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INTRODUCTION

Over the last decade, with the becoming of new sequencing technologies and data
analysis methods, the field of microbiomics has made an immense progress
allowing to study microbiome in great detail. Studies of the microbiome have
revealed that every human has a unique microbial fingerprint and the variability
of it between individuals is enormous. It has become evident that the microbiome,
especially the gut microbiome, does not affect only the health of gastrointestinal
tract but has a profound impact on the overall health and wellbeing. Links
between microbiome and numerous health conditions, including type 2 diabetes,
types of cancer and even psychological disorders, are found. Studies have also
made apparent that the human genetics has an impact on the microbiome and
certain microbes seem to be heritable. By widening our knowledge on the role of
microorganisms on different disease states and understanding the mechanisms
through which microorganisms affect human health, it could be possible to
incorporate that information into treatment regimen for more efficient outcomes.

The current thesis focuses on the factors influencing human gut microbiome
composition as well as understanding the relationships of microbiome and female
reproductive health. In the first part of the thesis, I will cover the basis of micro-
biome as an important cofounder to the human health based on the literature: 1
will give an overview of the intrinsic as well as extrinsic factors affecting the
human microbiome and its variability; matters influencing the microbiome studies;
relationships of genetics and microbiome and future perspectives of microbiome
research. [ will also go more into detail on the topics of female reproductive health
and microbiome where I discuss on the importance of studying not only gut micro-
biome but also microbiome present in the female reproductive tract. In the experi-
mental part, I will focus on characterizing the associations between gut micro-
biome and host genetics through which the value of large collaborations between
study cohorts working as a big consortium becomes evident. Additionally, I will
investigate the role of microbiome in female health by taking a closer look at the
interplay between polycystic ovary syndrome (PCOS) and gut microbiome as
well as investigating the microbiome of endometrium in women with fertility
problems.
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1. REVIEW OF THE LITERATURE

1.1. Human microbiome

Human organism is home for millions of different microorganisms living both
inside and on the human body. These microorganisms are bacteria, archaea, viruses
and fungi — referred together as microbiota. Therefore, the term “microbiota”
stands for a range of microorganism that could be symbiotic, commensal, or
pathogenic. In scientific papers another term is widely used — “the microbiome”
which stands for the collection of genes and genomes of microbiota. Despite there
being a difference between the two terms, a consensus definition for them among
researchers remains debatable and the two terms are used interchangeably
(Marchesi and Ravel, 2015). In the current thesis the term “microbiome” is used.

Our current knowledge on the microbes has deepened greatly with the coming
of next-generation sequencing (NGS) allowing us to take a step forward from
culture-based methods. This gives an opportunity to study anaerobic bacteria
more in depth — something that was limited with culture-based approach. Broadly,
human as a host provides two different types of living environment for the bacteria.
To start with, the surface of human body, the skin, is colonized by numerous
aerobic and facultative anaerobe bacteria (Byrd et al., 2018). Since skin is a an
acidic, cool and rather nutrient poor, it is considered as a relatively harsh
environment for the bacteria to live in (Byrd et al., 2018). Secondly, the bacteria
inhabit the inside of human body. Mostly anaerobic bacteria inhabit different
internal host environments such as the gut, oral cavity as well as vagina, and the
microbiome in all of these differs from one another (Gilbert et al., 2018). To date,
the most researched part of the microbes inhabits the human intestine. These
microbes intermediate key immune, metabolic and physiological functions, and
changes in their ecosystem can greatly influence human health and disease (Chow
and Mazmanian, 2010; Fan and Pedersen, 2021; Ley et al., 2006). Despite gut
being the most studied area of microbes in the human body, our knowledge of
bacteria living in other ecosystems of the human organism is on the rise. There is
progressively more research done with samples collected from specific sites of
the human body, giving us the opportunity to search for links between diseases
and microbes present at the disease site. Furthermore, with these approaches we
could determine the microbial profile of the disease affected area in the body
which could in turn provide insights into the pathophysiology of the disease.

At the same time, it is with the utmost importance to keep in mind that the
microbiome has a wide interindividual variability and it is affected by various
factors. These drivers of microbiome remain essential knowledge for microbiome
research.
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1.1.1. Variability of gut microbiome

The microbiome is assembled at birth and it is affected by various factors through-
out the lifespan. One of the biggest resources in finding the variability affecting
the gut microbiome have been different population studies. These have been a
tremendous source providing crucial information on what could be the main
factors influencing gut microbiome and providing a basis for further and more in-
depth analysis on specific topics. Recent population studies from Estonia,
Finland, United Kingdom, Israel, Belgium, and the Netherlands with sample sizes
ranging from 1,000 to 8,000 have identified numerous factors that shape the
microbiome such as biological gender, age, lifestyle factors, medication and
diseases (Aasmets et al., 2022; Falony et al., 2016; Gacesa et al., 2020; Jackson
et al., 2018; Rothschild et al., 2018; Salosensaari et al., 2021; Woo and Alenghat,
2017; Zhernakova et al., 2016). Interestingly, the found associations are able to
explain only a rather small portion, approximately 15%, of the gut microbiome
compositional variability (Gacesa et al., 2020).

As stated, the gut microbiome composition can be affected by a number of
factors (Figure 1). Prominently, one of the major elements in gut microbiome
variability is diet since it has a direct link with the gut (Albenberg and Wu, 2014).
Diet is the main source of nutrients for the gut microbes and the nature of the diet
determines the dominant types of gut bacteria. Whereas the digestive system can
efficiently extract energy from fats and proteins, for a significant portion of carbo-
hydrates, especially those of plant origin, the digestive system needs to work
together with gut microbes in the digestive process. Through the digestive process,
numerous important metabolites are being produced such as short-chained amino
acids, bile acids (BAs), trimethylamine and more — all which directly or indirectly
affect the human biology and are related to the development of different diseases
including obesity, cardiovascular disease, and type 2 diabetes (T2D) (Dalile et al.,
2019; Fan and Pedersen, 2021; Rowland et al., 2018). Furthermore, dietary
changes modulate the composition, function and diversity of gut microbiome. It
has been shown that an extreme short-term change in dietary habits can signifi-
cantly change the gut microbiome consumption as well as make it more similar
with people consuming the same diet. At the same time, long-term diet has been
shown to have a large impact on gut microbiome composition (David et al., 2014;
Wuetal., 2011). Over the few past decades, the dietary habits of mainly Western
populations have changed immensely moving towards an increase in consuming
simple carbohydrates and animal fats, leading to changes in the gut microbiome
and resulting in upsurge in the incidence of metabolic diseases (Martinez et al.,
2017).

Besides diet, one of the most acknowledged influencers of the gut microbiome
are medications. Understanding the interaction between medications and micro-
biome is crucial for understanding drug mechanisms and development of possible
side effects they may present (Doestzada et al., 2018; Vich Vila et al., 2020).
Together with the discovery of penicillin began the era of antibiotics — drugs that
without a doubt have an enormous impact on the medical field with their ability

14



to fight infections. Yet, as the time went by it became evident that antibiotic
treatment, especially with broad-spectrum antibiotic, lowers the overall gut
microbial diversity and changes the microbiome composition (Aasmets et al.,
2022; Konstantinidis et al., 2020; Ramirez et al., 2020). It has been interesting to
learn that the antibiotics taken early in life have a profound long-term effect on
health which could eventually lead to development of several health compli-
cations such as allergies, obesity, irritable bowel syndrome and other diseases
(Neuman et al., 2018). An invitro study screening drug effects against human gut
bacteria showed that 24% of human-targeted drugs have the effect of inhibiting
the growth of gut bacteria and it was estimated that the actual percentage might
be even higher (Maier et al., 2018). Interestingly, the same study discovered that
the more prevalent gut microbes are impacted more by the pharmaceuticals than
the less abundant bacteria (Maier et al., 2018). Another recent study revealed that
not only the drug intake, but also medication combinations and dosage along with
previous antibiotic history is needed to take into consideration to fully understand
the medication-host-microbiome interactions in complex diseases (Forslund et al.,
2021).

Additionally to aforementioned factors, it has been shown that living environ-
ment, having pets, physical activity, age, diseases and sleep all have a profound
role on microbiome. Next to diet, exercise has been linked strongest to microbial
composition (Walker et al., 2021). It has been suggested that exercising reduces
the inflammation in the body which in turn changes the microbiome structure and
this process works through the changes in cytokine profile: pro-inflammatory
cytokines are reduced and anti-inflammatory cytokines elevated (Cook et al.,
2016). When studying the role of exercise in microbiome health, it is crucial to
keep in mind that normally people who exercise more tend to also eat healthier
than those with more sedentary lifestyle which makes research on that topic more
complex. Therefore, it can be challenging to pinpoint exactly which changes in
the gut microbiome are derived by exercise and which by diet since they could
be closely intertwined.

Analyses of population-based data have shown that populations themselves
differ in their microbial composition. Similarly to genetics, it is important to note
that associations seen on for example European population should not automati-
cally be transferred to populations with different ethnical background. For that
reason, it is necessary to perform large meta-analysis that would incorporate
populations from all over the world. Increase in sample size would allow in-
corporate traits in the analysis which would possibly be underpowered in studies
with 1,000 to 2,000 samples simply due to lacking sufficient number of cases to
analyze. Doing this would help to identify universal factors influencing micro-
biome just like large consortia genome-wide association studies (GWASs) are
doing in genetics. Additionally, longitudinal studies are needed to look at the
microbiome variability among the same individuals during a longer period of
time. As an example, a longitudinal study in 338 individuals spanning over the
period of 4 years showed how genetic stability of gut microbes varies across
species and that the gut microbial composition is more stable in individuals with
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higher baseline diversity (Chen et al., 2021). In the sense of gut microbiome
variability these are highly important findings since so far research monitoring
the microbiome changes in the same person over time are lacking. On the brighter
side, recently a large-scale longitudinal study by Israelis was introduced. The
study is expected to recruit 10,000 participants for whom an extensive phenotype,
microbiome, genetic, as well as environmental data are and will be collected with
follow-ups performed for 25 years. This is a highly anticipated prospective which
would without a doubt greatly benefit the microbiome field (Shilo et al., 2021).
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Figure 1. Factors influencing the microbiome variability and its analysis. Figure adapted
from https://i0.wp.com/dirt.asla.org/wp-content/uploads/2018/06/microbiome.jpg?ssl=1.

