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Abstract. We introduce an algorithm for one-class classification based on binary 

classification of the target class against synthetic samples. We use a process in-

spired by Generative Adversarial Networks (GANs) in order to both acquire syn-

thetic samples and to build the one-class classifier. The first objective is achieved 

by leading the generator’s output into close vicinities of the target class region. 

For the second objective, we obtain a one-class classifier by generating an en-

semble of discriminators obtained from the GAN’s training process. Our ap-

proach is tested on publicly available datasets producing promising results when 

compared to other methods. 

Keywords: One-Class Classification, Generative Adversarial Networks 

1 Introduction 

Classification is a major topic in machine learning, dealing with algorithms that learn 

to assign pre-defined discrete values (categories, classes) to unseen objects (vectors), 

based on a dataset of observed objects with known classes. From the perspective of the 

number of classes involved, one could identify three categories. Two-class, or binary 

classification, is arguably the most intensively studied with a wide range of methods 

available. Given a dataset of observations from two classes, an algorithm will learn to 

separate them by finding a decision boundary in the feature space that minimizes a cost 

function. Secondly, when more than two classes exist, the so-called multi-class classi-

fication problem can be reduced to multiple binary classification problems [1]. Finally, 

if the algorithm learns using observations from a single class only, we have one-class 

classification (OCC). In this case the algorithm will also learn a decision boundary, this 

time trying to separate the known class from everything else. 

One-class classification stands out as different, more challenging and more versatile 

than its binary or multi-class counterparts [2]. In the latter cases we have reasonably 

balanced observations from two or more classes. This helps an algorithm identify those 

feature values that are distinctive to each class and use them to find an optimal separa-

tion boundary between them. One downside of this is that the final product will only 
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distinguish between classes seen during the learning phase. If presented with observa-

tions coming from a new class, it would wrongly categorize them as one of the known 

classes [3]. Conversely, in one-class classification we have information from one class 

only and the algorithm therefore must learn a decision boundary that separates the 

known class from the rest of the world. This allows it to work well regardless of what 

classes of objects it is presented with at runtime. On the other hand, finding a decision 

boundary becomes more difficult [2]. 

As categorized by [4], one-class classification methods fall into 3 large categories. 

Density methods make assumptions on the probability density function (PDF) of the 

known class and use a threshold value to accept or reject new samples. Reconstruction 

methods learn a mapping of data to and from a latent space using the available target 

class data. For new observations it is expected that the reconstruction error will be low 

if the object belongs to the class, and high otherwise. Boundary methods estimate a 

border around the observed single-class data and perform classification by evaluating 

the distance from new observations to that border.  

From a training data perspective, traditional algorithms like SVDD [5] perform rea-

sonably well on low-dimensional datasets but degrade or become intractable in higher 

dimensions. With the advent of deep learning, reconstruction methods based on auto-

encoders have been researched intensively and they achieve relatively good results on 

such datasets. Generative adversarial networks [6] have also been employed to improve 

properties of the latent space in autoencoder-based methods [7] or as a means to train 

the discriminator as a one-class classifier [8]. 

In this paper we propose an adversarial training framework for progressively build-

ing a one-class classifier. We employ a generative model to create out-of-class data in 

a region as near to the in-class data space as possible. We then create a discriminator 

that separates in-class from out-of-class data. In the next step we modify the generative 

model to change its output region, while keeping close to the in-class space. We repeat 

this several times and ensemble all obtained discriminators together. The resulting clas-

sifier achieves promising performance in one-class classification when compared to 

other methods. The main contributions of this paper are: (a) introducing a novel one-

class classification algorithm based on adversarial training, and (b) proving that our 

approach surpasses in performance other similar methods. 

