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Abstract: Osteoarthritis is a progressive disease characterized by cartilage destruction in the joints.
Matrix metalloproteinases (MMPs) and a disintegrin and metalloproteinase with thrombospondin
motifs (ADAMTSs) play key roles in osteoarthritis progression. In this study, we screened a chem-
ical compound library to identify new drug candidates that target MMP and ADAMTS using a
cytokine-stimulated OUMS-27 chondrosarcoma cells. By screening PCR-based mRNA expression, we
selected 2-(8-methoxy-2-methyl-4-oxoquinolin-1(4H)-yl)-N-(3-methoxyphenyl) acetamide as a poten-
tial candidate. We found that 2-(8-methoxy-2-methyl-4-oxoquinolin-1(4H)-yl)-N-(3-methoxyphenyl)
acetamide attenuated IL-1β-induced MMP13 mRNA expression in a dose-dependent manner, with-
out causing serious cytotoxicity. Signaling pathway analysis revealed that 2-(8-methoxy-2-methyl-4-
oxoquinolin-1(4H)-yl)-N-(3-methoxyphenyl) acetamide attenuated ERK- and p-38-phosphorylation
as well as JNK phosphorylation. We then examined the additive effect of 2-(8-methoxy-2-methyl-4-
oxoquinolin-1(4H)-yl)-N-(3-methoxyphenyl) acetamide in combination with low-dose betamethasone
on IL-1β-stimulated cells. Combined treatment with 2-(8-methoxy-2-methyl-4-oxoquinolin-1(4H)-yl)-
N-(3-methoxyphenyl) acetamide and betamethasone significantly attenuated MMP13 and ADAMTS9
mRNA expression. In conclusion, we identified a potential compound of interest that may help
attenuate matrix-degrading enzymes in the early osteoarthritis-affected joints.

Keywords: osteoarthritis; matrix metalloproteinase; MMP13; ADAMTS9; expression screening;
chondrocytes

1. Introduction

Osteoarthritis (OA) is a chronically progressive joint disease caused by various fac-
tors [1,2]. Several mechanical and biological factors including age, obesity, trauma, in-
flammation, and genetic susceptibility contribute to the development of OA [3,4]. OA is
managed using nonsteroidal anti-inflammatory drugs (NSAIDs) and analgesics are the
first-line drugs. One strategy for managing OA is to introduce supportive drugs/chemical
compounds that can be used in combination with existing OA treatments. One counterplan
is to introduce supportive drug/chemical compounds that can be used in combination
with existing OA treatments. Articular cartilage is mainly composed of chondrocytes and
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extracellular matrix (ECM) including collagen and proteoglycans [5,6]. Although the mech-
anism of OA development remains unclear, disruption of the balance between anabolic and
catabolic signaling pathways is known to cause articular ECM cartilage. In OA-affected
cartilage, ECM proteins are degraded by the aberrant upregulation of ECM-degrading
proteinases such as matrix metalloproteinases (MMPs) and aggrecanases (a disintegrin and
metalloproteinase with thrombospondin motifs (ADAMTSs)). MMPs, especially MMP13,
and ADAMTS4, ADAMTS5, and ADAMTS9, are key players in OA development [6–9].
Therefore, these proteinases, represented by MMP13 and ADAMTS4/5, are intriguing
target molecules for treating OA. Therefore, the goal of this study was to identify novel
supportive molecules that may suppress ECM-degrading proteinases. In this study, we
focused on identifying chemical compounds targeting MMPs and ADAMTS. We identified
a novel promising candidate with an effect additive to that of betamethasone.

2. Results
2.1. Screening of Candidate Compounds Based on Cytotoxicity

We first examined the cytotoxicity of the 400 compounds in OUMS27 cells using the
MTS assay. Cells were treated with 10 µg/mL of each test compound in the library and
incubated for 24 h. Cell viability was expressed as the percentage of proliferation compared
with the control cells, which were treated with only 1.0% DMSO. The compounds showing
cell viabilities of 80% or less were considered as highly (strongly) cytotoxic. Among
the 400 compounds, 55 were determined to have strong cytotoxic effects; therefore, the
remaining 345 compounds were used in subsequent experiments (Figure 1).
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Figure 1. Schematic representation of the strategy for screening the candidate compounds. To evaluate
the cytotoxicity of candidate compounds, OUMS27 cells were treated with 10 µg/mL each test
compound for 24 h, followed by an MTS assay for cell viability estimation (n = 3 or n = 5). Among the
400 test compounds we began with, 345 had the least cytotoxic effects compared to the untreated cells
(p < 0.05). We next screened these 345 compounds for their potential inhibitory effect on IL-1β-induced
MMP13 mRNA expression and selected 11 most effective compounds. Subsequently, we assessed the
inhibitory effect of these 11 compounds on the IL-1β-induced ADAMTS4 and ADAMTS9 mRNA
expression along with MMP3 and COX-2 mRNA expression and finally selected the most promising
candidate compound: (2-(8-methoxy-2-methyl-4-oxoquinolin-1-yl)-N-(3-methoxyphenyl)acetamide).
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2.2. Screening via Inhibitory Effects on IL-1β-Induced MMP13 mRNA Expression

