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Abstract: Three-dimensional space perception is one of the most important capabilities for an
autonomous mobile robot in order to operate a task in an unknown environment adaptively since
the autonomous robot needs to detect the target object and estimate the 3D pose of the target
object for performing given tasks efficiently. After the 3D point cloud is measured by an RGB-
D camera, the autonomous robot needs to reconstruct a structure from the 3D point cloud with
color information according to the given tasks since the point cloud is unstructured data. For
reconstructing the unstructured point cloud, growing neural gas (GNG) based methods have been
utilized in many research studies since GNG can learn the data distribution of the point cloud
appropriately. However, the conventional GNG based methods have unsolved problems about the
scalability and multi-viewpoint clustering. In this paper, therefore, we propose growing neural gas
with different topologies (GNG-DT) as a new topological structure learning method for solving the
problems. GNG-DT has multiple topologies of each property, while the conventional GNG method
has a single topology of the input vector. In addition, the distance measurement in the winner node
selection uses only the position information for preserving the environmental space of the point
cloud. Next, we show several experimental results of the proposed method using simulation and
RGB-D datasets measured by Kinect. In these experiments, we verified that our proposed method
almost outperforms the other methods from the viewpoint of the quantization and clustering errors.
Finally, we summarize our proposed method and discuss the future direction on this research.

Keywords: 3D space perception; growing neural gas; topological structure learning method

1. Introduction

Three-dimensional space perception is one of the most important capabilities for an
autonomous mobile robot in order to operate a task in an unknown environment adaptively
since the autonomous robot needs to detect the target object and estimate the 3D pose of the
target object for performing given tasks efficiently [1–7]. In the research field of 3D space
perception, many research studies use an RGB-D camera, such as Microsoft Kinect [8] and
Intel Realsense [9], that can measure the color and depth of an image simultaneously in
real time. After the 3D point cloud is measured, the autonomous robot needs to reconstruct
a structure from the 3D point cloud with color information according to the given tasks
since the point cloud is unstructured data.

For realizing the 3D space perception, many kinds of 3D image processing based
methods have been proposed. These methods were expanded to the 3D point cloud by
utilizing camera image processing technologies, such as filtering methods [10], feature
extractions [11,12], and sample consensus methods [13]. However, these methods depend
on feature or model descriptors, which have a problem with adaptability to environmental
changes, such as geometry, texture and light conditions. To improve the adaptability,
recently, the research studies of the information extraction from the point cloud were

Appl. Sci. 2022, 12, 1705. https://doi.org/10.3390/app12031705 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app12031705
https://doi.org/10.3390/app12031705
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0003-4170-2300
https://doi.org/10.3390/app12031705
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app12031705?type=check_update&version=2


Appl. Sci. 2022, 12, 1705 2 of 20

developed by a deep neural network (DNN) [14]. In particular, many research works in
autonomous robot and automatic driving have proposed a DNN-based semantic segmenta-
tion method (e.g., PointNet [15], PointCNN [16] and VoxNet [17]) that can label and give
the point cloud meaning. The DNN-based methods give highly accurate segmentation
results by using big data with the teaching signal. However, one of the problems of the
supervised learning method is application to unknown data. If the learned network is
applied to the unknown environment or label not including the output layer, the network
fails to segment the point cloud. In the environment where the autonomous robots are
expected to perform the task, the autonomous robot needs to recognize the unknown
target object and environment. Therefore, the point cloud processing method without
prior knowledge is required for realizing the robot that can perform the given tasks in the
unknown environment.

Self-organization map (SOM) [18] based methods are one of the main streams based on
unsupervised learning for the point cloud processing [19]. The other methods that are well
known in this field are neural gas (NG) [20], growing cell structure (GCS) [21], and growing
neural gas [22]. Basically, these methods are called unsupervised learning when applied to
an unknown data distribution without teaching signals and using the competitive learning
method based on the winner-take-all approach. The SOM can project the input vectors in a
high dimensional space to a topological structure in a low dimensional space, according
to the data distribution. The SOM is easy to apply to many problems by determining the
number of nodes and topologies, while it is difficult to design these things to the unknown
data distribution. NG does not need to determine the number of nodes since the NG has
node addition and deletion in the learning algorithm. However, the topological structure
is updated according to the order of the data input. On the other hand, GCS and GNG
can dynamically change the topological structure based on the adjacency relation held in
the referred node. GCS cannot delete the nodes and edges, while GNG can dynamically
delete the nodes and edges by using the concept of the edge’s age. Figure 1 shows an
example result of each method applied to a 2D simulation point cloud. There are redundant
nodes and edges in SOM and GCS , while GNG can preserve the 2D point cloud space
appropriately. In addition, GNG can cluster the unknown ring data (Rings A, B and C) by
utilizing the topological structure since there is no adjacent relations between each ring
(Figure 1e). Moreover, GNG can perform noise reduction [23,24], 3D reconstruction [25–28]
and feature extraction using the topological structure [29,30]. From these reasons, GNG
is expected to utilize the unified perceptual system for the point cloud processing [31–39].
D. Viejo et al. applied GNG-based 3D feature extraction and the matching method to 3D
object recognition [40]. This method just utilizes the node set for extracting features such as
SHOT and spin image, which do not utilize the topological structure generated by GNG.
Refs. [41–44] reduced the calculation cost and improved the adaptability of the time-series
data for realizing gesture recognition and 3D object-tracking methods in real time. Ref. [41]
applied a uniform grid structure to GNG for reducing the calculation cost of the winner
node selection and realized the real-time 3D object-tracking method. Refs. [43,44] proposed
the criteria for node addition and deletion. These methods are based on the probability
density distribution of the data and nodes and verified the real-time adaptability for the
point cloud data.