2 Related work 

Generative Adversarial Networks (GANs) [6] sparked a lot of interest in adversarial 

training, albeit they focused mostly on the creation of generative models. There is, how-

ever, significant work carried out on the classification side as well. To the best of our 

knowledge, [9] and [10] are the first attempts to describe the use of GANs in semi-

supervised learning tasks. Given a dataset of K classes, the discriminator is trained as a 

(K+1)-class classifier, where the extra class contains synthetic images. This can result 

in increased classification performance compared to traditional classifiers, particularly 

when the number of class samples is small. Regarding one-class classification, [8] uses 
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a pre-trained GAN for anomaly detection in medical images by comparing a query im-

age versus the closest similar image that can be obtained via the generative process. In 

[7] an encoder-decoder novelty detection architecture is augmented with adversarial 

training of generative processes to minimize pockets of out-of-class samples in the la-

tent space. The one-class classification algorithm proposed in [7], called OCGAN, 

seeks to minimize the chances of drawing false positives from the latent space. Auto-

encoders learn to map the data manifold by looking at discrete samples drawn from it. 

There is however an infinite number of paths to transition between any two such points 

and these transitions may pass through points that do not belong to the manifold. Even 

worse, these points may represent shapes that are out-of-class but occur in the real 

world. A relevant example given by the authors of [7] is a transition between 2 shapes 

representing digit 8 that passes through a shape representing digit 1. These cases will 

normally be labelled by the system as belonging to the target class, hence they are false 

positives. 

To overcome the above issue, additional constraints are placed on the latent space of 

the autoencoder to enforce the representation of in-class samples only. Firstly, the uni-

form distribution of the target data onto the latent space is enforced. This is done by 

bounding the latent space between (-1, +1) and by training the encoder E in an adver-

sarial manner against a latent discriminator, using uniformly distributed data as the real 

dataset. Secondly, it is enforced that the decoded version of samples drawn from the 

latent space resemble the target dataset. This is done by training the decoder, D, adver-

sarially versus a visual discriminator and target data samples. Lastly, another mecha-

nism reduces regions from the latent space that produce out-of-class examples. Such 

regions are actively searched for by using a discriminator to identify the most unlikely 

samples drawn uniformly and decoded from the latent space, versus encoded-decoded 

samples from the target data. Once this discriminator is trained, gradient descent is used 

to find the zones. 

3 A novel approach to one-class classification using GANs 

3.1 Motivation 

The problem of one-class classification can also be formulated as the classification of 

the target class against everything else. While this idea is not challenged by any frame-

work to our knowledge, the focus so far has still been on the target class to inform the 

build of a one-class classifier. We aim to shift this focus to the ‘everything else’ part 

and we can do so by our choice of method: we generate out-of-class samples around 

the in-class subspace, then we create our one-class classifier as a binary classifier be-

tween in-class and out-of-class samples (see Figure 1).  

Generating the out-of-class samples is not trivial though. The quality of the model 

depends on the quality of these samples. Intuitively, we would require them to reside 

in the feature space as closely as possible to the real data manifold and surround it 

completely, thus constraining the classifier to build a tight border around the in-class 

space. To generate such samples, we turn to GANs and make use of one of their other-
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wise undesirable characteristics – the difficulty to achieve convergence. GANs are ar-

guably the most successful generative models currently available but tend to converge 

only on very narrow ranges of hyperparameters, while in the general case they either 

end up in mode collapse or cycle indefinitely through output from outside the real data 

manifold [11]. Our hypothesis is that a non-converging GAN can still get close to that 

manifold and thus might be used as a provider of good quality samples for our binary 

classifier. 

 

 

 
 

Fig. 1. The top side illustrates the traditional process of building a one-class classifier, con-

sidering in-class data only. The bottom side illustrates our approach: we use the in-class samples 
to derive out-of-class samples then we create the one-class classifier as a binary classifier.  

 

Lastly, we consider using the GAN’s discriminator to build the classifier. The tradi-

tional recipe for successful GAN training is to train the generator and discriminator 

alternatively for one step each. Also, the discriminator is supposed to provide only a 

weak separation between generated and real data at any step, such that the generator 

will be able to follow it easily. Moreover, the discriminator is being reused at each 

training step by updating its current position. All these make sense since the discrimi-

nator’s role is to drive the generator’s output towards the real data and a crisp separation 

between the two datasets would harm this goal by failing to provide the generator with 

reliable gradients [12]. In other words, the discriminator’s border needs to pass through 

or be close to the generated samples.  

