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Abstract 

Background: Atherosclerotic cardiovascular diseases (CVD) is the leading cause of 

death in diabetes, but the full range of biomarkers reflecting atherosclerotic burden 

and CVD risk in people with diabetes is unknown. Metabolomics may help identify 

novel biomarkers potentially involved in development of atherosclerosis. We 

investigated the serum metabolomic profile of subclinical atherosclerosis, measured 

using ankle brachial index (ABI), in people with type 2 diabetes, compared with the 

profile for symptomatic CVD in the same population. 

Methods: The Edinburgh Type 2 Diabetes Study is a cohort of 1,066 individuals with 

type 2 diabetes. ABI was measured at baseline, years 4 and 10, with cardiovascular 

events assessed at baseline and during 10 years of follow-up. A panel of 228 

metabolites was measured at baseline using nuclear magnetic resonance 

spectrometry, and their association with both ABI and prevalent CVD was explored 

using univariate regression models and least absolute shrinkage and selection 

operator (LASSO). Metabolites associated with baseline ABI were further explored for 

association with follow-up ABI and incident CVD. 

Results: Mean (standard deviation, SD) ABI at baseline was 0.97 (0.18, N=1,025), 

and prevalence of CVD was 35.0%. During 10-year follow-up, mean (SD) change in 

ABI was +0.006 (0.178, n=436), and 257 CVD events occurred. Lactate, glycerol, 

creatinine and glycoprotein acetyls levels were associated with baseline ABI in both 

univariate regression [βs (95% Confidence interval, CI) ranged from -0.025 (-0.036, -
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0.015) to -0.023 (-0.034, -0.013), all p<0.0002] and LASSO analysis. The associations 

remained nominally significant after adjustment for major vascular risk factors. In 

prospective analyses, lactate was nominally associated with ABI measured at years 4 

and 10 after adjustment for baseline ABI. The four ABI-associated metabolites were 

all positively associated with prevalent CVD [odds ratios (ORs) ranged from 1.29 (1.13, 

1.47) to 1.49 (1.29, 1.74), all p<0.0002], and they were also positively associated with 

incident CVD [ORs (95%CI) ranged from 1.19 (1.02, 1.39) to 1.35 (1.17, 1.56), all 

p<0.05].  

Conclusions: Serum metabolites relating to glycolysis, fluid balance and inflammation 

were independently associated with both a marker of subclinical atherosclerosis and 

with symptomatic CVD in people with type 2 diabetes. Additional investigation is 

warranted to determine their roles as possible etiological and/or predictive biomarkers 

for atherosclerotic CVD. 

Key words: Atherosclerosis; Cardiovascular diseases; Glycolysis; Lactate; Lipidomics; 

Metabolomics; Type 2 Diabetes.  

 

 

1. Background 

Atherosclerosis and its major clinical manifestation-cardiovascular diseases (CVD) is 

the leading cause of death globally. Individuals with type 2 diabetes are several times 

more likely to develop CVD and suffer heavier health and economic burden than the 

general population [1, 2]. Although increased cardiovascular risk is likely attributable, 
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at least in part, to dyslipidaemia, inflammation and oxidative stress [3], the association 

of CVD with detailed metabolic status at the molecular level in type 2 diabetes 

populations remains unclear.  

As a recently emerging field of systematic study, metabolomics is proximal to disease 

phenotypes and offers opportunities to depict a high-definition snapshot of numerous 

small low-molecular-weight metabolites in a single biological sample, therefore 

facilitating elucidation of complex disease pathobiology and identification of predictive 

biomarkers [4, 5]. The metabolomic profile of CVD has been described in several 

studies, but these have been mainly based on general populations. Although results 

were highly heterogeneous, especially given the wide variety of metabolomic platforms 

used, some subclasses of lipids, amino acids and dicarboxylacylcarnitines have 

shown strong association with clinical CVD and have provided additional predictive 

value to development of CVD over traditional cardiovascular risk factors [6, 7]. Whilst 

these findings in the general population show the potential value of metabolomics 

studies for vascular research, only a limited number of similar studies have explored 

metabolomic characteristics of CVD in people with type 2 diabetes, and existing 

studies were primarily small-scale case-control studies [8, 9].  

Critically, the atherosclerotic process develops silently for several decades, providing 

a window for early intervention to prevent clinical CVD. Such asymptomatic disease is 

particularly prevalent in people with type 2 diabetes [10]. Several markers have been 

developed to assist in the detection of early asymptomatic CVD. Metabolomic changes 

associated with these markers are important to identify because of their potential to 
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aid understanding of the early development of CVD and also their potential use in early 

risk prediction. Ankle-branchial Index (ABI, ratio of systolic blood pressure in the ankle 

to that in the arm) has particularly proved to be a good measure of systemic 

atherosclerosis and serves as a risk indicator even in patients with CVD [11]. However, 

few studies have explored the metabolomic profile of ABI in either general populations 

or people with diabetes, and in those metabolomic studies where atherosclerosis was 

evaluated by other markers (e.g., pulse wave velocity), populations with diabetes were 

mainly small Asian groups [12-14]. 

The aim of the current research was to explore the metabolomic profile for 

atherosclerotic CVD in people with type 2 diabetes, focusing on both ABI as a measure 

of subclinical disease and coronary/cerebrovascular disease as a measure of clinical 

CVD. We aimed to identify novel individual metabolites worthy of further exploration 

as potential causal and/or predictive cardiovascular biomarkers in people with type 2 

diabetes. 

 

2. Methods: 

2.1 Study population  

The Edinburgh Type 2 Diabetes Study (ET2DS) is a prospective cohort study of 1,066 

older men and women with confirmed type 2 diabetes at baseline (2006/2007) living 

in Lothian, Scotland. Details of recruitment have been described in detail elsewhere 

[15]. Briefly, individuals aged 60-75 years were recruited to form a representative 
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sample from the Lothian Diabetes Register where almost all individuals with type 2 

diabetes in Lothian are recorded. Questionnaires and physical examination were used 

to collect data at baseline, and again at years 4 (n= 831) and 10 (n=581) when 

participants were invited to follow up physical investigation [16]. Data on 

cardiovascular events was obtained on all participants through linkage with the 

Information Services Division of National Health Service Scotland at baseline and 

years 4 and 8, and hospital discharge and deaths records were further updated using 

hospitalization records and scrutiny of death records at National Records of Scotland 

at year 10 (n=1066).  

