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A B S T R A C T

To boost the application of machine learning (ML) techniques for credit scoring models, the blackbox problem
should be addressed. The primary aim of this paper is to propose a measure based on counterfactuals to
evaluate the interpretability of a ML credit scoring technique. Counterfactuals assist with understanding
the model with regard to the classification decision boundaries and evaluate model robustness. The second
contribution is the development of a data perturbation technique to generate a stress scenario.

We apply these two proposals to a dataset on UK unsecured personal loans to compare logistic regression
and stochastic gradient boosting (SBG). We show that training a blackbox model (SGB) as conditioned on
our data perturbation technique can provide insight into model performance under stressed scenarios. The
empirical results show that our interpretability measure is able to capture the classification decision boundary,
unlike AUC and the classification accuracy widely used in the banking sector.
1. Introduction

With the growing prevalence of machine learning (ML) usage in the
financial sector, there has been a growing interest in its applications
in credit scoring. However, financial institutions are still reluctant to
use ML models due to the ‘blackbox problem’, i.e. these techniques
are so complex that the impact of their predictions are often difficult
to explain and validate (Rudin, 2019). This problem is also known as
the accuracy–explainability trade-off. The Bank of England (BoE) and
the Financial Conduct Authority (FCA) conducted a survey on 106 UK
financial institutions and determined that two thirds of respondents are
already using ML in their business, even if with a limited number of use
cases (Bank of England, 2019).

This paper is particularly focused on the use of ML techniques for
credit scoring models, the quantitative method used by financial institu-
tions to classify potential customers as good or bad borrowers (Thomas,
Crook, & Edelman, 2019). This approach is based on a quantitative
score that uses an application scorecard at the loan origination stage.
The scorecard is used to record all data items that have predictive
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power related to the applicant’s default risk. This data consists of
characteristics about the borrower and information regarding previous
relationships with the bank. Banks can develop their own internal
quantitative models to translate this information into an individual
score which is associated with a default probability of the borrower.

When the last financial crisis unfolded more than a decade ago,
financial institutions discovered that most of their blackbox algorithms
used to estimate this score were based on flawed assumptions. There-
fore, financial regulators decided that additional controls were needed
and introduced regulatory requirements for modelling risk manage-
ment in the banking sector. For example, in April 2011 the Board
of Governors of the Federal Reserve System in the US published a
document (the Board of Governors of the Federal Reserve System,
2011) that states that banks have to prove that they understand the
models they are using. The Financial Stability Board (FSB) in 2017
pointed out that ML is likely to bring many challenges to financial
stability due to the lack of model explainability (Financial Stability
Board, 2017).
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The European General Data Protection Regulation (GDPR) (Voigt
& Bussche, 2017) provides the right to an explanation of algorithm
decisions. To guarantee this right, financial regulators require that
the models used by financial institutions for computing the capital
requirements should be easily understood. This guideline has been
followed by the European Banking Authority that defined a model
explainable ‘‘when its internal behaviour can be directly understood by
humans (interpretability) or when explanations (justifications) can be
provided for the main factors that led to its output’’ (European Banking
Authority (EBA), 2020). Both these regulations create a demand for
explainability of ML models in the banking sector.

The two primary aims of this paper are to provide a proposal for
making ML models easier to explain and to propose a method to gen-
erate stress scenarios for cross sectional data. First, we suggest the use
of counterfactuals (Johansson, Shalit, & Sontag, 2016) in understanding
the internal workings of the model so that banks can be compliant with
financial regulations. Particularly, we analyse the robustness of credit
scoring models based on ML techniques to understand the minimum
data perturbation to misclassify a borrower. Second, we suggest a data
perturbation technique that can be used for generating stress scenarios
in a cross-sectional context.

Performance of traditional credit score models, using logistic regres-
sion, typically perform well in an economic downturn, in terms of their
ability to classify the worst borrowers worse than the best borrowers
i.e. the model’s discrimination or ‘rank ordering’ is not materially
impacted. However, these models can deteriorate from an accuracy
perspective and the probability of default at a given score is no longer
as accurate as it should be. As ML models have not been used for the
purpose of credit scoring in financial services for long, there is no deep
understanding of how they will perform under the same conditions. The
purpose of this paper is to explore this dynamic.

We apply our two methodological proposals to a dataset on 61,239
UK unsecured personal loans issued from June 2014 to July 2015. We
generate different stressed scenarios from this dataset and we apply
both the logistic regression and the stochastic gradient boosting (SGB)
techniques as scoring models. Our first set of experiments demonstrate
the impact on model performance when trained on augmented data
and show that model performance is in fact negatively impacted when
the default ratio is increased. Our second set of experiments use our
counterfactual distance metric to compare logistic regression with SGB
across each dataset feature followed by a comparison on the impact of
feature constraints when applied to counterfactual generation. Results
here indicate that the decision boundary is smaller with some black-
box models, and that the application of constraints provides insight
into feature value ranges which correlate with model misclassification.
The last set of experiments combine the two approaches to bring
together the study of stressed scenarios via augmentation of the data
and isolating weaknesses in the classification decision boundary using
counterfactuals.

The remainder of this paper is structured as follows. Section 2
discusses related literature on the explainability of ML techniques in
the banking sector. Section 3 provides an overview of counterfactuals
and presents our proposal. A novel approach to generate synthetic data
for stress scenario is presented in Section 4. Section 5.1 describes the
data used for the experiments and explains the setting of the problem.
Finally, Section 5 shows the results of applying the proposed methods
to the previously stated problems.

2. Literature review

The usage of ML techniques by financial institutions and Fintech
companies has gained significant popularity over recent years (Bank
of England, 2019). Based on our knowledge, one of the first uses
of ML methods in credit scoring dates back to 1996, when Henley
and Hand (1996) obtained that a K-Nearest Neighbour classifier is
more accurate than linear and logistic regression, decision trees and
2

graphs. Since then, a large variety of machine learning techniques
has been applied to credit scoring showing that these methods are
often more accurate than traditional regression models (Brown & Mues,
2012; Kraus, Feuerriegel, & Oztekin, 2020; Lessmann, Baesens, Seow,
& Thomas, 2015; Paleologo, Elisseeff, & Antonini, 2010).

Analogously to the analysis conducted by the Bank of England
(Bracke, Datta, Jung, & Sen, 2019), in this paper we chose the stochas-
tic gradient boosting (SGB) (Friedman, 2002) as a machine learning
technique as it provides the highest predictive accuracy when com-
pared to other methods such as random forest and support vector
machines. However, it should be mentioned that SGB is opaque in its
decision making, rendering it a non-interpretable ML technique. Chang,
Chang, and Wu (2018) apply SGB to a highly imbalanced data (10%
of defaulted loans) provided by a financial institution in Taiwan from
2009 to 2016 showing that SGB achieves the highest discriminant
accuracy compared to those obtained by logistic regression, support
vector machines, and neural networks. Addo, Guegan, and Hassani
(2018) also find that SGB achieves highest performance results among
logistic regression, random forest, and neural networks with various
number of hidden layers. As their dataset is highly imbalanced with
1% of defaulted loans, the authors apply an oversampling technique
called SMOTE. Addo et al. (2018) point out the importance of trans-
parency and interpretability of credit scoring models, however they
do not explore it further. Moreover, Letham, Rudin, Mccormick, and
Madigan (2015) and Paleologo et al. (2010) emphasize that not only
accuracy but also interpretability are relevant characteristics for credit
scorecards.

Even if some authors have interchangeably used the terms inter-
pretability and explainability, they are two different concepts. The
former is mainly focused on describing the prediction in a way that
is understandable by humans, while the latter aims to explain the
underlying mechanics of a particular decision obtained by the al-
gorithm (Gilpin et al., 2018). As the main aim of this paper is to
suggest a technique that financial institutions can use to explain their
internal scoring models to regulators, we focus our analysis on inter-
pretability. Furthermore, analogously to a regulatory approach (Bracke
et al., 2019), we are interested in credit scoring prediction and not in
explaining the causes of loan defaults.

Existing techniques on interpretability can be divided into two main
categories: local and global approaches. The latter analyse the model
as a whole, for example to analyse possible bias detection. On the
other hand, local interpretability tries to identify how different features
influenced a particular prediction of the model, e.g. a lending decision
for a particular applicant. Analogously to a regulatory approach, we
choose in this paper to focus on global interpretability. Classically,
global interpretability seeks to understand how a model came to a
decision and is based on a general perspective of the input features and
the learned coefficients such as weights, parameters, and network archi-
tecture. Identifying the importance of features and their interactions are
explanations that can be considered global. Our contribution provides
global interpretability via analysis of the decision boundary based
on the model input and counterfactual generation (Molnar, 2019).
Alternatively, our proposal is also able to provide an instrument for
local interpretability, for example why a particular loan application was
rejected, as Grath et al. (2018) showed in their analysis.

Counterfactuals are example-based explanations that describe
causal situations in the form of ‘if A had not happened, B would not have
happened either ’ (Johansson et al., 2016). Exemplar usage of applying
counterfactuals to tree based models can be found in Tolomei, Silvestri,
Haines, and Lalmas (2017). Where financial institutions are concerned,
counterfactuals can be used on an individual level to assess what
would have to happen to change the prediction from default to non-
default or vice versa. It not only provides better understanding of model
predictions, but can also be used as a suggestion to the client on what
they could do to get the loan next time they apply for it.
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Similar interpretable methods include LIME and SHAP, which a can
be used for both local and global interpretability via feature impor-
tance. LIME builds local surrogate linear models for the purpose of
model interpretability, where the feature weight coefficients on the
local linear model can be interpreted as feature importance (Ribeiro,
Singh, & Guestrin, 2016). While our proposed approach uses counter-
factuals to model the decision boundary, our focus is on robustness
and not necessarily feature importance. SHAP (Shapley Additive exPla-
nations) is a model agnostic value estimation method for explaining
individual predictions, where SHAP learns local explanations by uti-
lizing from game theory, so called Shapley Values (Lundberg & Lee,
2017). In a recent effort, Giudici and Raffinetti (2021) have extended
SHAP to further address global explainability goals by incorporating
Lorenz decompositions. The authors integrate the Lorenz Zonoid model
accuracy tool, which is related to the AUROC measure, as such provides
a metric that incorporates model performance and model explainabil-
ity. Our contribution also proposes a new metric; however, our focus
is on the use of counterfactuals to calculate the decision boundary
conditioned on perturbations to the dataset to gauge model robustness
to various scenarios.

There are few studies in the literature that analyse interpretabil-
ity in credit risk management. Chen, Janizek, Lundberg, and Lee
(2020)ranked the features of a credit scoring model available in the
LendingClub dataset based on their Shapley value. Then the authors
computed the change in the scoring model’s predicted log odds of
default after imputing each feature (up to 10 features) to the mean.
Interventions on the features ranked based on the Shapley values
computed on the imputed features lead to a substantial decrease of
the predicted likelihood of default. Bussmann, Giudici, Marinelli, and
Papenbrock (2020) proposed to apply correlation networks to Shapley
values to cluster the predictors in ML models used for credit scoring.
They applied this approach to data on small and medium enterprises
showing that good and bad borrowers can be clustered based on these
predictors.

The Bank of England (Bracke et al., 2019) applied a global approach
to explain SGB using the Shapley value, a game theoretic concept that
tells how much each feature contributes to the final prediction. They
compare logistic regression and SGB on UK mortgage data during the
2015–2017 period. Bracke et al. conclude that the most important
features found by the Shapley value – loan-to-value ratio and current
interest rate – are in line with the relevant literature. Another main
finding is that explanations for ML models depend on the input region
considered, and that they should be tested extensively for several
potential states of the world.

The conclusion by the Bank of England naturally leads to the notion
of stress testing, a simulation technique used to test the resilience
of scoring models against possible future economic downturn. Stress
testing is becoming very important in the risk evaluation of banks and
represents a key technique for risk management and capital decisions
for financial institutions, as recognized by the Financial Services Au-
thority (Financial Services Authority, 2008). Most of the approaches
available in the literature for stress testing use dynamic models, such
as survival models (Bellotti & Crook, 2013; Wang, Crook, & Andreeva,
2020).

