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RESUMO. Estudo sobre análise de persistência de dados climáticos de Salvador, Brasil. A geometria 
fractal tem sido usada frequentemente para caracterizar e descrever fenômenos naturais. Suas aplicações 
variam desde dimensões microscópicas até a compreensão de fenômenos macroscópicos. Baseado nesse 
princípio nós estudamos um conjunto de dados climáticos, medidos em Salvador, Bahia, através dos 
métodos da análise espectral e da análise re-escalonada.  As séries temporais são os parâmetros físicos da 
precipitação, pressão atmosférica, evaporação, umidade, radiação solar, temperaturas máxima, mínima e 
média coletadas mensalmente durante um período de 30 anos, de 1961 a 1990. Para cada parâmetro, nós 
calculamos o expoente de Hurst H e o expoente espectral b, atestando a variabilidade dos dados 
disponíveis. Os resultados para H variaram de 0.52 a 0.91, para ambos os métodos, de modo que todos os 
parâmetros se comportaram como persistentes. A importância do estudo mostrou que diferentes métodos 
propiciaram os mesmo resultados, o que é um fato significativo para sistemas complexos. O conhecimento 
de H permite o cálculo da dimensão fractal, o que quantifica a complexidade do fenômeno climático.  
Palavras-chave: dimensão fractal, expoente de Hurst, climatologia. 
 
 
ABSTRACT. Fractal geometry has been used frequently to characterize and describe natural models. Its 
applications range from microscopic dimensions to the understanding of macroscopic processes. Following 
this principle, we studied a set of climatic data, collected in Salvador, Bahia, through the methods of rescaled 
analysis and spectral analysis. The time series are physical parameters of precipitation, atmospheric 
pressure, evaporation, humidity, solar radiation, maximum, minimum and average temperatures collected 
monthly over a span of 30 years, from 1961 to 1990. For each parameter, we computed the Hurst exponent 
H and the spectral exponent b, attesting the variability of the available data. The results for H varied between 
0.52 and 0.91, for both methods, in such a way that all the parameters behave as persistent. The importance 
of such study is to show that different methods provide the same results, which is a significant fact for 
complex systems. The knowledge of H also provides the computation of the fractal dimension, thus allowing 
us to quantify the complexity of the climatic phenomena.  
Key-words: fractal dimension, Hurst exponent, climatology. 
 
 

INTRODUCTION 
 

The mechanisms related to the weather are, in 
a first glance, completely random. However more 
precise analyses have revealed some order in 
those phenomena, which is expressed with the 
form of scale invariance. This scale invariance is 
the foundation of fractal geometry. Fractal 
geometry is the field of Mathematics that studies 
the properties and behavior of fractals. It 
describes many situations in sciences and 
technology that cannot be explained by classical 
geometry. The conceptual history of fractals 
comes from the measurement attempts of objects 
which traditional definitions based on Euclidean 
geometry fail. A fractal is an object that can be 
divided into pieces, each one similar to the 
original object.  
 

Fractals have infinite details, are self-similar 
and scale independent. In many cases a fractal 

can be generated by a repetitive pattern, typically 
a recurrent or iterative process. The theory of 
fractals has been applied to the description of 
some physical processes in Geosciences, in 
particular to analysis of geometrical relations in 
different observation scales. For example, it is 
possible to understand in a process how a 
microscopic behavior can influence a macroscopic 
behavior.  

As above mentioned many physical variables 
seem to have a scale behavior, which means that 
their power spectra P(f) are proportional to the 
frequency f: 
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where b is the spectral exponent (Feder, 1989). 
This implies that although a sequence of values of 
a given physical property is non-periodic, it 
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preserves its statistics in an observed range 
scale. This phenomenon is related to fractal 
geometry. When the value of the spectral 
exponent is around 1, limited between 0.5 and 
1.5, the considered property is said to behave as 
1/f noise. One method to quantify the correlation 
or long range persistence is through the re-scaled 
analysis (R/S), which provides the so-called Hurst 
exponent H. A non-correlated signal, that is, 
without persistence, like the white noise has 
H=0.5. 

