bars representing 95% confidence intervals. Numbering of plots corresponds to the study.

magnitude cannot be equated if they are on different parts of the probability scale or
made in opposite directions. For example, updating from 20% to 30% is not equivalent to

updating from 40% to 30%, yet this analysis leaves this unaccounted for (see Figure 2.8).

Comparisons with rational Bayesian predictions. Given that updates in different
parts of the scale cannot be mathematically equated to one another, a seemingly sensi-
ble analysis of data produced by the update method is to compare participants’ actual
updating behaviour to rational Bayesian predictions. As done in Shah et al. (2016), the
collection of eBRs from participants in our studies allowed for the calculation of implied
likelihood ratios (LHR) — a measure of participants’ individuating information derived

from Bayes’ theorem — for each trial following the logic of Equation 2.1 and Equation 2.2:

PosteriorOdds = PriorOdds x LHR (2.1)

P(hle) _ _P(h)

=Pl 1—pn <R (22)

If eBR and E1 are then divided by 100, the equation can be rewritten with the terminology

of the present studies as follows in Equation 2.3:

B F1 . eBR
~ 1—E1  1-—¢eBR

LHR (2.3)
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With the implied LHRs serving as a measure of individuating information participants
believe they possess, we subsequently calculated the predicted posterior odds for each
trial (Equation 2.4), which could then be used to indicate how much a rational Bayesian

agent “should” update in each trial (Equation 2.5):

PosteriorOdds = x LHR (2.4)

BR
1-BR

FE1 — PosteriorOdds

2.
1 + PosteriorOdds | (2.5)

BayesianUpdate = |

From here, we tested for asymmetries in belief updating with two measures across
conditions, within participants: a Bayesian difference measure (i.e., predicted belief change
— observed belief change) and a Bayesian ratio measure (i.e., observed belief change -+
predicted belief change).

Our results show that there is variability between studies (Tables 2.1 to 2.2). For
instance, comparisons of upwards versus downwards updating with the Bayesian ratio
measure indicates no asymmetry in trials with neutral events in Studies 2 and 3, but there
is a statistically significant asymmetry observed in Study 1 and in the aggregated data of
Studies 1-3, aggregate analyses indicate that the statistical artefact, whereby asymmetry

persists in trials with neutral life events, remained when interpreting the data in this way.

Mean of difference  Mean of difference

Study Bvent measure for measure for upwards t p-value

Valence ) .
downwards trials trials

1 Positive 0.13 0.09 -4.31 <0.001

Neutral 0.10 0.08 -2.00 0.049

Negative 0.09 0.10 1.54 0.128

2 Positive 0.14 0.07 -4.57  <0.001

Neutral 0.11 0.08 -2.04 0.044

Negative 0.06 0.10 2.63  0.009

3 Positive 0.12 0.07 -2.79  0.006

Neutral 0.10 0.07 -2.52  0.013

Negative 0.06 0.11 2.84  0.006

Aggregate  Positive 0.13 0.08 -6.47 <0.001

Neutral 0.10 0.07 -3.81 <0.001

Negative 0.07 0.10 4.14 <0.001

Table 2.1: Results of paired t-tests comparing Bayesian difference measures that compare
participants’ updating to rational Bayesian predictions.

These results highlight the inherited flaws of this analysis — although the comparisons

44



Median ratio Median ratio
Study Event Valence measure for measure for Z  p-value

downwards trials upwards trials

1 Positive 0.00 0.00 141  0.921
Neutral 0.57 0.04 -3.73  <0.001
Negative 0.49 0.00 -4.92  <0.001

2 Positive 0.00 0.17 -1.19  0.116
Neutral 0.53 0.28 0.79 0.784
Negative 0.51 0.07 -2.26  0.012

3 Positive 0.00 0.46 -2.14  0.016
Neutral 0.53 0.28 -0.13  0.449
Negative 0.51 0.09 -3.71  <0.001

Aggregate Positive 0.00 0.10 -2.36  0.009

Neutral 0.53 0.25 -2.34  0.010
Negative 0.51 0.00 -6.25 <0.001

Table 2.2: Results of Wilcoxon signed rank tests comparing Bayesian ratio measures that
compare participants’ updating to rational Bayesian predictions.

are normatively appropriate, both the difference and ratio measures are susceptible to
artefacts produced by the bounded probability scale and uneven effects of response noise
(Shah et al., 2016). When a participant is required to translate a perceived personal
risk estimate onto the probability scale, response noise will arise where a participant’s
non-integer estimates are forcibly rounded, where a participant misinterprets his or her
internal state, or where a participant simply mis-types (e.g., entering “15” instead of
“14”). The influence of such response noise will depend on where updating is taking place
on the probability scale. For instance, as one approaches either end of the scale, response
noise will constitute different proportions of the probability estimate. This issue is in turn
reflected in the Bayesian comparison measures, deeming them insufficient to address the

statistical artefact.

Analysis of learning rates derived from Kuzmanovic and Rigoux’s (2017) com-
putational model. A recent paper by Kuzmanovic and Rigoux (2017) proposed two
new modelling techniques as analytic remedies for update method. First, they present a
Bayesian model in which they fit a scaling (S) and asymmetry (A) parameter to model

participants subjective updates:

SubjectiveUpdategooq = BayesianUpdate x (S + A) (2.6)
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SubjectiveUpdatep,q = BayesianUpdate x (S — A) (2.7)

The logic of these equations is that if participants update equally on desirable and undesir-
able information, the asymmetry parameter, A, will equal zero, and hence the right-hand
bracketed expression will be constant across both equations. Interestingly, the modelling

represented in these equations can be considered computationally equivalent to deter-

.. SubjectiveUpdategood _ SubjectiveUpdateyqq .
mining whether =5 = Gt = =g pdaie-t» which Shah et al. (2016) and the
present work already addressed as the Bayesian ratio measure.

Beyond this, Kuzmanovic and Rigoux (2017) also propose a reinforcement learning

model. The full model presented is:
Belie fUpdate = LearningRate x PredictionError x (1 —rP x W) (2.8)

where Belie fUpdate represents the update value, PredictionError represents the differ-
ence between eBR and BR, and rP represents “relative personal knowledge,” and W is a
free parameter to account for participants’ individual variability in their sensitivity to r P
(W is thus irrelevant when considering rational Bayesian agents) (Kuzmanovic & Rigoux,
2017). To address the implications of the reinforcement learning model we consider the
crux of the argument: do learning rates differ across conditions? To do so, we simply

rearranged Equation 2.8 to permit a trial-by-trial calculation of learning rates:

BeliefUpdate

2.9
PredictionError x (1 —rP) (29)

LearningRate =

Using Wilcoxon signed rank tests, we then compared learning rates across conditions,
within participants. Once again, we observed unexplained variability in the results of
each study — statistically significant asymmetries were observed in Study 1 and in the
aggregated data, but not in Studies 2 and 3 — suggesting that the statistical artefact
pervades this approach too with asymmetrical learning rates capable of being seen in
trials with valence-neutral events (Table 2.3).

As identified in separate ongoing work (Harris & Hahn, 2021), the reason this approach
fails to address the artefact can be traced back to its use of r P as a substitute for LHR, the
normatively appropriate representation of individuating knowledge. As Kuzmanovic and
Rigoux (2017) explain, 7P represents the “the difference between eBR and E1 relative to

the maximal possible difference in each trial” (p. 5). The calculation proceeds as follows:
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Median learning  Median learning

Study Event rate for rate for upwards  Z  p-value

Valence . ,
downwards trials trials

1 Positive 0.00 0.00 0.28  0.610

Neutral 0.61 0.04 -3.04  0.001

Negative 0.60 0.00 -4.83 <0.001

2 Positive 0.00 0.19 -0.89  0.187

Neutral 0.68 0.45 0.53  0.704

Negative 0.56 0.14 -1.86  0.032

3 Positive 0.00 0.55 -2.45  0.007

Neutral 0.64 0.30 -0.46  0.324

Negative 0.57 0.12 -4.02  <0.001

Aggregate  Positive 0.00 0.15 -2.15  0.016

Neutral 0.66 0.28 -2.14  0.016

Negative 0.58 0.00 -6.12  <0.001

Table 2.3: Results of Wilcoxon signed rank tests comparing the learning rate measure
derived from the reinforcement learning model presented by Kuzmanovic and Rigoux
(2017).

(eBR—E1)/(eBR—1) if F1<eBR
rP = ¢ (FE1-eBR)/(99 — eBR) if E1 > eBR (2.10)

0 if F1 =eBR

\

When participants estimate their own risk (E1) as equal to their estimate of the base rate
(eBR), rP = 0, appropriately indicating that they have no individuating knowledge. How-
ever, if P is to accurately represent a participant’s relative personal knowledge, it should
be sensitive only to the LHR. Figure 2.5 plots rP against the LHR for seven different
estimates of the base rate. Appropriately, there is a monotonic relationship between rP
and the amount of individuating information one possesses: rP increases as the absolute
distance between E1 and eBR increases. However, for the same LHR, rP differs across
different estimates of the base rate. Given that the normative amount of personal knowl-
edge remains the same within each LHR, this demonstrates that P is not appropriately
representing the amount of individuating information possessed. Consequently, the model
and its learning rate measure are left vulnerable to potential statistical artefacts, as is

reflected in our results (Table 2.3).
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Figure 2.5: Numerical simulation comparing Kuzmanovic and Rigoux’s (2017) rP param-
eter to the Bayesian LH R parameter. 7P and LHR are calculated for the listed e BRs
and F1 = {10,20,30,...90}. Figure adapted from Harris and Hahn (2021).

Regression analysis of updating behaviour. Beyond the more recent techniques
outlined above from Shah et al. (2016) and Kuzmanovic and Rigoux (2017), one might
also suggest that we apply the procedure used in the original work of Sharot et al. (2011).
In their analysis, Sharot et al. (2011) use regressions to assess correlations between “esti-
mation error” (i.e., |[E1-BR)|) and belief updating. Since estimation error is presumably
correlated with the magnitude of updates, comparisons of regression coefficients across
conditions, within participants is expected to display potential asymmetries while natu-
rally controlling for the magnitude of estimation error. In other words, if desirable trials
have a larger regression coefficient than undesirable trials within participants, it would
seem that participants are more conservative in belief updating when faced with bad news
as compared to good news.

While it is meaningful to control for estimation error to ensure that observed asym-
metries do not merely reflect an uneven distribution of errors, this particular analysis was
not preregistered as it is conceptually flawed. As outlined in the introduction above it is
meaningless to subtract the base rate (BR) from Sam’s individual estimate (E1), because
normatively, Sam’s individual estimate should be a function of both of these quantities,
and, normatively, Sam could even be required to revise the individual estimate in the
opposite direction of that “error,” depending on what Sam took the base rate to be (Shah
et al., 2016).

Nevertheless, we followed this regression analysis procedure in a further, unregistered

examination of our data. Similar to the other alternative analyses outlined above, this
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analysis returns a statistically significant asymmetry with neutral events in Study 1, but
there is neither a significant asymmetry in Studies 2 and 3, nor in the aggregated data
(Table 2.4). Further, the statistically significant asymmetry in Study 1 does not hold when
our preregistered exclusion criterion is not applied. It is difficult to interpret these results
because this regression analysis falsely equivocates upwards and downwards updating on
the compressed probability scale. Once again, the degree to which one should normatively
update their beliefs is the product of individuating information and the base rate. This
means that even if two individuals are faced with the same BR, have identical likelihood
ratios, and provide Els that are equal absolute distances from the BR — but one agent’s
E1 is above the BR and the other’s is below the BR — their prescribed Bayesian updates
will differ (see Figure 2.8). Yet, the regression analysis cannot account for this because it
only considers the raw belief change and estimation error, while neglecting the influence

of individuating information.

Event Mean coefficient Mean coefficient
Study ) ) t p-value
Valence  for downwards trials — for upwards trials
1 Positive -0.02 0.10 -1.90  0.060
Neutral 0.20 0.00 3.57  <0.001
Negative 0.20 0.20 2.23  0.028
2 Positive 0.04 0.30 -3.22  0.002
Neutral 0.11 0.06 0.44  0.662
Negative 0.23 0.11 1.40  0.165
3 Positive -0.14 0.11 -2.06  0.042
Neutral 0.13 0.08 0.62  0.540
Negative 0.40 0.13 1.52  0.132
Aggregate  Positive -0.04 0.17 -4.03  <0.001
Neutral 0.15 0.05 1.75  0.081
Negative 0.27 0.15 2.76  0.006

Table 2.4: Results of paired t-tests comparing regression coefficients whereby “estimation
error” is used to predict update values.

Follow-up simulations. In an additional exploratory analysis, we used simulations
to test the robustness of the regression analysis results, and to explore why there is con-
siderable, seemingly uninterpretable variability in results across studies. The rationale
for our simulations stems from the statistical artefact hypothesis’ explanation that “the
very nature of the artefacts that plague the update method mean that, given the right set
of events, everything and anything could empirically be found, even in entirely unbiased

agents” (Shah et al., 2016, p. 107). That is, the statistical artefact hypothesis predicts
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that the results of the regression analysis could change if we were to have sampled stimuli
(life events) with different statistical properties (e.g., the events’ average base rate error),
which, crucially, are not valence-dependent. By simulating 500 “experiments” where we
sample participants and events from the aggregated data of Studies 1-3 we found that the
results of the regression analysis do indeed seem to be driven by statistical properties of the
events used: in response to events with low average base rate error (i.e., [eBR—BR)|) partic-
ipants display asymmetric updating when they rate those events to be neutrally-valenced,
but not when they rate them to be positively- or negatively-valenced (Figure 2.6). This

is of course a nonsensical result that cannot be attributed to motivational optimism.

positive

neutral

Event Valence

negative [

-5.0 -25 0.0 25 5.0
t statistic

Figure 2.6: Results of the regression analysis using estimation error as the independent
variable in 500 simulated “experiments.” Each iteration, or experiment, involved sampling
200 participants and their responses to the 20 events with the lowest average base rate
error (jeBR— BR)|) from the aggregated data of Studies 1-3. Results are split out by event
valence (y-axis). Blue points represent statistically significant (p < 0.05) asymmetries
returned by paired samples t-tests comparing the regression coefficients in upwards vs.
downwards updating. Red points represent non-significant asymmetries. The direction
and magnitude of asymmetries is indicated by the t statistic (x-axis). Results suggest
that, in response to events with low average base rate error, participants more frequently
display asymmetric updating when they rate those events to be neutrally-valenced as
compared to positively- or negatively-valenced.
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Supplementary Study 4. Building on this, we subsequently preregistered and ran
an additional Study 4 to empirically test the conclusions of our simulations. Specifically,
we recruited 200 participants via the Prolific Academic platform (Mgge = 30.66, SDgge =
11.35; 133 female, 63 male, 4 other) and presented them with the 20 life events that
elicited the lowest average base rate error in Studies 1-3. We applied the same analyses
that were used to analyse Studies 1-3: LMMs as in the main and secondary analyses,
and the each of the further analyses described above. The LMMs replicated the results
of Studies 1-3 and showed statistically significant asymmetries with neutral events, and
held after accounting for misclassification (as well as after accounting for potential post-
treatment bias and after adding stimuli as a random factor; for more details see the
following section and supplementary information in Appendix A). However, the results of
the supplementary analyses were inconclusive. Bayesian comparisons and the analysis of
learning rates returned non-significant results for each event type: neutral, negative, and
positive. The regression analysis returned non-significant results for neutral (¢(130) = 1.08,
p = 0.282) and negative events (#(62) = 0.48, p = 0.635), and a statistically significant
asymmetry with positive events (¢(163) = —2.06, p = 0.041).

In considering why the results of this additional study were inconclusive, we noted that
there were noticeable departures in the distributions of how the participants in Study 4
estimated the relevant statistical properties of the new event sub-set vis-a-vis the data on
which our selection had been based (Figure 2.7). This underscores further the limits of

the current update methodology.

Further further analyses

Indeed, there are even more analytic approaches that may be applicable, such as including
stimuli (life events) as a random factor to heed the statistical literature pointing out that
the failure to do so can inflate Type I error rates on fixed effect estimates (Judd et al., 2012;
Yarkoni, 2019). However, this does not resolve the asymmetry observed with the LMMs
(Appendix A.1.2). Alternatively, one might argue that Bayesian modelling equivalents to
the LMMs reported here should be used. But such an analysis introduces an additional
“researcher degree of freedom” by requiring the specification of a prior distribution; and
given that there is no precedent of this in the literature, we restricted our analyses to

address our hypothesis.
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Figure 2.7: Density plots displaying the distributions of how participants estimated the
statistical attributes of the 20 events used in Study 4 as compared to what was observed
in Studies 1-3

2.1.3 Discussion

The present research provides the first targeted application of the update method to test
for asymmetric belief updating with neutral stimuli (life events). In the main analysis,
the central result obtained was the thrice replicated asymmetry in belief updating with
neutral stimuli (Figure 2.2), which is coupled with variability among the results returned
by various analytic techniques that have been proposed as fixes for the flaws of the update
method (summarised in Table 2.5). Such findings are unpredicted and unexplainable by
motivational accounts. Consequently, our results contribute to the debate concerning the
status of the optimistic belief updating phenomenon (Sharot et al., 2011) by demonstrat-
ing the empirical consequence of the statistical confounds previously highlighted (Shah
et al., 2016) — empirical consequences that subsequent rebuttals have questioned (e.g.,
N. Garrett & Sharot, 2017; Kuzmanovic & Rigoux, 2017). While seemingly optimistic
asymmetries can arise in the data, the current results suggest that such effects are not
valence-driven. Given that an asymmetry can be observed in the absence of valence, and
thus an absence of motivation, the presence of an asymmetry with valenced events is
insufficient evidence for one to conclude that a motivational bias is present.

Previous research has countered the statistical artefact hypothesis by including positive

events in the deployment of the update method (e.g., N. Garrett & Sharot, 2017; Marks &
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Study 1 Study 2 Study 3 Aggregate

Accounting for misclassification
(Shah et al., 2016)
Bayesian difference measure
(Shah et al., 2016)
Bayesian ratio measure
(Shah et al., 2016)
Learning rates
(Kuzmanovic & Rigoux, 2017)
Regression analysis™
(Sharot et al., 2011)

<0.001 0.001 0.002 <0.001

0.049 0.044 0.013 <0.001

<0.001 0.784 0.449 0.010

0.001 0.704 0.324 0.016

<0.001 0.662 0.540 0.081

Table 2.5: P values indicating the statistical significance of the asymmetries observed with
neutral events according to five analytical techniques intended to resolve the flaws of the
update method in each study and the aggregated data of Studies 1-3. Asymmetries under
the alternative classification scheme were determined with linear mixed effects models.
Comparisons of upwards vs. downwards updating using the Bayesian difference measure
and the regression analysis (with “estimation error” as the independent variable) were
made with t-tests; comparisons using the Bayesian ratio measure and learning rates were
made with non-parametric Wilcoxon signed rank tests. The analysis marked with an
asterisk was not preregistered.

Baines, 2017). While such studies succeed in demonstrating asymmetric belief updating
with positive events in a manner that is consistent with motivational optimism, they fail
to appreciate “that the statistical artefacts will necessarily vary in expression as a function
of events” (Shah et al., 2016, p. 106). Consequently, “the very nature of the artefacts that
plague the update method mean that, given the right set of events [with the right statistical
attributes|, everything and anything could empirically be found, even in entirely unbiased
agents” (Shah et al., 2016, p. 107). This is because the statistical artefact hypothesis
is multi-faceted, being driven by both the base rate and the amount of individuating
information the individual believes they possess about their chance of experiencing a
particular event. In fact, the variability of these subjective confounds can be seen even
when an identical set of life events is used. Across our three studies, there are differences
in the distributions of implied likelihood ratios (LHRs), estimation error (|E1— BR]|), and
base rate error (leBR— BR]) (see Figures A.2 to A.4 for the empirical distributions of these
variables in each study; and see Figure 2.8 for a numerical simulation of the relationship
between these variables). It may be these discrepant statistical characteristics that give
rise to varying results across studies.

