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Abstract

Most realistic social communities are multi-profiled cross-communities constructed from

users sharing commonalities that include adaptive social profile ingredients (i.e., natural

adaptation to certain social traits). The most important types of such cross-communities are

the densest holonic ones, because they exhibit many interesting properties. For example,

such a cross-community can represent a portion of users, who share all the following traits:

ethnicity, religion, neighbourhood, and age-range. The denser a multi-profiled cross-com-

munity is, the more granular and holonic it is and the greater the number of its members,

whose interests are exhibited in the common interests of the entire cross-community. More-

over, the denser a cross-community is, the more specific and distinguishable its interests

are (e.g., more distinguishable from other cross-communities). Unfortunately, methods

that advocate the detection of granular multi-profiled cross-communities have been under-

researched. Most current methods detect multi-profiled communities without consideration

to their granularities. To overcome this, we introduce in this paper a novel methodology for

detecting the smallest and most granular multi-profiled cross-community, to which an active

user belongs. The methodology is implemented in a system called ID_CC. To improve the

accuracy of detecting such cross-communities, we first uncover missing links in social net-

works. It is imperative for uncovering such missing links because they may contain valuable

information (social characteristics commonalities, cross-memberships, etc.). We evaluated

ID_CC by comparing it experimentally with eight methods. The results of the experiments

revealed marked improvement.

Introduction

A massive number of complex scientific problems have been depicted and represented as net-

work structures for empirical studies. These network representations solve many different sci-

entific fields, such as biological systems [1], ecosystems [2], information systems [3], and

scientific citations [4]. Among them, social media ecosystem problems are the most ones

delineated using network representation for uncovering community structures. The structure

of a society can be well analyzed and studied by clustering its members into communities
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based on a certain criterion. Such community-based clustering can uncover social groups of

various traits such as ethnicity, religion, colleague, research groups, social media collaborators,

and family-based.

The methods that cluster data based on its attributes can be broadly classified into the fol-

lowing: (1) methods that use the structural relationships between nodes (e.g., linkage informa-

tion) as guidance of the clustering procedure [5]; (2) methods that use the information of

nodes’ attributes as guidance for clustering [6] (but these methods disregard crucial informa-

tion pertaining the structural relationships between the nodes), and (3) methods that use both

the structural relationships between nodes and the information of node attributes as guidance

for clustering [7] (these methods perform clustering based on the similarity of attributes and

the density of connectivity). Most of the methods that perform clustering based on the struc-

tural relationships between nodes use probabilistic generative models to determine the poste-

rior userships of communities [8, 9].

Detecting communities from heterogeneous information networks

Most of the above-mentioned methods can detect real-world communities according to spe-

cific properties; yet many of them can detect only heterogeneous communities and communi-

ties with certain topological structures [10, 11]. To overcome this limitation, other methods

have been proposed for detecting communities from heterogeneous information networks

[12]. Most real-world applications require the interaction between multi-typed objects. These

are heterogeneous information networks (HIN) [13] that have different types of edges and ver-

tices. As an example, a bibliographic network links published papers to various types of objects

such as authors, topics, conferences, and journals. Thus, a HIN contains vertices with different

types and links representing the relationships between these vertices. These networks possess

rich semantic information revealed by their vertices and links.

Ahn et al. [14] proposed a method that regards a community as a set of links rather than a

set of nodes to better uncover the hierarchical relationships among different communities.

By considering each link as a single context, the method constructs a dendrogram, whose

branches represent link communities. Overlapping communities are identified by cutting the

dendrogram at various thresholds. To cluster links, the authors introduced a partition density

objective function based on link density. Psorakis et al. [15] proposed a probabilistic method

that adopts Bayesian non-negative matrix factorization model to extract overlapping commu-

nity partitions from a single interaction network. The method is based on the assumption that

if two nodes belong to a same community, there is a high probability of a link connecting the

two nodes. Therefore, the method works better in dense and fully connected subgraphs.

Palla et al. [16] proposed a method that detects overlapping communities by analysing the

statistical features of the communities. The method first detects all k-cliques in a network and

then identifies communities and their overlaps by carrying out clique-clique overlap distribu-

tion analysis using the following four quantities: (1) the number of communities, to which

each node belongs, (2) the number of nodes shared by two communities, (3) the number of

links in a community, and (4) the number of nodes in a community.

Detecting communities from heterogeneous information networks using

the information of their attributed nodes

Many methods that combine clustering analysis and attribute information have been proposed

for detecting communities using node attribute information. Aggarwa et al. [17] proposed a

method that employs local succinctness property for detecting balanced communities from

heterogeneous networks. The authors proved that employing local behaviour is superior to
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global viewing for detecting communities. The authors attributed this to the difficulty of the

variation of local density for building community detection techniques. They investigated

social networks’ locality characteristics and constructed an algorithm based on local behaviour.

Sun et al. [18] introduced a framework for overcoming the problem of incomplete nodes’ attri-

butes information in heterogeneous information networks. The main contribution of the

authors is the development of a probabilistic clustering framework to be used for modelling

different types of semantic links in heterogeneous information networks that exhibit incom-

plete attributes. Qi et al. [19] proposed a method that employs heterogeneous random fields

for integrating the structure and content of a network that delineates social media with outlier

links. The main contribution of the authors is combining social cues and linkage information

after discarding each abnormality in the linkages to enhance the consistency of clustering

social media elements. Cruz et al. [20] proposed a method for detecting the community struc-

ture in attributed networks. The main contribution of the authors is the integration of the two

dimensions in attributed graphs: the compositional dimension (which describes actors) and

the structural dimension (which embodies the social graph).

Detecting cross-communities from heterogeneous information networks

using the information of their attributed nodes

Most realistic social communities are multi-attributed cross-communities constructed from

users sharing some commonalities. The challenge is how to detect a multi-attributed cross-

community from a multi-attributed network, whose some of its attributes are unlabelled.

Detecting such a cross-community requires constructing community-specific modelling tech-

niques capable to infer the distinguishable characteristics of each cross-community. The tech-

niques should include mechanisms able at identifying the distinguishable characteristics of

each attribute. As can be seen from the current methods described previously that they are not

equipped with such mechanisms, except for, to some degree, CoRel [21]. Even CoRel has the

drawback of requiring a community’s seed of taxonomy to be given beforehand.

Our proposed approach

Most current methods detect multi-profiled communities without consideration to their gran-

ularities. To overcome this, we introduce in this paper a novel methodology for detecting the

smallest and most granular multi-profiled cross-communities. We implemented the method-

ology in a working system called Implicit Detector of Cross-Communities (ID_CC). ID_CC

detects a cross-community at the granularity of a k-clique. Current methods that adopt the k-

clique approach for detecting the cross-community to which an active user belongs (such as

[16]), employ the k-clique procedure for extracting cross-nodes at the granularity of a cross-

communities (as opposed to a cross-k-cliques). Detecting cross-k-cliques requires quantifying

the extent to which each pair of k-cliques are associated. To the best of our knowledge, our

method is the first that perform the following:

• Quantifying the extent to which k-cliques are associated. Current methods simply use the

structural positioning of k-cliques in a network to assess their relationships. For example,

Palla et al. [16] used clique-clique statistical interaction for assessing their relationship (sim-

ply the number of their overlapped nodes). On the other hand, ID_CC quantifies clique-cli-

que interaction’s degree of influence in associating their overlapped communities as well as

the other communities in the network. The quantification is expressed in terms of scores

that serve as indicators of the local influence of the pair of cliques’ interaction in associating

their overlapped communities and the global influence of the pair in associating the other
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communities in the network. That is, to extract a cross-communities at the granularity of a

k-clique, ID_CC quantifies the following:

1. The pair of clique’s binary influence, which is the extent to which the pair’s interaction

influences the relationship between their overlapped committees.

2. The pair of cliques’ global influence, which is the extent to which the pair’s interaction

influences the relationships among all communities in the network.

Let Ci and Cj be two interrelated cliques residing in communities CMTYx and CMTYy

respectively. Let CMTYz be an arbitrary community in the network that is not over-

lapped with CMTYx and CMTYy. ID_CC quantifies the influence of the interaction

between Ci and Cj in transmitting information between CMTYx and CMTYy (i.e., local

influence) and in transmitting information between CMTYx and CMTYz and between

CMTYy and CMTYz (i.e., global influence).

• Inferring missing links prior to detecting cross-communities using novel mechanisms.

• Employing a novel mechanism that can implicitly infer an active user’s undeclared commu-

nities that match his own social traits.

Since there are always new users wishing to join existing cross-communities, we incorpo-

rated a functionality to ID_CC that detects the smallest and most granular multi-profiled

cross-community, to which an active user belongs. First, the system infers the comprehensive

list of the user’s communities based on a few communities, to which the user declared mem-

bership. That is, the system implicitly infers the user’s undeclared communities that match his

own social traits. Then, the system infers the smallest and most granular multi-profiled cross-

community, to which the user belongs by analysing the hierarchical interrelationships between

the detected user’s communities. The system considers all cross-profiles that come to existence

from the interrelationships between the hierarchically overlapped user’s communities. The

larger the number of inferred user’s communities, the denser and more specific is the multi-

profiled cross-community identified by the system for the user.

Our methodology is based on the following observations, which shed the light on the

importance of detecting granular multi-profiled cross-communities and missing links:

1. A community is a social entity with specific social rules and dynamicity commonalities. We

observe that most realistic social communities are multi-profiled cross-communities con-

structed from users sharing commonalities that include adaptive social profile ingredients.

A community defined by the commonality of its adaptive social profile is a one constructed

according to the natural adaptation to a certain social trait as opposed to being constructed

due to involuntary circumstances (e.g., a collegial work group). The interests of a multi-pro-

filed cross-community are the union of the interests of the various communities, from

which the cross-community is constructed.

2. The most important types of multi-profiled cross-communities are the densest holonic

ones, because they exhibit many interesting properties. For example, such a cross-commu-

nity can represent a portion of users, who share all the following traits: ethnicity, religion,

neighbourhood, and age-range. The denser a multi-profiled cross-community is, the more

granular and holonic it is and the greater the number of its members, whose interests are

exhibited in the common interests of the entire cross-community. The likelihood of an

exact match between the interests of an active user and the interests of his cross-community

increases as the cross-community becomes denser. The denser such a cross-community is,

the more specific and distinguishable its interests are from other cross communities.
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3. The links in most social networks are not exhaustive. The sharing of some social character-

istics between a pair of communities may not always be reflected by a link connecting the

pair in the social network. Most often, this happens when a social network depicts a dataset

containing some members, who did not fully disclose and declare their memberships to all

the communities, to which they belong (i.e., did not disclose all their cross-memberships).