In this way, many kinds of GNG-based methods have been proposed from the view-
point of various research directions. However, the GNG-based perceptual system has
unsolved problems. One of the problems is that GNG cannot preserve the 3D position
space if the input vector is composed of not only the 3D point cloud (position information),
but also additional information, such as RGB-D data (3D position with color information).
Figure 2 represents a learning example using GNG from a 3D point cloud (x, y, z) with
color information (R, G, B). The generated topological structure shown in Figure 2b cannot
preserve the 3D position space of the point cloud since the topological structure is generated
from both the position and color information, and the scale of the color information is a
dominant scale compared with the scale of the position information in this dataset. In this
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way, GNG-based point cloud processing methods have the scalability problem between
each feature vector if the input vector is composed of multiple properties.
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Figure 1. Examples of topological learning methods. In (e), each color indicates each cluster. (a) Input
data, (b) SOM, (c) GCS, (d) GNG, (e) clustering.

(a) (b) (c)

Figure 2. An example of GNG that applied to simulation data. Circles and lines respectively indicate
node and edge of GNG in (b,c). (a) Image data, (b) result of GNG, (c) result of GNG with the
weighted vector.

For solving this problem, there exist two main approaches. One is to utilize a back-
ground subtraction algorithm as preprocessing for extracting the target data and generating
the topological structure of only the target object [45,46]. The other is to apply a weighted
distance measurement in the winner node selection according to the importance of each
property [47,48]. In the former approach, Angelopoulou, et al. proposed a background
detection method based on mixture Gaussian distribution and CIE lab color space for
generating topological structure of the human face and arm [45]. However, this kind of
approach cannot preserve the appropriate position space if the background detection fails
because of the sensor noises. In addition, the background detection needs detailed prior
knowledge about the target object. Therefore, it is difficult to apply the background detec-
tion method to an unknown dataset. In the latter approach, Tunnermann, et al. proposed
the GNG attention method (GNGA) for extracting saliency from a 2D camera image [47].
GNGA uses the weighted distance measurement used in the selection of the 1st and 2nd
winner nodes for generating the topological structure of the position space with color
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information. In addition, the authors also proposed the weight-vector-based GNG method,
called modified GNG with utility (GNG-U II) [48]. These methods can preserve the 2D/3D
position spaces with color information by designing the appropriate weight.

Figure 2c shows an example result of GNG with the weighted distance measurement.
By using the weighted distance measurement, the topological structure represents the
original 3D environmental space of the point cloud and learns the color information
simultaneously. In particular, the algorithm of GNGA includes the normalization of each
feature vector in the input vector for solving the scalability problem in the 2D image.
However, it is difficult to normalize the input vector of the 3D point cloud with the other
properties if the point cloud is composed of the increasing environmental map. In addition,
the number of clusters generated from the topological structure is only one since it is difficult
to cut the edges between each objects from the floor surface (in the green circles of Figure 2c)
by designing the appropriate weights from the unknown data distribution composed of
the multiple properties’ vector. Therefore, the weighted distance-based methods need a
cutting algorithm of the edges for clustering the 2D/3D point cloud data according to the
property after generating the topological structure. In this way, the learning method of the
2D/3D point cloud with additional information that can generate the topological structure
composed of the multiple properties and preserve the position space simultaneously is
not realized.

In this paper, we propose growing neural gas with different topologies (GNG-DT) as a
new topological structure learning method for addressing all of these issues, which were
not incorporated in the previous work. GNG-DT has multiple topologies of each property,
while the conventional GNG method has a single topology of the input vector. In addition,
the distance measurement in the winner node selection uses only the position information
for preserving the environmental space of the point cloud. The main contributions of this
paper are listed as follows:

1. GNG-DT can preserve 2D/3D position spaces with additional feature information from
the point cloud by using the distance measurement of only the position information.