One tempting approach to side-step the variability in results across studies and analyses

is to focus solely on the aggregated data from Studies 1-3 as the single “answer.” This
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Figure 2.8: Numerical simulation of probability scale compression and the relationship
between base rate (BR) error, belief change, and implied likelihood ratios (LHR). [A]
Ten simulated observations (x-axis) of paired base rates and posterior probabilities (y-
axis). Across all ten pairs the LHR, @ f};l) = (lff ]?R)? that is, the degree of individuating
knowledge is the same (in this plot, 0.4), and the posterior probability is derived via Bayes’
theorem, by combining that individuating knowledge with the respective base rate. BR
error is [B] Observations 2, 5, and 8 from Plot A. While the LHR (0.4) and absolute BR
error (0.15) is held constant, the absolute belief change cannot be equal when updating
in opposing directions (0.16 moving upwards on the scale from observation 5 to 2; 0.10
moving downwards on the scale from observation 5 to 8). [C] Observations 2, 5, and 8
when absolute belief change (0.15) and LHRs (0.4) are held constant, which results in
unequal absolute BR errors (0.12 to move upwards on the scale from observation 5 to 2;
0.06 to move downwards on the scale from observation 5 to 8).

approach is tempting as it achieves the highest possible statistical power, which has been
useful in supporting our argument. This approach is indeed logical in the sense that
it achieves the highest possible statistical power, but it overlooks a key point: we are
observing variability in results in already high-powered studies with 100 participants each
when the update method has been widely used for neuroscientific studies that often have
far fewer participants. The original work of Sharot et al. (2011) relied on a sample of
just 19 participants, N. Garrett et al. (2014) had 30 participants, N. Garrett and Sharot
(2014) had 32 participants, Kuzmanovic and Rigoux (2017) had 27 participants, and
even the large (by neuroscience standards) sample of Moutsiana et al. (2013) was just 52

participants.
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Our findings suggest that there is not a consistent, behaviourally-large, motivational
asymmetry in belief updating, as would be required to inspire confidence in the neural
correlates — and therefore the existence — of the optimistic bias phenomenon. While
variability with “sensible” stimuli (i.e., negative or positive events) is often attributed to
natural noise in the world, we observed similar variability with entirely nonsensical stimuli
(i.e., neutral events). The dominant theory for a general optimism bias is that it is an
adaptive, self-serving mechanism that enhances exploratory behaviour and reduces stress
and anxiety as a regular feature of healthy human cognition (Sharot et al., 2011). Further,
it has been argued that the ability to integrate desirable and undesirable information
reflects two dissociated processes with different developmental trajectories in the human
brain (Chowdhury et al., 2014; Moutsiana et al., 2013). On neither perspective would
one expect the findings presented here. Were the update method a suitable tool for
probing optimistic bias, it simply should not show “bias” with valence-neutral events.
The fact that it can, and that results vary across samples and analyses, renders both the
behavioural results of earlier studies and the underlying neurological correlates, based on
small samples, uninterpretable.

Whilst our investigation included small changes in methodology across studies and
covered several supplementary analyses, readers familiar with the optimistic belief updat-
ing literature might point out that we did not control for certain covariates that have been
considered in past studies, such as participants’ familiarity, vividness, emotional arousal,
and perceived controllability of the events presented. While this could indeed be viewed as
a limitation of the present work, we do not see it as such because past studies consistently
report no change in results with or without these controls (e.g., Moutsiana et al., 2013;
Shah et al., 2016; Sharot et al., 2011), and moreover, certain covariates like emotional
arousal are, by definition, irrelevant for neutral life events. Likewise, it could be argued
that our results are limited due to the fact that we only considered one framing; we only
asked participants how likely they were to experience the events presented and not how
likely they were to not experience the events. However, the potential of a confounding
framing effect also seems unlikely given that the past studies that do control for it report
there to be no consequence (e.g., N. Garrett & Sharot, 2014; N. Garrett et al., 2014; Korn
et al., 2014; Sharot et al., 2011).

Other methods for optimism research need to be used, but there is no quick fix. One

plausible direction is to test for bias as asymmetric deviations from Bayes’ theorem, which
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acknowledges that updates in different parts of the probability scale cannot be mathemat-
ically equated to one another. Yet, Shah et al. (2016) demonstrate that the fundamental
problems with the scale are inherited in such analyses given that participants’ responses
will be noisy (see “comparisons with rational Bayesian predictions” above). Alternatively,
some studies in economics have utilised highly-contrived “lottery” methods incorporating
objective probabilities (Barron, 2018; Buser et al., 2018; Coutts, 2019; Eil & Rao, 2011;
Ertac, 2011; Gotthard-Real, 2017; Mobius et al., 2014). These studies have produced
markedly inconsistent results, with some observing an optimistic asymmetry (Eil & Rao,
2011; Mobius et al., 2014), and others finding no evidence thereof (Barron, 2018; Buser
et al., 2018; Coutts, 2019; Ertac, 2011; Gotthard-Real, 2017).

Optimism research is of importance to researchers and practitioners alike. Yet, for
there to indeed be a true optimism bias in belief updating, the evidence should not be
able to be produced by rational, unbiased agents (e.g., Shah et al., 2016) or in cases where
the variable upon which it depends — valence — is removed. The update method thus
remains unfit for purpose, and assuming evidence produced by it to be solid is ill-advised.
Yet, optimistic belief updating, along with optimism’s other forms, may very well exist in
the real-world. Our empirical results argue for an absence of evidence, rather than evidence
of absence. More work would be needed to actively falsify the optimistic belief updating
hypothesis. For example, is asymmetric updating explained away by the statistical artefact
identified here, or does it co-exist with actual motivated updating? Nevertheless, our
analyses suggest the foundational method that research is building upon continues to fail
critical tests. Here, it has failed to display a consistent valence-dependence, an inherent

attribute of optimistic belief updating’s very definition.

2.2 Chapter conclusion

Psychological explanations for why people may form inaccurate beliefs in the context of
a digital world centre around observations that individuals’ cognitive processes favour
desirable, identity-concordant information. This account of a psychological problem “in
the mind” suggests that the ever-larger amounts of information granted online leads to
increasingly skewed beliefs due to asymmetric sampling, reasoning, and updating. How-
ever, as the empirical results presented in this chapter emphasise, observing asymmetries

in information processing may not necessarily constitute evidence of irrational, motivated

cognition. For such asymmetries to have bearing on our overarching question of belief
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accuracy in a digital world, they must be shown to be true, accuracy-cost-incurring bias
by deviating from normative standards.

Needless to say, the results presented in this chapter only target the specific phe-
nomenon of optimistic belief updating and do not address the myriad other paradigms
that comprise the psychological account of inaccurate belief formation. But in a broad
sense, the observation of asymmetric belief updating in response to neutral stimuli points
to the methodological limits of psychology-oriented experimentation in artificial settings.
For one, it is difficult to distinguish “errors” from systematic bias that incurs costs in
the long-run with contrived experimental designs. And further, specifying the appropri-
ate normative model for any given task is not only a non-trivial exercise, but one that
frequently runs counter to experimenter intuitions — as is the case with Bayesian agents
displaying “optimistically” asymmetric belief updating (U. Hahn & Harris, 2014; Shah
et al., 2016). Elsewhere, these issues have also been shown to plague related research
on politically motivated reasoning, where supposed evidence of biased reasoning could
equally be produced by rational, Bayesian reasoning with differential prior beliefs (Tappin
et al., 2020a, 2020b, 2020c). Taken together, these features of characteristic methodolog-
ical approaches in psychology suggest that empirical evidence underlying the account of
a psychological problem “in the mind” may be less conclusive than it seems. In order to
supplement such evidence, it is necessary to consider the real-world environments in which

the psychological processes involved in belief formation take place.
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Chapter 3

A structural problem “in the

world”

The apparent complexity of our
behaviour over time is largely a
reflection of the complexity of the

environment in which we find ourselves

H. A. Simon, 1969, p. 53

Running alongside the account of a psychological problem “in the mind” is much re-
search lamenting structural characteristics of online information environments as inherent
threats to the accuracy of our beliefs. In this account of a structural problem “in the
(digital) world” the emphasis is not on the cognitive capacities of human users, but on
the design of new digital media and the ways in which it presents users with distorted
information (e.g., Brady et al., 2017; Caplan & boyd, 2016; Ferrara et al., 2016; Lazer,
2015; Moore, 2019; Pariser, 2017; Persily & Tucker, 2020; Seifert, 2017; Shao et al., 2018;
Sunstein, 2018; Vosoughi et al., 2018; Woolley, 2016). Specifically, this perspective points
to three interacting features: (1) perverse incentives to propagate low-quality information
driven by “attention economics,” (2) the presence of manipulative bots, and (3) propri-
etary, content-curating algorithms that personalise and fragment individuals’ information
environments. As a result of these features, users’ truth-seeking intentions are said to be
impeded by the structure of the digital world itself.

Popularised by Goldhaber (1997) and Davenport and Beck (2001) (but also see H. A.
Simon, 1971), the term “attention economy” refers to the observation that in the digital

world the most scarce, valuable resource is human attention, rather than information or

o8



any material capital. In this new economic paradigm it is argued that our attention is now
effectively a currency, and the fortunes of businesses depend on their ability to capture
and monetise the attention of their audience (Davenport & Beck, 2001).! While, in many
ways, this has always been the case, the dynamics of the attention economy have seem-
ingly been supercharged by new digital media. Collective attention spans have shortened,
moving more rapidly between popular topics and events on social media (Lorenz-Spreen
et al., 2019), and the digital trace data left behind by users leaves them open to microtar-
geted advertisements optimised for engagement (Moore, 2019). What does this mean for
the accuracy of our beliefs? First and foremost, it suggests that the online information
environments people increasingly rely upon to stay informed will be dominated by content
that is attention-grabbing, regardless of its actual informational quality. For digital news
organisations and content creators whose revenue relies on readership metrics (e.g., clicks,
shares, channel subscribers) to sell advertisement space to third-parties, the long-term
incentive to build a journalistic reputation has arguably been been supplanted by the
myopic, profit-first incentive to “go viral.” Unfortunately, the factors influencing the diffu-
sion of information online identified in existing literature seem to be either uncorrelated or
negatively correlated with conventional markers of credibility. These include, for example,
emotion-laden language (Berger & Milkman, 2012; Brady et al., 2017; Ferrara & Yang,
2015; Hansen et al., 2011; Stieglitz & Dang-Xuan, 2013), negativity directed towards one’s
political out-group (Pew Research Center, 2017; Rathje et al., 2021), and news content
that is novel, surprising, and flat out false (Vosoughi et al., 2018). Taken together, the
implication of these findings is that the attention economics of the digital world reward
the sharing of low-quality content in the name of “virality,” and in turn inundate users
with misleading information.

A second feature of online information environments that has been a cause for concern
is the prevalence of so-called bots. In its purest form, a bot (derived from “robot”) is a com-
puter programme that functions as an autonomous agent on an online platform (Franklin
& Graesser, 1996). However, the term has come to encompass a wide range of typologies
including the fully automated (e.g., web crawlers and chatbots), semi-automated (e.g., so-
cial media accounts with scheduled postings), and manually controlled (e.g., sockpuppets

and trolls) (Gorwa & Guilbeault, 2020). Whereas many instances for deploying bots online

'For example, the cost of running an advertisement on Twitter is determined by the number of user
“engagements” received; instead of purchasing a premium Spotify account to stream music, you can listen
for “free” by having your music interrupted by advertisements; in 2017, the co-founder of Netflix, Reed
Hastings, explained that one of their main competitors is sleep (Hern, 2017).
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are well-meaning or benign, such as web crawlers that automatically index massive loads
of websites for search engines (Pant et al., 2004) or chatbots acting as virtual assistants
(Sansonnet et al., 2006), they can have unintended effects on the sorting and spread of
information. For example, search engine-supporting web crawlers typically index content
based on solely on its “relevance,” meaning that a user who enters an obscure, outdated,
or otherwise problematic search query will not be presented with the most accurate and
informative information, but with whatever content has certain keywords and high levels
of viewer traffic (cf. data voids, Golebiewski & boyd, 2018). This feature leaves such
bots vulnerable to being gamed, be it through the seemingly accepted business practice
of “search engine optimisation” or by bad actors pushing disinformation around specific
topics (Gorwa & Guilbeault, 2020; Woolley & Howard, 2016). At the centre of many
recent studies, however, is the coordinated use of bots on social media, which can manip-
ulate users by disrupting political discourse (Bessi & Ferrara, 2016), warping perceptions
of consensus (Lerman et al., 2016), exacerbating social tensions (Stella et al., 2018; L. G.
Stewart et al., 2018), and amplifying misinformation (Ferrara et al., 2016; Lazer et al.,
2018; Shao et al., 2018; Vosoughi et al., 2018). While some studies evaluating the role
of bots in online information environments have questioned their real-world consequence
(e.g.,. Bail et al., 2020; Dunn et al., 2020; Gonzélez-Bailén & De Domenico, 2021), the
well-documented prevalence of malicious bots — and the ease with which anonymous and
automated accounts can be set up — casts doubt over the informational integrity of the
digital world.

A third feature of the digital world that has been cited for its undermining effect on
the accuracy of people’s beliefs is the ubiquitous use of proprietary algorithms for content
curation. In concert with bots, algorithms provide an indispensable service by assisting
users’ navigation of content online, which would otherwise leave finding relevant, needed
information an unmanageable task. However, a dark side to these algorithms emerges
once their personalisation of content goes beyond the linkage structure of the web (as
in Google’s original PageRank system, Brin & Page, 1998) to include factors like users’
browsing history and geographic location (Lazer, 2015). For instance, Le et al. (2019)
observed that, based on browsing history alone, personalised Google search results tend
to reinforce the presumed political preferences of the user. This finding demonstrates
what Pariser (2017) dubbed the filter bubble effect (cf. echo chamber effect, Jamieson

& Cappella, 2008), whereby algorithmic personalisation is said to entrench individuals in
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their own, unique, self-affirming information environment online, thereby fragmenting the
digital world into niches or “bubbles” with little interaction between them. Such an effect
becomes particularly concerning in the context of social media and the aforementioned
attention economy. Given that the business model of social media platforms relies on
attracting and retaining user engagement to sell advertising, it is perhaps not surprising
that the integrity of the proprietary, often opaque algorithms used to recommend content
to platforms’ users has been called into question (Pariser, 2017; Persily, 2017; Sunstein,
2018). For example, research has found that Twitter’s default news feed algorithm un-
equally promotes friends’ posts to users based on popularity metrics (Bartley et al., 2021),
YouTube’s recommendation algorithm presents increasingly radical content to users (e.g.,
Ribeiro et al., 2020; Tufekci, 2018; for a review see Yesilada & Lewandowsky, 2021), and
Facebook’s algorithmic curation conforms to users’ ideology, albeit to a fairly small degree
(Bakshy et al., 2015). However, in contrast to the original filter bubble hypothesis of
Pariser (2017), several studies have pointed out that such filtering effects are prompted
by users’ choices — including whom to befriend and what content to “like” — to a much
greater extent than the content-curating algorithms themselves (e.g., Bakshy et al., 2015;
Chen et al., 2021; Hosseinmardi et al., 2021; Moller et al., 2018). Going further, some have
downcasted the existence of the filter bubble effect altogether (e.g., Bruns, 2019; Dubois
& Blank, 2018; Hannak et al., 2013).

Whereas few researchers would argue that the digital world’s attention economics,
prevalence of bots, and reliance on proprietary algorithms for content-curation do not
pose plausible threats to users’ ability to form accurate beliefs, it is widely-acknowledged
that estimating their actual causal effects remains a difficult task. This is arguably due to
the fact that, notwithstanding recent innovation in digital field experiments (e.g., Mosleh,
Pennycook, et al., 2021) and algorithmic auditing techniques (e.g., Bartley et al., 2021;
Sandvig et al., 2014), independent investigations of the digital world have largely been
limited to non-experimental approaches. While, nowadays, researchers are able to collect
vast quantities of digital trace data to power their studies, the nature of such data as
observational, highly confounded, and gate-kept by the platforms they exist on means
making the jump from data to meaningful scientific conclusions faces new hurdles (Lazer
et al., 2021; Munger, 2019; Salganik, 2017; Tufekci, 2014; Wagner et al., 2021). In order to
understand belief accuracy in a digital world, it thus seems crucial to remain critical of the

data and methodologies that are being applied across the computational social sciences so
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that they may be bettered.

In the remainder of this chapter, I present a study probing a high-profile finding that
is said to evidence the effect of social media’s perverse incentives to share emotional,
outrage-inducing content, regardless of its informational quality (moral contagion, Brady
et al., 2017). By testing the methodological limits of a conventional approach to the study
of information diffusion on social media, I emphasise the need for deeper understanding
of the analytic challenges faced if meaningful links between structural characteristics of
the digital world, the integrity of online information environments, and the accuracy of

people’s beliefs are to be established.?

3.1 Reconsidering evidence of moral contagion in online so-

cial networks

In 2017, a study leveraging large-scale social media data presented evidence of a moral
contagion effect, which seemingly corroborates mainstream concerns about attention eco-
nomics online and the perverse incentives they impose (Brady et al., 2017). In the study,
Brady et al. (2017) apply a dictionary-based text analysis procedure to quantify moral-
emotional language in hundreds of thousands of tweets capturing the naturally-occurring
communications of Twitter users. By then fitting a regression model and performing a
series of robustness checks, they show that the mere presence of moral-emotional words
increases messages’ retweet counts by a factor of 20%, regardless of the messages’ informa-
tional quality (Brady et al., 2017). The implications of this moral contagion phenomenon,
where the exposure to moral emotions shapes the diffusion of information due to their
attention-grabbing nature, are undoubtedly significant. Invoking morality in reasoning
has previously been shown to harden existing belief structures, delegitimize authority,
and, in extreme cases, dehumanize opposing perspectives (Ben-Nun Bloom & Levitan,
2011; Crockett, 2017). While injections of moral reasoning into discourse can be beneficial
— providing shared identities and guiding ethical behaviour — the introduction of unnec-
essary moralization and its emotional underpinnings may jeopardize rational debate. It is
for this reason that moral justifications carry weight in some domains but not others. For
example, loading an argument with moral-emotional language might be an effective strat-

egy in a debate over social policy and human rights, yet that same strategy is likely to be

2The empirical work presented in this chapter is based on a collaboration between myself, Nicole Cruz,
and Ulrike Hahn, which has been published in Nature Human Behaviour (Burton, Cruz, et al., 2021). All
relevant data and code has been made available on an OSF project page.
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penalized in an argument over mathematics. However, if moral contagion is as widespread
and domain-general as Brady et al. (2017) suggest, then it seems plausible that senti-
ments about where moralization is appropriate are changing as a result of the attention
economics of the digital world. This also suggests that we are susceptible to new forms of
political persuasion online. As Brady et al. (2017) conclude, “it seems likely that politi-
cians, community leaders, and organizers of social movements express moral emotions...in
an effort to increase message exposure and to influence perceived norms within social net-
works” (p. 7316). Beyond this substantive contribution, the authors also recognize the
methodological implications of their study, because “in comparison with laboratory-based
studies, the social network approach offers much greater ecological validity” (Brady et al.,
2017, p. 7317).