1.1.2. Gut microbiome and host genetics

It is widely acknowledged that gut microbiome composition depends highly on
environmental factors with one of the strongest effectors being diet and medi-
cation (Falony et al., 2016; Zhernakova et al., 2016). However, population-based
studies reveal that a big proportion of microbial diversity continues to be un-
explained after bearing in mind the environmental factors. This in turn raises the
question on the role of host genetics on the gut microbiome (Wang et al., 2018).
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Heritability is a measure that estimates the contribution of genes to phenotypic
variance, it is a relative value that depends on the degree of variation a specific
population has. The most traditional method to estimate heritability of a trait is
by comparing the dissimilarities between monozygotic (MZ) and dizygotic (DZ)
twins. Assuming that the twins are sharing the same environment and knowing
that MZ twins share 100% of their genetics and DZ 50%, estimations on the
heritability of a trait can be done directly. One of the first and largest twin studies
on microbiome heritability was done on the TwinsUK cohort which estimated
that the microbiome heritability lies between 1.9% and 8.1% (Goodrich et al.,
2014, 2016; Rothschild et al., 2018). Several heritable taxa belonging to phylum
Actinobacteria, Euryarchaeota, Firmicutes, and Tenericutes were identified,
whereas Bacteroidetes which is one of the most dominant phylum in the gut
showed very little heritability (Goodrich et al., 2016). For a subset of TwinsUK
cohort a metagenomics sequencing was performed and the results showed not
only heritable taxa but also high heritability of microbial gene ontology groups
such as branched-chain amino acids biosynthesis and the module for sulfur
reduction (Xie et al., 2016). On the whole, twin studies reveal that the role of host
genetics in determining microbiome composition is small, and that genetic
descent does not have a significant association with the gut microbiome
(Rothschild et al., 2018). Inversely, significant similarities in their microbiome
profile were detected in individuals sharing a household but being genetically
unrelated, showing that environment has a far greater importance in shaping the
gut microbiome than genetics (Rothschild et al., 2018). However, the obser-
vations seen in twin studies have been a driving force for population-based
microbiome-wide association studies (MWASSs) that identify genetic variants
associated with microbiome composition.

The MWASSs are essentially GWASs where instead of phenotype data micro-
biome data is used. In MWASs the abundance of the microbes can be used as a
quantitative or binary trait. To this day several MWASs have examined the
possible effect genetics might hold on microbiome and numerous microbial
quantitative trait loci (mbQTLs) situated in genes associated with food and drug
metabolism, immune response and irritable bowel syndrome have been identified
(Table 1) (Blekhman et al., 2015; Bonder et al., 2016; Davenport et al., 2015;
Goodrich et al., 2016; Hughes et al., 2020; Kolde et al., 2018; Kurilshikov et al.,
2021; Lopera-Maya et al., 2022; Qin et al., 2022; Rothschild et al., 2018; Riihle-
mann et al., 2021; Turpin et al., 2016; Wang et al., 2016). During MW ASs mostly
three different types of association analysis are being done: a) quantitative that is
searching associations between the abundance of taxa (usually common taxa with
relative abundance of > 0.001) and genetic loci; b) binary analysis in which only
absence or presence of a taxa is looked at, and c) associations with diversity.
However, the reproducibility of these early MWASs has been limited and most
reported associations tend to lose significance after correcting for multiple testing
(Kurilshikov et al., 2017). The most common limitations to reproducibility are
modest sample sizes, differences in the data processing methods as well as strong
environmental effects. Additional limitation of these studies is the use of 16S
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ribosomal ribonucleic acid (rRNA) sequencing which itself present a bias to the
studies since it depends on which hypervariable region was used. Furthermore,
16S does not allow bacterial identification on species level or identification of
bacterial pathway abundances (Lopera-Maya et al., 2022).

Recently, two large population-based studies in Finnish and Dutch cohorts
using metagenomics have been published (Lopera-Maya et al., 2022; Qin et al.,
2022). Similarly to previous studies with 16S rRNA sequencing methodology,
the strongest host-microbiota associations found were with the LCT and ABO
genes (Table 1) (Bonder et al., 2016; Goodrich et al., 2016; Lopera-Maya et al.,
2022; Qin et al., 2022; Rothschild et al., 2018). However, if previously only genera
were associated with these genes, then now with the usage of metagenomics
approach specific species as well as pathways associated with LCT and ABO were
identified. Additionally to the two well-known loci, LCT and ABO, other
associated genetic regions harbor genes associated with different immune and
metabolic phenotypes, hence providing interesting links with microbiome and
diseases that can be studied deeper in future research. Unfortunately, similarly to
the previous studies the replication of findings between the Finnish and Dutch
studies was small. Besides the previously named two loci, only 3 out of 451
genome-wide significant single nucleotide polymorphisms (SNPs) from the
Finnish study were replicated in the Dutch cohort (Lopera-Maya et al., 2022).
This again indicates the need for larger studies and indicating that even studies
with more than 7,000 samples suffer from power issues. Indeed, power studies
added to the Dutch cohort research revealed that sample set with more than
50,000 individuals would be needed for studying bacteria present in at least 20%
of the samples in order to identify associations with effect sizes similar to LCT
and this number would increase even more when wanting to study rarer bacteria
(Lopera-Maya et al., 2022).

Taken together, twin and population-based studies are a great source of infor-
mation in studying the interplay between microbes and host genetics. However,
similarly to genetic studies investigating traits with low heritability a great team-
work between research groups is needed in order to reach the needed power for
new discoveries (Bonder et al., 2016; Lopera-Maya et al., 2022; Qin et al., 2022;
Turpin et al., 2016; Wang et al., 2016).
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1.1.3. What matters in microbiome analysis

One of the biggest challenges in investigating the role of microbiome in human
diseases is the low concordance between studies. This limits the ability to detect
causal associations between microbes and pathology. The wide interindividual
heterogeneity in microbiome composition compounds to the risk of finding false
positives. Benchmarking process in microbiome studies is a difficult task to
perform due to the large variability it has among individuals but also the usage of
different study methods has an enormous impact on the results (Figure 1). To this
day there is no golden mean to follow when performing microbiome analysis and
new approaches are frequently being introduced to the field.

When talking on the topic of microbiome analysis, it is clear that various data
pre-processing steps might not produce overlapping results (Hornung et al., 2019;
Nearing et al., 2021). The first crucial steps in microbiome analysis is the sample
collection and storage. At the time, the most used sampling measure for micro-
biome studies is stool sample which is considered as a gut proxy. However, the
issue with stool samples is that while it describes well the microbial population
of descending colon, it lacks the capability of fully describing the microbiome of
gut epithelia and small intestine. In order to study the full microbial composition
of the whole gut, various parts of the gut should be sampled using invasive
procedures (Bajaj et al., 2012). Sample collection process highly depends on the
research it aims. Large-scale population projects normally use remote sample
collection where the sample is collected at home by the participant and sent to the
research facility afterwards, whereas in a small research project focusing on a
very specific study question sample collection process normally takes place in a
clinic or study center (Vandeputte et al., 2017). In order to collect the stool sample,
several commercially available collection tubes with easy collection protocol are
available. Some of those allow for a short-term storage at room temperature,
however it has been shown that this could potentially lead to changes in the
microbiome composition in the sample (Penington et al., 2018). Many of these
kits also contain a preservation liquid which are added in order to stabilize the
sample and avoid compositional changes in the sample. Yet, studies have shown
that there are significant differences in bacterial composition resulting from
collecting stool samples in commercial tubes compared to instant freezing (Jones
et al., 2021). The most suggested way in preserving a stool sample is freezing it
immediately at —20 °C at the participants home and once the sample arrives to the
study center it should be stored at —80 °C to avoid any growth of aerobic bacteria
that would not be present in the gut (Jones et al., 2021).

Besides sample collection and storage techniques the next important step is
DNA extraction for which there are numerous commercial kits available. It has
become largely acknowledged that each extraction kit has its own so called
kitome meaning that the kit itself might comprise some microbes. This kind of
reagent contamination is especially important in low-biomass samples, since the
kitome could have a larger impact on the observed community than the biological
effect of interest (Debelius et al., 2016). DNA extraction kits by different

21



manufacturers use various protocols where the steps used for cell lysis vary
greatly (e.g. usage of different enzymes such as lysozyme, mutanolysin or using
mechanical bead beating) which in turn could result in detecting different overall
microbial composition (Zhang et al., 2019a).

