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Hamiltonian Adaptive Importance Sampling
Ali Mousavi, Reza Monsefi, and Vı́ctor Elvira, Senior Member, IEEE,

Abstract—Importance sampling (IS) is a powerful Monte Carlo
(MC) methodology for approximating integrals, for instance
in the context of Bayesian inference. In IS, the samples are
simulated from the so-called proposal distribution, and the choice
of this proposal is key for achieving a high performance. In
adaptive IS (AIS) methods, a set of proposals is iteratively
improved. AIS is a relevant and timely methodology although
many limitations remain yet to be overcome, e.g., the curse of
dimensionality in high-dimensional and multi-modal problems.
Moreover, the Hamiltonian Monte Carlo (HMC) algorithm has
become increasingly popular in machine learning and statistics.
HMC has several appealing features such as its exploratory
behavior, especially in high-dimensional targets, when other
methods suffer. In this paper, we introduce the novel Hamiltonian
adaptive importance sampling (HAIS) method. HAIS implements
a two-step adaptive process with parallel HMC chains that
cooperate at each iteration. The proposed HAIS efficiently
adapts a population of proposals, extracting the advantages of
HMC. HAIS can be understood as a particular instance of
the generic layered AIS family with an additional resampling
step. HAIS achieves a significant performance improvement in
high-dimensional problems w.r.t. state-of-the-art algorithms. We
discuss the statistical properties of HAIS and show its high
performance in two challenging examples.

Index Terms—Adaptive importance sampling, Hamiltonian
Monte Carlo

I. INTRODUCTION

IN statistical signal processing, many tasks require the
computation of expectations with respect to a probability

density function (pdf). Unfortunately, obtaining closed-form
solutions to these expectations is infeasible in many real-
world challenging problems. There are various approximation
techniques to solve this problem, the most popular of which is
the Monte Carlo (MC) methodology, based on the generation
of random samples [1]. Arguably, the two main subfamilies
of MC methods are importance sampling (IS) [2] and Markov
chain Monte Carlo (MCMC) [1, Chapter 6]. In this paper, we
focus on the IS methods where the samples are obtained by
simulating from the so-called proposal distribution. The key
of IS is an appropriate choice of the proposal distribution,
which is a hard and very relevant problem. Since choosing
a good proposal in advance is in general unfeasible, adaptive
IS (AIS) methods adapt a mixture of proposals, iteratively
improving the quality of the estimators by better fitting the
proposals [3]. There are several families of AIS methods,
such as the population Monte Carlo (PMC) [4]–[6], the
AMIS algorithm [7], [8], or gradient-based techniques [9]–
[11]. The research in AIS continues being very active and
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many crucial challenges remain open (see [12] for a recent
survey). For instance, high-dimensional and multi-modal tar-
gets are particularly challenging to be explored and most AIS
(and adaptive MCMC) methods fail to efficiently discover
regions with relevant probability mass. Many efforts have been
devoted to adapt the AIS proposals through an optimization
process [5], [13]–[16]. Other works have addressed directly the
reduction of the variability of the importance weight, ultimate
responsible of the poor performance of the IS estimators [17]–
[22]. Some recent methods aim at adapting the proposals
through an independent process from the generated samples.
We refer the interested reader to this class of AIS methods
in [12, Fig. 4(c)]. Particular instances of this class are the
algorithms in the LAIS framework [23] or the techniques in
[9], [24]. Unlike our proposed algorithm, the three explicit
methods presented in the LAIS framework, which implement
an adaptation of the upper layer based on the Metropolis-
Hastings (MH) algorithm (see [23] for more details). One
limitation of these algorithms is the well-known random-
walk behavior of the MH that makes the convergence of the
Markov chain inefficient, especially in high-dimensional multi-
modal distributions. In addition, the performance of LAIS
algorithms is highly dependent to the scale parameter of the
proposals in the upper layer. Hamiltonian (or hybrid) Monte
Carlo (HMC) [25], [26] is a state-of-the-art family of MCMC
algorithms. HMC implements Hamiltonian dynamics allowing
the samples to reach more distant points with higher proba-
bility of acceptance, which provides a greater improvement
on exploratory capabilities compared with the other state-of-
the-arts algorithms. Despite the appealing properties of HMC,
the method can be notoriously difficult to tune (see [27]–[29]).
We note that HMC have been also incorporated to the SMC
samplers framework [30].