Brady et al. (2017) is one example of what is an ongoing methodological shift across
the social sciences (also see, e.g., De Choudhury et al., 2013; Garcia & Rimé, 2019; Rathje
et al., 2021; Tumasjan et al., 2010), whereby statistical analyses of large-scale digital data
traces — namely, social media data — form the basis for studies of human behaviour in
the context of the digital world. But digital data traces produced by social media users
are inherently noisy and high-dimensional. In contrast to the “custom-made” data gener-
ated via controlled experimentation, material harvested from online platforms is usually
not created with research in mind (Salganik, 2017). Social media data can be ambigu-
ous, confounded by proprietary algorithms and restricted access, and unrepresentative of
wider populations, which may limit the generalizability of findings between platforms and
between online and offline populations (Ruths & Pfeffer, 2014; Salganik, 2017; Tufekci,
2014). These documented observations may be less problematic if one’s research objective
concerns itself only with understanding behaviour on a given platform itself; however,
in the absence of agreed upon methodological standards for handling social media data,
the space for “researcher degrees of freedom” (Simmons et al., 2011) is particularly vast.
This means that conclusions from analyses of observational social media data alone may
face deeper issues, insofar as they are intended to teach us something about real human
behaviour or meaningful effects of the digital world’s design.

In this study, we probe the finding of moral contagion, illustrating possible method-
ological pitfalls that might be encountered when standard practices of null hypothesis
significance testing are applied to large-scale social media datasets. How robust is correla-

tional evidence from large-scale observational data? What inferences and generalizations
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can be made from such evidence? Answering these questions seems crucial to make sense of

the existing literature concerning the role of the digital world in shaping human behaviour.

3.1.1 Method

The diffusion of information in social networks has been likened to a biological pathogen,
spreading from person to person through direct contact. For a behaviour, psychological
state, or other condition to qualify as a simple social contagion, the probability of the
condition being adopted by an individual should increase monotonically with the number
of times that individual is exposed to said condition (Hodas & Lerman, 2014). In the case
of moral contagion, moral-emotional words (e.g., kill, protest, compassion) are considered
to be the “contagious” cue because their presence is presumed to be a central factor in
an individual’s decision to retweet (or diffuse) the message in which it is included. Based
on this logic, moral contagion should be present in other corpora of tweets pertaining to
contentious, politicised topics. To test this proposal, we recreated Brady et al.’s (2017)
methodology and applied it to other Twitter corpora spanning a variety of socio-political

issues and events.

Measuring language

As in Brady et al. (2017), we used a dictionary-based text analysis to quantify distinctly
emotional (Nyords = 819; e.g., panic, fear, heartwarming), distinctly moral (Nyorgs = 316;
e.g., fair, racism, solidarity), and moral-emotional language (Nyorqs = 72; e.g., shame,
victimize, disgust). Importantly, there is no overlap in the dictionaries, meaning that
each tweet could be allocated three discrete scores forming three independent predictor
variables. To ensure our scripts were accurately counting words and word stems, we
performed a check in which we re-ran the scripts with a random sample of 10 word stems
and 10 words and manually checked that the correct counts were displayed on a random
sample of 20 tweets from each corpus that had at least one word/stem counted. By
selecting a manageable number of tweets, words, and word stems, we were able to check
for both false positives and false negatives and then simply scale up our scripts. We found
that our scripts were accurately counting words and word stems, and the tweets included

in each corpus were relevant to their respective topics.
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Measuring diffusion

The key dependent variable in this study is message diffusion. Diffusion was calculated
as the sum of a message’s retweet count as captured in the metadata and the number of
times that message’s text appeared in a corpus. Identical messages were then collapsed
into a single observation with other relevant metadata from the earliest posting (e.g., the
number of followers a message poster has; whether the post included URLs, an image,
or video media). This approach avoids penalising retweet chains, which are important
indicators of diffusion on Twitter, while also accounting for unconventional retweets where
a user copies and pastes someone’s message rather than clicking the retweet button. With
diffusion as our dependent variable and the three language measures as predictors, we then
followed Brady et al. (2017) in fitting a negative binomial regression model with maximum
likelihood estimation — to best handle the overdispersed count data being analysed (Hilbe,
2011) — to each dataset (henceforth referred to as the “main moral contagion model”).
The presence of contagion was determined by exponentiating the regression coefficients of
each predictor (i.e., distinctly emotional, distinctly moral, and moral-emotional language)
to generate incidence rate ratios (I RR) — the most central measure being moral-emotional
language’s TRR. Note that as a ratio measure, I RRs greater than 1.00 signify a positive

contagion effect (e.g., IRR = 1.10 suggests a 10% increase in diffusion), and vice versa.

Datasets

With the above measures we tested the influence of language use on message diffusion
across six corpora of tweets that capture the naturally-occurring communications among
users (see Table 3.1 for full descriptive statistics of each corpus. While no specific corpus
or topic was initially targeted, certain criteria were employed. To be considered for this
study, corpora had to contain Twitter data (i.e., tweet messages and retweet counts),
contain messages written in English, and relate to a polarising or morally-charged real-
world issue, event, or social movement.

Once retrieved, corpora were further narrowed by collapsing repeated messages into
a single observation (as described in “measuring diffusion”) and removing non-English
messages. Since the pre-existing corpora did not include language identifying metadata,
the textcat package (Hornik et al., 2013) was employed to extract English tweets in
these instances. Additional preprocessing was done with the tm (Feinerer et al., 2015)

and tidyverse packages (Wickham et al., 2019) prior to applying the dictionary-based
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text analysis. This included converting all text to ASCII characters and removing retweet
prefixes (i.e. “RT”), usernames, punctuation, and URLs. Observations in which no text
remained after the preprocessing were removed from the analysis. All preprocessing and
analysis was done in R and scripts are available on the public OSF project page. The

following paragraphs describe the six corpora covered in this study.

COVID-19. For this corpus we collected tweets pertaining to the (ongoing at the time
of writing) COVID-19 pandemic. Using the rtweet package (Kearney, 2019), we specified
a search for English tweets including at least one of the following terms: #COVID-19,
COVID-19, COVID19, covidl9, COVID, covid, or coronavirus. Collected tweets were
posted on 23-24 March 2020, a period in which nation-wide lockdowns were being put
into effect across the globe. While the topic of infectious disease does not necessarily
evoke feelings of morality or polarisation a priori, the COVID-19 pandemic has elicited
highly contentious debate in political, scientific, and public spheres. For example, Reuters
reported results of a poll showing that Democrats are about twice as likely as Republicans
to say COVID-19 poses an imminent threat to the US (Heath, 2020), and researchers
identified political polarisation as an important part of the social context that should be

addressed in responses to COVID-19 (Van Bavel et al., 2020).

#MeToo. Our second corpus comprised of Twitter messages containing the #metoo
hashtag was obtained from the data.world repository. The tweets were collected from the
Twitter API between 29 November and 25 December 2017, little more than a month after
the #metoo hashtag first appeared online in coordination with the “Me Too movement”
(Turner, 2018). The “Me Too movement” is a movement against sexual harassment and
assault. It was ignited by Hollywood sexual abuse allegations and has since become an

international phenomenon garnering widespread media attention, support, and critique.

#MuellerReport. A third corpus was collected by using the #muellerreport hashtag
to retrieve tweets from the Twitter API created between 23 and 25 March 2019 — the
weekend during which US Attorney General William Barr released his summary of Special
Counsel Robert Mueller’s investigation into Donald Trump’s 2016 presidential campaign.
This corpus was of special interest because the Mueller Report has been a major source
of controversy. While originally a non-polarised issue, the public opinion divided over

time (Thomson-DeVeaux, 2019) meaning that moral-emotion could have plausibly played
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a part in moralising conversations on Twitter.

2016 US Presidential Election. Our fourth corpus containing viral tweets (those
with 1,000+ retweets) from the 2016 US Presidential Election was obtained from the
Zenodo repository. The set of tweets was collected with the Twitter API and extracted
messages that contained specific hashtags (#MyVote2016, #ElectionDay, and #election-
night) and/or user handles (@QrealDonaldTrump and @HillaryClinton) (Amador et al.,
2017). This corpus was of special interest as it contained many “fake news” messages as
coded by the curators, which one might expect to use especially morally- and emotionally-

charged language to garner extra attention given the conclusions of Brady et al. (2017).

Post-Brexit. A fourth corpus containing unfiltered tweets and metadata from the morn-
ing that Brexit was announced was obtained from the Mendeley Data repository. These
tweets were collected with NCapture from QSR and employed a tight temporal parameter
so as to capture the public’s reaction to the political event (Parker, 2017). Brexit refers to
the result of the 2016 EU Referendum in the United Kingdom, and this dataset includes

Twitter responses from across the globe.

#WomensMarch. Our sixth and final corpus with tweets containing the #womensmarch
hashtag was obtained from the data.world repository. Using the Twitter API, 15,000 mes-
sages were collected that referenced the pro-women’s rights, and effectively anti-Trump,
protest that took place in the wake of the presidential inauguration on 21 January 2017
(Adhokshaja, 2017). The Women’s March has since become a worldwide movement with
annual marches in late January to non-violently protest for women’s reproductive rights,
LGBTQ rights, immigration and healthcare reform, as well as racial, gender, and religious

equality.

3.1.2 Results

Out-of-sample prediction

Prior to analysing our corpora, we checked our model specifications by reanalysing Brady
et al.’s (2017) cleaned data, which they have made available online. Their data focused on
topical political issues in the United States: gun control (n = 48,394), same-sex marriage
(n = 29,060), and climate change (n = 235,548). Using the Twitter API and sets of

topic-related filter words (e.g., guns, gun control, and NRA for the gun control topic),
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#Mueller 2016 US #Womens

COVID-19  #MeToo Post-Brezxit
Report Election March
N 701,925 393,135 229,046 9,001 17,998 15,000
n 172,697 151,035 39,068 8,233 5,660 3,778
Diff. min. 0 0 0 1,001 0 0
Diff. max. 368,611 56,750 25,842 100,000 31,901 170,518
M Diff 266.78 8.93 15.54 3,372.65 119.60 705.80
(4,152.64)  (222.63) (312.87) (5,222.76) (923.57) (4,983.11)
M moral-emo. 0.23 0.20 0.18 0.16 0.09 0.16
words (0.52) (0.47) (0.47) (0.43) (0.32) (0.42)
M Moral 0.49 0.26 0.47 0.33 0.22 0.28
words (0.79) (0.53) (0.77) (0.61) (0.48) (0.57)
M Emo. 1.09 0.89 0.99 0.85 0.69 0.67
words (1.24) (0.97) (1.17) (1.02) (0.90) (0.83)
M XYZ 2.61 1.84 2.43 1.68 2.28 1.53
count (2.18) (1.44) (2.08) (1.41) (1.37) (1.32)

Table 3.1: Descriptive statistics of each analysed corpus, including the minimum, maxi-
mum, and mean (M) diffusion (Diff.), and the mean count of moral-emotional words,
distinctly moral words, distinctly emotional words, and Xs, Ys, and Zs (XY Zcount). N
refers to the total number of raw tweets included in the corpus (including duplicates,
non-English tweets, and tweets with no text), and n refers to the number of clean, unique
tweets analysed in the paper. For all means, standard deviations (SD) are reported in
parentheses.

tweets and metadata were extracted between 30 October and 15 December 2015. Across
the three corpora comprising 313,002 analysable tweets spanning three topics, our analysis
reproduced their findings. Moral-emotional language was significantly associated with an
increase in retweets in each corpus when covariates were controlled for (same-sex marriage,
IRR = 1.17, p < 0.001, 95% CI = 1.09,1.27; gun control, IRR = 1.19, p < 0.001, 95%
CI = 1.14,1.23; climate change, IRR = 1.24, p < 0.001, 95% CI = 1.22,1.27), and
in two out of three corpora when covariates were not controlled for (same-sex marriage,
IRR = 1.08, p = 0.059, 95% CI = 0.99,1.18; gun control, IRR = 1.36, p < 0.001, 95%
CI = 1.30,1.42; climate change, IRR = 1.15, p < 0.001, 95% CTI = 1.12,1.17). However,
these results did not consistently generalize across the six corpora we analysed.

Taking Brady et al.’s main moral contagion model, as well as the nested single-variable
model in which only moral-emotional language is used as a predictor, we found moral con-
tagion to be present in only two of six corpora before controlling for covariates: COVID-
19 tweets (IRR = 1.15, p < 0.001, 95% CI = 1.11,1.18) and #MuellerReport tweets
(IRR = 1.28, p < 0.001, 95% C1I = 1.16,1.42). In the four pre-existing corpora, moral-
emotional language either had no significant relationship with message diffusion or had

a negative effect where moral-emotional language predicted a decrease in diffusion (Ta-
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ble 3.2). While we could not control for the same covariates as Brady et al. (2017) and
were therefore unable to provide direct replications in the four pre-existing corpora due to
missing metadata, we did so in the COVID-19 and #MuellerReport corpora (we do this to
aid comparison with Brady et al.’s original results; however, we strongly caution against
basing one’s interpretation of these results on covariates — see section on “covariates, out-
liers, and the analytical multiverse”). Once Brady et al.’s (2017) chosen covariates were
controlled for in the regression model to provide a direct replication of the original analysis,
the significant association between moral-emotional words and message diffusion remained
in the #MuellerReport tweets (IRR = 1.27, p < 0.001, 95% CI = 1.16, 1.40), but no sta-
tistically significant relationship was observed in the COVID-19 tweets (IRR = 1.01,
p = 0.320, 95% CI = 0.99,1.04).

The limits of correlational data

The inconsistent results of out-of-sample prediction tests point toward the limitations of
purely correlational data. The inherent difficulty of distinguishing true causal contagion
from confounding network homophily has been noted in detail elsewhere (e.g., Aral et
al., 2009; Shalizi and Thomas, 2011). But large sets of observational data carry even
more fundamental risks of spurious correlation and endogeneity. To demonstrate this, we
conducted a follow-up analysis in the spirit of Hilbig (2010).

In his study, Hilbig (2010) re-evaluated conclusions made by Gigerenzer and colleagues
(e.g., Gigerenzer, 2008; Goldstein & Gigerenzer, 2002; Marewski et al., 2010) that peo-
ple employ heuristics in judgement and decision making tasks on the basis of correlational
evidence alone. Specifically, Hilbig (2010) examined the recognition heuristic, which Gold-
stein and Gigerenzer (2002) define as: “if one of two objects is recognised and the other
is not, then infer that the recognised object has the higher value with respect to the cri-
terion” (p. 76). Seemingly straightforward evidence of the recognition heuristic in action
is provided by asking different sets of individuals to identify which of two cities has a
larger population. For example, Goldstein and Gigerenzer (2002) report that upon asking
whether San Diego or San Antonio has a larger population, approximately two thirds of
the Americans asked correctly identified San Diego as having the larger population, yet
100% of the Germans asked correctly identified San Diego. The reason for this, they argue,
is that the Germans — who are presumably less knowledgeable on the topic of American

cities — relied on the recognition heuristic. Since the Germans were more unfamiliar with
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San Antonio, they successfully associated the recognisability of San Diego with a larger
population size (Goldstein & Gigerenzer, 2002). However, Hilbig (2010) argued that this
conclusion may be unfounded since recognisability is not the only available cue that might
be used to make the judgement of population size. To do so, he introduced a humorously
implausible alphabet heuristic, which stipulates that people can infer cities’ population
size by ranking the city names in alphabetical order and selecting the latter option (e.g.,
San Antonio comes before San Diego). Using the same judgement task as Goldstein and
Gigerenzer (2002), Hilbig (2010) shows that the alphabet heuristic is at least as useful
as the recognition heuristic, and that the same data previously taken as evidence of the
recognition heuristic in action could equally be taken as evidence of the alphabet heuristic
in action. Of course, the purpose of this analysis is not to propose that people actually
use the alphabet heuristic, but rather to critique the methods employed and conclusions
made by Gigerenzer and colleagues.

Returning to the issue of moral contagion with the logic of Hilbig (2010), we cre-
ated an absurd factor for illustrative purposes, what we call XYZ contagion, and tested
whether the number of X’s, Y’s, and Z’s included in messages’ text predicted diffusion
(note that we were unable to test for XYZ contagion in Brady et al.’s original data be-
cause their raw data did not include metadata retweet counts, which meant that our
analysis scripts could not be properly applied). Our analysis found XYZ contagion to
be present in four of our six corpora such that the presence of the letters X, Y, and Z
predicted an increase in message diffusion: COVID-19 tweets (IRR = 1.08, p < 0.001,
95% CT = 1.07,1.08), #MeToo tweets (IRR = 1.13, p < 0.001, 95% CI = 1.12,1.15),
#MuellerReport tweets (IRR = 1.12, p < 0.001, 95% CI = 1.10,1.14), and the 2016
US Election tweets (IRR = 1.01, p = 0.030, 95% CI = 1.00,1.03). While there was no
positive relationship between the presence of X, Y, and Z and message diffusion in the
#WomensMarch and Post-Brexit tweets, the finding that XYZ contagion performs well in
a key test of robustness, out-of-sample prediction, demonstrates the potential of large-scale
social media datasets to contain spurious correlations (Table 3.2; also see Appendix B.1.2
for a bootstrap resampling analysis).

In addition, we calculated Akaike Information Criteria (AIC) as measures of model
adequacy and found that our model of XYZ contagion actually outperforms the main,
multi-variable moral contagion model in two of the six corpora (Table 3.2). We further

tested the XYZ contagion model against the single variable moral contagion model such
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that the predictive value of the count of letters X, Y, and Z was compared to the count
of moral-emotional words in isolation. This analysis revealed that the count of letters X,
Y, and Z was in fact a better predictor of message diffusion than moral-emotional words

in five out of six corpora, despite being nonsensical (Table 3.2).

COVID-19 #MeToo #Muetier <016 ,US Post-Brezit # Womens
Report Election March
N 172,697 151,035 39,068 8,233 5,660 3,778
Main Multi- Variable Moral Contagion Model
IRR 1.15 0.91 1.28 1.02 0.89 1.01
[1.11, 1.18] [0.88,0.95] [1.16,1.42] [0.98, 1.06] [0.72,1.13] [0.77, 1.38]
P <0.001 <0.001 <0.001 0.465 0.370 0.925
N (AIC) 0.00 138.88 20.66 0.00 0.00 0.00
w; (AIC) >.9999 <.0001 <.0001 >.9999 .9995 0.9629
Single-Variable Moral Contagion Model
IRR 1.19 0.92 1.40 1.02 0.81 0.90
[1.15, 1.23] [0.89, 0.96] [1.28, 1.55] [0.98, 1.06] [0.66, 1.02] [0.68, 1.24]
D <0.001 <0.001 <0.001 0.337 0.101 0.494
A (AIC) 690.53 334.28 49.41 36.39 15.39 14.28
w; (AIC) <.0001 <.0001 <.0001 <.0001 .0005 0.0009
XYZ Contagion Model
IRR 1.08 1.13 1.12 1.01 1.00 0.89
[1.07,1.08] [1.12,1.15] [1.10,1.14] [1.00, 1.03] [0.95, 1.06] [0.82, 0.96]
D <0.001 <0.001 <0.001 0.030 0.998 0.011
N (AIC) 386.72 0.00 0.00 32.67 18.56 6.87
w;(AIC) <.0001 >.9999 >.9999 <.0001 .0001 0.0362

Table 3.2: Negative binomial regression model results and comparisons. Incidence rate
ratios (IRR) indicate the size of contagion effects in each dataset (for the main moral
contagion model only the effect of moral-emotional language is reported), with 95% confi-
dence intervals in brackets and corresponding p-values in the row below. For each model,
the differences in AIC with respect to the best candidate is calculated, A;(AIC'), meaning
that an A;(AIC) equal to zero signals that the corresponding model is the best fit for the
given dataset. AIC values are further transformed into Akaike weights, w;(AIC'), which
are the conditional probabilities that the model in question, 7, is the best model given the
data and the set of candidate models

Covariates, outliers, and the analytical multiverse

Out-of-sample prediction tests and model comparisons demonstrate how social media
datasets may be susceptible to unfounded correlations. However, we need to consider
the influence of outliers and covariates in more detail, which are indeed sensible and
widely-recognised checks that can and have been put in place to guard against spurious
results. But as we show next, in the context of social media data, neither of these are

sufficient to solve the problems identified here, facing both methodological and conceptual
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limitations.