To apply a dynamic approach, we need data from multiple years.
For this paper we have access to a cross-sectional dataset extracted by
Nationwide in 2014–2015, for this reason we cannot apply a dynamic
model. We instead propose a method to perturb the data based on the
k-Nearest Neighbours algorithm (Henley & Hand, 1996) and, therefore,
generate stress scenarios to test the scorecard. We highlight that this
proposal is not considered a stress testing approach as it does not
capture the dynamic behaviour of the economic cycle. Since default
rates tend to increase under downturn economic conditions (Hall,
2010), we can manipulate the default ratio as a proxy of different
states of the world. It is crucial to note that we did not perform
3

the perturbation using sampling techniques such as SMOTE (Baesens,
Rösch, & Scheule, 2016; Chawla, Bowyer, Hall, & Kegelmeyer, 2002) as
the method incorporates randomness in generating synthetic instances,
which we aim to avoid as we sought to maintain a degree of consistency
with the original data. Ultimately, it was a design choice to reject using
a stochastic approach, such as SMOTE, for the stress scenario exercise to
avoid adding an additional source of complexity to the problem. While
the generation of balanced synthetic data has demonstrated success
in the past with SMOTE (Patil, Framewala, & Kazi, 2020), SMOTE
can potentially generate unseen feature values in a stochastic manner,
thus we sought alternative methods in data generation. Therefore, we
settled on using k-Nearest Neighbours for the perturbation procedure
as original data values from the population of applicants can be reused
and changes to the outcome can be made to meet the stress crite-
ria. The exact details of our k-Nearest Neighbours approach and the
counterfactual methodology can be found below.

3. Counterfactuals and robustness

It requires mentioning, robustness in statistics refers to the study of
learning on corrupted data, such that data statistics can still be recov-
ered. We acknowledge the statistical definition, however we use the ML
definition of robustness which is defined by the minimum perturbations
needed to craft an adversarial example for a ML model to misclassify a
datapoint. In essence, robustness in ML refers to adversarial examples
for a trained model, in the test set potentially, and robustness in statis-
tics refers to the handling of adversarial examples prior to training. We
note, as we associated global interpretability with comprehension of
model robustness, we clarify that robustness is a reflection of a model’s
decision boundary. That when analysed conditioned on model input,
provides global interpretability via understanding of the relationship
between model performance and input features. Whether a model is
sensitive or resilient to adversarial examples, such information provides
a global perspective on model performance.

Counterfactuals generated from a blackbox machine learning model
can be harnessed to create a counterfactual distance scoring metric to
pinpoint areas of weakness in the model. These areas would pertain to
values within the feature space. Counterfactuals have provided means
of interpreting machine learning models in the past (Guidotti et al.,
2019, 2018; Sharma, Henderson, & Ghosh, 2019), and have been
useful in explaining the classification of individuals. Recent advances
in counterfactual research have used genetic algorithms to create syn-
thetic populations of instances in the neighbourhood of a datapoint.
Taken as a whole, counterfactuals generated with genetic algorithms
and machine learning models can express the beliefs of the model
conditioned on the data. The score proposed is the metric distance
of the counterfactuals and the original datapoint, and so provides a
numerical understanding of how well a model performs given certain
neighbourhoods in the data.

Applying constraints to counterfactual generation allows a modeller
to analyse subpopulations of the data constrained by specific data
values. To the best of our knowledge the proposed method is the
first systemic analytical framework using counterfactuals to derive
a new evaluation metric for model confidence. While Sharma et al.
propose a similar counterfactual based metric with optional constraints,
our approach expands on the use of the metric by specifying con-
straints so that we can analyse the robustness of individual features
as well as specified continuous ranges for individual features on the
model (Sharma et al., 2019). Importantly, Sharma et al. utilize con-
straints to prevent the generation of counterfactuals that are infeasible
or statistically unlikely, whereas we apply constraints in order to
interpret model performance more succinctly through inspection of
constrained inputs. The granularity of our constraints provides a means
of broader interpretation of the model, and as we later make use of
generating synthetic data, we can better infer model performance under

specified conditions.
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As we want to observe the performance of the model given aug-
mented feature values with known classification, we found that coun-
terfactuals can assist in generating datasets contingent on the model
and constraints, which can lead to misclassification (i.e. expose feature
values which potentially lead the model to make errors). The following
methods use counterfactuals generated on subsets of the test popu-
lation, which fall under a particular feature constraint, to determine
the robustness of these subsets with respect to the model. The goal
with this method is to complement sampling methods which provide
a given blackbox model with biased data, such that we can observe
the performance of a machine learning model trained on multiple
augmented datasets. The following section provides an overview of
the blackbox approach in generating counterfactuals and how they are
utilized in calculating the counterfactual distance metric referred to
now as the robustness score as well as our algorithm incorporating the
obustness score in analysis of model weak points using constraints.

.1. Counterfactuals in machine learning

A counterfactual is defined as a generated datapoint that is as close
o the input datapoint as possible but which the models gives a different
utcome (Sharma et al., 2019). To illustrate, had a user been denied a
oan then a counterfactual statement could take the form, ‘‘Had your
ncome been $5000 greater per year and your credit score 30 points higher
our loan would be approved’’. Counterfactuals explain model results to
user by providing them actionable ways of changing their behaviour

o obtain favourable predictions. Simply put, counterfactuals explain
hich data features should be changed (and by what amount) to change
specific classification predicted by a model to a different predicted

lassification.
In past works, counterfactuals have been used for local explana-

ions (Guidotti et al., 2019, 2018; Sharma et al., 2019), but also
ave the capacity to be used to identify model decision boundaries in
articular data neighbourhoods. By neighbourhood, we are referring to
oints in the dataset where feature values are broadly similar. Coun-
erfactuals for a datapoint can explain the decision boundary in that
eighbourhood of datapoints. By taking counterfactuals for multiple
atapoints, with say similar feature values, counterfactuals can explore
he decision boundary for those datapoints conditioned on their feature
alues. For example, a grouping of users denied loans with incomes
ower than $2000 per year, and keeping the counterfactual constrained
o this feature value, may receive a counterfactual ‘‘On average, had their
redit score been 70 points higher, they would have been approved for the
oan’’.

As counterfactuals can define decision boundaries by providing
enerated datapoints close to the input datapoint. The distance of the
ounterfactuals to the original point reflects how robust the model is
o adversarial examples. If the counterfactuals across classes are further
way from the input instances on average for say model 𝐴 compared
o another model 𝐵, we can say that the first model 𝐴 is less likely
o make a false prediction. Taken another way, if we find groupings of
atapoints with similar feature values, we can take the average distance
f the decision boundary to see how easy it is to fool the model given
atapoints within the similar feature value ranges.

.2. Genetic algorithm

Genetic algorithms (GAs) provide positive benefits in counterfactual
eneration including generating points on linear and non-linear models.
hey also allow for constraints to be added which allows for exploration
f the decision boundary of particular sub-groups in the data, as well
s restricting feature changes and/or generating counterfactuals on
pecific feature ranges. Key to understanding how a GA can generate
ounterfactuals for an instance (𝑥), we need to define the distance
unction and the fitness function. In this body of work, the primary
eans of generating counterfactuals via a GA follows the LORE pipeline
4

s introduced by Guidotti et al. (2019). s
3.2.1. Distance function
The distance function determines the metric difference between an

instance (𝑥) and a counterfactual (𝑐). The model presented by Guidotti
et al. (2019) LORE, provided a distance function 𝑑(𝑥, 𝑐) for mixed data
(categorical and continuous). As we normalize the data in our experi-
ments, we treat all features as continuous thus our distance function is
the normalized Euclidean distance, where the distance function maps
the feature space consisting of 𝑚 attributes to a value between 0 and 1.
In Eq. (1) we normalize the euclidean by relying on the total sum of the
variances between our two instances in question, as we are comparing
the distance between our original instance and the counterfactual,
whereas we normalize the variance by the size of the instance vector
(𝑚). The mean of our instance vector (𝑥) is represented by (�̂�).

𝑁𝑜𝑟𝑚𝐸𝑢𝑐𝑙𝑖𝑑(𝑥, 𝑐) = 1
2

𝑉 𝑎𝑟(𝑥 − 𝑐)
(𝑉 𝑎𝑟(𝑥) + 𝑉 𝑎𝑟(𝑐))

,

where 𝑉 𝑎𝑟(𝑥) =
∑𝑚

𝑖=1(𝑥𝑖 − �̂�)2

𝑚
(1)

𝑑(𝑥, 𝑐) = 𝑁𝑜𝑟𝑚𝐸𝑢𝑐𝑙𝑖𝑑(𝑥, 𝑐), where 𝑑 ∶ 𝑋𝑚 → [0, 1] (2)

While we operated with only continuous data, the discrete case is a
possibility for future research. As many datasets are mixed discrete
continuous, the distance function in Guidotti et al. (2019) also provides
a method for handling discrete features.

𝑑(𝑥, 𝑐) = ℎ
𝑚
𝑆𝑖𝑚𝑝𝑙𝑒𝑀𝑎𝑡𝑐ℎ(𝑥, 𝑐) + 𝑚 − ℎ

𝑚
𝑁𝑜𝑟𝑚𝐸𝑢𝑐𝑙𝑖𝑑(𝑥, 𝑐) (3)

Where a given dataset contains ℎ categorical features and 𝑚−ℎ contin-
uous features. The 𝑆𝑖𝑚𝑝𝑙𝑒𝑀𝑎𝑡𝑐ℎ function is the weighted sum of simple
matching coefficients for categorical features.

3.2.2. Fitness function
Two fitness functions are used in the GA, one fitness function looks

for instances (𝑐′) similar to (𝑥) but not equal to (𝑥) for which the model
predicted the same classification. The second fitness function assists in
generating instances similar to (𝑥), again not equal to (𝑥), where the

odel predicts a different classification.

𝑓𝑖𝑡𝑛𝑒𝑠𝑠𝐸𝑞𝑢𝑎𝑙(𝑥, 𝑐′,𝑀) = I𝑀(𝑥)=𝑀(𝑐′) + (1 − 𝑑(𝑥, 𝑐′)) − I𝑥=𝑐′ ,

𝑓 𝑖𝑡𝑛𝑒𝑠𝑠𝑁𝑜𝑡𝐸𝑞𝑢𝑎𝑙(𝑥, 𝑐′,𝑀) = I𝑀(𝑥)≠𝑀(𝑐′) + (1 − 𝑑(𝑥, 𝑐′)) − I𝑥=𝑐′
(4)

In the following equations, I is the indicator function for a con-
itional statement, I𝑡𝑟𝑢𝑒 = 1 and I𝑓𝑎𝑙𝑠𝑒 = 0. The term (1 − 𝑑(𝑥, 𝑐′))

determines the similarity of (𝑥) and (𝑐′). I𝑀(𝑥)=𝑀(𝑐′) = 0 determines
hether the predicted output produced by model 𝑀 predicts the same

lass for (𝑥) and (𝑐′) with the indication of 0 signifying the classi-
ications are different, while I𝑀(𝑥)=𝑀(𝑐′) = 1 indicates the predicted
lassifications are the same. I𝑥=𝑐′ determines whether (𝑥) and (𝑐′) are
he same as this would hurt the overall fitness for both fitness functions.
lternatively, I𝑀(𝑥)≠𝑀(𝑐′) = 1 indicates that model classification on the

wo instances is different, and for the sake of calculating robustness, we
re concerned with this case. Ideally, the first indicator term I𝑀(𝑥)≠𝑀(𝑐′)
eturns 1 and we add the similarity measure, which approaches 1 the
loser the counterfactual is to (𝑥) as the distance function is scaled
etween 0 and 1, with the final measure I𝑥=𝑐′ subtracting 1 from
he fitness valuation if the potential counterfactual is identical to the
riginal instance.