2. GNG-DT can give multiple clustering results by utilizing multiple topologies within
the framework of online learning.

3. GNG-DT is a robust learning algorithm for scale variance of the input vector composed
of point cloud with additional properties.

This paper is organized as follows. Section 2 proposes growing neural gas with
different topologies for the 3D space perception. Section 3 shows several experimental
results by using 2D and 3D simulation data and RGB-D data. Finally, we summarize this
paper and discuss the future direction to realize the 3D space perception.

2. Growing Neural Gas with Different Topologies
2.1. Overview of Algorithm

In this section, we explain the overview of our proposed method called “growing
neural gas with different topologies (GNG-DT)”. Figure 3 shows an overall image of the
GNG-DT-based point cloud processing method. GNG-DT uses almost the same distance
measurement as GNG-U II, and GNG-DT learns the multiple topologies for clustering the
point cloud from the different viewpoints of the multiple properties. First, we define the
variables used in GNG-DT.

The set Sin of the input vector’s properties is Sin ={Position (pos), Color (col), ...}; the
set Sre f of the node’s properties is Sre f ={Position (pos), Color (col), Normal vector (nor), ...};
and the input vector v and the ith node (reference vector) h are defined as v = (vpos, vcol , ...),
hi = (hpos

i , hcol
i , hnor

i , ...), respectively. Next, a distance measurement of the oth property
between the input vector and the ith node is defined as

do
i = ‖vo − ho

i ‖ (1)
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In addition, the edge set of the oth property is defined as Co={co
1,2,. . . , co

i,j,. . .} (∀o ∈ Sre f )
for generating the multiple topologies in GNG-DT. The detailed algorithm is explained
as follows.

Figure 3. Overview of the major steps in GNG-DT. After measuring 3D point cloud with color
from RGB-D camera, the multiple topologies are generated by using competitive learning method.
By utilizing and combining the multiple topologies, GNG-DT can provide various clustering results
from the viewpoint of each property.

Step 0. Generate two nodes at random positions, h1 and h2 in Rn, where n is the dimension
of the reference vector. Initialize the connection set co

1,2 = 1 (∀o ∈ Sre f ), and the age of edge
g1,2 is set to 0.
Step 1. Generate at random an input data v.
Step 2. Select the 1st winner node s1 and the 2nd winner node s2 from the set of nodes by

s1 = arg min
i∈A

dpos
i (2)

s2 = arg min
i∈A\s1

dpos
i

where A indicates the set of the node numbers.
Step 3. Add the squared distance between the input data and the 1st winner to an accumu-
lated error variable Es1 :

Es1 ← Es1 + (dpos
s1 )2 (3)

Step 4. Set the age of the connection between s1 and s2 at 0 (gs1,s2 = 0) . If a connection
of the position information between s1 and s2 does not yet exist, create the connection
(cpos

s1,s2 = 1). In addition, the edge of the other property o(∈ Sre f \pos) is calculated as the
following equation: {

co
s1,s2

= 1 i f ‖ho
s1
− ho

s2
‖ < τo

co
s1,s2

= 0 otherwise
(4)

where τo is the predefined threshold value of the oth property.
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Step 5. Update the nodes of the winner and its direct topological neighbors by the learning
rates η1 and η2 (η1 > η2).

hs1 ← hs1 + η1(v− hs1) (5)

ho
j ← ho

j + η2(v− ho
j ) i f co

s1,j = 1

Step 6. Increment the age of all edges emanating from s1.

gs1,j ← gs1,j + 1 i f cpos
s1,j = 1 (6)

Step 7. Delete edges of all properties with an age larger than gmax. If this results in nodes
having no more connecting edges (cpos

s1,s2 = 0) of the position information, remove those
nodes as well.
Step 8. If the number of input data generated so far is an integer multiple of a parameter λ,
insert a new node as follows.
i. Select the node u with the maximal accumulated error.

u = arg max
i∈A

Ei (7)

ii. Select the node f with the maximal accumulated error among the neighbors of u.
iii. Add a new node r to the network and interpolate its node form u and f .

hr = 0.5(hu + h f ) (8)

iv. Delete the original edges of all properties between u and f . Next, insert edges of
the position property connecting the new node r with nodes u and f (cpos

u,r = 1, cpos
r, f = 1).

The edges of the oth property (∈ Sre f \pos) are calculated as the following equation:{
co

i,j = 1 i f ‖ho
i − ho

j ‖ < τo

co
i,j = 0 otherwise

(9)

v. Decrease the error variables of u and f by a temporal discounting rate α(0 ≤ α ≤ 1).

Eu ← Eu − αEu (10)

E f ← E f − αE f

vi. Interpolate the error variable of r from u and f .

Er = 0.5(Eu + E f ) (11)

Step 9. Decrease the error variables of all nodes by a temporal discounting rate β (0 ≤ β ≤ 1).