Regarding outliers, the problem is that social media data are a typical case of fat-tailed
distribution, and it is unclear how “outlier” should be defined. The prevalence of extreme
values (e.g., a tweet garnering 100,000 retweets when the median is 0) is likely a consti-
tutive feature of the dataset, rather than a bug or error to be neglected. Consequently,
decisions on outliers are seemingly arbitrary. For example, consider a traditional psy-
chology experiment measuring reaction times in the lab. Outliers in this case are readily
identifiable: A reaction time that is ten times the mean indicates that a participant was
not paying attention, had not read the instructions, or the data was entered incorrectly.
Yet, in the domain of social media, there is no such judgement that can be made. That
a message may be retweeted zero, one, or 100,000 times is in fact an intrinsic part of the
paradigm. What does it mean if, in a study of message sharing, the top ten or one hun-
dred most shared messages determine what statistical results are retrieved from a corpus
of hundreds of thousands of messages? Are these observations to be excluded, or are they
meaningful indicators of a recipe for going viral?

Covariates might be considered even more important. Indeed, there is a wide range of
potential covariates that plague social media data, relating to both the content of messages
and the accounts of message posters. Specifically relating to Twitter, it has previously been
shown that the presence of hashtags and URLs in a message, the number of followers and
followees a message poster has, and the age of the message poster’s account all influence
retweet rates (Suh et al., 2010). There are also questions around the potential need to
account for the influence of automated and semi-automated bots (Kollanyi et al., 2016;
Lazer et al., 2018; Ruths & Pfeffer, 2014). Despite existing literature highlighting these
covariates, the controls that researchers put in place are often inconsistent, even when
the hypotheses in question are relatively similar. For example, consider three studies
investigating the role of emotion in message sharing on Twitter: Stieglitz and Dang-Xuan
(2013) control for the number of hashtags a tweet contains, the presence of URLs, the
number of followers a message poster has, and the number of tweets a user has posted
during the sampling period; Ferrara and Yang (2015) excluded tweets containing URLs
or media (i.e., a photo or video); and Brady et al. (2017) control for the number of
followers the message poster has, whether media or URLs are present in a tweet, and
whether the message poster is “verified” (a status indicating that the user is a celebrity

or public figure). Not only do these studies identify different covariates, but they also
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control for them in different ways. For instance, where Ferrara and Yang (2015) excluded
tweets containing URLs and media, Brady et al. (2017) input these covariates as binary
variables in a regression. While each study’s controls are certainly defensible, this points
to another problem: any given set of controls will not be exhaustive and there is no agreed
upon standard for what controls must be made to separate a publishable finding from
a coincidental statistic; and even more fundamentally, against what ground truth could
these methodological practices be evaluated?

Taken together, the ambiguity surrounding outliers and covariates highlights the in-
creased “researcher degrees of freedom” (Simmons et al., 2011) in analyses of social media
data. That is, researchers must make many arbitrary analytical decisions when collect-
ing, processing, and analysing the data. While this is not unique to social media data
or any type of digital data traces, it may be especially consequential in this context. To
investigate how decisions on covariates and outliers influence the moral contagion and
XYZ contagion results, we conducted specification curve analyses (SCA) (Simonsohn et
al., 2020) on our three largest corpora (COVID-19, #MeToo, and #MuellerReport). In
short, SCA is a way to make analytic flexibility transparent by running all justifiable
model specifications (e.g., what covariates to control for, what data subsets to analyse,
what independent variable to assess, etc.), and then making joint inferences across the
results of all these specifications (Simonsohn et al., 2020). SCA is closely related to the
concept of a “garden of forking paths” (Gelman & Loken, 2014) and “multiverse analysis”
(Steegen et al., 2016), and serves to clarify the fragility or robustness of statistical findings
by identifying which analytical choices they hinge on.

For our SCA, we consider the results of negative binomial regression specifications with
either the number X’s, Y’s, and Z’s or the number of moral-emotional words in a tweet
predicting diffusion, with or without controlling for covariates, and with or without the
removal of (arbitrary) increments of outliers (the tweets with the top 10, 100, and 1,000
diffusion counts). The covariates we consider are the number of distinctly moral words,
the number of distinctly emotional words, and the number of characters in a tweet, the
number of followers a message poster has, whether the message poster’s account is verified,
and whether media, URLs, and hashtags are present (binary). Because the #MeToo
corpus is a preexisting dataset that was not collected by the authors of the present study,
not all of the relevant metadata is included and only some of the covariates could be

considered. Figure 3.1 displays the outcome (unstandardised regression coefficient) of
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each model specification (x-axis) when fitted to each corpus as three, vertically-aligned
points corresponding to the independent variable, covariates, and outliers accounted for
(y-axis). We then plot these outcomes as specification curves in Figure 3.2, visualising how
negative, positive, and nonsignificant moral contagion effects can be retrieved, depending
on the chosen corpus and model specification (also see Appendix B.1.3 for SCA applied
to Brady et al.’s original corpora). The specification curves also allow for comparative
evaluations between moral contagion and XYZ contagion. Namely, we observe that while
the median regression coefficient across model specifications with moral-emotional words
as the independent variable is positive in the COVID-19 (n = 40, median B = 0.18,
SD = 0.08) and #MuellerReport corpora (n = 39, median B = 0.10, SD = 0.13), it is
negative in the #MeToo corpus (n = 28, median B = —0.02, SD = 0.08). Meanwhile,
the median regression coefficient across model specifications with the number of X’s, Y’s,
and Z’s as the independent variable is positive in all three corpora (COVID-19, n =
39, median B = 0.07, SD = 0.05; #MeToo, n = 28, median B = 0.04, SD = 0.06;
#MuellerReport, n = 39, median B = 0.05, SD = 0.05). This could be taken to suggest
that the XYZ contagion effect is, if anything, more stable than the moral contagion effect
across theoretically-justifiable model specifications in the three corpora addressed here. Of
course, we strongly doubt that the letters X, Y, and Z play a central role in shaping the
diffusion of information on Twitter. What our analyses show, however, is that the evidence
of moral contagion provided by Brady et al. (2017) seems to be virtually indistinguishable
from our atheoretical XYZ contagion effect, regardless of whether it is framed as a causal

or correlational effect.
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Figure 3.1: Qualitative results of specification curve analyses (SCA). (A) COVID-19 cor-
pus. (B) #MeToo corpus. (C) #MuellerReport corpus. Each possible model specification
(x-axis) is represented by three vertically-aligned points corresponding to the outliers
removed and covariates and independent variable included in the negative binomial re-
gression equation (y-axis). Red indicates a significant (p < 0.05) negative regression coef-
ficient, grey indicates a non-significant coefficient, and blue indicates a significant positive
coefficient. There are fewer specifications (56) in the #MeToo SCA (B) because metadata
on some covariates was absent. Of the 80 possible specifications for the COVID-19 and
#MuellerReport data, one specification was excluded from the COVID-19 SCA and two
specifications were excluded from the #MuellerReport SCA because these algorithms did
not converge.
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Figure 3.2: Specification curves for moral contagion (top plots) and XYZ contagion (bot-
tom plots) effects. (A) COVID-19 corpus (moral contagion, n = 40, median B = 0.18,
SD = 0.08; XYZ contagion, n = 39, median B = 0.07, SD = 0.05). (B) #MeToo corpus
(moral contagion, n = 28, median B = —0.02, SD = 0.08; XYZ contagion, n = 28, median
B = 0.04, SD = 0.06). (C) #MuellerReport corpus (moral contagion, n = 39, median
B =0.10, SD = 0.13; XYZ contagion, n = 39, median B = 0.05, SD = 0.05). Each model
specification (x-axis) is represented by a single point indicating the resulting unstandard-
ised regression coefficient and vertical bars indicating 95% confidence intervals (y-axis).
Red indicates a significant (p < 0.05) negative regression coefficient, grey indicates a non-
significant coefficient, and blue indicates a significant positive coefficient. There are fewer
specifications in the #MeToo corpus (B) because metadata on some covariates was not
recorded. Two specifications in the #MuellerReport corpus (C) and one specification in
the COVID-19 corpus (A) are excluded because the algorithm did not converge.

3.1.3 Discussion

Out-of-sample prediction, model comparisons, and SCA question the evidence that a
meaningful moral contagion effect has been identified on Twitter. To be clear, moral
contagion may very well exist, as lab-based work seems to support (Brady et al., 2020),
but our results caution against basing such a conclusion on large-scale, observational data
alone. They also caution against the idea that such data provide stronger evidence than
lab-based studies due to greater ecological validity. Not only does our analysis chal-
lenge the moral contagion hypothesis, but, perhaps most worryingly, it shows that current
methodological standards can support patently absurd models, such as the XYZ conta-

gion. One limitation of our analysis is that it is indeed possible to hypothesise why the
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XYZ contagion might exist after seeing our results (e.g., perhaps X’s, Y’s, and Z’s are
attention-grabbing because they are infrequently used). However, there is no reason to
believe that the presence of these letters is causally relevant a priori and there is currently
no evidence to suggest such a theory. While one might expect such causally irrelevant
factors to be randomly distributed, there is no guarantee that they do not exhibit some
artefactual, spurious correlation with the target phenomenon of interest. Yet crucially, the
analyst has no way of telling in advance what state of affairs they will face. For analyses
of digital data traces collected from social media platforms to effectively inform our under-
standing of human behaviour in the context of the digital world, we make two suggestions
for future research utilising such data: (1) do not settle for correlational evidence alone,
and (2) make the consequences of analytic flexibility transparent.

Both the fragility of moral contagion and the seeming “success” of XYZ contagion
in our data highlight how the conclusions afforded by standard statistical procedures,
like linear regression models and significance testing, are limited when applied to large-
scale social media datasets. While correlational evidence can be informative (e.g., for
predictive purposes), this overlooks the crucial point of why findings such as the moral
contagion phenomenon are typically interesting. Arguably, the correlational findings of
moral contagion are interesting precisely where they seem to be indicative of a meaningful
causal relationship (Rohrer, 2018). This is why it would be highly unlikely that any
academic journal would publish a paper on XYZ contagion. It thus seems necessary for
researchers interested in understanding human behavior to either triangulate correlational
findings with data from controlled experimentation (e.g., Dehghani et al., 2016; Mooijman
et al., 2018); apply alternative statistical techniques, such as structural equation modelling
(SEM) (e.g., Westfall & Yarkoni, 2016) or directed acyclic graphs (DAGs) (e.g., Rohrer,
2018); or use other design methods for causal inference with observational data, if large-
scale observational data is to be relied upon.

Our analysis also highlights the need to address analytic flexibility when utilising so-
cial media data. The SCA results presented show how justifiable decisions on covariates
and outliers are empirically consequential, capable of giving rise to directly conflicting re-
sults on the same predictive relationship in the same dataset. Yet our demonstration only
scratches the surface of the analytical “multiverse” that researchers must navigate when
handling social media data. For instance, text-as-data research such as that examined in

the present work requires heavy data preprocessing, for which there is no agreed upon
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standard. In analysing tweets, one may or may not decide to employ stemming, lemmati-
zation, remove “stop words,” remove usernames and hashtags, disambiguate homographs
with part-of-speech tagging (e.g., “be kind to your dog” vs. “what kind of dog is that?”),
and so on. While seemingly mundane, these preprocessing decisions can lead substan-
tively different interpretations of the data to emerge (Denny & Spirling, 2018). The same
can also be said of feature engineering. For example, the decision to use a dictionary (or
bag-of-words) approach versus a machine learning strategy for text classification can lead
to different measurements of moral expressions within the same corpus, and classification
performance can vary across contexts (Hoover et al., 2019). While a logistic regression
model fitted with Brady et al.’s (2017) dictionaries seems to be a good predictor of hu-
man judgements of moral expression in tweets related to #MeToo (AUC = 83.2%), it
is essentially as good as random when applied to a corpus containing hate speech mes-
sages (AUC = 51.7%) (see Appendix B.1.1 for more analysis of the Moral Foundations
Twitter Corpus; Hoover et al., 2019). At present, the focal strategy for managing an-
alytic flexibility is pre-registration, but this seems ineffective for the issues raised here.
Pre-registering an analysis plan might ensure researchers commit to a chosen analytical
pathway and guard against “p-hacking,” but given the underlying multiverse of divergent
but theoretically-defensible results, this is not enough to guarantee that the specific results
retrieved are ultimately informative. While there is indeed a longstanding tradition in the
social sciences to consider alternative model specifications as a check of robustness, meth-
ods like SCA (Simonsohn et al., 2020) should be encouraged so as to make this tradition
more transparent and exhaustive, and to better display exactly which analytical decisions
are responsible for potentially conflicting results.

While the use of observational “big data” is relatively new to many social science do-
mains, the obstacles outlined here are not particularly novel in other fields. For instance,
large longitudinal datasets have been integral to the study of public health and epidemi-
ology, where it has previously been shown that the standard use of regression models can
produce implausible findings, such as statistics that suggest acne, headaches, and height
are “contagious” (Cohen-Cole & Fletcher, 2008). If analyses of social media and other
digital data traces are to contribute to understandings of human behaviour, it seems un-
likely that the standard practices of null hypothesis significance testing and robustness
checks will suffice. As demonstrated here, the inferences and generalizations that can be

made from purely correlational findings in observational social media data can sometimes
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be remarkably fragile.

3.2 Chapter conclusion

Explanations of why people may form inaccurate beliefs due to structural features of the
digital world emphasise the interplay of attention economics and proprietary tools for
content-curation and manipulation — namely, bots and algorithms. This account of a
structural problem “in the (digital) world” argues that despite the increased accessibility
of information, the design of online information environments leads to users being pre-
sented with misleading signals. However, as the investigation presented in this chapter
demonstrates, conventional methodological tools propping up this account may not be pro-
viding the meaningful insights that many believe them to be. In contrast to the contrived
experimental methods that dominate psychological accounts of a problem “in the mind,”
researchers focused on this account have looked to exploit users’ naturally-occurring dig-
ital trace data. While utilising such “ready-made” data seemingly side-steps the issues
of ecological validity and statistical power that have plagued classic psychology studies,
our results highlight how this computational social science approach faces its own, poorly
understood challenges. As such, further methodological innovation seems required for
structural features of the digital world to be confidently identified as having meaningful,

causal effects on the accuracy of people’s beliefs.
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Chapter 4

Engineering digital tools to

support belief accuracy online

Human rational behaviour is shaped
by a scissors whose two blades are the
structure of task environments and the

computational capabilities of the actor

H. A. Simon, 1990, p. 7

In spite of the methodological challenges highlighted in Chapters 1 and 2, a natural
question that arises when reading the literature around belief accuracy in a digital world is
whether past findings can inform new ways of supporting people’s information processing
with technological tools. Given that online information environments are human-made,
is it possible that they could be re-imagined in a way that mitigates people’s cognitive
limitations? Or, could those same structural features cited for their information-distorting
effects be re-designed as tools with the specific purpose of enhancing people’s truth-seeking
ability? Approaching questions such as these offers a route towards not only reducing po-
tential harms of the digital world, but towards realising its early promises for a more
informed, more engaged public. Indeed, efforts to design and engineer digital tools to
support belief accuracy online are already underway. These efforts duly recognise the
metaphor introduced by H. A. Simon (1990) in the quote above and have sought out ways
to re-align structural features “in the (digital) world” with our understanding of psycho-
logical mechanisms “in the mind.” By and large, these efforts take their shape as either (1)
interventions to assist people’s information processing in existing online infrastructures, or

(2) purpose-built civic technologies that provide novel online spaces for deliberation and
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decision making.

Digital tools that function as interventions aim to provide simple prompts to users so
that their information processing might be made easier, either by making small changes
in the user interface (cf. choice architecture, Kozyreva et al., 2020; Thaler & Sunstein,
2008) or by promoting basic digital competencies. The most straightforward instantiation
of this is fact-checking, whereby a third-party (e.g., Snopes, Full Fact) verifies the veracity
of claims being reported. Whereas fact-checking has long been applied to mainstream
news outlets, new digital media poses extra challenges. For one, fact checks will only
be valuable to users if the users readily encounter them, which is not a given in the
decentralised information environments online. Even if an online platform accepts and
integrates official fact-checking labels [as is the approach taken by Facebook (n.d.)], the
scale and structure of the digital world means the task of verifying every disputed claim
is impossible for any traditional organisation, even if supported by automated, Al-driven
tools (for an overview of automated fact-checking at Full Fact, see Corney, 2021). With
this in mind, it has been proposed that online platforms enable “crowdsourced” fact-
checking — where users themselves provide ratings of information quality that are then
aggregated — as a cost-efficient, scalable solution that leverages the participatory nature
of new digital media (Allen et al., 2021; Pennycook & Rand, 2019). Yet, as major social
media platforms begin pilot testing such measures (e.g., Birdwatch, Twitter, 2021), other
researchers argue that community-based approaches to fact-checking are vulnerable to new
forms of manipulation (e.g., Coscia & Rossi, 2020; Prollochs, 2021; for counter evidence
see Epstein et al., 2020). Relatedly, there is also existing literature documenting how
interventions like fact-checking that directly correct or “debunk” fallacious claims may
not effectively change users beliefs (e.g., the continued influence effect, Desai et al., 2020;
Johnson & Seifert, 1994; Lewandowsky et al., 2012; Wilkes & Leatherbarrow, 1988; the
backfire effect, Nyhan & Reifler, 2010; Peter & Koch, 2016; for counter evidence see Ecker
et al., 2020; Lee, 2021; Swire-Thompson et al., 2020; T. Wood & Porter, 2019), and may,
in some cases, actively increase the sharing of low-quality information (Mosleh, Martel,
et al., 2021).