While the GA has the capacity to generate two populations on an
nstance (𝑥) using 𝑓𝑖𝑡𝑛𝑒𝑠𝑠𝐸𝑞𝑢𝑎𝑙 and 𝑓𝑖𝑡𝑛𝑒𝑠𝑠𝑁𝑜𝑡𝐸𝑞𝑢𝑎𝑙, in the context of
eveloping our robustness metric, we only analyse the counterfactual
opulations generate by 𝑓𝑖𝑡𝑛𝑒𝑠𝑠𝑁𝑜𝑡𝐸𝑞𝑢𝑎𝑙, so the concern is to identify
otential instances such that I𝑀(𝑥)≠𝑀(𝑐′) = 1. Ideally we seek potential
ounterfactuals where 𝑓𝑖𝑡𝑛𝑒𝑠𝑠𝑁𝑜𝑡𝐸𝑞𝑢𝑎𝑙(𝑥, 𝑐′,𝑀) ≥ 1 and so the GA
eeks to maximize this result.
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3.2.3. Genetic algorithm pipeline
The GA relies on the fitness functions and the fitness function

relies on the distance function. The fitness function evaluates which
counterfactuals are similar to (𝑥) using the distance function. The
lassification of the counterfactuals predicted by the model 𝑀 is used
s well in the fitness function. The fitness function then assigns a metric
etermining how fit a given counterfactual is. This process is reflected
n the evaluation function. A selection function, selects a population
roduced by the evaluation function with the highest fitness scores.

A crossover function, is then applied on the selected fittest population
f counterfactuals. Crossover of counterfactual feature values is based
n a user defined probability value (𝛾). Here, two-point crossover
s used which select 2 parents and crossover features at random by
wapping the crossover feature values of the parents.

The next method for counterfactual generation with a GA is the
utation function. A subset of the generated counterfactuals from the

rossover function are mutated based on a user defined probability (𝜇).
The selected subset of counterfactuals for mutation are transformed by
replacing the feature values at random according to the distribution of
feature values.

The GA loops for a number of generations 𝐺 where (1) the fittest
counterfactuals are selected, (2) the fittest counterfactuals are aug-
mented and return a new population using the crossover function,
and then (3) a subset of the new population is selected and feature
values are manipulated via the mutation function. (4) The final step
passes the new counterfactual population into the evaluation function
to determine the fitness of individual counterfactuals and the loop
continues. In algorithm 1, we can see the pipeline with the relevant
functions used in generating a genetic neighbourhood for a specific
instance.

Algorithm 1: GeneticAlg(𝑥, 𝑓 𝑖𝑡𝑛𝑒𝑠𝑠,𝑀,𝑁,𝐺, 𝛾, 𝜇)
Input: 𝑥 - instance to explain, 𝑀 - model, 𝑓𝑖𝑡𝑛𝑒𝑠𝑠 - fitness function, 𝑁 - population

size, 𝐺 - # of generations, 𝛾 - crossover probability, 𝜇 - mutation probability
Result: c -neighbours of 𝑥
𝑃0 ← {𝑥|∀1⋯𝑁}; 𝑖 ← 0;
𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑒(𝑃0 , 𝑓 𝑖𝑡𝑛𝑒𝑠𝑠,𝑀)
while 𝑖 < 𝐺 do

𝑃𝑖+1 ← 𝑠𝑒𝑙𝑒𝑐𝑡(𝑃𝑖)
𝑃 ′
𝑖+1 ← 𝑐𝑟𝑜𝑠𝑠𝑜𝑣𝑒𝑟(𝑃𝑖+1 , 𝛾)

𝑃
′′
𝑖+1 ← 𝑚𝑢𝑡𝑎𝑡𝑒(𝑃𝑖+1 , 𝜇)

𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑒(𝑃 ′′
𝑖+1 , 𝑓 𝑖𝑡𝑛𝑒𝑠𝑠,𝑀)

𝑃𝑖+1 = 𝑃
′′
𝑖+1

𝑖 ← 𝑖 + 1
end
c← 𝑃𝐺
return c

3.3. Framework and robustness metric

As stated, the idea of our method is to use counterfactuals for
features to determine the robustness score on datapoints with particular
feature value intervals which lead to misclassification. We can isolate
datapoints with particular feature value ranges and use the robustness
score to indicate if the model is weak in predicting the classification.
The CERTIFAI model introduced by Sharma et al. introduced the use
of counterfactuals as a means to generate a robustness metric as well
as the concept of applying constraints, and here we take a similar
approach for calculating the robustness metric with constraints, with
the difference being how we apply the scoring metric with constraints
for broader interpretability (Sharma et al., 2019).

The output of this pipeline would include feature ranges where the
model has an increased likelihood of misclassification. This information
can then be passed to a sampling method to generate a synthetic dataset
to observe the prediction ability of the model given perturbed feature
values. Inversely, this method could be used to observe performance
of a model trained on biased data (eg. increased presence of defaults)
and use constraints in the generation of counterfactuals to observe
5

the robustness of specific neighbourhoods in the data that are defined
by feature value intervals. The pipeline calculating the robustness of
subpopulations in the data is as follows:

1. As we are interested in looking at particular feature ranges, we
create a subpopulation derived from the test set with a specified
interval range. Assuming we have a feature 𝑓𝑖 which has feature
values in the range 𝑎 ≤ 𝑣 ≤ 𝑏 where (𝑣) is a given value in
the range. We could specify an interval 𝑓𝑖 ∈ [𝛼, 𝛽] where 𝑎 ≤ 𝛼
and 𝛽 ≤ 𝑏. In the context here, we would perform equal-width
binning on the features and identify each subpopulation that
falls into a given interval. As some values may have a higher
frequency we would need to limit the constrained subsets from
the test set in order for their size to be generally equal and avoid
bias.

2. Constraints: First we would need to apply the feature range
constraints to the GA, as this will return counterfactuals with the
explicit feature range we wish to analyse. So given a particular
feature with a specified feature range 𝑓𝑖 ∈ [𝛼, 𝛽] that we wish
to constrain in the generation of counterfactuals, after selecting
real datapoints from the test set with our specified feature range,
we apply our specified feature range as a constraint 𝐶𝑖 into the
GA pipeline. This constraint would be applied to the mutation
function, as this method selects values from feature range distri-
butions but would now be limited to our constraint. The current
counterfactual and neighbourhood population generated for 𝑥 is
defined by 𝑃𝑖.

𝑃𝑖 = 𝑚𝑢𝑡𝑎𝑡𝑒(𝑃𝑖, 𝜇, 𝐶𝑖) (5)

3. Robustness: Once we generate counterfactuals using just the
fitnessNotEqual function, as we want to identify the decision
boundary for our constrained subset, we calculate the robustness
score which is the expected distance (or average normalized
Euclidean distance) between input instances and their corre-
sponding counterfactuals. As we are looking at the robustness
score across all instances in the subset and constrained coun-
terfactuals, we are able to identify the size of the decision
boundary. The smaller the score, the closer the decision bound-
ary is between instances in the subset and their counterfactuals,
thus identifying what feature values lead to model misclassifica-
tion. In calculating average robustness score for a single instance
(𝑥) we normalize the sum of the Euclidean distance for all
generated counterfactuals by 𝑁𝑐 , which is the final number of
counterfactuals generated for an instance 𝑥. As our proposal
seeks to identify the average robustness for multiple instances x,
we normalize the sum of our robustness score across all instances
in x by 𝑁𝐱, which reflects the number of instances in (x).

𝑅𝑜𝑏𝑢𝑠𝑡𝑆𝑐𝑜𝑟𝑒 = E[𝑑(𝐱, 𝐜)] (6)

𝑅𝑜𝑏𝑢𝑠𝑡𝑆𝑐𝑜𝑟𝑒𝑥 = 1
𝑁𝑐

𝑁𝑐
∑

𝑖=1

1
2

𝑉 𝑎𝑟(𝑥 − 𝑐𝑖)
(𝑉 𝑎𝑟(𝑥) + 𝑉 𝑎𝑟(𝑐𝑖))

(7)

𝑅𝑜𝑏𝑢𝑠𝑡𝑆𝑐𝑜𝑟𝑒𝐱 = 1
𝑁𝐱

𝑁𝐱
∑

𝑗=1

𝑁𝑐
∑

𝑖=1

1
2

𝑉 𝑎𝑟(𝑥𝑗 − 𝑐𝑖)
(𝑉 𝑎𝑟(𝑥𝑗 ) + 𝑉 𝑎𝑟(𝑐𝑖))

(8)

Essentially, the pipeline will loop through all features and isolate
a feature range to constrain on, then (1) create a new subset from
the test set based on the constrained feature range, (2) then apply
the feature range constraint in the GA for generating counterfactuals,
(3) and followed by returning the average robustness score of these
constrained counterfactuals.
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3.4. Robustness of machine learning models and areas of weakness

Putting all the methods together, we arrive at system for analysing
specific neighbourhoods in the data with the following algorithm,
see Algorithm 2. Two binning methods can be implemented, the pri-
mary binning method implemented was equal-frequency binning where
the number of instances is roughly equal for each bin interval, and
equal-width binning which divides the feature value range into equal
partitions. In order to analyse a model with regard to feature regions
partitioned by (𝑘), we iterate over all features and use a binning function
to identify constraints (𝐶). The specific constrained feature range (𝜙𝑖)
for a given feature 𝑓𝑖 is then passed to the subpopulation function to
get the subset of instances falling within the feature range constraint.
The subset of constrained instances are then used by Algorithm 1
to generate counterfactuals which are then used in calculating the
robustness score for the given feature range.
Algorithm 2: NeighbourRobustness(𝑏,𝑀,𝑚,𝑁,𝐺, 𝛾, 𝜇, 𝑘,𝐷)
Input: 𝑀 - model, 𝑚 - # of continuous features , 𝑁 - population size, 𝐺 - # of

generations, 𝛾 - crossover probability, 𝜇 - mutation probability, 𝑘 - number
bins, 𝐷 -dataset

Result: S - robustness values for the model
𝐹 ← {𝑓 |∀1⋯𝑚};
for 𝑓𝑖 ∈ 𝐹 do

𝐶 = 𝑏𝑖𝑛𝑛𝑖𝑛𝑔(𝑓𝑖 , 𝑘); 𝑠𝑐𝑜𝑟𝑒𝑖 ← 0
for 𝜙𝑗 ∈ C do

𝐷′ = 𝑠𝑢𝑏𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛(𝐷,𝜙𝑗 )

for 𝑥 ∈ 𝐷′ do
𝐜 = GeneticAlg(𝑥, 𝑓 𝑖𝑡𝑛𝑒𝑠𝑠𝑁𝑜𝑡𝐸𝑞𝑢𝑎𝑙,𝑀,𝑁,𝐺, 𝛾, 𝜇)
𝑠𝑐𝑜𝑟𝑒𝑖 = E[𝑑(𝑥, 𝐜)]
𝑠𝑐𝑜𝑟𝑒 = 𝑠𝑐𝑜𝑟𝑒 + 𝑠𝑐𝑜𝑟𝑒𝑖

end
𝐒(𝑖, 𝑗) ← 𝑠𝑐𝑜𝑟𝑒

|𝐷′
|

end
end
return 𝐒;

3.5. Primary advantages of the robustness metric

The robustness scores for feature ranges provide an interpretable
metric for analysing the strength of a given model. Concretely, it is
interpreted that features with larger robustness scores are performing
better in the sense that the generated counterfactuals are ‘further away’,
and can be inferred that those value ranges, in general, produce a more
reliable prediction by the model. For example, given a feature say,
𝑓𝑖 ← 𝐼𝑛𝑐𝑜𝑚𝑒 with 3 bins produced thus providing 3 constraint ranges,
with bin values of [6.7, 18.3, 4.9] corresponding with ranges of [𝑣 ≤
1000), (1000 < 𝑣 ≤ 50000), (50000 < 𝑣], we see that Bin 2 is more robust
than Bin 1 and 3. As the distance metric calculated counterfactuals with
an average distance of 18.3 whereas the other bins have lower scores,
thus instances within the value range (1000 < 𝑣 ≤ 50000) generate
counterfactuals further from the original on average. This signifies that
the model is more confident about classifications for features in that
range (not necessarily what the classification is, just that the model is
confident in its decision). These values also tell us that in the cases
where the model is classifying instances with 𝑓𝑖 = 100 or 𝑓𝑖 = 100000
we should be cautious as the decision boundary in these ranges is
less robust. The robustness score tied with constrained counterfactuals
provides a means to pinpoint feature vulnerabilities in machine learn-
ing. The robustness score conditioned on discrete ranges for all features
provides an additional analysis metric that helps modellers identify
which features and more explicitly which ranges are associated with
increased likelihoods of misclassification with regard to a model.