Among ECM-degrading proteinases, MMP13 expression is induced during inflamma-
tion and plays a crucial role in OA development by degrading articular cartilage-specific
ECM components, especially collagen type II (COL2A1) [10]. Therefore, we examined the
inhibitory effects of 345 compounds on MMP13 mRNA expression using IL-1β-stimulated
OUMS27. As shown in Figure 2, stimulation with IL-1β at 5 ng/mL significantly increased
the mRNA expression of MMP13 compared to that in the unstimulated control. Among
345 molecules, 11 showed significant suppression of IL-1β-induced MMP13 expression as
compared with IL-1β alone treatment group (Figure 2). Full name of each compounds was
indicated in the Supplemental Table S1.
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Figure 2. Inhibitory effects of candidate compounds on IL-1β-induced MMP13 mRNA expression.
Cells were treated with each compounds (10 µg/mL) for 24 h, followed by the stimulation with IL-1β
(5 ng/mL) for 6 h. MMP13 mRNA level was calculated relative to that in uninduced control cells.
Values represent mean ± SE (n = 6 per group). ** p < 0.01.

2.3. Screening Based on Inhibitory Effects on IL-1β-Induced ADAMTS4 and ADAMTS9
mRNA Expression

We then screened the 11 MMP13-suppressing compounds by examining their ef-
fects on mRNA expression of ADAMTS4 and ADAMTS9. ADAMTS4 and ADAMTS9
are ECM-degrading enzymes that cleave cartilage-specific proteoglycans (aggrecan) and
are induced by IL-1β stimulation. Among the 11 hit molecules, seven compounds signifi-
cantly suppressed the mRNA expression of both IL-1β-induced ADAMTS4 and ADAMTS9
(** p < 0.01) (Figure 3). Among them, 1-B5 was a compound called berberine chloride,
one of the benzylisoquinoline alkaloids derived from several species of medicinal herbs,
such as Berberis vulgaris, Berberis aristate, and Coptis chinensis. Several previous studies
have reported that this compound is an effective therapeutic agent for OA as it has mul-
tifunctional (multiple pharmacological) effects (various biological activities), including
anti-inflammatory, anti-cancer, antioxidant (anti-oxidative), anti-apoptotic, and chondropro-
tective effects [11–14]. Therefore, berberine chloride was excluded from further screening.
From the remaining six compounds, we selected three compounds, 1-H10, 3-B2, and 5-H11,
which showed strong suppression effects (50% or higher) on IL-1β-induced gene expression
of ADAMTS9 (Figure 3).
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mRNA expression. Cells were treated with each compounds (10 µg/mL) for 24 h, followed by the
stimulation with IL-1β (5 ng/mL) for 6 h. ADAMTS4 and ADAMTS9 mRNA levels were calculated
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group). * p < 0.05 and ** p < 0.01, respectively.

2.4. Screening via Inhibitory Effects on IL-1β-Induced MMP3 and COX-2 mRNA Expressions

To select more efficient candidate compounds, we further examined the three hit
compounds by analyzing their inhibitory effects of MMP3 and COX-2 mRNA expression.
MMP3 is an ECM-degrading enzyme produced by synovial cells and chondrocytes. It is
stimulated by inflammatory cytokines and is involved in articular cartilage destruction by
cleaving proteoglycans and collagen. As shown in Figure 4, MMP3 mRNA expression was
significantly suppressed by all three compounds. However, compound 5-H11 showed a
slightly smaller inhibitory effect on MMP3 expression than that of the other two compounds.
COX-2 is an inflammatory mediator that plays an important role in various inflammatory
diseases. COX-2 mediates the conversion of arachidonic acid to prostaglandin E2 (PGE2)
and prostacyclin (PGI2). COX-2 is induced by stimulation with cytokines and growth
factors. IL-1β stimulation significantly increased the mRNA expression level of COX-2,
whereas compounds 3-B2 and 5-H11 significantly suppressed COX-2 expression. However,
1-H10 did not suppress COX-2 expression. Based on these results, compound 3-B2 was
selected as the most promising candidate (Figure 4).