In this paper, we present the novel Hamiltonian adaptive
importance sampling (HAIS) algorithm which retains advan-
tageous features from both HMC and AIS, achieving a high
performance. HAIS proposes a novel two-layered HMC-based
AIS, inheriting the structure of LAIS or GAPIS. The upper
layer consists of a two-step adaptation procedure that runs
cooperative parallel HMC blocks in order to adapt the multiple
proposals in AIS, which benefits both the exploratory behavior
(particularly useful in multi-modal and high-dimensional prob-
lems) and the parallelization of the implementation. Another
important contribution of the work is the consistent coopera-
tion step where information among the chains is exchanged in
order to enhance the global exploration. In addition, HAIS
requires little tuning, overcoming one of the well-known
limitations of HMC samplers. Therefore, the validity of the
estimators is ensured by IS arguments, unlike in HMC where
the tuning can endanger the convergence of the Markov chain.
The rest of the paper is organized as follows. In Section II,
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we describe the problem while Section III describes the novel
HAIS method. Numerical examples are provided to compare
the proposed HAIS with some other techniques in Section IV.

II. PROBLEM STATEMENT

A. Bayesian inference

Let us consider a random variable of interest x ∈ Rdx and
y ∈ Rdy be a set of related measurements or observations.
In the Bayesian framework, the variable of interest is charac-
terized through the posterior probability function or the target
pdf known as the

π̃(x|y) =
`(y|x)p0(x)

Z(y)
, (1)

where `(y|x) is the likelihood function, p0(x), is the prior
pdf, and Z(y) is the model evidence (from now on we drop
y in the notation). In many applications the goal is to obtain
a moment of x which can be expressed as the integral

I = Eπ̃[f(x)] =

∫
Rdx

f(x)π̃(x)dx, (2)

where f : R→ Rdx is some integrable function.

B. Importance sampling

Importance sampling (IS) is one of the main subfamilies of
Monte Carlo methods. The basic idea of IS is to sample from
a simpler pdf, the so-called proposal pdf q(x), to approximate
the integrals w.r.t. to the target distribution π̃(x) as

ÎIS(x) =
1

MZ

M∑
m=1

wmf(xm), (3)

where {xm}Mm=1 are iid samples generated from q(x), Z is the
normalization constant, and wm = π(xm)

q(xm) is the importance
weight associated to xn. Then, we can construct ÎIS which
is an unbiased and consistent estimator of I , and its vari-
ance is related to discrepancy between |f(x)|π(x) and q(x).
When Z is unknown, the so-called self-normalized importance
sampling (SNIS) estimator can be constructed by plugging in
Eq. (3) the unbiased estimator Ẑ = 1

M

∑M
m=1 wm instead

of Z (see more details in [31]). Since finding a good q(x)
in advance is generally impossible, adaptive importance sam-
pling (AIS) approaches are usually implemented, in order to
iteratively improve the proposal. Relevant recent AIS methods
are the PMC [4] and AMIS[7], and more recently the LAIS
[23], DM-PMC [6], or [32] (see [12] for a review).

C. Hamiltonian Monte Carlo

Hamiltonian Monte Carlo (HMC) is a MCMC-based
method that adopts Hamiltonian dynamics to explore the state
space in order to propose future states in the Markov chain.
More precisely, let us denote U(x) = − log π(x), which is
usually called potential energy function in the physics litera-
ture [25], [26]. We consider also the kinetic energy function,
V (p) = 1

2pTR−1p, with R as a positive definite mass matrix
and p ∈ Rdx as momentum vector. The matrix R is typically

diagonal or isotropic. Algorithm 1 describes the basic HMC
procedure which explores the joint probability density of x and
p, allowing for the simulation of samples. Starting at an initial
state [x0,p0], HMC simulates Hamiltonian dynamics for L
steps using a discretization method. The common method is
the leapfrog with the small step size parameter ε. Next, the
state of the position and momentum variables at the end of
the simulation is used as the proposed state variables. Finally,
(x∗,p∗) is accepted using an update rule analogous to the
Metropolis acceptance criterion [26]. By means of controlling
the leapfrog size (L) and ε, the acceptance rate of the HMC
sampler can be adjusted [33]. The Hamiltonian dynamics
benefit from several properties. Despite the significant benefits
of HMC, especially in high dimension, HMC is known to
be highly sensitive to the choice of parameters, particularly
ε and L. Choosing a too large step size will result in a
low acceptance rate for new proposed state. On the other
hand, a too small step size will lead to slow exploration.
Also, HMC encounters difficulties to sample from multi-modal
distributions. We refer the interested reader to [26], [34].

