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Abstract. Developing digital biomarkers that would enable reliable de-
tection of autism—ASD early in life is challenging because of the vari-
ability in the presentation of the autistic disorder and the need for sim-
ple measurements that could be implemented routinely during checkups.
Electroencephalography, widely known as EEG, is an electrophysiolog-
ical monitoring method that has been explored as a potential clinical
tool for monitoring atypical brain function. EEG measurements were
collected from 101 infants, beginning at 12 to 15 months of age and
continuing until 36 months of age. In contrast to previous work in the
literature that analyses EEG signals, our approach considers EEG—as—
an—image, using an appropriate signal transformation that preserves the
spatial location of the EEG signals to create RGB images. It employs
Residual neural networks to detect atypical brain function. Prediction of
the clinical diagnostic outcome of ASD or not ASD at 36 months was
accurate from as early as 12 months of age. This shows that using end-to-
end deep learning is a viable way of extracting useful digital biomarkers
from EEG measurements for predicting autism in infants.

Keywords: Autism spectrum disorder (ASD) - Deep Learning - EEG -
Residual Networks - Early Stopping.

1 Introduction

Autistic spectrum disorder (ASD) refers to a range of conditions characterised
by a reduced level of social interaction, impaired communication and language,
as well as a narrow scope of repetitive interests and activities. Symptoms de-
velop within the first five years of life and often persist into adolescence and
adulthood. Intellectual functioning is extremely variable, ranging from profound
impairment to superior abilities. One in every 160 children in the world is di-
agnosed with ASD [3]. This estimate reflects an average prevalence, it varies
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greatly across studies, and there are some studies that report much higher fig-
ures [I5]. High-risk infant siblings studies have demonstrated that the defining
behavioural features of ASD become apparent during the first and second years
of life [9]. As ASD is behaviourally and not biologically defined, the diagno-
sis in the first years of life, when intervention should be most effective remains
challenging [12I13]. In particular, milder forms of ASD are especially difficult to
detect while young because of diagnostic uncertainty that often surrounds the
diagnosis of neurodevelopmental disorders [9]. However, even in that case, devel-
oping useful biomarkers for detecting the occurrence of emerging ASD symptoms
might be helpful for implementing early interventions tailored to the individual’s
needs or to trigger more sensitive behavioural assessments [I1].

During an EEG, electrical signals from the brain are recorded through a
circular array of small metal discs, called electrodes, placed on the scalp. This
activity is generated by brain cells, even when we are asleep, and appears on an
EEG recording as waveforms. This has proven to be a low cost, reliable method
for assessing various neurodegenerative diseases. Its non—invasive and low cost
manner makes it a very good candidate for the detection of ASD in infants.

This paper proposes an end—to—end data driven approach to finding reliable
and robust digital biomarkers in EEG signals of infants (12 to 15 months old)
at high familial risk of developing ASD. Most previous investigations have fo-
cused on uni-dimensional biomarkers [45], which, albeit successful in predicting
a higher chance of developing autism symptoms, fall short of achieving very high
predictability or helping to identify clinical subgroups. A data transformation
procedure inspired from [2] is applied to translate the fast Fourier transform
(FFT) of raw EEG signal windows into images, whilst preserving the spatial lo-
cation of the signal on the scalp. The result is a sequence of topology—preserving
multi-spectral images, as opposed to standard EEG analysis techniques that
ignore such spatial information. Once such an EEG “movie” is obtained, Deep
Residual Networks with convolutional layers [6] are used to learn robust repre-
sentations from the sequence of images, or frames.

The next section describes the EEG data collection process. Section 3 intro-
duces the proposed framework. Experimental results are presented in Section 4.
The paper ends with concluding remarks and future work.