When it comes to the sequencing process, there are two that are widely used
for sequencing in microbiome analysis. The first one being 16S rRNA gene
sequencing which targets and amplifies portions of the hypervariable regions
(V1-V9) present in all prokaryotes — bacteria and archaea. After sequencing, the
reads are assigned to phylogenetic ranks based on 16S reference databases
(Durazzi et al., 2021). The beneficial part of 16S rRNA sequencing is its rela-
tively low price, but on the downside, it has limited resolution meaning that it
cannot classify all the bacteria and identifying taxa down to species level may be
impossible. Additionally, the 16S rRNA method cannot be used for detecting
eukaryotes and viruses (Jovel et al., 2016; Kurilshikov et al., 2017). Also, in the
case of 16S rRNA sequencing, the primer selection and hypervariable region
greatly influence the observed microbial community. As an example, Kyono et
al. studied the microbiome of cervicovaginal tract and showed how regions V4
and V3-V5 can detect Bifidobacterium and Gardnerella, known genera of this
environment, while regions V1-V2 cannot (Kyono et al., 2018). The second
method, shotgun metagenomics sequencing, does not only target the regions of 16S
rRNA genes, but sequences all genomic DNA in the sample making it possible
to identify not only bacteria but also viruses, fungi, and protozoa. Metagenomics
allows taxa identification at the species level, has more power to identify less
abundant taxa, makes it possible to annotate bacterial gene clusters as well as path-
ways and functional data (Durazzi et al., 2021). Metagenomics also eliminates
the problem with hypervariable region selection present in 16S rRNA sequencing.
The disadvantages of metagenomics sequencing include high sequencing cost
and high bioinformatic load as a result of producing large number of reads. A
downfall of both 16S rRNA and metagenomics sequencing is their dependence
on reference databases, meaning that it is impossible to analyze genomes that are
absent in the reference databases (Jovel et al., 2016; Kurilshikov et al., 2017).

Nevertheless, perhaps even a larger bias between studies arises from the bio-
informatics and especially from the choice of methods for data processing and
statistical analysis. The microbiome data are characterized by multiple distinct
properties, which can significantly influence the results of the analysis. NGS-
based microbiome studies are within the realm of compositional data, where the
absolute number of microbes cannot be recovered from sequence data alone. The
total number of reads that were sequenced varies between samples which con-
founds greatly to the results. One of the firsts methods to correct the problem of
samples having different number of reads was to use rarefaction approach. Rare-
faction in its essence is subsampling the read counts of each sample to a common
size (Lozupone et al., 2011; Wong et al., 2016). However, there are issues re-
garding rarefaction including the omission of available valid data and arbitrary
selection of the minimum number of reads. Due to the loss of information rare-
faction causes, this approach has been questioned and alternative practices have
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been proposed instead. In addition, with the total read count being uninformative
for the analysis, microbiome data are known to contain only relative information.
Thus log-ratio transformations that can alleviate the issues with the variability in
read depth and relative nature of the data become more prevalent in microbiome
studies (Greenacre et al., 2021). The log-transformed ratios are useful in the
analysis since they are scale-invariant meaning that samples with low read counts
are expected to have the same ratio as samples with many read counts (Gloor et
al., 2017; Nearing et al., 2021). Moreover, microbiome data are sparse and zero-
inflated, as many features (e.g. bacteria) are present in only few samples, this
introduces a situation when in the case of log-transformation a constant arbitrary
number, a so called pseudocount, needs to be added (Lin and Peddada, 2020). So
far, adding the pseudocount is standard part of the compositional data analysis,
however, there is an ongoing dispute against adding it to the data. Reasoning
behind it is that we actually cannot be sure whether the bacteria is actually missing
in the sample or its abundance is below the detectable threshold.

On the whole, methodological differences in the sample collection, processing
and data analysis are noted to have strong impact on the microbial profile which
can lead to the lack of reproducibility across studies. Due to which it is important
for the microbiome research community to closely pay attention to the methods
used in different studies and be critical with biological interpretation of micro-
biome research (Sun et al., 2021).

1.2. Female reproductive health
in respect with microbiome

Recent advantages in DNA sequencing technology as well as computational
resources have profoundly improved the microbiome research in ways that were
impossible until fairly recently. This has made it possible to perform extensive
studies on causes of different diseases and health conditions. Among other disease
states the rapidly advancing field has now opened the door to study women’s
reproductive health from microbiome aspect. A lot of research has been done on
the gut microbiome in regards to female health but it has become evident that
when trying to understand the complex biological processes behind it there is a
need to also look at the microbiome of the reproductive system itself. This is of
course challenging since first, acquiring these samples is more difficult than
obtaining the stool sample and secondly, these are mostly a low biomass samples
which complicates the sample handling. However, more and more studies are being
performed on this topic which as a result helps to broaden the understanding of
female health.
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1.2.1. Microbiome in polycystic ovary syndrome

PCOS is known as one of the most widespread endocrine and metabolic disorders
in women at reproductive age worldwide. It has been estimated that PCOS affects
approximately 8% to 18% of women, depending on the studied population and
applied diagnostic criteria (Jobira et al., 2020; March et al., 2010; Teede et al.,
2018; Zeng et al., 2020). The main diagnosis is based on the Rotterdam criteria
which requires two symptoms out of the following three: excess of androgen (i.e.
hyperandrogenism), persistent ovulatory dysfunction, and polycystic ovarian
morphology (Rotterdam ESHRE/ASRM-Sponsored PCOS Consensus Workshop
Group, 2004). PCOS is also noted as the most prevalent cause of anovulatory
infertility and women having PCOS have a significantly increased risk of
pregnancy-related complications compared to controls (Palomba et al., 2015).
Though, PCOS is not only a reproductive disorder but also considered a syndrome
with metabolic consequences affecting women throughout life. It is associated
with a risk of developing a variety of metabolic derangements, including T2D,
obesity, insulin resistance, hypertension, and nonalcoholic fatty liver disease
(Azziz et al., 2016; Moran et al., 2010). It has also been shown that the metabolic
rearranges are more predominant in women with PCOS who have hyper-
androgenism (Barber et al., 2007; Moghetti et al., 2013).

The etiology of PCOS remains unknown but is believed to be multifactorial
where genetics, intrauterine environment, lifestyle factors, and possibly alter-
ations in the gut microbiome all have a role. So far gut microbiome dysbiosis has
been associated with several metabolic diseases including obesity and T2D, both
of which are also correlated with PCOS phenotype (Durack and Lynch, 2019).
Regarding PCOS, research has shown that women with the disorder might present
a lower bacterial richness in their gut compared to the women without PCOS
(Chu et al., 2020; Insenser et al., 2018; Lindheim et al., 2017; Liu et al., 2017;
Zhou et al., 2020). Studies have also been able to correlate the abundance of spe-
cific taxa or microbial diversity and androgen excess demonstrating that testos-
terone could be influencing the composition of the gut microbiome in women
(Lindheim et al., 2017; Moreno-Indias et al., 2016). The overview of studies per-
formed on gut microbiome and PCOS to date are summarized in Table 2.
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Despite seeing correlations between PCOS and the gut microbiome in human
studies as well as rodent models, the mechanisms responsible remain unclear.
Because the diagnosis of PCOS is associated with metabolic disorders such as
T2D and obesity, the role of intestinal microbes in PCOS may be related through
metabolic processes. However, studies showing the mechanisms through which
microbiome affects metabolic health is limited (Walter et al., 2020). Using tools
such as fecal microbiota transplant (FMT) might provide an insight into the causal
links between different diseases and gut microbiome. In the case of PCOS, Qi et
al. performed an FMT of stool from women with and without PCOS into mice
treated with antibiotics prior to the transplant. As a result they demonstrated that
mice receiving FMT with PCOS stool resulted in a PCOS-like phenotype that
included insulin resistance, infertility, disturbance of ovarian functions as well as
altered BA metabolism and reduced interleukin-22 secretion (Qi et al., 2019).
Notably, BAs are able to affect the growth of the gut microbes and the microbes
can chemically modify the BAs (Wahlstrom et al., 2016). In their work Qi et al.
reported that some secondary BAs (glycodeoxycholic acid and taurourso-
deoxycholic acid) had lower levels in women with PCOS compared to unaffected
women and when giving supplementation of these BAs to mice it had a protective
effect against developing PCOS-like phenotype (Qi et al., 2019). This is sug-
gestive that in the case of PCOS the effect of gut microbiome on the syndrome is
mediated through BA metabolism, especially since traits such as obesity and T2D
are closely related to both gut microbiome and PCOS. Another study done on
mice, also indicated that the gut metabolites are more predictive of PCOS
phenotype than the gut bacteria (Ho et al., 2021). Additionally, the role of gut
microbes in PCOS has been suggested to be associated with endotoxemia — the
presence of toxic compounds of bacterial origin found in the blood. The most
well-known endotoxins today are lipopolysaccharides (LPS) which are a part of
the cell wall of Gram-negative bacteria (Das et al., 2014). It has been suggested
that an increase in intestinal permeability leads to more LPS in the blood circu-
lation and the consequent activation of immune system induces insulin resistance
and pro-inflammatory state (Duan et al., 2021).

While it seems to be evident that the effect of gut microbes on PCOS works
through metabolism and metabolites, when aiming to look more into the repro-
ductive part of the PCOS and bacteria, it would probably be necessary to study
the microbial profile of the female reproductive tract. Studies on the reproductive
system might give a better insight on how bacteria there might affect the etiology
and reproductive part of PCOS.

In the future, larger studies as well as usage of PCOS-like animal models and
reproductive tract sampling are beneficial in finding out which specific bacteria
are responsible for the development of the syndrome and which are the precise
mechanisms behind it.
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1.2.2. Microbiome of female reproductive tract

For a long time, it was believed that healthy uterus is sterile and presence of micro-
organisms in the uterine cavity was considered to be pathological as well as an
indicator of an ongoing infection. However, with the becoming of NGS the
concept of “sterile womb” has been refuted and currently the existence of endo-
metrial microbiome inside the uterus is undisputed, in fact, vagina, endometrium,
ovaries, fallopian tubes, and vagina all harbor their own microbiome (Chen et al.,
2017). Despite different parts of female reproductive system having differences
in their microbial profile, one similarity between them is the predominance of
genus Lactobacillus which is especially evident in the vagina (Chen et al., 2017,
Punzén-Jiménez and Labarta, 2021). High abundance of Lactobacillus and low
diversity in female reproductive system is associated with healthier reproductive
health and better outcome of assisted reproduction techniques (Punzon-Jiménez
and Labarta, 2021). Understanding the interactions between microbiome and
female genital tract is important in the clinical point of view since it can be used
as a tool to better the female health in infertility problems.