Robustness has been investigated in conjunction with financial ap-
plications in the past. Petropoulos et al. proposed a robustness met-
ric based on model likelihood on discretized portions of data with
particular groupings pertaining to actual classifications (i.e. loan de-
faults) (Petropoulos, Siakoulis, Stavroulakis, & Klamargias, 2019). The
approach is similar in regards to measuring confidence of the model,
especially with respect to comparisons with other models, however our
6

Fig. 1. kNN example for different number of neighbours for two dimensional space.

framework for robustness is far more granular in that (Petropoulos
et al., 2019) are limited to observing groupings of so called score
values, while we can analyse performance on individual feature ranges.
Other works which investigated model robustness and credit scoring
often focused on the construction of a more robust model (Abdou,
2009; Luo, 2020) or used previously defined metrics unrelated to
counterfactuals (Vieira, Barboza, Sobreiro, & Kimura, 2019).

Counterfactuals have rarely been utilized with respect to credit
scoring. McGarth et al. implemented counterfactuals for the use in local
interpretations of a models decision (Chen et al., 2018), and instead
of using a genetic algorithm for generating counterfactuals they made
use of optimization on a loss function with the Nelder–Mead algorithm.
Overall, past works have used counterfactuals to assist with financial
applications primarily with regard to interpretation of model decisions
at the local level (Chen et al., 2018; Grath et al., 2018; Wachter,
Mittelstadt, & Russell, 2017; White & d’Avila Garcez, 2019), or for an
analysis on model fairness (Coston, Mishler, Kennedy, & Chouldechova,
2020; Kusner, Loftus, Russell, & Silva, 2017; Wang, Sridhar, & Blei,
2019; Zhao, Coston, Adel, & Gordon, 2019), but none, as far as we
have observed, use counterfactuals as adversarial examples to analyse
model performance on feature values. While some works have used
counterfactuals to analyse predictive weaknesses of a model (Sokol
& Flach, 2019), none take advantage of generated counterfactuals for
constrained regions in the data for analysing local robustness.

4. Data perturbation for stress scenario generation

In the following section, we explain our proposal for generating
stressed scenarios from a cross-sectional dataset. We consider the par-
ticular restriction where only a dataset for a given year is available
so we cannot apply a dynamic model, as explained in Section 2.
We suggest the use of the k-Nearest Neighbours classifier to generate
synthetic data with different default rates or feature values of clients to
represent the economic downturn. The following subsections describe
the proposal in details.

4.1. k-Nearest Neighbours

K-Nearest Neighbours (kNN) is a machine learning algorithm that
classifies a new datapoint based on a similarity measure (Henley &
Hand, 1996). As the name suggests, it is used to classify a datapoint
based on the classification of its nearest neighbours. The general idea
of this procedure for a two label classification can be seen in Fig. 1
below.

This is exactly the setting for our case — in credit default prediction
problems, the clients are usually divided into two classes, defaulted
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and non-defaulted. The figure above simplifies this problem to two
dimensions. When a new point is added, we first need to choose the
number of neighbours that we will be considering for classification
(usually represented by 𝑘), as well as selecting a distance metric used
as a similarity measure. A popular one is the Euclidean distance metric
seen in Eq. (9).

𝑑(𝑝, 𝑞) =
√

𝛴𝑛
𝑖=1(𝑝𝑖 − 𝑞𝑖)2, 𝑖 = 1, 2,… , 𝑛 (9)

where 𝑝 and 𝑞 are observations and 𝑛 is the number of features in the
ata. Under the chosen distance metric, we check which points are
he closest to the new datapoint, and count them. Then, based on this
ount, the point is assigned to a certain class. For example, suppose
hat we are interested in checking 5 nearest neighbours, and we see
hat 2 out of these 5 neighbours are defaulted (class 1), whereas 3 did
ot (class 0). The kNN algorithm would then conclude that the new
atapoint should be classified as non-defaulted.

An extension of this procedure involves taking into account the
istance between each neighbour and the currently considered point by
alculating the exact distance between two points and multiplying each
eighbour’s value (1 for default and 0 for non-default) by the distance’s
nverse. It ensures that closer neighbours weigh more than the ones that
re further away. In particular, the general equation for point 𝑝 looks
s follows:

𝛴𝑘
𝑟=1𝑐𝑙𝑎𝑠𝑠 ×

1
𝑑(𝑝,𝑟)

𝛴𝑘
𝑟=1

1
𝑑(𝑝,𝑟)

, 𝑟 = 1, 2,… , 𝑘 (10)

where 𝑘 is the number of nearest neighbours used.
As we describe below, we use the kNN algorithm for two main tasks:

varying the default rates and the applicant’s features in the original
sample to create synthetic datasets that represent different stressed
scenarios.

4.2. Framework for generating default rate

Default rates tend to be higher during economic downturns as often
people have less money to cover their ongoing loans (Mian & Sufi,
2009). Therefore, in order to assess how the model would perform
during such events, we change the classification of certain loans to the
opposite — in this case, from non-defaulted to defaulted. The pipeline
for changing the classification is as follows:

1. Obtain default probabilities. Apply kNN with the chosen num-
ber of neighbours on every datapoint, using Eq. (10), in order to
get a probability 𝑝 ∶ 0 ≤ 𝑝 ≤ 1 of every point belonging to
a given class based on its neighbours. It can help to conclude
whether a point is surrounded by other points from the same
class or not. It is all done in 𝑚-dimensional space, where 𝑚 is
the number of features in the out-of-time set.

2. Find questionable observations. Conclude which observations
lie close to the decision boundary according to the kNN algo-
rithm. In principle, the closer the observation is to 𝑝 = 0.5, the
more questionable it is because at this point we are at least sure
(provided that we would not have this information in the first
place) to which class such observation would belong. Depending
on the final default rate that we are aiming for, we can increase
the range, for example for 0.4 ≤ 𝑝 ≤ 0.6, 0.3 ≤ 𝑝 ≤ 0.7 etc.

3. Change the classification. From the observations obtained
above, choose the ones that were initially classified as non-
defaulted and classify them as defaulted, which in effect in-
creases the default rate from the initial out-of-time set.
7

4.3. Framework for applicant’s features

A similar logic can be applied for changing the independent vari-
ables in the original sample. The key in this case is to find observations
that would be least likely to change their classification due to the
changes in the feature values. Combined with the approach for increas-
ing default rates, it leads to a creation of completely new synthetic
out-of-time sets, depending on the hyperparameters used. The proce-
dure for finding certain observations consists of 2 steps and is very
similar to the ones described above. It mainly differs by step (2), in
which we aim to find observations whose calculated probability of
default 𝑝 is either as close to 0 as possible (for the non-defaulted case)
or as close to 1 as possible (for the defaulted case). Having found 𝑛 such
observations, we need to follow the steps outlined below.

1. Calculate the ranges for each variable. Find the minimum
min 𝑓𝑗 and maximum max 𝑓𝑗 of each feature 𝑓𝑗 , 𝑗 = 1, 2,… , 𝑚
from the set of all observations 𝑥𝑖, 𝑖 = 1, 2,… , 𝑛.

2. Generate new observations. For each feature 𝑓𝑗 of every ob-
servation 𝑥𝑖, generate a new value from the range min 𝑓𝑗 , max 𝑓𝑗
and replace the original value with it.

In the end, a newly created set has observations with perturbed
eatures and unchanged classifications. Optionally, the classification
ould be perturbed as well using the procedure from the previous
ubsection.

. Empirical results

.1. Data description

We apply the proposed methods to a dataset provided by Nation-
ide Building Society on 61,239 UK unsecured personal loans issued

rom June 2014 to July 2015. It contains applicants’ characteristics at
he time at which they apply for loans and sample weights that should
e applied to each observation. The reported percentage of default is
.8%, which represents 4168 loans. The dependent variable is coded
s 1 if the borrower is considered as default and 0 otherwise. For con-
idential reasons, we cannot share the description of the independent
ariables for this dataset.

The logistic regression and the SGB are estimated on 50 explanatory
ariables. We train the models on the data observed between June 2014
nd May 2015 (in-sample) and assess the quality of the models on the
ut-of-time sample from June to July 2015. We obtain 41,711 loans
n the training set, 10,101 in the out-of-sample set and 9427 in the
ut-of-time set.

In this section we summarize the results that we obtained by apply-
ng data perturbation and counterfactuals to the described dataset. We
ollow the analysis structure conducted by the Bank of England (Bracke
t al., 2019) on explainability for scoring models by comparing the
ogistic regression (logit) and the SGB (Friedman, 2002) methods. Hy-
erparameters were not tuned for models — we rely on scikit-learn (Pe-
regosa et al., 2011) and XGBoost (Chen, He, Benesty, Khotilovich, &
ang, 2015) default parameter values (version 0.90).

.2. Data perturbation

Perturbing the data can help financial institutions in performing
stress scenario analysis, instead of stress testing (Bellotti & Crook,

013), when data is collected over a short period of time and, therefore,
acroeconomic variables cannot be used. The percentage of defaulted

oans in the Nationwide dataset is 6.8%.
Higher probabilities of default for perturbed out-of-time sets are

btained by changing the classification of good observations inside
he probability intervals. These probabilities are obtained using kNN,
s explained in Section 4, and take an approximate runtime of 87 s
o generate. They appear as follows (out-of-sample and out-of-time,
espectively):
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Fig. 2. AUC against PD for perturbed datasets.

• [0.25, 0.75] - the probability of default increases to 9.9 and 9.4%
• [0.15, 0.85] - the probability of default increases to 13.8 and 12.6%
• [0.10, 0.90] - the probability of default increases to 16.1 and 14.8%
• [0.06, 0.94] - the probability of default increases to 20.0 and 19.0%

Fig. 2 below shows how AUC decreases as the probability of default
in the perturbed out-of-time set increases for both logistic regression
and SGB. The same can be said about the perturbed out-of-sample set.
However, it can be seen that the drop for out-of-sample set is much
smaller for both models. One of the reasons for this might be due to
a higher initial probability of default of the out-of-sample set, which
is closer to the probability of default of the in-sample set (7%). Since
out-of-sample set seems to have characteristics more similar to the in-
sample set than the out-of-time set, the results on the perturbed data
are also better for it.

The drop in performance for both models is the most significant for
the initial increase in probability of default. This is due to the overlap
of datapoints now found with both classes (non-default and default).
As we perturbed the data to have higher ratio of defaulters, the distri-
butions for the two classes now have a degree of overlap. Essentially,
ML techniques have a harder time classifying datapoints when feature
values are of an ambiguous class association (Prati, Batista, & Monard,
2004). Testing on perturbed data (with higher default ratios) results in
more false positives and false negatives thus reducing the AUC value.
Overall, the drop is higher for the logistic regression showing that
it is less robust than SGB. The initial datapoints in the figure reflect
AUC values for logistic regression and SGB prior to perturbation of the
Nationwide dataset (baseline performance is also stated in Table 1).

Note, as we use kNNs in the perturbation process, the value of 𝑘
significantly determines the appearance of the new decision boundary.
At higher values of 𝑘 we can expect the decision boundary to smooth
out, while at lower values of 𝑘 we can expect a more flexible decision
boundary (James, Witten, Hastie, & Tibshirani, 2013). As increasing
𝑘 also impacts the ratio of increased defaulters, we can expect a
decrease in model performance as the rate of false positives and false
negatives increase. Importantly, As our method relies on the returned
probabilities 𝑝 based on the setting of 𝑘 for determining which points to
set to default, it is expected that with alternative settings of 𝑘 we would
rely on different probabilities as the decision boundary smooths out at
higher 𝑘 values. In our experiments, we only selected a small valuation
of 𝑘 to observe an increase in defaulters (𝑘 = 5) as our primary
concern was experimenting with the various probability ranges. As the
exploration of higher 𝑘 values has a notable impact on the decision
boundary, we propose this as an avenue for future directions and
further exploration of the proposed work.