2 EEG Data Collection in Infants

The EEG data used in this work were collected in the first phase of the British
Autism Study of Infant Siblings—BASIS (www.basisnetwork.org). This is a
large scale collaborative project aiming to understand the biological origin of
ASD by following up longitudinally cohorts of infants at elevated family risk for
this disorder. Infants participating in the study had an older sibling with ASD
(high risk group; HR) or without ASD (low risk group; LR). Families, enrolled
from various regions when their babies were younger than 5 months of age, were
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invited to attend multiple research visits (6-9, 12-15, 24 and 36 months) until
their children reach 3 years of age or beyond [4J5].

At the time of enrolment, none of the participating infants had been diag-
nosed with any major medical or developmental condition. All infants belonging
to the HR group had an older sibling with a community clinical diagnosis of an
autism spectrum disorder [4]. Infants in the LR group were recruited from a vol-
unteer database at the Birkbeck Centre for Brain and Cognitive Development.
Inclusion criteria included full-term birth (with one exception), normal birth
weight, and lack of any ASD within first—-degree family members, as confirmed
through parent interview about family medical history [3l5]. Children were only
given a formal diagnosis of ASD at 36 months.

Continuous EEG was sampled while infants were sitting on their parents’ laps
at a distance of 60cm from a 40 x 29cm monitor watching three video stimuli,
each lasting for 30-40sec: (1) woman singing nursery rhymes or playing peek-a-
boo (‘soc’ social video); (2) brightly coloured toys moving and producing sounds
(‘toy’ nonsocial video); (3) the same sounding toys manipulated by a human
hand (‘hands’ nonsocial video). Three triplets of video stimuli were presented
in random order within the triplet (1-2-3, 2-3-1, etc.), but constant across
the triplets for each participant. This resulted in nine 30-40sec EEG segments.
Infants’ behaviour during EEG session was recorded with a video camera.

EEG signals are inherently noisy because of EEG’s sensitivity to both ex-
ternal (electrical lines, ambient noise) and internal influences (facial muscles,
eyes, heartbeats). In an attempt to eliminate the inherent noise and capture the
true distribution of EEG signals, the same EEG experiment can be repeated
multiple times and the results can be averaged across trials. However, obtain-
ing EEG data from infants presents a whole new range of challenges on top of
those discussed above, such as problems with spontaneous crying, laughing, not
engaging with the experiments, etc, and in general it is difficult to get infants
to do several trials of the same experiment as they get tired and lose interest
quickly. All these factors contribute to losing much of the time dependency of
the data, since unwanted behaviour in infants takes place at different periods of
time, and indicate that after data processing and behaviour analysis the clean
signal available for modelling is quite scarce.

EEG was recorded using a 128-electrode HydroCel Geodesic Sensor Net (EGI,
Eugene, OR) with respect to the vertex and sampled at 500Hz. Twelve ridge
electrodes most often contaminated by artefacts were excluded from analysis re-
sulting in a 116-electrode layout. Data preprocessing and analysis was performed
using FieldTrip (http://fieldtrip.fcdonders.nl) as well as various Python
libraries. The behavioural coding results were synchronised with EEG, and the
periods when the baby was not looking at the screen, performed gross body,
head, or arm movements, or cried, as well as the periods of interference, were
excluded from analysis. The raw EEG was also visually inspected for artefacts.

One hundred and one infants from BASIS took part in the study (53 HR, and
48 LR) at the 12 to 15-month time—point. Data from 13 infants were excluded
because of technical failures (6 HR and 7 LR). Two infants fell asleep during the
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EEG session (1 HR, 1 LR) and one participant in the HR group missed diag-
nostic assessment at the 36—month visit. From the rest of the subjects sufficient
artefact—free EEG data were obtained in 39 LR and 39 HR infants.

Each uninterrupted data period was segmented into 1-sec (500 samples each)
segments with 50% overlap starting from the beginning of a clean EEG segment.
The end part of the period shorter than one EEG epoch was not analysed. Fast
Fourier transform (FFT) was computed for each 1-sec segment after removal of
the mean (baseline correction) and application of the Hanning window.