Given ABI>1.3 is widely regarded as a sign of the presence of medial arterial 

calcification which has different clinical characteristics from atherosclerosis, 

individuals with ABI>1.3 at any time point were excluded. This study finally included 

1,025 individuals for principal analyses who do not have missing data on 

metabolomics and/or baseline ABI measurement. For longitudinal analyses on follow-

up ABI, only individuals with available baseline and corresponding follow-up ABI 

measurement were included (n=731 and 436 for ABI at Years 4 and 10 respectively). 

Ethical permission was granted by the Lothian Medical Research Ethics Committee 

and written informed consent was obtained from all participants. 

2.2 Metabolomic profile of serum sample  

Baseline fasting venous blood samples were collected to measure serum 

metabolomics data using a high-throughput nuclear magnetic resonance (NMR) 
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platform (Nightingale, Helsinki, Finland) which has been described in detail by 

Soininen etc. and has been used in a number of large-scale epidemiological studies 

[17, 18]. Overall, 228 serum metabolites were reported in the form of either absolute 

concentrations or ratios. These mainly included lipid particles and subclasses 

(corresponding size, density, components), fatty acids, glycolysis related metabolites, 

amino acids, ketone bodies, fluid balance molecules and inflammation marker. Some 

lipid ratios were reported as infinite where the concentration of the denominator (or 

part of the denominator) was missing due to being below the minimum level of 

detection. In this instance, we replaced the missing values with a value equal to half 

of the minimum concentration recorded in the dataset for the affected metabolite, and 

recalculated the ratio using this estimated value.  

 

2.3 ABI and CVD events  

To measure ABI, participants were asked to rest for at least 15 minutes and an aneroid 

sphygmomanometer and a doppler probe (Dopplex® advanced pocket Doppler, 

Huntleigh Healthcare Ltd., Cardiff, UK) were used to measure both right and left 

brachial, posterior tibial and dorsalis pedis systolic blood pressures (SBP) in the 

supine position [15]. ABI was calculated by dividing the lowest ankle SBP by the 

highest brachial SBP. ABI was measured at baseline, years 4 and 10 by specially 

trained research staff using identical standard operating procedures.  

Detailed criteria for prevalent and incident cardiovascular events in ET2DS have been 
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described elsewhere [19]. Briefly, for the purposes of this analysis, CVD refers to 

myocardial infarction (MI), angina, coronary intervention, stroke and transient ischemic 

attack. Prevalent cardiovascular events were defined according to baseline data from 

self-completion questionnaires, ECGs and historical hospital discharge records, and 

incident events were ascertained by criteria based on collection of data at research 

clinics at years 4 and 10 together with comprehensive scrutiny of clinical and hospital 

discharge records and death certificates during the follow-up. 

 

2.4 Statistical analysis  

Characteristics of the study participants were presented as means and standard 

deviations (SDs) or medians and interquartile ranges (IQRs) for continuous variables 

and percentages for categorical variables. Normal distribution of metabolites and 

residuals of regression models was visually checked, and raw levels of metabolites 

were standardized by subtracting the mean and then dividing by the SD for each 

metabolite. In univariate analysis where baseline ABI was the outcome, each 

metabolite was modelled using linear regression adjusting for age and sex (Model 1). 

The significance threshold was set to 0.0002 (0.05/228, Bonferroni corrected for 228 

metabolites) to account for multiple comparisons. Sensitivity analysis where existing 

CVD cases were excluded was performed to explore the stability of the key 

metabolites in the metabolomic profile of baseline ABI. Metabolites associated with 

baseline ABI were further explored in terms of association with follow-up ABI, and 
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follow-up ABI was analysed as the outcome using 3 different approaches: 1) absolute 

changes in ABI during 4 and 10 years, 2) levels of follow-up ABI with adjustment for 

baseline ABI, and 3) slopes of interpolated lines of three measurements of ABI during 

10 years for each available individual.  

Additionally, given the property of high dimension and multi-collinearity of 

metabolomics data, least absolute shrinkage and selection operator (LASSO) was 

used to describe the metabolomic profile of baseline ABI and to assess the stability of 

results from univariate analyses. LASSO shrinks coefficients of some variables to 

exactly zero by adding a penalty and thus selects the most informative panel of 

variables, making it particularly suitable for high-dimensional metabolomics data [20]. 

Using cv.glmnet function on glmnet package (version 4.0-2) on R, we applied a five-

fold cross-validation incorporating 228 metabolites to obtain the optimum tuning 

parameter λ which gave the minimum mean error/deviance in the linear/logistic 

regression model. Then, the reduced panel of metabolites together with their 

coefficients were reported to assess the consistency with metabolites identified in 

univariate analyses.  

An age- and sex-adjusted logistic regression model was performed to select significant 

metabolites associated with prevalent CVD in univariate analysis, following with 

LASSO analysis to uncover metabolomic profiles of prevalent CVD. To further explore 

whether the association between identified metabolites and baseline ABI and/or 

prevalent CVD was independent of traditional CVD risk factors, we further adjusted for 

smoking, SBP, high-density lipoprotein (HDL)-cholesterol, total cholesterol, body mass 
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index (BMI) and glycated haemoglobin (HbA1c) (Model 2). Moreover, the associations 

between the baseline ABI-associated metabolites and incident CVD were further 

assessed using univariate logistic regression models, and prevalent CVD was 

adjusted to assess the stability of observed association. 