The Hurst exponent and the spectral exponent 
are related by  

,12 += Hb
cum

 

where bcum is the cumulative spectral exponent of 
the sequence with spectral exponent b. 

Beer (1994) used the R/S analysis for the 
characterization of hydrocarbon reservoirs. The 
spatial series data showed to be persistent, where 
the value of H varied from 0.76 to 0.94, depending 
on the physical parameter. He also calculated the 
fractal dimension of the series.  

Leonardi and Kümpel (1998) used both the 
R/S analysis and spectral analysis to study the 
variability of well log data from two deep 
boreholes (one 4 km and the other 9 km deep) in 
the well known German KTB project. The results 
for the Hurst exponent ranged from 0.59 to 0.84. 

Miranda and Andrade (1999) analyzed 
pluviometric data collected in some cities of the 
Brazilian Northeast. Depending on the site, the 
length of the collected data varied from 38 to 72 
years. Using the R/S analysis and spectral 
analysis they calculated an average value of 
0.709 for H. 

Chierice (2003) analyzed a pluviometric time 
series from the town of Araras, in the State of São 
Paulo, in the period between 1955 and 2000. In 
order to calculate the Hurst exponent, that author 
used the wavelet method, besides the R/S 
analysis. The resulted for H was 0.743, and the 
fractal dimension was 1.254. 

In the present work we use the R/S analysis 
and the spectral analysis to characterize several 
time series that represent climatic data from the 
town of Salvador, Bahia, Brazil, from 1961 to 
1990. The time series that we used were 
precipitation, atmospheric pressure, evaporation, 
humidity, solar radiation, maximum, minimum and 
average temperatures. 

In the next sections of this work we discuss the 
fundamentals of the R/S analysis, the properties 
of the Hurst exponent, and a review of spectral 
analysis. We applied both methodologies for the 
data sets above listed and in all cases the data 
series showed to be persistent, with the values for 
H varying between 0.602 and 0.848 for the R/S 
analysis, and varying between 0.525 and 0.908 
for spectral analysis. 
 
 

THE R/S METHOD 
 

The re-scaled method (R/S) was developed by 
Hurst (1957), and now it is a classical method for 
the analysis of time series. Originally Hurst 
worked on problems related to dam constructions, 
and during a long time he studied the Nile river 
behavior for the construction of the Assuan dam. 
His goal was to determine the ideal volume for 
water storage in a reservoir, based on the water 
discharge with time.  

The R/S was then proposed as an attempt to 
solve the finite reservoir problem submitted to a 
random input flow. An ideal reservoir must have 
the following properties: (i) the water volume must 
be constant; (ii) the water level must be constant 
after a given period; (iii) the lake can not be 
overloaded in order to avoid leakage; (iv) the 
storage capacity must be as small as possible. 
The conditions (i) and (ii) determine that the water 
volume released per year must be equal to the 
reservoir average input volume in the period of τ 
years. 

If the input flow is represented by ξ(t), the 
average input flow in the period of τ years is 
defined as: 
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Since the input flow is variable, for each year 
there will be a difference between the average 
and the input flow. These differences can be 
summed and denoted by X(t, τ) which expression 
is 
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The maximum and minimum values of X(t, τ) 
represent, respectively, the maximum and 
minimum values which flow through the reservoir 
during the considered period. The difference 
between the maximum and minimum values of 
X(t, τ) is called range R, which satisfies the four 
conditions above, and is expressed as 

R(t, τ)= Max X(t,τ) - Min X(t,τ). 

Notice that R(T) depends on the input flow ξ(t), 
which by its turn depends on the considered 
period T. After many experiments Hurst realized 
that R depended on T according to a power law: 

,HC
S

R
τ=  

where C represents a constant and H is now 
called Hurst exponent. In order to compare 
phenomena with different origins and 
characteristics, Hurst concluded that was 
necessary to divide R by the standard deviation S, 
thus making R/S a non dimensional variable, 
where for each scale value T there is an associate 
value for R/S. The standard deviation S is 
expressed by 
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This statistical technique is called Rescaled-
Range analysis or R/S analysis. If we apply 
logarithm to the exponential equation we get  

log (R/S) = H log(τ) + log(C). 