These technological and psychological challenges for fact-checking in the digital world
have encouraged the development of more domain-general interventions for assisting users’

information processing online (for overviews, see Kozyreva et al., 2020; Lorenz-Spreen et
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al., 2020)!'. Perhaps most popular is the application of nudges, which involve influencing
people’s behaviour by making small alterations to the choice architecture (Mirsch et al.,
2018; Thaler & Sunstein, 2008; Weinmann et al., 2016). For example, Pennycook et al.
(2021) show how simply shifting individuals’ attention to accuracy by sending them an
unsolicited message asking them to rate the veracity of a headline can counteract the
perverse incentives to spread low-quality information on social media (also see Pennycook
et al., 2020; Roozenbeek et al., 2021). Similarly, Lewandowsky et al. (2017) advocate for
so-called technocognition, or the development of cognitively-inspired features for online
information environments. For instance, Fazio (2020) shows how incorporating “friction”
into social media platforms’ sharing functions (i.e., forcing users to pause, reflect, or
make extra clicks) can reduce the spread of misinformation, which both WhatsApp (2019)
and Twitter (2020) have already begun implementing. Finally, in a less paternalistic
approach, Hertwig and Griine-Yanoff (2017) suggest boosting, which aims to foster people’s
competencies to navigate the digital world on their own. Like nudges, boosts can take
many forms such as pop-ups with fast-and-frugal trees or visualisations of information
sharing cascades to aid users’ reasoning (Lorenz-Spreen et al., 2020). The most popular
instantiation of boosting to date involves the gamified “inoculation” of users, whereby users
are encouraged to adopt the perspective of a disinformation campaigner so as familiarise
themselves with common manipulation techniques used online (Basol et al., 2020; Maertens
et al., 2020; Roozenbeek & van der Linden, 2019). Altogether, digital implementations
of each of these tools — fact-checking, nudging, technocognition, and boosting — has
potential to improve the experience of information online for users, and in turn support
their ability to form accurate beliefs. Still, it could be argued that these intervention-
style tools simply address symptoms of the “post-truth malaise” rather than root causes,
because they accept the existing infrastructures and economics of the digital world. This
in turn leaves one to wonder what an alternative, socially responsible digital world might
look like.

In recent years, there has been increasing interest in the development of purpose-built

civic technologies that leverage structural features of the digital world for social good. Such

!Since the focus of this chapter is on digital tools, I have excluded interventions such as digital lit-
eracy education (e.g., A. M. Guess et al., 2020; Weinmann et al., 2016; Wineburg & McGrew, 2019),
“self-nudging” practices (Center for Humane Technology, n.d.; Reijula & Hertwig, 2020), and policy-level
regulation [e.g., the General Data Protection Regulation (GDPR), which nudges individuals to protect
themselves against algorithmic personalisation by mandating that online platforms use opt-in defaults for
obtaining users’ consent to process personal data (European Parliament, 2016)]. While each of these has an
important role to play in supporting belief accuracy online, they are out of scope for the present research.
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technologies have been built for wide-ranging functions, from participatory budgeting to
data-driven urban planning to crowdfunding platforms (Jungherr et al., 2020; Saldivar
et al., 2019). However, within our focus of supporting belief accuracy online, there are
two particularly relevant examples. The first example is online prediction markets, which
are online platforms built to collect forecasts of real-world events from their userbase.
By rewarding users for accurate forecasts, prediction markets are able to harness the
“wisdom of the crowd” by aggregating large quantities of individual forecasts to generate
highly-accurate collective predictions for consequential events like political elections and
scientific breakthroughs (Arrow et al., 2008; Surowiecki, 2005; Wolfers & Zitzewitz, 2004).
While prediction markets need not be hosted online, the digital world opens up new
opportunities for their design and application. For instance, whereas prediction markets
traditionally involved the exchange of contracts or “futures” that would yield monetary
payments for correctly forecasting real-world outcomes, contemporary online prediction
markets (e.g., Metaculus) have implemented reputation-based incentives similar to what
is seen on social media. In addition, the digitalisation of prediction markets enables both
the rapid generation of data visualisations and more effective outreach to a global userbase,
which may ultimately serve to engage and inform more users and observers alike.

The second example of how belief accuracy can be supported with civic technology
is online deliberation tools, which aim to provide virtual spaces for structured, equitable
information exchange. In their most basic form, online deliberation tools are built as
collaborative interfaces where individual users share arguments with one another on a
pre-specified topic for some collective objective (e.g., drafting policy priorities or reaching
a consensus). However, recent innovations have seen the introduction of data-driven back
ends where, for instance, algorithms operate on users’ inputs to enhance the quality of
desired outcomes. The most well-known example of this type of tool was mobilised in
Taiwan, where the Polis platform was used to bring citizens and policymakers together
online for machine-mediated debates in a process labelled “virtual Taiwan” (vTaiwan).
Tasks at hand included identifying policy concerns around how to regulate the ride-sharing
company, Uber, and finding consensus on the politically-contentious decision of whether
Taiwan should share a timezone with mainland China (Miller, 2020). In short, what Polis
provided was an online platform where thousands of individuals could submit statements
and vote in (dis)agreement with each other’s positions, whilst, in the back end, a cluster-

ing algorithm organised and visualised users’ responses in a way that discounted divisive
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statements and highlighted common ground between opinion groups. As a result of this
digitally-supported deliberation, Taiwanese citizens were able to transparently participate
in government decision making, thereby ensuring that all stakeholders were informed and
engaged, and that the most accurate (i.e., true to public opinion) collective outcomes were
achieved. Despite successes like vTaiwan? demonstrating how the digital world can be re-
claimed to support belief accuracy and decision making, experimental studies identifying
the causal effects of such tools on accuracy-related outcomes, and how to improve them,
are noticeably absent from existing literature (for a review of online deliberation research,
see Friess & Eilders, 2015; Strandberg & Gronlund, 2018). Nevertheless, the development
of online prediction markets and deliberation tools point towards promising opportuni-
ties for supporting belief accuracy by re-appraising and re-designing online information
environments.

In the remainder of this chapter, I present an exploratory study introducing a novel

digital tool for supporting belief accuracy and decision making in online social networks.?

4.1 Rewiring online social networks to enhance collective

decision making

The increasing digitalisation of society has renewed interest in “wisdom of the crowd”
effects, where the collective judgement of a group is more accurate than the judgements of
individual experts or the individual group members themselves (Condorcet, 1785; Galton,
1907; Grofman et al., 1983; Surowiecki, 2005). Not only do the new means for infor-
mation exchange and aggregation provided by the digital world promise more informed
individuals, but also ready access to larger, wiser crowds, as is demonstrated by modern
applications like online prediction markets (Arrow et al., 2008; Wolfers & Zitzewitz, 2004),
crowdsourcing (Howe, 2006), and digital democracy tools (Morgan, 2014; J. Simon et al.,
2017). In the present work, we draw from existing literature on wisdom of the crowd
effects and judgement aggregation to design, deploy, and evaluate a new digital tool for

supporting collective belief accuracy and decision making: rewiring algorithms.

2For other examples see Swae, MIT’s Deliberatorium, and Stanford’s Online Deliberation Platform.

3The following work is based on a project funded by Nesta’s Centre for Collective Intelligence and
subsequent collaborations between myself, Abdullah Almaatouq, M. Amin Rahimian, and Ulrike Hahn,
which has been presented at the 9th ACM Collective Intelligence Conference (Burton, Hahn, et al., 2021)
and the 43rd Annual Meeting of the Cognitive Science Society (Burton, Almaatoug, et al., 2021). All data
and code has been made available on a GitHub repository.
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Social influence, network structure, and collective estimation

The earliest results on wisdom of the crowd effects in collective estimation tasks assumed
that individuals’ judgements are made independently, meaning that their errors are un-
correlated and cancel out in aggregate (Condorcet, 1785). However, this independence
assumption often goes unmet in the real world because people communicate with or oth-
erwise influence one another. Past research on the effects of social influence in collective
estimation tasks has produced seemingly contradictory findings. On one hand, there is
evidence that social influence indeed undermines crowd wisdom by causing individuals’
judgements to become correlated (U. Hahn et al., 2019; Lorenz et al., 2011; Muchnik et al.,
2013); while on the other, there are studies that report an increase in collective accuracy
following social influence (Almaatouq et al., 2020; Becker et al., 2017; Becker et al., 2019;
Giircay et al., 2015).

Formal results that incorporate the possibility of non-independence provide a potential
explanation of these seeming contradictions (e.g., Ladha, 1992; Page, 2008). Such results
show that social influence is neither inherently beneficial nor inherently detrimental to
crowd wisdom; instead its effects depend on whether the benefits of communication to
individual accuracy outweigh the detrimental effects of non-independence on collective
accuracy. The logic of this is made clear in the Diversity Prediction Theorem, which
states that collective error squared is the difference between the average individual error
squared and the diversity of the individuals’ judgements (Page, 2008). While providing
a mathematical guarantee that the collective estimate will always be more accurate, in
terms of error squared, than the average individual’s as long as there exists some diversity
in the group, this theorem formalises how social influence can be both good for collective
accuracy (if it leads to an increase in average individual accuracy) and bad (if it leads to
too much of a decrease in diversity). Whether social influence will increase or decrease
collective accuracy for any given group thus depends on which one of these duelling effects
is greater.

To provide predictions for when groups will benefit from social influence, recent re-
search has turned towards studying how different social network structures affect collective
accuracy (e.g., Almaatouq et al., 2020; Becker et al., 2017; U. Hahn, Hansen, et al., 2018;
U. Hahn et al., 2019; Jonsson et al., 2015). Because social network structures delineate
the paths through which social influence can be exerted in a group, it follows that differ-

ent structural characteristics will feature in determining whether the net effect of social
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influence will be beneficial for collective accuracy. For example, high levels of connectivity
and free-flowing information can lead to “excess correlation” (i.e., correlation between in-
dividuals that is not accuracy inducing, Jonsson et al., 2015), high levels of centralisation
can lead to certain individuals wielding excessive influence over the network (Becker et al.,
2017), and a lack of structural plasticity can prevent networks from effectively responding

to feedback about individuals’ performance (Almaatouq et al., 2020).

Rewiring algorithms for collective accuracy

A reading of the literature linking network structure and collective accuracy begs the ques-
tion: can we build optimal social network structures for eliciting the wisdom of the crowd?
Despite the abundance of knowledge on the relationship between network structure and
collective accuracy, strategies for exploiting network structure to increase collective accu-
racy remain under-explored. While there may be considerable difficulties in manipulating
the structure of social networks in the analog world, the digital world provides new oppor-
tunities. Just as algorithms have already been used to mediate the information presented
to online social networks (Lazer, 2015) and to identify influential nodes in social networks
(Wei et al., 2018), it seems plausible that algorithms could be used to rewire the structure
of online social networks to boost the wisdom of crowds.

In this work, we explore the viability of rewiring algorithms — programmable rules for
manipulating who communicates with whom — as a tool for supporting collective belief
accuracy and decision making online. Specifically, we develop and test three candidate
algorithms and evaluate their effects on the collective accuracy of estimates made by

communicating social networks.

4.1.1 Modelling and simulations

We first employ agent-based modelling and simulation to efficiently operationalise the
parameter space and prototype different algorithm designs. Our modelling framework uses
networks of 16 simulated agents who are tasked with judging a single binary hypothesis
(i.e., each agent can favour either 0 or 1, with exact beliefs falling between these points).
Such judgements readily map on to a broad range of real-world scenarios: assessing the
truth or falsity of proposition, deciding whether or not to vote for a political candidate,
or predicting whether or not a future outcome will occur.

Our model is initiated by first sending vectors of binary evidence to each agent, which
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they integrate with a starting prior of 0.5 via Bayes’ theorem. This procedure serves to
simulate how individuals would have accrued their own independent knowledge on a given
topic, rather than entering a discussion with a purely indifferent prior of 0.5. To represent
a population of individuals with varying knowledge about the hypothesis at hand, we
vary the amount of evidence each agent receives such that some individuals may be more
familiar with or knowledgeable on a given hypothesis. We additionally vary the quality of
the evidence sent to the agents by introducing two parameters: sensitivity, the probability
of receiving positive evidence when the hypothesis is true (i.e., the so-called “hit rate”
familiar from signal-detection theory), and specificity, the probability of receiving negative
evidence when the hypothesis is false (i.e., the so-called “correct rejection rate”). These
parameters allow us to model “kind” environments where true positive and true negative
evidence is prevalent and a majority of the population is already nearly certain of the
truth, as well as less favourable environments where true evidence is rare, and the beliefs
possessed by the population are more widely distributed.

Once their initial estimates are assigned, the agents communicate with one another
across a randomly generated network structure over the course of four discrete time points,
t=1,2,3,4. At each time point, each agent i revises their estimate in light of those commu-
nicated by their network neighbours according to a DeGroot belief updating rule (Becker
et al., 2017):

Rit1;=a; X Re; + (1 —a;) X Rejeni, (4.1)

where R;1; is the agent’s revised estimate following communication; R;; is the agent’s
current estimate; Rt,je N, is the average current estimate of the agent’s network neighbours;
and «a; and its complement (1 — «;) represent the weight that the agent places on its own
estimate versus those of its peers, respectively. Following the empirical analysis of belief
revision in Becker et al. (2017), each agents’ « at any given time point is determined by

the following regression equation:

a; = 0.75 — 0.05¢; + N, (4.2)

where ¢; is the agent’s absolute error, and N is Gaussian noise with g = 0 and o = 0.06.
This stochastic process means that there is a modest association (r ~ 0.21) between

accuracy and resistance to social influence among our agents (Becker et al., 2017).
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Network conditions

Of particular interest to the present work is how different network conditions perform in
the general modelling framework outlined above. Here we consider collective accuracy
in four conditions: static networks (i.e., unchanging network structure), and networks
to which we apply one of three candidate rewiring algorithms. For static networks (our
control condition), the initial, randomly generated network structure does not change
and each agent communicates with the same other agents at each time point. However,
in our three experimental conditions, we introduce rewiring algorithms that add and/or
remove connections between agents at each time point so that certain agents are exposed
to the beliefs (estimates) held by certain other agents. We specifically consider three such
algorithms: a mean-extreme algorithm, a polarise algorithm, and a scheduling algorithm.
See Appendix C.1 for visual schematics of each network condition.

The mean-extreme algorithm aims to increase the average accuracy of individuals in
a network by directing social influence towards individuals with potentially erroneous,
outlying estimates. The algorithm first calculates the mean estimate in a network at a
given time point and identifies which side of the scale midpoint (0.5 on a 0-1 probability
scale) the network’s mean estimate lies. If the network’s mean estimate is less than the
midpoint, the algorithm identifies the agent with the lowest estimate and adds directed,
outgoing ties to the three agents with the highest estimates. If the network’s mean estimate
is greater than the midpoint, the algorithm identifies the agent with the highest estimate
and adds directed, outgoing ties to the three agents with the lowest estimates. This
procedure effectively brings the estimates of the outliers closer to the mean.

The polarise algorithm aims to maintain the diversity of estimates in a network and
prevent a potentially biasing homogenisation. It first identifies the two most extreme
agents on either side of the current distribution of estimates (i.e., the agent with the
highest estimate and the agent with the lowest estimate) and cuts all incoming ties to
these agents so as to preserve their beliefs from social influence. Then, the influence of
these extreme agents is increased by granting each of them two directed, outgoing ties to
“core” agents. These core agents are the four individuals with the median estimates in
the network (e.g., in a 16-agent network, the agent with the lowest estimate receives an
outgoing tie to the agents with the 7th and 8th lowest estimates, and the agent with the
highest estimate receives two outgoing ties to the agents with the 9th and 10th lowest

estimates). The net effect of this procedure is that the diversity of beliefs (measured as
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variance) is increased by ensured both extreme, “polar” sides of the belief spectrum are
heard.

The scheduling algorithm differs from the mean-extreme and polarise algorithms in
that it prescribes (or “schedules”) a network structure of intermixing dyads, irrespective of
individuals’ estimates. Specifically, the algorithm pairs agents at each time point such that
no agent speaks to the same agent twice, but each individual will have the opportunity to
be in possession of all the available information in the network by the end of four rounds of
communication. In this way, scheduled networks will have achieved a maximum diversity
in interactions — each dyad at each time point will consist of two individuals sharing
information received from individuals in the network that the other has not interacted
with; the algorithm prevents any redundant interactions from taking place. However, for
this algorithm to function it assumes that each individual effectively fully communicates
all information they possess and fully integrates all information communicated to them by
their peer at each time point. This algorithmic approach offers an alternative for situations

where access to individuals’ current estimates at each time point is not available.

Simulation results

Following 500 iterations in nine different information environments (i.e., factorially com-
bining sensitivity = {0.2, 0.4, 0.9} and specificity = {0.2, 0.4, 0.9}) in which four matched
networks are simulated (i.e., one of each network condition starting from an identical ini-
tial network), we assess collective accuracy by calculating the squared error of the mean
estimate post-communication, henceforth referred to as collective error squared (CES).
In addition to CES, we also calculate the average individual error squared (AIES) and
diversity, measured as variance (VAR), present in each network as a way of better un-
derstanding each algorithm’s effects in the context of the Diversity Prediction Theorem
(Page, 2008).

Figure 4.1 displays the results of these simulations by showing the difference between
matched static and experimental networks on each measure in each possible information
environment. This visualisation shows that the algorithms’ effects vary across information
environments. For example, consider the panels containing the results where sensitivity
and specificity are symmetrically high (sensi = 0.9, speci = 0.9). In such information
environments no algorithm is able to substantially influence collective accuracy because

agents in the network are able to form accurate beliefs based on their independently ac-
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Figure 4.1: The simulated effects of each algorithm (network condition) on collective error
squared CES, average individual error squared AIES, and belief variance VAR averaged
across b00 iterations per panel. Y-axis values indicate the mean difference on a given
measure as compared to a matched static network. A mean falling below zero indicates
that the intervention resulted in a decrease of a given measure and vice versa.

quired knowledge, leaving little room for communication to improve the collective estimate.
However, in each of the other information environments the mean-extreme and scheduling
algorithm improve collective accuracy (displayed here as decreased CES), with varying
degrees of magnitude. When viewed in conjunction with the impact of the intervention
on AIES, it can be deduced that these two algorithms succeed by improving the average
individual accuracy at the cost of diversity (displayed here as decreased VAR). In con-
trast, the polarise algorithm aims to improve collective accuracy by increasing the variance
of beliefs at the cost of individuals’ accuracy. However, this algorithm displays adverse
effects on collective accuracy in these simulations. The failure of the polarise algorithm
here seems attributable to two aspects in our modelling: the use of unbiased, optimal
agents and the failure to sufficiently balance the increase in individual error with an in-
crease in variance. The unbiased, optimal agents simulated have the ability to distinguish
“anti-reliable” evidence (U. Hahn, Merdes, et al., 2018), meaning that before any com-

munication takes place, the mean belief in the network is favourable and the distribution
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of beliefs is skewed towards the truth regardless of the information environment imposed.
Thus, broadcasting the extreme estimates to the median agents, who would otherwise
converge towards the favourable mean estimate, will necessarily steer those receiving the
erroneous extreme away from the truth. However, real human groups may possess biases
that our simulated agents do not reflect, in which case the effects observed here may differ.
Indeed, instilling a pre-existing bias in our model by assigning each agent a starting prior
to 0.1 when the truth is 1, changes the results such that the mean-extreme algorithm
often decreases collective accuracy and the polarise algorithm more frequently increases

accuracy, albeit only slightly (Figure 4.2).
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Figure 4.2: The simulated effects of each algorithm (network condition) on collective error
squared CES, average individual error squared AIES, and belief variance VAR averaged
across 500 iterations per panel when agents start with priors of 0.1 and the truth is 1.
Y-axis values indicate the mean difference on a given measure as compared to a matched
static network. A mean falling below zero indicates that the intervention resulted in a
decrease of a given measure and vice versa.