2.5. Effects of Compound 3-B2 on the Viability of IL-1β-Treated OUMS27 Cells

The chemical structure of 3-B2 is shown in Figure 5A. The effects of 3-B2 on the viability
of IL-1β-induced OUMS27 cells were further analyzed using the MTS assay. Cells were
pretreated with various concentrations of 3-B2 (0, 1, 2, 5, and 10 µg/mL) for 24 h, followed
by stimulation with IL-1β (10 ng/mL) for 6 or 24 h. We found that 3-B2 pretreatment at
concentrations of 1–10 µg/mL did not have cytotoxic effects after 6 h of IL-1β-stimulation
(Figure 5B); however, pretreatment with this compound at 10 µg/mL was moderately
cytotoxic in OUMS27 cells treated with IL-1β for 24 h. The results indicated that 3-B2 had
no significant cytotoxicity against IL-1β-induced OUMS27 cells, except at 10 µg/mL for
24 h (* p < 0.05).
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Figure 5. Effect of 3-B2 on the cell viability of OUMS-27 cells and IL-1β-induced damage. (A) Struc-
ture of the selected compound, 3-B2. (B) Relative cell viability determined by MTS assay shows
pretreatment with 3-B2 at 1–10 µg/mL concentrations did not have significant cytotoxic effects on
OUMS-27 cells after 6 h of IL-1β-stimulation, while 3-B2 pretreatment (24 h) at 10 µg/mL with
longer IL-1β stimulation (24 h) has moderate cytotoxic effects on OUMS-27 cells. Values represent
mean ± SE (n = 6 per group). * p < 0.05.

2.6. 3-B2 Inhibited IL-1β-Induced Gene Expression of Articular Cartilage ECM-Degrading
Proteases in OUMS27 Cells

We then investigated the inhibitory effect of 3-B2 on the mRNA expression of ECM-
degrading enzymes including MMP13, MMP3, ADAMTS9, and ADAMTS4 in IL-1β-
stimulated OUMS27 cells at various concentrations (0, 1, 2, 5, and 10 µg/mL) (Figure 6A–D).
After 6 h of stimulation with 10 ng/mL of IL-1β, the mRNA expression of these ECM-
degrading enzymes was upregulated, whereas 3-B2 significantly inhibited this mRNA
expression in a concentration-dependent manner (Figure 6A–D).
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Figure 6. Inhibitory effects of 3-B2 on IL-1β-induced MMP and ADAMTS mRNA expression. OUMS-
27 cells were pretreated with 3-B2 at various concentrations (0, 1, 2, 5, and 10 µg/mL) and then
incubated with IL-1β (10 ng/mL) for 6 h (A) MMP-13, (B) MMP3, (C) ADAMTS9, (D) ADAMTS4.
Values represent mean ± SE (n = 4 per group). ** p < 0.01.

2.7. Inhibitory Effects of 3-B2 on the Protein Expression of Articular Cartilage ECM-Degrading
Proteases in OUMS27 Cells

We further evaluated the effect of 3-B2 on the protein expression levels of MMP-
13 in IL-1β-induced OUMS27 using western blot analysis. Cells were pretreated with
different concentrations of 3-B2 (0, 0.1, 0.5, 1, or 2 µg/mL for 24 h), followed by stimulation
with or without IL-1β (10 ng/mL) for 24 h. As shown in Figure 7, 3-B2 pre-treatment
significantly decreased the protein expression of MMP-13, which was induced by IL-1β in
a dose-dependent manner.
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Figure 7. Inhibitory effects of 3-B2 on IL-1β-induced MMP-13 protein expression. (A) Western blot
analysis of the relative protein level of MMP-13. Pre-treatment with 3-B2 for 6h significantly decreased
the protein expression of MMP-13, which was induced by IL-1β (10 ng/mL) in a dose-dependent
manner. (B) Quantitative estimation of the protein levels of MMP-13 after 3-B2 pre-treatment and
IL-1β induction. Values represent mean ± SE (n = 4 per group). ** p < 0.01.