Ei ← Ei − βEi (∀i ∈ A) (12)

Step10. Continue with step 1 if a stopping criterion (e.g., the number of nodes or some
performance measure) is not yet fulfilled.

Figure 4 shows the total algorithm of GNG-DT, and bold squares indicate the difference
part of the conventional method of the GNG algorithm. In the following sections, we explain
the difference points of the conventional algorithm.
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Figure 4. Flowchart of GNG-DT, where t indicates the number of data input. The boxes drawn by
bold line indicate the modified step from the conventional GNG.

2.2. Distance Measurement

In the conventional methods, such as GNGA and GNG-U II, the weighted distance
measurement is used in the winner node selection and accumulated error update as the
following equation:

s1 = arg min
i∈A

∑
o∈S

wodo
i (13)

s2 = arg min
i∈A\s1

∑
o∈S

wodo
i

Es1 ← Es1 + ∑
o∈S

wo(do
s1
)2 (14)

where wo indicates the weight of the oth property. In the weighted distance methods, it is
difficult to design the weight for preserving the 3D environmental space appropriately if
the input vector is composed of the point cloud and the other feature vectors because the
scalability of each feature is different. On the other hand, the distance measurement of GNG-
DT uses only the position information of the point cloud shown in Equations (2) and (3)
that mean wpos = 1 and wo = 0 (o ∈ Sin\pos) in Equations (13) and (14) for learning the
accurate position space of the point cloud.

2.3. Clustering from Multiple Topologies

The conventional methods generate only one topology, and the edge is added to the
topology if there is no edge between the 1st winner node s1 and the 2nd winner node s2.
Therefore, the conventional methods need to use the cutting edge algorithm for clustering
the point cloud data after generating the topological structure. On the other hand, GNG-DT
generates the multiple topologies of each property including in the property set of the
reference vector (Sre f ). Therefore, GNG-DT needs to add the edges with each feature, except
the position information (cpos

s1,s2) for generating the multiple topologies. The edges of the
other properties are added by calculating the similarity distance between the nodes of each
feature and using the predefined threshold value. Figure 5a–c shows the concept image of
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the multiple topologies in the point cloud with color information. In this case, GNG-DT
can generate three topologies composed of position, color and normal vector.

(a) (b)

(c) (d)

Figure 5. Examples of multiple topologies of GNG-DT. By combining each topological structure,
GNG-DT can provide additional clustering results, such as (d). (a) Position information, (b) color
information, (c) normal vector information, (d) color and normal vector information.

In the clustering of GNG-DT, the topological structure of each property is utilized by
searching the connectivity of each cluster. In addition, GNG-DT can provide additional
clustering results by combining the multiple topologies. Figure 5d shows an example of the
combination using the topologies of the color and normal vector information (ccol

i,j · cnor
i,j = 1).

In this way, the multiple topologies enable to provide the multiple clustering results
according to the number of property sets of the reference vector and the combination of
each property.

2.4. Learning Rule

Next, we explain the learning rule of GNG-DT. The conventional learning rule is
calculated as the following equation:

hs1 ← hs1 + η1(v− hs1) (15)

hj ← hj + η2(v− hj) i f cs1,j = 1

where cs1,j indicates the edge of the conventional GNG method, and η1 and η2 indicate
learning rates. GNG-DT also uses this learning rule for the 1st winner node s1. On the
other hand, the topological neighborhood of the 1st winner node is updated if the edge
of each property is connected (Equation (5)). In this way, the winner node selection
and accumulated error calculation use the distance measurement of only the position
information, while the node update uses all of the properties for learning the geometric
space and the other feature vectors from the point cloud.

2.5. Feature Extraction from the Topological Structure

While learning the topological structure, the normal vectors are extracted as one
of the properties of the reference vector (hnor

i ) from the reference vector of the position
information (hpos

i ). Figure 6 shows the concept image of the local surface. At first, a local
surface (depicted in green circles in Figure 6) of the ith node is composed of the nearest
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nodes (cpos
i,j = 1). Next, the weighted center of gravity of the local surface is calculated,

and then covariance matrix h̄pos
i is calculated as follows.

Covi =
k

∑
j=1

(hpos
j − h̄pos

i )T(hpos
j − h̄pos

i )

h̄pos
i =

hpos
i + ∑k

j=1 ωi,j · h
pos
j

1 + ∑k
j=1 ωi,j

(16)

ωi,j = exp(−
||hpos

i − hpos
j ||

2

µ2 )

where µ indicates the coefficient. After calculating the covariance matrix, the eigenvectors
and values of the matrix are calculated for estimating the normal vector. Then, the normal
vector hnor

i is assigned to the eigenvector with the minimum eigenvalue [11]. In this way,
the property of the reference vector cloud is calculated by utilizing the topological structure
of GNG-DT.