Apart from investigating how the performance of the model is
affected, we also checked whether the explanations of decisions made
8

Table 1
AUC for Logit and SGB models on the Nationwide dataset.

Dataset Model

Logit SGB

Nationwide 0.81 0.82

Table 2
Average robustness scores for selected features on the Nationwide dataset. Approximate
running time for Logit was 319 s, SGB was 365 s.

Nationwide Model

Logit SGB

variable01 5.51 ± 1.72 10.1 ± 2.45
variable02 4.88 ± 1.30 10.1 ± 2.41
variable03 7.02 ± 1.84 10.1 ± 2.42
variable04 5.92 ± 3.09 9.90 ± 2.51
variable05 7.76 ± 1.91 9.84 ± 2.51
variable06 6.45 ± 2.78 9.11 ± 2.79
variable07 5.16 ± 3.31 10.4 ± 2.33
variable08 5.27 ± 1.16 10.3 ± 2.43
variable09 7.50 ± 1.97 10.0 ± 2.45
variable10 5.72 ± 3.55 9.71 ± 2.56
variable11 6.97 ± 1.78 9.78 ± 2.57
variable12 7.31 ± 3.30 9.68 ± 2.56
variable13 6.27 ± 3.84 9.94 ± 2.49
variable14 6.49 ± 2.11 9.47 ± 2.66
variable15 6.21 ± 2.49 10.2 ± 2.44
variable16 5.25 ± 2.01 9.83 ± 2.54
variable17 5.44 ± 1.52 9.84 ± 2.54
variable18 6.18 ± 2.23 7.40 ± 1.99
variable19 8.44 ± 2.48 10.2 ± 2.41
variable20 7.62 ± 4.32 10.0 ± 2.45
variable21 6.90 ± 3.29 10.2 ± 2.36
variable22 6.10 ± 2.14 11.1 ± 2.19
variable23 7.62 ± 2.17 7.31 ± 2.02
variable24 5.81 ± 3.25 9.85 ± 2.53
variable25 6.77 ± 1.21 9.85 ± 2.53
variable26 7.71 ± 3.07 9.91 ± 2.51
variable27 6.76 ± 3.59 9.99 ± 2.46
variable28 6.43 ± 2.32 10.1 ± 2.44
variable29 5.42 ± 1.96 10.2 ± 2.35
variable30 5.72 ± 1.21 10.6 ± 2.24
variable31 7.93 ± 1.41 10.0 ± 2.45
variable32 8.06 ± 3.59 9.91 ± 2.51
variable33 8.24 ± 3.28 12.3 ± 2.53
variable34 7.36 ± 3.45 10.0 ± 2.46
variable35 6.36 ± 3.30 10.4 ± 2.31
variable36 8.55 ± 2.23 9.94 ± 2.49
variable37 6.55 ± 4.52 9.15 ± 2.78
variable38 7.87 ± 2.46 9.92 ± 2.50
variable39 6.34 ± 3.17 9.93 ± 2.49
variable40 8.08 ± 2.27 10.6 ± 2.24
variable41 5.79 ± 3.76 10.2 ± 2.36
variable42 7.92 ± 1.83 9.21 ± 2.75
variable43 5.96 ± 4.29 10.0 ± 2.46
variable44 7.62 ± 1.93 9.83 ± 2.54
variable45 7.54 ± 2.46 10.1 ± 2.41
variable46 7.88 ± 3.37 11.3 ± 2.21
variable47 4.62 ± 3.71 9.89 ± 2.51
variable48 6.09 ± 1.01 10.6 ± 2.25
variable49 9.34 ± 1.71 9.77 ± 2.57
variable50 6.68 ± 5.37 10.0 ± 2.46

by the model are the same for the original and perturbed data. For
this task, we used the data obtained by changing applicant’s features
as explained in Section 4.3. In particular, we perturb the features of
non-defaulted applicants, for which the value obtained in Eq. (10) is
smaller than 0.05. We have used Shapley values, and in particular their
variation called Shapley Additive Explanations (SHAP) (Lundberg &
Lee, 2017), which measure the average impact on model output by
variable magnitude. The comparison for the original out-of-time set and
the augmented one are presented in Fig. 3 below where these values
represent the magnitude of variable contribution to the outcome. It



Expert Systems With Applications 202 (2022) 117271A.C. Bueff et al.

s
s

m
W
p
d
d
t
m

Fig. 3. Shapley values for the original out-of-time set.
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can be seen that the predictive power of respective variables does not
change significantly after perturbing the original data.

5.3. Counterfactual robustness

We evaluate the robustness score by looking at the average robust-
ness of individual features and comparing the scores between models,
we then look at the robustness of a model where counterfactuals are
generated with individual feature ranges acting as constraints. We train
blackbox models on the Nationwide credit application dataset with the
goal here being to provide another performance metric to compare
models, analyse model robustness on individual features, and to further
analyse model robustness on particular feature ranges. As we see this
as an important contribution to global interpretability analysis of ML
models in the financial sector.

In Table 1 we can see the predictive power of the respective black-
box classifiers. In general, common metrics of model performance are
model accuracy and the AUC. Initial observations indicate that SGB is
the superior model for credit scoring with respect to both metrics.

5.3.1. Model robustness on individual features
To assess the robustness of individual features in a dataset, we

generate counterfactuals on individual instances using only the value
range of the selected feature in the genetic algorithm. In essence, any
counterfactuals of an alternate classification for an instance 𝑥𝑖 will be
generated based on only the possible values of a feature 𝑓𝑖 leaving
all other values in 𝑥𝑖 the same. For each feature, K-means clustering
is utilized to select a sub-population that best represents the data.
This provides a population of datapoints that is general and constrains
counterfactual generation on the range of values of our selected feature.
Counterfactuals are generated on this subset and from the population of
counterfactuals we calculate the robustness score. The average robustness
cores for each feature, trained with logistic regression and SGB, can be
een in Table 2.

The average feature robustness score for logistic regression and SGB
odels trained on the Nationwide dataset can be seen in Table 2.
e see a similar pattern where individual feature robustness is better

erforming with SGB than logistic regression. The Nationwide dataset
emonstrates on average, a larger overall robustness score among in-
ividual features. The logistic regression model demonstrates less cer-
ainty among the various features. We find the logistic regression
odel’s most robust feature is variable49 while the least robust
9

s variable02. The SGB model is more consistent with feature ro-
ustness scores than with the logistic regression model. The most robust
eatures are variable22, variable46, and variable33. The less

robust features are variable18 and variable23 which compar-
atively are more robust with the SGB model than logistic regression.
As an example, if a modeller had two new entries, customers with
similar values for variable33 and wildly different values for vari-
able23 and both entries have different classifications for the SGB
model then further analysis of the entries is required to assess the
predicted classifications.

5.3.2. Robustness with binned feature ranges as constraints
In the following evaluation we take the SGB model and observe the

robustness score when constraints are applied to the individual feature
ranges as seen in Algorithm 2. Here we compare the difference in
robustness scores given 2 and 3 bins across all features in the Nation-
wide dataset. By increasing the bin count we can isolate particular
feature ranges that may be less robust to perturbations and help the
modeller understand and isolate areas of weakness in the model. The
primary method of binning is equal-frequency binning, however we did
encounter features which failed to create 3 bins with equal-frequency.
In these cases, we defaulted to using equal-width binning.

From Tables 4 and 3 we see again the benefits of increased binning
of individual features when training the SGB model on the Nationwide
dataset. In looking at the 2 binned constraint, we see that feature
variable01 appears robust across both bin ranges 1 and 2. In the
case of 3 bins, the corresponding feature has an average robustness score
of 11.3, 15.8, and 5.28 for bins 1,2, and 3 respectively. The implication
here is that the feature ranges seen with 2 bins does not capture the
areas of less robustness that can be observed with increased binning.
As we see, bin 3 with 3 bin partitioning is less robust for feature
variable01. This increased partitioning of the feature ranges shows
potential problem areas not seen with 2 bins. The range corresponding
to bin 3 for feature variable01 can be identified in Table 5. This tells
the modeller that this range is an area of caution for model prediction.

We expect different measures of robustness for differing bin sizes, as
increasing the bin size allows for more granular measures of particular
feature ranges. In essence, if a specific feature value has a correlation
with adversarial attacks, more discrete binning could potentially cap-
ture that fact with a corresponding low robustness score. The presence
of outliers can impact the robustness score as well, as constraints for the
GA will include outlier values if they are in fact the highest or lowest
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Table 3
Average robustness scores for the Nationwide dataset on 3 bin feature constrained
counterfactuals. Approximate running time for 3 binned SGB was 565 s.

Nationwide 3 bins

bin 1 bin 2 bin 3 avg.

variable01 11.3 ± 2.21 15.8±2.64 5.28±1.42 10.8
variable02 13.1 ± 2.54 9.59±2.51 12.2±1.51 11.6
variable03 9.1 ± 1.14 6.32±0.80 9.34±2.82 8.25
variable04 14.0 ± 4.14 11.8±2.87 8.59±1.11 11.4
variable05 8.42 ± 1.90 11.9±1.92 1.65±0.16 7.32
variable06 10.3 ± 2.10 9.81±1.88 1.65±0.16 7.28
variable07 9.92 ± 2.37 12.2±1.77 1.66±0.16 7.95
variable08 9.86 ± 2.29 11.4±1.59 1.65±0.16 7.66
variable09 10.2 ± 2.11 12.3±1.78 1.65±0.16 8.09
variable10 13.2 ± 2.12 11.8±3.36 8.67±1.40 11.2
variable11 10.3 ± 0.27 8.47±1.95 13.8±2.40 10.8
variable12 14.1 ± 2.66 11.7±3.65 9.18±1.32 11.7
variable13 10.4 ± 2.17 4.98±0.86 3.14±0.26 6.17
variable14 10.3 ± 2.17 4.28±0.69 3.15±0.26 5.93
variable15 0.0 ± 0.0 4.98±2.34 5.92±0.84 3.63
variable16 3.93 ± 0.53 0.0±0.0 8.31±2.28 4.08
variable17 0.64 ± 0.44 5.81±1.65 6.06±0.81 4.17
variable18 0.87 ± 0.78 8.02±1.38 12.1±1.99 7.02
variable19 0.03 ± 0.03 4.18±2.31 6.23±0.84 3.48
variable20 8.71 ± 2.02 1.03±0.08 0.0±0.0 3.25
variable21 7.60 ± 2.67 16.0±2.21 1.26±0.11 8.30
variable22 8.75 ± 2.10 7.78±1.08 6.90±0.29 7.81
variable23 9.20 ± 1.91 0.0±0.0 7.01±0.12 5.40
variable24 6.41 ± 1.08 0.0±0.0 8.91±2.51 5.10
variable25 4.63 ± 4.40 6.61±0.90 7.55±1.54 6.26
variable26 8.66 ± 2.23 11.6±1.73 16.3±0.80 12.2
variable27 0.0 ± 0.0 0.0±0.0 5.92±0.84 1.97
variable28 14.6 ± 0.68 10.5±1.18 10.3±2.30 11.8
variable29 4.65 ± 0.77 4.38±0.44 9.70±2.54 6.24
variable30 0.0 ± 0.0 0.0±0.0 5.92±0.84 1.97
variable31 3.82 ± 3.82 0.0±0.0 5.92±0.84 3.24
variable32 2.41 ± 0.47 0.0±0.0 8.24±224 3.55
variable33 1.99 ± 0.31 8.91±1.48 8.60±1.88 6.50
variable34 2.29 ± 0.25 9.81±1.24 8.35±2.16 6.82
variable35 2.72 ± 0.23 9.22±1.15 8.90±1.99 6.95
variable36 0.0 ± 0.0 6.77±0.75 7.55±1.54 4.77
variable37 11.2 ± 3.03 9.33±2.00 10.7±3.15 10.4
variable38 10.4 ± 2.38 9.59±1.35 17.1±0.24 12.3
variable39 6.31 ± 0.94 16.3±0.12 8.48±1.74 10.3
variable40 13.5 ± 1.45 0.0±0.0 10.8±4.01 8.12
variable41 1.41 ± 0.75 6.87±1.48 6.06±0.81 4.78
variable42 7.32 ± 1.04 13.1±0.29 8.81±2.01 9.75
variable43 10.7 ± 1.46 10.3±1.27 17.7±2.25 12.9
variable44 1.28 ± 0.16 0.0±0.0 8.91±2.35 3.39
variable45 0.0 ± 0.0 7.57±1.59 12.2±1.99 6.58
variable46 1.91 ± 0.18 3.23±0.45 8.42±1.82 4.52
variable47 2.17 ± 2.17 2.04±0.52 6.23±0.84 3.48
variable48 8.17 ± 1.54 9.82±1.49 17.4±0.82 11.8
variable49 12.4 ± 2.56 0.42±0.07 0.0±0.0 4.26
variable50 14.2 ± 2.45 10.3±2.11 1.06±0.05 8.58

value for the feature range. This is a consequence of binning being per-
formed by equal-frequency/equal-width binning. The use of K-means
clustering does prevent selection of outliers for the sub-populations
used in calculating the robustness score for a given feature range, and
he fitness functions by design would avoid using outlier values in
enerating counterfactuals as they would be significantly different from
he instances in the subpopulation.