It is imperative for uncovering such missing links because they may contain valuable infor-

mation (social characteristics commonalities, cross-memberships, etc.). Therefore, detect-

ing cross-communities should be preceded by uncovering missing links.

4. Methods that advocate the detection of granular multi-profiled cross-communities have

been under-researched. Most these methods detect cross-communities without consider-

ation to their granularities.

Concepts used in the paper and outline of the approach

Concept of overlapping multi-attribute community

We use the term “Single-Attribute community” (SAC) throughout the article to refer to an

aggregation of individuals who share a common single attribute (e.g., a same ethnicity). This

concept is formalized in definition 1.

Definition 1—Single-Attribute Community (SAC): SAC is a group G of individuals

within a social network (V, E) with schema (R, L), where each x, y 2 G (x 6¼ y) share one com-

mon single attribute mapping ψ: V! R and relation mapping @: E! L.

The denser a community is, the more distinct and specific are its common concerns and

interests. Therefore, we propose a granular and specific class of community called Multi-Attri-

bute Community (MAC). A MAC is formed from an aggregation of individuals who all belong

to two or more SACs. That is, the common characteristic shared by these individuals are the

attributes of several SACs. Thus, a MAC is an aggregation of members who share common

multi-attributed traits. Intuitively, the size of such a MAC is smaller than the size of each of the

SACs, to whom its individuals belong. An Overlapping Multi-Attribute Community (OMAC)

is a MAC formed from an aggregation of individuals who all belong to two or more SACs of

different attributes. That is, an OMAC is a body of members who share the common character-

istics of some cross-community’s multiple attributes.

Example: Consider user member 18 in Fig 1. This user belongs to the following communi-

ties and subcommunities: 2, 3, 4, {2\4}, {3\4}, and {2\3\4}. Intuitively, the densest and most

granular multi-profiled cross-community, to which user 18 belongs is {2\3\4}. Consider that

community 2 represents an ethnic group E(x), community 3 represents a religion R(y), and

community 4 represents a national origin O(z). Then, the densest and most granular multi-

profiled cross-community, to which user 18 belongs will be formed from an aggregation of

individuals who belong to the same ethnic group E(x), follow the identical religion R(y), and

are descendants of the matching national origin O(z). Thus, such OMAC is constructed from

the following intersection: E(x) \R(y) \O(z). The interests and concerns of this OMAC are

more specific and granular than the ones of each of E(x), R(y), and O(z) individually.

Concept of Maximal k-Clique Sub-SAC

An effective mechanism for identifying the influential nodes in a SAC is to first represent the

SAC using k-clique model. A k-clique is a defined as complete graph with k nodes. A pair of

adjacent k-cliques shares k-1 nodes. We now formalize these concepts.

Definition 1—Clique: A clique C in a graph G is a subset of the nodes of G such that every

two nodes in C are adjacent. Thus, C is a complete induced subgraph.
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Definition 2—k-Clique: It is a clique of a subcommunity that has k nodes. Each two adjacent

k-cliques Ci and Cj in the subcommunity share k − 1 nodes. That is, Ci \ Cj = k − 1.

We introduce the concept of Maximal k-Clique Sub-SAC (MKCSS). A MKCSS is a sub-

community within a SAC formed from the maximal union of k-cliques within the SAC, where

each two k-cliques in the subcommunity is k-clique connected. It is a fully connected (com-

plete) subcommunity of k-cliques within a SAC. We now formalize these concepts.

Definition 3—Maximal k-Clique Sub-SAC (MKCSS): It is a maximal union of k-cliques

within a SAC, where each two k-cliques Ci and Cj in the subcommunity is k-clique connected.

Ci and Cj are k-clique connected, if there is a series of k-cliques Cx, . . ., Cy, such that each two

adjacent cliques in the series Ci, Cx, . . ., Cy, Cj share k -1 nodes.

Lemma 1: Any two k-cliques in a MKCSS are k-clique connected.

Proof: If we consider a scenario of |MKCSS| = k + 1, any two k-cliques Ck
1

and Ck
2

in the

MKCSS share k + 1 nodes. This is because Ck
1
\ Ck

2
¼ kþ 1. Similarly, if we consider a scenario

of |MKCSS| = k + 2, any two k-cliques Ckþ1
1

and Ckþ1
2

in the MKCSS share k + 1. Since: (a) Ck
1

is

connected to any k-clique in Ckþ1
1

, and (b) Ck
2

is connected to any k-clique in Ckþ1
1

, Ck
1

and Ck
2

are k-clique connected. The above holds for any |MKCSS| > k.

Running Example 1: Fig 2 depicts the MKCSSs of seven SACs, representing some social

media messaging. The MKCSSs are constructed based on the 4-clique modelling. Each SAC

contains a number of MKCSSs. For example, SAC 1 consists of MKCSSs 1–4. Some MKCSSs

share cross-members (marked in red with black centre).

Concept of MKCSS Relationship Graph

We now introduce the concept of MKCSS Relationship Graph (MRG), which depicts the

relationships between the MKCSSs of a same SAC as well the interrelationships between the

MKCSSs of different SACs. Each node in the MRG represents a MKCSS. Two nodes in the

MRG are connected by an edge if they share at least one cross-member. Thus, two SACs in the

MRG are connected by an edge if they share at least one cross-member. We now formalize this

concept.

Fig 1. Hypothetical four communities and the subcommunities resulting from the overlapping of these

communities.

https://doi.org/10.1371/journal.pone.0264771.g001
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Definition 4: MKCSS Relationship Graph (MRG): An MRG is an undirected graph G (V, E),

where V is the set of nodes and E is the set of edges in the graph. Each node in G represents an

MKCSS in some SAC. The weight of an MKCSS node is the number of unique k-cliques in the

MKCSS. Two nodes ni, nj 2 V are connected by an edge e 2 E, if ni and nj share at least one

common individual member (i.e., cross-member).

Theorem 1: Since the weight of a MKCSS node is the number of its unique k-cliques, the

weight of the MKCSS node equals |MKCSS|! (k! (|MKCSS| − k)!)

Proof: The number of unique k-cliques in an MKCSS is the number of unique k-combina-

tion of a subset of k distinct nodes that belong to the MKCSS. The number of these k-combina-

tions equals the binomial coefficient, which can be depicted using factorials as follows:

|MKCSS|! (k! (|MKCSS| − k)!).

Running Example 2: Fig 3 shows the MRG that corresponds to the SACs and MKCSSs

shown in Fig 2. Node i in Fig 3 represents MKCSS i in Fig 2. For example, node 1 in Fig 3 rep-

resents MKCSS 1 in Fig 2. The weight of node i (i.e., w(i)) in Fig 3 is the numbers of 4-cliques

inside node i in Fig 2. For example, the weight of node 1 in Fig 3 is 15 (i.e., w(1) = 15). An edge

connecting two nodes in Fig 3 signifies that the two nodes share at least one user (i.e., cross-

member) in the corresponding MKCSSs in Fig 2.

Fig 2. Seven illustrative SACs along with their MKCSSs, which we will be using as a running example throughout

the paper. The MKCSSs are constructed based on the 4-clique modelling.

https://doi.org/10.1371/journal.pone.0264771.g002
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Concept of Association Edge

An Association Edge denotes cross-members shared by two interrelated MKCSSs that belong

to two different SACs. Let Mi and Mj be two MKCSSs that belong to two SACs and share

cross-members. Mi and Mj in the MRG will be linked by an Association Edge to denote that

they share cross-members. For example, there are three Association Edges connecting SACs 2

and 7 in the MRG in Fig 3 due to cross-members shared by MKCSSs 8 and 18 (recall Fig 2).

Concept of Binary Influence

A Binary Influence (BI) is a score that quantifies the degree of influence of an Association

Edge in associating the two SACs at its end points. That is, the score quantifies the extent to

which the cross-members shared by two SACs relate the two SACs. Thus, BI is an indicator of

the local influence of an Association Edge.

Concept of Global Influence

A Global Influence (GI) is a score that quantifies the degree of influence of an Association

Edge in associating all SACs in MRG. That is, the score characterizes an Association Edge’s

global influence in the entire MRG. Thus, GI reflects the global relative interaction role and

influence of an Association Edge in passing information to the entire network.

For convenient reference, we list in Table 1 abbreviations of the major terms that appear in

the article.

Fig 3. The MRG that corresponds to the MKCSSs in Fig 2. Node i in Fig 3 represents MKCSS i in Fig 2.

https://doi.org/10.1371/journal.pone.0264771.g003
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Outline of the approach

Below are the sequential processing steps taken by our proposed system ID_CC:

1. Computing the Binary Influence of each Association Edge: ID_CC computes the BI(μ, ν)

score of each Association Edge (μ, ν) connecting a pair of SCAs Sμ and Sν in MRG. The

score reflects the local influence of (μ, ν) relative to the other Association Edges connecting

Sμ and Sν.

2. Computing the Global Influence of each Association Edge: ID_CC computes the GI(μ, ν)

score of each Association Edge (μ, ν) connecting a pair of SCAs Sμ and Sν in the MRG. The

score reflects the average chance of (μ, ν) relative to the other Association Edges connecting

Sμ and Sν in passing information between: (a) Sμ and Sν, and (b) the remaining SACs in the

MRG. The formula for computing GI(μ, ν) considers various factors such as the BI of (μ, ν)

as a fraction of the BIs of all Association Edges that pass information between: (a) Sμ or Sν,

and (b) the remaining SACs in the MRG.

3. Uncovering Missing Association Edges in the MKCSS Relationship Tree: First, ID_CC con-

verts the MRG into a tree data structure for the ease of uncovering missing Association

Edges connecting hierarchical interrelated SACs. We call the resulting structure MKCSS

Relation Tree. Then, ID_CC uncovers the missing Association Edges using a concept that

we call Relevant Lowest Common Ancestor (RLCA), which helps in inferring related nodes

based on the relationships between their ancestor nodes. Finally, ID_CC computes the BIs

and GIs of the implicitly identified Association Edges.

4. Determining the Densest Multi-Profiled Cross-SACs to which an Active User Belongs:
ID_CC applies the Maximum Spanning Tree (MaxST) algorithm [22, 23] on the revised

MKCSS Relationship Tree (i.e., the one that includes the implicitly identified Association

Edges). All SAC nodes located in the path of the MaxST that connects the user’s revealed

(i.e., already known) SAC nodes, will be considered the comprehensive list of SACs, to

which the user belongs. The extra SACs in the list (excluding the ones declared by the user)

are implicitly identified. The resulting intersection of all SACs in the list is the densest and

most granular multi-profiled cross-SACs that matches the user’s own social traits.