The female genital tract can be divided into two parts — the lower genital tract
referring to vagina and the upper genital tract encompassing cervix, endo-
metrium, Fallopian tubes, and ovaries (Figure 2). Probably the most investigated
part of the female genital tract is the vagina. Several studies have come to a con-
clusion that the healthy vagina is largely dominated by Lactobacillus(Chen et al.,
2017). Currently the vagina of healthy non-pregnant women is considered to have
a high bacterial load with over 90% of the species belonging to Lactobacillus
(Punzén-Jiménez and Labarta, 2021).

Moving up from the vagina, the bacterial diversity increases, cervical and
endometrial microbiome is still highly Lactobacillus dominant, but its dominance
has decreased compared to the other taxa present. In the Fallopian tubes and
ovaries the microbial diversity increases and the abundance of Lactobacillus
decreases compared to the vagina, cervix and endometrium. It is noteworthy that
the pH levels in ovaries and Fallopian tubes change getting slightly alkaline
which in itself could impact the microbial composition (Chen et al., 2017).

Lactobacillus
(Firmicutes)
Bacteroidetes
Proteobacteria
Actinobacteria
other anaerobes

Fallopian tube

genital tract

diversity
abundance

Lactobacillus
(Firmicutes)

Figure 2. The female reproductive tract. Microbiome diversity increases in the upper
genital tract whereas the microbiome abundance increases in the lower genital tract.
(Adapted from Punzon-Jiménez and Labarta, 2021)
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While it is acknowledged that the core of vaginal microbiome is Lactobacillus,
to this day there is not a consensus found on what is the core of upper genital tract
microbial composition. The explanation for this could be found when looking at
how challenging the endometrial microbiome studies are. To start with, within
one menstrual cycle female body goes through hormonal as well as physiological
changes — all which can potentially affect the microbial community inside the
uterus. Furthermore, receiving the endometrial sample is a complicated procedure
in which a biopsy is taken via the cervix making it very prone to contamination
from the vagina or cervix. Another method used for receiving the endometrial
sample is during laparoscopy. Yet, usually women undergoing this surgical
procedure have an existing medical condition. This on the other hand implies that
it is highly unlikely for a healthy woman to undergo laparoscopy therefore,
making it complicated to perform studies where endometrial samples for healthy
controls are collected the same way as for the cases.

To this day, most of the studies involving endometrial microbiome are done
on women suffering from different kinds of problems with their reproductive
health (Franasiak et al., 2016; Hashimoto and Kyono, 2019; Kitaya et al., 2019;
Kyono et al., 2018; Liu et al., 2018, 2019; Moreno et al., 2016, 2018). In the case
of women undergoing assisted reproductive technology treatment, dysbiosis of
endometrial microbiome has been associated with implantation failure and early
spontaneous abortion. Based on early studies on the endometrial microbiome
field, it is suggested that besides associations with reproductive outcome, endo-
metrial microbiome is additionally associated with chronic endometritis (Fang et
al., 2016; Liu et al., 2019; Moreno et al., 2018), endometriosis (Chen et al., 2017;
Cregger et al., 2017; Hernandes et al., 2020; Khan et al., 2016; Wee et al., 2018),
endometrial hyperplasia and cancer (Walsh et al., 2019; Walther-Antonio et al.,
2016) as well as endometrial polyps (Fang et al., 2016). Yet, it is still unknown
what are the exact mechanism through which endometrial microbiome affects
different disease states in the uterus nor is it clear whether the dysbiosis itself is
a cause or a consequence of the pathology. Another unknown aspect in the endo-
metrial microbiome is how the different microbes actually find their way into the
uterus. So far there are a couple of ways suggested for bacteria entering the
uterine cavity, among which are through gynaecological procedures, ascension
through the cervix, retreating spread through fallopian tubes, during sexual inter-
course as well as through hematogenous spread bacteria from the gut or oral
cavities (Baker et al., 2018; Molina et al., 2020). Nevertheless, it is important to
note that studies have suggested strong influence of vaginal microbes on the
endometrial microbial composition thus implying that the most probable way for
bacteria to enter uterus is through ascension from vagina (Kyono et al., 2018;
Molina et al., 2020; Moreno et al., 2016).

Without a doubt, the microbial profile of the endometrium and the whole
upper genital tract needs additional studies in the future to widen the knowledge
on microbiome composition and its functions in the uterus in female health and
disease.
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1.3. Future perspectives of microbiome studies

The growth of microbiome studies has been rapid during the last 15 years and
microbiome is on its way to the lead in scientific research. Preceding to 2005,
there were approximately 500 gut microbiome publications in the Web of Science
per year. By the beginning of 2020 that number had already rose up to more than
9,000 microbiome related articles per year (Li et al., 2020). When wondering
what has caused the speedy rise in microbiome research, it is the fast development
of research technologies (Gilbert et al., 2018). Improvements in the NGS techno-
logies together with multi-omics approaches, including metagenomics, meta-
bolomics and transcriptomics, have greatly enhanced the microbiome field and
made it possible to understand the structure as well as function of the microbiome
better (Gilbert et al., 2018).

In the beginning of microbiome research the main results were on correlations
between taxa and health states. The gut microbiome has been associated with
numerous diseases that go beyond being only gastrointestinal disorders, such as
irritable bowel syndrome, Crohn’s disease or colorectal cancer (Lloyd-Price et
al., 2019; Wong and Yu, 2019). Links between the gut microbiome can be found
with Alzheimer’s disease (Vogt et al., 2017), obesity (Ridaura et al., 2013), T2D
(Gurung et al., 2020; Qin et al., 2012) and many more. However, now the micro-
biome studies are altering from associations to finding causality. This is largely
a normal progress in science since it is widely acknowledged that an association
is not a proof of causation. One of the first landmark studies showing causality
between the gut microbiome and host health was a research by Turnbaugh et al.
published in Nature in 2006. In their work they used FMT technology on mice to
demonstrate that obesity is transmissible by the gut microbiome (Turnbaugh et
al., 2006). Different rodent studies with implementing FMT are progressively
showing that the gut microbiome is at least partly causal for developing diseases.
This is especially well described for metabolic diseases such as T2D and obesity
(Arora and Béackhed, 2016; Biackhed et al., 2004; Fan and Pedersen, 2021; Gérard
and Vidal, 2019; Qin et al., 2012; Turnbaugh et al., 2006).

Despite seeing that microbiome is causal in changes seen in these disease states,
it is still uncertain what are the exact mechanisms through which microbiome
contributes to the onset and progression of illnesses. Unraveling these questions
behind disease development is certainly a question of utmost importance for the
future research in the microbiome field. At the same time it is essential to keep in
mind that the gut microbiome is only one aspect of the disease, and over-
emphasizing its importance should be avoided. The driving causes of different
disease states are most likely a complex result of numerous driving factors. Which
is why it is necessary to also include human genetics, lifestyle, sleeping patterns,
environment, medication and other possible factors into the study structure.

Furthermore, thus far most of the published research on the topic of human
health and gut microbiome have been cross-sectional studies looking at data at
one specific time point which lacks the potential to identify the causality of the
found associations. Future prospective studies looking at metagenomes from
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pre-treatment or pre-diseases states are desperately needed to identify the
causality of observed associations. As stated earlier, in order to study the micro-
bial variability over time, longitudinal studies looking at the same individuals
over a period of time are needed. A pioneer in this is a new cohort collected in
Israel which aims to gather data of 10,000 individuals and follow them con-
tinuously over the time period of 25 years (Shilo et al., 2021). Recent studies
suggest that repeated microbiome measurements are needed in microbiome field
since while there are species whose abundance does not change to great extent
over time, the so called microbiome fingerprint, the microbial profile does show
temporal variation which could be a key determinant in understanding the roles
of microbiome in health and disease (Chen et al., 2021; Vandeputte et al., 2021).
For what is more, large existing biobanks have started collecting their own
microbiome data enabling to add different omics datasets together with lifestyle
and health data to the equation in explaining the microbiome variability.

Knowledge of microbiomes’ role in human health is increasing expeditiously
and every day researchers around the world are working with great effort to
advance the field of microbiomics. Large population studies have a great impor-
tance in widening our understanding of microbiome and have already discovered
many links between microbiome and wellbeing, inspiring new researches. The
advancements will lay the first stone to rise novel therapeutic possibilities and
move towards personalized medicine that would not only implement the human
genetics but also human microbiome.
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2. AIMS OF THE STUDY

The aim of this thesis is to investigate the variation of the human microbiome and
its associations with health. The specific objectives of the thesis are as follows:

1.

to study the effects of host genetics on gut microbiome composition in a large
consortium study with 24 different cohorts

. to explore the associations between microbiome and female health, focusing

on polycystic ovary syndrome and endometrial microbiome analysis of in
vitro fertilization (IVF) patients
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3. RESULTS AND DISCUSSION

3.1. The potential of large-scale association analyses
in microbiome studies (Ref. )

The work of the last decade has clearly shown that the gut microbiota composition
is highly influenced by multiple environmental factors, such as diet and medi-
cation (Aasmets et al., 2022; Falony et al., 2016; Jackson et al., 2018; Rothschild
et al., 2018; Salosensaari et al., 2021; Zhernakova et al., 2016). However, the role
of genetics on the gut microbiome has been less studied. Evaluating the asso-
ciations between the gut microbiome and genetic variations is vital in under-
standing the role of microbiome in human organism. First studies with twins and
later population-based studies with unrelated individuals have shown the herit-
ability of microbiome and detected associations between the gut microbiome and
genetic variations (Bonder et al., 2016; Goodrich et al., 2016; Lopera-Maya et al.,
2022; Qin et al., 2022). Based on twin studies, the effect of genetics on micro-
biome is relatively small, especially compared to the environmental effects. Due
to large variability in microbiome composition between individuals and genetics
having a relatively small effect on microbiome, large sample sizes are needed
which would help to detect the associations between genetic loci and microbiome.
In order to overcome the hurdle of small sample sets, the MiBioGen consortium
with more than 18,000 individuals belonging to 24 different cohorts from all over
the world was established.