To explore if the observed association could lie on the pathophysiological pathways of 

traditional CVD risk factors, inflammation markers and drugs use, the relationships 

between key metabolites and important covariates were assessed using Pearson 

correlations. Finally, odds ratios (ORs) and 95% confidence interval (CI) of 228 

metabolites were extracted from related univariate analyses with age and sex 

adjustment where low ABI (<0.9, a cut-point used previously for identifying individuals 

with poor cardiovascular prognosis) and CVD at baseline served as the outcome 

separately. Spearman correlation coefficient was calculated to quantify the 

concordance between the metabolomic profile of low ABI and CVD at baseline. All 

analyses were performed using R version 4.0.3 (R Foundation for Statistical 

Computing, Vienna, Austria). 

 

3. Results:  

3.1 Characteristics of the study population 

Major demographic and clinical characteristics of this study population at baseline, 

together with a description of the main outcome phenotypes, are shown in Table 1 

(see Figure S1 in Additional File 1 for further details on change in ABI). Mean ABI (SD) 
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at baseline was 0.97 (0.18), and mean (SD) changes of ABI among available 

individuals over 4 and 10 years were +0.001 (0.152) and +0.006 (0.178) respectively. 

Prevalence of CVD was 35.0%, with 257 cardiovascular events (123 new and 134 

recurrent events) developing during 10 years of follow-up (detailed frequency of CVD 

constituent endpoints are shown in Table S1 in Additional File 1). Mean values of 

serum metabolomics at baseline are shown in Table S2 in Additional File 1. There was 

considerable inter-correlation between individual metabolites, particularly among lipid-

related metabolites, with correlations ranging from -0.998 to 1.000 (see Figure S2 in 

Additional File 1). 

3.2 Metabolomic profiles associated with ABI  

Of all 228 metabolites tested for association with baseline ABI (see Table S3 in 

Additional File 1 for detailed p values and βs), four were significant (p<0.0002) in 

univariate analysis adjusted for age and gender. These were lactate, glycerol, 

creatinine and glycoprotein acetyl [βs (95%CI): -0.025 (-0.036, -0.015), -0.025 (-0.036, 

-0.013), -0.023 (-0.034, -0.012), -0.023 (-0.034, -0.013), respectively, see model 1 in 

Figure 1A and Table S4 in Additional File 1]. The same four metabolites were also 

associated with ABI in LASSO analysis (see Table S5 in Additional File 1), in addition 

to another three metabolites (i.e., histidine, total lipids and total cholesterol in small 

HDL). Unsurprisingly, effect sizes for the association of these metabolites with ABI 

were attenuated after adjusting for traditional CVD risk factors, but all associations 

remained in the same direction and nominally significant (model 2 in Figure 1A). We 



12 

 

further exploratorily adjusted for estimated glomerular filtration rate (eGFR), lipid-

lowering drug use and duration of diabetes in model 3a, lactate remained significantly 

associated with baseline ABI with p<0.0002 (Table S4 in Additional File 1). 

A total of 666 individuals were included in sensitivity analysis on participants without 

clinical CVD at baseline. While the association between creatinine and ABI in the sub-

group was not statistically significant, lactate and glycoprotein acetyl were significantly 

associated with ABI with p<0.0002 (βs: -0.023 and -0.024, respectively, Figure 1B). 

After further adjustment for traditional CVD risk factors, lactate and glycoprotein 

acetyls remained nominally associated with baseline ABI. 

In analyses focusing on the association between the four metabolites identified above 

with change in ABI during follow-up, lactate showed nominally significant association 

with ABI measured at year 4 (β: -0.014, see Figure 1C and Table S6 in Additional File 

1) and year 10 (β: -0.020, see Figure 1D and Table S6 in Additional File 1) following 

adjustment for baseline ABI, with associations attenuated after adjusting for other 

covariates. Borderline statistically significant associations were observed in similar 

analyses for follow-up ABI and the other three metabolites (e.g., for creatinine, p = 

0.06). No significant associations were found in analyses where change in ABI was 

modelled as the absolute difference between follow-up ABI and baseline ABI, or the 

slope of interpolated line of three measurements of ABI (Figure S3 in Additional File 

1). 
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3.3 Metabolomic profiles associated with clinical CVD 

In univariate analysis, 36 metabolites were associated with prevalent CVD (p<0.0002), 

primarily metabolites of HDL subclasses and lipoprotein particles (see Figure 2 and 

Table S7 in Additional File 1). Six of these were also identified in LASSO analysis (see 

Table S8 in Additional File 1), in addition to seventeen exclusive metabolites (mainly 

components of HDL and amino acids). Associations between prevalent CVD and some 

lipids subclasses were substantially weakened following adjustment for CVD risk 

factors, but 19 metabolites remained nominally significantly associated. Particularly, 

creatinine and components of medium HDL lipids were strongly associated with CVD 

(Figure 2). All four metabolites associated with baseline ABI were positively associated 

with prevalent CVD and showed good consistency in terms of direction of association 

[ORs (95%CI): 1.29 (1.13, 1.47), 1.34 (1.16, 1.54), 1.49 (1.29, 1.74) and 1.31 (1.15, 

1.50), respectively, all p<0.0002]. A one SD increase of serum creatinine showed the 

strongest association with prevalent CVD, with OR of 1.34 (95% CI:1.16-1.54), even 

following adjustment for traditional CVD risk factors, but the association became 

insignificant after we further adjusted for eGFR in model 3a (Table S7 in Additional File 

1).  

The four metabolites also showed nominally positive associations with the occurrence 

of cardiovascular events during 10-year follow-up [ORs (95%CI): 1.26 (1.10, 1.44), 

1.19 (1.02, 1.39), 1.35 (1.17, 1.56) and 1.30 (1.13, 1.49) respectively], although 

unsurprisingly, associations were substantially attenuated when adjusted for CVD risk 

factors (Figure 3A and Table S9 in Additional File 1). After existing CVD cases at 
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baseline were excluded (n=666), lactate and glycoprotein acetyls showed some 

association with newly incident CVD (ORs=1.29 and 1.23, and p = 0.007 and 0.027, 

respectively), though the associations were not significant when further adjusted for 

other covariates (Figure 3B and Table S9 in Additional File 1). We also adjusted for 

prevalent CVD to evaluate the stability of observed associations, and most of 

associations were still nominal significant despite being attenuated (Table S10 in 

Additional File 1). 