Computing the Binary Influence of each Association Edge

We describe in this section a mechanism we developed for quantifying the Binary Influence

(BI) of an Association Edge. That is, we quantify the extent to which the cross-members

shared by two SACs relate the two SACs. The quantification is expressed in terms of a score

that serves as an indicator of the local influence of the Association Edge [24]. The BI score of

Table 1. Abbreviations of the concepts presented in the article.

Abbreviation Description
SAC Single-Attribute Community

OMAC Overlapping Multi-Attribute Community

MKCSS Maximal k-Clique Sub-SAC

MRG MKCSS Relationship Graph

Association Edge An edge that depicts the cross-users of two interrelated cross-MKCSSs

BI (Binary Influence) A score quantifies the degree of an Association Edge’s influence in associating the two SACs

GI (Global Influence) A score quantifies the degree of an Association Edge’s influence in associating all the SACs

RLCA Relevant Lowest Common Ancestor

https://doi.org/10.1371/journal.pone.0264771.t001
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an Association Edge reflects the edge’s chance of passing information between the two SACs at

its end points relative to the other Association Edges connecting the same two SACs. Consider

Fig 4, which is an excerpt from Fig 2 and shows SACs 1 and 2 and the two Association Edges

connecting them. Let ę denote one of these two edges. As demonstrated by Fig 4, the chance of

ę to pass a message between the two SACs is impacted by the following factors:

1. Number of edges in the shortest path connecting the two communicating MKCSSs and

includes ę. Consider that some node n belongs to SAC 1 needs to send a message to some

node ń residing in SAC 2. From the two Association Edges, intuitively, the message will be

sent through the one, whose path from n to ń is the shortest (containing the smaller number
of edges).

2. Number of member users, who belong to all the MKCSSs located in the shortest path that

includes ę.

3. Number of Association Edges (i.e., number of cross-members) connecting the two commu-

nicating MKCSSs.

Based on the above observations, we constructed the formula in Eq 1 for computing the BI

score of an Association Edge (μ, ν) connecting two SACs Sμ and Sν. The equation quantifies

the influence of the Association Edge (μ, ν) in passing information between each pair of nodes,

one residing at Sμ and the other at Sν. We constructed the formula based on the generic nota-

tions shown in Fig 5, which depicts a generic pair of communicating MKCSSs �m and �n that

belong to SACs Sμ and Sν, respectively.

BIðm; vÞ ¼
X

�m ;��m2SAC Sm

ðsð�m; mÞ � ðj�mj � j�m \ ��m jÞ � j�m \ ��m jÞ þ
X

�n ;��n2SAC Sv

ðsð�n; vÞ � ðj�nj � j�n \ ��n jÞ � j�n \ ��n jÞð1Þ

• BI(μ, ν): The Binary Influence of Association Edge (μ, ν), which connects SACs Sμ and Sν.

• Sμ: The SAC that contains MKCSS node μ.

Fig 4. An excerpt from Fig 2 shows SACs 1 and 2 and their two Association Edges to illustrate the factors that

impact the BI score.

https://doi.org/10.1371/journal.pone.0264771.g004
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• Sν: The SAC that contains MKCSS node ν.

• �m, �n: Two communicating MKCSS nodes residing in SACs Sμ and Sν respectively.

• j�mj, j�nj: Number of nodes in MKCSSs μ and ν respectively.

• ��m : The MKCSS adjacent to �m that resides in the shortest path between �m and μ in Sμ.

• ��n : The MKCSS adjacent to �n that resides in the shortest path between �n and ν in Sν.

• j�m \ ��m j: Number of overlapped nodes between MKCSSs �m and ��m .

• sð�m; mÞ: Number of edges in the shortest path between �m and μ.

• sð�v; vÞ: Number of edges in the shortest path between �n and ν.

As demonstrated by Fig 5, there may be more than one user member shared by SACs Sμ

and Sν (i.e., multiple cross-members). Each of them is represented by an Association Edge that

controls some of the information flow between the two SACs. Intuitively, the BI of each of

these edges is impacted by the number of other Association Edges connecting the two SACs.

The influence of the edge increases as the number of other Association Edges decreases. That

is, the influence of the edge increases at the expense of the other edges. Let |μ \ ν| be the num-

ber of Association Edges connecting SACs Sμ and Sν (i.e., number of cross-members). We

need to adjust Eq 1 to keep assigning a lower BI score to an Association Edge as |μ \ ν|

increases. This is because as |μ \ ν| increases, the influence of each edge in controlling the flow

of information between Sμ and Sν decreases. Reversibly, as |μ \ ν| decreases, the influence of

each edge increases at the expense of the other edges. We adjusted Eq 1 accordingly as shown

in Eq 2. That is, the adjusted formula considers the degree into which each edge controls the

flow of information over the network.

BIðm; vÞ ¼

P

�m ;��m2SAC Sm

ðsð�m; mÞ � ðj�mj � j�m \ ��m jÞ � j�m \ ��m jÞ þ
P

�n ;��n2SAC Sv

ðsð�n; vÞ � ðj�nj � j�n \ ��n jÞ � j�n \ ��n jÞ

2jm\vj
ð2Þ

We adjusted the formula in Eq 2 to take into consideration the eigenvector principle [25]

by employing logarithm. The adaptation of logarithm enables the formula to characterize an

Association Edge’s relative influence in passing information between SACs Sμ and Sν. Specifi-

cally, the adaptation of logarithm penalizes and rewards the Association Edge exponentially

based on its degree of passing information between the two SACs relative to the other Associa-

tion Edges. This helps in discriminating between an Association Edge among the following

Fig 5. Generic notations used for constructing the formula in Eq 1 for computing the BI(u, v) of an Association

Edge (μ, ν). The figure depicts a generic pair of communicating MKCSSs �m and �n that belong to SACs Sμ and Sν,

respectively, whose messages pass through (μ, ν).

https://doi.org/10.1371/journal.pone.0264771.g005
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lists of Association Edges: (a) a list with varying very large number of Association Edges, and

(b) a list with varying very small number of Association Edges. We adjusted Eq 2 accordingly

as shown in Eq 3.

BIðm; nÞ ¼

P

�m ;��m2SAC Sm

ðsð�m; mÞ � ðj�mj � j�m \ ��m jÞ � j�m \ ��m jÞ þ
P

�n ;��v2SAC Sv

ðsð�n; vÞ � ðj�nj � j�n \ ��n jÞ � j�n \ ��n jÞ

2log2 jm\vj
ð3Þ

Finally, we need to adjust the formula in Eq 3 to reflect the holistic view of the degree of

association between the two SACs Sμ and Sν. Towards this, we aim at quantifying the collective

influence of all the Association Edges that connect Sμ and Sν in passing information between

the two SACs. That is, we adjusted the equation in such a way that BI(μ, ν) computes one holis-

tic BI score that reflects the collective Association Edges’ influence in passing information

between the two SACs. We adjusted the equation accordingly as shown in Eq 4.

BIðm; vÞ ¼ jm \ vj

�

P

�m ;��m2SAC Sm

ðsð�m; mÞ � ðj�mj � j�m \ ��m jÞ � j�m \ ��m jÞ þ
P

�n ;��v2SAC Sv

ðsð�n; vÞ � ðj�nj � j�n \ ��n jÞ � j�n \ ��n jÞ

2log2 jm\vj

0

B
@

1

C
Að4Þ

Running Example 3: To better illustrate Eq 4‘s composition and components, we show

below how the BI score of Association Edge (1, 5) in our running MRG example is computed

using Eq 4. Fig 6 shows the BI scores of all the Association Edges in our running MRG example

Fig 6. The BI scores of all the Association Edges in our running MRG example after applying Eq 4 (recall Fig 3).

https://doi.org/10.1371/journal.pone.0264771.g006
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after applying Eq 4 (recall Fig 3).

BIð1; 5Þ ¼ 2�
ð1� 4� 2Þ
zfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflffl{

MKCSS 1

þð2� 8� 1Þ
zfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflffl{

MKCSS 2

þð2� 6� 2Þ
zfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflffl{

MKCSS 3

þð2� 8� 1Þ
zfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflffl{

MKCSS 4

þð1� 3� 2Þ
zfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflffl{

MKCSS 5

þð2� 9� 1Þ
zfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflffl{

MKCSS 6

þð2� 8� 1Þ
zfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflffl{

MKCSS 7

þð3� 8� 2Þ
zfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflffl{

MKCSS 8

2log22
ðMKCSS1\MKCSS 5Þ
 ����������

0

B
B
@

1

C
C
A ¼ 152

Computing the Global Influence of each Association Edge

We heuristically developed a formula that assigns each Association Edge a GI score that char-

acterizes its global relative influence in associating all SACs in the MRG. We constructed the

formula in such a way that it quantifies the degree of influence of the Association Edge in

terms of its average chance in passing information between the SACs at its end points and the

remaining SACs in the MRG. That is, the formula computes the average chance of an Associa-

tion Edge (μ, ν) connecting two SACs Sμ and Sν relative to the other Association Edges con-

necting the two SACs in passing information between: (a) Sμ or Sν, and (b) the remaining

SACs in the MRG. The score is computed based on the BI of (μ, ν) as a fraction of the BIs of all

Association Edges that pass information between: (a) Sμ or Sν, and (b) the remaining SACs in

the MRG. By applying the above on the generic SACs in Fig 7, we constructed the formula in

Eq 5.

GIðm; vÞ ¼

P

�m; ⢸m 2SAC Sm

½ BIðm;vÞ�
½ BIðm;vÞ�þ

P
⢸n 2SAC S ⢸n

½ BIðm⃛; n⃛Þ�
þ

P

�n ;

⠿

m2SAC Sv

½BIðm;vÞ�
½BIðm;vÞ�þ

P

⠿

n 2SAC S ⠿

n

½BIð ⠿

m;

⠿

n Þ�

0

B
@

1

C
A

N
ð5Þ

• GI(μ, ν): The Global Influence (GI) score of the Association Edge (μ, ν) that connects SACs

Sμ or Sν

• BI(μ, ν): The BI score of the Association Edge (μ, ν).

Fig 7. Generic notations used for constructing the formula in Eq 5 for computing the GI(μ, ν) of an Association

Edge(μ, ν).

https://doi.org/10.1371/journal.pone.0264771.g007
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• Sμ: The SAC containing MKCSS node μ.