2.8. 3-B2 Inhibited IL-1β-Induced MAPK Activation in OUMS27 Cells

We further investigated whether the inhibitory mechanisms of 3-B2 on the overex-
pression of ECM-degrading enzymes such as MMP13, MMP3, ADAMTS4, and ADAMTS9
was related to the MAPK signaling pathway in IL-1β-induced OUMS27. MAPK signaling
is known to be activated by IL-1β stimulation, and to mediate inflammatory responses,
and plays an important role in OA pathogenic processes, such as cartilage degradation.
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First, we examined the kinetics of phosphorylation in MAPK signaling molecules including
Erk1/2, p38, and JNK in IL-1β-stimulated OUMS27 cells (0, 20, and 30 min). As shown
in Figure 8A,B, the phosphorylation levels of Erk1/2, p38, and JNK were significantly
upregulated, peaked after treatment with 5 ng/mL IL-1β for 20 min, and then decreased.
We thus confirmed that the phosphorylation of each signaling molecule was transiently
activated by IL-1β under the same experimental condition. We next evaluated whether 3-B2
suppresses the IL-1β-upregulated phosphorylation of Erk1/2, p38, and JNK in OUMS27
cells. Cells were treated with 10 ng/mL of 3-B2 or betamethasone, a steroid drug, for 24 h
and then induced with 5 ng/mL IL-1β for 20 min. Betamethasone is a corticosteroid hor-
mone used as an anti-inflammatory and immunosuppressive drug; intra-articular injections
of betamethasone have been clinically administered for OA treatment. Betamethasone has
potent glucocorticoid activity and inhibits the overexpression of ECM-degrading enzymes,
such as MMP13 and ADAMTS4. Betamethasone was used as a negative control in this
study because it suppresses the expression of ECM degrading enzymes, such as MMP13,
via another pathway without suppressing MMPK signaling. The results showed that 3-B2
significantly reduced the phosphorylation of Erk1/2, p38, and JNK; however, betametha-
sone did not inhibit their phosphorylation (Figure 9A,B). Furthermore, 3-B2 significantly
suppressed the activation of the MAPK signaling pathway molecules (phosphorylation
levels) in a concentration-dependent manner (Figure 10A,B).
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Figure 8. Activation of MAPK signaling pathway in IL-1β-stimulated OUMS27 cells. (A) Western
blot analysis of the relative phosphorylation levels of Erk1/2, p38, and JNK after IL-1β treatment.
Phosphorylation of Erk1/2, p38, and JNK increased significantly after 20 min of treatment with
5 ng/mL IL-1β, and decreased after 30 min. (B) Quantitative estimation of the relative phosphorylated
protein levels of Erk1/2, p38, and JNK at given time points. Values represent mean ± SE (n = 3 per
group). ** p < 0.01.
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Figure 9. Effect of 3-B2 and betamethasone on the phosphorylation of Erk1/2, p38, and JNK in
IL-1β-stimulated OUMS27 cells. (A) Western blot analysis of the relative phosphorylation levels of
Erk1/2, p38, and JNK after 3-B2 or betamethasone treatment. Cells were treated with 10 ng/mL of
3-B2 or betamethasone for 24 h and then induced with 5 ng/mL IL-1β for 20 min. Treatment with
3-B2 but not betamethasone significantly reduced the phosphorylation of Erk1/2, p38, and JNK.
(B) Quantitative estimation of the relative phosphorylated protein levels of Erk1/2, p38, and JNK
after 3-B2 or betamethasone treatment. Values represent mean ± SE (n = 3 per group). ** p < 0.01.
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Figure 10. Activation of the MAPK signaling pathway was suppressed by 3-B2 in a concentration-
dependent manner. (A) Western blot analysis of the relative phosphorylation levels of Erk1/2, p38,
and JNK after 3-B2 and IL-1β treatment. Cells were treated with 3-B2 at various concentrations
(0, 1, 2, 5, and 10 µg/mL) and then induced with 5 ng/mL IL-1β for 20 min. 3-B2 reduced the
phosphorylation of Erk1/2, p38, and JNK in a dose-dependent manner. (B) Quantitative estimation
of the relative phosphorylated protein levels of Erk1/2, p38, and JNK after 3-B2 and IL-1β treatment.
Values represent mean ± SE (n = 3 per group). * p < 0.05 and ** p < 0.01, respectively.
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2.9. 3-B2 Synergistically Attenuated MMP13 and ADAMTS9 Expression with Betamethasone in
IL-1β-Stimulated OUMS-27 Cells