3.4 Correlation between important covariates and key metabolites associated 

with baseline ABI and/or prevalent CVD. 

We next calculated Pearson correlation coefficients between important covariates and 

key metabolites (Figure S4 in Additional File 1). As expected, metabolites of HDL 

subclasses, lipid particles, and apolipoproteins showed moderate to strong 

correlations with classical lipids (e.g., HDL-cholesterol and total cholesterol). 

Creatinine showed strong inverse correlation with eGFR, and glycerol was moderately 

correlated with BMI. Of note, lactate showed weak correlations with all covariates. 

3.5 Concordance between metabolomic profile of low ABI and CVD at baseline  

Figure 4 shows the extent to which there was concordance between the metabolomic 

profiles for low ABI (<0.9) and CVD at baseline. The Spearman correlation coefficient 

was 0.70, indicating a generally good concordance. 
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4. Discussion 

In this study, we described and compared the association of serum NMR metabolites 

with ABI, change in ABI and with both prevalent and incident symptomatic CVD in men 

and women with type 2 diabetes. Four metabolites (lactate, glycerol, creatinine and 

glycoprotein acetyls) were associated with baseline ABI, and they were also 

associated with prevalent CVD. Lactate particularly emerged as a potentially 

promising candidate biomarker of atherosclerotic burden in type 2 diabetes due to an 

association with ABI and CVD in both cross-sectional and longitudinal analyses. 

Interestingly, associations of glycerol, creatinine, and glycoprotein acetyls with 

baseline ABI were also evident after excluding existing CVD cases or adjustment for 

CVD risk factors, although statistical significance became borderline, potentially partly 

because of the smaller sample size.  

Besides these main findings, we found that several metabolites belonging to medium 

and small HDL subclasses were associated with prevalent CVD, independently of 

traditional CVD risk factors. Attenuation in regression coefficients following adjustment 

for traditional CVD risk factors suggests such metabolites could lie on common 

pathophysiological pathways underlying the development of atherosclerotic disease, 

and strong correlation between the metabolomic profile of low ABI and CVD at 

baseline points to both shared and unique risk factors for these two related conditions. 

Whilst our findings suggest that the metabolomic characteristics of atherosclerosis in 

people with type 2 diabetes might alter as the disease progresses, the precise role (if 

any) that these metabolites play in the development of CVD needs further investigation, 
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for which multi-omics studies and external populations are likely to be helpful.  

Of all metabolites studied, lactate showed consistent, independent associations 

across all phenotypes and had weak correlations with CVD risk factors, highlighting 

specific potential as an independent atherosclerotic biomarker in diabetes. As an end 

product of anaerobic glycolysis, lactate is a good indicator of mitochondrial dysfunction 

which is a major characteristic of type 2 diabetes [21, 22]. Mitochondrial dysfunction 

would promote the production of reactive oxygen species which would exacerbate 

atherosclerosis, and lead to apoptosis thereby accelerating plaque rupture and 

increasing risk of ischemic CVD [21]. Given this, the association could be partly 

attributed to the severity of insulin resistance reflected by lactate. However, lactate’s 

roles in other pathways (e.g., regulating metabolism) should also be noted because 

the association remained significant after adjusting for HbA1c [23]. Of note, almost 60% 

of individuals in the ET2DS were using metformin at baseline, and lactic acidosis is a 

recognised complication of metformin therapy [24] although metformin is thought to 

have a protective role on cardiovascular outcomes [25]. To assess the effect of 

metformin use on the association between lactate and baseline ABI, metformin use 

was adjusted in model 3b (data was not shown), and there was only a slight alteration 

in the association strength following such adjustment (β changed from -0.0187 to -

0.0192). 

In a previous study with a similar mean age to ET2DS but with only a small proportion 

of individuals with diabetes (14.3%), lactate was associated with two subclinical 

markers of atherosclerosis and incident CVD [26]. However, the association lost 
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statistical significance after adjusting for CVD risk factors, including diabetes, and it is 

possible that lactate might function differently in people with and without diabetes in 

relation to indicating atherosclerotic risk. This would be consistent with marginally 

significant associations between markers of atherosclerosis and lactate in another two 

studies where only a few individuals had diabetes [27, 28].  

Glycoprotein acetyl is a NMR composite biomarker of systemic inflammation, reflecting 

abundance of mobile N-acetyl sugar groups on glycoproteins in blood [29], which has 

been reported to show strong positive association with carotid/peripheral 

atherosclerosis [30, 31]. We also found glycoprotein acetyl to be negatively associated 

with ABI, but the association was reduced by adjustment for CVD risk factors, 

suggesting possible contribution to common pathways involving traditional lipids and 

inflammation. Analogously, previous studies based in general population revealed the 

predictive value of glycoprotein acetyls for CVD [32], and the positive association was 

also replicated in ET2DS, even though it was substantially diminished by adjustment 

for routinely measured lipids. It has been suggested glycoprotein acetyls might be a 

good indicator for long-term prognosis for diabetes with peripheral artery disease [33]. 

Creatinine is an established marker of kidney function, and chronic kidney disease is 

a well-known risk factor for CVD [34]. Interestingly, we found the association of 

creatinine with both ABI and CVD was more sensitive to excluding existing CVD cases 

than to adjusting for traditional CVD risk factors, and it is possible that vascular-related 

kidney damage may exacerbate the association between creatinine and CVD among 

CVD cases. Notably, we found creatinine was associated with incident CVD but not 
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with change in ABI. Although this precise result has not been reported in other studies, 

a study in individuals with diabetes reported an association of albuminuria with early 

but not late carotid atherosclerotic lesions [35], raising the possibility of different 

markers of kidney dysfunction reflecting risk of different stages of atherosclerosis. 