Algorithm 1: Hamiltonian Monte Carlo
Input: step size ε, leapfrog size L, starting point x1, sample number M
for m = 1, ...,M do

Sample p0 ∼ N (0, 1) and set x0 = xm

Run leapfrog method starting at (x0,p0) for L steps with step size ε to
obtain proposed states (x∗,p∗)

Generate u from U [0, 1]

if u ≤ min[1, eU(xm)+V (pm)−U(x∗)−V (p∗)]
xm+1 = x∗

else
xm+1 = xm

end
Output: sample set {xm}Mm=1

III. HAMILTONIAN ADAPTIVE IMPORTANCE SAMPLING

In this section, we present the novel Hamiltonian adaptive
importance sampling (HAIS) method, which is summarized in
Fig. 1 and precisely described in Alg. 2. HAIS is an iterative
method that, at each iteration, performs three main operations:
(a) sampling; (b) weighting; and (c) adaptation.

A. Algorithm description

Algorithm 2 describes the HAIS method. We consider N
(parametric) proposal distributions, qn(x;µn,νn) where µn
is the location parameter (e.g., the mean in a Gaussian pdf)
and νn contains the other parameters (e.g., νn = Σn is the
covariance matrix in a Gaussian distribution). The algorithm
starts with the initialization of the proposal parameters. At
each iteration, KN samples are generated from the N pro-
posals (exactly K samples per proposal). Then, the importance
weights are computed following deterministic mixture (DM)
scheme. It has been recently shown that the unnormalized IS
estimator of Eq. (3) with DM weights outperforms the same
estimator if only the proposal qn is in the denominator (instead
of the whole mixture) [31]. Finally, adaptation procedure is
performed. Next section is devoted to describe this adaptation.
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Fig. 1: The flowchart of the proposed HAIS method showing the
three main operations at iteration t which results in the estimated
values.

B. Adaptation process

Fig. 1 shows a two-step procedure in the adaptation of
location parameters of the proposals (parallel HMC and coop-
eration). First, each HMC block explores the state space inde-
pendently which is in a more efficient manner to discover local
relevant features of the target, compared to other mechanisms
such as MH-based methods or even naive gradient-based meth-
ods as in [9]. The parallel structure amplifies the exploratory
behavior, improving the local exploration capability of HAIS
in high-dimensional multi-modal targets especially when the
modes are distant. Second, the information among the output
of N parallel HMC is exchanged in order to improve the global
exploration (see a discussion on local-global exploration in
[6]). It is also important to remark that the cooperation step
presents a theoretically sound and consistent procedure which
does not require any free parameter to be tuned. We note
that the adaptation of the proposal locations is completely
independent from the samples for target estimation which
helps the parallelization of the method (see a classification of
AIS algorithm according to the adaptive mechanism in [12]).
Note that, unlike HMC, the performance of HAIS does not
critically depend on a precise tuning of the HMC parameters,
since we use HMC for adapting the proposals not the final
samples (that are properly weighted via IS). Assuming that
all the HMC blocks obtain chains converging to the target
pdf, the convergence of the overall HAIS is guaranteed. In
the following we present a description of the novel approach.

1) Parallel HMC step: We propose to run N independent
HMC method in a parallel way, each of which is shown as
a HMC block in Fig. 1. Let us consider N parallel chains
{µn}Nn=1 generated by those HMC blocks with µ(1)

n as the
initial d-dimensional starting point for the n-th chain. We
apply one iteration of N parallel chains, one for each µ(t)

n ,
returning µ(t+1)∗

n for n = 1, ..., N . Next, we compute the
normalized DM weight of each µ(t+1)∗

n ,

w̄
µ

(t+1)∗
n

∝ π(µ
(t+1)∗
n )∑N

i=1 qi(µ
(t+1)∗
i ;µ

(t)
i ,νi)

. (4)

Now we consider π̃(t+1)∗(µ) as a random measure that
approximates the target distribution, i.e.,

π̃(t+1)∗(µ) =

N∑
n=1

w̄
µ

(t+1)∗
n

δ(µ− µ(t+1)∗
n ), (5)

The theoretical motivation is that, after the burn-in periods,
the N parallel HMC chains have converged to the target,
so µ

(t+1)∗
n ∼ π. As a result, the random measure based

on weighted mean vectors in Eq. (5) approximates the target
distribution.