.4. Counterfactual robustness and stress scenario testing

The following experiments seeks to combine the counterfactual
obustness score with the data perturbation methodology using kNNs.
he purpose here is to generate possible stress scenarios on the data by

ncreasing the ratio of bads (default rate) in the data and perturbing
eatures in order to observe model performance during what could be

financial crisis. The counterfactual robustness score provides insight
10

nto what features are most at risk and which value ranges modellers
Table 4
Average robustness scores for the Nationwide dataset on 2 bin feature constrained
counterfactuals. Approximate running time for 2 binned SGB 503 s.

Nationwide 2 bin

bin 1 bin 2 avg.

variable01 11.1±3.03 13.5 ± 2.24 12.3
variable02 6.52±1.74 16.4 ± 2.62 11.4
variable03 11.8±1.61 13.5 ± 3.29 12.6
variable04 10.7±2.62 10.4 ± 2.64 10.6
variable05 12.1±5.64 8.65 ± 1.54 10.4
variable06 9.65±3.06 8.16 ± 1.7 8.91
variable07 8.99±4.38 9.13 ± 1.26 9.06
variable08 7.88±3.83 10.0 ± 0.92 8.98
variable09 15.2±10.6 8.98 ± 1.44 12.1
variable10 10.5±3.30 15.2 ± 2.51 12.9
variable11 15.1±1.79 12.7 ± 2.16 13.8
variable12 16.0±2.03 15.0 ± 2.51 15.5
variable13 15.2±3.40 5.57 ± 0.80 10.3
variable14 13.1±3.09 5.89 ± 0.86 9.52
variable15 0.0±0.0 12.01 ± 3.13 6.01
variable16 12.3±2.21 16.5 ± 6.89 14.4
variable17 15.1±2.04 8.53 ± 1.62 11.8
variable18 11.1±2.81 4.44 ± 0.98 7.81
variable19 12.1±3.35 1.97 ± 0.20 7.05
variable20 15.2±2.23 0.0 ± 0.0 7.61
variable21 11.1±3.28 1.57 ± 0.23 6.36
variable22 10.7±2.08 7.75 ± 1.26 9.24
variable23 5.98±1.23 13.2 ± 6.47 9.61
variable24 10.8±1.26 9.95 ± 3.76 10.4
variable25 0.0±0.0 12.0 ± 3.13 6.01
variable26 11.6±1.68 13.9 ± 3.54 12.7
variable27 0.03±0.03 12.0 ± 3.13 6.02
variable28 15.7±2.64 12.7 ± 3.06 14.2
variable29 4.34±0.68 14.1 ± 3.14 9.21
variable30 0.0±0.0 12.9 ± 3.18 6.45
variable31 14.3±2.73 12.0 ± 3.13 13.2
variable32 10.2±1.01 11.1 ± 2.91 10.6
variable33 10.8±1.35 8.3 ± 2.63 9.56
variable34 9.96±1.27 6.08 ± 2.32 8.02
variable35 7.69±0.92 7.53 ± 2.79 7.61
variable36 0.18±0.18 12.0 ± 3.13 6.09
variable37 12.8±2.39 12.0 ± 3.13 12.4
variable38 8.13±1.54 17.3 ± 2.78 12.7
variable39 12.1±1.83 13.1 ± 3.07 12.6
variable40 11.0±1.19 9.96 ± 3.60 10.4
variable41 14.2±2.50 16.1 ± 6.81 15.1
variable42 9.76±1.78 7.64 ± 2.51 8.70
variable43 12.9±2.90 12.5 ± 2.91 12.7
variable44 1.66±0.09 8.59 ± 3.37 5.12
variable45 11.1±2.81 4.00 ± 0.80 7.58
variable46 2.02±0.21 7.48 ± 2.66 4.75
variable47 12.1±3.35 1.86 ± 0.24 6.99
variable48 9.79±1.66 13.6 ± 3.08 11.7
variable49 11.7±3.06 12.9 ± 1.10 12.3
variable50 11.3±3.07 4.51 ± 0.55 7.92

should directly observe in future cases. The models evaluated here is
exclusively SGB, using the same hyper-parameters as used in Experi-
ments 5.3.1 with training being done on the Nationwide dataset. As in
Section 5.3, SGB models are evaluated on both perturbed Nationwide
datasets with increased default rate only and on datasets with increased
default rates with perturbations in feature values. For stress scenario
testing, the GA generates counterfactuals based on the reasoning of
the trained model and takes as input the test set. In order to analyse
the robustness of the model, we first train the model on the perturbed
datasets with increased bad rates and/or perturbed features, followed
by testing on unperturbed datasets (original Nationwide dataset). By
following this pipeline, we can observe model behaviour given data
representing stress scenarios, and the counterfactuals generated are
based on stressed model’s reasoning on the test set. The robustness
score in this context is a reflection of stressed model reasoning on
non-stressed data.

The following evaluation is done on 4 separate versions of the

Nationwide dataset. Using the kNNs, we increase the positive bad rate
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Table 5
Feature ranges for the Nationwide dataset.

Nationwide 3 bins

Value ranges bin 1 bin 2 bin 3

variable01 −1.77𝑒−15 < 𝑥 ≤ 6.0 6.0 < 𝑥 ≤ 15.0 15.0 < 𝑥 ≤ 172
variable02 1.0 < 𝑥 ≤ 3.0 3.0 < 𝑥 ≤ 5.0 5.0 < 𝑥 ≤ 24.0
variable03 −998.0 < 𝑥 ≤ 0.0 0.0 < 𝑥 ≤ 37.0 37.0 < 𝑥 ≤ 109
variable04 −4.82𝑒4 < 𝑥 ≤ −8.01𝑒3 −8.01𝑒3 < 𝑥 ≤ −3.23𝑒3 −3.23𝑒3 < 𝑥 ≤ 3.30𝑒5

variable05 0.0 < 𝑥 ≤ 196.71 −196.71 < 𝑥 ≤ 1326.5 1326.5 < 𝑥 ≤ 3.34𝑒5

variable06 0.0 < 𝑥 ≤ 211.13 211.13 < 𝑥 ≤ 1487.06 1487.06 < 𝑥 ≤ 3.34𝑒5

variable07 0.0 < 𝑥 ≤ 236.61 236.61 < 𝑥 ≤ −1.37𝑒3 −1.37𝑒3 < 𝑥 ≤ 3.34𝑒5

variable08 0.0 < 𝑥 ≤ 263.30 263.30 < 𝑥 ≤ 1552.48 1552.48 < 𝑥 ≤ 3.34𝑒5

variable09 −8.52𝑒3 < 𝑥 ≤ 187.84 187.84 < 𝑥 ≤ 1.49𝑒3 1.49𝑒3 < 𝑥 ≤ 3.34𝑒5

variable10 −5710.0 < 𝑥 ≤ −340.0 −340.0 < 𝑥 ≤ −91.58 −91.58 < 𝑥 ≤ 0.0
variable11 −9.99𝑒5 < 𝑥 ≤ −721.06 −721.06 < 𝑥 ≤ −341.81 −341.81 < 𝑥 ≤ 0.0
variable12 −1.77𝑒−15 < 𝑥 ≤ 7.99 7.99 < 𝑥 ≤ 19.0 19.0 < 𝑥 ≤ 172.0
variable13 0.0 < 𝑥 ≤ 3.64 3.64 < 𝑥 ≤ 333.25 333.25 < 𝑥 ≤ 3.34𝑒5

variable14 0.0 < 𝑥 ≤ 4.09 4.09 < 𝑥 ≤ 382.84 382.84 < 𝑥 ≤ 3.34𝑒5

variable15 0.99 < 𝑥 ≤ 4.0 4.0 < 𝑥 ≤ 7.0 7.0 < 𝑥 ≤ 10.0
variable16 −1.00𝑒6 < 𝑥 ≤ −6.63𝑒5 −6.63𝑒5 < 𝑥 ≤ −3.27𝑒5 −3.27𝑒5 < 𝑥 ≤ 9214.00
variable17 0.99 < 𝑥 ≤ 4.0 4.0 < 𝑥 ≤ 7.0 7.0 < 𝑥 ≤ 10.0
variable18 0.99 < 𝑥 ≤ 4.0 4.0 < 𝑥 ≤ 7.0 7.0 < 𝑥 ≤ 10.0
variable19 0.99 < 𝑥 ≤ 3.99 3.99 < 𝑥 ≤ 7.0 7.0 < 𝑥 ≤ 10.0
variable20 −1.00𝑒6 < 𝑥 ≤ 1.65𝑒5 1.65𝑒5 < 𝑥 ≤ 1.33𝑒6 1.33𝑒6 < 𝑥 ≤ 2.49𝑒6

variable21 1.0 < 𝑥 ≤ 8.0 8.0 < 𝑥 ≤ 9.0 9.0 < 𝑥 ≤ 10.0
variable22 −9.99𝑒5 < 𝑥 ≤ 100.0 100.0 < 𝑥 ≤ 145.0 145.0 < 𝑥 ≤ 701.0
variable23 −1.00𝑒6 < 𝑥 ≤ −6.66𝑒5 −6.66𝑒5 < 𝑥 ≤ −3.33𝑒5 −3.33𝑒5 < 𝑥 ≤ 1.0
variable24 −1.00𝑒6 < 𝑥 ≤ −6.63𝑒5 −6.63𝑒5 < 𝑥 ≤ −3.27𝑒5 −3.27𝑒5 < 𝑥 ≤ 9333.0
variable25 0.99 < 𝑥 ≤ 4.0 4.0 < 𝑥 ≤ 7.0 7.0 < 𝑥 ≤ 10.0
variable26 −9.99𝑒5 < 𝑥 ≤ 2.0 2.0 < 𝑥 ≤ 6.0 6.0 < 𝑥 ≤ 87.0
variable27 0.99 < 𝑥 ≤ 4.0 4.0 < 𝑥 ≤ 7.0 7.0 < 𝑥 ≤ 10.0
variable28 −9.99𝑒5 < 𝑥 ≤ 89.0 89.0 < 𝑥 ≤ 118.0 118.0 < 𝑥 ≤ 9972.0
variable29 −9.99𝑒5 < 𝑥 ≤ 10.0 10.0 < 𝑥 ≤ 56.0 56.0 < 𝑥 ≤ 463.0
variable30 0.99 < 𝑥 ≤ 3.99 3.99 < 𝑥 ≤ 7.0 7.0 < 𝑥 ≤ 10.0
variable31 −1.00𝑒6 < 𝑥 ≤ −6.66𝑒5 −6.66𝑒5 < 𝑥 ≤ −3.33𝑒5 −3.33𝑒5 < 𝑥 ≤ 52.0
variable32 1.00𝑒6 < 𝑥 ≤ −6.66𝑒5 −6.66𝑒5 < 𝑥 ≤ −3.33𝑒5 −3.33𝑒5 < 𝑥 ≤ 92.0
variable33 −9.99𝑒5 < 𝑥 ≤ 0.0 0.0 < 𝑥 ≤ 1.0 1.0 < 𝑥 ≤ 28.0
variable34 −9.99𝑒5 < 𝑥 ≤ 0.0 0.0 < 𝑥 ≤ 1.0 1.0 < 𝑥 ≤ 90.0
variable35 −9.99𝑒5 < 𝑥 ≤ 0.0 0.0 < 𝑥 ≤ 1.0 1.0 < 𝑥 ≤ 90.0
variable36 0.99 < 𝑥 ≤ 4.0 4.0 < 𝑥 ≤ 7.0 7.0 < 𝑥 ≤ 10.0
variable37 −9.99𝑒5 < 𝑥 ≤ 0.0 0.0 < 𝑥 ≤ 1.0 1.0 < 𝑥 ≤ 19.0
variable38 −9.99𝑒5 < 𝑥 ≤ 144.0 144.0 < 𝑥 ≤ 303.66 303.66 < 𝑥 ≤ 15335.0
variable39 −9.99𝑒5 < 𝑥 ≤ 96.0 96.0 < 𝑥 ≤ 100.0 100.0 < 𝑥 ≤ 9678.0
variable40 −1.00𝑒6 < 𝑥 ≤ −6.65𝑒5 −6.55𝑒5 < 𝑥 ≤ −3.11𝑒5 −3.11𝑒5 < 𝑥 ≤ 3.28𝑒4