Previous study also reported a positive association of creatinine with MI but not with 

stroke [32], and Juonala etc. [28] found creatinine was inversely associated with PWV 

but not with carotid intima media thickness. It may be that the association of creatinine 

with atherosclerosis or CVD may be specific to the precise markers or subtypes of 

disease studied. 

Low-density lipoprotein (LDL)-cholesterol and HDL-cholesterol are well-established 

risk factors for CVD, but little is known about how particle concentrations and lipids 

components are associated with atherosclerotic phenotypes in diabetes. In our study, 

medium and large HDL-cholesterol showed inverse association with CVD, but no 

statistically significant results were found for subclasses of LDL. The absence of 

association between smaller HDL-cholesterol and CVD was also reported in general 

populations [32, 36], but these studies found cholesterol components of LDL and 

triglyceride components of all lipids were risk factors for CVD. As MI and stroke have 

different, even opposing, metabolomic profiles [32, 37], some association might be 

masked in ET2DS where CVD was considered as an overall phenotype.  

Previous metabolomic studies of atherosclerosis in people with diabetes, which are 

limited to small-scale studies [12, 13, 38], include a recent study among 209 people 

with type 2 diabetes in Japan. It found indoxyl sulfate was significantly associated with 
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brachial-ankle pulse wave velocity (baPWV) in both exploratory and validation 

datasets, but the association of mannitol, mesoerythritol and pyroglutamic acid with 

baPWV failed to be replicated in the validation dataset [12]. Notably, the same 

researchers also reported significant associations of indoxyl sulfate with another two 

markers of subclinical atherosclerosis in Japanese people with diabetes [38]. 

Nevertheless, similar studies from other ethnics are relatively scarce. Chevli etc. [39] 

found fatty acid, androgenic steroids and other sub-pathways were associated with 

subclinical atherosclerosis in a family-based diabetes-enriched population and the 

associations vary in African and European Americans. Moreover, in studies on the 

general population, various chemical compounds of lysophosphatidylcholine have 

been frequently reported to be associated with atherosclerosis [40, 41]. However, we 

were unable to test these metabolites in ET2DS given the different metabolomics 

platforms used. 

A strength of our study is the well-characterized and representative ET2DS cohort with 

both baseline and follow-up data, which enabled us to explore the metabolomic profile 

of changes in ABI and cross-sectional associations. Additionally, given collinearity of 

metabolomics data, modern statistical techniques were applied in this study to further 

confirm the stability of identified metabolites in univariate analyses. Whilst our study is 

limited by a relatively small sample size (especially in longitudinal analyses for ABI at 

Year 10 where only a half of population was alive and visited the clinic), which 

restricted the statistical power, it remains one of the largest metabolomics studies for 

atherosclerosis among people with type 2 diabetes. To minimize the effect of potential 
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confounding, we adjusted for a variety of CVD risk factors, but it is important to note 

the potential for residual confounding by unmeasured co-variates, such as diet. 

Furthermore, prevalent CVD at baseline restricts our ability to claim identified 

metabolites for ABI could serve as early biomarkers for subsequent CVD, whereas 

some key metabolites (such as lactate) remained significantly associated in the 

subgroup analysis with CVD-free individuals despite a reduced sample size. Critically, 

validation of our findings in an independent dataset is lacking, so replication will be 

required in external populations, to both confirm or refute our findings and to assess 

their generalizability. 

In conclusion, in this study of 1,025 participants from a representative cohort of 

individuals with type 2 diabetes, the metabolomic profile of ABI and that of CVD were 

similar but not identical. Among the metabolites identified, lactate proved most 

promising for indicating CVD risk due to its consistent association with both ABI and 

CVD. Although association of some metabolites of HDL subclasses, creatinine, and 

glycolysis related metabolites with CVD were attenuated by adjusting for CVD risk 

factors, their predictive value for the development or progression of atherosclerotic 

cardiovascular disease is worthy of further exploration. 

 

 

 

Supplementary information: Additional File 1: Figure S1. Distribution of changes in 

ABI during follow-up period. Figure S2. Correlation matrix of metabolites. Figure S3. 
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Association between the four key metabolites and different forms of changes in ABI. 

Figure S4. Correlation matrix between covariates and key metabolites associated with 

baseline ABI and/or prevalent CVD. Table S1. Frequency of constituent endpoints for 

both prevalent CVD and incident CVD in ET2DS. Table S2. Distribution of serum 

metabolites of the ET2DS at baseline. Table S3. Association between each metabolite 

and baseline ABI, adjusted for age and sex. Table S4. Association between key 

metabolites and baseline ABI in univariate analysis. Table S5. Association between 

key metabolites and baseline ABI as estimated by LASSO. Table S6. Association 

between the four key metabolites and follow-up ABI in univariate analysis. Table S7. 

Association between key metabolites and prevalent CVD at baseline in univariate 

analysis. Table S8. Association between key metabolites and prevalent CVD at 

baseline as estimated by LASSO. Table S9. Association between the four key 

metabolites and incident CVD over 10 years in univariate analysis. Table S10. 

Association between the four baseline ABI-associated metabolites and overall incident 

CVD with adjustment for age, gender and prevalent CVD. 

Abbreviations: ABI: Ankle Brachial Index; baPWV: Brachial-ankle Pulse Wave 

Velocity; BMI: Body Mass Index; CI: Confidence Interval; CVD: Cardiovascular 

disease; eGFR: estimated glomerular filtration rate; ET2DS: Edinburgh Type 2 

Diabetes Study; HbA1c: Glycated Haemoglobin; HDL: High-Density Lipoprotein; IQR: 

Interquartile Range; LASSO: Least Absolute Shrinkage and Selection Operator; LDL: 

Low-Density Lipoprotein; NMR: Nuclear Magnetic Resonance; MI: Myocardial 

Infarction; OR: Odds Ratio; SBP: Systolic Blood Pressures; SD: Standard Deviation. 