2) Cooperation step: The final mean vector of the pro-
posals for the next iteration are obtained by sampling from
π̃(t+1)∗(µ), (via resampling), i.e., µ(t+1)

n ∼ π̃(t+1)∗(µ). After
resampling, a modified and unweighted random measure is
produced as

π̃(t+1)(µ) =

N∑
n=1

δ(µ− µ(t+1)
n ). (6)

In the following, we provide theoretical justification for
using the cooperation step. The convergence of this adaptation
process is given by Theorem 1.

Theorem 1 The moments of the random measure π̃(t+1)(µ)
obtained from outputs of the cooperation step (i.e., the means
µ

(t+1)
n ) converge almost surely to those of the true distribution

π̃(x) when N →∞.

Proof. See the appendix.

Algorithm 2: Hamiltonian adaptive importance sampling
Input: initial location, {µ(1)

n }
N
n=1, and scale, {νn}Nn=1, of proposals, N

proposals, K sample per proposal, T iterations
for t = 1, ..., T do

(a) sampling: Draw K samples per individual proposal or mixand,

x
(t)
n,k ∼ qn(x;µ

(t)
n , νn), n = 1, ..., N, k = 1, ..., K.

(b) weighting: Compute the deterministic mixture (DM) weight of each
sample,

w
(t)
n,k =

π(x
(t)
n,k)∑N

i=1 qi(x
(t)
i,k;µ

(t)
i , νi)

.

(c) adaptation: Update location of proposals for the next iteration through
the two-step adaptation procedure.
1. parallel HMC step: Generate new population of proposals,
{µ(t+1)∗

1 ,µ
(t+1)∗
2 , ...,µ

(t+1)∗
N }, by applying one iteration of N

parallel HMC blocks.
2. cooperation step: Generate final population of proposals,
{µ(t+1)

1 ,µ
(t+1)
2 , ...,µ

(t+1)
N }, for the next iteration by sampling from

equation (5).
end
Output: a set of KNT samples with associated weights, {x(t)

n,k, w
(t)
n,k} to

obtain the estimation.

IV. NUMERICAL EXAMPLES

A. Bimodal target distribution in dx = 20

In this section we consider a high-dimensional bi-modal
target pdf in order to compare HAIS with some alterna-
tive methods. The target is a mixture of two Gaussians,
i.e., π(x) =

∑2
i=1

1
2N (µi, Σi). Here x ∈ R20, µi =

[µi,1, µi,2, ..., µi,20]T , and Σi = cI20, for i ∈ {1, 2} where
I20 is an identity matrix of dimension 20. We set µ1,d = 8
and µ2,d = −8 for all dimensions and also we set c = 5.
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TABLE I: MSE in the approximation of the mean and normalizing
constant of multi-modal target distribution.

Method σ = 1 σ = 2 σ = 5
E[x] Z E[x] Z E[x] Z

GR-PMC 64.92 0.9418 64.14 0.3126 65.70 0.3412
LR-PMC 21.57 0.9974 26.73 0.0998 65.24 0.9997

PI-MAIS (λ = 5) 46.10 1 38.99 0.4531 36.63 0.5421
PI-MAIS (λ = 10) 60.51 1 60.30 1 53.28 0.9878

HAIS (ε = 5) 41.09 0.8649 17.57 0.0201 13.20 0.0031
HAIS (ε = 10) 42.76 0.8828 17.32 0.0162 12.87 0.0016