• �m and m⃛: Two MKCSS Nodes in SAC Sμ. m⃛ is linked to an MKCSS node n⃛ that belongs to

another SAC Sν

• BIðm⃛; n⃛ Þ: The BI score of the Association Edge ðm⃛; m⃛Þ.

• Sν: The SAC containing MKCSS node ν.

• �n and

⠿

m : Two MKCSS nodes in SAC Sν.

⠿

m is linked to an MKCSS node

⠿

n that belongs to

another SAC S ⣿

n

• BIð ⠿

m ;

⠿

nÞ: The BI score of the Association Edge ð

⠿

m;

⠿

nÞ.

• N: Overall number of nodes that belong to SACs Sμ and Sν

We need to adjust the formula in Eq 5 to keep assigning a higher GI score to the Association

Edge (μ, ν) as the following ratio increases: (1) the number of shortest paths from each node n
in SACs Sμ and Sν to the edge (μ, ν), to (2) the overall number of shortest paths from n to the

other Association Edges connecting Sμ and Sν to the remaining SACs in the MRG. The ratio-

nale behind this is that the increase in the above ratio is an indicator of the centrality of the

Association Edge (μ, ν) in controlling the flow of information between each of SACs Sμ and Sν

and the remaining SACs in the MRG relative to the centralities of the other Association Edges

that can pass the same flow of information. We adjusted the formula in Eq 5 accordingly as

shown in Eq 6.

GIðm; vÞ ¼

P

�m; ⢸m2SAC Sm

½jP ð�m ;mÞj�BIðm;vÞ�
½jP ð�m ;mÞj�BIðm;vÞ�þ

P

n⃛2SAC S n⃛

½jPð�m ; m⃛Þj�BIð m⃛ ; n⃛Þ�
þ

P

�n ; m⃛2SAC Sv

½jPð�n ;nÞj�BIðm;vÞ�
½jPð�n ;nÞj�BIðm;vÞ�þ

P

⠿

n 2SAC S ⣿

n

½jPð�n ; ⠿

m Þj�BIð ⠿

m;

⠿

n Þ�

0

B
@

1

C
A

N
ð6Þ

• jPð�m; mÞj: Number of shortest paths from MKCSS node �m in SAC Sμ to the Association Edge

(μ, ν).

• jPð�m; m⃛Þj: Number of shortest paths from MKCSS node �m in SAC Sμ to each other Associa-

tion Edge ðm⃛; n⃛Þ connecting SAC Sμ to another SAC S ⣿

n
in the MRG.

• jPð�n; n Þj: Number of shortest paths from MKCSS node �n in SAC Sν to the Association Edge

(μ, ν).

• jPð�n; ⠿

mÞj: Number of shortest paths from MKCSS node �n in SAC Sν to each other Association

Edge ð

⠿

m ;

⠿

nÞ connecting SAC Sν to another SAC S ⠿

n in the MRG.

We now need to consider the impact of nodes’ centralities on the centralities of the Associa-

tion Edges connecting them. A node’s centrality is manifested by its weight (recall Theorem 1

for how the weight is calculated). Intuitively, the higher the weight of an MKCSS node, the

larger is the contribution of the node on the GI score of the Association Edge (μ, ν), through

which the information sent by the node passes. That is, the higher the weights of the nodes

sending their information through the Association Edge (μ, ν), the more influential is the

Association Edge. The rationale behind this is that as a node’s weight increases, its influence

increases, which in turn reflects in the influence of the Association Edge, through which the

information sent by the node passes. That is, as the collective influence of the MKCSS nodes
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that send their information through the Association Edge (μ, ν) increase, the influence of the

(μ, ν) in controlling the flow of information throughout the MRG increases at the expense of

the other Association Edges. Towards this, we adjusted the formula in Eq 6 as shown in Eq 7.

GIðm; vÞ ¼

P

�m ; ⢸m2SAC Sm

½jP ð�m ;mÞj�BIðm;vÞ� wð�mÞ

½jP ð�m ;mÞj�BIðm;vÞ� wð�mÞþ
P

⢸n2SAC S ⣿

n

½jPð�m ; ⠿

mÞj�BIðm⃛ ; n⃛Þ� wð�mÞ þ
P

�n ;

⠿u2SAC Sv

½jPð�n ;nÞj�BIðu;vÞ� wð�nÞ

½jPð�n ;nÞj�BIðu;vÞ� wð�nÞþ
P

⠿ ⠿

n 2SAC S ⣿

n

½jPð�n ; ⠿u Þj�BIð ⠿u; ⠿

nÞ� wð�nÞ

0

B
@

1

C
A

N
ð7Þ

• wð�mÞ: The weight of MKCSS node �m.

• wð�nÞ: The weight of each other MKCSS node �n.

Finally, we aim at using the characteristics of logarithm to capture and further enhance the

eigenvector observation/principle [25]. That is, we aim at using logarithm to characterize the

"global" (as opposed to "local") influence of an Association Edge in the MRG. By using loga-

rithm, the formula will penalize an Association Edge exponentially as the weights of the nodes

at its end points decrease and reward it exponentially as the weights of these node increase.

That is, Association Edges connected to MKCSS nodes with smaller weights are penalized and

the ones connected to nodes with larger weights are rewarded exponentially. This helps in

accounting for the discrimination between the following two range of variations: (1) the range

of variations in large nodes’ weights, and (2) the range of variations in small nodes’ weights.

We adjusted Eq 7 accordingly as shown in Eq 8.

GIðm; vÞ ¼

P

�m ;m⃛2SAC Sm

½jP ð�m ;mÞj�BIðm;vÞ� log 2 wð�mÞ

½jP ð�m ;mÞj�BIðm;vÞ� log2wð�mÞþ
P

⢸n2SAC S ⢸n

½jPð�m ; ⠿

m Þj�BIð ⠿

m;

⠿

nÞ� log2wð�mÞ þ
P

�n ;

⠿

m2SAC Sv

½jPð�n ;nÞj�BIðm;vÞ� log2 wð�nÞ

½jPð�n ;nÞj�BIðm;vÞ� log2wð�nÞþ
P

⠿

n 2SAC S ⣿

n

½jPð�n ; ⠿

m Þj�BIð ⠿

m ;

⠿

nÞ�log2wð�nÞ

0

B
@

1

C
A

N
ð8Þ

Running Example 4: To better illustrate Eq 8‘s composition and components, we show

below how the GI score of the Association Edge (1, 5) in our running MRG example is com-

puted using Eq 8 (due to line space restriction, we separated the computations for SACs 1 and

2 and presented the final result in another separate line). Fig 8 shows the GI scores of all the

Association Edges in our running MRG example after applying Eq 8.

SAC 1 ¼
ð1� 152Þ

log215 �
wð1Þ

zfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflffl{
#paths�BIð1;5Þ

ð1� 152Þ
log215

|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
#paths�BIð1;5Þ

þð1� 132Þ
log215

|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
#paths�BIð4; 9Þ

þð1� 130Þ
log215

|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
#paths�BIð4; 13Þ

þ
ð1� 152Þ

log2126 �
wð2Þ

zfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflffl{
#paths�BIð1;5Þ

ð1� 152Þ
log2126

|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
#paths�BIð1;5Þ

þð2� 132Þ
log2126

|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
#paths�BIð4; 9Þ

þð2� 130Þ
log2126

|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
#paths�BIð4; 13Þ

þ
ð2� 152Þ

log270 �
wð3Þ

zfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflffl{
#paths�BIð1;5Þ

ð2� 152Þ
log270

|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
#paths�BIð1;5Þ

þð1� 132Þ
log270

|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
#paths�BIð4; 9Þ

þð1� 130Þ
log270

|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
#paths�BI ð4;13Þ

þ
ð1� 152Þ

log2126 �
wð4Þ

zfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflffl{
#paths�BI ð1;5Þ

ð1� 152Þ
log2126

|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
#paths�BIð1;5Þ

þð1� 132Þ
log2126

|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
#paths�BIð4; 9Þ

þð1� 130Þ
log2126

|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
#paths�BIð4; 13Þ

¼ 2:22
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SAC 2 ¼
ð1� 152Þ

log25 �
wð5Þ

zfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflffl{
#paths�BIð1;5Þ

ð1� 152Þ
log25

|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
#paths�BIð1;5Þ

þð1� 150Þ
log25

|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
#paths�BIð8; 18Þ

þ
ð1� 152Þ

log2210 �
wð6Þ

zfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflffl{
#paths�BIð4;5Þ

ð1� 152Þ
log2210

|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
#paths�BI ð4;5Þ

þð1� 150Þ
log2210

|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
#paths�BI ð4;5Þ

þ
ð1� 152Þ

log2126 �
wð7Þ

zfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflffl{
#paths�BIð1;5Þ

ð1� 152Þ
log2126

|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
#paths�BIð1;5Þ

þð1� 150Þ
log2126

|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
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Fig 8. The GI and BI scores of all the Association Edges in our running MRG example after applying Eq 8 (recall

Fig 6).

https://doi.org/10.1371/journal.pone.0264771.g008

PLOS ONE Implicit detector of cross-communities

PLOS ONE | https://doi.org/10.1371/journal.pone.0264771 April 19, 2022 16 / 41

https://doi.org/10.1371/journal.pone.0264771.g008
https://doi.org/10.1371/journal.pone.0264771


Uncovering missing Association Edges in the MKCSS Relationship Tree

Most often, some links in social networks are not revealed as a result of members who did not

fully disclose and declare their memberships to all communities. It is imperative for uncover-

ing such missing Association Edges prior to detecting cross-communities because they may

contain valuable cross-membership information. First, ID_CC converts the MRG into a tree

data structure for the ease of uncovering missing Association Edges connecting hierarchical

interrelated SACs. A tree is a connected acyclic graph that reflects the hierarchical tree struc-

ture of the graph. The root of the tree is a parent node and is not a child of any node. Each

node has only one parent and may have ancestor nodes. A leaf node is a node that does not

have a child node. We call the resulting converted tree data structure the MKCSS Relationship

Tree.

We followed the following procedure for converting a MRG into a MKCSS Relationship

Tree. Let η andɱ be two adjacent neighbouring nodes in the MRG. If ɱ is closer to the root

node than η, we consider ɱ to be the parent of η in the MKCSS Relationship Tree. Thus, we

construct the MKCSS Relation Tree by identifying the parent of each node η as follows. From

the set of Association Edges connected to η, we select the Association Edge Ҿ with the highest

GI score. If η andɱ are the end points ofҾ, we consider ɱ to be the parent of η. The rationale

behind this is that, from among the set of nodes connected to η,ɱ is the most closely associ-

ated with η.