On the other hand, there is no such constraint related to the real samples. We could 

therefore encourage the discriminator’s border not to pass through their space. This 

would effectively make the discriminator a one-class classifier for our data with low 

type-2 error (low number of false negatives) and presumably high type-1 error (high 

number of false positives), while the discriminator would still be able to provide gradi-

ents to drive the generator. If we repeat this process throughout the model’s training 

and we save the discriminator at each step then we end up with several classifiers, each 

separating the real data from (hopefully) a different region of space. By combining 

these classifiers together in an ensemble, we obtain our one-class classifier (see Figure 

2). The next sub-section provides more details on the proposed algorithm named 

GANOCC – which is a Generative Adversarial Network based algorithm for One-Class 

Classification. 
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Fig. 2. Illustration of our one-class classifier building process in a bidimensional feature 

space. A is our target class, B is real data we are interested in separating from A (invisible during 
training). A generative model creates a cloud of synthetic data C in a region near A. We build a 
classifier (dotted lines) to separate C and A. We use the classifier to further train the generative 
model so that it moves output past its border, and repeat. We combine all classifiers into a one-
class classifier (the thick central polygon) 

4 The GANOCC Algorithm 

The algorithm we propose here is based on the following components: a generative 

model G, a variable number of discriminative models D and an ensemble C of all D 

models, which forms our one-class classifier. Training is performed in an adversarial 

framework inspired by GANs, but with some important changes. G is trained against 

C, a 𝐷𝑘 is created at every epoch k and trained against G, then appended to the ensemble 

C. The paragraphs below provide detailed explanations. 

The generator’s role is to create synthetic samples. It is a vanilla DCGAN with trans-

pose convolutional layers as defined by [13]. Training is performed against C with the 

objective to minimize: 

 

ℒ𝐺 = −𝐸𝑧~𝑝𝑧
[log (𝐶(𝐺(𝑧)))] (1) 

 

 

For each training step, G will move its output into a new region of space. If we 

perform only one such step per epoch though, that region will overlap significantly with 

the previous region and only few novel samples will be generated. We try to reduce the 

overlap by training at each epoch until the loss crosses below a threshold. In the exper-

iments reported in the next section, the threshold is 1. 

The discriminators 𝐷𝑘 are created one for each epoch and trained to separate data 

generated during the epoch from real data. Turning again to empirical observations, 
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simpler models tend to provide better results in the end. We settled for a neural network 

with one hidden layer and 8 neurons with LeakyRelu activations while the output’s 

activation function is the identity. We add the constraint that each 𝐷𝑘 must focus on 

classifying the real data as positive with low rejection rate. This is implemented indi-

rectly by minimizing an objective function that places higher weight on the loss of pos-

itive samples: 

 

ℒ𝐷𝑘
=  −𝛼𝑑𝑎𝑡𝑎𝐸𝑥~𝑝𝑑𝑎𝑡𝑎

[log (𝜎(𝐷𝑘(𝑥)))] − 𝛼𝑧𝐸𝑧~𝑝𝑧
[log (1 − 𝜎 (𝐷𝑘(𝐺(𝑧))))] (2) 

 

where 𝜎 is the sigmoid function while 𝛼𝑑𝑎𝑡𝑎 and 𝛼𝑧 are positive real numbers scaling 

the influence of loss on in-class and out-of-class samples, respectively. 

Training follows the same strategy as for the generative model G: at each epoch k 

we train Dk until the loss on real data and synthetic data drops below a threshold. We 

found 0.1 and 1, respectively, to be reasonable values in our experiments. The thresh-

olds for G and 𝐷𝑘 appear to be correlated. For instance, if we threshold 𝐷𝑘 but train G 

for a single step/epoch then G will eventually be overpowered and stop making any 

progress. 