Figure 6. Concept image of the local surface for extracting normal vector. The surface elements
represent green nodes in the dot circle.

3. Experimental Results
3.1. Simulation Data
3.1.1. Experimental Setup

In this section, we conduct simulation experiments using 2D and 3D point cloud data
for verifying the effectiveness of our proposed method. Figure 7 shows the dataset in this
experiment. In Figure 7a, the total number of the 2D point cloud composed of the red and
green rectangles is 10,000 and the dimensions are (width 300) × (height 300). The centers
(x, y) of the two red and green rectangles C1, C2, C3, and C4 are (75, 75), (225, 75), (75, 225),
and (225, 225), respectively. In Figure 7b, the total number of the 3D point cloud is 112,500,
and the point cloud is composed of a half of a red/brown quadratic prism, a half of a red
cylinder, and a brown surface.

(a)

(b)

Figure 7. Experimental dataset. (a) 2D point cloud (Data1), (b) 3D point cloud (Data2).
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The distance measurement of GNG-DT in the winner node selection uses only the
position information. Therefore, the scale variance of the position information affects the
learning result. In this experiment, the scale factor (scl = 10.0, 1.0, 0.1, 0.01) multiplied vpos

of each dataset for verifying the scale variance in GNG-DT. The input vector is composed
of v = (scl · vpos, vcol). In this experiment, we compared our proposed method with the
conventional GNG and GNG with weighted distance measurement (GNG-W) used in
GNGA and GNG-U II. GNG-W does not use the normalization of the point cloud for
verifying the robustness of the scale variance. The weights of GNG-W are set to wpos = 0.8
and wcol = 0.2, the parameters used in [47]. In addition, Table 1 shows the parameters used
in this experiment. These parameters were also used in [47].

Table 1. Setting parameters.

λ 500
η1 0.025
η2 0.0003

gmax 88
α 0.5
β 0.0005

τcol 10.0
τnor 0.02

3.1.2. Quantitative Evaluation

In this experiment, we define the following evaluation for verifying the effectiveness
of the proposed method.

(1) Quantization error

The quantization error of each property is defined as follows,

ro =

√√√√ 1
N

N

∑
i=1
‖vo

i − ho
s1
‖2 (17)

s1 = arg min
j∈A

‖(vpos
i − hpos

j )‖

where s1 indicates the 1st winner node of the position information. By using Equation (17),
we can evaluate the accuracy of the node position and color information included in
reference nodes.

(2) Error of the position information between the center of cluster and true value

Data1 is composed of four rectangles (two red and two green rectangles). The error
value between the center of each cluster and true value is defined as follows:

ei = ‖m
pos
i − ci‖ (18)

where mpos
i indicates the center of gravity of the ith rectangle’s cluster, and ci indicates the

true position of the ith rectangle. Equation (18) evaluates the accuracy of the clustering
result in each method. In this experiment, the number of trials in each method is set to 50
since the GNG-based methods use random sampling, and we calculate the average and
variance value of each evaluation.

3.2. RGB-D Data
3.2.1. Experimental Setup

In this section, we conduct the experiment using 3D point cloud data measured by an
RGB-D camera for verifying the effectiveness of the real sensing data. The first column of
Figure 12 shows the six datasets used in this experiment. These datasets are measured by
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Azure Kinect DK and composed of target objects on the floor or desk. In this experiment,
we also compared our proposed method with the conventional GNG and GNG-W, and the
quantization error is used as the evaluation metric for preserving the 3D position space of
the 3D point cloud. The parameters of each method use the same as the above simulation
experiment, and the number of trials is 50.

3.2.2. Experimental Result

Tables 2 and 3 show the results of the quantization error, and Figures 8 and 9 show
examples of the learning result. In the quantization error of position information, GNG-
DT outperformed the other methods for all of the scales, except scl = 10.0 in Data2,
and GNG-DT preserved the 2D and 3D space structures of each point cloud more accurately.
In addition, GNG-DT generated almost the same topological structures of the position (Cpos)
and color (Ccol) properties in the different scales from Figures 8 and 9. The topological
structure of color information (Ccol) in Figure 8 was separated by the boundary of the
different color, and GNG-DT clustered each rectangle in all scales. On the other hand, GNG
and GNG-W generated different topological structures in the different scales. In particular,
GNG and GNG-W could not preserve the space structure of the point cloud in the cases
of scl = 0.1 and 0.01. This result indicates that the influence of the color information is
dominant over the position information. Figure 10 shows that the position information’s
quantization error multiplied the inverse of the scale factor scl. The results of GNG and
GNG-W were affected by the scale factor, while GNG-DT did not depend on the scale factor
since the error values are almost the same in Figure 10. These results also show that GNG-
DT can preserve the space structure of the point cloud without affecting the input vector of
the other properties by using only the position information in the distance measurement.