Beyond the use of optimal agents, there are also other features of our modelling that
should be taken into account when considering the robustness of these simulation results.
For instance, by using the DeGroot belief updating rule specified in Equation (4.1) and

Equation (4.2) we have assumed that agents’ are equally receptive to influence from all
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other agents, regardless of their beliefs. Yet, experimental work has shown that human
belief updating may be egocentric when receiving advice from others (e.g., Volzhanin et al.,
2015; Yaniv, 2004; Yaniv & Milyavsky, 2007). That is, people might discount information
communicated to them by their peers if that information is too far away from their initial
belief. If this is indeed the case, then the effects of the rewiring algorithms presented
here may be limited since the algorithms deliberately connect agents in a network whose
beliefs may be extremely opposing (as in the mean-extreme algorithm) or whose beliefs
are on the edges of the network’s belief spectrum (as in the polarise algorithm). Relatedly,
as was explored to some degree in Figure 4.2, different distributions of initial beliefs in
a network can influence the effects of each rewiring algorithm due to their underlying
mechanics. Figure 4.3 shows how the simulation results change depending on the shape
of the initial belief distribution, be it normally distributed around 0.5 (i.e., a network of
generally uninformed or uncertain agents), log-normally distributed with a skew towards
the truth (i.e., a network where most agents possess accurate information), or log-normally
distributed with a skew away from the truth (i.e., a network where most agents possess
inaccurate information or a pre-existing, erroneous bias, as in Figure 4.2). In conjunction
with Figure 4.2, Figure 4.3 suggests that the effects of each rewiring algorithm may be
context-dependent, which is explored in greater detail later in this chapter.

Next, we proceeded to test each of the rewiring algorithms with actual human so-
cial networks in an online multiplayer experiment where participants were tasked with

predicting the probability that various near future events would occur.

4.1.2 Online multiplayer experiment

For our empirical study, we built an online multiplayer experiment with the Empirica
software (Almaatouq, Becker, et al., 2021). This type of “virtual lab” approach allows for
flexibility in the design of both a front end user interface and an experimental back end,
where we could implement our rewiring algorithms. An anonymised preregistration for

this study can be accessed here: https://aspredicted.org/BTJ _DKH.

Method

We recruited participants (N = 704) aged 18-69 (M = 34.28, SD = 9.87) via Amazon’s
Mechanical Turk crowdsourcing platform. Our sample size was determined by how much

research funding was available for this study, and ended up being smaller than the esti-
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Figure 4.3: The simulated effects of each algorithm (network condition) on collective
error squared CES, average individual error squared AIES, and belief variance VAR aver-
aged across 500 iterations per panel when agents’ initial beliefs are normally distributed
around 0.5 (normal), log-normally distributed with a skew towards the true alternative
(log_normal_correct), and log-normally distributed with a skew towards the false alterna-
tive (log_-normal_incorrect). Y-axis values indicate the mean difference on a given measure
as compared to a matched static network. A mean falling below zero indicates that the
intervention resulted in a decrease of a given measure and vice versa.

mated sample size of 1,280 participants because we had not foreseen the need to use a
considerable amount of funds on pilot testing our experiment. Participants were assigned
into 16-person networks in one of the four network conditions (static, mean-extreme, po-
larise, or scheduled) and tasked with a “Collaborative Prediction Game” that consisted of
ten rounds with five stages each. Each round of the game involved predicting the prob-
ability of one near future event occurring in reality (see Table 4.1 for the list of events
and outcomes), with participants first providing a probabilistic prediction and short ra-
tionale for their prediction independently, and then proceeding through four stages of
social exchange (or deliberation) where each participant would view the responses of their
network neighbour(s) and revise their own prediction and rationale (see Figure C.5 for
screenshots of the user interface). Each stage was limited to 60 seconds to prevent idle
individuals from stalling the group and the entire study took approximately 50-60 min-
utes. Participants were given a base payment of $7.25 and given financial incentives for
collective accuracy: 2x pay for the top three most accurate networks, 1.67x pay for the
fourth through sixth most accurate networks, and 1.33x pay for the seventh through ninth
most accurate networks. A total of 44 networks completed the study, 11 per treatment.
The four network treatments in the empirical study were identical to those simulated

with our agent-based model, described in the previous section. Participants in static
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1D Event Outcome

uk_covid In the UK, the rolling seven-day average of COVID-19 deaths per 0
day will go above 900 between 1-14 February 2021.

youtube_subs  There will be at least ten YouTube channels with more than 63.1 1
million subscribers on 8 February 2021.

biden_approval Joe Biden’s approval rating with be higher than 55% after three 0
weeks as US President.

us_uk_vax On 1 February 2021, the US will have administered more COVID- 0
19 vaccination doses per 100 people than the UK.

bitcoin Bitcoin will be valued at less than $30,000 on 8 February 2021. 0

super_bowl Both teams in this year’s Super Bowl will score more than 20 0
points.

us_climate The US will rejoin the Paris Climate Agreement by 8 February 1
2021.

sp500 The S&P 500 will close higher on 8 February 2021 than it did on 1
31 December 2020.

epl Liverpool FC will be leading the English Premier League on 7 0
February 2021.

americas_covid The WHO will report more than 1 million COVID-19 deaths in 1

the Americas by 8 February 2021.

Table 4.1: Events predicted by participants in the “Collaborative Prediction Game” ex-
periment. An outcome of 1 indicates the event occurred in reality, and an outcome of 0
indicates the event did not occur in reality.

networks (the control condition) were placed in a randomly generated small-world network
structure for each round and this network structure remained unchanged over each stage
of deliberation. Participants in the mean-extreme, polarise, and scheduled treatments
followed an identical procedure, but their network neighbours were subject to change

between stages of deliberation, as determined by the given rewiring algorithm.

Experimental results

Our analyses of the empirical data focus on the accuracy of the collective, mean responses
of each network pre- and post-communication. In particular, we asked the following three
questions: (1) How did networks’ average collective error squared (CES) differ between
treatments post-communication? (2) How did communication affect CES within each
network, between treatment? (3) How did the different rewiring algorithms influence
networks’ collective confidence calibration?

To address the first question we followed the procedure we preregistered as the main
analysis, which involved a linear mixed effect model with each groups’ average collective
error squared (CES) across all events predicted as the dependent variable, the network
treatment as a fixed effect, and random intercepts by group (Figure 4.4A). This analysis

suggests that there is no significant effect of the rewiring algorithms on collective accuracy
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(F(3,436) = 0.78, p = 0.503), meaning that, on average, networks to which a rewiring
algorithm was applied did not achieve lower C'ES post-communication as compared to
static networks on average!. However, this analysis does not account for certain key
confounding variables — namely, the initial network structure and initial predictions in
each network. While we could explicitly control for these in our modelling and simulation
work by starting each iteration with perfectly identical networks, it was not possible to
match these variables across treatments in the empirical study because each participant

only completed the study one time, in one particular network, and in one particular

treatment.
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Figure 4.4: Results of linear mixed effect models. Boxplots and small points in the back-
ground display the spread of the raw data, and large shaped points indicate the model
prediction with 95% confidence intervals represented by thick vertical bars. (A) Model
with each groups’ average collective error squared (C'ES) as the dependent variable, net-
work treatment as a fixed effect, and random intercepts by group. (B) Model with each
groups’ average change in CES as the dependent variable (i.e., the difference between post-
communication CES and pre-communication CES), network treatment as a fixed effect,
and random intercepts by group.

In addressing the second question we conducted an unregistered analysis to side-step
the potential confounding effects of initial network structure and initial predictions by
evaluating the effect of communication within each network. That is, instead of directly
comparing the accuracy of networks’ collective predictions post-communication between
treatments, we compare the change in accuracy between each network’s prediction pre- and
post-communication. Upon re-fitting our linear mixed effect model with networks’ change

in CES as the dependent variable, we find a significant treatment effect (F'(3,436) = 2.72,

4With this same linear mixed effect model specification, we also observed no statistically significant
treatment effect when absolute error or square root error are used to measure collective accuracy. There
was also no significant treatment effect on average individual accuracy when measured as squared error,
square root error, or absolute error. However, there was a statistically significant treatment effect on
variance, such that individuals in networks mediated by the polarise algorithm produced more diverse
predictions post-communication than any other network condition (F'(3,426) = 5.31, p = 0.001).
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p = 0.044) that suggests networks mediated by our polarise algorithm were more likely to
benefit from communication, whereas communication was detrimental to mean-extreme
and static networks, and neither beneficial nor detrimental to scheduled networks (Fig-
ure 4.4B). This result is encouraging because it suggests that the polarise algorithm not
only prevented deliberation from leading groups astray through deleterious social influence,
but the algorithmic mediation actually led groups towards more accurate predictions than
those that would have been produced by aggregating the individuals’ pre-communication
predictions. However, this result is not robust to other loss functions for measuring col-
lective accuracy: we observed statistically insignificant results when applying this model
specification with change in collective square root error (F(3,436) = 1.02, p = 0.385) and
collective absolute error (F(3,436) = 1.54, p = 0.20) entered as the dependent variable.
Finally, we followed our preregistration and conducted an exploratory analysis to exam-
ine the confidence calibration of networks’ collective predictions pre- and post-communication.
In the context of binary predictions, such as predicting whether future events will or will
not occur, calibration refers to the ability to assign an appropriate degree of confidence
or certainty to one’s prediction (Fischhoff et al., 1977). For example, if an event’s true,
objective probability of occurring is 75%, then a group whose collective prediction is 90%
would be considered overconfident in their judgement, whereas a group with a collective
prediction of 60% would be considered underconfident, regardless of whether the event ul-
timately occurs in reality. While our previous analyses evaluated collective error based on
the binary observable outcome of each predicted event, accurate calibration of collective
predictions might be desirable in some circumstances. For instance, if a group of intel-
ligence analysts were predicting whether our not an individual has plotted an imminent
attack, overconfidence in a judgement that they did not pose a threat (e.g., a prediction of
10% when there is an actual probability of 30%) could lead the analysts to allocate insuf-
ficient resources towards monitoring the individual. To assess how our different rewiring
algorithms might affect the calibration of collective predictions, we “binned” the networks’
predictions by rounding them down to the nearest tenth decimal place (e.g., 0.12 and 0.19
both become 0.1) and calculated the proportion of events in each bin that occurred. If a
network’s predictions are perfectly calibrated, we would expect the proportion of events
that occurred in each bin to match the the bin value (e.g., did 10% of the events that
a network predicted to have a 10% probability of occurring actually occur in reality?).

Figure 4.5 displays the results of this analysis by plotting the collective calibration of net-
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works in each treatment pre-communication and post-communication side-by-side. What
we find is that, despite all networks being well-calibrated pre-communication, the process
of communication seems to have affected calibration differently depending on the network
condition. Based on the calibration curves in Figure 4.5, it appears that communication
in static network structures lead to overconfidence in collective predictions, whilst the
polarise and scheduling algorithms mitigated this effect, and the mean-extreme algorithm
exacerbated it. However, a closer examination of where the individual points fall suggests
this conclusion is not straightforward. For instance, complete overconfidence would be
reflected on the plot as a step function where every objective probability less than 0.5
would map onto a subjective probability of 0, and every objective probability greater than
0.5 would map onto a subjective probability of 1. In other words, overconfidence is indi-
cated by undue extremity in predictions on the probability scale: predictions that should
be more uncertain (closer to 0.5) tend to be closer to either 0 or 1. Yet the change in
calibration curves shown in Figure 4.5 seem driven by random variations in the points

plotted, rather than these points indicating unduly extreme predictions per se.
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Figure 4.5: Calibration of collective predictions. Predictions (i.e., subjective probabilities)
are “binned” by rounding down to the nearest tenth decimal place, and the objective
probability for each bin is calculated as the proportion of events in that bin that occurred
in reality. Perfectly calibrated predictions would fall on the dashed diagonal line. In
cases where only one prediction fell in the corresponding bin, the data has been excluded
because these data are exceptionally noisy and could only fall on either 0 or 1. (A) Pre-
communication calibration. One prediction from the static condition, one prediction from
the scheduled condition, and two predictions from the mean-extreme condition have been
excluded due to being alone in its corresponding bin. (B) Post-communication calibration.
One prediction from the static condition, one prediction from the scheduled condition, and
one prediction from the mean-extreme condition has been excluded due to being alone in
its corresponding bin.
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To supplement Figure 4.5, an additional analysis related to overconfidence was per-
formed where we tallied up the proportion of collective predictions in each treatment that
became more extreme (or confident) in their initial position. Put simply, how often did
networks’ predictions become closer to 100% if their initial prediction was greater than
50%, or closer to 0% if their initial prediction was less than 50%? Across the 110 collec-
tive predictions within each network condition (11 groups per condition x 10 events), we
found that 77.27% of the static networks’, 72.72% of the mean-extreme networks’, 67.27%
of the scheduled networks’, and 65.45% of the polarise networks’ predictions became more
extreme post-communication. While this analysis is strictly exploratory and does not
distinguish between accuracy-improving and accuracy-degrading changes in confidence,
it further suggests that the network conditions influence calibration in different ways.
Namely, the scheduled and polarise network conditions, which are designed to promote
diversity, may reduce the probability of a network adopting a more extreme (confident)

collective belief, as compared to the mean-extreme and static network conditions.

4.1.3 Discussion

The finding of a significant treatment effect on how communication influenced C'ES, and
the qualitatively observed treatment effect on the calibration of collective predictions,
suggests that mediating communication in online social networks with different rewiring
algorithms can steer the accuracy of collective beliefs. As such, these findings can be taken
as a proof of concept that encourages continued research. But on the other hand, our main
preregistered hypothesis that there would be a statistically significant main effect between
network treatments on post-communication CES was not supported, and our simulation
results do not directly map onto the empirical results. In order to reconcile these findings,
there are three key considerations for future work: (1) more closely controlling for the
confounding effects of initial network structure and individuals’ differences, (2) applying
the rewiring algorithms to networks of more knowledgeable individuals, and (3) better
accounting for potential context-dependent effects of each algorithm.

In the experimental design we originally conceived, we sought to control for the con-
founding effects of initial network structure and individuals’ differences by randomly re-
assigning each participant into one of four identically-structured but differently treated
networks between each round. Unfortunately, because this procedure involves running

64 participants simultaneously on a single server, and because our experiment necessarily
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involves algorithmic computation between each stage of each round, we were unable to run
this design with the software used because participants experienced significant lags and
crashes. This unexpected obstacle forced us to adjust our design such that participants
were randomly assigned to a network condition upon signing up for the experiment, and
then sent to a separate server depending on the condition (i.e., one network per server
at a time). Though this adjustment was necessary to ensure participants could provide
quality responses, it means our analysis of a main effect between network conditions may
be confounded. To remedy this in future work we could either use different software or
increase the statistical power of our study with a larger sample size.

A second limitation of our experiment is that the participants did not possess much
relevant knowledge on the events being predicted. This can be noted in the observation
that for six of ten events, not a single group was able to produce an accurate binary
prediction (i.e., a collective prediction greater than 0.5 if the event occurred in reality,
and vice versa, Table 4.2; also see Table C.1 for the average post-communication CES
for each event in each condition). In principle, this general poor performance of the
participants is inconsequential, because random assignment balances incompetence across
treatments and we then focus on between treatment effects. However, the underlying
logic of rewiring algorithms assumes that there exists some relevant, varied information
to be communicated amongst individuals in the group. While an examination of the
rationales entered by participants suggests than a vast majority of individuals engaged
in good faith participation, it seems that our participants did not possess many unique
pieces of evidence that could be amplified or discounted by a rewiring algorithm. Future
work could thus benefit from evaluating the effects of rewiring algorithms on networks of
more knowledgeable individuals.

Another limitation of our experiment is its focus on one particular prediction context:
probabilistic estimates on events where individuals initial estimates display little to no skew
towards one alternative or another (Figure 4.6). Related ongoing research demonstrates
that the optimal network structure for eliciting the wisdom of the crowd depends on the
estimation context — the specific population of individuals faced with a specific estimation
task (Almaatouq, Rahimian, et al., 2021). Almaatouq, Rahimian, et al. (2021) show that
when a group’s initial estimates are highly skewed then a centralised network structure
can promote collective accuracy, whereas decentralised network structures might hinder

collective accuracy in such contexts, and vice versa when initial estimates display low
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Fvent ID Static Mean- Polarise Scheduled

Extreme
uk_covid 0 0 0 0
youtube_subs 10 11 11 10
biden_approval 0 0 0 0
us_uk_vax 0 0 0 0
bitcoin 0 0 0 0
super_bowl 0 0 0 0
us_climate 11 9 10 11
spb00 11 11 11 11
epl 0 0 0 0
americas_covid 2 1 2 1

Table 4.2: Tally of groups in each treatment that made the correct binary prediction (0.5
cutoff) on each event post-communication. A correct prediction means that the group’s
collective prediction what greater than 0.5 if the true outcome was 1, and vice versa.
Maximum of 11 per cell.

skewness. Given that our rewiring algorithms affect network centralisation in different
ways — namely, the mean-extreme algorithm increases it while the polarise algorithm
decreases it — this insight could explain our empirical results and why they differ from our
simulations. In our simulations with optimal Bayesian agents, networks’ initial estimates
always display a skew towards the truth; but in our empirical study, initial estimates
displayed displayed no such skew (Figure 4.6). Thus, the polarise algorithm may simply
have been better suited to the particular prediction tasks considered in our empirical
study, and the mean-extreme and scheduling algorithms may be better suited to other
contexts, such as those simulated with our modelling. In the next section I present follow-
up simulations in which we explored this point and tested our algorithms in numeric
prediction contexts (e.g., predicting the number of ICU per week during a pandemic) rather
than binary prediction contexts (e.g., predicting whether the number of ICU admissions
per week will be greater than 1,000), which characteristically elicit highly right-skewed

distributions of initial predictions.

4.1.4 Follow-up simulations of numeric estimation contexts

Following up on the experimental work, we conducted additional simulations to explore
how the rewiring algorithms might perform in numerical estimation contexts — where the
16-agent networks estimate (or predict) some unknown positive number — rather than
binary estimation contexts. Such tasks map onto classical crowd wisdom scenarios such as
estimating the weight of an ox, as well as high-stakes, real-world scenarios like forecasting
the number of ICU admissions per week during a pandemic.

We follow the procedure described in the previous section on “modelling and simula-
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Figure 4.6: Aggregate distributions of participants’ initial predictions for each event in
the empirical study. See Table 4.1 to match event IDs to the actual event prompt.

tions” and initialise our model by randomly generating an undirected small-world network
(Watts & Strogatz, 1998), have our agents follow the same updating rule borrowed from
Becker et al. (2017), and consider the same four network conditions (static, mean-extreme,
polarise, and scheduled). However, instead of having each agent integrate binary evidence
via Bayes’ theorem to establish their initial estimate, we assign each agent an initial es-
timate by sampling from a compilation of empirical data from four previously published
experiments (Becker et al., 2017; Becker et al., 2019; Giircay et al., 2015; Lorenz et al.,
2011). This compiled dataset spans a total of 54 estimation tasks on which 2,885 individ-
uals provided independent estimates (Almaatouq, Rahimian, et al., 2021). Each task —
or “estimation context” — in this dataset is represented by a distribution of independent
estimates and a true value. For example, one task contains 278 participants’ estimates of
the London population in July 2010, with the true value of 7,825,200 (Giircay et al., 2015).
Note, however, that we scale the estimates for each task to be between 0 and 1 in order
to suit our belief updating rule and mean-extreme rewiring algorithm, while maintaining
the distributions’ shape.

Following 500 iterations of each of the 54 estimation tasks in which four matched
networks are simulated (i.e., one of each network condition starting from an identical
initial network), we assess collective accuracy by calculating the squared error of the mean
estimate post-communication (CES). While other loss functions such as absolute error

and square root error may be applicable in some task domains, our pattern of results is
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consistent across these loss functions and we thus focus on C'ES for the sake of this paper;
also because of the theoretical link of C'ES to the Diversity Prediction Theorem. Across all
of the estimation tasks considered, the four network conditions’ CES was nearly equal on
average (static networks, M = 0.016, SD = 0.031; mean-extreme networks, M = 0.017,
SD = 0.033; polarise networks, M = 0.016, SD = 0.029, scheduled networks, M =
0.016, SD = 0.031). However, these averages overlook potential context-dependent effects.
Indeed, an analysis of C'ES task-by-task, rather than in aggregate, reveals that mean-
extreme networks achieved the highest accuracy on 31 tasks, polarise networks achieved
the highest accuracy on 15 tasks, and scheduled networks achieved the highest accuracy
on 8 tasks. Static networks did not achieve the highest accuracy on any tasks. This
observation further suggests that rewiring algorithms may serve as a viable strategy for
boosting collective accuracy in social networks.