variable41 0.99 < 𝑥 ≤ 4.0 4.0 < 𝑥 ≤ 7.0 7.0 < 𝑥 ≤ 10.0
variable42 −9.99𝑒5 < 𝑥 ≤ 95.0 95.0 < 𝑥 ≤ 104.0 104.0 < 𝑥 ≤ 9570.0
variable43 −9.99𝑒5 < 𝑥 ≤ 19.0 19.0 < 𝑥 ≤ 43.0 43.0 < 𝑥 ≤ 596.0
variable44 −1.00𝑒6 < 𝑥 ≤ −6.66𝑒5 −6.66𝑒5 < 𝑥 ≤ −3.33𝑒5 −3.33𝑒5 < 𝑥 ≤ 71.99
variable45 0.99 < 𝑥 ≤ 4.00 4.00 < 𝑥 ≤ 7.0 7.0 < 𝑥 ≤ 10.0
variable46 −9.99𝑒5 < 𝑥 ≤ 1.0 1.0 < 𝑥 ≤ 2.0 2.0 < 𝑥 ≤ 51.0
variable47 0.99 < 𝑥 ≤ 3.99 3.99 < 𝑥 ≤ 7.0 7.0 < 𝑥 ≤ 10.0
variable48 −9.99𝑒5 < 𝑥 ≤ 2.0 2.0 < 𝑥 ≤ 5.0 5.0 < 𝑥 ≤ 86.0
variable49 −0.024 < 𝑥 ≤ 8.0 8.0 < 𝑥 ≤ 16.0 16.0 < 𝑥 ≤ 24.0
variable50 0.0 < 𝑥 ≤ 38.0 38.0 < 𝑥 ≤ 102.0 102.0 < 𝑥 ≤ 440.0
to 12% and 18%. KNNs are again used on the biased datasets to perturb
features based on extracting the most robust ranges for variables for
which an observation should have a certain classification. We use these
robust ranges to randomize feature values for these observations and
hence arrive at a new, perturbed out-of-time sample.

5.4.1. Baseline
In Table 5 The following ranges are provided for each feature. The

two values in each bin indicate the lower and upper bound for that bin
interval. The initial baseline is seen in Table where the bad rate in the
data is initially 6%. The average robustness scores for 3 binned intervals
an be observed in Table 3.

.4.2. Stress scenarios
ationwide 12% bad rate. In Table 6 we see the impact of increased
ad rate has on the Nationwide dataset. We note that features vari-
ble12 and variable48 become more robust when more observa-

ions are labelled as bad. We also see certain features such as vari-
11

ble15 and variable31 become less robust with model prediction.
Nationwide 12% bad rate with perturbed features. In Table 7 we see
the result of feature perturbation on the Nationwide data with 12%
bad rate. It can be observed that the most notable change is a higher
robustness for feature variable36 at bin interval 1. Given that, the
overall impact of feature data perturbation is minimal with this bias
ratio for credit default.

Nationwide 18% bad rate. In Table 8 it can be observed that features
variable04 (increased robustness) and variable31 (decreased
robustness) change significantly from the baseline Nationwide dataset
(see Table 3). The remaining features see little fluctuation in their
average robustness scores.

Nationwide 18% bad rate with perturbed features:. The impact of the
perturbed feature values on the Nationwide dataset with 18% bad rate
is minimal with few actual changes in average robustness. Cases of
increased robustness can be seen with feature variable18, as seen
in Table 9.

Overall we notice that the robustness of certain features fluctuates

with increased bad rate as well as with perturbations on the data.
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Table 6
Average robustness scores for the Nationwide dataset with 12% bad rate. Approximate
running time for 3 binned SGB was 559 s.

Nationwide (12%) 3 bins

bin 1 bin 2 bin 3 avg.

variarble01 11.1±2.14 13.2±3.18 6.13±1.15 10.1
variable02 11.2±2.64 9.69±2.46 12.2±1.51 11.0
variable03 9.10±1.14 6.32±0.80 12.0±3.82 9.15
variable04 14.1±4.11 9.79±2.85 7.73±1.54 10.5
variable05 8.68±1.98 10.2±1.67 1.65±0.16 6.86
variable06 10.2±2.04 11.9±1.93 1.65±0.16 7.95
variable07 8.11±2.09 12.2±1.77 1.66±0.16 7.34
variable08 7.09±1.53 9.45±1.71 1.65±0.16 6.06
variable09 10.2±2.10 12.3±1.78 1.65±0.16 8.09
variable10 13.2±2.12 9.18±0.98 8.67±1.40 10.3
variable11 10.3±0.27 9.04±1.66 13.8±2.40 11.1
variable12 12.1±3.10 14.2±3.46 10.2±0.35 12.1
variable13 10.3±2.17 4.31±0.90 3.14±0.26 5.94
variable14 10.3±2.17 4.28±0.69 3.15±0.26 5.93
variable15 0.96±0.96 2.41±0.89 5.92±0.84 3.10
variable16 4.48±1.60 0.0±0.0 8.31±2.28 4.26
variable17 0.89±0.42 5.59±1.73 6.06±0.81 4.18
variable18 2.09±1.39 8.17±1.35 12.1±1.99 7.48
variable19 3.28𝑒−05 ±3.28𝑒−05 2.31±0.45 6.23±0.84 2.85
variable20 8.71±2.02 1.03±0.08 0.0±0.0 3.25
variable21 7.60±2.67 16.0±2.21 1.26±0.11 8.30
variable22 8.77±2.08 7.78±1.08 6.90±0.29 7.82
variable23 9.20±1.91 0.0±0.0 7.00±0.12 5.40
variable24 6.41±1.08 0.0±0.0 8.91±2.51 5.10
variable25 0.21±0.18 6.60±0.94 7.55±1.54 4.78
variable26 7.49±1.72 11.6±1.73 16.3±0.80 11.8
variable27 0.01±0.01 0.0±0.0 5.92±0.84 1.98
variable28 12.8±1.87 10.5±1.18 9.72±2.40 11.0
variable29 4.65±0.77 4.38±0.44 8.97±2.76 6.00
variable30 1.10±1.10 0.0±0.0 5.92±0.84 2.34
variable31 0.0±0.0 0.0±0.0 5.92±0.84 1.97
variable32 2.29±0.53 0.0±0.0 8.24±2.24 3.51
variable33 1.99±0.31 8.91±1.48 8.60±1.88 6.50
variable34 4.62±2.35 9.81±1.24 8.69±1.99 7.71
variable35 2.45±0.39 9.22±1.15 8.62±1.96 6.76
variable36 3.42±3.41 6.64±0.84 7.55±1.54 5.87
variable37 8.63±1.89 9.33±2.00 10.7±3.15 9.56
variable38 12.6±2.01 8.54±1.37 17.1±0.24 12.7
variable39 6.31±0.94 16.3±0.12 8.48±1.74 10.3
variable40 13.5±1.45 0.0±0.0 10.7±4.04 8.08
variable41 2.73±2.08 6.98±1.42 6.06±0.81 5.26
variable42 7.32±1.04 13.1±0.29 8.80±2.01 9.75
variable43 10.6±1.42 10.3±1.27 17.7±2.25 12.8
variable44 1.28±0.16 0.0±0.0 8.90±2.35 3.39
variable45 0.47±0.47 6.96±1.72 12.1±1.99 6.54
variable46 1.91±0.18 3.23±0.45 8.42±1.82 4.52
variable47 0.15±0.15 2.25±0.47 6.23±0.84 2.87
variable48 11.2±2.56 9.82±1.49 17.4±0.82 12.8
variable49 12.3±2.56 0.42±0.07 0.03±0.03 4.27
variable50 14.6±1.84 10.4±2.06 1.06±0.05 8.72

In some cases significantly, however overall the SGB model retains
robustness across the majority of features.

6. Conclusion

The implementation of ML techniques in the financial sector is
still limited due to the lack of interpretability. To address this chal-
lenge, our paper proposes to merge two distinct approaches, that being
counterfactuals generated from blackbox models and targeted data
perturbation using kNNs, together creating an approach to perform
stress scenario analysis for scoring models. The two approaches can be
used separately or in conjunction.

The data perturbation methodology uses kNNs to identify entries
which are in close proximity to entries of another classification for class
reassignment. This method can be used to generate synthetic data that
represent economic downturn when a limited time series is available.
12

The generation of counterfactuals provides an added perspective into
Table 7
Average robustness scores for the Nationwide dataset with 12% bad rate and feature
perturbations. Approximate running time for 3 binned SGB was 571 s.

Nationwide (12%) 3 bins

Perturbed features bin 1 bin 2 bin 3 avg.