Running Example 5: Consider our running MRG example shown in Fig 8. Fig 9-a shows

the Association Edge with the highest GI score connected to each SAC node in the MRG. Fig

9-b shows each Association Edge Ҿ that will be removed from the MRG because the two

nodes at its end points are connected to other Association Edge, whose GI scores are higher

than that ofҾ. Fig 9-c shows the resulting MKCSS Relationship Tree.

Uncovering implicit Association Edges using the concept of RLCA

We propose the concept of Relevant Lowest Common Ancestor (RLCA) for uncovering miss-

ing (i.e., implicit) Association Edges. As plotted in Fig 10, let the Lowest Common Ancestor

(LCA) of two nodes n1 and n2 be a node lca1. If: (1) some node lca2 is an ancestor of node lca1,

(2) lca2 is the LCA of nodes n1 and n3, and (3) nodes n3 and n2 share some social characteris-

tics, we can infer that node n3 is related to nodes n1. We call lca2 the RLCA of nodes n3 and n1.

Fig 9. (a) The Association Edge with the highest GI score connected to each SAC node in the MRG (for easy reference, each node and the

Association Edge with the highest GI score connected to it are marked with the same colour), (b) each Association EdgeҾ that will be removed

from the MRG because the two nodes at its end points are connected to other Association Edge, whose GI scores are higher than that ofҾ, and (c)

the resulting MKCSS Relationship Tree.

https://doi.org/10.1371/journal.pone.0264771.g009
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By applying the concept of RLCA, we can uncover implicit Association Edges in the MRG

as follows. If the characteristics shared between nodes n2 and n3 in Fig 10 are manifested by an

Association Edge in the MRG, we can deduce an implicit Association Edge connecting nodes

n3 and n1 as depicted in Fig 11. The above procedure is applied successively on the MKCSS

Relationship Tree to identify all subtrees that satisfy the RLCA concept. An implicit Associa-

tion Edge is uncovered for each conforming subtree.

Fig 10. Illustration of the RLCA concept.

https://doi.org/10.1371/journal.pone.0264771.g010

Fig 11. Since the subtree conforms to the RLCA concept, we can deduce an implicit Association Edge connecting

nodes n3 and n1, if nodes n2 and n3 are connected by an edge in the MRG.

https://doi.org/10.1371/journal.pone.0264771.g011
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Running Example 6: By applying the RLCA concept against the MKCSS Relationship Tree

of our running example shown in Fig 9-a, we will discover two subtrees conforming to the

RLCA concept as shown in Fig 12. In the first subtree, since SACs 7 and 6 are connected by an

edge (recall the MRG in Fig 3), SACs 7 and 3 are linked by an implicit Association Edge. In the

second subtree, since SACs 6 and 5 are connected by an edge (recall the MRG in Fig 3), SACs

6 and 4 are linked by an implicit Association Edge.

Efficiently uncovering implicit Association Edges

We constructed an algorithm called RELPlookup (Fig 13) to efficiently uncover implicit edges.

The algorithm applies the RLCA concept on MKCSS Relationship Trees using a stack-based

sort-merge approach. The algorithm employs a stack, with the head of each stack node being a

descendant of the stack node below it. The idea is to perform one single-merge pass over the

nodes and conceptually merge them into rooted trees containing the lead nodes. First, the

nodes of the MKCSS Relationship Tree are labelled with Dewey IDs. We formalize the Dewey

ID concept in Definition 5.

Definition 5—Dewey ID: A Dewey ID of a node n1 is a sequence of components. Each com-

ponent is a sequence of digits separated by decimal points. Each component represents the

Dewey ID of an ancestor node n2 of n1. The component to the left of the last decimal point of

Fig 12. Two subtrees conforming to the RLCA concept. In the first subtree, since SACs 7 and 6 are connected by an

edge, SACs 7 and 3 are linked by an implicit Association Edge. In the second subtree, since SACs 6 and 5 are

connected by an edge, SACs 6 and 4 are linked by an implicit Association Edge.

https://doi.org/10.1371/journal.pone.0264771.g012
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the Dewey ID of n1 is the parent node of n1. Dewey IDs are assigned to nodes based on the

Depth First Search. When the sequence of components in the Dewey ID of n1 are read from

left to right, they reveal the chain of ancestors of n1, starting from the root node. For example,

consider the Dewey ID of SAC 1.1.1 in Fig 14. It reveals that the Dewey ID of the root SAC is

1. It also reveals that the Dewey ID of the parent of SAC 1.1.1 is 1.1.

The input to the algorithm is an array called leaves[], which contains the Dewey IDs of the

leaf nodes in the tree. Each iteration of the algorithm produces a new stack state. Each stack

entry has three array components (ENT, Leaf node, and LCA-Leaf node), where: ENT is the

entry of the node pushed into the stack, Leaf node is the Dewey ID of the leaf node pushed

into the stack, and LCA-Leaf node is the pair of LCA and the leaf nodes passed to this LCA

from entries popped out of the stack. If di, dj,. . ., and dk are the Dewey ID components in the

stack from the bottom entry to the stack entry, then (1) the stack entry represents the SAC,

whose Dewey ID is di, dj,. . ., and dk, and (2) the bottom entry represents the root SAC node,

whose Dewey ID is di. The symbol q in line 7 of Algorithm RELPlookup represents the number

of Dewey ID components of a pushed node that match the components in the entry of the cur-

rent stack state. If q equals the number of Dewey components in the current stack state, the

currently processed leaf node is a descendant of the priorly processed node. If this is the case,

subroutine PushEntries (Fig 15) is called to push into the stack the non-matching Dewey com-

ponents of the current node. Otherwise, subroutine PopAndPushEntries (Fig 16) is called to

perform the following: (1) pop the non-matching Dewey components of the current node, and

(2) push the non-matching Dewey components. Subroutine isAnswer (Fig 17) outputs the

results, if: (1) array LCA-Leaf node contains information passed from at least two LCAs, (2)

one of these LCAs is an ancestor of the other LCA, and (3) the ancestor and descendant LCAs

contains the information of three leaf nodes. The three leaf nodes will be output as the result.

Running Example 7: Let us apply algorithm RELPlookup (Fig 13) and its subroutines on

the MKCSS Relationship Tree shown in Fig 14-a. First, the Dewey IDs of the leaf nodes will be

Fig 13. Algorithm RELPlookup.

https://doi.org/10.1371/journal.pone.0264771.g013
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stored in the array leaves: leaves[] = [1.1.1, 1.1.2, 1.2.1, 1.2.2, 1.3, 1.4.1]. The stack is initially

empty. Fig 14-b shows the stack states produced by the algorithm. In Fig 18, the MKCSS Rela-

tionship Tree is annotated with the algorithm’s processing steps that created the states of the

stacks in Fig 14-b. As Figs 14-b and 18 show, there are two results: {1.1.1, 1.1.2, 1.3} and {1.2.1,

1.2.2, 1.3}. If node 1.3 is connected by an edge in the MRG with one of the nodes in each of the

two sets, node 1.3 and the other node in the set are connected by an implicit Association Edge.

For example, if nodes 1.3 and 1.1.1 in the first set are connected by an edge in the MRG, then

nodes 1.3 and 1.1.2 are connected by an implicit Association Edge.

Fig 14. (a) The MKCSS Relationship Tree described in Example 7 labelled with Dewey IDs, and (b) the states of the

stack produced by applying algorithm RELPlookup (Fig 13) on the tree in (a). ENT stands for “Entry” and L. node

stands for “Leaf node”.

https://doi.org/10.1371/journal.pone.0264771.g014
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Computing the Global Influences of the implicit Association Edges

To compute the GIs of the uncovered implicit Association Edges, we need to first compute

their BIs. We need to adjust the BI formula in Eq 4 to accommodate the characteristics that are

specific to implicit Association Edges. Since not all implicit Association Edges link

Fig 15. Subroutine PushEntries.

https://doi.org/10.1371/journal.pone.0264771.g015

Fig 16. Subroutine PopAndPushEntries.

https://doi.org/10.1371/journal.pone.0264771.g016

Fig 17. Subroutine isAnswer.

https://doi.org/10.1371/journal.pone.0264771.g017
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neighbouring SACs, the shared nodes between these SACs may have different number of

cross-members. For example, consider an implicit Association Edge connecting MKCSSs 14

and 19 (recall Fig 2). MKCSS 19 has only one cross-member and MKCSS 14 has four cross-

members. However, Eq 4 considers only equal number of cross-members between two neigh-

bouring SACs. Therefore, we need to adjust Eq 4 accordingly. Based on the above observation,

we constructed the formula in Eq 9 for computing the BI score of implicit Association Edges

using the generic notations in Fig 19. The formula is constructed based on generic un-neigh-

bouring SACs Su and Sν connected by an implicit Association Edge (μ, ν) as shown in Fig 19.

The edge connects the two SACs through the cross-members of MKCSSs u and ν. After com-

puting the BIs, the GIs of these implicit edges will be computed using the formula presented in

Eq 8.

BIðm; nÞ ¼ jm \ €uj �

P
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Running Example 8: As demonstrated in Fig 12, there are two implicit Association Edges

in our running MRG example connecting SACs 7 and 3 and SACs 6 and 4. Fig 20 shows the BI

scores of these implicit Association Edges after applying Eq 9. Fig 20 shows both the BIs and

Fig 18. The MKCSS Relationship Tree in Fig 14-a after being annotated with the processing steps of Algorithm

RELPlookup (Fig 13) that created the states of the stacks in Fig 14-b. The arrows and texts marked in brown colour

describe the processing steps that created the stack states. The sets of nodes on top of SAC 1 are the two results

produced by the algorithm: {1.1.1, 1.1.2, 1.3} and {1.2.1, 1.2.2, 1.3}.

https://doi.org/10.1371/journal.pone.0264771.g018
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GIs of all Association Edges in our running MRG example including the implicit Association

Edges.