To better understand the context-dependent effects of the rewiring algorithms, we char-
acterise each task by the skewness of the distribution of individuals’ initial estimates, and
then observed how each network condition’s average CES varied across the skewness pa-
rameter space. As shown in Figure 4.7, the rewiring algorithms display a clear favouritism
for certain regions of the skewness parameter space: mean-extreme networks were the
most accurate for tasks with highly skewed estimate distributions (n = 31, M = 9.47,
SD = 9.33), polarise networks were the most accurate for tasks with estimate distribu-
tions that display low skewness (n = 15, M = 1.56, SD = 1.38), and scheduled networks

were the most accurate on tasks with mid-range skewness (n =8, M = 3.21, SD = 3.55).
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Figure 4.7: The skewness parameter space. (A) The distribution of skewness in the
54 estimation tasks considered. (B) The distribution of skewness where each network
condition produced the lowest collective error as compared to the other conditions.

In Figure 4.8, we further investigate how the effects on collective accuracy produced

by the rewiring algorithms track over skewness. Using the CES of static networks as
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a baseline condition, we calculated three measures for each of the 54 estimation tasks
for mean-extreme, polarise, and scheduled networks: the average effect on CES (i.e., the
average change in error), the average relative effect on CES (i.e., the average change in
error divided by the average error of matched static networks), and the probability of
improvement (i.e., the proportion of the 500 iterations of each task where a given network
condition was more accurate than a matched static network). This analysis suggests not
only that the different rewiring algorithms prefer different estimation contexts, but that
there is an important interaction: the mean-extreme algorithm actively increases collective
error on tasks with low skewness and the polarise algorithm actively increases collective
error on tasks with high skewness.
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Figure 4.8: Network performance over skewness as compared to matched static networks.
(A) The average effect on CES across skewness (i.e., the average change in CES compared
to matched static networks). (B) The average relative effect on CES across skewness (i.e.,
the average change in error divided by the average error of matched static networks). (C)
The probability of improvement across skewness (i.e., the proportion of the 500 iterations
of each task where a given network condition was more accurate than matched static
networks).

The results of these simulations suggest that it may be possible to identify distribu-
tional characteristics of judgements that allow one to select a rewiring algorithm capable
of increasing the accuracy of social networks’ collective estimations. Crucially, these are
applicable in contexts where there is no track record of individuals’ predictive success and
the truth or falsity of individual estimates is not (yet) known. Where sufficient ground
truth data on accuracy exists, such as in expert judgements of medical scans, that data
can unquestionably be used to fine-tune networks of judges (Kurvers et al., 2019). But
that leaves many of the most pressing real-world judgement tasks unaccounted for. In

particular, we may want collective judgements to derive high-quality predictions for con-
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sequential unique events, for which, by definition, ground truth data will be unavailable. A
method that enhances collective accuracy in such contexts would thus provide a valuable

prediction tool for many domains.

4.2 Chapter conclusion

The combined simulation and empirical results presented in this chapter speak to the issue
of belief accuracy in a digital world on two levels. First, the findings here encourage a
more positive, active approach towards (re)building online information environments that
cater to and enhance human reasoning and decision making. While substantial research
efforts have sought to identify psychological and structural mechanisms that hinder peo-
ple’s ability to form accurate beliefs online, work that leverages those findings to develop
digital tools for supporting belief accuracy has only recently gained traction. Moreover,
much of the existing literature that does evaluate such digital tools focuses on interventions
that seek to mitigate negative features of online information environments (e.g., accuracy
nudges, Pennycook et al., 2021; innoculation, Roozenbeek & van der Linden, 2019). As the
findings presented in this chapter demonstrate, research that goes further to explore how
those same, supposedly negative features (in this case, content-curating algorithms) might
be re-claimed and re-designed to actively enhance human reasoning may prove fruitful.
Such inquiry could inform the design of new civic technologies that are capable of realising
the promise of a digital, democratic future. From a second level, the research presented in
this chapter could be taken as evidence that the reliance on content-curating algorithms
in the digital world can in fact undermine belief accuracy, inadvertently or otherwise.
Although we designed algorithms specifically for the purpose of enhancing the wisdom
of the crowd, we observed how even these well-meaning algorithms can lead users astray
in certain contexts. It thus seems reasonable to infer that algorithms designed for other
purposes — such as maximising user engagement on social media — may have unintended

side-effects on the accuracy of users’ beliefs under some circumstances.
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Chapter 5

General conclusion

Has the digital world led to or catalysed the emergence of a “post-truth” society? Amid
a backdrop of polarisation, anti-intellectualism, and conspiratorial thinking, understand-
ing the ways in which online information environments influence people’s ability to form
accurate beliefs is a contemporary venture that warrants serious investigation. By adopt-
ing the conceptual lens of bounded rationality (H. A. Simon, 1955, 1957, 1971, 2000), I
organised my approach to this topic by considering potential threats to belief accuracy
related to both cognitive capacities “in the mind” and structural features “in the (digital)
world,” and further proposed how the two can be (re)aligned with the support of novel
digital tools.

In Chapter 2, I began with a brief review of the general account of confirmation bias
and motivated reasoning, whereby people are said to sample, reason, and update in ways
that unduly favour information that is concordant with pre-existing beliefs over informa-
tion that is discordant. While such psychological distortion has worrying implications for
the accuracy of people’s beliefs in an information-rich, digital world, this chapter empha-
sised the difficulty of identifying true bias — as a systematic deviation from accuracy
— in contrived experimental set-ups. Specifically, I probed the optimistic belief updating
phenomenon by conducting three variations of the standard methodology to test for asym-
metric belief updating with neutral, non-valenced stimuli. If there is indeed a directional,
motivational bias as predicted by the optimism account, then there should be no “bias” in
belief updating with such stimuli. Yet, this chapter’s main analysis demonstrates a thrice-
replicated asymmetry in belief updating with neutral stimuli (Figure 2.2), and further
investigation with proposed “fixes” for the standard methodology’s flaws displays unin-

terpretable variability across samples and analytic techniques (Table 2.5). These findings
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run counter to the narrative that people are irrational, motivated reasoners who use infor-
mation to “believe what they want to believe” (Kunda, 1990, p. 480), thereby pushing for
a greater appreciation of normative models if findings of “biased” cognition are to speak
to the issue of belief accuracy in a digital world.

In Chapter 3, I opened with a brief overview of structural features of online informa-
tion environments that have been cited as inherent threats to people’s belief accuracy.
Despite warranted and widespread concerns about attention-oriented incentive structures,
manipulative bots, and content-curating algorithms, this chapter emphasised the difficulty
of drawing meaningful conclusions on their effects with non-experimental methods. As a
demonstration of this, I challenged recently presented evidence of a moral contagion effect,
which is said to support the claim that the attention economics of social media result in
moral-emotional content being shared regardless of its informational quality. By applying
widely-accepted techniques for analysing large-scale, observational social media data, re-
sults show not only that the moral contagion effect does not consistently generalise, but,
even more worryingly, that those same analytic techniques can support patently absurd
findings, such as the XYZ contagion (Table 3.2). Moreover, specification curve analyses
revealed how seemingly arbitrary decisions on outliers and covariates can lead materially
different results to emerge from the same data (Figures 3.1 to 3.2). Altogether, these
findings question whether conventional methodological tools for studying the digital world
are providing the solid, meaningful insights needed to build upon.

Lastly, in Chapter 4, I raised the question of how belief accuracy might be supported
online by re-appraising features of the digital world for epistemic benefit. Whereas there
is growing interest in designing interventions for assisting users’ navigation and evaluation
of information on existing digital infrastructures (e.g., on social media platforms), I sought
to encourage the research community to go further and imagine what alternative online
information environments might look like. To do so, I designed, deployed, and evaluated a
novel tool for enhancing collective belief accuracy online: rewiring algorithms that dynam-
ically manipulate the structure of online social networks based on the distribution of beliefs
reported. Here, agent-based modelling and an online multiplayer experiment showed how
mediating communication with such algorithms can steer the accuracy of collective beliefs
in different, context-dependent ways, thereby laying a foundation for continued research
to inform the development of new civic technologies and more socially responsible digital

media.
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In the remainder of this chapter I conclude by describing three key insights provided
by this thesis as a whole, touching on methodological, theoretical, and practical elements.
Each of these aims to encourage a deeper reflection on not only what existing research
tells us about belief accuracy in the context of a digital world, but also how researchers
organise their study and methodologies. In doing so, directions for future work are also

highlighted.

5.1 The value of absurd science

In Chapters 2 and 3 of this thesis, there was a focus on methodological challenges that
limit our understanding of belief accuracy in a digital world. While these chapters took
aim at substantively different domains of study — cognitive psychology and computational
social science, respectively — the underlying approach of both of the studies presented is
shared. That is, both the investigation of optimistic belief updating with neutral stimuli
and the investigation of moral contagion via the XYZ contagion are examples of what can
be called “absurd science.”

Absurd science is not unique to this thesis’ topic of belief accuracy in a digital world,
and the inspiration for this approach is in fact taken from past studies across disciplines.
These include the famous brain imaging study by Bennett et al. (2009) apparently showing
the neural activity of a dead salmon engaged in a perspective-taking task, the analysis of
longitudinal public health records by Cohen-Cole and Fletcher (2008) seemingly suggesting
that acne, height, and headaches are contagious, and the study of human decision making
by Hilbig (2010) that produced evidence in line with the conclusion that people accurately
judge cities’ population size by ranking them in alphabetical order. The value of such
absurd scientific results is, of course, not in presenting a new substantive finding to be
built upon. Just as neither my co-authors nor I believe that people consider which direction
they are updating a belief on the probability scale before deciding the magnitude of their
revision, or that people count the number of Xs, Ys, and Zs in a message before choosing
whether to share it on social media, the researchers referenced above did not pursue their
findings for the purpose of advancing a theory. Rather, such studies provide a broader
critique of the methods they employ.

For a method to be informative it must be able to both display an effect when there
is a meaningful effect of interest, and display no effect when there is no meaningful effect

of interest. In the language of Bayes’ theorem, this is to say that a method must have
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adequate diagnosticity. The usefulness of any given research method within this frame
can be judged much in the same way as a medical test or a machine learning classifier.
For any of these, performance is defined by the ability to discriminate between alterna-
tive hypotheses; by the ability to balance sensitivity, P(e|h), with specificity, P(—e|—h).
Consider now the results presented in Chapters 2 and 3 of this thesis: If past studies of
optimistic belief updating (e.g., N. Garrett et al., 2014; Moutsiana et al., 2013; Sharot
et al., 2011) are to be taken as evidence of a motivational, valence-driven bias, then the
method used should not display “bias” in the absence of valence. If the analysis by Brady
et al. (2017) is to be taken as evidence of a true moral contagion effect (also see, e.g.,
De Choudhury & De, 2014; Rathje et al., 2021; Stieglitz & Dang-Xuan, 2013, for studies
using similar methods), then the method used should not display a “contagion” effect for
nonsensical, causally irrelevant factors.

To be clear, it would be incorrect to conclude that people are not biased updaters, that
social media platforms are not conducive to the spread of low-quality information, or that
the digital world at large does not undermine belief accuracy based on the methodological
problems highlighted in Chapters 2 and 3. In just the time it has taken to write this
thesis, there have been several real-world events and news stories that seem to demon-
strably document both instances of motivated reasoning and maliciously designed online
infrastructures. For example, individuals who fell prey to conspiracy theories online were
seemingly unable to accurately update their beliefs about COVID-19 risks as the pandemic
unfolded, and eventually contracted the disease and died after failing to follow health guid-
ance (Spring, 2020). Even more recently, an ex-Facebook employee on the “civic integrity”
team revealed that despite internal research finding that their news feed algorithm pro-
motes divisive content, the company chose not to act on the finding because of concerns it
would reduce user engagement (Hagey & Horwitz, 2021)!. The studies presented in this
thesis by no means downplay issues such as these. On the contrary, the studies in Chap-
ters 2 and 3 further highlight the pressing need to develop proper methods and analytical
techniques for evaluating such issues so that they may be effectively addressed.

While absurd science studies appear sporadically and garner considerable attention,
continued work is needed to better define the scope and scale of problems they highlight.
This is perhaps most clear in the domain of computational social science, which has seen

the rapid development of machine learning tools to exploit large-scale, observational digital

LAt the time of writing, however, it is unclear what data and methods were used to draw this conclusion
in Facebook’s internal research.
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trace data for research. As demonstrated in Chapter 3 with the XYZ contagion, such data
is inherently confounded and prone to display spurious correlations, meaning analytic tools
built to find associations will not necessarily be able to find meaning in the data (Butler,
2013; Khoury & Ioannidis, 2014; Lazer et al., 2009). This prompts a range of questions that
are the subject of ongoing work: Is correlation ever enough for explanatory research? If so,
under what conditions? What is the probability that a significant correlation is indicative
of a theoretically interesting relationship? Answering these questions seems necessary if
researchers are to draw meaningful, generalisable conclusions from observational digital

trace data.

5.2 The digital world as a hybrid system

Much of the existing discourse around the influence of the digital world on the accuracy
of people’s beliefs has struggled to disentangle user- and environment-driven effects. In
Chapters 2 and 3, we saw the limitations of conventional methods for studying either
psychological bias “in the mind” or structural bias “in the (digital) world” in isolation,
whilst in Chapter 4 we saw how algorithmically mediated communication can indeed
influence collective beliefs. Taken together, these results support a view of the digital
world as a complex, hybrid, human-machine system, which raises the question of whether
attempts to separate user- and environment-driven effects are worthwhile or theoretically
informative.

Conceptualising the digital world as a hybrid system means examining the feedback
processes among its human users and computer-mediated environments as the central
units of analysis. This perspective is perhaps best articulated by Rahwan et al. (2019) in
their call for a research programme on so-called machine behaviour, where they explain

that:

“many of the questions that relate to hybrid human—machine behaviours must
necessarily examine the feedback loops between human influence on machine
behaviour and machine influence on human behaviour simultaneously. . . there
remains an urgent need to further understand feedback loops in natural set-
tings, in which humans are increasingly using algorithms to make decisions
and subsequently informing the training of the same algorithms through those

decisions” (p. 483).
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Through this view, the beliefs of individuals and collectives alike can be understood as
emergent phenomenon produced by repeated interactions between cognitive components
of the mind and structural components of the digital world. Of course, in many ways,
this realisation simply brings us back to the basic proposition of bounded rationality that
provided the framework for this thesis. Nevertheless, the findings presented here push for
a more explicit acceptance of this conceptual point and call for further methodological
innovation.

The development of new methodological approaches to study the digital world is in fact
already ongoing. For example, researchers have recently proposed guidelines for digital
field experiments (e.g., Mosleh, Pennycook, et al., 2021), algorithm auditing (e.g., Sandvig
et al., 2014), and virtual lab experiments (e.g., Almaatouq, Becker, et al., 2021). Of par-
ticular interest to this thesis is the latter, which was utilised in Chapter 4. By translating
the basic model of experimentation into web-based applications, virtual lab experiments
(often referred to as “online multiplayer experiments” when more than one participant is
involved at a time) enable two key functionalities that are especially relevant to the study
of belief accuracy in a digital world. First, virtual lab experiments allow researchers to con-
struct customised, realistic tasks and immersive online environments (Almaatouq, Becker,
et al., 2021). This means that instead of speculating how cognitive processes observed in
a contrived, artificial experiment might situate in the digital world, researchers can sim-
ply place (large groups of) participants in controlled online infrastructures in miniature,
manipulate both task and environmental features, and observe interactions in real time.
Second, the virtual lab allows researchers to run macro-level experiments where collective
entities — such as algorithmically mediated social networks — are the unit of analysis,
rather than individuals (Almaatouq, Becker, et al., 2021). This functionality sits well with
this thesis’ emphasis of the digital world as a complex, hybrid system by permitting re-
searchers to explore questions that studies of micro-level processes alone can not address.
Given these functionalities, virtual lab experiments present a ripe methodological oppor-
tunity for studying the emergence of beliefs in “algorithmically infused societies” (Wagner

et al., 2021).
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5.3 How to build a digital world that supports belief accu-

racy

Finally, the findings presented in this thesis provide some practical notes for how a dig-
ital world that actively supports belief accuracy might be built. Perhaps the most clear
contribution here is a call for caution. As the findings in Chapters 2 and 3 show, existing,
widely-cited studies that claim to identify mechanisms undermining belief accuracy might
be less meaningful than they seem to be. Therefore, designing new tools and interventions
to target those mechanisms could lead to not only ineffective investments and opportunity
costs, but potentially adverse consequences given the complex, connected nature of the
digital world as a hybrid system. Even when digital tools are consciously designed to
enhance human reasoning and decision making in some contexts, those same tools can be
expected to be damaging in others, as shown in Chapter 4.

Beyond this caution, however, this thesis encourages researchers to not restrict them-
selves to the design space that is delimited by existing online infrastructures. Instead
of only considering ways to mitigate harmful effects of the digital world, designing and
evaluating entirely new civic technologies can both generate practical tools and lead to
the conceptualisation of new empirical questions for study.

Despite the methodological and conceptual limitations on our current understanding
of belief accuracy highlighted in this thesis, it seems reasonable to conclude that the
“solution” — or, the path to an epistemically responsible digital world — cannot be
reduced down to any one thing. The solution so to speak will involve a concert of many
different measures, be it psychologically-inspired digital tools, education for digital literacy,
or policy-level regulation. What this thesis emphasises is that when implementing these
(imperfect) measures together, researchers, technologists, and policy-makers alike must
anticipate complex interactions and feedback processes. Belief accuracy in a digital world
is neither the result of psychological capacities “in the mind” nor structural features “in

the (digital) world,” but rather a product of the alignment between them.
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Appendix A

Supplementary information for

Chapter 2

A.1 Supplementary analyses

A.1.1 Accounting for post-treatment bias

As is the case for existing studies that use the update method and life events of varying
valence (e.g., N. Garrett & Sharot, 2014, 2017), there is a possibility that a post-treatment
bias may influence our models’ estimates (see Montgomery et al., 2018 for a detailed
exposition of post-treatment bias). Since participants provide their ratings of valence for
each life event after having received the BR, the provision of the BR might influence the
subsequent valence rating and the subsequent belief update. To remedy this potential
problem in our main analysis, we re-ran the analysis as if every event were rated as
neutral by the participants. Given that we aimed to compile a set of life events that could
plausibly be rated as neutral by participants, this analysis is consistent with our research
objective of detecting an asymmetry with valence-neutral events, despite its neglect of the
variability in participants’ perceptions of event valence. The results of this analysis mirror
those of the main analysis in the main text, albeit slightly attenuated, meaning that an
asymmetry was observed in upwards versus downwards updating across all life events.

In Study 1, there were 2,482 trials with an upwards direction of error (M = 2.72,
SD = 5.90) and 2,336 with a downwards direction of error (M = 9.36, SD = 14.31). An
LMM determined that direction of error significantly affected the magnitude of partici-
pants’ updating (F(1,4798) = 434.00, p < 0.001), such that an upwards direction of error

decreased update scores by approximately 6.43 percentage points (fixed effect estimate)
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+ 0.31 (standard error), as compared to downwards direction of error.