Multimodal settings are challenging, and in this example the
two modes are distant, which over-complicates the exploration
process at high dimension. Moreover, the proposal densities
are Gaussian pdfs with uniformly selected initial means, i.e.,
µn ∼ U([−4 × 4]dx) for n = 1, ..., N , where none of the
modes of the target fall within this area. We use the same
isotropic covariance for all of proposals, Σ = σ2I20 with
σ ∈ {1, 2, 5}. We test for a constant number of samples,
K = 5, and number of proposals, N = 100. For each
algorithm the number of iterations, T , is set so they have the
same total number of target evaluations, E = 2 × 105. We
focus in estimation the mean and the normalizing constant
of the target, which are obviously known in this example
(E[x] = 0 and Z = 1). We compared the proposed HAIS
with recent high-performance AIS methods: GR-PMC and
LR-PMC [6], and LAIS [23]. For the upper layer of the
LAIS, we also consider Gaussian pdfs ϕn(x|µn,Λn) where
covariance matrices Λn = λ2I2 with λ ∈ {5, 10}. In our HAIS
we consider all the HMC blocks to have the same step size
parameter choosing from ε ∈ {5, 10} and a fixed value of
L = 50. The results are averaged over 200 independent runs.
The simulation results are summarized in Table I in terms
of mean squared error (MSE) in the estimators. First, note
that many settings/algorithms obtain very large MSE values.
Those situations often correspond to the case where one or
both modes are failed to be discovered. In the situation of
missing both modes, the estimation of normalizing constant
of the target is Ẑ ≈ 0 which corresponds to a MSE≈ 1 as
it happens in several settings. Second, we see that the HAIS
algorithm generally outperforms the other methods. We note
that the optimum value of σ which yields the smallest MSE,
depends on the scale parameter of the target (here it is c = 5).

B. High-dimensional banana-shaped target distribution

We now consider a benchmark multidimensional banana-
shaped target distribution [35], which is a challenging example
because of its nonlinear nature. The target pdf is given by

π̄(x1, ..., xdx)

∝ exp

(
− x2

1

2σ2
−
(
x2 + b(x2

1 − σ2)
)2

2σ2
−

dx∑
i=3

x2
i

2σ2

)
. (7)

We set b = 3 and σ = 1, then the true value for Eπ̄[x] = 0.
Here Gaussian densities are considered as proposals with
initial locations similar to the previous experiment. We use
the isotropic covariance matrix for all of proposal pdfs,
Σ = σ2Idx with σ2 = 1. The selected values of K, N , and
T is the same as in previous experiment. We compute the

0 5 10 15 20 25 30 35 40 45 50

state dimension

10-2

10-1

100

101

M
S

E

GR-PMC
LR-PMC
PI-MAIS
HAIS

Fig. 2: log-MSE of E[x], using N = 100 proposals with σ = 1, as
the dimension of the target pdf, dx, increases.

MSE in the estimation of E[x] and the results are averaged
over 200 Monte Carlo simulations. In order to compare the
performance of the proposed method with other approaches
as the dimension of the state space increases, we vary the
dimension of the state space testing different values of dx
(with 2 ≤ dx ≤ 50). Fig. 2 shows the log-MSE in the
estimation of E[x] as a function of the dimension dx of the
state-space, regarding the same techniques as in the previous
bi-dimensional example. The performance of all the methods
degrades as the dimension becomes larger. The result indicates
that the novel HAIS scheme outperforms all the other methods
under fair computational complexity comparison.

V. CONCLUSION

In this paper we have proposed the HAIS algorithm, an
adaptive importance sampler with particularly good behavior
for high-dimensional and multi-modal problems. HAIS be-
longs to the family of layered AIS samplers, and implements
an adaptive procedure by running parallel HMC steps followed
by a cooperation step, instead of the MH algorithm deployed in
the algorithms of the LAIS framework. The method is theoreti-
cally justified by HMC and resampling arguments. Simulation
results have shown significant improvement compared with
other state-of-the-art methods.

APPENDIX A
PROOF OF THEOREM 1

The proof of Theorem 1 is based on a generalization
of the result in [6, Section 4.1]. Let z = [z1, z2, ..., zdx ]
be a new auxiliary variable the same size as the variable
of interest, x = [x1, x2, ..., xdx ]. Now consider the desired
square integrable function to be an indicator function, i.e.,
fz(x) =

∏dx
d=1 1(xd ≤ zd) where 1 denotes the indicator

function. The integral Iz =
∫
fz(x)π(z)dz becomes the

multi-variate cumulative distribution function (cdf) of π(x). In
a similar way, we can obtain the cdf for π̃(t+1)∗(µ), named
Ĩz . It can be shown that Ĩz → Iz a.s. for any value of z as
N → ∞ [36]. As a result, as N → ∞, the cdf associated
to π̃(t+1)∗ a.s. converges to the target cdf. Consequently, the
outputs of the cooperation step are asymptotically distributed
as the target π̃, i.e., µ(t+1)

n ∼ π(x) when N →∞.
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