3 Framework of Proposed Approach

Cortical activity related to memory operations is present primarily in three fre-
quency bands: Theta (4-7Hz), Alpha (8-13Hz) and Beta (13-30Hz) [§]. These
channels were used in this work, and a noise removal process was used since
EEG signals from infants are particularly noisy, as mentioned above. However,
removing noisy EEG windows may result in losing part of the time dependency
between samples. Our approach considers windows of an EEG signal independent
of each other and only uses the order of the samples to represent the temporal
aspect of the EEG signal. This was considered reasonable since the behavioural
noise happens at different times in the experiment for each infant. An overview
of the EEG dataset is presented in Table [I|according to the type of audio/video
stimulus detailed previously. Data shown, [8], are split according to the diag-
nosis participants received at three years of age: Low Risk-no ASD (LR), High
Risk initially but no ASD diagnosis at age 3 (HR-TD), Atypical development at
age 3 but still no ASD (ATY), and High Risk ASD diagnosed with ASD at age
3 (ASD). The FFTs of the 1-sec EEG windows were further transformed into
RGB images as explained below.

LR HR-TD ATY ASD

#S H#W| #S  H#W| #S #W| #S #W
soc |39 2755| 16 1248 11 853| 12 1137
hand| 39 3061 16 813 | 11 867| 12 1092
toy |39 1865 16 572 | 11 441| 12 660
Table 1. Overview of the EEG data. #S denotes the number of subjects with that
diagnosis at 36 months; #W is the number of non-noisy EEG windows, i.e. selected
windows sampled at 500Hz from all recordings of each participant, excepting noise.

3.1 Transforming EEG signals into topology-preserving images

Traditionally the raw values of electrodes or their spectral measures are used
to represent EEG feature vectors in EEG data analysis. However, this approach
does not take into account the spatial properties of the data— each electrode
being located above a region of the brain and having neighbouring regions.
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Following in the footsteps of [2], we transformed the EEG signals into an
image that preserves the spatial structure of the data, and we used multiple
colour channels to represent the spectral dimension, as shown in Figure

To ensure that the relative distance between electrodes (spatial aspect) is
preserved within each EEG window, we used the Azimuthal Equidistant Projec-
tion (AEP) also known as Polar Projection, borrowed from mapping applications
[14]. At either pole, the Equator, or some intermediate point, the AEP is shaped
into a plane that is typically tangential to the globe at that point. Distances
between the projected middle and every other point are retained in the AEP.
Similarly, the shape of the cap worn on a human’s head can be approximated by
a sphere (in our case), and the same method may be used to compute the projec-
tion of electrodes positions on a 2D surface that is tangential to the top point of
the head using the same method. The relative distances of all pairs of electrodes
would not be accurately maintained since the distances between the points on
the map are only preserved with respect to a single point (the middle point). We
obtained 2D predicted electrode positions using AEP applied to 3D electrode
locations as in [2]. The spatial distribution of behaviours over the cortex was
represented by the image’s width and height. For interpolating the distributed
power measurements over the scalp and estimating the values in—between the
electrodes over a 224 x 224 mesh, we used the Clough—Tocher scheme [I]. This
process was repeated for each of the three frequency bands of interest, yielding
three topographical activity maps for each. After that, the three spatial maps
were combined to produce a three—channel view. A graphical representation of
the entire pipeline is shown in Figure |1} As described in the following section,
this three—channel EEG image was fed into a deep network architecture.

ResNet-50
Er i .
.

2D Polar coordinates > St e e e e L EEG Images

. . Alpha (8-13Hz) >
Beta (13-30Hz)
‘ HydroCel Geodesic Sensor Net

(128-electrode)
EEG spectrum
128 channels

|
Fig. 1. EEG processing and training pipeline.