22 

 

Acknowledgement: We would like to thank all the participants, staff, and researchers 

of the ET2DS. 

Authors’ contribution: Z.H. performed the data analysis, wrote the manuscript, and 

finalised the draft based on feedbacks from all co-authors. L.K., J.K. and J.F.W 

provided substantial advice on statistical methods, interpretation of findings and 

preparation for the final manuscript. S.M. contributed to collecting and managing the 

data of ET2DS as well as editing the manuscript. M.W.J.S. is a leading investigator of 

ET2DS and provided critical revisions on the manuscript. J.F.P. is the principal 

investigator of ET2DS and played an important role in study design, development of 

this analysis and editing the manuscript. All authors have participated in the discussion 

of this analysis and provided approval of the final draft for publication. Z.H. is the 

guarantor of this work. 

Funding: The ET2DS was funded by the Medical Research Council (UK) (Project 

Grant G0500877) and the Chief Scientist Office of Scotland (Program Support Grant 

CZQ/1/38). Z.H. was supported by a PhD studentship from the Darwin Trust of 

Edinburgh. The work of L.K. was supported by an RCUK Innovation Fellowship from 

the National Productivity Investment Fund (MR/R026408/1). All aforementioned 

funding bodies played no role in study design, data analysis and manuscript writing. 

Availability of data and materials: The dataset analysed during current study is not 

publicly available due to it containing information that could compromise research 

participant privacy/consent, but aggregate data and analytical plan might be available 

from the corresponding author on reasonable request. 



23 

 

Ethics approval and consent to participate: The ethical approval was granted by 

the Lothian Medical Research Ethics Committee and written informed consent was 

obtained from all participants. 

Consent for publication: Not applicable. 

Competing interests: The authors declare that they have no competing interests.  

 

Reference 

1. Yang JJ, Yu D, Wen W, Saito E, Rahman S, Shu XO, Chen Y, Gupta PC, Gu D, Tsugane S 

et al: Association of Diabetes With All-Cause and Cause-Specific Mortality in Asia: 

A Pooled Analysis of More Than 1 Million Participants. JAMA Netw Open 2019, 

2(4):e192696. 

2. Artime E, Romera I, Diaz-Cerezo S, Delgado E: Epidemiology and Economic Burden of 

Cardiovascular Disease in Patients with Type 2 Diabetes Mellitus in Spain: A 

Systematic Review. Diabetes Ther 2021, 12(6):1631-1659. 

3. Dokken BB: The Pathophysiology of Cardiovascular Disease and Diabetes: Beyond Blood 

Pressure and Lipids. Diabetes Spectrum 2008, 21(3):160-165. 

4. Cheng S, Shah SH, Corwin EJ, Fiehn O, Fitzgerald RL, Gerszten RE, Illig T, Rhee EP, 

Srinivas PR, Wang TJ et al: Potential Impact and Study Considerations of Metabolomics 

in Cardiovascular Health and Disease: A Scientific Statement From the American Heart 

Association. Circ Cardiovasc Genet 2017, 10(2). 

5. Tzoulaki I, Ebbels TM, Valdes A, Elliott P, Ioannidis JP: Design and analysis of 

metabolomics studies in epidemiologic research: a primer on -omic technologies. Am 

J Epidemiol 2014, 180(2):129-139. 

6. Ruiz-Canela M, Hruby A, Clish CB, Liang L, Martinez-Gonzalez MA, Hu FB: Comprehensive 

Metabolomic Profiling and Incident Cardiovascular Disease: A Systematic Review. J 

Am Heart Assoc 2017, 6(10). 

7. McGranaghan P, Saxena A, Rubens M, Radenkovic J, Bach D, Schleussner L, Pieske B, 

Edelmann F, Trippel TD: Predictive value of metabolomic biomarkers for cardiovascular 

disease risk: a systematic review and meta-analysis. Biomarkers : biochemical 

indicators of exposure, response, and susceptibility to chemicals 2020, 25(2):101-

111. 

8. Stratmann B, Richter K, Wang R, Yu Z, Xu T, Prehn C, Adamski J, Illig T, Tschoepe D, 

Wang-Sattler R: Metabolomic Signature of Coronary Artery Disease in Type 2 Diabetes 

Mellitus. Int J Endocrinol 2017, 2017:7938216. 

9. Garcia-Fontana B, Morales-Santana S, Diaz Navarro C, Rozas-Moreno P, Genilloud O, 



24 

 

Vicente Perez F, Perez del Palacio J, Munoz-Torres M: Metabolomic profile related 

to cardiovascular disease in patients with type 2 diabetes mellitus: A pilot study. 

Talanta 2016, 148:135-143. 

10. Gazzaruso C, Garzaniti A, Giordanetti S, Falcone C, Fratino P: Silent coronary artery 

disease in type 2 diabetes mellitus: the role of Lipoprotein(a), homocysteine and 

apo(a) polymorphism. Cardiovascular diabetology 2002, 1:5. 

11. Aboyans V, Criqui MH, Abraham P, Allison MA, Creager MA, Diehm C, Fowkes FG, Hiatt 

WR, Jonsson B, Lacroix P et al: Measurement and interpretation of the ankle-brachial 

index: a scientific statement from the American Heart Association. Circulation 2012, 

126(24):2890-2909. 

12. Katakami N, Omori K, Taya N, Arakawa S, Takahara M, Matsuoka TA, Tsugawa H, Furuno 

M, Bamba T, Fukusaki E et al: Plasma metabolites associated with arterial stiffness 

in patients with type 2 diabetes. Cardiovascular diabetology 2020, 19(1):75. 

13. Ha CY, Kim JY, Paik JK, Kim OY, Paik YH, Lee EJ, Lee JH: The association of specific 

metabolites of lipid metabolism with markers of oxidative stress, inflammation and 

arterial stiffness in men with newly diagnosed type 2 diabetes. Clin Endocrinol (Oxf) 

2012, 76(5):674-682. 