The ensemble discriminator C is a composition of all 𝐷𝑘 models created during train-

ing. We consider the ideal-case composition to be: 

𝐶(𝑥) =  ∏ 𝑇𝑘 (𝜎(𝐷𝑘(𝑥)))

𝑁𝐷

𝑘=1

(3) 

where 𝑇𝑘  is a threshold function defined as 

𝑇𝑘(𝑥) = {
1, 𝑥 ≥ 𝑡𝑘

0, 𝑥 < 𝑡𝑘
   𝑤𝑖𝑡ℎ   𝑡𝑘𝜖(0,1) (4) 

and 𝑡𝑘 is the threshold value chosen such that 

𝜎(𝐷𝑘(𝑥)) < 𝑡𝑘 , ∀ 𝑥 ∈ 𝑋𝑠  (𝑠𝑦𝑛𝑡ℎ𝑒𝑡𝑖𝑐 𝑑𝑎𝑡𝑎)  (5) 

and 

𝜎(𝐷𝑘(𝑥)) ≥ 𝑡𝑘 , ∀ 𝑥 ∈ 𝑋𝑟(𝑟𝑒𝑎𝑙 𝑑𝑎𝑡𝑎) (6) 

and 𝑁𝐷is the total number of iterations. 
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In other words, if all 𝐷𝑘 separate target data from synthetic data perfectly, we could 

threshold and combine these 𝐷𝑘 such that a sample will be classified as out-of-class if 

it has at least one 𝐷𝑘 classifying it as such. Conversely, a sample will be classified as 

in-class if all epoch discriminators 𝐷𝑘 will classify it as such. The disadvantage of this 

formulation is that it does not allow the calculation of the AUC performance and it only 

leads to a crisp classification. As such, we reformulate the aggregation of 𝐷𝑘 into the 

following formula which allows a soft classification framework: 

 

𝐶(𝑥) =  ∏ 𝜎(𝐷𝑘(𝑥)) 

𝑁𝐷

𝑘=1

(7) 

 

 

which produced better results in our experiments but also introduced an undesired phe-

nomenon: 𝐷𝑘 now assigns a score in the (0,1) range and some versions of 𝐷𝑘 would 

assign higher scores to real out-of-class data than to in-class data. This corresponds to 

situations where the former lies further from the border than the latter (see Figure 3) 

and negatively impacts the system’s performance by creating a slow and steady degra-

dation trend as more epoch discriminators are added. This paper does not propose a 

solution for the issue, which is currently under investigation.  

 

Fig. 3. Simplified illustration of the effect of synthetic data position on the epoch discriminator 

𝑫𝒌. 𝑿𝒐, 𝑿𝒔 and 𝑿𝒓 are arbitrary points belonging to real out-of-class, synthetic and real in-class 

regions, respectively. Left: synthetic data lies on the same side as out-of-class data and 𝑫𝒌 as-

signs a higher score for 𝑿𝒓 than for 𝑿𝒐. Right:  synthetic data lies opposite of real out-of-class 

data and 𝑫𝒌 ends up assigning a higher score for 𝑿𝒐 than for 𝑿𝒓 
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5 Experiments 

5.1 Evaluation method 

We tested our strategy on public multi-class datasets. We select each class in turn as 

the target class and consider all other classes to be novelty. The corresponding class 

training set is used for training while for testing we create a balanced dataset from the 

target class test set plus randomly chosen samples from other classes. Our performance 

measure is AUC - the Area Under the ROC Curve for separation between the target and 

novelty class. We also monitor how this measure evolves during training as more com-

ponents are added to C, as well as the individual AUCs of these components. We take 

advantage of the work and extensive comparison performed by the authors of the 

OCGAN model [7] and compare our algorithm’s performance with the figures pre-

sented by [7]. In our experiments, the number of iterations 𝑁𝐷 has been set to 200. 

5.2 Results on the MNIST dataset 

This dataset [14] contains 10 classes of handwritten digits in 60K sample grayscale 

images of 28x28 pixels. We obtained a mean AUC of 0.9789 which is an insignificant 

0.4% higher than OCGAN [7], and the best AUC on 5 out of 10 classes. Details on 

AUC performance comparisons of our method GANOCC with OCGAN [7] and other 

methods outperformed by the latter, are presented in Table 1. 

 
Table 1. AUCs on the MNIST dataset by our method versus OCGAN and other methods 

which are outperformed by OCGAN. Compared to the latter, we get better results on 5 out of 

10 classes and achieve a minor performance improvement overall, mostly due to scores on dig-
its 2 and 8. 