128 Electrodes raw EEG

For simplicity and speed we have merged all non-ASD classes (HR-TD, ATY
and TD) into one class named NON-ASD. By creating the NON-ASD class and
trying to separate it from the ASD, the typical ASD detection problem based on
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EEG signal windows is transformed into a binary image classification problem.
The new class distribution, for the three stimuli is 81% NON-ASD and 19%
ASD, as shown in Table

NON-ASD ASD
#5 #1 | #S #1
soc 66 4856( 12 1137
hand 66 4741 12 1092
toy 66 2878| 12 660
Table 2. Overview of the EEG images based on the number of non-noisy epochs kept
from each subject. #S denotes the number of subjects with that diagnosis at 36 months
and #I is the number of total images (transformed from non-noisy EEG windows).

3.2 Deep learning considerations

Convolutional Neural Networks (CNN) can detect and extract local informative
patterns and excel when we have a grid or volume-like input and the features
in this input space are locally correlated. They were considered a good fit for
the binary classification problem considered in this paper. However, they suffer,
as do other deep neural network models, from the vanishing gradient problem
caused by the gradient of the error w.r.t. weights travelling through so many
layers of representation and gradually becoming too small for learning.

weight layer

Fig. 2. Shortcut connection in a ResNet, where h(z) = x.

Residual Neural Networks—ResNets [6] alleviate the vanishing gradient sit-
uation. The ResNet architecture is similar to traditional multi-layer CNN but
it includes the so-called shortcut or skip connections. ResNet is based on the
assumption that by attempting to estimate residual functions that were not ad-
equately captured by blocks of CNN layers, one can approximate the desired
mapping (see Figure .

To this end, the ResNet architecture is using an identity mapping as a layer:
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y:f(ani)+xa (1)

where the input layer is x, the output layer is y, the weights are W, and the
residual mapping to be learned is f(x,W). The fundamental principle is that
by stacking non-linear layers, identity mapping will correct the degradation of
the gradient. One might imagine an extreme case where, if identity mapping
is the ideal mapping, y, this model would better capture reality by simply set-
ting f(x, W) to 0, while directly learning such a mapping without the use of
the identity mapping would be more complicated [6]. The shortcut/skip connec-
tions approach is used to train the model based on this identity mapping, which
facilitates the propagation of signals in both forward and backward passes [7].

When ResNets were first introduced [6], three distinct models were released
to demonstrate that the effect of vanishing gradients can be alleviated at various
levels of depth, and that increasing the model depth is not always necessary. In
this instance, preliminary experiments with a 50-layer ResNet (ResNet—50), and
101-layer and 152-layer ResNets showed that all three architectures, when tested
perform similarly, thus we opted for the ResNet—50 architecture (over 23 million
weights), since it has only 3.8 billion FLOPs, as opposed to 11.3 billion FLOPs
for the 152-layer counterpart.

In order to speed up training, transfer learning [16] was adopted. The types
of convolutional kernels that the CNNs learn when trained on images, especially
in the layers closest to the input, are very similar to edge detectors, which have
been traditionally hand crafted by computer vision experts and used in machine
vision systems. The benefits of transfer learning were also confirmed in our pre-
liminary experiments, where by leveraging existing pre-trained models, on well
established datasets, we were able to dramatically reduce training time.

To make full use of the ResNet-50 architecture, which was trained on Im-
ageNet, the EEG images were created with the same width and height as the
ImageNet images, which this ResNet model (from PyTorch model zoo) had been
trained on. The PyTorch [10] machine learning library was used to implement
and train the neural architectures mostly because of its ease of use and rich
library of pre-trained models developed by different researchers.

Hence, each EEG image has a size of 224 x224 x 3, and the original 1000 classes
ResNet—50 output layer changed to a layer with two outputs. The categorical—-
cross entropy was used as loss function, as in the ImageNet problem. Lastly, in
the experiments, presented in the following section, the class imbalance issue was
addressed by the Weighted Random Sampler (WRS) provided by the PyTorch
library [I0], which gives specific weights to every EEG image (belonging to a
class) in the dataset thereby producing a balanced mini-batch when sampling.
Moreover, the WRS with replacement was used, i.e. sampling the same data
points multiple times to create a balanced mini-batch, and thus, a balanced
training set of EEG images overall.
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Fig. 3. Example of training and testing accuracy on the balanced dataset with 80/20
split. The markers indicate the early stopping (ES) locations of the three ResNets (soc,
hand, toy).