If we make a graphic of log(R/S) X log(T), we 
have H, which is the straight line angular 
inclination, and also brings information about the 
series under study: the Hurst exponent H informs 
about the persistence and the correlation. 
Correlation C is expressed by 

.C
)H( 12 12 −= −  

There are three categories for the Hurst 
exponent: 
(1) For 0.5 < H < 1 the process is persistent, that 
is, a positive increment in the past increases the 
possibility of a positive increment in the future, or, 
a negative increment in the past increases the 
possibility of a negative increment in the future. 
The system is said to be positively correlated. 
(2) For 0 < H < 0.5 the process is anti-persistent, 
that is, a positive increment in the past increases 
the possibility of a negative increment in the 
future, or, a negative increment in the past 
increases the possibility of a positive increment in 
the future. The system is said to be negatively 
correlated. 
(3) For H = 0.5 the process is non-correlated and 
the behavior is similar to the random movement 
(Brownian movement). The values of H for the 
cases (1) and (2) indicate that the system refers to 
a long memory process with a random 
component, where an event in the past has effect 
on an event in the future.  

In order to understand better these cases we 
make use of the famous drunk example. If his 
steps are persistent, one step forward will be 
followed by another forward, in such a way that he 
will reach distances further from the origin. On the 
other hand, if his steps are anti-persistent, one 
step forward will be followed probably by a step 
backward, in such away that he will always be 
near the origin.  

The exponent H brings information about the 
geometry of the profile under analysis. By using 
the expression  

,2 HD −=  

one can compute the fractal dimension D. If the 
value of H is smaller the value of D will be greater. 
 
 

SPECTRAL ANALYSIS 
 

The time series are analyzed in the frequency 
domain through the Fourier transform. Consider 
that a given time series is represented by a 

generic time function x(t). Then its Fourier 
transform is given by  

.)2exp()()()}({ dtfitxfXtx ∫
+∞

∞−

−==ℑ π  

The available time series are not continuous 
functions but rather a set of discrete values. Thus 
we have to make use of the Discrete Fourier 
Transform, or from the computational point of view 
we can use the Fast Fourier Transform 
(Bracewell, 1986; Hsu, 1970).   

The output of the Fourier transform applied to 
the time series is an amplitude distribution in 
relation to the associated frequencies. From the 
Fourier transform we can compute the amplitude 
spectrum for each parameter. 

The amplitude spectrum of a given function x(t) 
is calculated from the real and imaginary parts of 
the function in the frequency domain X(f), 

.)](Im[)](Re[)( 22 fXfXfA +=  

The power spectrum is given by the amplitude 
spectrum to the square: 

P(f) = [A(f)]
2
. 

In this work the spectral densities P(f) of the 
available data are computed through 
periodograms P*

(f), which are commonly used to 
obtain the spectral densities. The periodogram 
provides the frequency decomposition in a given 
interval for the time series, as is defined as, 
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where Nmax is the number of samples, x(t) is the 
time series, and µ is the series average. From the 
periodogram we can compute spectral exponent 
b, which is the angular coefficient of the power 
spectrum. Leonardi and Kümpel (1998), 
recommended a smoothing procedure in the 
power spectrum, and in the input, instead to use 
the time series coefficients, they proposed the 
deviations, that is, the difference between the 
coefficients and the mean µ, as can be seen in the 
above equation. 

They also applied the Tukey-Hanning window 
which is a smoothing procedure in order to reduce 
the dispersion. One computes the average value 
using the anterior and posterior values, according 
to the equation 
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The spectrum analysis of a given time series 

shows how the energy is distributed in a 
frequency range. For the white noise the energy is 
distributed in all frequencies, that it, the power 
spectrum can be approximated by a smooth curve 
with b = 0.  
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CLIMATIC DATASET 
 

In this work we have used the data colleted by 
the Instituto Nacional de Metereologia (INMET). 
The data was measured at the Salvador Station 
which belong to the INMET's Fourth District. The 
Station is localized at the coordinates 13o 01' 
south latitude and 38o 31' west longitude. The 
height at the station is 51.41 m. 