 0 1 2 3 4 5 6 7 8 9 MEAN 

OCSVM [15] 0.988 0.999 0.902 0.950 0.955 0.968 0.978 0.965 0.853 0.955 0.9513 

KDE [1] 0.885 0.996 0.710 0.693 0.844 0.776 0.861 0.884 0.669 0.825 0.8143 

DAE [16] 0.894 0.999 0.792 0.851 0.888 0.819 0.944 0.922 0.740 0.917 0.8766 

VAE [17] 0.997 0.999 0.936 0.959 0.973 0.964 0.993 0.976 0.923 0.976 0.9696 

PixCNN [18] 0.531 0.995 0.476 0.517 0.739 0.542 0.592 0.789 0.340 0.662 0.6183 

GAN [8] 0.926 0.995 0.805 0.818 0.823 0.803 0.890 0.898 0.817 0.887 0.8662 

AND [19] 0.984 0.995 0.947 0.952 0.960 0.971 0.991 0.970 0.922 0.979 0.9671 

AnoGAN [8] 0.966 0.992 0.850 0.887 0.894 0.883 0.947 0.935 0.849 0.924 0.9127 

DSVDD [20] 0.980 0.997 0.917 0.919 0.949 0.885 0.983 0.946 0.939 0.965 0.9480 

OCGAN [7] 0.998 0.999 0.942 0.963 0.975 0.980 0.991 0.981 0.939 0.981 0.9750 

GANOCC 0.996 0.997 0.969 0.97 0.976 0.975 0.986 0.977 0.961 0.982 0.9789 

5.3 Results on the CIFAR-10 dataset 

This is also a 10-classes images dataset [21] containing 50K samples of 32x32 res-

olution and 3 color channels. Images are real-world photos of objects in that class. It is 

a more difficult set than MNIST not only due to its higher dimensionality but also be-

cause of the various backgrounds surrounding the subjects. This is reflected in the 

AUCs we obtained, which are significantly lower than for the MNIST dataset. Never-

theless, our algorithm achieves a mean AUC of 0.742, which is a significant 13% in-

crease when compared to OCGAN. 
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Table 2. AUCs on the CIFAR10 dataset, our method versus OCGAN and other methods 

which are outperformed by OCGAN. Compared to the latter, we get better results on 6/10 clas-
ses and a significant 13% higher mean AUC 

6 Discussion 

In this paper we introduce a Generative Adversarial Network - based algorithm for one-

class classification called GANOCC, that turns the problem into a binary classification 

problem making use of a generative model to create counter-samples. We use a modi-

fied adversarial training algorithm where the generator provides the counter-samples 

while the discriminators are progressively collected into the one-class classifier model. 

Our experiments show that the method surpasses the OCGAN model [7] which in turn 

is superior to other methods illustrated in Tables 1 and 2, and achieves significant im-

provements on real-world pictures. The same experiments also reveal some interesting 

aspects, which we discuss here.  

 

 

Fig. 4. Evolution of the system AUC (orange) across 200 epochs, compared to the AUC of 

individual discriminators created at each epoch (blue). The system AUC improves significantly 

during the first epochs, while showing only minor improvements during the later epochs. 

 

Firstly, the authors of OCGAN [7] notice the relatively poor performance of all recon-

struction-based methods on classes whose features significantly overlap those of other 
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 PLANE CAR BIRD CAT DEER DOG FROG HORSE SHIP TRUCK MEAN 