variable01 11.1 ± 2.19 13.2±2.59 6.13 ± 1.27 10.9
variable02 11.2 ± 2.94 9.69±2.51 12.2 ± 1.51 11.3
variable03 9.10 ± 1.14 6.32±0.80 12.0 ± 3.08 8.70
variable04 14.1 ± 3.57 9.79±2.89 7.73 ± 1.55 12.0
variable05 8.68 ± 2.06 10.2±1.92 1.65 ± 0.16 7.21
variable06 10.2 ± 6.36 11.9±2.01 1.65 ± 1.37 9.12
variable07 8.11 ± 2.26 12.2±1.50 1.66 ± 0.16 6.97
variable08 7.09 ± 2.13 9.45±1.59 1.65 ± 0.16 7.77
variable09 10.2 ± 1.96 12.3±1.78 1.65 ± 0.16 7.72
variable10 13.2 ± 2.12 9.18±1.24 8.67 ± 1.40 10.4
variable11 10.3 ± 0.27 9.04±1.66 13.8 ± 2.40 11.1
variable12 12.1 ± 2.66 14.2±3.40 10.2 ± 0.35 12.8
variable13 10.3 ± 2.17 4.31±0.86 3.14 ± 0.26 6.17
variable14 10.3 ± 2.17 4.28±0.69 3.15 ± 0.26 5.93
variable15 0.96 ± 0.14 2.41±1.42 5.92 ± 0.84 3.25
variable16 4.48 ± 0.61 0.0±0.0 8.31 ± 2.28 3.82
variable17 0.89 ± 0.48 5.59±1.54 6.06 ± 0.81 4.56
variable18 2.09 ± 1.24 8.17±1.81 12.1 ± 1.99 6.61
variable19 3.28𝑒−5 ± 0.78 2.31±2.10 6.23 ± 0.84 4.49
variable20 8.71 ± 2.02 1.03±0.08 0.0 ± 0.0 3.25
variable21 7.60 ± 2.67 16.0±2.21 1.26 ± 0.11 8.30
variable22 8.77 ± 1.94 7.78±1.08 6.90 ± 0.29 8.53
variable23 9.20 ± 1.91 0.0±0.0 7.00 ± 0.12 5.40
variable24 6.41 ± 1.08 0.0±0.0 8.91 ± 2.51 5.10
variable25 0.21 ± 0.0 6.60±0.44 7.55 ± 1.54 5.17
variable26 7.49 ± 1.70 11.6±1.73 16.3 ± 0.80 12.7
variable27 0.01 ± 3.38 0.0±0.0 5.92 ± 0.84 3.11
variable28 12.8 ± 0.68 10.5±1.18 9.72 ± 2.30 11.8
variable29 4.65 ± 0.77 4.38±0.44 8.97 ± 2.54 6.24
variable30 1.10 ± 0.01 0.0±0.0 5.92 ± 0.84 1.97
variable31 0.0 ± 0.15 0.0±0.0 5.92 ± 0.84 2.02
variable32 2.29 ± 0.77 0.0±0.0 8.24 ± 2.24 3.83
variable33 1.99 ± 0.31 8.91±1.48 8.60 ± 1.88 6.50
variable34 4.62 ± 0.25 9.81±1.24 8.69 ± 1.99 6.93
variable35 2.45 ± 0.23 9.22±1.15 8.62 ± 1.96 6.85
variable36 3.42 ± 0.0 6.64±0.89 7.55 ± 1.54 4.93
variable37 8.63 ± 1.81 9.33±2.00 10.7 ± 3.15 10.1
variable38 12.6 ± 2.01 8.54±1.60 17.1 ± 0.24 12.6
variable39 6.31 ± 0.94 16.3±0.12 8.48 ± 1.74 10.3
variable40 13.5 ± 1.45 0.0±0.0 10.7 ± 4.09 8.03
variable41 2.73 ± 0.53 6.98±1.27 6.06 ± 0.81 4.76
variable42 7.32 ± 1.28 13.1±0.29 8.80 ± 2.01 9.33
variable43 10.6 ± 1.42 10.3±1.27 17.7 ± 2.25 12.8
variable44 1.28 ± 0.16 0.0±0.0 8.90 ± 2.35 3.39
variable45 0.47 ± 3.12 6.96±1.66 12.1 ± 1.99 8.13
variable46 1.91 ± 0.18 3.23±0.45 8.42 ± 1.82 4.52
variable47 0.15 ± 0.0 2.25±0.56 6.23 ± 0.84 2.73
variable48 11.1 ± 1.97 9.82±1.49 17.4 ± 0.82 11.6
variable49 12.3 ± 2.56 0.42±0.08 0.03 ± 0.0 4.24
variable50 14.6 ± 1.84 10.4±2.04 1.06 ± 0.05 8.73

data regions that are robust to change or are weak to feature value
perturbations. The two approaches combined provide a key stress
scenario mechanism for blackbox model analysis.

We test these proposals on a UK dataset on unsecured personal
loans. We show that our data perturbation method decreases AUC as
the default ratio increases. We also demonstrate the insight of the
robustness score derived from counterfactuals, where using counter-
factual constraints enables us to compare the robustness of logistic
regression and SGB across each feature in the Nationwide dataset. Our
results demonstrate that SGB remains more robust to data perturbations
than the industry benchmark of logistic regression. We also investi-
gated the stressed scenario datasets provided by our data perturbation
method and were able to identify the robustness of discrete feature
ranges across all features. Our results indicate that with increasing
bad rates, SGB still remains robust to perturbations that signify stress
scenarios.
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Table 8
Average robustness scores for the Nationwide dataset with 18% bad rate. Approximate
running time for 3 binned SGB was 581 s.

Nationwide (18%) 3 bins

bin 1 bin 2 bin 3 avg.

variable01 16.9±7.04 13.2±3.18 5.21±1.45 11.8
variable02 12.8±2.60 9.63±2.49 12.2±1.51 11.5
variable03 9.10±1.14 6.32±0.80 10.6±3.08 8.70
variable04 16.5±3.58 11.8±2.86 7.73±1.54 12.0
variable05 8.93±1.79 13.9±3.48 1.65±0.16 8.17
variable06 8.11±2.04 11.9±1.93 1.65±0.16 7.23
variable07 10.3±2.13 12.2±1.77 1.66±0.16 8.10
variable08 10.1±2.13 11.4±1.59 1.65±0.16 7.77
variable09 9.90±2.31 12.3±1.78 1.65±0.16 7.96
variable10 13.2±2.12 9.18±0.98 8.16±1.27 10.1
variable11 10.3±0.27 9.04±1.66 13.8±2.40 11.1
variable12 14.1±2.66 18.3±3.84 10.2±0.35 14.2
variable13 10.3±2.17 4.98±0.86 3.14±0.26 6.17
variable14 10.3±2.17 4.28±0.69 3.15±0.26 5.93
variable15 1.64±1.64 10.4±6.07 5.92±0.84 6.01
variable16 3.85±0.51 0.0±0.0 8.31±2.28 4.05
variable17 1.46±0.97 7.35±1.30 6.06±0.81 4.96
variable18 0.02±0.02 7.96±1.47 12.1±1.99 6.72
variable19 0.97±0.85 5.95±3.65 6.23±0.84 4.38
variable20 8.71±2.02 1.03±0.08 0.0±0.0 3.25
variable21 7.60±2.67 16.0±2.21 1.26±0.11 8.30
variable22 8.77±2.08 7.78±1.08 6.90±0.29 7.82
variable23 9.20±1.91 0.0±0.0 7.01±0.12 5.40
variable24 6.41±1.08 0.0±0.0 8.91±2.51 5.10
variable25 1.32±1.32 6.15±1.09 7.33±1.64 4.93
variable26 8.46±2.32 11.6±1.73 16.3±0.80 12.1
variable27 0.46±0.46 0.0±0.0 5.92±0.84 2.13
variable28 12.7±1.93 10.5±1.18 10.3±2.30 11.2
variable29 4.65±0.77 4.38±0.44 9.70±2.54 6.24
variable30 0.01±0.01 0.0±0.0 5.92±0.84 1.97
variable31 0.08±0.06 0.0±0.0 5.92±0.84 2.00
variable32 2.69±0.44 0.0±0.0 8.24±2.24 3.64
variable33 1.99±0.31 8.91±1.48 8.60±1.88 6.51
variable34 2.29±0.25 9.81±1.24 8.66±2.01 6.92
variable35 2.72±0.23 9.22±1.15 8.62±1.96 6.85
variable36 0.0±0.0 8.10±1.16 7.55±1.54 5.22
variable37 10.3±1.81 9.33±2.00 10.7±3.15 10.1
variable38 12.6±2.00 10.2±1.73 17.1±0.24 13.3
variable39 6.31±0.94 16.3±0.12 8.48±1.74 10.3
variable40 13.5±1.45 0.0±0.0 10.8±3.99 8.13
variable41 0.48±0.34 7.13±1.35 6.06±0.81 4.56
variable42 8.39±1.76 13.1±0.29 8.80±2.01 10.1
variable43 10.6±1.42 10.3±1.27 17.7±2.25 12.8
variable44 1.28±0.16 0.0±0.0 8.91±2.35 3.39
variable45 1.19±1.12 7.62±1.58 12.1±1.99 7.00
variable46 1.91±0.18 3.23±0.45 8.42±1.82 4.52
variable47 0.0±0.0 1.81±0.37 6.23±0.84 2.68
variable48 9.29±1.97 9.82±1.49 17.4±0.82 12.1
variable49 12.3±2.56 0.42±0.07 0.0±0.0 4.26
variable50 14.6±1.84 10.5±2.04 1.06±0.05 8.73
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Table 9
Average robustness scores for the Nationwide dataset with 18% bad rate and feature
perturbations. Approximate running time for 3 binned SGB was 573 s.

Nationwide (18%) 3 bins

Perturbed features bin 1 bin 2 bin 3 avg.

variable01 9.01±2.34 13.2±3.18 6.34±1.35 9.54
variable02 12.8±2.63 9.58±2.51 12.2±1.51 11.5
variable03 9.10±1.14 6.32±0.80 9.64±3.44 8.35
variable04 19.4±5.00 11.7±2.88 8.08±1.32 13.1
variable05 13.5±4.48 7.37±1.61 1.65±0.16 7.51
variable06 8.07±2.08 11.9±1.93 1.65±0.16 7.21
variable07 9.92±2.37 12.2±1.77 1.66±0.16 7.95
variable08 6.05±1.44 11.4±1.59 1.65±0.16 6.39
variable09 9.87±1.90 10.7±1.57 1.65±0.16 7.42
variable10 13.2±2.12 9.18±0.98 8.67±1.40 10.3
variable11 10.3±0.27 9.04±1.66 13.8±2.40 11.1
variable12 12.3±3.17 14.1±3.39 10.2±0.35 12.2
variable13 10.3±2.17 4.46±0.84 3.14±0.26 5.99
variable14 10.3±2.17 3.46±0.72 3.15±0.26 5.66
variable15 0.0±0.0 2.71±0.82 5.92±0.84 2.88
variable16 3.85±0.51 0.0±0.0 8.31±2.28 4.05
variable17 0.97±0.56 7.47±1.58 6.06±0.81 4.83
variable18 2.84±2.84 8.42±1.26 12.1±1.99 7.81
variable19 0.72±0.70 1.97±0.54 6.23±0.84 2.97
variable20 8.71±2.02 1.03±0.08 0.0±0.0 3.25
variable21 7.60±2.67 16.0±2.21 1.26±0.11 8.30
variable22 10.9±1.94 7.78±1.08 6.90±0.29 8.53
variable23 9.20±1.91 0.0±0.0 7.01±0.12 5.40
variable24 6.41±1.08 0.0±0.0 8.91±2.51 5.10
variable25 0.0±0.0 7.79±1.27 7.55±1.54 5.11
variable26 10.6±1.70 11.6±1.73 16.3±0.80 12.9
variable27 0.18±0.18 0.0±0.0 5.92±0.84 2.03
variable28 14.6±0.68 10.5±1.18 10.3±2.30 11.8
variable29 4.65±0.77 4.38±0.44 9.31±2.71 6.11
variable30 3.40±3.40 0.0±0.0 5.92±0.84 3.11
variable31 0.0±0.0 0.0±0.0 5.92±0.84 1.97
variable32 2.38±0.48 0.0±0.0 8.24±2.24 3.54
variable33 1.99±0.31 8.91±1.48 8.60±1.88 6.50
variable34 3.57±1.31 9.81±1.24 8.69±1.99 7.36
variable35 2.72±0.23 9.22±1.15 8.62±1.96 6.85
variable36 0.0±0.0 6.23±1.04 7.55±1.54 4.59
variable37 10.3±1.81 9.33±2.00 10.7±3.15 10.1
variable38 10.4±2.38 7.48±1.88 17.1±0.24 11.6
variable39 6.31±0.94 16.3±0.12 8.48±1.74 10.3
variable40 13.5±1.45 0.0±0.0 10.7±4.03 8.09
variable41 2.87±1.91 8.07±1.46 6.06±0.81 5.67
variable42 7.32±1.04 13.1±0.29 8.80±2.01 9.75
variable43 8.82±1.80 10.3±1.27 17.7±2.25 12.29
variable44 1.28±0.16 0.0±0.0 8.90±2.35 3.39
variable45 0.0±0.0 7.51±1.62 12.1±1.99 6.56
variable46 1.91±0.18 3.23±0.45 8.42±1.82 4.52
variable47 0.48±0.47 2.28±0.46 6.23±0.84 3.00
variable48 8.39±2.30 9.82±1.49 17.4±0.82 11.8
variable49 12.3±2.56 0.49±0.09 0.0±0.0 4.28
variable50 12.3±2.47 12.1±2.93 1.06±0.05 8.48
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