The analyzed data set was constituted of the 
following parameters:  precipitation (mm), 
atmospheric pressure (hPa), evaporation (mm), 
humidity (%), solar radiation (W/m

2), as well as 
maximum, minimum and average temperatures 
(o

C). All the data was sampled in monthly values, 
acquired over a period of 30 years, from 1961 to 
1990, in a such way that the number of samples 
for each parameter is 360. 

The precipitation, given in mm, can be seen in 
Figure 1. We can notice a periodic behavior, with 
relatively few peaks above 400 mm. The 
atmospheric pressure, given in hPa, which can be 
seen in Figure 2, presents an abnormal behavior 
for the first years, but then becomes periodic for 
the rest of the interval. The evaporation, given in 
mm, which can be seen in Figure 3, presents an 
abnormal behavior in two regions, as well as a 
very non-regular pattern for whole series. The 
humidity, given in percentage, and the solar 
radiation, given in W/m

2, can be seen, 
respectively, in Figure 4 and Figure 5. Both 
present a regular pattern of periodicity. The 
register of temperature, given in o

C, can be seen 
in Figure 6 (maximum), in Figure 7 (minimum) and 
in Figure 8 (average). Notice a very regular 
pattern of periodicity, with very few peaks above 
32 o

C for the maximum temperature, and above 
28 oC for the average temperature. 

 
 

APPLICATION OF THE R/S METHOD 
 

We used the climatic data above described for 
the R/S analysis, adapting the algorithm 
developed by Beer (1994). For each simulation, 
besides the main input data which is the time 
series, the following parameters are introduced: 
the numbers of observations N; the number of 
samples in each sequence τ; and the starting time 
t.  

The utility of t is to break the series into sub-
series, avoiding the sample superposition, and 
thus generating independent values of the R/S 
estimate. N was always 360, while we used 15 
values for τ:  2, 3, 6, 12, 15, 18, 24, 30, 36, 40, 45, 
60, 72, 90, 120 e 180. The following values were 
used for t: 1, 10, 20, 30, 40, 100, 200 e 300.  

For the determination of the H exponent, we 
plotted the values of log R/S as a function of log τ, 
and then we performed a least squares 
adjustment for the calculation of the angular 

coefficient, which is the exponent H. Figure 9 
shows the R/S analysis for precipitation, Figure 10 
for atmospheric pressure, Figure 11 for 
evaporation, Figure 12 for humidity, Figure 13 for 
solar radiation, Figure 14 for maximum 
temperature, Figure 15 for minimum temperature, 
and Figure 16 for average temperature.  

We compared our results with those obtained 
by other researchers, published in four different 
sources. They also used the R/S analysis either 
on time and spatial series. Chierice (2003) 
analyzed precipitation data from the city of Araras, 
for the period from 1955 to 2000, obtaining H = 
0.743.  Beer (1994) used different log data from 
boreholes and obtained H ranging from 0.790 to 
0.946.  

Miranda and Andrade (1999) used the R/S 
analysis to compute the Hurst exponent in 
precipitation time series in several cities from the 
Brazilian Northeast region. One of the cities was 
Salvador, and for that town they computed three 
values of H: 0.51, 0.48 and 0.53. In the present 
work we adapted the methodology proposed by 
Leonardi and Kümpel (1998) for spatial series. 
They used R/S analysis to study the persistence 
from well log data from to research deep 
boreholes in Germany. The values for H varied 
from 0.6 to 0.8. 

Our values for H are presented at the next 
section (Table I).  

 
 

APPLICATION OF SPECTRAL ANALYSIS 
 
The total number of samples used in this work 

was 360 for a time span of 30 years. Since each 
sample is related to one month, the time interval is 

12/1=∆t year. The frequency interval f∆ is  

,
1

tN
f

∆
=∆  

where N is the number of samples and t∆  is the 
time interval. Thus, for the present work we have,  
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in such a way the Nyquist frequency is, 
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The Nyquist frequency, which is also called 

folding frequency is the frequency which value is 
half of the sampling frequency. The frequencies 
which are higher than fN are aliased, that is, are 
mixed with the lower frequencies, becoming not 
distinguishable, characterizing the ambiguity 
situation.  
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Figure 1. Precipitation (mm), measured at the Salvador Station, from 1961 to 1990. 