Uncovering the densest multi-profiled cross-sacs to which an

active user belongs

In this section, we describe the methodology adopted by ID_CC for inferring the densest
multi-profiled cross-SACs, to which an active user belongs. The larger the number of implicitly

detected SACs, to which the active user belongs, the denser and more specific is the multi-

Fig 20. The BIs and GIs of all Association Edges in our running MRG example including the BIs and GIs of the

implicit Association Edges connecting SACs 7 and 3 and SACs 6 and 4.

https://doi.org/10.1371/journal.pone.0264771.g020

Fig 19. Generic notations used for constructing the formula in Eq 9 for computing the BI of an implicit

Association Edge (μ, ν).

https://doi.org/10.1371/journal.pone.0264771.g019
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profiled cross-community identified by the system for the user. ID_CC assigns the active user

to the densest and most granular multi-profiled cross-SACs that matches his/her own social

traits. Towards this, it employs a mechanism that can implicitly infer the SACs, to which the

user belongs but were not revealed by the user. The mechanism adopted by ID_CC is based on

applying the Maximum Spanning Tree (MaxST) algorithm [22, 23] on the revised MKCSS

Relationship Tree (i.e., the one containing all Association Edges including the implicitly iden-

tified ones). All SAC nodes located in the path of the MaxST that connects the user’s revealed

(i.e., already known) SAC nodes, will be considered the comprehensive list of SACs, to which

the user belongs. The extra SACs in the list (excluding the ones declared by the user) are

implicitly identified. The resulting intersection of all SACs in the list is the densest and most

granular multi-profiled cross-SACs that matches the user’s own social traits. This technique

considers all cross-profiles that come to existence from the interrelations between overlapped

social profiles. We construct the MaxST based on the GI scores of the Association Edges. A

MaxST is a tree that spans all the SAC nodes in the MKCSS Relationship Tree. The sum of the

GI scores of the Association Edges connecting the nodes is the largest among all other trees

that span all the nodes. The MaxST can be computed using Kruskal’s algorithm [22] after mul-

tiplying the GIs values by -1.

Running Example 9: After multiplying the Association Edges’ GIs scores in our running

MRG example shown in Fig 20 by “-1” and then applying the Kruskal’s algorithm, we obtain

the MaxST shown in Fig 21-a. Consider that an active user revealed that he belongs to SACs 3

and 6. As Fig 21-b shows, MKCSS 4 is the densest multi-profiled cross-SACs, to which the

active user belongs (i.e., the cross-SACs of SACs 3 and 6). MKCSS 4 is located in the intersec-

tion of the MaxST’s paths that connects SACs 3 and 6.

Fig 21. (a) The path of the MaxST in our running MRG example shown in Fig 20, and (b) the densest multi-profiled cross-SACs, to which the active user

described in Example 9 belongs (i.e., the cross-SACs of SACs 3 and 6).

https://doi.org/10.1371/journal.pone.0264771.g021
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Experimental results

We aim at evaluating two features of our method ID_CC. The first one is ID_CC’s feature that

detects the smallest cross-profiled cross-communities, to which an active user belongs. The

second one is ID_CC feature that predicts missing implicit Association Edges in MRGs. We

evaluated the first feature by comparing ID_CC with eight baseline models. Unfortunately, we

could not find a comparable baseline model that predicts implicit Association Edges. There-

fore, we evaluated the second feature as follows. We ran ID_CC against datasets that have no

missing links. Then, we ran it against the same datasets but after removing some links. Finally,

we compared the detected cross-communities before and after the links were removed.

Baseline methods

We aim at evaluating ID_CC’s accuracy for detecting cross-communities by comparing it with

eight baseline methods. These methods employ nodes’ attribute information as the basis for

detecting communities. Below are brief descriptions of the eight methods:

1. DNMF: It is a method proposed by Ye et al. [26] based on the nonnegative matrix factoriza-

tion approach. DNMF can detect overlapping communities. It combines kernel regression

and discriminative pseudo supervision techniques. The discrete community usership of a

node is determined without post-processing.

2. LOCD: It is a method proposed by Ni et al. [27] for detecting local overlapping communi-

ties. It employs bottom-up intermediary score maximization. Let S be a set of nodes that

belong to at least two communities. The method selects a subset S0 � S as seed nodes. It

identifies a community for each seed node. A node n0 is assigned to the same community of

a seed node n, if the fuzzy relation between n0 and n is large enough.

3. CoRel: It is a method proposed by Huang et al. [21] for building a seed-guided topical tax-

onomy. The method outputs a complete taxonomy from an input seed taxonomy and some

corpus. It employs a module for relation transferring. After analysing seed taxonomy’s par-

ent-child nodes and their relationships, the module transfers the learned information

upwards and downwards to identify the topics and subtopics of the first layer. The method

also employs a learning module to enhance the semantics of each node by determining its

discriminative topical clusters.

4. RCF: It is a method proposed by Guesmi et al. [28] that employs relational concept analysis

for detecting communities from a heterogeneous information network. It generates a set of

concept lattices iteratively. The method detects communities by navigating through the

lattices.

5. Neo4j: It is a graph database engine that adopts the Property Graph model [29]. A node can

have multiple labels representing their roles in the graph. The method employs “patterns”

and path-oriented graph procedures. It matches the variables of a query to a graph based on

the graph’s patterns. Then, it outputs variables that represent the maximum number of

labels relevant to the input variables of the query.

6. GKS, BRWS, and GLPS: The three methods were proposed by Sharma et al. [30], as

follows:

• GKS is an expansion of the Katz approach [31], which adopts the concept of group accre-

tion. It produces a score that reflects the degree into which an external actor matches a

certain group. The score is the average proximity of the group’s actors to the external
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actor. The method enumerates the network’s paths using unsupervised path counting

procedure.

• BRWS is a method that adopts the group accretion concept. It uses semi-supervised learn-

ing and network alignment approaches to quantify the affinity among actors. By analys-

ing cycles, the method determines the affinity of a group of users to an external actor. The

method identifies the cycles that pass-through groups of nodes.

• GLPS is a method that employs semi-supervised and hypergraph label propagation

approaches. The method diffuses labels by random walks. After the random walks are sta-

bilized, the final labels of the external nodes are considered as affinity scores to the given

groups.

• The main differences between the three methods are summarized as follows:

• GKS assesses the affinity between an external actor and a group of users separately. On

the other hand, BRWS assesses the affinity between an external actor and a subgroup

within a group of users. The GKS method adopts an incremental accretion procedure

that incrementally joins an external actor to an existing group. The BRWS method

adopts a subgroup accretion procedure that considers the collaboration of external

actors within a subset of an existing group.

• The BRWS and GKS are based on paths and cycles over a network of actors. On the

other hand, the GLPS method is based on paths on a network of groups (NOG) by

adopting label propagation score, which is based on hypergraph structure.

The codes of the above methods are available as follows:

• The code of CoRel [21] is available at https://github.com/teapot123/CoRel.

• The code of LOCD [27] is available at https://github.com/ahollocou/multicom.

• The code for DNMF [26] is available at https://github.com/smartyfh/DNMF.

• As for GKS, GLPS, and BRWS, we used the same dataset and followed the same experimen-

tal setup employed for evaluating the three methods as described in Sharma et al. [30].

Evaluation setup

We implemented ID_CC in Java, ran it in Intel(R) Core(TM) i7-6820HQ processor with 32

GB RAM and 2.70 GHz CPU under Windows 10 Pro. The demo application of ID_CC can be

accessed through the following link: http://134.209.27.183/ (see Appendix for how the demo

works).

Let S be the set of communities in a dataset. For each different subset Ś� S, we determined

the subset Ŋ of nodes resulting from the intersection of the communities in Ś (i.e., their over-

lapping). We aim at using Ŋ as a ground-truth cross-community resulting from the overlap-

ping of the subset Ś. That is, we evaluated the accuracy of each method for detecting the cross-

community resulting from the overlapping of each Ś� S by comparing its results with the sub-

set Ŋ. Intuitively, a method’s accuracy may decrease as the number of overleaped communities

increases. Therefore, we also aim at evaluating a method’s accuracy stability as the number of

overleaped communities increases. Towards this, we computed the accuracy of each method

for detecting each subset Ŋ that results from the overlapping of m different number of commu-

nities in the subset Ś. Specifically, we considered m = | Ś | = 2, 3, 4, 5, and 6. The m number of
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communities are selected randomly. In the case of ID_CC, we considered m as the number of

a hypothetical user’s revealed number of communities.

We evaluated the accuracies of the nine methods for detecting cross-communities in terms

of Adjusted Rand Index (ARI) and F1-score measures. ARI computes the similarity of two

clusters’ pair-wise comparisons. It is defined as:

ARI ¼ ððIndex � Expected indexÞ=ðMaximum index � Expected indexÞÞ;

where:
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We use ARI to assess the pair-wise similarities between the cross-communities detected by

one of the methods and a corresponding ground-truth cross-community. F1- score is the har-

monic average of recall and precision. It is defined as: F1-score = 2 (Recall x Precision) /

(Recall + Precision).

The accuracies of the methods for detecting the DBLP cross-communities

The DBLP dataset is a collection of real-world ground-truth networks put together by the Stan-

ford Network Analysis Project (SNAP) [32]. It includes a comprehensive list of research arti-

cles in computer science converted into co-authorship networks. These networks comprise

1,049,866 edges, 317,080 nodes, and 13,477 communities. Two nodes in the networks are

linked by an edge, if the authors represented by the nodes published at least one research arti-

cle together. A node represents an author, and an edge represents the number of common arti-

cles between two authors. Authors who published in a specific conference/journal constitutes

a community. A group of authors, who participated in a same publication venue forms a

ground-truth community. Figs 22 and 23 show the accuracy of each method in terms of ARI

and F1-score, respectively, for detecting the DBLP cross-communities resulted from the over-

lapping of m number of communities (m = 1, 2, . . ., 6). Fig 24 shows the average accuracy of

each method for determining the DBLP cross-communities in terms of ARI and F1-score.

To substantiate the findings and outcome of the previous tests, we also evaluated the meth-

ods by employing the same experimental setup and same dataset used for evaluating BRWS,

GKS, and GLPS in [30]. This includes the following:

1. The same testing and training periods for the main splits. Splits are marked with fixed end

years. Articles published in the years 2008 to 2010 were used for testing and articles pub-

lished in the years 2004–2007 were used for training (see Table 2).

2. The same used dataset, which was the DBLP.

3. The same measures used, which were “Recall@Ntop (IA)” and “Precision@Ntop (IA)” for

Ntop = 100. These measures are defined as:

Precision@NtopðIAÞ ¼ ðNumber of correctly predicted groups using IA from top � Ntop listÞ=Ntop

Recall@NtopðIAÞ ¼ ðNumber of correctly predicted collaborations from top � Ntop listÞ=
ðNumber of actual IA groupsÞ
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Fig 23. The accuracy of each method in terms of F1-score for detecting the DBLP cross-communities resulted from the overlapping of

m number of communities (m = 1, 2, . . ., 6).

https://doi.org/10.1371/journal.pone.0264771.g023

Fig 22. The accuracy of each method in terms of ARI for detecting the DBLP cross-communities resulted from the overlapping of m
number of communities (m = 1, 2, . . ., 6).

https://doi.org/10.1371/journal.pone.0264771.g022

Fig 24. The overall average accuracy of each method for detecting the DBLP cross-communities in terms of ARI and F1-score.

https://doi.org/10.1371/journal.pone.0264771.g024
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Where, Ntop is the N top sorted IA set, IA is the incremental accretion, and Top-Ntop is the

largest score in N top sorted IA set.