3.1.1. Description of cohort and methods

For this study we used a METabolic Syndrome In Men (METSIM) cohort, which
is a longitudinal population-based cohort consisting a total of 10,197 randomly
selected non-diabetic Finnish men (Laakso et al., 2017). In the MiBioGen con-
sortium meta-study, a subset of the METSIM cohort was used. A total of 522 men
with an average age of 61.91 (standard deviation of 5.41) and average BMI of
27.92 (standard deviation of 3.61) were comprised in the study. All of the partici-
pants had genotyping as well as microbial 16S rRNA sequencing data. Geno-
typing was done using the [llumina Omni ExpressExome microarray. Microbial
DNA was extracted from frozen fecal samples using the PowerSoil DNA Iso-
lation Kit (MO BIO Laboratories, Carlsbad, CA, USA) following the manu-
facturer’s instructions. Amplification of the V4 hypervariable region of the 16S
rRNA gene was done with the 515F and 806R primer and sequenced with the
[Nlumina MiSeq platform using Illumina OmniExpressExome microarray at the
University of California, Los Angeles.

The whole meta-analysis study comprised of 18,340 individuals from 24 dif-
ferent cohorts from Belgium, Canada, Denmark, Finland, Germany, Israel, the
Netherlands, the United Kingdom, South Korea, the United States and Sweden.
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The analysis performed by each of the participating cohort in-house were
1) 16S rRNA data processing; 2) host SNP microarray data processing; 3) running
the association study benchmark focusing on 10 most abundant bacterial genera
of the cohort; 4) running MWAS for all taxa (microbiome quantitative trait loci,
mbQTL); 5) running MWAS on alpha diversity; 6) running binary trait (bacterial
presence/absence (microbiome binary trait loci, nbBTL) MWAS. The taxonomy
binning based on SILVA 128 database done using standard pipeline created by
the consortium for all the cohorts (Quast et al., 2013).

The microbiome data was corrected for age and principal components (for
other cohorts also for sex but since METSIM is a male-only cohort, this step was
not performed). Cut-offs and data transformations for taxonomies in each cohort
were following: taxonomy present in more than 10% of the samples were kept
for the mbQTL mapping whereas for mbBTL mapping taxa present in more than
10% of the samples but less than 90% of the samples were included. To account
for differences in sequencing depth, datasets from every cohort were rarefied to
10,000 reads per sample. Study-wide cut-offs for bacterial taxa in mbQTL
included a minimum effective sample size of 3,000 samples and presence in at
least three cohorts. For mbBTL analysis, a mean abundance higher than 1% in
the samples was required. In total, 211 taxa were included in the mbQTL analysis
and 177 taxa in mbBTL analysis.

For SNPs the data processing steps were: minor allele frequency > 5%; impu-
tation quality of more than 0.4; SNP call rate was set to 0.95 and higher and
ambiguous SNPs were removed. For binary traits logistic regression with Chi
square-based p-value estimation was used and for non-zero samples linear
regression model on log-transformed counts with Fisher test-based p-value esti-
mation was used. A P-value of P <5 x 10 was considered to reach the nominal
genome-wide significance level and P < 1.95 x 107'* was considered to pass the
strict correction for the number of taxa tested and reach study-wide significance.

3.1.2. Gut microbiome is associated with 31 genetic loci

To explore the effect of host genetics two different types of MWAS meta-analysis
were performed 1) on the microbial abundance levels (mbQTL) and 2) on the
presence or absence (mbBTL) of bacterial taxa in the gut microbiome. The
mbQTL analysis identified 20 loci associated with the abundance of 27 taxa and
the mbBTL analysis 10 loci associated with presence or absence of bacterial taxa
that reached the nominal genome-wide significance level (P < 5 x 10°*). For one
bacterium, two independent loci were identified, leading the overall number of
loci associated with gut microbiome to 31 (Figure 3).

Out of the 31 associated loci, only one locus passed the study-wide multiple
testing correction (P < 1.95 x 107'%). This was the LCT locus on chromosome 2
associated with the genus Bifidobacterium (P = 8.63 x 10"). The LCT gene is
responsible for lactase persistence in adult European population. The associations
at the LCT locus have previously been described and to this day this is the strongest
association reported between human genetics and microbiome composition
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(Blekhman et al., 2015; Bonder et al., 2016; Goodrich et al., 2016; Riihlemann et
al., 2021). What makes the association between LCT and Bifidobacterium note-
worthy is that this association has been consistently described in studies with
different ethnicities, a wide range of sample sizes as well as studies implementing
different pipelines (Blekhman et al., 2015; Bonder et al., 2016; Goodrich et al.,
2016; Lopera-Maya et al., 2022; Riithlemann et al., 2021). A recent study done on
Dutch cohort was able to describe the association with LCT locus not only on
genus level, but more specifically, showed association between LCT and Bifido-
bacterium longum and Bifidobacterium adolescentis (Lopera-Maya et al., 2022).

Despite not reaching the strict correction for the number of taxa tested, there
were several loci identified that are enriched for genes related to metabolism. One
such example is the FUT2 gene. The FUTZ2 locus was associated with the abun-
dance of the Ruminococcus torques genus group. Ruminococcus sp. are known to
degrade complex carbohydrates while as FUT2 encodes an enzyme responsible
for the secretion of fucosylated mucus glycans in the gastrointestinal mucosa
(Crost et al., 2018; Kashyap et al., 2013). These functions are supportive of the
link between the Ruminococcus and FUT2. Associations with FUT2 have been
described also in the Dutch and German cohorts (Lopera-Maya et al., 2022;
Rithlemann et al., 2021).
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Figure 3. Manhattan plot of the mbTL mapping meta-analysis results. MbQTLs are indi-
cated by letters. MbBTLs are indicated by numbers. Horizontal lines define nominal
genome-wide significance (P =5 x 1078; red) and suggestive genome-wide (P =1 x 1075,
blue) thresholds.
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The analysis on the host genetics and bacterial alpha diversity revealed no
associations as well as diversity did not present any heritability in the heritability
estimation analysis based on the TwinsUK and the Netherlands Twin Registry
cohorts.

This part of the thesis stresses the value that collaborative work and large sample
sizes have in research specifically in microbiome studies. Large studies like this
provide an exceptional source of data for human microbiome studies. However,
multicohort studies also come with obstacles which could overshadow the chances
of discovering true associations. The biggest challenges include a) large hetero-
geneity due to multi-ethnicity; b) different sample collection and DNA extraction
methods between cohorts; ¢) usage of various sequencing and genotyping techno-
logies. This all is combined with challenges present in all MWASs not only in
multi-cohort studies such as the large environmental effect on microbiome which
could conceal the effect of genetics; the burden of multiple testing correction; and
challenges in microbiome analysis due to its complex structure. For what is more,
the expected effect size of host genetics on the microbiome seems to be modest
meaning that in order to identify the genetic variants associated with microbiome
a vast increase in sample size is needed for adequate power (Kurilshikov et al.,
2017). Based on recent power calculations more than 50,000 study participants
are needed to find new associations between human genetics and the gut micro-
biome with effect sizes close to LCT (Lopera-Maya et al., 2022).

3.2. The gut microbiome in Finnish female cohort and
its associations with polycystic ovary syndrome (Ref. 1)

Evaluating the human gut microbiome profile of different cohorts across the
world has been one of the first aspects described in microbiome studies. It is a
crucial step in understanding the overall composition of the gut ecosystem of a
certain cohort before moving on to investigate the deeper associations between
phenotypical traits and microbes.

The gut microbiome is widely studied in different metabolic diseases, however
its probable role in PCOS which is also categorized as a metabolic and endocrine
syndrome is rather understudied to this day. Given the fact that PCOS is a complex
disorder characterized by a variety of traits that have been linked to the gut health
it is reasonable to study its associations with gut microbiome. For what is more,
the etiology of PCOS even to this day remains partially unknown. It is known to
be a multifactorial syndrome where lifestyle as well as genetics have their role in
the developmental process and now more and more studies are being published
that are investigating the possible link between PCOS and the gut microbiome.

In this study our goal is to describe the gut microbiome profile of late fertile
age women in a homogenous Finnish female cohort and to compare the gut micro-
biome in women with and without PCOS. We also correlated the gut microbiome
with PCOS-associated metabolic markers to find possible interaction between the
two of them.
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3.2.1. Description of cohort and methods

For this study we used a subset of the Northern Finland Birth Cohort 1966
(NFBC1966) that includes the 2 northernmost provinces of Finland (Rantakallio,
1988; University of Oulu). Participants donated blood and fecal samples, per-
formed an oral glucose tolerance test (OGTT) and their anthropometric measure-
ments were taken. Also, the Finnish register for drug imbursements was used in
order to identify study participants who had been prescribed antibiotics, letrozole,
antimycotics or tamoxifen within three months prior to sample collection, these
individuals were then excluded. The total study population was 303 women
including 102 women with PCOS and 201 age- and BMI-matched women with-
out PCOS (hereinafter referred as non-PCOS).