(a)

(b)

(c)

Figure 8. Learning examples in simulation experiment using 2D point cloud (Data1). (a) scl = 1.0
(Left: GNG, Center left: GNG-W, Center right: GNG-DT(Cpos), Right: GNG-DT(Ccol)), (b) scl = 10.0
(Left: GNG, Center left: GNG-W, Center right: GNG-DT(Cpos), Right: GNG-DT(Ccol)), (c) scl = 0.01
(Left: GNG, Center left: GNG-W, Center right: GNG-DT(Cpos), Right: GNG-DT(Ccol)).
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(a)

(b)

(c)

Figure 9. Learning examples in simulation experiment using 3D point cloud (Data2). (a) scl = 1.0
(Upper left: GNG, Upper right: GNG-W, Lower left: GNG-DT(Cpos), Lower right: GNG-DT(Ccol)),
(b) scl = 10.0 (Upper left: GNG, Upper right: GNG-W, Lower left: GNG-DT(Cpos), Lower right:
GNG-DT(Ccol)), (c) scl = 0.01 (Upper left: GNG, Upper right: GNG-W, Lower left: GNG-DT(Cpos),
Lower right: GNG-DT(Ccol)).
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Table 2. Experimental results of quantization error of position in simulation experiment, where GNG,
GNG-W and GNG-DT indicate growing neural gas, GNG with weighted distance measurement, and
GNG with different topologies, respectively. scl indicates scale factor.

Data1 GNG GNG-W GNG-DT

scl = 1.0 8.687 ± 0.062 7.794 ± 0.037 7.341 ± 0.022
scl = 10.0 73.948 ± 0.191 73.581 ± 0.217 73.434 ± 0.199
scl = 0.1 1.311 ± 0.020 1.144 ± 0.015 0.735 ± 0.002
scl = 0.01 0.248 ± 0.009 0.190 ± 0.003 0.073 ± 0.000

Data2 GNG GNG-W GNG-DT

scl = 1.0 11.825 ± 0.047 11.133 ± 0.038 10.341 ± 0.021
scl = 10.0 103.064 ± 0.311 103.224 ± 0.293 103.418±0.322
scl = 0.1 1.644 ± 0.010 1.456 ± 0.008 1.0349 ± 0.002
scl = 0.01 0.279 ± 0.003 0.234 ± 0.002 0.103 ± 0.000

Table 3. Experimental results of quantization error of color in simulation experiment, where GNG,
GNG-W and GNG-DT indicate growing neural gas, GNG with weighted distance measurement, and
GNG with different topologies, respectively. scl indicates scale factor.

Data1 GNG GNG-W GNG-DT

scl = 1.0 25.152 ± 0.499 22.583 ± 0.567 26.178 ± 0.425
scl = 10.0 21.094 ± 0.554 23.081 ± 0.623 26.168 ± 0.509
scl = 0.1 28.619 ± 0.682 27.623 ± 0.650 26.072 ± 0.534
scl = 0.01 33.693 ± 1.891 30.425 ± 1.005 26.094 ± 0.475

Data2 GNG GNG-W GNG-DT

scl = 1.0 46.740 ± 0.290 45.396 ± 0.233 33.925 ± 0.034
scl = 10.0 34.099 ± 0.055 33.933 ± 0.028 33.919 ± 0.032
scl = 0.1 48.084 ± 0.496 47.841 ± 0.419 33.915 ± 0.031
scl = 0.01 49.462 ± 1.301 48.056 ± 0.766 33.915 ± 0.034

(a) (b)

Figure 10. Experimental results of quantization errors (rpos) divided by scale vales (scl). (a) Data1,
(b) Data2.

In the results of the quantization error of color information (Table 3), the error values
of GNG and GNG-W were lower than GNG-DT in the case of scl = 1.0 and 10.0, while
GNG-DT outperformed the other methods in the other results. When the scale factor scl
is 1.0, the scales of the position and color information are almost the same scale; GNG-W
outperformed the other methods. On the other hand, GNG, which can be considered GNG-
W whose weights are wpos = 1.0, wcol = 1.0, outperformed the other methods in the case of
scl = 10.0. In this way, the weighted distance approaches need to design the suitable weight
according to the scale of each property for learning the point cloud effectively. On the
other hand, GNG-DT, which can be considered to be GNG-W, whose weights are wpos = 1.0,
wcol = 0.0, does not depend on the scale factor, and the results are almost the same value.
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In addition, the color distribution of the nodes is the same as the point cloud, except the
boundary nodes from Figure 8. From these results, GNG-DT can robustly generate the
topological structure from the point cloud with color information in the scale differences.