14. Su J, Zhao Q, Zhao A, Jia W, Zhu W, Lu J, Ma X: Serum metabolic signatures of 

subclinical atherosclerosis in patients with type 2 diabetes mellitus: a preliminary 

study. Acta Diabetol 2021, 58(9):1217-1224. 

15. Price JF, Reynolds RM, Mitchell RJ, Williamson RM, Fowkes FG, Deary IJ, Lee AJ, Frier 

BM, Hayes PC, Strachan MW: The Edinburgh Type 2 Diabetes Study: study protocol. BMC 

Endocr Disord 2008, 8:18. 

16. Sluiman AJ, McLachlan S, Forster RB, Strachan MWJ, Deary IJ, Price JF: Higher baseline 

inflammatory marker levels predict greater cognitive decline in older people with 

type 2 diabetes: year 10 follow-up of the Edinburgh Type 2 Diabetes Study. 

Diabetologia 2022, 65(3):467-476. 

17. Soininen P, Kangas AJ, Wurtz P, Suna T, Ala-Korpela M: Quantitative serum nuclear 

magnetic resonance metabolomics in cardiovascular epidemiology and genetics. Circ 

Cardiovasc Genet 2015, 8(1):192-206. 

18. Wurtz P, Kangas AJ, Soininen P, Lawlor DA, Davey Smith G, Ala-Korpela M: Quantitative 

Serum Nuclear Magnetic Resonance Metabolomics in Large-Scale Epidemiology: A Primer 

on -Omic Technologies. Am J Epidemiol 2017, 186(9):1084-1096. 

19. Price AH, Weir CJ, Welsh P, McLachlan S, Strachan MWJ, Sattar N, Price JF: Comparison 

of non-traditional biomarkers, and combinations of biomarkers, for vascular risk 

prediction in people with type 2 diabetes: The Edinburgh Type 2 Diabetes Study. 

Atherosclerosis 2017, 264:67-73. 

20. Tibshirani R: Regression shrinkage and selection via the lasso. Journal of the Royal 

Statistical Society: Series B (Methodological) 1996, 58(1):267-288. 

21. Madamanchi NR, Runge MS: Mitochondrial dysfunction in atherosclerosis. Circ Res 2007, 

100(4):460-473. 

22. Robinson BH: Lactic acidemia and mitochondrial disease. Mol Genet Metab 2006, 89(1-

2):3-13. 

23. Sola-Penna M: Metabolic regulation by lactate. IUBMB Life 2008, 60(9):605-608. 



25 

 

24. Kraut JA, Madias NE: Lactic acidosis. N Engl J Med 2014, 371(24):2309-2319. 

25. Scale T, Harvey JN: Diabetes, metformin and lactic acidosis. Clin Endocrinol (Oxf) 

2011, 74(2):191-196. 

26. Tzoulaki I, Castagne R, Boulange CL, Karaman I, Chekmeneva E, Evangelou E, Ebbels 

TMD, Kaluarachchi MR, Chadeau-Hyam M, Mosen D et al: Serum metabolic signatures of 

coronary and carotid atherosclerosis and subsequent cardiovascular disease. Eur 

Heart J 2019, 40(34):2883-2896. 

27. Vojinovic D, van der Lee SJ, van Duijn CM, Vernooij MW, Kavousi M, Amin N, Demirkan 

A, Ikram MA, van der Lugt A, Bos D: Metabolic profiling of intra- and extracranial 

carotid artery atherosclerosis. Atherosclerosis 2018, 272:60-65. 

28. Juonala M, Ellul S, Lawlor DA, Santos Ferreira DL, Carlin JB, Cheung M, Dwyer T, 

Wake M, Saffery R, Burgner DP: A Cross-Cohort Study Examining the Associations of 

Metabolomic Profile and Subclinical Atherosclerosis in Children and Their Parents: 

The Child Health CheckPoint Study and Avon Longitudinal Study of Parents and Children. 

J Am Heart Assoc 2019, 8(14):e011852. 

29. Ritchie SC, Wurtz P, Nath AP, Abraham G, Havulinna AS, Fearnley LG, Sarin AP, Kangas 

AJ, Soininen P, Aalto K et al: The Biomarker GlycA Is Associated with Chronic 

Inflammation and Predicts Long-Term Risk of Severe Infection. Cell Syst 2015, 

1(4):293-301. 

30. Tibuakuu M, Fashanu OE, Zhao D, Otvos JD, Brown TT, Haberlen SA, Guallar E, Budoff 

MJ, Palella FJ, Jr., Martinson JJ et al: GlycA, a novel inflammatory marker, is 

associated with subclinical coronary disease. AIDS (London, England) 2019, 

33(3):547-557. 

31. Fashanu OE, Oyenuga AO, Zhao D, Tibuakuu M, Mora S, Otvos JD, Stein JH, Michos ED: 

GlycA, a Novel Inflammatory Marker and Its Association With Peripheral Arterial 

Disease and Carotid Plaque: The Multi-Ethnic Study of Atherosclerosis. Angiology 

2019, 70(8):737-746. 

32. Holmes MV, Millwood IY, Kartsonaki C, Hill MR, Bennett DA, Boxall R, Guo Y, Xu X, 

Bian Z, Hu R et al: Lipids, Lipoproteins, and Metabolites and Risk of Myocardial 

Infarction and Stroke. J Am Coll Cardiol 2018, 71(6):620-632. 

33. Zierfuss B, Hobaus C, Herz CT, Pesau G, Mrak D, Koppensteiner R, Schernthaner GH: 

GlycA for long-term outcome in T2DM secondary prevention. Diabetes research and 

clinical practice 2021, 171:108583. 

34. Jankowski J, Floege J, Fliser D, Bohm M, Marx N: Cardiovascular Disease in Chronic 

Kidney Disease: Pathophysiological Insights and Therapeutic Options. Circulation 

2021, 143(11):1157-1172. 