The bacterial DNA extraction from the stool samples was done with the
QIAamp Stool Mini Kit (Qiagen, Venlo, The Netherlands) and the sequencing of
V3-V4 regions of the 16S rRNA gene were done on an Illumina MiSeq instru-
ment. The open-source software QIIME 2 2019.7 (Bolyen et al., 2019) was used
for the raw sequencing data analysis and statistical data analysis was performed
using the statistical software R v.3.6.1 (under RStudio v.1.2.1335).

3.2.2. The gut microbiome profile of Finnish women corresponds
to the Western population

In this part of the study, we characterized the gut microbial profile of our study
participants of Finnish women belonging to the NFBC1966 cohort. The microbial
profiling revealed that the study population is representative of a typical Western
diet (WD) diversity profile of gut microbiota with Firmicutes (54.0%) and
Bacteroidetes (31.9%) being the most prevalent phyla followed by Proteobacteria
(6.7%), Actinobacteria (3.4%) and Verrucomicrobia (2.4%) (Figure 4A)
(Senghora et al., 2018).

In paragraph 3.1 in the thesis (Ref. I) we used another population-based cohort
from Finland, the METSIM cohort of 522 Finnish men collected from Kuopio in
Eastern Finland. Comparing gut microbiome profiles in two Finnish population-
based cohorts, one of which being female-only and the other male-only cohort,
we observed that the overall composition on phylum level for both Finnish cohorts
are similar to one another, with only the Proteobacterium being more prevalent
in the female cohort than in the male-only METSIM cohort, 6.7% and 2.4%,
respectively (Figure 4A, C).

We also assessed the core microbiome of both Finnish cohorts. The core was
defined as the genera shared by > 95% of the samples. In the female NFBC1966
cohort we identified eight genera as core: Bacteroides (19.9%), followed by
Alistipes (7.5%), Faecalibacterium (4.9%), Roseburia (2.5%), Blautia (2.5%),
Lachnoclostridium (1.5%), Ruminococcaceae uncultured (1.2%), and Oscilli-
bacter (1.1%) (Figure 4B). Six of the eight genera detected in our female cohort
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overlapped with a large international study by MiBioGen consortium incorpo-
rating 24 different populations (Ref. I). The additional two genera found in our
study were Ruminococcaceae and Oscillibacter. Figure 4D illustrates the core
found for METSIM cohort. Similarly to NFBC1966 all core genera in METSIM
belonged to the two most abundant phyla Firmicutes and Bacteroidetes. However,
the core of METSIM cohort consisted of more genera than in NFBC1966 cohort
(Figure 4B, D).
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Figure 4. Landscape of microbiome composition of the NFBC1966 (panels A and B) and
METSIM cohort (panels C and D). (A and C) Pie chart indicate the average relative abun-
dances of the top major phyla of the cohorts. (B and D) Mean relative abundance of the
core microbiome (taxa present in over 95% of individuals) of the cohorts at genus level.

3.2.3. Two time point clinical data helps to evaluate
the clinical phenotype of PCOS

The clinical characteristics of the study participants were assessed at two time
points (at the age of 31 and 46), however, the stool samples were taken only
during the second time point. Analyzing the clinical markers revealed that com-
pared to controls women with PCOS had higher testosterone (P = 0.01) levels at
31 years as well as higher free androgen index (FAI) (P = 0.01) measures at
46 years (Table 3). In some women with PCOS, testosterone levels are normal,
however a large proportion of PCOS women suffer from androgen excess,
including testosterone (Sheehan, 2003). The reasoning behind elevated testo-
sterone in PCOS is that the levels of insulin in the blood and the levels of
luteinizing hormone produced by pituitary gland are too high. This in turn causes
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the ovaries to produce an excessive amount of testosterone. To this day there are
different options in PCOS to decrease testosterone production. Since the excess
testosterone production happens predominately in ovaries, the reduction of
gonadotropin production together with increasing sex hormone binding globulin
(SHBG), oral contraceptives are used to decrease the testosterone levels (Wiegratz
et al., 2003). Another possible way to target testosterone levels, is by lowering
insulin levels which can be accomplished through weight loss or by the usage of
metformin (Harborne et al., 2003; Sheehan, 2003).

At age 31, women with PCOS reported having fewer menses per year and
having problems with infertility, which was also seen at the age 46. One widely
prevalent symptoms of PCOS estimated to occur up to 85% of women with PCOS
is oligomenorrhea which by general definition means that a women experiences
fewer than eight menstrual cycles per year (Harris et al., 2018). Problems with
ovulation, usually caused by hormonal imbalance, are normally the primary cause
of infertility in women with PCOS making it comprehensible for us to see rise in
infertility problems as well as less menses per year among the PCOS cases in our
study.

As anticipated, there were no differences in BMI between the groups since the
controls were BMI-matched to the PCOS cases. Although not statistically signi-
ficant, compared to the non-PCOS SHBG tended to be lower in PCOS group
(Table 3).
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3.2.4. Differences in gut microbiome in PCOS women compared
to women without PCOS

In the gut microbiome analysis, we first compared the diversity measures between
the PCOS and non-PCOS women. Both, alpha (Shannon diversity metric, inverse
Simpson diversity and a number of observed taxa) and beta diversity analyses
indicated no differences between the two study groups (Figure 2A in Ref II).
Similarly, we saw no differences in beta diversity (Figure 2B and 2C in Ref II).
Previous studies have reported contradictory results where some of the studies
report changes in diversity measures while others do not (Table 2) (Eyupoglu
et al., 2020; Insenser et al., 2018; Mammadova et al., 2021; Qi et al., 2019; Zeng
etal., 2019; Zhang et al., 2019b; Zhou et al., 2020). For example, a metagenomics
study performed on 93 individuals of Chinese ancestry reported no differences in
alpha diversity while beta diversity of women with PCOS was significantly
decreased compared with non-PCOS individuals (Qi et al., 2019). The most prob-
able justification for not detecting differences between the groups in diversity
analysis and for the results being contradictory could be the fact that PCOS as a
whole does not change the gut microbiome to such an extent which would reflect
in the overall microbial community.

The differential abundance analysis performed in order to detect bacteria dis-
tinguishing microbial profile of PCOS from non-PCOS ended with no statistically
significant results found (Supporting Information Table 4 in Ref. II). However,
we also performed a so called Selbal analysis which allows to identify groups of
microbial taxa differentiating between the study groups. During this analysis we
identified a microbial balance consisting of four genera whose balance is
predictive of PCOS (AUC = 0.64). The equation is following:

\/(Eubacterium ventriosus group X Bifidobacterium)

\/(Prevotella X Streptococcus) >

where higher solution notes for women with PCOS and lower for non-PCOS
(Figure 5). Interestingly, despite not detecting any bacteria with statistically
significant differences in their relative abundance between the PCOS and non-
PCOS, all bacteria found in the Selbal analysis but the Bifidobacterium belonged
to the top 10 bacteria identified in the differential abundance analysis (Supporting
Information Table 4 in Ref. II). These findings add proof that the named four
bacteria may have a role in the pathogenesis of PCOS and the relationship could
possibly be detected on a statistically significant level in a larger study.
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Figure 5. Selbal analysis results. The balance is made out of two groups of taxa: Para-
prevotella-Streptococcus and Eubacterium ventriosum group Bifidobacterium. The
boxplots characterize the distribution of the balance scores for PCOS women and healthy
controls. The right part holds the ROC curve with its AUC value (0.643). Abbreviations:
AUC, area under the curve; FPR, false positive rate; PCOS, polycystic ovary syndrome;
ROC, receiver operating characteristic; TPR, true positive rate.

Finally, we performed correlation analysis of the top 10 bacteria found in the
differential abundance analysis with traits connected to PCOS, such as hormonal
markers, BMI as well as features of insulin and glucose metabolism. As a result,
two genera — Ruminococcaceae UCD-002 and Clostridiales Family XIII AD 3001
group — presented correlations with various PCOS-related markers (Figure 3 in
Ref. II). Particularly, the abundance of genus Ruminococcaceae UCG-002 was
positively correlated with disposition index (P = 0.001), SHBG (P = 0.001) and
Matsuda index (P = 0.009). Additionally, the abundance of Clostridiales Family
XIII AD3011 group was positively correlated with SHBG (P = 0.006) and
Matsuda index (P = 0.010) and negatively correlated with glycated hemoglobin
(HbAlc) (P = 0.003), 2h glucose level (P = 0.006) as well as BMI (P = 0.010).
Interestingly, some genera belonging to the family of Ruminococcaceae have
been associated with PCOS in previous studies (Liu et al., 2017; Torres et al.,
2018). Ruminococcaceae UCG-002 could potentially possess metabolically
similar functions to the genera found in earlier studies making it an important
genus to be further studied when learning the development of PCOS.
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3.2.5. Changes in microbial diversity in PCOS patients
are dependent on their metabolic health

The WD is defined as an unhealthy diet with high fat consumption characterized
by frequent snacking, binge and overeating, as well as prolonged postprandial
state (Malesza et al., 2021). WD has numerous metabolic aspects such as insulin
resistance, dyslipidemia, hyperinsulinemia, and oxidative stress, for what is more,
the consequences of high-fat diet include gut microbiota dysbiosis, gut barrier
dysfunction, dyslipidemia, and increased intestinal permeability — all of which
strongly promote the development of chronic low-grade systematic inflammation
which is considered as one of the key contributors to the pathogenesis of PCOS
(Malesza et al., 2021; Rudnicka et al., 2021).