Fig 25 shows the accuracies of the nine methods based on the dataset division in Table 2.

The accuracy values of BRWS, GLPS, and GKS shown in Fig 25 are the same ones presented in

[2].

The accuracies of the methods for detecting the Friendster cross-

communities

The Friendster dataset is a collection of real-world ground-truth networks put together by

SNAP [32]. The dataset consists of declared communities that belong to a social networking

site and an on-line gaming network. Users of the sites declare friendships and construct

groups. These declared user-defined groups are considered ground-truth communities. The

networks comprise 957,154 communities, 1,806,067,135 edges, and 65,608,366 nodes. Figs 26

and 27 show the accuracy of each method in terms of ARI and F1-score, respectively, for

detecting the Friendster cross-communities resulted from the overlapping of k number of

communities (k = 1, 2, . . ., 5). Fig 28 shows the overall average accuracy of each method for

determining the Friendster cross-communities in terms of ARI and F1-score.

The accuracies of the methods for detecting the Facebook Social circles

The Facebook Social Circles dataset is a collection of real-world ground-truth networks put

together by SNAP [32]. It was compiled by surveying 4039 Facebook users. It comprises a

human social network and Ego networks. A node in the network depicts a user. Each node has

its own Ego network, which contains the list of friends (i.e., circle) of the user. The Ego net-

works are built as follows: (1) each node is regarded as a focal node (i.e., an ego), (2) each other

node (i.e., an alter) is connected to the focal node by an edge, if the two have a social relation-

ship, and (3) each alter node has its own Ego network. The network comprises 88,234 edges. It

Table 2. Dataset division into training and testing splits.

Boundary Year Split No. Test Train

2007 Main Split 2008–2010 2004–2007

https://doi.org/10.1371/journal.pone.0264771.t002

Fig 25. The prediction accuracies of the methods using the setup described in [7].

https://doi.org/10.1371/journal.pone.0264771.g025
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Fig 26. The accuracy of each method in terms of ARI for detecting the Friendster cross-communities resulted from the overlapping of m
number of communities (m = 1, 2, . . ., 5).

https://doi.org/10.1371/journal.pone.0264771.g026

Fig 27. The accuracy of each method in terms of F1-score for detecting the Friendster cross-communities resulted from the overlapping of

m number of communities (m = 1, 2, . . ., 5).

https://doi.org/10.1371/journal.pone.0264771.g027

Fig 28. The overall average accuracy of each method for detecting the Friendster cross-communities in terms of ARI and F1-score.

https://doi.org/10.1371/journal.pone.0264771.g028
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also contains the profiles of users. The Facebook-internal ids are represented by new values,

which makes it feasible for assessing whether two users have social relationship. In our evalua-

tion, we considered each Ego network as a ground-truth community. Figs 29 and 30 show

the accuracy of each method in terms of ARI and F1-score, respectively, for detecting the

Facebook Social circles cross-communities resulted from the overlapping of k number of com-

munities (k = 1, 2, . . ., 5). Fig 31 shows the overall average accuracy of each method for deter-

mining the Facebook Social circles cross-communities in terms of ARI and F1-score.

Evaluating the effectiveness of ID_CC to uncover implicit Association

Edges

In this test, we aim at evaluating the effectiveness of ID_CC to uncover missing (implicit)

Association Edges. First, we ran ID_CC to build the MRGs of the DBLP, Friendster, and Face-

book Social Circles datasets. Then, we randomly removed 500 Association Edges from the

MRGs and evaluated the accuracy of ID_CC in identifying and reinstating these edges. We

then repeated the same procedure nine times. In each of the nine times, we increased the

Fig 29. The accuracy of each method in terms of ARI for detecting the Facebook Social circles cross-communities resulted from the

overlapping of m number of communities (m = 1, 2, . . ., 5).

https://doi.org/10.1371/journal.pone.0264771.g029

Fig 30. The accuracy of each method in terms of F1-score for detecting the Facebook Social circles cross-communities resulted from the

overlapping of m number of communities (m = 1, 2, . . ., 5).

https://doi.org/10.1371/journal.pone.0264771.g030
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number of removed Association Edges by 500. That is, the number of removed edges were

500, 1000, . . ., 5000. ID_CC’s accuracy of identifying the missing Association Edges is assessed

by its accuracy in detecting the original communities in the datasets after reinstating these

edges. Figs 32, 33 and 34 show the accuracy of ID_CC in terms of ARI and F1-score for detect-

ing the DBLP, Friendster, and Facebook Social Circles communities, respectively, after identi-

fying and reinstating the missing Association Edges.

Statistical test of significance

We used One-way ANOVA Test [33] to determine whether the differences between each

method’s individual accuracy values in the tests described in the previous subsections are large

enough to be statistically significant. ANOVA incorporates several statistical models, but we

focused on the model that estimates the variation within a group to determine if the variation

is large enough to be statistically significant. Since: (1) each group in our experiments repre-

sents the overlapping of different k number of communities (k = 1, 2, . . ., 5), and (2) it is

known that the accuracy decreases as k increases, we did not focus on the model that estimates

the variation between groups. However, we did consider the variation between groups in the

context of computing F-Statistic to determine how large the variability between group means

Fig 31. The overall average ARI and F1-score of each method for detecting the Facebook Social circles cross-communities.

https://doi.org/10.1371/journal.pone.0264771.g031

Fig 32. The accuracy of ID_CC in detecting the DBLP communities after identifying and reinstating the missing

Association Edges.

https://doi.org/10.1371/journal.pone.0264771.g032
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compared to the variability of the observations within the groups. Due to the specific nature of

our experiments, we want the variation among a group to be small while F-Statistic to be large.

Tables 3 and 4 show the results for the ARI and F-score tests respectively. As the tables show,

the variations within groups are relatively small and the F-Statistics are relatively large for all

methods except for GKS, BRWS, and GLPS.

Fig 33. The accuracy of ID_CC in detecting the Friendster communities after identifying and reinstating missing

Association Edges.

https://doi.org/10.1371/journal.pone.0264771.g033

Fig 34. The accuracy of ID_CC in detecting the Facebook Social Circles communities after reinstating the missing

Association Edges.

https://doi.org/10.1371/journal.pone.0264771.g034

Table 3. One way ANOVA table for the overall average values of the ARI tests.

LOCD DNMF CoRel RCF GKS GLPS BRWS Neo4j ID_CC

Within Groups Sum of Square (SS) 0.0078 0.0104 0.0008 0.0112 0.0222 0.0167 0.0181 0.0082 0.0065

Mean Square (MS) 0.0008 0.0012 0.0008 0.0015 0.0022 0.0023 0.0019 0.0020 0.0007

Between Groups Sum of Square (SS) 0.0255 0.0338 0.0277 0.0285 0.0318 0.0399 0.0515 0.0231 0.0361

Mean Square (MS) 0.0064 0.0085 0.0069 0.0071 0.0086 0.0100 0.0129 0.0058 0.0083

F-Statistic 9.1612 6.4647 9.4797 4.9175 2.4157 4.3595 7.0282 5.3125 21.253

p-value 0.0364 0.0468 0.0380 0.0487 0.3421 0.0961 0.0102 0.2400 0.0461

https://doi.org/10.1371/journal.pone.0264771.t003
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Discussion of the results

Strengths of ID_CC. The experimental results demonstrated that ID_CC predicted cross-

communities of nodes with multiple attributes with outstanding accuracy. The results showed

that ID_CC outperformed the eight methods it was compared with. By observing the experi-

mental results, we attribute the performance of ID_CC over the other methods, in general, to

the combination of the following capabilities of ID_CC: (1) detecting granular multi-attributed

cross-communities by analysing the hierarchical interrelationships and overlaps of single-

attributed communities, (2) employing the novel concepts of MKCSS and MRG, which proved

to produce effective graphical miniatures that depict communities and their ontological rela-

tionships, and (3) employing the novel concept of GI, which proved to be an effective mecha-

nism for characterizing the global relative influences and interaction roles of Association

Edges in MRGs.

We observed from the experimental results that the accuracy of each of the nine methods

decreases as the number of single-attributed communities, from which its detected cross-com-

munities are constructed increases. However, ID_CC’s accuracy decreases in much smaller

rate than the other eight methods as the number of communities, from which detected cross-

communities are comprised increases. To confirm the above, we classified the cross-communi-

ties detected by each method into groups. Each group contains detected cross-communities

comprised of the same number of single-attributed communities. We then computed the

overall average ARI for each set as depicted in Fig 35. As Fig 35 shows, the decrease rate of

ID_CC’s accuracy is lower than the other methods as the number of communities, from which

detected cross-communities are comprised increases.

Table 4. One way ANOVA table for the overall average values of the F1-score tests.

LOCD DNMF CoRel RCF GKS GLPS BRWS Neo4j ID_CC

Within Groups Sum of Square (SS) 0.0107 0.0125 0.0061 0.0127 0.0218 0.0160 0.0159 0.0038 0.0043

Mean Square (MS) 0.0011 0.0012 0.0006 0.0012 0.0026 0.0021 0.0018 0.0004 0.0004

Between Groups Sum of Square (SS) 0.0286 0.0226 0.0255 0.0265 0.0296 0.0370 0.0351 0.0279 0.0255

Mean Square (MS) 0.0072 0.0056 0.0063 0.0073 0.0083 0.0093 0.0073 0.0070 0.0069

F-Statistic 7.3960 6.4011 12.304 5.5758 2.2782 5.0041 4.6914 18.875 23.75

p-value 0.0276 0.5567 0.0215 0.0310 0.1731 0.0518 0.0158 0.0124 0.0362

https://doi.org/10.1371/journal.pone.0264771.t004

Fig 35. The average ARI for each group of detected cross-communities, where each group contains cross-

communities comprised of the same number of single-attributed communities.

https://doi.org/10.1371/journal.pone.0264771.g035

PLOS ONE Implicit detector of cross-communities

PLOS ONE | https://doi.org/10.1371/journal.pone.0264771 April 19, 2022 35 / 41

https://doi.org/10.1371/journal.pone.0264771.t004
https://doi.org/10.1371/journal.pone.0264771.g035
https://doi.org/10.1371/journal.pone.0264771


We attribute the above, mainly, to ID_CC’s concepts of MKCSS and MRG, which helped in

locating cross-nodes regardless of the number of communities, to which these nodes belong.