Next, we examined whether the combination of 3-B2 and betamethasone could syner-
gistically attenuate MMP13 and ADAMTS9 expression. As shown in Figure 11, 3-B2 had
an additive effect on attenuating MMP13 in combination with a low dose (5 ng/mL) of
betamethasone in a dose-dependent manner in IL-1β stimulated OUMS-27 cells. Further, 3-
B2 effectively attenuated ADAMTS9 expression in combination with a low dose (5 ng/mL)
of betamethasone in a dose-dependent manner (Figure 12).
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Figure 11. Additive effect of 3-B2 on attenuating MMP13 mRNA expression with low dose of
betamethasone in IL-1β-treated OUMS-27 cells. Cells were pretreated with various concentrations
(1, 2, 5, 10 µg/mL) of 3-B2 and with betamethasone (5 ng/mL), followed by the stimulation with
IL-1β (5 ng/mL) for 6 h. Along with low dose of betamethasone, 3-B2 exhibited significant additive
attenuating effect on MMP13 mRNA expression in IL-1β-stimulated OUMS-27 cells. Values represent
mean ± SE (n = 6 per group). * p < 0.05 and ** p < 0.01, respectively.
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Figure 12. Additive effect of 3-B2 on attenuating ADAMTS9 mRNA expression with low dose of
betamethasone in IL-1β-stimulated OUMS-27 cells. Cells pretreated with various concentrations
(1, 2, 5, 10 µg/mL) of 3-B2 and betamethasone (5 ng/mL), followed by the stimulation with IL-1β
(5 ng/mL) for 6 h. Along with low dose of betamethasone, 3-B2 exhibited significant additive
attenuating effect on ADAMTS9 mRNA expression in IL-1β-stimulated OUMS-27 cells. Values
represent mean ± SE (n = 6 per group). ** p < 0.01.
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3. Discussion

MMPs play a major role in the development of OA. In this study, we screened a chemi-
cal library provided by RIKEN to explore novel promising therapeutic agents (chemical
compounds) that could suppress IL-1β-induced upregulation of matrix metalloproteinases
such as MMP13. We identified a novel and promising candidate compound, 3-B2, and
further clarified its underlying molecular mechanism. We found that 3-B2 significantly
suppressed the mRNA and protein expression of MMP13. Further, 3-B2 significantly sup-
pressed the mRNA expression of MMP3, ADAMTS4, ADAMTS9 and COX-2. This additive
effect is favorable because MMP3, ADAMTS4, and ADAMTS9 are thought to be involved
in OA progression. Furthermore, as COX-2 is an enzyme that promotes inflammation,
suppression of COX-2 expression may further suppress excessive inflammatory responses.
Therefore, attenuation of COX-2 by 3-B2 can provide more advantages. Based on these
effects, 3-B2 may be a promising candidate for treating OA. We also confirmed that this
compound significantly suppressed the activation of MAPK signaling pathway molecules
such as Erk1/2, p38, and JNK in IL-1β-induced OUMS27 cells in a concentration-dependent
manner. MAPK signaling is one of the key signaling pathways that mediate inflamma-
tion responses and cartilage degradation and promote the pathological progression of
OA [9,15,16]. These results indicate that 3-B2 could attenuate MMP and ADAMTS ex-
pression as well as chondrocyte inflammation by suppressing MAPK signaling pathway
activation. Collectively, our results suggest that 3-B2 may be a promising therapeutic agent
for OA.

3-B2 (2-(8-methoxy-2-methyl-4-oxoquinolin-1(4H)-yl)-N-(3-methoxyphenyl) acetamide)
is synthesized from tryptophan metabolites. Our data indicate that 3-B2 can attenuate the
phosphorylation of ERK and p38. Further, 3-B2 can strongly attenuate JNK phosphorylation
These pathways play a central role in IL-1β-induced MMP13 expression. Based on the
information in the Pubchem database of NCBI, 3-B2 has interesting potential properties [17].
3-B2 can inhibit transcriptional enhanced associate domain (TEAD)-Yes-associated protein
(YAP) interactions. YAP activation is also involved in OA progression [18–20]. Although
we did not examine the YAP pathway in this study, 3-B2 may have diverse functions that
are favorable for protecting cartilage; these need to be analyzed in a future study.