Since we identified significant associations between PCOS and different meta-
bolic traits, we next hypothesized that the effect of PCOS on the gut microbiome
may be related to metabolic processes. In order to test this hypothesis, we cate-
gorized women with PCOS into subgroups based on their OGTT results. In total
there were 76 individuals with normal glucose tolerance (NGT) and 14 with pre-
diabetes which is a state where blood sugar levels are higher than normal, but not
as high as in the case of type 2 diabetes. Comparing to NGT group, we reported
decreased lower alpha diversity (P = 0.018) for individuals with prediabetes and
significant differences in beta diversity (P = 0.003) (Figure 6A, B) which is con-
sisted with the results of previous studies (Gurung et al., 2020; Menni et al., 2020).
Additionally, the relative abundance of genus Dorea was significantly lower in
the NGT group compared to preT2D suggesting a probable role of Dorea in
metabolic diseases and their etiology (Figure 6C). In the literature, we found
supporting evidence for this hypothesis. Namely, Dorea has previously been
reported to be positively correlated with fasting blood glucose, glutamate, branched
chain amino acids and BMI, all of which are important components of metabolic
health (Naderpoor et al., 2019; Ottosson et al., 2018). Moreover, in our cohort
Dorea had statistically significantly correlations with multiple metabolic features,
including positive correlations with fasting glucose and fasting insulin levels and
borderline positive correlations with BMI and HbAlc. This adds new evidence
to the effect of Dorea in metabolic health and through it also to PCOS.

Taken together, our study on women with PCOS in their late reproductive
years indicates that there might be no direct links between PCOS and gut micro-
biome, rather the mechanisms could work through microbial metabolites. Indeed,
a recent research on gut microbiome and PCOS suggests that the link between
the PCOS and gut microbiome most likely works through metabolism and more
specifically, through metabolites produced by the gut microbiota. Namely, a
recent study using untargeted metabolomics and metagenomics study on PCOS-
like mouse saw that the microbial metabolites, specifically the primary and
secondary BAs, are able to predict the PCOS more precisely than the microbes
themselves (Ho et al., 2021). Given that supplementation with BAs such as
glycodeoxycholic acid and tauroursodeoxycholic acid have shown to be lower in
women with PCOS than in non-PCOS women (Qi et al., 2019), additional studies
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are needed to determine what are the protective mechanisms through which these
BAs act in PCOS. These discoveries can be useful for development of novel
therapies implemented in PCOS treatment.
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Figure 6. Comparison of the gut microbiome diversity between NGT (n = 76) and
preT2D samples (n = 14) among women with PCOS. (A) Box plots of the Shannon
diversity index (alpha diversity), median values and interquartile ranges have been
indicated in the plot (P = 0.018). (B) Beta diversity is represented by principal coordinate
analysis based on unweighted UniFrac distance (P = 0.003). (C) Genus Dorea with
statistically significant differences (FDR = 0.03). Abbreviations: NGT, normal glucose
tolerance; preT2D, pre-type 2 diabetes. Each plot point represents a single individual, the
shapes and color indicate study groups (thombus and blue: NGT, star and red: preT2D)

Our research also demonstrates the complexity of PCOS and indicates that it is
highly metabolic as well as hormonal disorder where glucose tolerance and
prediabetic state have an important part — both of which are strongly associated
with the gut microbiome. In our study, the women had already surpassed their
reproductive peak which could make it difficult to discover the associations with
fertility. Therefore, in order to look at the associations between microbiome and
fertility in PCOS it would be beneficial to perform a study in young adults with
PCOS. As a future prospective it would also be interesting to combine polygenic
risk scores calculated for PCOS with microbiome to predict the risk of developing
the disorder.
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3.3 Differences in microbial profile of endometrial fluid
and tissue samples in women with in vitro fertilization
failure are driven by Lactobacillus abundance (Ref. IlI)

The gut microbiome has been in the spotlight of microbiome studies for over a
decade. However, with the improvement of methods used in the microbiome
research it has become possible to start studying the microbial composition of
more complex ecosystems with low biomass. This in turn makes it achievable to
so to say get closer to the place of interest in the body. When so far most of the
microbiome studies were done on using stool samples then now it is becoming
more and more prevalent to study the sites closer to a so-called active illness
location.

The microbes residing inside the female reproductive tract have been under
the interest of gynecologists for a long period of time and a number of microbes
have been associated to several gynecological disorders. This rises the idea that the
microbiome could potentially be used as an additional biomarker when identi-
fying possible causes behind infertility problems.

Using the 16S rRNA sequencing data of endometrial microbiome samples
taken from endometrial fluid and tissue, we here aim to assess the microbial com-
munity of these samples in women who have had at least one in vitro fertilization
treatment cycle failure.

3.3.1. Description of cohort and methods

The current study was carried out in collaboration with the Center of Human
Reproduction Genesis clinic in St Petersburg, Russia where 25 women with
previous IVF procedure failure were recruited. All of the women had undergone
at least one unsuccessful IVF treatment cycle and had longstanding problems
with infertility (Table I in Ref. III).

Two different types of endometrial samples were collected from each partici-
pant — an endometrial tissue (ET) and an endometrial fluid (EF) sample. The
sample collection process was performed in the middle of the secretory phase of
the menstrual cycle. A 16S rRNA sequencing of the V3-V4 hypervariable region
was carried out and the statistical analyses between the ET and EF samples were
carried out with R software (v4.0.2) using packages phyloseq (v1.32.0), vegan
(v2.5-6), microbiome (v1.10.0) and ALDEx2 (v1.20.0).

Additionally, according to their Lactobacillus abundance, the samples were
categorized as Lactobacillus dominant or non-Lactobacillus dominant. To be spe-
cific, samples with relative abundance of Lactobacillus > 50% were considered
as Lactobacillus dominant and samples with Lactobacillus < 50% were con-
sidered as non-Lactobacillus dominant.
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3.3.2. Microbial profile of endometrial tissue and fluid samples

Analysis of the microbial community composition of the ET and EF samples
revealed that the most prevalent phyla in both of the sample types were
Firmicutes, Proteobacteria and Actinobacteria (Supporting Information Figure 1
in Ref. III). In total there were 9 different phyla in ET samples and 10 phyla in
EF samples, out of which 9 were present in both sample types (Supporting
Information Figure 1 in Ref. III). Similarly to the human gut microbiome, a large
variation in microbiome composition was present across samples. For example,
the abundance of the most prevalent genus Lactobacillus fluctuated from 0 to
99.8% (mean 50.2%) in ET samples and from 0 to 99.7% (mean 71.8%) in EF
samples. Previous work on endometrial microbiota have also shown that the
genus Lactobacillus is the most prevalent habitant in this ecosystem (Liu et al.,
2018). The fact that the abundance of Lactobacillus is higher in fluid samples
than in tissue samples could potentially reflect the vaginal cavity microbial
habitat.

We used differential abundance analysis to search for possible community dif-
ferences between the sample types. Here, the only difference found between the
sample types was genus Lactobacillus (p = 0.01), yet, this difference did not
remain statistically significant after correcting for multiple testing (Table II in
Ref. III). Likewise, we detected no statistically significant differences between
the EF and ET in alpha and beta diversity analysis (Figure 2A, 2B, 2C and 2D in
Ref. III) The fact that no differences were found between the ET and EF samples
could be explained by our relatively small sample size as well as by high vari-
ability in microbiome composition between individuals.

Since our dataset comprises individuals with several different reasons behind
their infertility, we decided to compare the microbiome of the individuals based
on their infertility reasons (Supporting Information Table 3 in Ref. III). As a
result, we detected no differences in the microbiome between the infertility groups
which illustrates that the endometrial microbiome is probably not affected by
infertility causes.

3.3.3. Genus Lactobacillus drives the differences
between endometrial tissue and fluid samples

To look more in depth into the ET-EF pairs of samples we decided to perform
analysis with mismatching Lactobacillus dominance. A reasoning behind it was
also the fact that the relative abundance of Lactobacillus had a statistically signi-
ficant effect on the variability in beta diversity (r* = 0.34, FDR < 9.9x107%) sug-
gesting that named genus has a big effect on the sample composition.

In total there were 8 individuals with mismatching Lactobacillus dominance
samples [with Lactobacillus abundance for Lactobacillus dominated and non-
Lactobacillus dominated groups being 83.7% and 13.1%, respectively (P =
8.6x10%)]. Out of these 8 individuals 6 had Lactobacillus dominated fluid
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samples and 2 individuals had Lactobacillus dominated tissue samples. Here we
saw differences in both alpha and beta diversity analyses. The Shannon diversity
was higher in ET samples in comparison to EF samples (P = 0.06, Supporting
Information Figure 2 in Ref. III). This is also concordant with a previous study
showing higher alpha diversity in ET samples (Liu et al., 2018). Furthermore,
there was a clear clustering between the sample types in beta diversity (Figure 2E
in Ref. III). Interestingly, we saw now clustering based on individual which is
usually common in human gut samples (Figure 2D and 2E in Ref. III).

Our results conclude that the main driver between the differences in endo-
metrial samples is the genus Lactobacillus. Furthermore, other research has shown
that Lactobacillusis an important genus in terms of fertility problems and its role
in female reproduction needs further investigation. Additional work using meta-
genomics would be beneficial in understanding the importance of Lactobacillus
on species level as well as search for pathways which could be associated with
the female reproduction. Deeper understanding of the role of Lactobacillus in
fertility could lead into discovery of microbiome-based biomarker helping to
determine the causes of infertility and potentially other problems related to female
reproductive health.
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CONCLUSIONS

Understanding the effects of microbes on human health and disease has a great
potential in improving the field of personalized medicine by adding microbial
component to the equation. Microbiome data is a valuable asset in understanding
the mechanisms behind the etiology and mechanisms behind different disease
states in human body. Comprehensive microbiome studies elucidate the roles of
bacteria in humans and provide bases for future explorative research to deepen
the understanding of the interplay between human as a host and microorganisms
inhabiting the human body.