4 Experiments and Results

As mentioned above, a standard ResNet—50 architecture, pre-trained on Ima-
geNet, showed in preliminary experiments higher performance than other ar-
chitectures tested, whilst it required a lot less training (mainly fine-tuning)
compared to a ResNet—50 trained from scratch. The standard Adam optimizer
provided by PyTorch [10], with a learning rate of le=® and mini-batch size of
100, was used for training, and a separate ResNet—50 was trained for each video
stimulus (soc, hand, toy).

In this paper, two types of experiments are reported: (i) split each par-
ticipant’s samples into 80% for training and 20% for testing; (ii) leave—one—
participant out (i.e. all one—second EEG windows which belong to that partic-
ipant and have been transformed into images are left out), train on data from
the rest of the participants, and evaluate performance on all windows of the
participant that was left out, and repeat the procedure for each participant.

All experiments were run with and without Early Stopping (ES), to alleviate
over-fitting, which was most evident in the leave—one—out experiments. Early
stopping requires a validation set, which includes images that are not used for
training. A small balanced validation set is built for each ResNet—50 trained on
a video stimulus by removing 12 ASD images and 12 NON-ASD images from the
training set of that stimulus (see Table. Training starts on the remaining EEG
images using the validation set’s predictions as the criterion for early stopping.
This criterion is monitored during the training process. As training progresses,
fluctuations in the prediction accuracy of the validation set occur. When the
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Training (%) Testing (%)
ID |NO-ES ES Change|NO-ES ES Change
soc | 100.0 100.0 0.0 80.0 82.0 +2.0
hand| 99.0 100.0 -1.0| 82.0 81.0 -1.0
toy | 100.0 100.0 0.0 78.0 79.0 +1.0

Table 3. Average accuracy per video stimulus (calculated over all participants) for
ImageNet pre—trained ResNets—50, trained with and without early stopping (ES/NO-
ES) on each video stimulus, and tested using the 80/20 split.

networks begins to over—fit the data, the validation accuracy starts degrading.
If that happens for a specified consecutive number of epochs, the training is
stopped, and the parameters of the model with the best validation accuracy are
returned and used on the test set.

The results for the 80/20 split can be seen in Table [3| with and without ES.
The table shows that ES produces only marginally improved performance when
training on EEG images of the toy and social datasets. As shown in Figure [3]
the approach is resilient to over-fitting when a 80/20 split is used.

However, over—fitting becomes significant when leave—one—participant out is
used, especially when participants of the minority class should be classified (i.e.
predict ASD at 3 years of age). Table 4] presents average precision, recall, F1-
score and accuracy across all participants with ES and without ES (NO-ES),
revealing the beneficial role of ES in the more realistic leave—one-participant
scenario. Looking closer the performance of ResNets when tested with ASD
participants, results in Table [5] and Table [6] reveal how the networks massively
miss-classify ASD as NON-ASD when training is done without early stopping
(NO-ES). Introducing early stopping significantly improves performance, partic-
ularly on the minority class, as shown in the same tables. It is worth noticing
that since all the EEG data of one participant are left out each time and this
is a binary problem, a test score over 50% can be considered a good prediction
since the model classifies more than half the EEG images of that participant to
the ASD class.

Figure []illustrates training and testing accuracies per epoch for four random
ASD participants. It shows that the network learns the training set quite rapidly
but the predictions on the test images of the participant that was left out fluc-
tuate a lot, resulting in a rapid over—fit as the network focuses on predicting the
majority class. The use of the simple early stopping technique adopted appears
to help, and in Figure [4 one can see where the adopted early stopping technique
terminates the training process (indicated by the four ES markers in the figure)
within the specified maximum of 100 epochs.