35. Li M-F, Tu Y-F, Li L-X, Lu J-X, Dong X-H, Yu L-B, Zhang R, Bao Y-Q, Jia W-P, Hu R-

M: Low-grade albuminuria is associated with early but not late carotid 

atherosclerotic lesions in community-based patients with type 2 diabetes. 

Cardiovascular diabetology 2013, 12:110. 

36. Wurtz P, Havulinna AS, Soininen P, Tynkkynen T, Prieto-Merino D, Tillin T, Ghorbani 

A, Artati A, Wang Q, Tiainen M et al: Metabolite profiling and cardiovascular event 

risk: a prospective study of 3 population-based cohorts. Circulation 2015, 

131(9):774-785. 



26 

 

37. Joshi R, Wannamethee SG, Engmann J, Gaunt T, Lawlor DA, Price J, Papacosta O, Shah 

T, Tillin T, Chaturvedi N et al: Triglyceride-containing lipoprotein sub-fractions 

and risk of coronary heart disease and stroke: A prospective analysis in 11,560 

adults. Eur J Prev Cardiol 2020, 27(15):1617-1626. 

38. Omori K, Katakami N, Arakawa S, Yamamoto Y, Ninomiya H, Takahara M, Matsuoka TA, 

Tsugawa H, Furuno M, Bamba T et al: Identification of Plasma Inositol and Indoxyl 

Sulfate as Novel Biomarker Candidates for Atherosclerosis in Patients with Type 2 

Diabetes. -Findings from Metabolome Analysis Using GC/MS. J Atheroscler Thromb 2020. 

39. Chevli PA, Freedman BI, Hsu FC, Xu J, Rudock ME, Ma L, Parks JS, Palmer ND, Shapiro 

MD: Plasma metabolomic profiling in subclinical atherosclerosis: the Diabetes Heart 

Study. Cardiovascular diabetology 2021, 20(1):231. 

40. Polonis K, Wawrzyniak R, Daghir-Wojtkowiak E, Szyndler A, Chrostowska M, Melander O, 

Hoffmann M, Kordalewska M, Raczak-Gutknecht J, Bartosinska E et al: Metabolomic 

Signature of Early Vascular Aging (EVA) in Hypertension. Frontiers in molecular 

biosciences 2020, 7:12. 

41. Gao X, Ke C, Liu H, Liu W, Li K, Yu B, Sun M: Large-scale Metabolomic Analysis 

Reveals Potential Biomarkers for Early Stage Coronary Atherosclerosis. Scientific 

reports 2017, 7(1):11817. 



27 

 

Table 1. Demographic and Clinical characteristics of the study population 

(N=1,025). 

Characteristics Available 

individuals 

At Baseline  

Age (years) 67.8 (4.2) 

Male 520 (50.7) 

Smoking  - 

Non-smoker  398 (38.8) 

Ever-smoker  486 (47.4) 

Current smoker  141 (13.8) 

SBP (mmHg) 133.2 (16.4) 

BMI (kg/m2) 31.4 (5.6) 

HDL-cholesterol (mmol/l) 1.3 (0.4) 

Total Cholesterol (mmol/l) 4.3 (0.9) 

eGFR (mL/min/1.73 m2) [Median (IQR)] 60.0 (14.0) 

Glucose (mmol/l) 7.6 (2.1) 

HbA1c (%) 7.4 (1.1) 

HbA1c (mmol/mol) 57.5 (12.4) 

Duration of diabetes (years) [Median (IQR)] 6.0 (8.0) 
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Lipid lowering drug use  881 (86.1) 

ABI 0.97 (0.18) 

Prevalent CVD  359 (35.0) 

Follow-up  

ABI at Year 4 (all available individuals) 0.97 (0.18) 

ABI at Year 4 (individuals with ABI measured at both Year 4 and Year 

10) 
0.99 (0.16) 

ABI at Year 10 1.00 (0.18) 

CVD events over 10 years 257 (25.1) 

Data are mean (SD) for continuous variables and n (%) for categorical variables unless stated 
otherwise. Missing cases for variables of interest were as follows: SBP=2 cases, BMI=1 case, 
HDL-cholesterol=6 cases, Total cholesterol=6 cases, HbA1c (%) =9 cases. 
 

Figures: 

 

Figure 1. Association between the four key metabolites and baseline and follow-

up ABI. 

A: Baseline ABI (whole population, N=1025), B: Baseline ABI (subgroup of CVD-free individuals at 
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baseline, n=666), C: ABI at Year 4 (adjusted for baseline ABI, n=731), D: ABI at Year 10 (adjusted 

for baseline ABI, n=436). The solid lines represent Model 1 (adjusted for age and gender), and the 

dotted lines represent Model 2 (model 1 plus SBP, smoking, HDL-cholesterol, total cholesterol, 

BMI and HbA1c).  

 

 

Figure 2. Association between key metabolites and prevalent CVD.  

The solid lines represent Model 1 (adjusted for age and gender) and the dotted lines represent 

Model 2 (model 1 plus SBP, smoking, HDL-cholesterol, total cholesterol, BMI and HbA1c).  
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Figure 3. Association between the four key metabolites and incident CVD events 

in 10 years. 

A. Overall incident CVD events (including newly incident and recurrent CVD) during 10-year follow-

up period (N=1025). B. Newly incident CVD events during 10-year follow-up period (n=666). The 

solid lines represent Model 1 (adjusted for age and gender) and the dotted lines represent Model 

2 (model 1 plus SBP, smoking, HDL-chlesterol, total cholesterol, BMI and HbA1c). 
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Figure 4. Concordance of metabolomic profile of low ABI and prevalent CVD at 

baseline.  

Each spot represents a metabolite, and values in x-axis represents ORs associated with low ABI 

(i.e., ABI<0.9) and values in y-axis represents ORs associated with prevalent CVD in model 1. 

Grey bars were 95% CIs of related ORs in x-axis and y-axis, and the red solid line simulated the 

linear pattern of these spots. 
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