 
Figure 2. Atmospheric pressure (hPa), measured at the Salvador Station, from 1961 to  
1990. 

Figure 3. Evaporation (mm), measured at the Salvador Station, from 1961 to 1990. 
 

Figure 4. Humidity (%), measured at the Salvador Station, from 1961 to 1990. 

Figure 5. Solar radiation (W/m
2), measured at the Salvador Station, from 1961 to 1990. 

 
Figure 6. Maximum temperature (oC), measured at the Salvador Station, from 1961 to 1990. 
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Figure 7. Minimum temperature (oC), measured at the Salvador Station, from 1961 to 1990. Figure 8. Average temperature (oC), measured at the Salvador Station, from 1961 to 1990. 

Figure 9. R/S analysis for precipitation. Figure 10. R/S analysis for atmospheric pressure. 

Figure 11. R/S analysis for evaporation. Figure 12. R/S analysis for humidity. 
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Figure 13. R/S analysis for solar radiation. Figure 14. R/S analysis for maximum temperature. 

Figure 15. R/S analysis for minimum temperature. Figure 16. R/S analysis for average temperature. 

Figure 17. Power spectrum for precipitation. Figure 18. Power spectrum for atmospheric pressure. 
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Figure 19. Power spectrum for evaporation. Figure 20. Power spectrum for humidity. 

Figure 21. Power spectrum for solar radiation. Figure 22. Power spectrum for maximum temperature. 

Figure 23. Power spectrum for minimum temperature. Figure 24. Power spectrum for average temperature. 
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Figure 17 shows the power spectrum analysis, 
as well as the adjustment by least squares for 
precipitation, Figure 18 for  pressure, Figure 19 for 
evaporation, Figure 20 for humidity, Figure 21 for 
solar radiation, Figure 22 for maximum 
temperature, Figure 23 for  minimum temperature, 
and Figure 24 for average temperature.  
The relation between the spectral exponent b and 
the Hurst exponent is given by,  
 

H = 2 bcum + 1. 
 
Since the value of b accumulates with the 

series, we use a recurrence value bcum, where b = 
bcum + 2. The values for H can be seen in Table I.  

 
Table I: H computed using R/S analysis and spectral 
analysis. 
Parameter H by R/S 

analysis 
H by spectral 

analysis 
Precipitation 0.618 0.576 
Atmospheric 
pressure 

0.602 0.525 

Evaporation 0.869 0.908 
Humidity 0.676 0.667 
Solar radiation 0.655 0.637 
Maximum 
temperature  

0.617 0.650 

Minimum 
temperature  

0.658 0.709 

Average 
temperature  

0.625 0.670 

 
 

CONCLUSIONS 
  

The values of H in the studied times series, 
using the R/S analysis, ranged between 0.602 
and 0.848. As mentioned before if the value of H 
is between 0.5 and 1.0, the series is said to be 
persistent. Thus, our data set which describes 
atmospheric phenomena is persistent, that is, the 
data are positively correlated, discarding the 
possibility of being a random distribution. When 
the Hurst exponent is different from 1, the series 
is said to be self-affine. Series with such 
characteristics, which is the case here, can 
correlate the fractal dimension and the R/S 
analysis as showed above. Fractal dimension is a 
useful tool to characterize atmospheric 
phenomena, and in this work the fractal dimension 
varied between 1.092 and 1.475. In this work the 
time interval was one month, however a different 
time interval would not change the fractal 
dimension, since it has a self-similar attribute. We 
also computed the Hurst exponent using spectral 
analysis. Due to the fluctuation in the power 
spectra we averaged and weighted the data, 
improving greatly the results. The values for H 
varied between 0.525 and 0.908.  Thus we 
succeed to compare the values of H from the two 
methods. The two results for each time series are 
close, being the difference less than 10%. The 

only exception was the atmospheric pressure, 
where the difference was around 13%. The 
analysis of persistence of a given signal can be 
performed in a time series, like in the present 
work, or in a spatial series, for instance, in a well 
log. Our results agree with other works using 
climatic and geophysical data: many series in 
nature are persistent.  
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