5 Conclusions

The proposed framework considered EEG—as—an—image by transforming power
spectra of EEG signal windows into RGB images, and formulated the ASD
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Fig. 4. Training and Testing accuracy (for the soc video stimulus) with leave—one—
participant out cross-validation for four ASD participants. The markers indicate the
early stopping (ES) locations of the soc stimulus ResNet.

NO-ES Precision|Recall |F1-score ES Precision|Recall |F1-score
NON-ASD 0.87| 1.00 0.93 NON-ASD 1.0 1.0 1.0
ASD 1.00f 0.17 0.29 ASD 1.0 1.0 1.0
Accuracy 0.87| 0.87 0.87| |Accuracy 1.0 1.0 1.0
Macro avg 0.93| 0.58 0.61 Macro avg 1.0 1.0 1.0
Weighted avg 0.89| 0.87 0.83 Weighted avg 1.0 1.0 1.0

Table 4. Average precision, recall and F1 scores (calculated over all participants and
video stimuli) for ImageNet pre—trained ResNets—50, trained with and without early
stopping (ES/NO-ES), and tested using leave—one—participant out.

prediction problem in infants as binary classification. It employed transfer learn-
ing using ResNet—50, pre-trained on industry standard ImageNet data. Issues
of class imbalance and over—fitting were alleviated with some simple techniques.
Performance was evaluated using hold—out and leave—one—out methods and promis-
ing results were produced. This implies that there is latent structure in the
EEG images, and therefore presumably the underlying brain processing, that
can serve as a biomarker of ASD in infancy. Future work will attempt to treat
class imbalance and improve generalisation using more advanced schemes. Also,
the multi-class problem will be an objective of future work, together with an
expansion of the sample of the ASD participants to reduce class imbalance.
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ilies for their enormous contribution and commitment to the project. BASIS is
supported by the BASIS funding consortium led by Autistica (www.autistica.
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Training (%) Testing (%)
ID |NO-ES ES Change|NO-ES ES Change
hand| 100.00 92.04 -7.96| 49.48 72.86 +23.37
soc | 99.59 86.85 -12.74| 40.54 73.76 +33.22
toy | 99.80 87.24 -12.55| 36.59 71.32 +34.74

Table 5. Average accuracy per video stimulus (calculated over all ASD partici-
pants) for ImageNet pre-trained ResNets—50, trained with and without early stopping
(ES/NO-ES) on each video stimulus, and tested using leave—one—participant out.

org.uk), Autism Speaks (grant no: 1292/MJ) and by the UK Medical Research
Council (grant no: G0701484). Support of the NVIDIA Corporation that donated
the Tesla K40 GPUs used for this research is also gratefully acknowledged.

Training (%) Testing (%)
ID |NO-ES ES Change|NO-ES ES Change
6012| 99.57 75.85 -23.72| 48.92 76.01 +27.08
6092| 99.76 88.24 -11.51| 41.11 72.18 +31.07
6122(100.00 90.88 -9.12| 45.20 74.25 +29.05
6152(100.00 87.73 -12.27| 39.05 73.74 +34.69
6162(100.00 88.74 -11.26| 14.15 57.39 +43.24
6172( 99.72 95.37 -4.35| 48.52 73.38 +24.86
6222| 99.89 94.53 -5.36| 43.06 74.13 +31.07
6232(100.00 89.93 -10.07| 38.41 60.29 +21.88
6262| 99.72 90.54 -9.18| 47.55 81.62 +34.07
6272(100.00 98.76 -1.24| 62.38 74.52 +12.14
6292| 99.00 92.51 -6.49| 59.49 88.21 +28.72
6372| 99.96 75.28 -24.68| 27.22 67.11 +39.90

Table 6. Average accuracy of ResNets in correctly classifying images of each par-
ticipant with ASD (across all three stimuli) trained with and without early stopping
(ES/NO-ES), and testing by leaving all data of one participant out, as indicated by
the ID.
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