In the result of clustering, the GNG and GNG-W could not cluster four rectangles from
the 2D simulation data, while only GNG-DT could cluster four rectangles in all of the scales.
Specifically, as the scale factor is 10.0, GNG and GNG-W could not preserve the space
structure of the point cloud. This shows that the edges between the same color were not
deleted since the color information is a predominant factor in the input vector. On the other
hand, the topological structure of GNG-DT (Ccol) could cluster the four rectangles in all of
the scale factors. Table 4 shows the experimental result of the error ei between the center
of cluster and true value in each rectangle in the topological structure Ccol . The results of
error had constant values in all of the scales. In Figure 8, the topological structures of color
information had isolated nodes in the vicinity of the boundary. As a result of the isolated
nodes, the centers of clusters shifted from the true value of each center.

Table 4. Experimental results of clustering error of GNG-DT, where GNG-DT indicates growing
neural gas with different topologies. scl indicates scale factor.

Cluster No. Cluster Error (ei) Cluster No. Cluster Error (ei)

C1 (scl = 1.0) 5.691 ± 1.520 C2 (scl = 1.0) 5.691 ± 1.809
C1 (scl = 10.0) 57.654 ± 15.035 C2 (scl = 10.0) 57.562 ± 14.653
C1 (scl = 0.1) 0.541 ± 0.152 C2 (scl = 10.0) 57.562 ± 14.653
C1 (scl = 0.01) 0.058 ± 0.019 C2 (scl = 0.01) 0.053 ± 0.014

C3 (scl = 1.0) 5.518 ± 1.759 C4 (scl = 1.0) 5.830 ± 1.700
C3 (scl = 10.0) 56.296 ± 19.622 C4 (scl = 10.0) 57.493 ± 16.728
C3 (scl = 0.1) 0.601 ± 0.191 C4 (scl = 0.1) 0.564 ± 0.165
C3 (scl = 0.01) 0.055 ± 0.016 C4 (scl = 0.01) 0.056 ± 0.016

Next, Figure 11 shows an example of the learning result using GNG-DT in Data2.
In the topological structure of the position information Cpos (Figure 11a), the number of
clusters is 1 since the point cloud of Data2 is composed of two objects on the surface
plane. In the topological structure of the color information Ccol (Figure 11b), the number
of clusters is 3. The surface point cloud and the part of quadratic prism is clustered as the
same cluster since the color is almost the same value. In the topological structure of the
normal vector information Cnor (Figure 11c), the number of clusters is 4 according to the
surface direction. In the topological structure of the color and normal vector information
Ccol · Cnor (Figure 11d), the number of clusters is 5 with segmented red and brown planes
in the prism by combining the multiple topological structures of the color and normal
vector information. In this way, GNG-DT can generate the multiple clustering results
according to each property within the framework of the online learning method, preserving
the geometric feature of the point cloud.
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(a) (b)

(c) (d)

Figure 11. Clustering examples in 3D point cloud data (Data2). Each color of the node and edge
represents each cluster. (a) Position Cpos, (b) color Ccol , (c) normal vector Cnor, (d) color Ccol and
normal vector Cnor.

3.3. RGB-D Data
3.3.1. Experimental Setup

In this section, we conduct the experiment using 3D point cloud data measured by an
RGB-D camera for verifying the effectiveness of the real sensing data. The first column of
Figure 12 shows the six datasets used in this experiment. These datasets are measured by
Azure Kinect DK and composed of target objects on the floor or desk. In this experiment,
we also compare our proposed method with the conventional GNG and GNG-W, and the
quantization error is used as the evaluation metric for preserving the 3D position space of
the 3D point cloud. The parameters of each method use the same as the above simulation
experiment, and the number of trials is 50.

3.3.2. Experimental Result

Tables 5 and 6 show the experimental results of the quantization error. In Table 5, GNG-
DT outperformed the other methods in all quantization errors of the position information.
Next, GNG-W outperformed the other methods in most quantization errors of the color
information since the weight of the color information has a positive effect on decreasing the
error values. However, the GNG-DT’s quantization errors of the color information were
smaller than those of GNG-W in (a) and (c). Therefore, the weighted distance based method
needs to design suitable weight parameters according to the 3D point cloud measured by
an RGB-D camera. On the other hand, GNG-DT preserved the geometric space of the 3D
point cloud data accurately, which can be utilized to extract features related to the shape
of the point cloud. From the above, the distance using only the position information in
GNG-DT is a suitable strategy in the 3D space perception.
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Figure 12. Experimental dataset and results of GNG-DT. The first column is the 3D point cloud
measured by an RGB-D camera, the second column is the learning results of GNG-DT, the third
column is the clustering results using the topological structure of position information Cpos, the fourth
column is the clustering results using the topological structure of color information Ccol , the fifth
column is the clustering results using the topological structure of normal vector information Cnor,
and the sixth column is the clustering results using the topological structure of color and normal
vector information Ccol and Cnor.