This study had several limitations. Firstly, we used OUMS-27, a chondrosarcoma cell
line, rather than chondrocytes from patients with OA. Previous studies showed that OUMS-
27 cells express proteoglycans such as aggrecan as well as collagen types I, II, III, IX, and XI,
which stably maintain the properties of differentiated chondrocytes [21,22]. We previously
reported that OUMS-27 cells produced ADAMTS mRNA following IL-1β stimulation. In
the current study, MMP13 was also increased due to IL-1β stimulation in OUMS-27 cells at
the RNA and protein levels. We also confirmed that anabolic factors such as type II collagen
and aggrecan mRNA levels were decreased by IL-1β stimulation. IL-1β stimulation of
OUMS-27 cells resulted in unbalanced gene expression between anabolic factors and
catabolic factors. We also clarified that the intracellular signaling pathway activation in
IL-1β-stimulated OUMS27 cells was similar to that in IL-1β-stimulated OA chondrocytes.
Therefore, we applied this chondrocytic property of OUMS-27 cells to examine the gene
expression levels of MMPs and ADAMTSs in them using chemical compound library
screening. In fact, several hit chemical compounds were previously reported by another
group as potential novel OA drugs in vitro (i.e., using OA chondrocytes) and in vivo. These
data also support that our screening system using OUMS-27 cells was valid.

We screened a pilot library focusing on metalloproteinase expression. rather than
protease activity. Various strategies can be used to evaluate anti-OA drug candidates. At
present, NSAIDS are the most widely used anti-OA drugs. Selective COX-2 inhibitors are
also promising as anti-OA drugs. However, cardiovascular side effects related to COX-
2 inhibitors have been reported. Corticosteroids, including betamethasone, are strong
anti-inflammatory drugs for controlling pain, swelling, and MMP/ADAMTS expression.
Corticosteroids are typically locally administered, including through intra-articular injec-
tion. However, overdose or long use of corticosteroids induces notable side effects such as
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diabetes mellitus, atherosclerosis, and osteoporosis. Therefore, decreasing the dosage of
corticosteroids by using supportive chemical compounds may benefit patients with OA;
this should be evaluated in further studies. In this study, we found that the combination of
3-B2 with betamethasone can achieve a small dose of betamethasone compared with that
of betamethasone used alone. Considering the unacceptable side effects of high-dose and
long-term betamethasone treatment, reducing the use of betamethasone through combi-
nation therapy with another drug is a potentially beneficial strategy, with the possibility
of using 3-B2 as an OA drug candidate. However, the detailed combination conditions
required for effective cartilage protection in early OA stage need to be examined in further
studies. Our current data support that low-dose betamethasone with 3-B2 can be used as
an adjunctive therapy, which we will further analyze in an early-stage OA model in vivo.
A promising strategy may be introducing metalloproteinase inhibitors that can block ECM
degradation by MMPs/ADAMTSs. MMPs are involved in various diseases, including
OA, cardiovascular diseases, neurodegenerative diseases, and cancers. Some compounds,
such as marimastat, the carboxylate BAY12-9566, protect against matrix degradation by
inhibiting some MMPs. However, clinical trials using broad-spectrum MMP inhibitors
have been restricted because patients tend to develop musculoskeletal syndromes such
as arthralgia and myalgia because of the high structural similarities among members of
the MMP family. It may be possible to avoid unfavorable side effects by using candidates
with mild MMP inhibitory effects. Therefore, we first screened a chemical compound
library in an MTS assay. We used the attenuation of IL-1β-induced MMP13 mRNA ex-
pression in OUMS27 cells as the second major evaluation criterion. This strategy revealed
several positive candidates, including known anti-OA molecules, as hits. Betamethasone
was the most effective compound in this library and is widely recognized as an anti-OA
drug. Several other compounds have also been reported to be effective against OA. For
example, berberine is reported to exert protective effects in a rat OA model by attenuating
MMP-3 [23]. Further studies have supported this finding, demonstrating that berberine
has anti-catabolic and anti-inflammatory abilities through MAPKs in IL-1β-induced rat
chondrocytes [24]. These results indicate that our strategy was valid.

At last, this study was conducted in vitro. The novel compound, 3-B2, has not yet
been examined in vivo. As a potential drug for OA, it is essential to examine its effects in
an in vivo model of OA [25]. However, considering the limited safety range of 3-B2 based
on its cytotoxic effects, we consider that 3-B2 can be used as an anti-OA drug at a low dose.
From this viewpoint, searching an alternative compound to 3-B2, with a wider safety range
is necessary for animal studies as a novel therapeutic candidate.