OCSVM [15] 0.630 0.440 0.649 0.487 0.735 0.500 0.725 0.533 0.649 0.508 0.5856 

KDE [1] 0.658 0.520 0.657 0.497 0.727 0.496 0.758 0.564 0.680 0.540 0.6097 

DAE [16] 0.411 0.478 0.616 0.562 0.728 0.513 0.688 0.497 0.487 0.378 0.5358 

VAE [17] 0.700 0.386 0.679 0.535 0.748 0.523 0.687 0.493 0.696 0.386 0.5833 

PixCNN [18] 0.788 0.428 0.617 0.574 0.511 0.571 0.422 0.454 0.715 0.426 0.5506 

GAN [8] 0.708 0.458 0.664 0.510 0.722 0.505 0.707 0.471 0.713 0.458 0.5916 

AND [19] 0.717 0.494 0.662 0.527 0.736 0.504 0.726 0.560 0.680 0.566 0.6172 

AnoGAN [8] 0.671 0.547 0.529 0.545 0.651 0.603 0.585 0.625 0.758 0.665 0.6179 

DSVDD [20] 0.617 0.659 0.508 0.591 0.609 0.657 0.677 0.673 0.759 0.731 0.6481 

OCGAN [7] 0.757 0.531 0.640 0.620 0.723 0.620 0.723 0.575 0.820 0.554 0.6566 

GANOCC 0.778 0.649 0.655 0.658 0.769 0.677 0.810 0.697 0.840 0.709 0.7420 
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classes. Two relevant examples are digits 2 and 8 from the MNIST dataset – many other 

digits can be represented as a cut of digit 8, such as digits 3 and 9. The results proposed 

in [7] and other results mentioned in the same work are in line with this observation. 

The reason for this is, according to authors, that the latent space for complex digits will 

inherently learn to represent simpler digits as well. For our method though, this is ex-

actly the setup where it tends to outperform all others. We assume this to be an effect 

of the same cause: during training, the generator will learn to output images that resem-

ble distorted versions of the original digit and those simpler digits will be among them. 

Therefore, the discriminator will focus on separating them from the real data and pro-

duce higher performance in the end. This is empirically supported by results on MNIST, 

where our model outperforms OCGAN with the largest margin precisely on digits 2 

and 8 (see Table 1). 

Secondly, in our experiments the generator acts as a resource that provides the max-

imum benefit during the first epochs but gets exhausted as training progresses. In every 

experiment the system improved sharply during the first steps, followed by stagnation 

or a steady decay afterwards (see Figure 4). We assume this is so because, in our im-

plementation, the generator eventually reaches an area where it creates samples that 

share more latent features with the in-class data than with the out-of-class data, and this 

leads to the creation of discriminators on the “wrong side” (see Figure 3, right). A better 

control of the generator’s output seems to be the key here to drive performance higher. 

7 Conclusion and future work 

 

We presented a novel one-class classification method based on binary classification of 

the target class against synthetic samples generated via adversarial training. We used a 

modified GAN training framework to create synthetic samples and provide the building 

blocks for our classifier. The generator is responsible for the creation of synthetic out-

of-class data and is driven by the discriminators in various regions of the feature space 

that attempt to not overlap the real data manifold. We do not reuse discriminators but 

create a randomly initialized discriminator for each training epoch. Discriminators are 

progressively collected and combined in a multiplicative model. Experiments show that 

our method surpasses a similarly purposed recent method OCGAN [7] on two widely 

used benchmark datasets MNIST and CIFAR10, which in turn compares favorably with 

other methods for one-class classification as illustrated above by Tables 1 and 2. The 

most important contributions of this paper are: (1) introducing a classification training 

algorithm that behaves differently and does not match output with the traditional mod-

els, and (2) our approach achieves an overall favorable score when compared to other 

density and reconstruction-based methods on real-world images (see Tables 1 and 2).  

Future work concerns the application of our new method and the study of its poten-

tial on other complex datasets including non-image data. In particular we plan to ex-

plore the application of an adapted form of the GANOCC algorithm on a large, rich and 

complex clinical dataset formed of routine primary care records collected in UK, called 

CPRD (Clinical Practice Research Datalink https://www.cprd.com/), for predicting risk 



11 

of dementia. This future work is to build on our ongoing research of using Machine 

Learning and Statistical Learning for building a tool for predicting risk of dementia. 

This condition, which has higher health and societal care costs compared to cancer, 

stroke and chronic heart disease taken together, represents a challenging to predict class 

within the primary care records data. The mentioned risk prediction problem could ben-

efit of exploring novel and promising one-class classification techniques, including the 

GANOCC algorithm proposed here.  

Moreover, as ongoing research work, we look also into investigating why our algo-

rithm behaves differently from traditional classifiers and what is its full potential for 

extension and for further applicability. 
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