In Study 2, there were 2,288 trials with an upwards direction of error (M = 4.06,
SD =10.17) and 2,459 with a downwards direction of error (M = 9.16,SD = 18.22). An
LMM determined that direction of error significantly affected the magnitude of partici-
pants’ updating (F(1,4735) = 136.70, p < 0.001), such that an upwards direction of error
decreased update scores by about 5.02 percentage points (fixed effect estimate) + 0.43
(standard error), as compared to downwards direction of error.

In Study 3, there were 2,429 trials with an upwards direction of error (M = 4.04,
SD = 9.60) and 2,278 with a downwards direction of error (M = 8.95, SD = 20.80). An
LMM determined that direction of error significantly affected the magnitude of partici-
pants’ updating (F'(1,4701) = 118.21, p < 0.001), such that an upwards direction of error
decreased update scores by about 4.78 percentage points (fixed effect estimate) + 0.44

(standard error) as compared to downwards direction of error.

A.1.2 Adding stimuli as a random factor

In the LMM in our main analysis we included participants as a random factor to follow
Marks and Baines (2017) and account for the nested structure of the data. Given that
the main objective of the present work is to demonstrate that the update method — as it
has been employed in the literature — can elicit asymmetric belief updating with neutral
events, it was deemed crucial to follow analysis plans with precedent in the literature.
However, it can be argued that the design of the update method warrants the inclusion of
stimuli (life events) as a random factor, and that not doing so could inflate Type I error
rates on the fixed effect estimates Judd et al. (2012) and Yarkoni (2019). As a check of
robustness, we therefore conducted an additional analysis where we re-fit the LMMSs in our

1 In each study, the asymmetry in belief

main analysis with stimuli as a random factor
updating with neutral life events remained with slightly attenuated fixed effect estimates.

In Study 1, an LMM determined that direction of error significantly affected the mag-
nitude of participants’ updating (F'(1,1507) = 222.13, p < 0.001), such that an upwards
direction of error decreased update scores by approximately 8.95 percentage points (fixed

effect estimate) + 0.60 (standard error), as compared to downwards direction of error.

In Study 2, an LMM determined that direction of error significantly affected the mag-

"We used the same procedure to select a model specification as described in the main analysis in the
main text, which led us to reduce the complexity of the random effects structure to include only random
intercepts by participant and random intercepts by stimuli. However, results also hold in the maximally
complex model specifications.
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nitude of participants’ updating (F'(1,1505) = 64.77, p < 0.001), such that an upwards
direction of error decreased update scores by about 5.96 percentage points (fixed effect
estimate) &+ 0.74 (standard error), as compared to downwards direction of error.

In Study 3, an LMM determined that direction of error significantly affected the mag-
nitude of participants’ updating (F'(1,1442) = 61.05, p < 0.001), such that an upwards
direction of error decreased update scores by about 6.42 percentage points (fixed effect

estimate) + 0.82 (standard error) as compared to downwards direction of error.
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A.2 Supplementary tables

ID Life event BR (%)
1 Be exactly the same weight in 10 years’ time 26
2 Last the whole of next winter without catching a minor cold 20
3 Participate in a game of sport in the next four weeks 29
4 Clean the bathroom in the next four weeks 78
5 50 or more hours of sleep in a single week in the next four weeks 56
6  Fix a broken possession in the next four weeks 39
7  Get a haircut in the next four weeks 45
8  Have your photo taken in the next four weeks 75
9  Play a board game in the next four weeks 29
10  Shop for clothes in the next four weeks 56
11  Try a new hobby, craft, or sport in the next four weeks 31
12 Receive a utility bill in the next four weeks 78
13 Win a competitive game of sport in the next four weeks 22
14  Burn something that you are cooking in the next four weeks 41
15 Embarrass yourself in the next four weeks 60
16  Get lost in the next four weeks 26
17  Have a disagreement with a friend in the next four weeks 43
18  Have a headache in the next four weeks 82
19  Be ill one day because of over-drinking in the next four weeks 21
20  Stay up past 2 AM for school or work in the next four weeks 40
21  Get teased at/made fun of in the next four weeks 35
22 Get lied to in the next four weeks 60
23 Get stuck in traffic in the next four weeks 71
24 The next car that passes is a BMW 14
25 Have a vegan meal in the next four weeks 14
26  Make a purchase by contactless card in the next four weeks 29
27 Check your phone more that 100 times in one day in the next four weeks 45
28  The next car that passes is the colour black 20
29  Receive a phone call from an unknown number in the next four weeks 66
30 Buy a non-dairy milk alternative in the next four weeks 48
31  Spend more than £121 on dinners out over the next four weeks 19
32  Spend less than £89 on commuting over the next four weeks 33
33  Send fewer than 106 text messages over the next four weeks 15
34  Feel a phantom phone vibration in the next four weeks 80
35  Walk less than seven miles over the next four weeks 17
36  That your next flight will have a minor delay (i.e., 15 minutes or less) 26
37  That the next store you visit is air conditioned 30
38 Receive junk mail in the next four weeks 71
39  Drink between 56 and 84 cups of coffee over the next four weeks 43
40  Make your bed every day for the next four weeks 21
41  Use more than 3.7GB of mobile data over the next four weeks 17
42 Check your mobile data usage in your phone’s settings in the next four weeks 13
43  Spend more than 40 hours online in the next week 81
44  The next car you ride in, other than your own, is the colour white 19
45  Take the Eurostar train service in the future 16
46  Own a pet 45
47  Live in a home that was originally built before 1900 20
48  Move homes more than 10 times in your lifetime 18
49  Enrol in private health insurance 11
50  Meet your future spouse through an online dating service 38
51  Marry someone with a different political affiliation to you 26

Table A.1: Set of life events and accompanying base rate (BR) statistics used as stimuli.
Participants were asked to “Please estimate how likely this event is to happen to you,”
and to “Please estimate how likely this event is to happen to the average person.” Events
1-2 are from Shah et al. (2016), 3-23 are from Garrett and Sharot (2017), and 24-51 and

have not be previously used in research.
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Study  dfn dfd F p-value

1 1 11257 131.46 <0.001

2 1 139.75 61.57 <0.001

3 1 107.53 45.64 <0.001

Table A.2: Results of linear mixed effects model with only neutral trials and the maximally
complex random effects structure. This specification includes random slopes and intercepts
by participant for direction of error, plus correlations between random effects. This model
specification is singular, hence the reporting of a simpler specification in the main text.
Statistics pertain to Type III tests of the fixed effect of the direction of error on belief
updating. Degrees of freedom are approximated with Satterthwaite’s method (dfn refers to
the numerator degrees of freedom and dfd refers to the denominator degrees of freedom).

Study Fized Factor dfn dfd F p-value

1 Direction of Error 1 114.31 198.47 <0.001

Event Valence 2 127.62 33.66 <0.001

Interaction 2 160.89 49.19 <0.001

2 Direction of Error 1 123.41 104.90 <0.001

Event Valence 2 136.27 29.82 <0.001

Interaction 2 15478 38.96 <0.001

3 Direction of Error 1 95.12 48.67 <0.001

Event Valence 2 133.32 13.72 <0.001

Interaction 2 143.60 47.26 <0.001

Table A.3: Results of linear mixed effects model with direction of error, event valence,
and an interaction term and the maximally complex random effects structure. This spec-
ification includes random slopes and intercepts by participant for direction of error, event
valence, and the interaction term, plus correlations between random effects. Fitting this
model led to singularities and negative eigenvalues, hence the reporting of a simpler spec-
ification in the main text. Statistics pertain to Type III tests of the models’ fixed effects.
Degrees of freedom are approximated with Satterthwaite’s method (dfn refers to the nu-
merator degrees of freedom and dfd refers to the denominator degrees of freedom).
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Study  dfn dfd F p-value

1 1 246.67 19.47 <0.001

2 1 473.51 10.81 0.001

3 1 162.2 7.84 0.006

Table A.4: Results of linear mixed effects model with only neutral trials and the maximally
complex random effects after accounting for misclassification. This specification includes
random slopes and intercepts by participant for direction of error, plus correlations between
random effects. This model specification is singular, hence the reporting of a simpler
specification in the supplementary text. Statistics pertain to Type III tests of the fixed
effect of the direction of error on belief updating. Degrees of freedom are approximated
with Satterthwaite’s method (dfn refers to the numerator degrees of freedom and dfd refers
to the denominator degrees of freedom).

Study Fized Factor dfn dfd F p-value

1 Direction of Error 1 178.04 65.14 <0.001

Event Valence 2 195.49 19.63 <0.001

Interaction 2 168.84 2.33 0.101

2 Direction of Error 1 601.39 30.06 <0.001

Event Valence 2 318.13 8.47 <0.001

Interaction 2 815.00 813 <0.001

3 Direction of Error 1 217.40 5.77 0.017

Event Valence 2 27715 19.77 <0.001

Interaction 2 211.56 5.95 0.003

Table A.5: Results of linear mixed effects model with direction of error, event valence,
and an interaction term and the maximally complex random effects structure after ac-
counting for misclassification. This specification includes random slopes and intercepts by
participant for direction of error, event valence, and the interaction term, plus correlations
between random effects. Fitting this model led to singularities and negative eigenvalues,
hence the reporting of a simpler specification in the supplementary text. Statistics pertain
to Type III tests of the models’ fixed effects. Degrees of freedom are approximated with
Satterthwaite’s method (dfn refers to the numerator degrees of freedom and dfd refers to
the denominator degrees of freedom).
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A.3 Supplementary figures
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Figure A.1: Density plots displaying the distributions of event base rates across studies
(top labels) and event valence (right labels). It should be noted, however, that because
each participant self-rates the valence of each event, each participant is likely to encounter
different distributions of base rate statistics.
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Figure A.2: Density plots displaying the distributions of log transformed likelihood ratios
across studies (top labels) and event valence (right labels).
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Figure A.3: Density plots displaying the distributions of “base rate error” across studies
(top labels) and event valence (right labels)
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Figure A.4: Density plots displaying the distributions of “estimation error” across studies
(top labels) and event valence (right labels).
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Appendix B

Supplementary information for

Chapter 3

B.1 Supplementary analyses

B.1.1 Evaluating Brady et al.’s dictionaries as predictors of human judge-
ments of moral expression in the Moral Foundations Twitter Cor-

pus

One possible explanation for the inconsistent moral contagion effects observed in the
present work is measurement error. That is, the dictionaries used by Brady et al. (2017)
might not be accurately measuring expressions of moral sentiment in tweets. Identifying
moral sentiments in text is difficult because different types of moral sentiment can co-
occur, they might only be implicitly signaled, and because the ground truth is inherently
subjective (Hoover et al., 2019). In order to investigate how well Brady et al.’s (2017)
dictionaries identify expressions of moral sentiment we conducted a supplementary anal-
ysis with the Moral Foundations Twitter Corpus (MFTC), which contains 34,987 tweets
from seven topics of discourse displayed in Table B.1 [“All lives matter” (ALM), Baltimore
protests, “Black lives matter” (BLM), hate speech messages from Davidson et al. (2017),
2016 US Presidential Election, #MeToo, and Hurricane Sandy| that have been manually
annotated by three to five human annotators for moral sentiment (Hoover et al., 2019).
Note that the #MeToo and the 2016 US Presidential Election corpora included in the
MFTC and those addressed in the main analyses of the present work are different, despite
sharing discourse topics.

Since the present work is not concerned with individual categories of moral sentiment
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(e.g., purity, loyalty, authority, etc.), we collapsed the category labels such that we com-
pared the total number of moral labels to the number of non-moral labels assigned by the
annotators, in turn producing a binary classification of each tweet as moral or non-moral.
We then applied four logistic regression classifiers with the moral-emotional, distinctly
moral, and distinctly emotional dictionaries as predictors (one multiple logistic regression
with all predictors included, and the three nested, single-variable logistic regressions) to
see if the dictionaries’ predicted classifications aligned with human judgements of moral
expression.

Figure B.1 displays ROC curves and calculated AUC values for each logistic regression
classifier as applied to each corpus included in the MFTC. Across the seven corpora
the mean AUC for the multiple logistic regression classifier ranged from 51.7% in the
Davidson hate speech corpus to 83.2% in the #MeToo corpus (Mayc = 72.2%). In line
with the analysis reported by Hoover et al. (2019), we found classification performance to
vary significantly by context. In addition, we calculated the logistic regression classifiers’
precision, recall, and F1 metrics. Due to class imbalances in the data (Table B.1), we used
repeated under-sampling whereby we randomly excluded observations from the majority
class in each corpus and re-fit the classifiers and then averaged the calculations across
100 iterations (Table B.2). We found the logistic regression classifiers to have poor recall
(MRecann = 53.9%). This suggests that the dictionary-based approach does not effectively
identify all tweets in which human annotators find moral sentiment expressed, which raises

an additional methodological concern about the specific measurements made in Brady et

al. (2017).

Corpus Non-Moral Moral Total

ALM 726 3,698 4,424

Baltimore 2,869 2,724 5,593

BLM 1,133 4,124 5,257

Davidson 3,825 1,048 4,873

2016 US Election 1,877 3,481 5,358

#MeToo 914 3,977 4,891

Hurricane Sandy 585 4,006 4,591

Total 11,929 23,058 34,987

Table B.1: Frequencies of moral and non-moral expression in the manually annotated
twitter corpora comprising the Moral Foundations Twitter Corpus (MFTC).
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Figure B.1: ROC/AUC plots of dictionary logistic regression classifiers of moral expression
when applied to the complete MFTC corpora. (A) Logistic regression classifier with all
three dictionaries — moral-emotional, distinctly moral, and distinctly emotional — used
as predictors of moral expression in tweets. (B) Logistic regression classifier with only the
moral-emotional dictionary as a predictor. (C) Logistic regression classifier with only the
distinctly moral dictionary as a predictor. (D) Logistic regression classifier with only the
distinctly emotional dictionary as a predictor.
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Val-

ues indicate the mean of a given metric following 100 iterations of under-sampling, with

Table B.2: Performance metrics of dictionary-based logistic regression classifiers.
standard deviations in parentheses. Classification threshold set to 0.5.

B.1.2 Bootstrap resampling

Bootstrap resampling was also conducted as a robustness check to keep with the procedures

This technique involves regenerating variations of a dataset by

of Brady et al. (2017).
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sampling with replacement, meaning that certain datapoints may be duplicated and others
may be omitted. By iteratively repeating this procedure and re-fitting each model in
question (500 iterations in this case), a distribution of effect sizes is produced along with a
95% confidence interval, which is considered indicative of the reliability of an effect within
a sample. Specifically, an observed effect may be deemed stable if the confidence interval
does not straddle zero.

It should be noted, however, that this procedure will only ever speak to the robustness
of an effect within a sample, when the critical issue of interest is whether what has been
found in a sample is indicative of the population at large (e.g., is the observed moral
contagion effect generalizable to political tweets or political communications?). While it
is true that an effect that is not even stable within a sample provides poorer evidence
vis-a-vis the wider population than one that is, the fact that an effect is stable within a
sample is insufficient to determine whether it extends beyond that sample. Moreover, the
concerns that correlational analyses of big data raise for spurious factors are evidently not
assuaged by bootstrap resampling: the XYZ contagion passes this robustness check in the
three largest datasets analysed Figure B.2. Only out-of-sample prediction can address this

issue, as conducted in the present study.

B.1.3 Specification curve analyses of Brady et al.’s (2017) data

In the main text, we report the results of specification curve analyses (SCA) of the COVID-
19, #MeToo, and #MuellerReport corpora. To supplement these analyses, we applied
SCA to Brady et al.’s (2017) data. Across model specifications that considered their chosen
covariates and three arbitrary (but defensible) increments of outliers (the top 10, 100, or
1,000 most retweeted messages), we find the moral contagion effect to be particularly
robust in the climate change corpus (median B = 0.14, SD = 0.06), and positive but
variable in the gun control corpus (median B = 0.08, SD = 0.10). However, the moral
contagion effect appears notably unstable in the same-sex marriage corpus with a negative
median regression coefficient (median B = —0.04, 0.09). Figure B.3 further shows how
supposed “outliers” can influence results, which is expected to an extent given the fat-

tailed distribution of retweet data.
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Figure B.2: Density plots of bootstrap resampling results in each corpus. Each plot
displays 500 iterations (per model) of resampling. Dotted lines indicate the 95% confidence
intervals for the respective effects.
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Figure B.3: Summary plot of specification curve re-analysis of Brady et al. (2017). Box-
plots show the distribution of unstandardised negative binomial regression coefficients
produced by model specifications accounting various covariates and outliers (y-axis).
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Appendix C

Supplementary information for

Chapter 4

C.1 Rewiring algorithm schematics
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Figure C.1: Example case of the static network treatment across the five stages (an initial
starting network plus four stages of communication). Nodes are coloured on a gradient
based on their current belief: bright red for 1 and bright blue for 0. The distribution of
these beliefs are shown to the right of each network at each stage.
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Figure C.2: Example case of the mean-extreme network treatment across the five stages
(an initial starting network plus four stages of communication). Nodes are coloured on
a gradient based on their current belief: bright red for 1 and bright blue for 0. The
distribution of these beliefs are shown to the right of each network at each stage.
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Figure C.3: Example case of the polarise network treatment across the five stages (an
initial starting network plus four stages of communication). Nodes are coloured on a gra-
dient based on their current belief: bright red for 1 and bright blue for 0. The distribution
of these beliefs are shown to the right of each network at each stage.
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Figure C.4: Example case of the scheduled network treatment across the five stages (an
initial starting network plus four stages of communication). Nodes are coloured on a gra-
dient based on their current belief: bright red for 1 and bright blue for 0. The distribution
of these beliefs are shown to the right of each network at each stage.
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C.2 Experimental interface
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Figure C.5: Screenshots of the experiment’s user interface. (A) At the first stage of each
round, participants provide an initial prediction and rationale in the absence of social
information. (B) After initial, independent responses have been provided, participants
view the responses of their network neighbours in a right-side column and revise their own
responses. (C) In the experimental network treatments, participants’ network neighbours
may change between stages. This procedure is repeated for ten rounds (i.e., ten events

being predicted) with five stages per round (three of five stages pictured above). Each
stage is limited to a duration of 60 seconds.
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C.3 Supplementary empirical results

Table C.1: Average collective error squared (CES) of groups in each treatment for each

event. Standard deviations are in parentheses.

Event ID Static Mean- Polarise Scheduled
Eztreme
uk_covid 0.31 (0.12) 0.46 (0.08) 0.30 (0.11) 0.30 (0.10)
youtube_subs 11 (0.11) 0.06 (0.05) 0.06 (0.05) 0.09 (0.11)
biden_approval 0.49 (0.10) 0.52 (0.10) 0.44 (0.14) 0.44 (0.11)
us_uk_vax .25 (0.13) 0.14 (0.08) 0.20 (0.09) 0.19 (0.11)
bitcoin 0.20 (0.10) 0.15 (0.07) 0.20 (0.12) 0.16 (0.08)
super_bowl 0.45 (0.13) 0.47 (0.19) 0.37 (0.10) 0.46 (0.08)
us_climate 0.07 (0.05) 0.13 (0.10) 11 (0.10) 0.09 (0.06)
sp500 .12 (0.06) .11 (0.05) 0.13 (0.05) .12 (0.06)
epl 0.27 (0.11) 0.28 (0.10) 0.27 (0.09) 0.28 (0.15)
americas_covid  0.41 (0.13) 0.43 (0.21) 0.34 (0.14) 0.38 (0.08)
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