4. Materials and Methods
4.1. Reagents

A library of chemical compounds (NPDepo Pilot library) at 10 mg/mL in 100%
dimethyl sulfoxide (DMSO) was obtained from RIKEN (Wako, Saitama, Japan). The chemi-
cal arrays were prepared using a previously described method [26]. The library comprised
400 small-molecule compounds, including natural products or synthetic natural product
derivatives. Recombinant human IL-1β was purchased from R&D Systems (Minneapolis,
MN, USA), stored at −80 ◦C, and diluted in culture medium immediately before use. Be-
tamethasone powder was obtained from Tokyo Chemical Industry Co., Ltd. (Tokyo, Japan),
and 3-B2 (2-(8-methoxy-2-methyl-4-oxoquinolin-1(4H)-yl)-N-(3-methoxyphenyl)acetamide)
powder was obtained from Namiki Shoji Co., Ltd. (Tokyo, Japan); both compounds were
dissolved in 100% DMSO, and stored at −30 ◦C until use. Anti-MMP13 (F-89) antibody was
obtained from Kyowa Pharma Chemical Co., Ltd. (Toyama, Japan). Anti-p44/42 MAPK
(Erk1/2) (#4695), anti-phospho-p44/42 MAPK (Erk1/2) (#4370), anti-p38 MAPK (#9212),
anti-phospho-p38 MAPK (#4511), anti-SAPK/JNK (#9252), and anti-phospho-SAPK/JNK
(#4668) antibodies were purchased from Cell Signaling Technology, Inc. (Danvers, MA,
USA). Anti-β-actin antibody (A5441) was obtained from Sigma-Aldrich (St. Louis, MO,
USA). The secondary antibodies used were HRP-conjugated goat anti-mouse IgG (Sigma
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Aldrich or R&D Systems), and HRP-conjugated goat anti-rabbit IgG (SeraCare Life Sciences,
Inc., Milford, MA, USA) [9,27].

4.2. Cell Culture and Treatment

OUMS-27 chondrosarcoma cells were prepared as previously described [9,28]. Cells
were cultured in Dulbecco’s modified Eagle’s medium (DMEM, Sigma-Aldrich, St. Louis,
MO, USA) supplemented with 10% fetal bovine serum, 100 U/mL penicillin, and 100 U/mL
streptomycin at 37 ◦C under 5% CO2 and 20% O2 in a humidified chamber. OUMS-27
cells were seeded at 1.0 × 105 cells/well in 12-well tissue culture plates and cultured for
2 days. After changing the medium or serum-free medium and incubating for another 24 h,
the cells were pretreated with each test compound in the library (10 µg/mL) for 24 h, and
then exposed to IL-1β (either 5 ng/mL or 10 ng/mL) for 6 h /24 h as indicated in each
experiment. The chemical compounds were dissolved in DMSO. The final concentration
of DMSO in assays using OUMS-27 cells was less than 1.0% (v/v) and did not affect
cell viability.

4.3. Cell Viability Assay

As an initial screening, the effects of 400 chemical compounds from the library on
the viability of OUMS-27 cells were investigated using a CellTiter 96 AQueous One So-
lution Cell Proliferation Assay (MTS) kit (Promega, Madison, WI, USA) according to the
manufacturer’s instructions, as previously described [29,30]. The optical density (OD)
was measured at a wavelength of 490 nm. Cells from passages 7–12 were used for all
experiments. Cells were seeded at 5.0 × 103 cells/well in 96-well tissue culture plates and
cultured for two days. After incubation, the medium was replaced with fresh medium and
the cells were incubated overnight. The medium was then changed to culture medium
containing 10 µg/mL of each test compound in the library and incubated for 24 h. Cell
viability was expressed as the percentage of proliferation compared with that of control
cells treated with only 1.0% DMSO. After determination of 3-B2 as a promising candidate
compound, cytotoxicity in OUMS-27 was evaluated by treatment with various concentra-
tions (1, 2, 5, and 10 µg/mL) of 3-B2 for 24 h, followed by stimulation with IL-1β (5 or
10 ng/mL) for 6 h or 24 h at 37 ◦C, using an MTS assay kit as previously described.