As a community grows smaller, its interests become more specific, which is manifested in the

users’ profiles of the Facebook Social circles dataset. Finally, the constant enhancement of

MRG contributed further to the performance of ID_CC. This is because, every time ID_CC

detected a cross-community, it enhanced the MRG accordingly by incorporating newly

detected missing Association Edges.

Limitations of ID_CC. We observed from the experimental results that the value selected

for k in k-clique had an impact on the accuracy of IC_CC. That is, ID_CC’s accuracy was to

some degree k-dependent. We observed that its accuracy kept improving as the value of k
increased up to a certain value and then it kept declining thereafter. After investigating this

phenomenon, we inferred the following: (1) increasing the value of k leads to enhancing

MKCSS (as k increases the MKCSS keeps retaining only strongly associated nodes and dis-

carding other nodes), and (2) as the value of k increases, the percentage of nodes that become

non-member of any MKCSS increases (as k increases, the degree into which nodes are con-

strained and retained within the boundaries of their MKCSSs decrease). Specifically, we

observed that the accuracy kept improving (inference (1)) until a certain value of k where the

percentage of non-member nodes became large enough that resulted in degrading the accu-

racy (inference (2)). That is, the accuracy degrades as the percentage of non-member nodes

increases. To confirm the above, we varied the value of k in the range 3–6. Under each differ-

ent value of k, we performed the following: (1) computed the ARI of the results, and (2)

computed the percentage of nodes that are non-member of any MKCSS. Fig 36 depicts the

findings of the test. As the figure shows, the accuracy of ID_CC kept improving until a certain

value of k and then kept degrading. We will investigate approaches for overcoming this limita-

tion in a future work. We will investigate a mechanism that helps in predicting the optimum

value of k.

Fig 36. ARI and the percentage of nodes that are non-member of any MKCSS under different values of k in the range 3–6.

https://doi.org/10.1371/journal.pone.0264771.g036
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Strengths and Limitations of the methods proposed by Sharma et al. [30] (i.e., GKS,

BRWS, and GLPS). We observed that GKS inferred with acceptable accuracy cross-commu-

nities resulted from the overlapping of communities with rather high degree of common attri-

bute homogeneity. However, the accuracy of its detection was poor for most of the cross-

communities resulted from the overlapping of communities that exhibited high attribute

heterogeneity. We attribute this limitation to GKS’s Katz score, which proved to be very

ineffective in identifying the significant features of attributes, which would be employed for

measuring the similarity between communities. The score is ineffective for determining the

features in the profiles of communities that dictate their relationships. We also observed that

the Katz score is sensitive to small differences between the profiles of an ego and an ‘alter’ in

the Facebook Social Circle dataset. A small change between the profiles of an alter and an ego

resulted in a large change in the Katz score. This was evident in scenarios where two alters

have minor changes in their profiles, yet they achieved significantly different Katz scores. As a

result, the score may mistakenly consider an alter as related to an ego.

We observed that the BRWS method inferred with acceptable accuracy most of the cross-

communities that exhibited too many direct links between internal and external actors. How-

ever, the method had an inconsistency in measuring the affinity between external and internal

target actors through indirect links. This is due to the fact that the bi-random walk technique

adopted by the BRWS method has the limitation of random fluctuations when measuring the

affinities between different external and internal actors through the indirect links connecting

them. As a result, the method may produce misleading affinity scores.

We observed that GLPS inferred with good accuracy most of the cross-communities com-

posed of nodes that have loose dependencies with one another. However, the hypergraph-

based clustering technique employed by GLPS can cause dependencies between nodes. This

resulted in many independent nodes. Moving these nodes to a cross-community required

other dependent nodes to be moved with them, which is incorrect. Moreover, GLPS detected

cross-communities that did not conform to tighter balancing constraints, which caused hyper-

edge to span several cross-communities. This cause the sizes of cross-communities to be incor-

rectly increased.

Strengths and Limitations of the RCF Method. The experimental results revealed that

RCF was successful in building global sequences of context sets and their corresponding

sequences of lattice sets from the datasets. This is attributed to the Concept Analysis technique

adopted by RCF, which helped it in successfully converting the links between a dataset’s

objects into attributes and inferring a set of lattices whose concepts are linked by relations. The

method did so in relations consisted of a small to moderate number of instances of the rela-

tions. However, the method was not successful in inferring sets of lattices, whose concepts are

linked by relations consisted of many instances of the relations. The key limitation of RCF is

that it considers only a limited number of quantifiers. It performed miserably in relations

required a combination of quantifiers not in the considered set.

Strengths and Limitations of the Neo4j Method. The experimental results revealed that

the property graph technique employed by Neo4j was effective in scenarios where edges and

nodes possess different types of meta-information. We observed that the Neo4j’s pattern

matching of nodes while traversing a graph contributed significantly to the accuracy of cross-

communities inferred by the method. This is due to Neo4j’s effective path-oriented queries

and Cypher’s declarative graph query language. The method proved to be effective in cluster-

ing complex networks (e.g., with many levels) into accurate cross-communities. This is

because the ecosystem and its associated functionality on top of Neo4j helped it in storing infi-

nite levels of community overlaps. By analyzing the experimental result, we deduced the fol-

lowing limitations of Neo4j: (1) it allowed only one label per edge and one value per attribute
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property whereas some datasets have multiple labels and values, (2) Cypher adopts no-

repeated-edge semantics, and (3) it had indexing limitations, especially for edges annotated

with attribute terms.

Strengths and Limitations of the DNMF Method. The accuracy results achieved by

DNMF were satisfactory overall. After investigating the results, we deduced this performance

to DNMF’s adoption of the mutual guidance of the following two information types: (1) guid-

ance information learnt through a unified manner: pseudo supervision module (which adopts

unsupervised procedure for uncovering discriminative information), and (2) guidance infor-

mation learnt through community memberships. By observing the experimental results, we

found that DNMF obtained good results when the tradeoff parameter was not assigned large

values. The method did not achieve good results when: (a) the size of values assigned to it was

large, (b) the number of overlapping memberships was large, or (c) the number of overlapping

nodes was large. The method exhibited good execution time. We attribute this to the algorithm

employed by the method, which decomposes the objective function into independent sub-

problems without the need for post-processing.

Strengths and Limitations of the LOCD Method. By analyzing the experimental results,

we found that the accuracy of LOCD kept improving as the number of seed nodes selected by

the method increased. This is because as the number of seed nodes increases, the number of

nodes bordering the seed nodes and share characteristics similar to the detected communities

increases. We also found that LOCD’s number of accurately selected seed nodes increases as

the fuzzy relation threshold increases. Specifically, we found that LOCD inclined to obtain

good results after setting the fuzzy relation threshold to at least 0.87 (we used this threshold in

the evaluations of LOCD). The method outperformed most of the other methods in inferring

cross-communities that contain some nodes belonging to disconnected subnetworks. The

Facebook Social Circles and Friendster datasets exhibited many of such disconnected subnet-

works. We attribute this to the local community detection technique employed by LOCD,

which helps in overcoming the problem of missing global information in disconnected subnet-

works. The major limitation of LOCD stems from the fact that its detection accuracy is highly

dependent on parameters’ setting.

Strengths and Limitations of the CoRel Method. Overall, CoRel achieved outstanding

accuracy results. We attribute this, mainly, to the methodology it employs for constructing tax-

onomies to detect the related terms of each concept. By observing the experimental results, we

found that CoRel successfully inferred the related terms associated with a community’s pro-

file/property terms for many concepts. It extracted distinctive terms for many network nodes

effectively. We deduced that the co-clustering procedure adopted by the method to ignore

inconsistent subtopics played a significant role in its outstanding performance. The major lim-

itation of CoRel stems from its enriching procedure, which did not effectively enforce term

distinctiveness in a number of networks.

Conclusions

The most important types of such multi-profiled cross-communities are the densest holonic

ones with various adaptive multi-social profiles, because they exhibit many interesting proper-

ties. Unfortunately, methods that stress the detection of granular multi-profiled cross-commu-

nities have been under-researched. Most current methods detect multi-profiled communities

without consideration to their granularities. To overcome this, we introduced in this paper a

novel methodology for detecting the smallest and most granular multi-profiled cross-commu-

nity, to which an active user belongs. The methodology is implemented in a system called

ID_CC. The proposed system considers all cross-profiles that come to existence from the
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interrelations between overlapped social profiles (both known and implicitly inferred over-

laps). It employs the novel concepts of MKCSS and MRG, which proved to produce effective

graphical miniatures of communities and their ontological relationships. It also employs the

novel concept of GI, which proved to be an effective mechanism for characterizing the global
relative influence and interaction role of Association Edges in networks.

There are always new users wishing to join cross-communities that match their own social

traits. ID_CC detects cross-community in such a way that it matches a new user’s own social

traits. The larger the number of inferred user’s communities, the denser and more specific is

the multi-profiled cross-community identified by the system for the user. Towards this,

ID_CC implicitly infers an active user’s undeclared and unknown communities that match his

own social traits using novel techniques. It detects cross-communities by analysing hierar-

chically overlapped social profiles to infer all cross-profiles that come to existence from the

interrelations between the communities. It detects the densest multi-profiled cross-communi-

ties from heterogeneous social networks.

To the best of our knowledge, this is the first work that: (1) analyses hierarchically over-

lapped social profiles to detect the densest and most granular multi-profiled cross-communi-

ties, to which an active user belongs, (2) assesses the binary and global influences of the links

connecting community nodes using novel mechanisms, (3) infers missing links prior to detect-

ing cross-communities using novel mechanisms, and (4) employs novel graphical miniatures

that depict communities and their ontological relationships.

We evaluated ID_CC by comparing it experimentally with the following eight methods:

CoRel [21], LOCD [27], DNMF [26], RCF [28], Neo4j [29], GKS [30], GLPS [30], and BRWS

[30]. The experimental results demonstrated that ID_CC predicted cross-communities of

nodes with multiple attributes with outstanding accuracy. The results showed that the accuracy

of each of the nine methods decreased as the number of attributes in the method’s detected

cross-communities increased. However, ID_CC’s accuracy decreased in much smaller rate

than the other eight methods as the number of communities, from which detected cross-com-

munities are comprised increased. It was evident that analysing the hierarchical interrelation-

ships of single-attributed communities using the concepts of MKCSS, MRG, and GI played a

considerable role in the quality of cross-communities detected by ID_CC. We observed from

the results that the value selected for k in k-clique had an impact on the accuracy of IC_CC.

That is, ID_CC’s accuracy was to some degree k-dependent. We will investigate approaches

for overcoming this limitation in a future work.
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