Table 5. Experimental results of quantization error of position in real environment, where GNG,
GNG-W and GNG-DT indicate growing neural gas, GNG with weighted distance measurement, and
GNG with different topologies, respectively.

GNG GNG-W GNG-DT

Figure 12a 12.796 ± 0.0011 12.341 ± 0.0018 11.976 ± 0.0005
Figure 12b 12.754 ± 0.191 12.914 ± 0.015 12.754 ± 0.0004
Figure 12c 11.428 ± 0.001 10.857 ± 0.001 10.014 ± 0.0005
Figure 12d 8.908 ± 0.090 8.526 ± 0.088 8.309 ± 0.109
Figure 12e 10.151 ± 0.016 9.849 ± 0.023 9.725 ± 0.043
Figure 12f 9.492 ± 0.0006 9.200 ± 0.0008 8.998 ± 0.0005

Next, Figure 12 shows examples of the learning and clustering results of GNG-DT.
GNG-DT could learn the geometric feature and color information simultaneously. In addi-
tion, GNG-DT could provide the different clustering results from the point cloud by using
topological structures of each property. In particular, in Figure 12, the topological structure
of segment 4 comprises surface planes of white and brown boxes by combining the topo-
logical structures of color and normal vector information from the real environmental data.
In this way, GNG-DT can be applied to the unknown 3D point cloud measured in the real
environment and cluster the point cloud from the viewpoint of multiple properties with
online learning.
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Table 6. Experimental results of quantization error of color in real environment, where GNG, GNG-W
and GNG-DT indicate growing neural gas, GNG with weighted distance measurement and GNG
with different topologies, respectively.

GNG GNG-W GNG-DT

Figure 12a 33.719 ± 0.715 30.544 ± 0.650 30.235 ± 0.221
Figure 12b 14.967 ± 0.076 13.876 ± 0.077 15.392± 0.047
Figure 12c 61.171 ± 0.555 57.318 ± 0.343 55.773 ± 0.271
Figure 12d 27.484 ± 0.322 24.765 ± 0.232 26.320± 0.353
Figure 12e 18.925 ± 0.070 17.699 ± 0.053 18.642± 0.076
Figure 12f 24.535 ± 0.355 22.426 ± 0.229 28.281± 0.268

4. Discussion

In the 3D space perception of the autonomous mobile robot, grasping the position
between the target object and the robot is an essential capability. Therefore, the accuracy
of the position information is the most important for the 3D space perception. In the
experiments of the simulation and RGB-D data, GNG-DT performed the other methods,
except Data2 (scl = 10.0). This is because the 1st and 2nd winner nodes are selected by using
only position information in GNG-DT, which is the important strategy for the 3D space
perception. On the other hand, GNG and GNG-W outperformed GNG-DT in the part of
the results of the quantization error of the color information. GNG and GNG-W generated
some spaces near the boundary of the colors as shown in Figure 8a. On the contrary,
GNG-DT generated isolates nodes near the boundary; the color information of these nodes
was a mixture of each color information, which affected the quantization error of the color
information in the results. However, these isolated nodes represent the boundary of the
property, and this information can be utilized for recognizing the shape of the object.

Next, the autonomous mobile robot that performs tasks in the unknown environment
needs to recognize the unknown object. For recognizing the unknown objects, the robot
needs to extract the invariant of the object by utilizing the multiple properties included
in the object. The conventional GNG has only one topological structure, which provides
only one clustering result. On the other hand, GNG-DT has topological structures of
multiple properties. Therefore, as shown in Figures 11 and 12, GNG-DT can generate
multiple clustering results according to the situation and the target object. Furthermore,
GNG-DT can generate more clustering results by combining each topological structure.
The experimental results of this paper verified the combination of the topological structures
by using only the color and normal vector information, but there are many combinations
utilizing multiple topological structures. Therefore, we will propose the autonomous
cluster generation method according to the situation of the robot by searching suitable
combinations from the topological structures.

5. Conclusions

This paper proposed growing neural gas with different topologies (GNG-DT) for
perceiving the 3D environmental space from unknown 3D point cloud data. GNG-DT
can preserve the geometric feature of the 3D point cloud data by using only the position
information in the winner node selection and accumulated error calculation. In addition,
GNG-DT has multiple topologies of each property for providing the different clustering
results according to the properties within the framework of the online learning. The ex-
perimental results showed the effectiveness of the GNG-DT by using simulation and real
environmental data measured by an RGB-D camera. The performance of the GNG-DT
is much better than that of the other conventional methods. In addition, the clustering
results showed that GNG-DT can provide various clustering results by utilizing each
topological structure.

In this paper, GNG-DT applied to only static data measured by an RGB-D camera.
However, we should verify the dynamic data for realizing 3D space perception since the
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autonomous robot needs to perceive the 3D environmental space in real time. Therefore,
we will propose the learning algorithm for applying dynamic data.
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