4.4. RNA Extraction and Quantitative Real-Time (qRT) -PCR

Following cytokine stimulation, total RNA was extracted using TRIzol reagent (Invit-
rogen, Carlsbad, CA, USA) according to the manufacturer’s instructions and was quantified
by measuring the absorbance at 260 nm using an Eppendorf BioPhotometer D30 (Eppen-
dorf, Hamburg, Germany) as previously described [31–33]. The extracted total RNA (2 µg)
was subjected to reverse transcription using ReverTra Ace (Toyobo, Osaka, Japan) at 30 ◦C
for 10 min, 42 ◦C for 60 min, and 85 ◦C for 10 min (99 ◦C for 5 min) with random primers
(Toyobo). Quantitative real-time PCR was performed on a StepOnePlus system (Applied
Biosystems, Foster City, CA, USA) using Taqman Fast Advanced Master Mix (Thermo
Fisher Scientific, Waltham, MA, USA), as previously reported [34,35]. The reaction mixture
contained 5 µL of 2× TaqMan Fast Advanced Master Mix, 0.5 µL of TaqMan Gene Expres-
sion assays for target genes (ADAMTS4, ADAMTS9, MMP3, MMP13, or COX-2) and the
endogenous internal control gene (glyceraldehyde 3-phosphate dehydrogenase [GAPDH]),
along with 4 µL cDNA. The reaction conditions were as follows: 95 ◦C for 20 s, followed
by 40 cycles of 95 ◦C for 1 s and 60 ◦C for 20 s. TaqMan primers and probes used for the
analysis were as follows: human ADAMTS4, Hs00192708_m1; ADAMTS9, Hs00172025_m1;
MMP3, Hs00968305_m1; MMP13, Hs00233992_m1; COX-2, Hs00153133_m1; GAPDH,
Hs99999905_m1 (Applied Biosystems, Foster City, CA, USA). The mRNA expression levels
of target genes was normalized to GAPDH using the comparative Ct (∆∆CT) method as
previously described [36–38].
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4.5. Western Blot Analysis

OUMS-27 cells were plated at a density of 1 × 105 cells/well in 6-well plates, and
cultured for 3 days. After compound pretreatment and IL-1β stimulation, the cells were
washed once in cold Tris buffer saline (TBS) and lysed with ice-cold lysis buffer (20 mM
Tris-HCL (pH 8.0), 150 mM NaCl, 0.5% Nonidet P-40, 0.5% Triton X-100, 1.0 mM EDTA,
0.5% sodium deoxycholate, 10% glycerol, and 10 mM NaF, 0.1% SDS) supplemented with
Complete Mini protease inhibitor cocktail tablets (Roche Applied Science, Mannheim,
Germany) or protease inhibitor cocktail (Nacalai, Kyoto, Japan) and phosphatase inhibitor
cocktail 3 (Sigma-Aldrich). Cell lysates were centrifuged at 20,000× g for 15 min, and total
protein concentrations were quantified using a Bio-Rad DCTM Protein Assay Kit (Bio-Rad
Laboratories, Hercules, CA, USA), with bovine serum albumin used as the standard protein.
Cell lysates were mixed with 4× reducing sample buffer, denatured at 95 ◦C for 5 min,
separated on 10% SDS-PAGE gels, and transferred onto polyvinylidene difluoride (PVDF)
membranes (Merck Millipore Ltd., Darmstadt, Germany) as previously described [15,39].
The primary antibodies were anti-MMP13 (1:400), anti-ERK (1:1000), anti-phospho-ERK
(1:1000), anti-p38 (1:1000), anti-phospho-p38 (1:1000), anti-JNK (1:1000), anti-phospho-JNK
(1:1000), and anti-β-actin (1:10,000). Secondary antibodies for anti-mouse IgG (1:1000) and
anti-rabbit IgG (1:5000) were used. After blocking with 5% skim milk in TBS-0.05% Tween
20 (TBST) for 1 h at room temperature, the membranes were incubated for 1 h at room
temperature or overnight at 4 ◦C with the primary antibodies, followed by subsequent
incubation with their respective HRP- conjugated secondary antibodies for 1 h at room
temperature. Immunoreactive protein bands were visualized using the Amersham ECL
prime kit (GE Healthcare, Buckinghamshire, UK) and analyzed using an Amersham Imager
600 (GE Healthcare) as previously described [15].

4.6. Statistical Analysis

All experiments were performed independently in triplicates. Results are presented
as mean ± standard error of the mean (SE). Statistical analyses were performed using
Student’s t-test for unpaired parametric correlations. Statistical significance was set at
p < 0.05.
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