The main conclusions drawn from this thesis are as follows:

Large-scale meta-analysis incorporating multiple cohorts across the world are
needed to unravel the associations between the gut microbiome and genetics.
A large MWAS with 18,340 individuals was able to detect associations between
31 genetic loci and microbiome as well as confirm previously described
association between the LCT locus and the Bifidobacterium genus. The huge
interindividual variability in microbiome as well as the heavy burden of
multiple testing present in microbiome studies makes it complicated to
uncover associations between rarer taxa and genetic variants. This is a clear
indication that in the future, studies with additional individuals are needed to
fully understand the interrelation between microbiome and genetics.

The role of gut microbiome in PCOS most likely works through the metabolic
traits. PCOS is highly linked with metabolic health and this thesis shows that
the differences in the gut microbiome profile become evident when con-
sidering the prediabetic state of PCOS women. The results shown here indi-
cate lower alpha diversity and significantly higher abundance of genus Dorea
in prediabetic PCOS women compared to women with PCOS but normal
glucose tolerance.

The differences seen in the microbiome of endometrial tissue and fluid
samples in women undergoing IVF treatment are driven by the Lactobacillus
genus. This finding confirms the importance of Lactobacillus in the female
reproductive health. The study as a whole illustrates the need in microbiome
studies to move further from the gut microbiome and closer to the active site
of the disease, in this case the endometrium. This knowledge provides an
opportunity to find new microbiome-based biomarkers for early prediction,
better diagnosis and more accurate treatment.
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SUMMARY IN ESTONIAN

Inimese mikrobioomi mdjutavad faktorid ning seosed naiste tervisega

Viimaste paari kiimnendi edasiarengud sekveneerimistehnoloogiates on hiippe-
liselt kaasa aidanud mikrobioomi kui teadusharu uuringutele. DNA analiiiisi-
meetodite tdiustamine on teinud véimalikuks oma eluks anaeroobset keskkonda
vajavate bakterite uurimise, mis on mikrobioomi uuringute jaoks avanud uue
maailma. Niitid on véimalik ulatuslikumalt uurida soolestikus ning mujal orga-
nismis elavaid baktereid ning otsida nende seoseid tervisega.

Inimese mikrobioomikooslus omab suurt olulisust meie tervisele, sellel on
moju paljudele protsessidele organismis nagu niiteks ainevahetusele, immuun- ja
nérvisiisteemi toimimisele. Tulenevalt mikrobioomi olulisusest organismi hea-
olule, on oluline vilja selgitada, mis on need faktorid, mis mikrobioomikooslust
ning seeldbi meie tervist mojutavad.

Kéesolev doktoriviitekiri uurib seoseid inimese geneetilise varieeruvuse ning
mikrobioomi koosseisu vahel ja analiiiisib 1dhemalt, kuidas mikrobioom v&ib
mdjutada naiste tervist. Teaduskirjandusele toetudes annab t66 esimene osa iile-
vaate sellest, millised faktorid mdjutavad enim soolestiku mikrobioomikooslust
ja selle varieeruvust inimeste vahel ning kuidas analiiiisi labiviimine voib teadus-
tulemusi mojutada. Arutluse all on lisaks mikrobioomi ja geneetika omavahelised
seosed ning ldhemalt vaadatakse seoseid nii soolestiku kui ka reproduktiiv-
stisteemi mikrobioomi ja naiste tervise vahel. Kirjanduse iilevaate viimases osas
arutletakse mikrobioomi teaduse tulevikust, motiskledes selle kasutamise vdima-
luste iile tervise hindamisel. Doktorit66 eksperimentaalosas analiilisitakse kdige-
pealt soolestiku mikroobide ning inimese geneetilise varieeruvuse vahelisi seoseid
suuremahulises koostodprojektis. Lisaks uuritakse soolestiku mikroobide moju
poliitsiistiliste munasarjade siindroomile (PCOS) ning analiitisitakse endomeetriu-
mis leiduvaid baktereid ning nende potentsiaalset efekti naiste reproduktiiv-
tervisele.

Geneetika ning mikrobioomivaheliste seoste uurimise suurimaks takistuseks
voib lugeda mikrobioomi suurt varieeruvust inimeste vahel ning geneetika kiillaltki
viikest moju mikrobioomi varieeruvusele. Seetdttu jadb véikese valimiga teadus-
toddel puudu vajalikust uuringu statistilisest voimusest, mis voimaldaks tuvastada
geneetika ja mikrobioomi vahelisi seoseid. Valimi suuruse probleemidest iile-
saamiseks kasutatakse geneetiliste seoste tuvastamiseks inimese genoomist kon-
sortsiumipohiseid ldhenemisi, kus toimub erinevate uurimisgruppide andmete
tthine analiilis. Kéesolevas t60 uuriti inimese geneetilise varieeruvuse ja mikro-
bioomi vahelisi seoseid suures koostdoprojektis (MiBioGen konsortsium), kus
analiiiisiti rohkem kui 18 000 inimese soolestiku mikrobioomi andmeid. T66 tule-
musena tuvastati 31 geenilookuse mdju soole mikrobioomile ja kinnitati varem
néidatud seos LCT geenilookuse ning Bifidobacterium perekonna vahel. Lisaks
saadud tulemustele nditas antud t66 erinevatest faktoritest mojutatud mikro-
bioomi suurt varieeruvust (sh. uuringu disain ja erinevused populatsioonide vahel),
mis raskendab erinevate uuringute andmete kombineerimist. T60 illustreerib, et
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harvaesinevate bakterite seose tuvastamiseks geneetikaga, on vajalik kordades
suurema valimi kaasamine.

Mikrobioomi moju inimese tervisele on ndidatud paljude erinevate haiguste
puhul, ulatudes kaugemale soolestiku tervisest, kus elab suurim mikroobikooslus
inimese organismis. Viimastel aastatel on iiha enam avaldatud uuringuid teemadel,
mis nditavad naiste reproduktiivtervise ja mikrobioomi vahelisi seoseid. PCOS
on itheks enimlevinumaks endokriinhaiguseks viljakas eas olevatel naistel, mdju-
tades nii naise ainevahetust kui ka reproduktiivtervist. Leidsime oma tods, et
soolestiku mikrobioomis olev bakterikooslus, millesse kuuluvad bakteripere-
konnad Paraprevotella, Streptococcus, Eubacterium ventriosum ning Bifido-
bacterium, on vdimeline eristama PCOS diagnoosiga naisi tervetest naistest.
Kuna meie tulemused niitasid, et PCOS’ga seoses olnud soolestiku mikroobid on
samuti seotud erinevate ainevahetust mdjutavate tunnustega nagu kehamassi-
indeks, gliikoosi ja insuliini tasemed, piistitasime hiipoteesi, et soolestiku
mikrobioomi mdju PCOS’i puhul vdib toimida 14bi ainevahetuslike protsesside.
Selle testimiseks vordlesime soolestiku mikrobioomi erinevusi normaalse
gliikkoositaluvusega ning eeldiabeediga PCOS naistel. Meie andmed néitasid, et
eeldiabeedi tunnustega PCOS diagnoosiga naistel oli markimisvéarselt véhe-
nenud soolestiku mikroobikoosluse mitmekesisus ning kdorgem Dorea perekonna
osakaal vorreldes normaalse gliikoositaluvusega PCOS naistega. Dorea oli lisaks
nii meie kui varasemates publikatsioonides seotud erinevate PCOS’ga seotud
metaboolsete tunnustega nagu kehamassiindeks ning gliikkoosi- ja insuliini-
tasemed.

Soolestiku mikrobioomi roll on viga kompleksne ning mdjutab kogu orga-
nismi tervikuna, kuid on oluline uurida ka selliseid mikroorganisme, kes elavad
viljaspool soolestikku ja konkreetselt uurimise all oleva haigusega seotud kesk-
kondades. Uheks osaks inimese tervisest on viljakus ning oluline on analiiiisida
viljakusega seotud mikrobioomi muutusi reporduktiivorganitest voetud proovi-
dest. On teada mitmeid patogeene, kelle esinemine reproduktiivteedes toob kaasa
poletiku. Oma t66s vordlesime viljakusprobleemidega naiste mikroobikooslusi
nii endomeetriumi koest kui ka emakasisesest vedelikust voetud proovidest.
Tulemustest jéreldus, et suurim endomeetriumi mikrobioomi mdjutaja on pere-
kond Lactobacillus. Saadud tulemused on kooskdlas varasemate teadustoodega,
kus on kahanenud Lactobacillus perekonna sagedust reproduktiivteedes on seos-
tatud védhenenud viljakusega. Teadmised endomeetriumi mikrobioomi koos-
seisust ja mojust reproduktiivsusele on olulise tdhtsusega, kuna see voimaldab
tulevikus leida mikrobioomipohiseid biomarkereid, mis aitaksid ennustada
voimalikke probleeme viljakusega ja seelébi aitaksid kaasa uute ravivdimaluste
arendamisele.

Kokkuvdttes andis kdesolev doktoritdd uusi teadmisi mikrobioomi ja geneetika
vahelistest seostest ning laiendas oluliselt meie teadmisi mikrobioomi ja naiste
tervise valdkonnas.
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